Janno Jürgenson

12-NÄDALASE KÄIMISTREENINGU MÕJU
VERERÕHU NÄITAJATELE
HÜPERTENSIOONI DIAGNOOSIGA NAISPATSIENTIDEL

Magistritöö
liikumis- ja sporditeaduste erialal

Uurimisvaldkond: taastusravi ja rehabilitatsioon

Juhendaja: Eve Unt, MD, dr (med)
Priit Eelmäe, MSc

Tartu 2009
SISUKORD

1. PUBLIKATSIOONID ........................................................................................................ 4
2. KASUTATUD LÜHENDID .................................................................................................. 5
3. SISSEJUHATUS .................................................................................................................. 6
4. HÜPERTENSIOONI DEFINITSIOON JA KLASSIFIKATSIOON ........................................... 7
  4.1. Vererõhku reguleerivad mehhanismid ..................................................................... 8
5. HÜPERTENSIOONI RISKIFAKTORID .............................................................................. 8
  5.1. Hüpertensioon ja toidu Na\(^+\), Ca\(^{2+}\), K\(^+\) ja Mg\(^{2+}\) sisaldus ....................... 8
  5.2. Hüpertensioon, alkolõli tarbimine ja suitsetamine ................................................ 9
  5.3. Hüpertensioon ja ülekaal ......................................................................................... 10
  5.4. Hüpertensioon ja vanus .......................................................................................... 10
  5.5. Hüpertensioon ja pärlilikkus ................................................................................... 11
  5.6. Madal kehaline aktiivsus kui hüpertensiooni riskitegur ......................................... 11
6. HÜPERTENSIOONI DIAGNOOSIMINE JA RAVI ............................................................. 11
  6.1. Hüpertensiooni diagnoosimine .............................................................................. 11
  6.2. Primaarne ja sekundaarne hüpertensioon ............................................................... 12
  6.3. Riskitegurite kõrvaldamine ja medikamentoosne ravi ............................................ 13
7. KEHALISTE HARJUTUSTE OSA HÜPERTENSIOONI KORRAL ................................... 14
  7.1. Kehalise aktiivsuse mõju vererõhu langetamisel ...................................................... 14
  7.2. Vererõhu reaktsioon koormusele ........................................................................... 14
  7.3. Dünaamiline ja isomeetriline kehaline koormus ..................................................... 16
8. TÖÖ EESMÄRK ............................................................................................................. 19
9. TÖÖ METOODIKA ......................................................................................................... 20
  9.1. Vaatluslused ............................................................................................................. 20
  9.2. Uuringute korraldus ............................................................................................... 20
  9.2.1. Vererõhu ja südamelöögisageduse mõõtmine ....................................................... 21
  9.2.2. Antropomeetrilised mõõtmised ......................................................................... 22
  9.2.3. Maksimaalse hapnikutarbimise võime määramine ning koormuse järgse vererõhu ja südamelöögisageduse määramine kaheksa minuti jooksul ... 22
  9.2.4. 12-nädalane käimistreeningu programm liikuval jooksurajal ............................... 22
  9.2.5. Toitumise kvantitatiivne analüüs ...................................................................... 23
  9.2.6. Igapäevase kehalise aktiivsuse hindamine .......................................................... 23
  9.3. Statistiline andmetöötlus ........................................................................................ 23
10. TÖÖ TULEMUSED ........................................................................................................... 24
10.1. Uuritavate rahuoleku vererõhk ja südamelöögisagedus ........................................ 24
10.2. Rahuoleku vererõhu ja südamelöögisageduse dynaamika 12-nädalase
käimistreeningu perioodil ............................................................................................ 25
10.3. Uuritavate maksimaalne hapnikutarbimise võime ................................................. 26
10.4. Taastumisperioodi vererõhu ja südamelöögisageduse näitajad ............................ 26
10.5. Uuritavate antropomeetrilised, toitumise ja kehalise aktiivsuse näitajad .... 28
10.6. Vererõhu, ülekaalu ja kehalise võimekuse vahelised seosed............................... 28
11. ARUTELU ....................................................................................................................... 29
12. JÄRELDUSED ............................................................................................................... 32
13. KASUTATUD KIRJANDUS ....................................................................................... 33
14. SUMMARY ..................................................................................................................... 38


2. KASUTATUD LÜHENDID

DVR – diastoolne vererõhk
HDL-C – kõrge tihedusega lipoproteiin kolesterol, ing.k. high density lipoprotein cholesterol
KMI – kehamassi indeks
KRP – keha rasvaprotsent
LDL-C – madala tihedusega lipoproteiin kolesterol, ing.k. low density lipoprotein cholesterol
SLS – südamelõgisagedus
SVH – südame- ja veresoonkonna haigused
SVR – süstoolne vererõhk
VO\textsubscript{2max} – maksimaalse hapnikutarbimise võime
VR – vererõhk
3. SISSEJUHATUS

Hüpertensioon on üks peamine rahvatervise probleem enamuses arenenud maades ning maailmas sureb südame- ja veresoonkonna haigustesse (SVH) umbes $\frac{1}{3}$ inimestest (Murray & Lopez, 1997). Amerika Ühendriikides on ligikaudu 5 0 miljonit kõrgvererõhuga inimest, kes võtavad anti-hüpertensiivseid ravimeid ning Eestis on keskmiselt 25. protsendil inimestest kõrge vererõhk. Viimaste aastakümnete jooksul maailmas läbiviidud epidemioloogilised uuringud on näidanud, et kõrgenenud arteriaalne vererõhk on olu line insuldi, südamepuudulikkuse ja neerude kahjustuse riskitegur (Appel et al., 2006; AHA, 2005).

Normaalseks vererõhu tasemeks peetakse madalama ku 130/85 mmHg ja kõrgenenud normaalseks vererõhus 130-139/85-89 mmHg (Chobanian et al., 2003). Nende kriitiliste väärtuste ületamine viitab vererõhu ohtlikule tõusule ning selle ärahoidmiseks tuleks pöörata kindlasti tähelepanu järgmistele elustiili muudustele: säilitada normaalne kehakaal, piirata alkoholi tarbimist ning lõpetada suitsetamine, vähe ndada soola tarbimist ja lipiidide osakaalu toidus, säilitada adekvaatne toidu K+, Ca$^{2+}$ ja Mg$^{2+}$ sisaldus ning suurendada kehalist aktiivsust.


Paljud uuringud on näidanud, et kehalisel aktiivsusel on kõrgvererõhu haigetele soodne mõju (Wallace et al., 2003), kuid enamus neist uuringutest on keskendunud lühiajaliste kehalise koormuse aegsete ja –järgsete mõjude hindamisele. Kontrollitud tingimustes teostatud longitudinaalseid uuringuid on teostatud väga vähe. Paraku ei selgu nendest uuringutest, mil määral mõjutab regulaarne kehaline treening rahuoleku vererõhu väärtusti hüpertensiooni diagnoosiga patientidel sõltumata kehakaalu ja toitumisharjumuste muutustest. Sellest tulenevalt käsitleb antud uurimistöö pikaajalise madala intensiivsusega kehalise koormuse (käimistreeningu) vererõhku alandavat mõju kontrollitud tingimustes.
4. HÜPERTENSIIONI DEFINITSIOON JA KLASSEFIKATSIOON


Hüpertensiooni all mõistetakse vererõhu püsivat kõrgenemist täiskasvanud inimestel mõõdetuna kahel või enamal korral istuvas asendis: süstoolne vererõhk ≥140 mmHg ja/või diastoolne vererõhk ≥90 mmHg (Chobanian et al., 2003). VR väärtus üle 140/90 mmHg oli varasemalt kinnitatud arteriaalse hüpertensiooni piirväärtus (1993. a ilmunud Maailma Tervishoiuorganisatsiooni ja Rahvusvahelise Hüpertiisiooni Ühingu juhendid ning heaks kiidetud Hüpertensiooni Kontrolli Maailmakonverentsil Ottowas 1995. a [WHO, 1999]).

Uues klassifikatsioonis (tabel 1) on lisandunud prehüpertensiooni faas, mis suunab tähelepanu kõrgenenud hüpertensiooniriskiga inimestele, mistõttu on oluline vererõhu alandamiseks varakult algust teha eluviisiide muutmise ning vähendada vanusest tulenevat riski, kus kõrgenenud vererõhk võib arendada hüpertensiooniks (Chobanian et al., 2003).

Tabel 1. Vererõhu klassifikatsioon (Chobanian et al., 2003).

<table>
<thead>
<tr>
<th>Kategori</th>
<th>Süstoolne rõhk (mmHg)</th>
<th>Diastoolne rõhk (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normaalne</td>
<td>&lt;129</td>
<td>&lt;84</td>
</tr>
<tr>
<td>Kõrge normaalne</td>
<td>130-139</td>
<td>85-89</td>
</tr>
<tr>
<td>Hüpertensioon:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. staadium- kerge</td>
<td>140-159</td>
<td>90-99</td>
</tr>
<tr>
<td>2. staadium- mõõdukas</td>
<td>160-179</td>
<td>100-109</td>
</tr>
<tr>
<td>3. staadium- raske</td>
<td>180-209</td>
<td>110-119</td>
</tr>
<tr>
<td>4. staadium- väga raske</td>
<td>&gt;210</td>
<td>&gt;120</td>
</tr>
</tbody>
</table>
4.1. Vererõhku reguleerivad mehhanismid

VR reguleerivad sümptoodrenaleer- ja reniin-angiotensiin-aldosteroonsüsteem, karootiisiniinuses ja aordikaares asuvad baroreseptorid, serotoniin ja endoteliaalsed tegurid. Nende toime avaldub läbi südaloolöögisageduse regulatsiooni, müokardi kontraktiilsuse kontolli ning veremahu ja perifeerse vastupanu kaudu järgnevalt (Verdecchia et al., 2008):

a) reniin – ahendab veresooni (tõstab VR);

b) angiotensiin – ahendab veresooni (tõstab VR);

c) aldosteroon – soodustab Na⁺, Cl⁻ ja vee tagasimendumist (tõstab VR);

d) ADH (anti-diureetiline hormoon) – suurendab vee tagasi imendumist (tõstab VR);

e) endoteliin – vabaneb hüpoksia korral, tekitab vasospasmi vastavas hüpoksia piirkonnas (tõstab VR);

f) prostatasüklleen – sünteesi indukteerib endoteeli raku vaba Ca²⁺-sisalduse suurenemine, lõõgastab veresooni (alandab VR);

g) NO (lämmastikoksiid) – NO pidev tekkimine rakumembraanis on vajalik normaalse VR säilitamiseks, põhjustab arteri silelihaste lõõgastumist, liigne eritus võib põhjustada septilise šoki – VR alaneb järsult (Burnett & Lowenstein, 1992);

h) kortikosteroidid – on vasopressoorse toimega ning suurendavad reiniini ja angiotensiini sekretsooni (tõstavad VR);

i) südamekoja natriureetiline faktor – organismist NaCl ja vett evakueeriv ning perifeerseid arterioole dilateeriv toime (langetab VR).

5. HÜPERTENSIOONI RISKIFAKTORID

5.1. Hüpertensioon ja toidu Na⁺, Ca²⁺, K⁺ ja Mg²⁺ sisaldus

Toidu Na⁺, Ca²⁺, K⁺ ja Mg²⁺ sisaldus mõjutab SVH väga oluliselt (ICR, 1988). Südame kontraktsiooni tugevemise tekkemehhanismile (joonis 1) aitab kaasa liigne toidu soola sisaldus, mis põhjustab süstoolse vererõhu tõusu ning toidu soolasisaldus on seotud ka perifeerse toimeta silelihasrakkude Ca²⁺-sisalduse suurenemisega, mille tõttu tõuseb diastoolne vererõhk (Maxwell & Waks, 1987).

Mida rohkem on toidus Na⁺, seda kiirem ja suurem on vererõhu tõus. On leitud, et kui Na⁺ sisaldus toidus on 0,3-1,5 grammi päevas, on üle 50-aastaste inimeste vererõhk keskmiselt vaid 100/65 mmHg. Kui vähendada soolasisaldust toidus üheksalt grammit kuuele, siis süstoolne vererõhk langeb 9 mmHg (ICR, 1988). Suurenend kaltsiumi sisaldus toidus omab antihüpertensiivset efekti tänu naatriumi väljutamise parandamisele, sümptootilise närvisüsteemi funktsiooni mõjutamisele, lämmastikoksiidi vasodilatatoorse toime tundlikkuse suurendamisele.
ning superoksiidi ja vasokonstriktorsete prostanoidide produktsooni vähendamisele (Vaskonen, 2003).

Neerudes on pärilik soola eritumishäire – Na⁺ liigne reabsorptsioon
▼
Na⁺ liig organismis – seda suurendab soola liig toidus
▼
Natriureetilise faktori sekretsooni kasv liigse Na⁺ ja vee eemaldamiseks organismist (kompensatsioonireaktsioon)
▼
Na⁺ ja vee eritumine suureneb, kuid natriureetiline faktor pärseb rakumembraani Na⁺-K⁺-pumba ATP-aasset aktiivsust, millest Ca^{2+}-ioonide transport rakuvälisesse ruumi väheneb
▼
Veresoonte silelihasrakkude ja müotsüütide Ca^{2+} sisaldus suureneb
▼
Südame kontraktsioonijõud ja arterite toonus suureneb

**Joonis 1.** Südame kontraktsiooni tugevnemise tekkemehhanism (Maxwell & Waks, 1987).


### 5.2. Hüpertensioon, alkoholi tarbimine ja suitsetamine

Liigne alkoholi tarbimine kõrgendab VR mitme päeva kuni nädala vältel (Smith & Crombie, 1988). Arvatakse, et 60-80% alkohoolikutest on hüpertoonikud (Appel et al., 2006). 15. juhuslikult valitud uuringu meta-analüüs näitas, et alkoholi tarbimise vähendamine alandab vererõhku (SVR ja DVR langesid keskmiselt vastavalt 3,3 mmHg ja 2 mmHg vórra) nii hüpertensioonil kui ka selle puudumise puhul, kusjuures suurem vererõhu langus saadi isikuül, kes tarbisid algsest rohkem alkoholi (Xin et al., 2001).
Ühe kuni nelja sigareti suitsetamine päevas suurendab SVH riski mottesuitsetajatega vörreldes kolmekordseks (Stampfer et al., 2000). Suitsetamine suurendab üldkolesteroli, madala tihedusega lipoproteiin kolesteroli (LDL-C) ja triglütseriidide kontsentratsiooni ning vähendab kõrge tihedusega lipoproteiin kolesteroli (HDL-C) kontsentratsiooni veres, kusjuures üldkolesteroli ja LDL-C tasemed on naissuitsetajatel kõrgemad kui meestel (Cullen et al., 1998). Kirjanduse andmetel ei ole täpselt teada, missugused tubakasuitsu komponendid kahjustavad kardiovaskulaarset süsteemi, kuid tõenäoliselt on tegemist kompleksse mõjuga endoteelile ja immuunsüsteemile (Teesalu, 2005).

5.3. Hüpertensioon ja ülekaal

Paljudes arenenud riikides on ülekaalulisus järjest suurenev probleem nii eakates kui suhteliselt noortes vanuserühmades (EHÜ, 2000). Enamus hüpertensiivsein inimesi on ülekaalulised või rasvunud. Kuna hüpertensioon ja kehakaal on omavahel tihedalt seotud, kujuneb hüpertensioon suurema tõenäosusega ülekaalulistel (Narkiewicz, 2006; Nicolson et al., 2004). Kehakaalu langetamise soodne toime vererõhule ilmneb ka siis, kui normaalse kehakaaluni ei jõuta. Ülekaalulistel inimestel on hüpertensiooni primaarse preventsiooni üheks tõhusaks vähendiks kehakaalu alandamine (Cappuccio & Siani, 2004). Suurem kaalukaotus (üle 10 kg) võib alandada vererõhku keskmiselt 15/10 mmHg, kusjuures kehakaalu langetamise kõige efektiivsemaks viisiks on toidu kalorsuse vähendamine ja kehalise aktiivsuse suurendamine (Pi-Sunyer, 2003).


5.4. Hüpertensioon ja vanus

Süstoolse hüpertensiooni levimus suureneb vanusega ja üle 50-aastaste isikute seas on see kõige levinum hüpertensiooni vorm ning suurim SVH riskifaktor (Chobanian et al., 2003). Üle 65-aastaste kõrgvererõhuga isikute suremus on kaks korda suurem kui
normotoonikuil (Murray, 1997). Süstoolne rõhk tõuseb 80. eluaastani, süstoolse vererõhu tõusu põhjustab suurte veresoonte jägastumine, sest seoses vanusega tõuseb SVR iga 10. aastaga 6-10 mmHg vörna. Diastoolne rõhk saavutab maksimumi 50-65. eluaasta vahel (Hagberg et al., 2000). Enne kehaliste harjutustega tegelema hakkamist on soovitav meestel vanuses üle 40. ja naistel vanuses üle 50. teha elektrokardiograafia (EKG), mis on näidustuseks ka teistele SVH riskifaktoritega inimestele (Fletcher et al., 2001).

5.5. Hüpertensioon ja pärilikkus

Hüpertooniatõbi on dominantselt pärilik, st kui vanemad on haiged, siis esineb ka järeltulijatel hüpertooniatõbe, vastavalt 80% meestest ja 48% naistest (Beever et al., 2001). On leitud, et VR mõjustamine algab juba looteeas, sest üsasisene ebasoodne keskkond võib põhjustada lootel metaboolsete häirete kujunemist nagu insuliini resistentsus, diabeet, hüperlipideemia, abdominaalne rasvumine, mis soodustavad hiljem hüpertensiooni arengut. Seetõttu on järglaste tervise tagamisel tähtis reproduktiivses ees naiste tervislik seisund ja tervisekäitumine raseduse ajal (Teesalu, 2005).

5.6. Madal kehaline aktiivsus kui hüpertensiooni riskitegur


6. HÜPERTENSIOONI DIAGNOOSIMINE JA RAVI

6.1. Hüpertensiooni diagnoosimine

Hüpertensiooni diagnoosimisel tuleks teha järgmised uuringud (D'Amico & Vandemia, 1988):

a) anamnees (eemärgiga selgitada välja võimalikud põhjusted ning kaasuvad riskitegurid – pärilikkus, toitumisega seotud riskifaktorid, kehaliselt väheaktiivne eluviis, suitsetamine, alkoholi tarbimine jne);

b) südame funktsionaalsed uuringud (EKG koos veloergomeetrilise koormustestiga);
c) vere uuringud (settereaktsioon, hemoglobiin) ja uriini analüüs (hüpertensioonile on iseloomulik erürotsüütide suurenud agregatsioon, mida põhjustab pinnaalengute vähenemine ning vere liipiidide ja vereplasma valkude koostise muutumine);

d) silmapõhja muutused.

Haiguse korral täheldatav peavalu, närvilisust, unetust, väsimust, koormustaluvuse vähenemist (D'Amico & Vandemia, 1988).

Diagnoosimine orgaanmuutuste alusel (AIRE, 1993):

I staadium: orgaanmuutusteta;

II staadium: muutused vähemalt ühes organis (näiteks vasaku vatsakese hüpertroofia, silmapõhja muutused, proteinuuria ja/või plasma kreatiniini sisalduse tõus, ateroskleroos);

III staadium: kliinilised sümptomid ja tüsistused orgaanmuutuste tulemusena (süda, aju, silmapõhjad, neerud, veresooned).


6.2. Primaarne ja sekundaarne hüpertensioon


Sekundaarne arteriaalne hüpertensioon on arteriaalse vererõhu kõrgenemine, mida on kliiniliselt võimalik seosta kindla põhjusega (5-10% juhtudest) (Kaplan, 1993):

a) ateroskleroos on ligikaudu 60% sekundaarne hüpertensiooni juhtude põhjuseks (ISHM, 1992);

b) esineb sageli neeruhaiguste puhul – glomerulonefriit, nefropaatia (D'Amico & Vandemia, 1988);

c) naistel muutub hüpertensioon oluliseks riskiteguriks klimakteeriumi eas (Rosenthal & Oparil, 2000);

d) Conni sündroom – VR tõuseb oluliselt, millega kaasneb hüpokaleemia (alla 3,7 mmol/l), lihasnõrkus ja peavalud (Salami, 1989);

e) Feokromotsütoomi tunnuseks on vererõhu episoodilised muutused, kaasab peavalu, higistamine, südame kloppimine, kaalulangus.
f) Cushingi töbi – ilmnevad menstruaatlooni häired, impotentseus, lihasnõrkus, diabeet (võimalik põhjus: suurenened glükokordikoidide tsirkulatsioon);
g) endokriinne arteriaalne hüpertensioon – iseloomulik on akromengaalial, rasvtöbi, hüperkaltsineemia, hüpokaleemia, türeotsikooos;
h) neurogeenne arteriaalne hüpertensioon – tingitud koljusisese rõhu kõrgemisest (ajukasvaja, entsefaliit), unaepnoe, baroretseptorite kahjustused, pärlilikud haigused (Beegers et al., 2001);
i) kardiaalne ja vaskulaarne arteriaalne hüpertensioon (McMahon & Cutler, 1986);
j) rasedusest tingitud arteriaalne hüpertensioon, mida nimetatakse ka rasedustoksikoosiks (vöib olla põhjustatud polüpeptiididest, mida sekreteerib platsenta) (Khalil et al., 2009);
k) stressist tingitud arteriaalne hüpertensioon – psühhogeene, hüpoglükeemiline, kirurgilise operatsiooni järgselt, alkoholist tingitud (Jennings et al., 2004);
l) ravimitest tingitud arteriaalne hüpertensioon – rasedusvastased preparaadid, glükokordikoidid (Levey et al., 1995);
m) diabeet – diabeetikutel esineb VR tõusu kaks korda sagedamini kui ülejäänud inimestel (Juutilainen, 2004).

6.3. Riskitegurite kõrvaldamine ja medikamentoosne ravi


Hüpertensiooni III ja IV staadiumi puhul on oluline medikamentoosne ravi (β-adrenoblokaatorid, diureetikumid, Ca²⁺-antagonistid, angiotensiini konverteeriva ensüüm [ACE] pärssijad, tsentraalse toimega sümpatolüütikumid, vasodilataatorid).

Hüpertensiooni I-II staadiumi korral tuleks suuremat tähelepanu pöörata riskitegurite kõrvaldamisele (suutsetamine, liigne alkoholi tarbimine, kõrgenenud vere kolesteroli taseme langetamine, toidu kõrge solsisalduse vähenemamine, ülekaalulisuse ja stressi vähenemamine) ning kehalisele aktiivsusel. Kergekujulisele VR kõrgememisele on ravimitel nõrk mõju. Tähtis on ka see, et ravimite tarbimine on kulukas ning kõrvaltoimet sõltuvalt sageli kahjulik (soodustab

7. KEHALISTE HARJUTUSTE OSA HÜPERTENSIOONI KORRAL

7.1. Kehalise aktiivsuse mõju vererõhu langetamisel

Füsioloogiliselt saab VR alandada, vähendades kas perifeerset vastupanu või südame minutimahtu. Plasmamahu vähenemine on VR langusega samuti seotud, samal ajal väheneb vere viskoossus, mis paranab vereringet (Wallace et al., 1995).

Kehaline treening: 1) võib puhkeolekus vähendada sümptoolise närvisüsteemi aktiivsust, mille tagajärjel väheneb veresoonte perifeerne vastupanu; 2) võib vähendada ka insuliiniresistentsust, mis omakorda võib muuta neerufunktiooni (insulaan suurendab naatriumi tagasiimendumist neerudes ja häirib rakumembrana naatriumpumba talitlust; 3) võib alandada plasmas leiduvat digitaalise-taolist ühendit, mis pidurdab naatrium-kaalium-ATP-aasi ning takistab noradrenalini naasmist sümpaatilises närvilöopmetesse; 4) võib normaliseerida hüpertensiooniga kaasnevat nõrgenenud pulsireaksiooni VR muutustele (Hagberg et al., 2000).

Ravimitega võrreldes on liikumisel palju eeliseid: õigete koormuste rakendamisel on vähem kõrvalmõjuistics, kuluused on väiksemad ning see on üheks füsioloogiliseks mõjutusvahendiks SVH riskifaktorite vähendamisel (Kelemen et al., 2001). Kirjanduses on andmeid, et mõned inimesed on saanud loobuda vererõhku alandavatest medikamente kõrgenenud pulsireaksiooni koost kõrvalmõjudest (Levey et al., 1995). Kehaline treening võib alandada puhkeolekurõhku keskmiselt sama palju kui üks vererõhu tablett (5-20 mmHg SVR (Chobanian et al., 2003)) ning samuti ka kaalu alandada, mille tagajärjel langeb vererõhk keskmiselt 6-3 mmHg (Kelemen et al., 2001). Paraku pole kirjanduses väga palju andmeid selle kohta, kuidas kehaline aktiivsus koos ravimite tarbimisega vererõhku alandab.

7.2. Vererõhu reaktsioon koormusele

VR reageerib koormusele väga individuaalselt. Dünaamilisel tööl vajalik südame suurem minutimaht tekib perifeerse vastupanu vähenemise (veresooned laienevad lihastes ja nahas) ja arteriaalse VR tõusu tagajärjel. Viimane tõuseb keskmiselt, nii normotoonikutel kui ka kõrge mõjutusvähenenud VR-ga inimestel, kõige rohkem 50-70 mmHg puhkooleku VR tasemest kõrgemale. Hüpertoonikutel võib VR algtase olla kõrgem ning tihti on neil maksimaalse koormustest ajal SVR üle 220 mmHg. Puhkooleku SVR väärub üle 200 mmHg või DVR üle 115 mmHg on vastuningudseks kehalisele koormusele (Hagberg et al., 2000). Arteriaalse VR reaktsioon koormusel sõltub (Maiste, 1992):
1. koormuse liigist – ühesuguse võimsusega koormuse puhul on VR tõus tunduvalt suurem kättega sooritatud töö ajal, võrreldes tööga, milles osalevad peamiselt jalad ning samuti ei ole süstoolse VR tõus võrdeline staalilise ja duinaamilise koormuse ajal – VR tõuseb rohkem staabilisel koormusel (suurenevad pulssisagedus ja minutimaht);
2. võimsusest – vererõhu dünaamika sõltub submaksimaalse ja maksimaalse koormuse ajal sellest, kui palju lihasgrupp on töösse haaratud;
3. uuritava vanusest – lastel on vererõhk puheolekus ja submaksimaalse intensiivsusega koormuse korral madalam väärtudes täiskasvanutega (Machnica et al., 2008);
4. soost ja isikulisest eripärast;
5. keskkonnast – koormus külmas õhus võib põhjustada müüardi hapnikuvaeguse, kuna hapniku kättesaadavus on häiritud (Mandroukas et al., 1986).

Vererõhu reaktsioon koormuse ajal ei sõltu treenitusest ega töövõimest (Maiste, 1992). Väikeses ja keskmise võimsusega koormuse puhul tõuseb ainult SVR, mis stabiliseerub vajaliku nivool 1-2. minutiga (Maiste, 1992). DVR koormusel ei muutu või alaneb vaid seeinga. DVR tõuseb staabilisena, kuna koormuse ajal vajab süda vahel isegi 5-6 korda rohkem hapnikku, mis võib olla DVR tõusu tagajärgel häiritud (Sheps et al., 1979). Kui DVR tõuseb koormusel rahuoleku tasemega väärtudes 15 mmHg, siis viitab see koronaararterite haigusele ning vasaku vatsakese puudulikusele (Slutsky, 1981). DVR tunduv alanemine koormusel on veresoonte toonuse düsregulatsioon tunnuseks, kuna maksimaalne ja submaksimaalse koormuse puhul ei tekika pressoorset reaktsiooni. Põhjuseks on maksimaalne vasodilatatsioon, kuna puuduvad struktuursed muutused veresoontes, eriti juveniilse hüpertoonia puhul (Slutsky, 1981).

Kindermann järgi (1984) on tervetel 20-50–aastatel meestel 50 W koormuse juures süstoolse vererõhu maksimaalne väärtus 155 mmHg, koormuse suurenedes 10 W võrra tõuseb süstoolne vererõhk 6,6 mmHg võrra. Diastoolne rõhk 50 W koormuse puhul on keskmiselt 86 mmHg, iga 10 W koormuse lisamisel tõuseb diastoolne rõhk 1,1 mmHg. Naistel võib 50 W koormuse puhul süstoolne vererõhk olla maksimaalselt 146 mmHg, mis tõuseb 6,6 mmHg võrra koormuse suurenedes 10 W võrra.

Küllaldane eelsoojendus soodustab veresoonte laienemisreaktsiooni ja vähendab seeläbi VR ülemäärist tõusu kehalise koormuse ajal. Kõrge intensiivsusega harjutused treeningtunnini algul võivad järsult suurendada vererõhku, mis võib takistada koronaararterite verevarustust, mistõttu tuleks hüpertensiivsetel koormust suurendada järk-järgult (Levey et al., 1995).

Kohe pärast koormust langeb VR kiiresti (esimese kolme minuti jooksul), sageli lähtetasest 10 mmHg madalamale. Hüpertensiivsetel nimistel langeb vererõhk rohkem (18-20/3-5 mmHg) väärtudes normotensiivsete nimistega (8-10/3-5 mmHg). Pärast kehalist
koormust täheldatud vererõhu järnu languse põhjusteks on südame löögimahu ajutine vähenemine, perifeerse vererõhngi vastupanu vähenemine, lihaste sümpaatiline rõhupindajavähenemine ning hormonaalsed muutused (Maiste, 1992). Edasi täheldatavates mõõdudatud vererõhu tõusu koos järgneva normaliseerumisega 3-5. minuti vältel. Vererõhk saavutab oma koormuseelse taseme alati enne kui südame löögimahu vähenemist. Liikumise akuutne vererõhk alandav toime kestab vähemalt mõne tunni, vahel isegi rohkem kui 10 tundi pärast koormust, mis on põhjustatud pigem südame löögimahu vähenemisest kui perifeersest vasodilatsioonist (Hagberg et al., 2000).

Vererõhngi reaktsioonitüüp kehalisele koormusele iseloomustab kvalitatiivselt südameveresoonkonnavahendite adaptatsioonivõimet kehalisele koormusele. Hinnatakse informatiivsete vererõhngi näitajate (SLS ja VR) dünaamikat koormustest rakendamisel (Landõr et al., 1997).

Koormusaegset VR kõrgemist üle piirväärtuste tuleb hinnata kui hüpertoonilist reaktsiooni, mitte kui hüpertooniatõbe. Ainult süstoolse vererõhu ülemääranne kõrgemine ja sellega koos pulsirõhu suurenemine koormuse ajal võib olla kompensatorioorsete reaktsioonide kudele hüpoksiia puhul (näiteks anemïlised seisundid) (Maiste, 1992).

Isheemiatõvehaigetel kirjeldatakse koormuses kahe tüüpi VR reaktsiooni (Maiste, 1992):
1. väljendunud koronaarskleroosi puhul, kui on säilinud müokardi hea kontraktsioonivõime, limiteerib koormuse võimsust stenokardiahoog; tekib SVR langus, millele eelneb pulsi platoo teke;
2. väljendunud koronaarskleroos koos müokardi kontraktsioonivõime langusega, siis koormusel stenokardia hoogu ei teki, tehtava töö võimsuse limiteerib düspnoe, pulsisagedus on koormusel ebaadekvaatne, VR tõus on pidev, kuid lame.

7.3. Dünaamiline ja isomeetriline kehaline koormus

Enamikus uuringutes kasutatud treeningprogrammidest baseeruvad dünaamilisel aeroobsel lihastööl. Näiteks võimlemine, mille puhul on organismi mõjutamisvahendiks kehaline harjutus: rütmiline, paljude kordustega, köiki lihasgruppe haarav, südamevähenemist adekvaatselt mõjutav tegevus. Tavaliselt on igasugune kehaline tegevus kombineeritud – koosnedes nii dünaamilisest kui ka isomeetrilisest lihastööst (Pescatello et al., 2004).

Dünaamilised harjutused vähendavad puhkeoleku vererõhku hüpertensiivsetel isikutel keskmiselt 10/8 mmHg ja normotensiivsetel isikutel keskmiselt 3/3 mmHg (Hagberg et al., 2000).

Uuringute test selgub, et kehalise aktiivsuse taseme tõusu languse põhjusteks võib alane koormuspuhune VR. Viimase langemist vastupideavastreeningu tagajärjel võib seletada osaliselt sellega, et töövõime paranedes vastab teatud submaksimaalne koormus suhteliselt väiksemale osale

Ameerika Spordimeditiisiini Kolledž soovitab VR langetamiseks ja kardiorespiratoorse võimekuse arendamiseks ning säilitamiseks aeroobset treeningut 20-60. minuti jooksul 3-5 korda nädalas (mitte vähem kui 120 minutit nädalas) intensiivsusega 60-90% maksimaalset südame-löögisagedusest (50-85% maksimaalset hapnikutarbimise võimest) (ACSM, 1993).


Suurel isomeetrilisel lihastööl võib vererõhk järsult tõusta, kuid mõõduka (40-50% kordusmaksimumist) koormusega jõutreening võib alandada puhkeoleku VR (ACSM, 1993) ning jõuomaduste parandamisega võib vererõhu ülemäärast tõusu stress-situatsioonis vältida (Boyer, 1970).

Vastukaaluks on väidetud, et jõutreening võib kaasa aidata hüpertensiooni tekkele, see tähendab, et peale koormust ei taastu vererõhk normaaltasemele (Froelicher et al., 1980). Reeglina ei soovitata jõutreeningut reaktsiooni korral, kus puhkeolekus kõrgenenud SVR normaliseerub koormuse ajal (see on vegetatiivsxe labiilsuse üheks tunnuseks). Sellistele isikutele sobib vastupidavustreening (Maiste, 1992).

Ameerika Spordimeditiisiini Kolledž soovitab jõutreeningut tehda ringtreeninguna, kus kasutatakse väiksemaid raskusi ja suuremat kordust arvu, ning on seisukohal, et jõutreening võiks olla mitte peamine, vaid aeroobse põhitreeningu täiendus (tabel 2) (Pescatello et al., 2004; ACSM, 1993).

<table>
<thead>
<tr>
<th>Toimeobjekt</th>
<th>Vastupidavustreening</th>
<th>Jõutreening</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Südame ja vereringeelundkond</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) südamelöögisagedus</td>
<td>↓↓</td>
<td>↓</td>
</tr>
<tr>
<td>b) südame löögi- ja minutimaht</td>
<td>↑↑</td>
<td>↑</td>
</tr>
<tr>
<td>c) perifeerne vastupanu</td>
<td>↓↓</td>
<td>-</td>
</tr>
<tr>
<td>d) perifeerne vereringe</td>
<td>↑↑</td>
<td>-</td>
</tr>
<tr>
<td>e) arteriaalse ja venoosse O\textsubscript{2} vahe</td>
<td>↑↑</td>
<td>-</td>
</tr>
<tr>
<td><strong>Hormoonid ja ainevahetus</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) sümpatoadrenaalne reaktsioon</td>
<td>↑↑</td>
<td>-</td>
</tr>
<tr>
<td>(submaksimaalne koormus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) insuliinitundlikkus</td>
<td>↑↑</td>
<td>↑</td>
</tr>
<tr>
<td>c) plasma reniini aktiivsus</td>
<td>↓</td>
<td>-</td>
</tr>
<tr>
<td><strong>Skeletilihased</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) kapillaaride hulk</td>
<td>↑↑</td>
<td>-</td>
</tr>
<tr>
<td>b) vere vool</td>
<td>↑</td>
<td>-</td>
</tr>
<tr>
<td>c) lihasmass</td>
<td>↑</td>
<td>-</td>
</tr>
<tr>
<td>d) oksüdatiivsete ensüümide aktiivsus</td>
<td>↑↑</td>
<td>-</td>
</tr>
<tr>
<td><strong>Psüühika</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) stress, ängistus</td>
<td>↓</td>
<td>-?</td>
</tr>
<tr>
<td>b) meeleolu</td>
<td>↑</td>
<td>-?</td>
</tr>
</tbody>
</table>

↓↓, väheneb  ↑↑, suureneb  ? vastuolulised andmed  – toime puudub

8. TÖZ EESMÄRK

Käesoleva uurimistöö eesmärgiks oli välja selgitada 12-nädalase liikuval jooksurajal sooritatud käimistreeningu mõju puhkeoleku vererõhule ja südame löögisagedusele ning aeroobsele töövoimele hüpertensiooni diagnoosiga naispatsientidel.

Tulenevalt uurimistöö eesmärgist püstitati järgmised ülesanded:

1. välja selgitada 12-nädalase liikuval jooksurajal sooritatud käimistreeningu mõju puhkeoleku süs­toolsele ja diastoolsele vererõhule ning südame­löögisagedusele hüpertensiooni diagnoosiga naispatsientidel;

2. hinnata 12-nädalase liikuval jooksurajal sooritatud käimistreeningu mõju koormusejärgsele vererõhu taastumise kiirusele hüpertensiooni diagnoosiga naispatsientidel;

3. hinnata 12-nädalase liikuval jooksurajal sooritatud käimistreeningu mõju aeroobsele töövoimele ja uurida aeroobse töövoime muutuse seoseid vererõhu näitajatele hüpertensiooni diagnoosiga naispatsientidel.
9. TÖÖ METOODIKA

9.1. Vaatlusalused

Antud uurimistöö vaatlusalused valiti uuringusse SA TÜ Kliinikumi Kardioloogia klinikku Lipiidikeskuse profüulaktilise vererõhu mõõtmise uuringule tulnud vabatahtlike hulgast.

Uuringusse kaasati järgmised isikud:
1) hüpertensiooni esimene staadium – VR >140/90 mmHg (Chobanian et al., 2003);
2) kehaliselt mitteaktiivne eluviis;
3) mittesuitsetajad.

Käimistreeninguga liitus 19 uuritavat (18 naist ja üks mees). Kahel uuritaval ilmnesid kaasuvad kroonilised haigused (mis olid uuringus väljalülitavateks tingimusteks) ning kaks inimest katkestasid treeningu muudel põhjustel. Käimistreeningus osalenud mehe andmeid käesolevas töös ei analüüsita. Seega moodustasid antud töö vaatlusaluste rühma 14 naist vanuses 47,1±8,2 aastat, kellest ühelgi vaatlusalusel ei olnud kaasuvaid kroonilisi SVH-d ja kroonilisi neeruhaiguseid.

Kõik uuritavad hindasid oma igapäevast tööd ja kehalist aktiivsust madalaks (Maurer, 2006). Uuritavate alkoholi tarbimine oli suhteliselt madal, jäädes diapasoni üks kord kuus või vahel harva. Vererõhku langetavaid ravimeid tarbisis kolm uuritavat. SVH esines suguvõsas kuuel uuritaval. Seitsmel vaatlusalusel oli hüpertensioon diagnoositud üle viie aasta tagasi, kahel 1-5 aastat tagasi ning viiel viimase kuue kuu jooksul.

Antud uuringu teostamiseks saadi luba Tartu Ülikooli inimuuringute eetika komiteelt.

9.2. Uuringute korraldus


Hüpertensiooni diagnoosiga patsientidel teostati enne ja pärast 12-nädalast käimistreeningu programmi järgmised uuringud: mõõdeti vererõhku ja südamelöögisagedust, mõõdeti antropomeetrilised näitajad, teostati toitumise kvantitatiivne analüüs ning küsimustiku alusel hinnati kehalist aktiivsust, viidi läbi koormustest ning määrati maksimaalse hapnikutarbimise võime (VO₂max) (tabel 3). VR ja SLS mõõdeti käimistreeningu alguses ja lõpus ning koormustestide ajal.

**Tabel 3.** 12-nädalase käimistreeringu programmi ajal teostatud uuringud hüpertensiooni diagnoosiga patsientidel.

<table>
<thead>
<tr>
<th>Enne uuringut</th>
<th>Käimistreeningu kestus nädalates liikuval jooksurajal</th>
<th>Pärast uuringut</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

| VR, SLS | TKA | TKA | TKA | VR, SLS |
| AM      | KAH | KAH | KAH | AM      |
| VO₂max  |     |     |     | VO₂max  |

VR – puhkeoleku vererõhk, SLS – puhkeoleku südamelõögisagedus, AM – antropomeetria, VO₂max – koosmustestil maksimaalse hapnikutarbimise võime määramine, TKA – toitumise kvantitatiivne analüüs, KAH – kehalise aktiivsuse hindamine küsimustiku alusel

9.2.1. **Vererõhu ja südamelõögisageduse mõõtmine**

Vererõhu mõõtmisel kasutati manuaalset meetodit Mercury sfügmomanomeetrit, kus uuritav istus, mansett kinnitati paremale käsivarrele, nii et aparaat asetseks südamega samal kõrgusel. Rahuoleku VR mõõtmine toimus peale viie minutilist uuritavate rahunemist. Mõõtmisi teostati kolm korda ning vererõhu näiduks jäi mõõtmiste madalaim tulemus.

Südamelõögisageduse määramiseks kasutati pulsitestrit (Polar Vantage NV Soome), SLS registreeriti iga viie sekundi järel. Mansett kinnitati ümber rindkere, nii et vastuvõtja asetseks südamega samal kõrgusel, eelnevalt niisutati manseti kontaktepinnad ning randmele kinnitati andur.

* Janno Jürgenson, Marika Maurer, Mari-Liis Ööpik
9.2.2. Antropomeetrilised mõõtmised

Registreeriti kehapikkus, kehakaal, talje ja puusa ümbermõõdud ning nahavoltide paksus.
Nahavoltide paksust määrati kaliibriga kolmest anatoomilisest punktist – köht, reis ja õlavare kolmpealihas, 0,5 mm täpsusega vastavalt Q-Scale antropomeetrilise mõõtmiste süsteemile (Ward et al., 1989). Keha rasvasisalduse määramiseks kasutati Baun’i ja kaasautorite (1981) poolt välja töötatud nomogrammi.

9.2.3. Maksimaalse hapnikutarbimise võime määramine ning koormuse järgse vererõhu ja südamelöögisageduse määramine kaheksa minuti jooksul

Maksimaalse hapnikutarbimise võime (VO\(_{2\text{max}}\)) määramiseks teostati koormustest laboris liikuval jooksurajal (Technogym Runrace HC 1400, Itaalia), kasutades modifitseeritud Balke protokolli (Fletcher et al., 2001). Lindi kiirus sõltus vaatlusaluste vanuses ja treenitusest, jäädes vahemikku 4,5-6,5 km/h. Koormust doseeriti lindi tõusunurga tõstmisega iga kahe minuti järel, alustades 2,5° nurgast. Iga koormuse teise minuti viimase 30 sekundi jooksul registreeriti uuritavatel vererõhu näitajad ja SLS. Uuritavatel mõõdeti VO\(_{2\text{max}}\) ja maksimaalne südamelöögisagedus (SLS\(_{\text{max}}\)). VO\(_{2\text{max}}\) määramiseks kasutades Trumax 2400 (USA) gaasianalüsaatorit. Uuritavad sooritasid koormustest suutlikkuseni (VO\(_{2\text{max}}\) platoo tekkimine, RQ koefitsent >1,0, halb enesetunne) (Fletcher et al., 2001). Koormusaegse subjektiivse väsimuse hindamiseks kasutati Borgi skaalat (Fletcher et al., 2001).

Koormuse järgselt registreeriti taastumise esimese kaheksa minuti jooksul vererõhu ja südamelöögisageduse näitajad kasutades vastavalt Mercury sfügmomanomeetrit ja pulsitestrit (Polar Vantage NV Soome).

9.2.4. 12-nädalane käimistreeningu programm liikuval jooksurajal

Uuritavad kõndisid liikuval jooksurajal (Technogym Runrace HC 1400, Itaalia) juhendaja kontrollimisel kolm korda nädalas ning see käimistreeningu programm kestis 12 nädalat. Üks treeningtund kestis 30-45 minutit, alustati 30 min, kahe nädala pärast pikendati 45 min; intensiivsus 60% SLS\(_{\text{max}}\). Koormuse intensiivsust kontrolliti ja korrigeeriti igal treeningul SLS alusel.
Treeningtund koosnes sissejuhatavast osast (5 min, intensiivsus 40-60% SLS$_{\text{max}}$), põhiosast (30 min, intensiivsus 60% SLS$_{\text{max}}$), lõpetavast osast (5 min, intensiivsus 40-60% SLS$_{\text{max}}$). Enne igat treeningtundi mõõdeti rahueleku VR ja SLS, kaks minutit peale igat treeningtundi mõõdeti uuesti uuritavate VR ja SLS.

9.2.5. Toitumise kvantitatiivne analüüs

Vaatlusaluseid informeeriti sellest, et nad uuringus osalemise perioodil ei muudaks oma toitumisharjumusi. Kõikidel uuritavatel määrati toidu energeetiline väärtus ja toitaineline koostis.

9.2.6. Igapäevase kehalise aktiivsus hindamine

Igapäevase kehalise aktiivsusega kaasnevat energiakulu hinnati päevikumeetodiga (Bouchard et al., 1983). Vaatlusaluseid informeeriti sellest, et nad uuringus osalemise perioodil oma igapäevast kehalist aktiivsust ei muudaks.

9.3. Statistiline andmetöötlus

Uurimistöö tulemuste statistiline analüüs toimus programmi SPSS for Windows abil (versioon 9.0). Arvutati aritmeetiline keskmine (X), standardhälve (SD) ja korrelatsioonikofitsent ($r$), kasutades Pearsoni ja Spearmani korrelatsioonanalüüsi. Statistiliselt oluliste erinevuste hindamiseks kasutati Student'i t-testi sõltuvatele tunnustele, olulisuse nivoks rakendati erinevust $p<0.05$. 
10. TÖÖ TULEMUSED

10.1. Uuritavate rahuoleku vererõhk ja südamelõögisagedus

Uurimistulemused näitasid, et uuritavate rahuoleku SVR ja DVR alanesid statistiliselt oluliselt 12-nädalase käimistreeningu järgselt (joonis 3). Andmeid on võrreldud enne uuringute läbiviimist ja peale 12-nädalast käimistreeningut liikuval jooksurajal. VR näitajad on registreeritud rahuolekus enne koormustesti läbiviimist. Vererõhu languse osas täheldati suurt individuaalset varieeruvust, suurim SVR langus oli 31 mmHg ja DVR langus 16 mmHg. Uuritavatest kolm inimest tarbisid vererõhku alanda vaid ravimeid ning nende keskmised süstoolse ja diastoolse vererõhu väärtused uuringusse lülitumisel olid vastavalt 136,7±6,1 mmHg ja 90,0±2,0 mmHg ning peale 12-nädalast käimistreeningut olid need väärtused vastavalt 144,3±16,6 mmHg ja 85,0±2,8 mmHg.

Uuritavate rahuoleku SLS näitajad võrreldes enne ja peale 12-nädalast käimistreeningu programmi oluliselt ei muutunud (vastavalt 84,9±15,6 lööki/min ja 83,2±13,7 lööki/min) (joonis 4).

**Joonis 3.** Rahuoleku süstoolne (SVR) ja diastoolne (DVR) vererõhk enne ja pärast 12-nädalast käimistreeningut (X±SD), *p<0,05; **p<0,01, n=14.

**Joonis 4.** Rahuoleku südamelõögisagedus (SLS) enne ja pärast 12-nädalast käimistreeningut (X±SD), n=14.
10.2. Rahuoleku vererõhu ja südamelöögisageduse dynaamika 12-nädalase käimistreeningu perioodil

Käesolevas uuringus jälgiti käimistreeningu mõju 12 nädala jooksul (kokku 35 treeningkorda) uuritavate rahuoleku SVR, DVR ja SLS näitajatele. Vastav mõõtmised teostati enne igat treeningkorda rahuolekus peale viie minutilist rahunemist (joonis 5).


Rahuoleku vererõhu andmeid nädalate lõikes analüüsideks selgus (kokku 12 nädalat), et treeningperioodi ajal statistiliselt oluline langus ilmus nii süstoolse kui diastoolse vererõhu osas alates käimistreeningu kolmandast nädalast (joonis 6). Keskmiselt langes kolmandaks nädalaks rahuoleku SVR 3,8 mmHg ja DVR 4,9 mmHg. Jooniselt 7 on näha, et treeningperiodei ajal ilmnes alates kaheksandast treeningnädalast statistiliselt oluline langus ka rahuoleku SLS näitajates, kus SLS oli keskmiselt langenud 6,6 lööki/min.

Joonis 6. Rahuoleku süstoolne (SVR) ja diastoolne (DVR) vererõhk 12-nädalase käimistreeningu ajal võrreldes 1. nädalaga (X±SD), *p<0,05; **p<0,01; ***p<0,001, n=14.
Joonis 7. Rahuoleku südamelöögisagedus (SLS) 12-nädalase käimistreeningu ajal vörreldes 1. nädalaga (X±SD), *p<0,05, n=14.

10.3. Uuritavate maksimaalne hapnikutarbimise võime

Uurimistulemused näitasid, et koormustesti ajal mõõdetud uuritavate VO\textsubscript{2max} paranes mõnevõrra 22,8±8,9 ja 24,4±6,8 ml/min/kg vörreldes andmeid enne ja pärast 12-nädalase käimistreeningu läbiviimist, kuid see muutos oli statistiliselt mitteoluline. Maksimaalse hapnikutarbimise võime mõõtmise käigus koormustestil mõõdetud uuritavate maksimaalne südamelöögisagedus (SLS\textsubscript{max}) ei muutunud statistiliselt oluliselt 12-nädalase käimistreeningu mõjul (enne 166,7±12,9 lööki/min ja pärast 167,1±12,4 lööki/min). Samas paranes statistiliselt oluliselt koormustesti ajal mõõdetud uuritavate koormustaluvuse võime vatavalt 2.66±0,82 W/kg ja 3,58±0,86 W/kg (p<0,001, n=14) vörreldes andmeid enne ja pärast 12-nädalast käimistreeningut.

10.4. Taastumisperioodi vererõhu ja südamelöögisageduse näitajad

Tulemused näitasid, et SVR ja DVR taastumise näitajad kahel läbiviidud koormustestil (sooritatud vastavalt enne ja pärast 12-nädalast käimistreeningut) erinesid statistiliselt oluliselt (joonis 9 ja 10). Vastavad näitajad on registreeritud koormustestil järgselt esimese kaheksee minuti jooksul ning vörreldud on omavahel vastavalt esimesele minuti näitajaid, teise minuti näitajaid jne. Paralleelselt mõõdetud SLS näitajad langesid samuti statistiliselt oluliselt (joonis 11) vörreldes 12-nädalase käimistreeningu perioodi eelseid ja järgseid näitajaid.
Joonis 9. Süstoolse vererõhu väärtused koormustesti järgsel taastumisperioodil esimesest kuni kaheksanda minutini enne ja pärast 12-nädalast käimistreeningut (X±SD), *p<0,05; **p<0,01; ***p<0,001, n=14.

Joonis 10. Diastoolse vererõhu väärtused koormustesti järgsel taastumisperioodil esimesest kuni kaheksanda minutini enne ja pärast 12-nädalast käimistreeningut (X±SD), **p<0,01; ***p<0,001, n=14.

Joonis 11. Südamelöögisageduse väärtused koormustesti järgsel taastumisperioodil esimesest kuni kaheksanda minutini enne ja pärast 12-nädalast käimistreeningut (X±SD), *p<0,05; **p<0,01, n=14.
10.5. Uuritavate antropomeetrilised, toitumise ja kehalise aktiivsuse näitajad

Käesolev uuring ei näidanud statistiliselt olulist langust uuritavate kehakaalus, KMI-s ja keha rasvasisalduses (tabel 6). Möötmistulemused näitasid, et kaheksal uuritaval kehakaal langes – kõige rohkem alanes kehakaal 2,7 kg ning kuuel uuritaval kehakaal tõusis – kõige rohkem suureenes kehakaal 3,5 kg.

Uuritavate toidu energeetiline väärtus, selle toitaineline koostis ning igapäevase kehalise aktiivsusega kaasnev energiakulu 12-nädalase käimistreeningu perioodil statistiliselt oluliselt ei muutunud (Maurer, 2006).

**Tabel 6.** Vaatlusaluste keha rasvasisaldus, kehakaal ja KMI* enne ja pärast 12-nädalast käimistreeningut (X±SD), n=14.

<table>
<thead>
<tr>
<th></th>
<th>Enne</th>
<th>Pärast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kehakaal (kg)</td>
<td>80,4 ± 14,5</td>
<td>80,1 ± 14,4</td>
</tr>
<tr>
<td>KMI*</td>
<td>29,9 ± 4,8</td>
<td>29,8 ± 4,7</td>
</tr>
<tr>
<td>Keha rasvasisaldus (%)</td>
<td>35,0 ± 8,4</td>
<td>35,2 ± 5,9</td>
</tr>
</tbody>
</table>

*KMI=kehakaal[kg]/ pikkus[m^2]*

10.6. Vererõhu, ülekaalu ja kehalise võimekuse vahelised seosed

Statistiliselt olulised seosed ilmnesid (mõõdetuna enne käimistreeningu programmi) maksimaalse hapnikutarbimise võime ja rahuoleku SVR näitajate vahel (r=-0,586; p=0,028) ning maksimaalse hapnikutarbimise võime ja rahuoleku DVR näitajate vahel (r=-0,617; p=0,019).

12-nädalase käimistreeningu jooksul ilmnenud maksimaalse hapnikutarbimise võime muutuse (VO\textsubscript{2max} enne - VO\textsubscript{2max} pärast) ja rahuoleku DVR muutuse (DVR enne – DVR pärast) vahel ilmnes statistiliselt usutav seos (r=-0,625; p=0,017).

**11. ARUTELU**

Käesoleva uurimistöö eesmärgiks oli hinnata pikaajalise (12 nädalat kestnud) käimistreeningu mõju hüpertensiioni diagnoosiga patsientide puheoleku süstoolsele ja diastoolsele vererõhule ning aeroobsele võimekusele. Eelnevalt tehtud uuringud kinnitavad regulaarse kehalise koormuse olulisust olulisust vererõhu langetamisel (Wallace *et al.*, 2003), kuid siiski on hüpertensiioni diagnoosiga inimesed regulaarse kehalise koormuse tähtsust vererõhu langetamisel vähe teadvustanud ning sageli jäädakse lootma vererõhu langetavate ravimite toimele. Samas on vähe andmeid selle kohta, mil määral mõjutab regulaarne kehaline koormus rahuoleku vererõhu väärtsusi hüpertensiioni diagnoosiga patsientidel sõltumata kehakaalu ja toitumisharjumuste muutustest.

Üllatav on see, et käimistreeningu kui suhteliselt lihtsa ning väike kõrgete hinnangud on regulaarselt harjutades vererõhu väärtsusega vähe andmeid. Käesoleva uuringu läbiviimisel oli olulisuseks ülesandeks maksimaalselt väljastada teiste riskitegurite võimalikku kõrvaltoimet vererõhu muutustele. Uuringu ajal ei tohitud uuritavad muuta oma toitumisharjumusi (mida kontrolliti uuringu perioodil kolm korda toitumise kvantitatiivse analüüsis) ja igapäevase kehalise aktiivsuse määra ning kontrolliti ka seda, et uuritavad ei muudaks uuringuperioodil ravimite tarbimist.

Analüüsis rahuoleku süstoolse ja diastoolse vererõhu muutusi, võib näha, et 12 nädala jooksul regulaarselt harjutades langevad vererõhu väärtused allapoole kirjanduses toodud kriitilist piiri, milleks on 140/90 mmHg (Chobanian *et al.*, 2003). Käesolevas uurimistöös olid keskmised tulemused enne ja pärast uuringut vastavalt SVR osas 145,4 ja 134,6 mmHg ning DVR osas 93,4 ja 86,5 mmHg. Seega, uuritavatel langes keskmne vererõhu tase I astme hüpertensiioni staadiumist prehüpertensiioni staadiumi piiridesse, mis on kirjanduse andmetel väga oluline muutus (Chobanian *et al.*, 2003).

Rahuoleku vererõhu tulemusi analüüsides selgub, et vererõhu muutuste osas võis täheldada kõlaliku suurt individuaalset varieeruvust, tohutest 33% hinnangulski uuritava onlineval olid vererõhu väärtused uuringu lõppedes langenud, samas kolmel uuritaval olid süstoolse vererõhu väärtused mõnevõrra tõusnud (mõõdetuna enne aeroobset töövõimet hindavat koormustest enne ja pärast 12-nädalast käimistreeningu programmi). Viimaste puhul oli tegemist vererõhku alandavate ravimite tarbijatega (uuringuusse lülitumisel olid nende vererõhu algväärtused kõrgemad kui teistel uuritaval ning uuringuperioodi ajal oli täheldatav ka nende iskute suurem rahuoleku vererõhu labiilsus). Samas, jälgides nende uuritavate vererõhu dynaamikat kogu 12-nädalase käimistreeningu jooksul, võis täheldada rahuoleku vererõhu tasemetes mõningast langust. Seega

Analüüsides rahuoleku vererõhu dünaamikat 12-nädalase käimistreeningu perioodil (joonis 6) võib näha, et oluline süstoolse ja diastoolse vererõhu langus võib olla kolmandal nädalal. See ühtib ka kirjanduse andmetega, kus on välja toodud, et regulaarse kehalise koormuse järgsed muutused vererõhu tasemetes tulevad ilmsiks juba mõne nädalaga (Viigimaa et al., 2006).

Tulenevalt antud uurimistöö tulemustest saab väita, et kui soovitakse saavutada regulaarse käimistreeninguga puhekeleku vererõhu tasemetes langustenditsi, tuleks treeninguga tegeleda vähemalt 3 korda nädalas ning oodatud tulemus võib ilmnedada kolme esimese nädala jooksul. Selle perioodil jooksul saab täheldada koormuse tagajärjel tekkinud esimestest olulise püsiva suunaga muutustest, mitte aga ühekordse koormuse vahetust toimest vererõhu langetamisel.

Paraku pole kirjanduse andmetest teada, kui kaua treeninguga saavutatud vererõhu langus ajaliselt püsima jääb, see tähendab, et kui uuritavad on lõpetanud treeningprogrammi, siis millal võib täheldada vererõhu väärtuste tõusu treeningueelsele tasemele? Siinkohal on kindlasti oluline olulise püsiva suunaga muutuste mitte aga ühekordse koormuse vahetust toimest vererõhu langetamisel.

Paraku pole kirjanduse andmetest teada, kui kaua treeninguga saavutatud vererõhu langus ajaliselt püsima jääb, see tähendab, et kui uuritavad on lõpetanud treeningprogrammi, siis millal võib täheldada vererõhu väärtuste tõusu treeningueelsele tasemele? Siinkohal on kindlasti oluline olulise püsiva suunaga muutuste mitte aga ühekordse koormuse vahetust toimest vererõhu langetamisel.

Uuritavate aeroobse töövoime hindamisel võis antud töös täheldada mõningast maksimaalse hapnikutarbimise võime paranemist, mis paraku jää statistiliselt mitteoluliseks. Analüüsides uuritavate maksimaalse hapnikutarbimise võime muutust dünaamikas, võis täheldada suurt individuaalset varieeruvust – kaheksal uuritaval mõõdeti väiksem hapnikutarbimise lävi vörreldes uringu eelse perioodiga ning kuuel uuritaval oli VO\textsubscript{2max}/kg paranenud. Samas võis 12-nädalase käimistreeningu järgselt köikidel uuritavatel täheldada olulist koormustaluvuse võime paranemist (keskmised andmed vastavalt 2.66±0,82 W/kg ja 3,58±0,86 W/kg), mis on kirjanduse andmetel jällegi väga oluline tulemus (Chobanian et al., 2003).

Uurimistulemuste korrelatsioonanalüüs selgub, et enne käimistreeningu programmi mõõdetud maksimaalse hapnikutarbimise võime ja rahuoleku süstoolse ja diastoolse vererõhu vahel esines statistiliselt oluline negatiivne korrelatsioon. Seega, mida kõrgem on hüpertensiivsete inimeste aeroobne töövoime, seda madalamad on puhekeleku vererõhu näitajad. Oluliseks tää tulemuseks oli see, et ilmnes statistiliselt oluline pöördvõrdeline korrelatsioon maksimaalse hapnikutarbimise võime muutuse (VO\textsubscript{2max} enne – VO\textsubscript{2max} pärast käimistreeningut) ja rahuoleku diastoolse vererõhu muutuse (DVR enne – DVR pärast käimistreeningut) vahel. Seega, mida rohkem paraneb hüpertensiooni diagnoosiga patsientide aeroobne võimekus, seda suurem langus võib esineda rahuoleku diastoolse vererõhu osas.

11. JÄRELDUSED

1. Hüpertensiooni diagnoosiga naispatsientide puhkeoleku süstoolne ja diastoolne vererõhk langevad oluliselt pärast 12-nädalast liikuval jooksuarajal sooritatud käimistreeningut, kusjuures see langus ei sõltu kehakaalu muutustest ega muudest tervisekäitumise näitajatest. Rahuoleku südamelöögisagedus ei alane oluliselt pärast 12-nädalast liikuval jooksurajal sooritatud käimistreeningut.

2. Hüpertensiooni diagnoosiga naispatsientide koormuse järgne vererõhu taastumise kiirus paraneb oluliselt pärast 12-nädalast liikuval jooksurajal sooritatud käimistreeningut.

3. Hüpertensiooni diagnoosiga naispatsientide aeroobse s töövõimes esineb mõningane paranemise tendents, mis ei osutu statistiliselt oluliseks, samas aeroobse töövõime paranemine seostub oluliselt diastoolse vererõhu langusega pärast 12-nädalast liikuval jooksurajal sooritatud käimistreeningut.
12. KASUTATUD KIRJANDUS


13. SUMMARY

Influence of a 12-week walking training on blood pressure parameters in female patients with hypertension

Hypertension is a major public health problem in most industrialized countries. It is estimated that in Estonia, as many as 25% of people have an elevated blood pressure. Among high blood pressure patients increases the risk for cardiovascular and renal diseases.

The main purpose of this research was to assess the influence of walking training (duration 12 weeks) on blood pressure, heart rate and aerobic capacity in patients who were diagnosed with first stadium of high blood pressure. Specific aims of this research were the following:
1. to clarify, how patients with hypertension resting systolic and diastolic blood pressure changes after 12 weeks of dosed walking training on treadmill;
2. to clarify, how does blood pressure recovery speed changes after physical loading test after 12 weeks of dosed walking training on treadmill;
3. to clarify, how cardiorespiratory fitness level and blood pressure are associated in patients with hypertension after 12 weeks of dosed walking training on treadmill.

14 voluntary patients (all women), who had elevated blood pressure >140/90 mmHg (Chobanian, 2003) participated in this research. This research was organized from 2003 until 2005 year in the University of Tartu in the Faculty of Exercise and Sport Sciences. The mode frequency (three days per week) and intensity (60% of maximal heart rate) of physical activity (walking in treadmill) sessions were organized under supervision during the 12 weeks, one session lasted 45 minutes.

Our data revealed, that both the systolic and diastolic blood pressure (resting and during exercise) were significantly decreased. Blood pressure was significantly decreased after loading test in recovery period. Patients who had higher cardiorespiratory fitness level had lower diastolic resting blood pressure level. Research conclusions were the following:
1. resting systolic and diastolic blood pressure and heart rate decreased significantly among hypertensive patients after 12 weeks of dosed walking training on treadmill;
2. recovery of blood pressure improved significantly after physical loading test among hypertensive patients after 12 weeks of dosed walking training on treadmill;
3. hypertensive females with improvement in cardiorespiratory fitness level had greater decrease in resting diastolic blood pressure after 12 weeks of dosed walking training on treadmill.