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INTRODUCTION 
 
The properties of substances are determined by the structure of chemicals. The 
explanation for and illustrations of this basic knowledge of chemistry is often 
attributed to the interdisciplinary field of science called computational che-
mistry where computer-assisted modeling provides means for finding relation-
ships between chemical structure and properties. Usually, this has been 
established in the form of Quantitative Structure Property/Activity Relation-
ships. More precisely, in QSPR/QSAR studies chemical or biological data are 
related to structural descriptors through mathematical models. Often a vast 
number of those descriptors are calculated and they form a multidimensional 
descriptor space. For the elucidation of useful information from such a multi-
dimensional space several chemometrics approaches exist. For solving multi-
variate problems, linear methods are often used, such as multilinear regression, 
but they require effective variable selection. At the same time, principal 
component analysis can handle large amount of variables simultaneously.  

Over the years QSAR/QSPR has served as a valuable tool while nesting 
mechanistic information from chemical structure and property relationships. In 
addition to providing valuable scientific information, QSPR/QSAR models have 
found very practical applications. Properly validated models can be used to 
predict environmentally and toxicologically important data for new and existing 
industrial chemicals. The biggest and most recent driving force has been the 
European legislation on Registration, Evaluation and Authorization of Che-
micals (REACH). Also, the U. S. Environmental Protection Agency routinely 
accepts QSAR-derived values for regulatory purposes. Another even wider use 
of QSAR models is in silico drug design where they are used for screening of 
new drug candidates. 

This Thesis presents research on the multidimensional analysis of some 
chemical and biological properties of organic compounds using QSPR/QSAR 
and PCA methodologies. Structurally important characteristics of these 
properties are revealed and their mechanistic relationships are interpreted. In 
Chapter 1, an overview of properties and methodologies is given. Chapter 2 
summarizes results of original publications in the multivariate modeling of 
selected properties. 
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1.  LITERATURE OVERVIEW 
 

1.1 Chemical and biological properties of interest 
 
Nowadays, a computational chemist uses chemical structure to explain and 
describe a wide range of different properties. These properties can be roughly 
divided into two groups, physico-chemical and chemico-biological. Physico-
chemical properties (shortly chemical properties) deal with molecular inter-
actions in clearly defined systems (such as a single solvent) and which usually 
have an easily definable mechanistic knowledgebase. Chemico-biological 
properties (shortly biological properties) in turn can be attributed to the inter-
actions of chemicals with complex biological systems, where the mechanistic 
knowledgebase is not always clearly defined. Biological properties are often in 
vivo and in vitro assay endpoints, related to drug design (pharmacology), risk 
assessment (toxicology), etc. These properties often possess a complex 
mechanism involving multiple molecular interactions. 

Probably the most important chemical properties are lipophilicity and 
solubility, which characterize the transport and availability of chemicals, 
respectively. For instance, the octanol–water partition coefficient (log Poct) 
helps to model the partitioning between water and biological medium, showing 
the capability of compounds to penetrate a membrane. Solubility in turn, is 
important for the distribution of chemicals, providing a measure of the 
availability of a chemical in the environment. Encompassed in the current 
Thesis is a computational chemistry approach used to explore the solubility of 
chemicals in different solvents. 

Chemical properties are often used in the modeling of biological properties 
and activities. In the field of drug design, the ADME-Tox profiles of chemical 
compounds are characterized by multiple values for absorption, distribution, 
metabolism, excretion and toxicity of chemicals. The absorption process is 
related to bioavailability which, in addition to solubility, depends directly on the 
permeability of chemicals. In ADME-Tox profiles, this is characterized by 
membrane permeability. Included in the present Thesis, an in silico model is 
derived for artificial membrane permeability. Biological properties or model 
systems can be even more complex. One of these, the activity of repellents is 
also a subject of the present Thesis. Following, a short description of each 
endpoint is provided. 
 
Solubility is a fundamental property in almost all fields which are related to 
chemistry. It is critical in the production of new materials and substances, 
assessing environmental risk for the sustainability of environment and health, 
detecting drug-likeness, etc. Solubility can be expressed as concentration, such 
as molarity, molality, mole fraction, mass percentage, etc., and as a distribution 
constant or coefficient, such as Henry’s law constant, Bunsen coefficient, 
Ostwald coefficient, etc.1,2 Most often, solubility in water is assessed, but for an 
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overall description of solubility, comparative analysis of a variety of solvents 
and solute–solvent pairs is required. Such data is usually scarce. 

A good experimental knowledge base is provided by the Ostwald solubility 
coefficient (log L) which is a distribution coefficient of a solute distributed 
between a liquid solvent and gas phase and is related to the solute’s free energy 
of solvation according to eq. 1:3  
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where cl and cg are the solute’s concentrations in the liquid and gas phases, 
respectively. This relationship is valid for standard states of unit concentration 
in the gas phase and in solution, and the dependence is linear with respect to log 
L at a constant temperature. 

The free energy of solvation (ΔGS) is considered to consist of four main 
components (eq. 2): 4-6   the cavity formation term (ΔGcavity), dispersion 
interactions (ΔGdisp), free energy of electrostatic interactions (ΔGel), and a term 
which takes into consideration the formation and reorganization of hydrogen 
bonds (ΔGHB). The first two terms in eq. 2 are related to the bulk characteristics 
of the solute, and together they are the major energy contributors to the 
solvation free energy. This also holds for systems that are normally known to be 
very polar and strongly hydrogen bonded (HB).7 Both terms (ΔGcavity, ΔGdisp) 
can be regarded as characteristics of nonspecific interactions. The term for 
electrostatic interactions (ΔGel) involves, in addition to the pure electrostatic 
Coulomb interactions, other interaction forces such as ion–dipole, strong 
dipole–dipole, and ion–pair formation, etc.4,8,9 The HB forces are also 
electrostatic by nature.10 Hence, it can be concluded that the last two terms 
comprise the electrostatic-specific interactions. 

 
 HBeldispcavityS GGGGG Δ+Δ+Δ+Δ=Δ  (2) 

 
The described solute–solvent interactions and diverse theories unfolding those 
interactions have formed the basis for understanding solubility, comprehen-
sively reviewed by Reichardt.4 Despite more than a century of studies directed 
toward examining the relationships between chemical structure and solubility, 
the challenge still remains for improved experimental detection, precise 
computational prediction, and detailed understanding of interactions between 
chemicals and the surrounding medium.11 
 
Permeability analysis is crucial in estimating drug oral bioavailability in 
ADME-Tox profile, where the permeability is used to describe the intestinal 
absorption. In vitro experimental studies are often performed with several 
different cell lines such as Caco-2, MDCK, 2/4/A1, HT29, etc.12,13 The most 
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popular of them is the Caco-2 cell monolayer which is derived from human 
epithelial colon adenocarcinoma and retains many morphological and functional 
properties of the intestinal enterocytes.14-16   Thus, the Caco-2 cell monolayer 
assay provides information about the drug absorption potential at near 
physiological conditions. However, its use is often limited due to the long 
membrane growth cycle and high costs.17,18  

Kansy et al.19 introduced PAMPA as an alternative to cell line permeability 
studies for high-throughput screenings. The method rapidly became widely used 
for the estimation of permeabilities. It is easily automated in in vitro drug 
absorption assays and is based on the use of a filter-immobilized artificial lipid 
(phosphatidylcholine) membrane.20 Several experimental conditions (different 
membrane lipid compositions, multiple pH measurements and co-solvent, such 
as DMSO) have been proposed for the determination of artificial membrane 
permeability values.21-24  

Galinis–Luciani et al.25 noted that partition coefficients log Poct or log Doct 
are as good as PAMPA for estimating drug bioavailability. Alternatively, 
Avdeef et al.26 discussed the advantages of PAMPA compared to log Poct and 
the preciseness of PAMPA when the drug is administrated by transporter or 
efflux processes, or if drugs follow a paracellular diffusion route. They also 
noted that the Galinis–Luciani et al. study had limitations. One of the conclu-
sions by Avdeef et al. was that since most of the drugs, and therefore also drug 
candidates, follow a passive trans-cellular diffusion, then PAMPA provides a 
correct estimate for those cell membrane permeabilities. In addition, it has been 
noted that experimental measurements of PAMPA can be easier to measure than 
log Poct, especially with sparingly-soluble compounds, which a considerable 
number of drugs are. Avdeef reviewed the historical development of 
permeability and highlighted current topics in experimental studies of artificial 
membranes.12  
 
Repellent activity. Repellents are chemicals that affect insects and other 
organisms by disrupting their natural behavior of blood-seeking through biting 
of humans and animals, and are the first line of defense that can be readily used 
for this purpose. Insects are believed to detect repellents through receptor 
uptake of  molecules with specific chemical  characteristics.27-30  The best 
overall standard repellent is N,N-dimethyl-m-toluamide (DEET), systematically 
named N,N-diethyl-3-methylbenzamide.31 The ideal repellent compound would 
prevent bites from a broad range of arthropod species, remain effective for at 
least 8 h, causing no irritation to the skin or mucous membranes, possess no 
systemic toxicity or plasticizing effect, be resistant to abrasion and rub off, and 
be totally greaseless and odorless.32 

Repellent activity is expressed in protection time (PT). Different experi-
mental protocols can be followed to measure PT, one example is where PT is 
determined by applying a test compound at a dose of 1 mg/cm2 onto the external 
surface of a human fist followed by exposure to 200 females (5–7 days old) of 
the day-biter mosquito Aedes aegypti for 5 min every 30 min. The PT is defined 

4
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as the period of protection offered at given doses until two consecutive bites are 
obtained at a 30-min interval. The reported protection times represent the 
average of multiple determinations.33 

Many authors have noticed that physical properties such as vapor pressure or 
boiling point are the only parameters that anyone has been able to correlate with 
repellent activity. It has been well recognized that repellents must be volatile 
since repellents affects the olfactory chemosensilla of the mosquito. Protection 
time decreases if repellents are either too volatile or too nonvolatile. If the vapor 
concentration of the repellent decreases below the minimum repellent 
concentration, a rapid loss of repellency will result. On the other hand, if a 
compound is not volatile, it will never come into contact with the olfactory 
organ.34-36 

 

 
1.2 Molecular descriptors 

 
A comprehensive description of molecular descriptors is given by R. To-
deschini: “The molecular descriptor is the final result of a logical and mathe-
matical procedure which transforms chemical information encoded within a 
symbolic representation of a molecule into an useful number or the results of 
some standardized experiment”.37 According to this, a molecular descriptor can 
be theoretically or experimentally derived. Experimental descriptors are 
nowadays not so widely used because they require time consuming and 
expensive experiments and are not simply available for vast number of 
chemicals. The use of theoretical molecular descriptors is more popular because 
they do not need those experiments. They are calculated directly from molecular 
structure. Thanks to highly improved computer technology, a calculation of 
such descriptors is generally very fast. These descriptors can even be used for 
screening of millions compounds within reasonable time. 

At current stage, more than 3000 theoretical descriptors38,39 are available. 
They cover 1D, 2D, 3D, 4D, quantum chemical, fingerprint-based, field-based, 
surface area related, chirality related, etc. type of descriptors. These descriptors 
have different theoretical background starting from simple counts, graph theory 
and ending with more time-consuming quantum-chemical calculations. There-
fore, descriptors can be divided into groups according to their nature. Although 
the classifications are arbitrary, the following list covers the descriptors that are 
used in the publications within the current Thesis:40,41  
• Constitutional – include count of atoms, count of groups, molecular weight, 

etc. 
• Topological – include different graph theory based indices starting from 

Wiener index up to E-state indices. 
• Geometrical – include molecular surface area and volume, gravitational 

indices, shadow areas, etc. 
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• Electrostatic – include atomic partial charges, polarity parameters, polari-
zabilities, etc. 

• CPSA – include combinations of charged partial surface areas. 
• Quantum-chemical – include total energy of the molecule, particles 

repulsion and attraction energies, etc. 
• Molecular orbital (MO)-related – include HOMO and LUMO energies, 

reactivity indices, free valences, bond orders, etc. 
• Thermodynamic – include vibrational and translational enthalpies and 

entropies, heat capacities, etc. 
The CODESSA family software packages calculate approximately 600 base 
descriptors, which are extended up to more than 1000, depending on the 
chemical constitution of compounds. Such a vast number of descriptors need 
robust statistical and mathematical approaches for modeling. Two of those 
methods, which were used in current thesis, will be overviewed in the next 
sections. 
 
 

1.3 Principal Component Analysis 
 
Principal Component Analysis (PCA) is a multivariate data reduction and 
exploratory data analysis method. The method was first described by the 
statistician Karl Pearson.42 PCA determines dimensions with maximum 
variation that are orthogonal with each other. These dimensions are called latent 
variables or components. Figure 1 illustrates the simplest situation with two 
variables (x1 and x2).  
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Figure 1. Variables x1 and x2. 
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The first component (PC1) comprises the maximum common variance. The 
next component is orthogonal with the first one and comprises the rest of the 
variation. The projection of new latent variables (components) is given in 
Figure 2. As can be seen, the variance of PC1 is larger than the variance of the 
original variables, and controversially, the variance of PC2 is smaller.  
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Figure 2. Latent variables PC1 and PC2. 

 
 

In real situations, where PCA is used, the data matrix consists of a lot more 
variables. Therefore, such a simple representation cannot be always available. 
The general form of PCA is given in eq. 3.  
 
 PTD ⋅=  (3) 

 
Where D is data matrix, T and P are score and loading matrices, respectively. 
The given equation is true when the number of components is equal to the 
number of variables. Generally, fewer components are used and in this case the 
error term needs to be added. The number of PCs (scores, loadings) existing in 
the characteristic vector space can be equal to, or less than, the number of 
variables in the data set. The first principal component is defined as that giving 
the largest contribution to the respective PCA of linear relationship exhibited in 
the data. The second component may be considered as the second best linear 
combination of variables that accounts for the maximum possible of the residual 
variance after the effect of the first component is removed from the data. 
Subsequent components are defined similarly until practically all the variance in 
the data is exhausted. A more detailed explanation of PCA methodology can be 
found in the following textbooks.43-46  In PCA,  the data is  commonly  pre-
processed to provide all the scales with equal weight, mostly via the unit 
variance scaling method, where the data are standardized, centralized and 
normalized using their sample standard deviation, variance and mean. This is 
necessary when the variables differ a lot in their variances. When the variables 
have the same dimension such preprocessing can be avoided because pre-
processing of the data could result in some cases in a loss of information as well 
as decreasing the sensitivity of the PCA.45,47,48  
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PCA reveals internal relations between characteristics of a class of 
compounds (objects) and hence enables drastic reduction of the dimensionality 
of the original raw data. This reduction is achieved by transforming to a new set 
of variables, the principal components, which are uncorrelated, and which are 
ordered so that the first few, with descending importance, retain most of the 
variation in the total set of original variables. PCA can be highly useful for data 
classification and pattern recognition. In the two-dimensional plotting of score 
vectors, observations with similar characteristics are clustered. In the two-
dimensional plotting of loading vectors, the initial variables reflected in those 
score loadings are clustered.  

Also multilevel PCA techniques – hierarchical and multiblock PCA49,50 are 
proposed. In these methods an original data matrix is divided into submatrices 
according to additional information that allows to group variables and/or 
objects. Common PCA is applied to the sub-matrices and the resulting 
components are further used in the PCA which now comprises the relationships 
between all objects and variables. This methodology is specifically useful for 
very large and diverse data sets. It simplifies the interpretation of the final PCA 
model. 

PCA is one of the best known multivariate exploratory techniques exten-
sively  used in  different  areas of  chemistry51-55  or  other  disciplines  as well, 
such as biology, physiology, psychology, color technology, etc.56-60 

 

 
1.4 Quantitative Structure Property/Activity  

Relationships 
 
The Encyclopedia of Computational Chemistry defines the following: 
“Quantitative structure–property relationship or quantitative structure–activity 
relationship studies probe connections between molecular structure of organic 
compounds and their chemical or biological properties”.61 QSPR/QSAR, as it is 
known currently, has been used nearly 50 years. C. Hansch and co-workers’ 
study where biological activity of pesticides was correlated with the octanol–
water partition coefficient62 is considered to be the first work to introduce this 
new paradigm. Sometimes such regression is called Hansch analysis. However, 
the first use of prediction was likely the work of E. J. Mills where the 
correlation of melting and boiling points in homologous series is presented.63 

A QSPR/QSAR modeling workflow generally involves three steps (see 
Figure 3):  
(i) collection and preparation of data including collection of property or 

activity endpoint values and design of training and test sets,  
(ii) calculation and collection of descriptive variables (descriptors),  
(iii) selection of descriptors that possess relationship with property or 

biological activity and application of statistical methods that correlate 
changes in structure with changes among chemical property or activity.64  

5
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Collection of data set Generation of 3D structures Optimization of structures

Calculation of quantum-chemical characteristics Calculation of descriptors

Multivariate modeling Model validation

( i )

( ii )

( iii )

Model interpretation

 
 
Figure 3. QSPR/QSAR modeling workflow. 
 
 
The best choice to collect the data is to design a structurally important set of 
compounds and then to measure their property or activity by one laboratory 
following standardized methodology. This is possible very seldom and therefore 
the data sets are often gathered from literature, sometimes merged from 
different authors. The latter is dangerous because the experimental values for 
the same compound can differ among different laboratories. This is mostly due 
to different experimental conditions. For example, different equipment will 
produce different systematic errors. Even more, different experimental protocols 
can be followed. Thus, while merging a data from different sources, the values 
should be carefully analyzed.65 This is more important for biological activities 
rather than for chemical properties since the experimental errors of chemical 
measurements are generally smaller than biological assays.  

3D structures can be either drawn from scratch using available software 
(MDL ISIS Draw,66 ACD/ChemSketch,67 ChemDraw,68 MarvinSketch,69 etc.) or 
obtained from available databases (ChemIDPlus,70 PubChem,71 etc.). 
Optimizations of the structures are followed by minimizing the total energy. 
The procedure is carried out in two steps, where first, a more robust molecular 
mechanics force field (MM+,72 MMFFs,73 AMBER,74 etc.) is used and in a 
second step, fine minimization is carried out with semi-empirical para-
meterizations (AM1,75 PM3,76 etc.).  

Quantum-chemical characteristics, such as energy and charge distributions, 
are generally calculated using the same force fields as in the last step of 
optimization procedure. In the publications of the current Thesis, the MOPAC77 
software package was used with AM1 parameterization. Several other mole-
cular modeling packages also exist, such as AMPAC,78 HyperChem,79 
Gaussian,80 Schrödinger Suite,81 etc.  
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As discussed previously in the chapter on descriptors, there exist a vast 
number of theoretical descriptors. Therefore, several calculation packages are 
available, for example QikProp,82 MARVIN,83 DRAGON,84 TSAR,85 etc. In 
publications of the current Thesis, the CODESSA family,40,41,86 software were 
used where constitutional, topological and geometrical descriptors are derived 
from the optimized 3D structure and electrostatic, CPSA, quantum-chemical, 
MO-related and thermodynamic descriptors are derived from calculated 
quantum-chemical characteristics. 

Such a large number of descriptors (from hundreds up to thousands) need a 
robust method for variable (descriptor) selection. The most common selection 
methods in regressions are forward, backward and stepwise selections.87,88 In 
publications of the current Thesis, the Best Multiple Linear Regression (BMLR) 
is used which includes a modified stepwise forward selection method.89,90 Also, 
other sophisticated methods (PLS, PCA, Genetic Algorithms) can be used for 
the selection of descriptors. A detailed explanation of the methods is provided 
in selected books88,91 and their comparisons in recent review publications.92,93 

The most popular regression method in QSPR/QSAR is multivariate linear 
regression94,95 for relating the descriptors to the property producing the 
equation: 

 i
k

ikki xaay ε++= 0  (4) 

 
where y is a property or activity (dependent variable), x is a descriptor 
(independent variable), a is a regression coefficient, ε is the random error, and 
subscripts i and k denote the number of objects (compounds) and descriptors, 
respectively. A variety of other linear and nonlinear regression methods such as 
PLS, PCR, ANN44,46,91,96 are also used in the context of QSPR/QSAR. 

Commonly in QSPR/QSAR the property under the study is logarithmically 
transformed. There are two reasons for this. First, raw data mostly are not 
normally distributed (following Gaussian distribution) and generally, after 
logarithmic transformation the distribution is closer to normal.97 Together with 
data distribution, the error distribution is normalized as well. Another reason is 
that quantum chemically calculated energy related descriptors (such as HOMO, 
LUMO, etc.) have exponential relationships with concentrations. Therefore is 
necessary to take the logarithm of the property to assure linear relationships. It 
is also important to represent the concentrations in molar units, not in weight 
units, since the descriptors are calculated based on molecular, not any mass 
unit.98 

QSPR/QSAR is successfully applied to chemical properties and biological 
activities as discussed comprehensively in the following review publi-
cations.89,99-105 
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1.5 Model validation 
 
Regression models need always a proper validation. This is important for the 
estimation of correct predictions. Goodness of fit is determined by the co-
efficient of determination (R2). But this does not show much about the 
capability of prediction. Two types of validations are used in QSPR/QSAR, 
called internal and external validation.  

The most proper validation is external validation where squared correlation 
coefficient (R2) is calculated from observations (compounds in QSPR/QSAR) 
which were not used in model development. A representative way to achieve 
this is to order observations according to their experimental values and sequen-
tially (every second or every third, for example) moving observations to the 
external validation set. This assures equal distribution of property variation 
between training and testing sets. External validation is not always possible. For 
instance, with very limited data it is usually better to use all available experi-
mental material for the model training in order to obtain more reliable models. 
This extends also to cases where QSPR/QSAR models are derived rather for 
analysis of property, not for the prediction. In such cases an internal validation 
is commonly used. 

The Leave One Out (LOO) and Leave Many Out (LMO) internal validations 
are most commonly used, denoted as  R2

 LOO and  R2
    LMO,  respectively.106-108 

Sometimes these statistics are called also cross-validation and denoted then as 
R2

CV or Q2. In a cross validation procedure, one (LOO) or many (LMO) 
observations are left out from the set and the model is derived using the same 
variables. Further, this model is used to predict the values for those observations 
which were left out. This is repeated several times and a sort of external testing 
set is derived. Recently, some modifications of cross validation were proposed 
and discussed.109,110  

In addition, other internal validation methods are used, such as Y-scrambling, 
bootstrapping, etc. Advantages and disadvantages of these methods along with 
external and cross-validations are discussed and analyzed in the context of 
QSPR/QSAR in excellent review publications.97,106,111-114  
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2. SUMMARY OF ORIGINAL PUBLICATIONS 
 
2.1 Prediction, description and analysis of solubility using 

Ostwald solubility coefficients 
 
Articles I and II are third and forth in the publication series dedicated to predict, 
describe and analyze solubility. Briefly, the study of solubility has been 
conducted using a combination of QSPR and PCA methods. A solubility 
database of about 4,500 experimental data points was used that gathered 
available experimental data into a matrix of approximately 150 solvents times 
approximately 390 solutes. Methodology was developed in which QSPR and 
PCA are combined in order to predict the missing values and to fully fill the 
data matrix. The solubility is expressed as the logarithm of Ostwald solubility 
coefficients (log L). Article I includes the complete strategy of the research 
performed divided into in five steps (see Figure 4 for simplified scheme).  
 
 

Data (log L)

Step 1
QSPRs for solvents

Step 1
QSPRs for solutes

Step 2
Merging matrices

Step 3
PCA

Step 4
Fillingdata matrix

Step 5
Descriptions and analysis

 
 
Figure 4. Workflow of solubility study. 
 
 
QSPR models for solubility (Step 1). Rows and column of data are ordered 
according to the number of data points that they contain, so the densest area of 
the data matrix is located in its upper left corner. QSPR models were developed 
for the densest area of 87 solvents and 91 solutes series for which at least 15 

6
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experimental solubility values were available. QSPR models were developed 
and used to predict the missing values of log L for filling empty gaps in the 
matrix densest area. Considering all the QSPR models of solvent series 
developed (87), their summarized R2 is 0.957 with 4,167 data points. The same 
statistic for solute models (91) is 0.996 with 3,394 data points. 
 
Merging predictions (Step 2). The predictions in Step 1 resulted in two 
matrices, one based on the solvent series and another based on the solute series. 
These matrices were merged using several developed rules: (i) the prediction 
range is defined as 15% of the distribution range of the experimental data points 
for each model considered, (ii) if the predicted value was in the range in both 
matrices, a model-weighted average of the two values were calculated, (iii) if 
the predicted solubility value from the solvent model was out of range of 
experimental values, then the value predicted from the solute model was taken 
and vice versa, and (iv) if the predicted value was out of the range for both 
solute and solvent models, then the solvents were ordered according to the 
ET30 polarity scale and weighted averages of neighboring values were 
calculated. During the study, an additional 289 experimental solubility values 
were collected. These values were used for external validation, resulting in an 
R2 of 0.882.  
 
PCA–QSPR combined methodology for predicting solubility (Step 3). PCA 
was applied on the densest area matrix and three components were considered 
covering 96% of total variation. QSPR models were developed for scores, 
loadings, standard deviation and mean. These QSPR models were extrapolated 
for the rest of the solvents and solutes in the whole data matrix and so called 
“Backward Procedure” of PCA was used to calculate missing log L values.  
 
Filling the data matrix (Step 4). The QSPR models developed in Step 1 also 
allowed predictions of missing log L values in the whole matrix. Therefore, the 
empty gaps in the matrix were filled using either solvent/solutes QSPR models 
where the prediction was in range, or with the PCA–QSPR “Backward Pro-
cedure” combined methodology developed in Step 3. Finally, the data matrix 
comprises 154 solvents and 397 solutes and consists of 4,540 experimental and 
56,598 predicted log L values.  
 
Description and analysis of the PCA model (Step 5). In article II, the pre-
viously obtained matrix was refined and updated with 1,285 new experimental 
data points. These new data allowed an external validation of previous predictions 
which resulted in an R2

ext of 0.59. Statistical outliers were analyzed and after 
removing 75 outliers, the R2

ext is 0.88. PCA was applied on the data matrix 
without data preprocessing. Outliers of the PCA model were analyzed and they 
were excluded. The same outliers appeared also during the prevoius external 
validation. The finally obtained two-component PCA model describes 98.6% of 
total variability. The physical meaning of the respective scores and loadings was 
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analyzed via construction of QSPR models. The optimal model for the first score 
consisted of two molecular descriptors: Gravitational index (all bonds) and HA 
dependent HDCA-1 and the resulting R2 is 0.96. These two descriptors are related 
to cavity formation and hydrogen bonding terms in eq. 2, given in introductory 
section. The model for the second score comprises mostly electrostatic interaction 
term related descriptors and resulted in an R2 of 0.91. QSPR analysis indicates 
that the principal components describe multiple solubility interactions rather than 
a single solute–solvent interaction. The first component represents cavity 
formation and HB interactions which can be codified by the gravitational index 
and hydrogen donor charged surface area molecular descriptors. The second 
component covers weaker and more specific electrostatic interaction types. And 
finally the detailed analysis of the pattern observed in the score plot provides a 
detailed explanation for each chemical group. 
 
 

2.2  QSAR for Permeability in Artificial Membranes 
 
Article III presents the QSAR modelling of PAMPA. Permeability studies are 
used to describe the intestinal absorption of drugs. They are crucial components 
in an ADME-Tox profile for estimating the oral bioavailability of drugs and are 
particularly needed to predict compounds’ permeability early in the drug design 
process. The artificial membrane is usually formed from phospholipids (le-
cithin) and it exhibits only passive permeability, while in the case of natural cell 
lines, the active transport is also accounted for. PAMPA became an alternative 
to cell line permeability studies for high-throughput screenings. 

A structurally diverse data set comprising 22 peptidic compounds and 38 com-
mercially available drugs was studied. Forward selection (BMLR) of descriptors 
from a large set of molecular descriptors was used to derive QSAR models. The 
best 5-parameter model R2 is 0.71, R2

CV is 0.63 and R2
ext is 0.71. Diagnostics of 

the model represented by a Williams plot revealed two compounds with high 
residuals but low leverages and another two compounds with high leverages but 
low residuals. The descriptors in the model comprise hydrogen bonding ability, 
which is solely connected with water solubility, hence hydrophilicity. In addition, 
electrostatic interactions, charge distributions, polarity and polarizability, and the 
shape of a molecule are described by the descriptors. 

It is known that the intestinal permeability mechanism depends on the physi-
cochemical properties of the absorbed compound, such as its stereochemistry, 
partition into membranes, molecular weight and/or size, molecular volume, pKa, 
solubility, chemical stability and charge distribution. Simplifying the system 
only to passive diffusion gives an opportunity to study permeability in a distinct 
way. However, most of the drugs permeate passively. A particular QSAR model 
provides insight into the structural parameters that determine the mechanism of 
permeability. Based on the model, one can conclude what structural parameters, 
parts of the molecule, need to be changed in order to enhance a particular com-
pound’s property, passive permeability in our case. 
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2.3 Analysis of Mosquito Repellent Protection Time 
 
In article IV, the mosquito repellent protection time (PT) of 31 benzamide and 
cyclohexamide derivates was modeled (Figure 5). Two 4-parameter QSAR 
models were developed for the description of mosquito repellent PT with 
satisfactory statistical characteristics. The first model is based on theoretical 
descriptors and the result R2 is 0.78. The second model includes the squared 
logarithmic vapor pressure and resulted in an R2 of 0.80. Descriptors involved in 
the models were related to repellent activity through three main molecular 
interactions:  
(i) vaporization is connected to the duration of time that a mosquito can have 

contact with the repellent,  
(ii) structural fit on an unknown active receptor center,  
(iii) chemical reaction with a receptor resulting in the act of repelling. 
 

N

O

R2

R1

R

1
2

6

7
a

 
a = aromatic ring 

N

O

R2

R1

R

1
2

6

7
s

 
s = saturated ring 

 
Figure 5. Base structures of repellents. 

 
 
The successful QSAR models of the study suggested that a general QSAR treat-
ment of repellents could be of great benefit in synthetic efforts while dis-
covering better compounds for practical use. The study was developed further 
and excellent results with new promising repellents were obtained.115 
 
 

2.4  Concluding remarks 
 
Solubility as a fundamental property in chemistry and biology was studied using 
PCA and QSPR methodologies. Such combination of these methods as a new 
approach was described and a general scheme was provided. The study revealed 
important structural characteristics influencing solubility and their relationships 
with solvation free energy terms was discussed. Pattern analysis revealed two 
general types of interactions. Also, the pharmacologically important oral bio-
availability of drugs was studied. A resulting QSAR model provides insight into 
the structural parameters that influence and determine the mechanism of per-
meability. Mosquito repellent activity was studied using QSAR methodology. 
Three important mechanistic characteristics were discussed. 
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SUMMARY IN ESTONIAN 
 

Keemiliste ja bioloogiliste omaduste  
mitmemõõtmeline analüüs 

 
Käesolevas dissertatsioonis uuriti keemilisi ja bioloogilisi omadusi mitmemõõt-
meliste analüüsi meetoditega. Analüüsiti orgaaniliste ühendite lahustuvust, kui 
ainete fundamentaalset omadust, ravimiarenduses olulist ainete läbitavust, mille 
baasil hinnatakse ravimite suukaudse manustamise efektiivsust, ehk absorbt-
siooni, ja sääsetõrje vahendite efektiivsust kasutades tõrje aega. 

Dissertatsioon on jagatud kahte ossa. Esimeses osas on antud kirjanduse 
ülevaade uuritud omadustest. Käsitletakse kasutatud omaduste teoreetilist baasi 
ja praktilist väljundit. Samuti on kirjanduse ülevaates toodud kasutatud metoo-
dika teoreetilised põhimõtted ning praktilised kasutusnäited. Teine osa võtab 
kokku dissertatsiooni raames tehtud uurimustöö. 

Uurimustöö esimese osas keskenduti lahustunud aine jaotumisele gaasifaasi 
ja vedelfaasi vahel, väljendatuna Ostwaldi lahustuvuse koefitsiendina. Sellisel 
kujul väljendatud omadus on vahetult seotud lahustuvuse vabaenergiaga ja või-
maldab lahustuvuse protsessi detailselt analüüsi. Töö käigus tuletati mitmed 
kvantitatiivsed struktuur-omadus sõltuvuse (QSPR) mudelid erinevate sol-
ventide ja lahustunud ainete seeriatele. Nii eksperimentaalsed lahustuvuse and-
med kui ka saadud QSPR mudelitega ennustatud väärtused koondati ühtsesse 
maatriksisse. Saadud maatriksi peakomponentanalüüsi (PCA) tulemuseks on 
terviklik kahekomponente mudel, mis hõlmab 98,6% kogu andmete informat-
sioonist. Mudel toob välja solventide ja lahustunud ainete sarnased ja erinevad 
käitumised ühiste variatsioonide näol. Neid variatsioone analüüsiti kahel moel. 
Esiteks analüüsiti neid kvantitatiivselt, tuletades QSPR mudelid latentsetele 
muutujatele. Molekulaardeskriptorid saadud mudelites seostati solvatatsiooni 
vabaenergia liikmetega. Teiseks analüüsiti solventide ja lahustunud ainete 
jaotumismustreid. Selgelt eristuvad alifaatsed ja aromaatsed lahustunud ained 
ning samuti eristuvad ained keemiliste funktsionaalrühmade järgi. Kokkuvõtvalt 
toodi välja kaks peamist interaktsiooni tüüpi. Mittespetsiifilised interaktsioonid, 
mis hõlmavad endas molekuli suurusest sõltuvaid interaktsioone. Spetsiifilise 
interaktsioonid, mis koondavad enda alla polaarsusest, elektrostaatikast ja 
vesiniksidemest tingitud interaktsioone. 

Uurimustöö teises osas analüüsiti ravimite läbitavust fosfolipiidsest memb-
raanist. Tuletati viie-parameetriline kvantitatiivne struktuur-aktiivsus sõltuvuse 
(QSAR) võrrand, mille molekulaardeskriptorid kirjeldavad membraani läbita-
vuse olulisi karakteristikuid, nagu vesinikside, laengujaotus, polariseeritavus ja 
molekuli kuju. Mudeli diagnostika tõi välja ka keskpärased kõrvalekaldujad, 
mis oluliselt mudelit ei mõjuta.  

Kolmas osa uurimustööst on seotud sääsetõrje vahendite efektiivsuse mo-
delleerimisega. Saadud nelja-parameetriline QSAR mudel sisaldab molekulaar-
deskriptoreid, mis on seotud tõrjevahendi efektiivsust mõjutava kolme olulise 
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karakteristikuga. Esiteks on oluline aine aurustumine, teiseks strukturaalne 
sobivus retseptoriga ning kolmandaks keemiline interaktsioon retseptoriga.  

Kokkuvõtvalt on dissertatsioonis edukalt rakendatud QSPR/QSAR ja PCA 
mitmemõõtmelisi analüüsi meetodeid. Saadud mudelid, nende valideerimine ja 
diagnostika omavad häid statistilisi karakteristikuid ning näitavad mudelite 
rakendatavust. Mudelite mehhanistlikud interpretatsioonid on kooskõlas toi-
muvate keemiliste ja bioloogiliste protsessidega ning seletavad keemiliste 
ühendite käitumist keskkonnas antud protsesside raames. 
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