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ABSTRACT

In cryptology, most of the security proofs of systems are not unconditional but
rather rely on the security properties of the underlying primitives. In fact, most of
the proofs consider the primitives they use as black boxes, assuming only that they
work securely in the way specified and nothing else. Black-box proofs have their
limitations, however, and there are in fact many cases in which such an approach
can be ruled out by a proof method known as Oracle Separation.

This work is mainly concerned with exploring the Oracle Separation paradigm.
Firstly, we show how it can be weakened to rule out "generic" constructions from
hash functions to time-stamping schemes. Secondly, we describe how changing a
few standard proof steps allows the results to be translated into the non-uniform
computational model as well. Thirdly, we demonstrate a novel way of upper-
bounding the efficiency of security proofs of black-box constructions and then
use this approach to prove the optimality of a reduction from collision-resistant
hash functions to secure bounded time-stamping schemes. Finally, we also ex-
plore the possibility of using a fixed, "algorithmically random" oracle instead of
the standard random oracle, which has great potential in simplifying some more
technical aspects of separation result proofs.
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INTRODUCTION

Cryptology is the science of secure communications. In modern times, however,
it has grown to encompass all sorts of different problems related not only to the
issue of privacy but also to those of anonymity and authenticity. The topics that
are worked on vary greatly, ranging from the classical disciplines of making and
breaking new ciphers to the problems of secure protocol design and questions
about secure multi-party computation.

One characteristic of modern-day cryptology is its reliance on computational
assumptions. As unconditional security is generally very hard to achieve, it often
makes sense to try to reduce the security of a system to a computational hard-
ness assumption of a well-studied mathematical problem. This is usually done by
showing that if a certain system were to be insecure, it would automatically im-
ply an existence of an efficient algorithm for solving the underlying mathematical
problem. This approach works very well for lower-level systems or primitives,
whose construction is often based on hard problems in number theory. One of the
best known examples of this is probably the Diffie-Hellman key exchange proto-
col, whose security is proved based on the hardness of finding discrete logarithms.

For more complex protocols, a similar principle is used but in a somewhat
different way. Instead of proving security based directly on computational as-
sumptions, these proofs take a more abstract approach and base the proof on the
security of some other, simpler, cryptographic system. In these cases, what is
shown is that if the new system can be broken, it would automatically imply that
the old system is also insecure. There are many famous results of this type, for
instance the construction by Merkle [33] and Damgård [13].

Most of these reductions work for any implementation of the underlying cryp-
tographic system. This is so because both the construction and proof only use the
underlying system in a so-called black box way where no additional assumptions
are made about it besides the fact that it securely does exactly what it is meant to
do. This is very convenient, as it allows one to instantiate the system with the best
known implementation of an underlying functionality and to switch it out with a
newer and better version when the old one becomes either obsolete or insecure.

Such a black-box approach has inherent limitations, however. This was first
shown by Impagliazzo and Rudich [27] who proved that secret key exchange
(which is a prerequisite for all public-key cryptography) cannot be built in a purely
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black-box way by only assuming the existence of one-way permutations (which
are enough to do nearly all of secret-key cryptology). This showed that the dis-
tinction between public-key and secret-key primitives is an inherent one and that
it is possible in theory for the secret-key primitives to exist even when none of the
public-key primitives do.

The result was proven by a method called oracle separation, which was intro-
duced by Baker, Gill and Solovay [1] in the context of complexity theory. The
main idea of the method is to embed a very powerful computational entity (an
oracle) into the underlying primitive and then show how this additional power can
be abused to break any implementation of the more complex system while still
leaving the underlying primitive itself secure. Such a proof basically implies that
although a secure instance of the underlying primitive does exist, it cannot be used
to construct an instance of the more complex system as no such secure complex
system can exist while this powerful implementation of the underlying primitive
is around.

The seminal result was soon followed by a long line of impossibility re-
sults [39, 29, 18, 19, 20, 12, 16, 25, 17, 3] which extended the simple approach
taken by Impagliazzo and Rudich. For instance, Gennaro and Trevisan [18] showed
that separation results can also be proven in the non-uniform model, while Hsiao
and Reyzin [25] noticed that considerably weaker separation results can still be
used to rule out the existence of fully black-box constructions in certain cases.
The approach of proving impossibility results was also extended by Kim, Simon
and Tetali [29] to show lower bounds in terms of construction efficiency.

Most of the authors closely follow the proof model of one of the aforemen-
tioned papers. However, there are also numerous exceptions where authors depart
from these models and often achieve even stronger results. This, however, has re-
sulted in a plurality of models which are usually just slightly different from each
other. Reingold, Trevisan and Vadhan [37] attempted to systematize the varying
approaches used but considered only one of the possible ways in which the separa-
tion results may differ, essentially describing different degrees of black-boxness.

The author’s interest in the general methods of oracle separation grew out of
studying their application to the concrete problem of time-stamping documents
by the scheme proposed by Haber and Stornetta [22]. The scheme is constructed
using hash functions and in such a way that collision-resistance may not be suffi-
cient to guarantee the security of the scheme as demonstrated by Buldas et al. [10].
The sufficient criterion, chain-resistance, is however fairly hard to verify directly,
which immediately brings up the question whether it can be reduced to more stan-
dard assumptions.

In this work, we describe two new additional ways of using oracle separation.
Firstly, we describe a very weak separation for tree-based time-stamping schemes
which only rules out reductions in a generic model where the adversary is given a
’reasonably limited’ access to the oracle. Secondly, we propose a new framework
for proving lower bounds on the efficiency of the security reduction, which dif-
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fers markedly from the previous approaches that show lower bounds only on the
efficiency of the construction of the new primitive. To demonstrate that this new
framework can provide interesting and non-trivial results, we again apply it to the
problem of time-stamping and show that any black-box reduction from tree-based
time-stamping to collision-resistance has an inherent security loss of power 1.5.
It turns out that this bound can be reached by a precise combinatorial analysis, al-
lowing us to show the first known reduction provably optimal in terms of security
loss.

We then turn to broader questions and try to generalize the previously known
reductions to also work in the non-uniform model of computation. It turns out that
this is possible for most of the results known, but only to a certain degree. Finally,
we try to overcome some of the technical problems associated with random ora-
cles by exploring the limits of using algorithmic randomness instead of classical
randomness to produce oracles that seem comparably powerful.

This work is based on four published and two unpublished papers from the
period of 2008 to 2011.

1. Buldas, A., Niitsoo, M.: Can we construct unbounded time-stamping schemes
from collision-free hash functions? In: The 2rd International Conference on
Provable Security (ProvSec) 2008. LNCS, vol. 4784, pp. 254–267. Springer
(2008).
The paper is fully author’s own work, with only the problem statement and
background information provided by the supervisor.

2. Buldas, A., Laur, S., Niitsoo, M.: Oracle separation in the non-uniform
model. In: The 3rd International Conference on Provable Security (ProvSec)
2009. LNCS, vol. 5848, pp. 230–244. Springer (2009).
The author’s main contribution was the proofs of all the theorems, whereas
the theorem statements were provided by the other authors.

3. Buldas, A., Jürgenson, A., Niitsoo, M.: Efficiency bounds for adversary
constructions in black-box reductions. In: Australian Conference on Infor-
mation Security and Privacy – ACISP 2009. LNCS, vol. 5594, pp. 264–275.
Springer (2009).
The author came up with the proofs for the framework theorems and the ex-
act preconditions required to actually be able to prove useful lower bounds.
He also came up with the details of the proof for the lower bound on
division-resistance reduction.

4. Buldas, A., Niitsoo, M.: Optimally tight security proofs for hash-then-publish
time-stamping. In: Australian Conference on Information Security and Pri-
vacy – ACISP 2010. LNCS, vol. 6168, pp. 318–355. Springer (2010).
The authors main contribution was a large part of the proof of the tightest
security bound which allows for a very precise security analysis.

11



5. Buldas, A., Niitsoo, M.: Black-box separations and their adaptability to the
non-uniform model (2011), unpublished.
The author is responsible for generalizing the results of Unruh [40] and
Simon [39].

6. Niitsoo, M.: Deterministic random oracles (2011), unpublished.
The author is the only author of this paper and as such, both the idea and
the proofs are his.

The copies of papers I–VI are included at the end of the thesis on pages 65 – 168.

The outline of the thesis is the following. Chapter 1 describes the notion of
a Black-box reduction and investigates various definitions of different strengths.
Chapter 2 concentrates on the oracle separation method and describes the state
of the art in the field. Chapter 3 gives a brief overview of hash tree based time-
stamping schemes to which some of the results of this thesis apply.

The rest of the Chapters are concerned with expounding the author’s own
work. Chapter 4 describes how evidence for the non-existence of a reduction can
still be achieved by weakening the separation model and allowing only "generic"
access to the oracle. Chapter 5 explains how oracle separation results proven in
the uniform model can be translated to the non-uniform model and shows the lim-
itations of such an approach. Chapter 6 discusses how meaningful upper bounds
on the efficiency of the security proofs can be obtained and shows how to use them
to prove the optimality of a reduction from collision-resistance to bounded time-
stamping. Chapter 7 takes a more abstract approach and explores the possibility
of using algorithmic randomness instead of "true" randomness in the oracles and
shows that this approach indeed has promise.
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PRELIMINARIES AND TERMINOLOGY

We look at bits as binary digits. As such, {0, 1}∗ is defined to be the set of all
finite bit strings while {0, 1}ω is defined as the set of all infinite bit sequences.
For bit-strings a and b we define a‖b as their concatenation.

We will use · as a placeholder for function arguments. For example f =
g(·, a, ·) should be taken to mean that f is a two-argument function defined so that
f(x, y) = g(x, a, y). Furthermore, we will assume a standard isomorphism (real-
ized by ‖) between {0, 1}m × {0, 1}n and {0, 1}m+n and use that to turn multi-
parameter functions into single-parameter functions and vice versa as needed.

By x← D we mean that x is chosen randomly according to a distribution D.
If A is a probabilistic function or a Turing machine, then x← A(y) means that x
is chosen according to the output distribution of A on an input y. If D1, . . . ,Dm
are distributions and F (x1, . . . , xm) is a predicate, then Pr[x1 ← D1, . . . , xm ←
Dm : F (x1, . . . , xm)] denotes the probability that F (x1, . . . , xm) is true.

We use the Landau notation for describing asymptotic properties of functions.
For functions f, g : N → R+, we write f(k) = O(g(k)) [f(k) = Ω(g(k))] if
there is c ∈ R, so that f(k) ≤ cg(k) [f(k) ≥ cg(k)] for sufficiently large k. We
write f(k) = Θ(g(k) if f(k) = O(g(k)) and f(k) = Ω(g(k)). We write f(k) =

ω(g(k)) if lim
k→∞

g(k)
f(k) = 0 and f(k) = o(g(k)) if g(k) = ω(f(k)). In particular,

f(k) = O(1) means that f is bounded and f(k) = k−ω(1) means that f(k)
decreases faster than any polynomial, i.e., f is negligible. We say that something
happens with overwhelming probability if the probability of it not happening is
negligible. A Turing machine (TM) M is poly-time (PTM) if it runs in time kO(1),
where k denotes the the security parameter.

Unless explicitly stated otherwise, we assume all Turing machines to be prob-
abilistic, i.e., to have access to an additional tape that is filled with an infinite
amount of independently and uniformly chosen and random bits.

By an oracle Turing machine (OTM) we mean an incompletely specified Tur-
ing machine S that can make function calls to an independently specified oracle
function O : {0, 1}∗ → {0, 1}∗. In this case, the machine is denoted by SO. The
oracle function y ← O(x) does not have to be computable but it does have a con-
ditional running time t(x), which does not necessarily reflect the actual amount
of computations needed to produce y from x. The running time of SO comprises
the conditional running time of oracle calls – each call O(x) takes t(x) steps.
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Note that though the classical complexity-theoretic oracles only require a single
step, this more general notion is appropriate in cryptography where oracles of-
ten model abstract adversaries with running time t. We say that S is a poly-time
oracle machine (POTM) if SO runs in poly-time, whenever O is poly-time. By
a non-uniform poly-time oracle machine we mean an ordinary poly-time oracle
machine S together with a family A = {ak}k∈N of (advice) bit-strings ak with
length kO(1). For any oracle O and any input x, it is assumed that SO(x) has
access to the advice string a|x|. Usually, the advice strings are omitted for sim-
plicity, but their presence must always be assumed when S is non-uniform. One
of the most important facts about non-uniform poly-time Turing machines is that
there is an uncountable number of them, whereas there are only countably many
ordinary Turing machines. We will assume Turing machines to be uniform unless
it is explicitly stated otherwise.

A random oracleO is defined as a function chosen uniformly at random from
the set of all functions O : {0, 1}∗ → {0, 1} (which is seen to be isomorphic to
the set of {0, 1}ω). A functionality is said to exist under a random oracle model if
it exists for measure 1 of all the oracles.
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CHAPTER 1

BLACK-BOX REDUCTIONS

1.1 Black-box Reductions

Black-box reductions play a central role in the modern cryptography. We now
describe a simplified form of a very famous reduction (due to Merkle [33] and
Damgård [13]) that is meant to illustrate the concept and to help give insight into
the formal definitions which are introduced later.

1.1.1 Merkle-Damgård Construction

Modern cryptography uses many different primitives to construct new protocols
and schemes. One of the most often used of these is the notion of a hash function,
which are employed to condense an arbitrarily long bit string into a short "digest".
The digest can then be used in place of the longer bit string for many purposes.
There are numerous different notions of security for such hash functions. One of
the more common of them is that of "collision-resistance":

Definition 1. We say that a family χ of functions h : {0, 1}∗ → {0, 1}n is (t, ε)-
collision resistant if for any t-time non-uniform adversary A we have

Pr[h← χ, (m0,m1)← A(h) : m0 6= m1, h(m0) = h(m1)] < ε . (1.1)

Intuitively, collision resistance implies that for a h chosen randomly from χ, it
is hard to find two inputs that map to the same output. This can be used to ensure
that once someone computes a "digest" for a bitstring with a given h, it would be
hard for him to claim to have actually used some other input since it is hard to find
a "digest" that corresponds to two distinct inputs simultaneously.

It is worth noting that no single fixed hash function h : {0, 1}∗ → {0, 1}n
could ever be collision resistant – since there are far more inputs than there are
outputs, a collision is guaranteed to exist and therefore, an adversary that just
has that collision hardwired into it, would trivially break the collision-resistance
property. Using a family of hash functions loosely corresponds to the intuition
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that a collision has to be computed, as for a large enough family, the adversary
cannot have all the collisions hardwired into it any more so it would actually have
to compute them somehow.

The construction given in [13, 33] was originally proposed as a way of con-
structing secure collision-resistant hash functions h : {0, 1}∗ → {0, 1}m for in-
puts of arbitrary length based on a collision-resistant compressing function h :
{0, 1}n → {0, 1}m with a fixed-length input. To avoid some technicalities, we
will give a simpler proof just showing how a compressing function h : {0, 1}k →
{0, 1}m with arbitrarily large input length k can be constructed based on a com-
pressing function f : {0, 1}n+m → {0, 1}m with a shorter fixed input length
n+m < k.

Theorem 1. Assume that for fixed n,m ∈ N there exists a family Fs of (t,ε)-
collision-resistant functions f : {0, 1}n+m → {0, 1}m. Then for every k ∈ N
there also exist a family Fe of compressing functions h : {0, 1}k → {0, 1}m that
is (t + 2lt′,ε)-collision-resistant (where t′ is the upper bound on the time it takes
to compute f ∈ Fs).
Proof. We start by constructing the family Fe. Let f : {0, 1}n+m → {0, 1}m
be any function from Fs and let r ∈ {0, 1}m be a randomly chosen seed. We
now define a function hf,r : {0, 1}k → {0, 1}m by showing how it works on a
fixed input x ∈ {0, 1}k. The family Fe can then be defined as the set of all such
functions hf,r where f ∈ Fs and r ∈ {0, 1}m.

If n does not divide k, we begin by adding zeroes to the end of x until its length
is a multiple of n. We then break x into blocks of n bits so x = x1‖x2‖ · · · ‖xl
for l = d kne. After that, we construct y1, . . . , yl ∈ {0, 1}m by specifying y1 =
f(r‖x1) and yi = f(yi−1‖xi) for i = 2, . . . , l. The value yl is then returned as
the output of hf,r(x).

The preceding description of computation can easily be formalized as an al-
gorithm. It should also be easy to see that if f can be computed in t steps then
h can be computed in roughly lt + n steps so it remains relatively efficient. It is
also crucial to note that we use f in a black-box manner – we do not know how
it works, only that it does. We give it input and it gives us output, but how it
computes the output does not concern us.

We now need to show that if Fs is collision-resistant then so is Fe. Assume
the opposite, eg. that Fs is indeed collision-resistant but that Fe is not. There
then exists an adversary Al that can break the collision-resistance property for the
functions h ∈ Fe with more than a negligible probability. Assume Al can find a
collision pair (a, b) for hf,r ∈ Fe. Let a = a1‖a2‖ · · · ‖al and b = b1‖b2‖ · · · ‖bl
where both ai and bi are all blocks of length n bits where a and b are padded with
zeroes if needed. Then the computation of h(a) yields a sequence ya1 , . . . , y

a
l and

the computation of h(b) gives yb1, . . . , y
b
l . Since (a, b) is a collision, we have yal =

h(a) = h(b) = ybl . This implies that f(yal−1‖al) = f(ybl−1‖bl). If yal−1‖al 6=
ybl−1‖bl, this results in a collision for f . If not, let r be the smallest such value that
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yar+1 = ybr+1 but yar‖ar+1 6= ybr‖br+1. This value has to exist because (a, b) is a
collision so a 6= b which implies that ar and br differ at some point r. It is also
clear that (yar‖ar+1, y

b
r‖br+1) is then a collision for f .

Therefore, we can create an adversary As to break f ∈ Fs by having it choose
a random seed r, using Al to find a collision for hf,r and using that to find a
collision for f in the way described above. It is easy to see that if Al succeeds
with probability ε then so does the new adversary As, since each successfully
found collision for hf,r is translated to a collision for f . The running time of As
is equal to Al plus roughly the time it takes to run h up to 2l times. This means
that if Al is efficient, then so is As. The existence of such an efficient As is a
contradiction, since we assumed Fs to be collision resistant.

1.1.2 Breakdown of the Proof

The previous proof is a fairly typical example of a proof of security in modern
cryptology. We begin with two objects: a function or a family of functionsQ that
we assume we already have (Fs in the example) and a (family of) functions P that
we would like to construct (Fe). In abstract, the proof can be seen as consisting
of the following two steps:

1. Show how to construct an instance pq of P based on an instance q of Q.

2. Show that if there exists an adversary Ap against pq ∈ P then it can be con-
verted into an adversary Aq against the q that was used in the construction
of pq.

A large proportion of the security proofs in cryptology can be seen to follow
the exact same pattern.

To formalize the preceding abstract view, we will introduce the following def-
inition of a primitive given by Reingold et al. [37].

Definition 2. A primitive P is a pair (PF ,PR), where PF is a family of functions
f : {0, 1}∗ → {0, 1}∗, andPR is a relation over pairs (f,M) of a function f ∈ PF
and a Turing machine M . The set PF is required to contain at least one function
which is computable by a PTM.

A function f : {0, 1}∗ → {0, 1}∗ implements P or is an implementation of P
if f ∈ PF . An efficient implementation of P is an implementation of P which is
computable by a PTM. A machine A P-breaks f ∈ PF if (f,A) ∈ PR. A secure
implementation of P is an implementation of P such that no PTM P-breaks f .
The primitive P exists if there exists an efficient and secure implementation of
P . The primitive P exists relative to a given oracle O if there exists a secure
implementation f of P where f is computable by a POTM given access to O and
it is secure against adversaries who also have access to O.
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Essentially, PF specifies a set of functions that fill the syntactic criteria for
the given primitive (such as the set of all compressing functions for the example
in the previous section). The set PR, on the other hand, gives information about
whether the primitive is secure by showing which Turing machines break it and
which do not.

A few things in the preceding definition may seem counter-intuitive at first.
For instance, the notion of a primitive should also capture cryptographic objects
that have many parts. As an example, a symmetric cryptosystem consists of an
algorithm for key generation, an algorithm for encryption and an algorithm for
decryption which are three distinct functions. However, it is easy to see that this
can be modeled with just one function, if the first two bits of input specify which
of the three functionalities is currently to be used. In such a case, f(00|r) could
stand for the call to the key generator g(r), while f(01|k|x) and f(10|k|y) could
stand for encryption e(k, x) and decryption d(k, y) respectively.

A similar argument can be used when the security definition is worded in
terms of function families – assuming that they are finite, one can just use the
first few bits of randomness to select one fixed function from the function family.
For instance, if we are talking about a family of 2k compressing functions of
type f : {0, 1}m+n → {0, 1}m, it can be modeled as a single function f ′ :
{0, 1}k+m+n → {0, 1}m so that f ′(r‖·) defines a unique member of that family
for every r ∈ {0, 1}k.

Secondly, the use of PR instead of some well-defined probability-theoretic
predicate is there for both convenience and generality, as it allows for arbitrarily
complex security criterions while also providing for a fairly simple formalization.
For instance in the case of the previous example, (f,A) ∈ (Fs)R iff Pr[r ←
{0, 1}k, f ′ := f(r‖·), (m0,m1) ← A(f ′) : m0 6= m1, f

′(m0) = f ′(m1)] < ε as
we are definining when a given A breaks a given f .

This formalization for a primitive allows us to give a rigorous definition for a
fully black-box reduction (again, directly following [37]).

Definition 3. There exists a fully black-box reduction from a primitive P to a
primitive Q if there exist polynomial-time oracle machines G and S such that:

• Correctness: For every implementation f ∈ QF we have that Gf ∈ PF .

• Security: For every implementation f ∈ QF and every machine A, if A
P-breaks Gf then SA,f Q-breaks f .

Essentially, this is just what happened in the proof of Theorem 1, where G is
the construction of hr,f based on f while S should be taken as the construction of
As using f and Al. It is easy to verify that both parts of the proof are indeed poly-
time. Just as importantly, they make only oracle use of f and Al which means
they only call them and do not make any assumptions about precisely how they
work.
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1.1.3 Degrees of Black-boxness

The framework of a (fully) black-box reduction is fairly general as many of the
cryptographic security proofs can actually be seen to follow exactly the pattern
laid out above. However, there are a few rare instances in which additional as-
sumptions are made in either one or both parts of the proof and where black-box
oracle access is not enough. For that reason, Reingold et al. [37] described a whole
hierarchy of different reductions. We will now proceed to give a brief overview
of their taxonomy.

The first thing that can be weakened is the restriction that the security proof
be uniform, in the sense that it behave the same way for every adversary provided
for P . By allowing the security proof to be more dependent on the adversary con-
struction, we get the following definition for (weak1) semi black-box reductions.

Definition 4. There exists a weak semi black-box reduction from a primitive P to
a primitive Q if there exist polynomial-time oracle machines G such that:

• Correctness: For every implementation f ∈ QF we have that Gf ∈ PF .

• Security: For every implementation f ∈ QF , if there exists an POTM A so
that Af P-breaks Gf , then there exists a POTM Sf,A so that Sff,A Q-breaks
f .

Note that we assume Sff,A has oracle access to f because we assume Sf,A to
exist and to be poly-time for non poly-time implementations of f , in which case
f might not be fully embeddable into the circuit of Sf,A and the oracle access
becomes strictly neccessary.

This definition allows the security proof of the reduction to depend on the
adversary construction. However, the security proof is still black box in a sense, as
it is not allowed to change much relative to the implementation f of the underlying
primitive Q, i.e., it has to be the same for all f for which Af Q-breaks f . If we
lose even that restriction, we get the following.

Definition 5. There exists a weakly black-box reduction from a primitive P to a
primitive Q if there exist polynomial-time oracle machines G and S such that:

• Correctness: For every implementation f ∈ QF we have that Gf ∈ PF .

• Security: For every implementation f ∈ QF , if there exists a POTM A that
P-breaks Gf , then there exists a POTM SA,f such that Sff,A Q-breaks f .

However, there is another way in which we could weaken black-boxness, this
time on the construction side. Namely, we could allow the construction G for P
to actually vary depending on the underlying implementation f of Q. As this is
essentially achieved by switching quantifiers in a definition, it can be applied to

1See Chapter 5.
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generalize all of the above reduction types. Since the change is analogous in all
three cases, we will show it only for semi black-box reductions.

Definition 6. There exists a ∀∃-semi black-box reduction from a primitive P to
a primitive Q if for every implementation f ∈ QF there exists a POTM G such
that:

• Correctness: Gff ∈ PF .

• Security: If there exists an POTM A so that Af P-breaks Gff , then there

exists a POTM Sf,A so that Sff,A Q-breaks f .

These generalizations may seem somewhat contrived. However, there are a
number of known reductions in the literature that do indeed fail to fit into the fully
black box framework and such generalizations are thus useful in accommodating
for them as well.

The most widespread way a proof ceases to be fully black box is by using
a zero-knowledge proof on the correctness of the underlying primitive. In that
case, the construction, although guaranteed to exist, is highly dependent on two
additional assumptions. Firstly it is then clearly required that the construction of
G be allowed to depend on f as in ∀∃ variants of the above definitions. Secondly
and more prohibitively, however, they assume that f is computable by a poly-size
circuit in the real world so that they could use it in the zero-knoweldge proofs.
Such assumptions are somewhat harder to account for, the reasons for which will
become obvious in the next chapter.

However, there are proofs that are inherently non-black box in the security
proof as well. For instance, Buldas and Laur [5] give a reduction that is not fully
black-box in which the security reduction S assumes the availability of a polyno-
mial amount of extra distributional info about the outputs of A. The information
used is not, in general, computable in poly-time, marking their reduction as semi
black-box. Although such constructions are rare, they do exist and therefore it
makes sense to have a framework available that captures them as well.

There is one additional special case of black-box reductions that is worth
mentioning. Reductions are often concerned with just proving additional secu-
rity properties of a primitive based on security properties already known to hold.
These self-reductions just use a trivial construction in the first part of the proof
where Gf = f . However, no restrictions are set on the second half of the proof
that deals with security, and as such, the previous classification of different de-
grees of black-boxness is still relevant. This approach only makes sense in the
case where both P and Q have the same functional requirements, but there are
places for which this is indeed the case [10, 38].

We will now turn from describing the common cryptographic practice of using
reductions to a somewhat more specialized field of proving that no reductions can
exist. This is usually done via a methodology called Oracle Separation to which
the next chapter is devoted.
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CHAPTER 2

ORACLE SEPARATION METHODS

2.1 Oracle Separation

Reductions have played a central role in cryptography for nearly 40 years. Nev-
ertheless, a rigorous and general definition for a reduction was only given fairly
recently. The reason for that is actually quite simple: it seems that such a defini-
tion is needed only in the case where one is ruling out the existence of such reduc-
tions. This was indeed the setting in which the work of Reingold et al. [37] was
conducted. However, they were already building upon 15 years of previous work
in the field that started with the seminal paper by Impagliazzo and Rudich [27].

The main idea of [27] is borrowed from complexity theory (where it was pi-
oneered by Baker, Gill and Solovay [1]) and is essentially quite simple. One
starts by augmenting the computational setting with new "oracle" functionality –
for instance, extra computational power or access to an exponential-length "true"
shared randomness in the form of a random oracle – and then shows that in this
new world, certain things can be proven to either surely exist or to not exist at all.

To be precise, Impagliazzo and Rudich [27] proceed in the following way:
They assume a world where P = NP (which can be achieved by adding a
PSPACE oracle) and then additionally introduce a random oracle into the set-
ting. They then prove that in this setting, one can construct provably secure one-
way functions and one-way permutations but no secure key agreement is possible.

In short, their result is the following: in a computational world with an oracle
O that combines a random oracle with a PSPACE oracle, one-way permutations
exist but secure key agreement does not. This in itself might not seem like much.
However, it turns out that this is actually sufficient to rule out the existence of a
fully black-box reduction from key agreement to one-way permutations. Namely,
if such a reduction would exist, it would also exist relative to O as both G and S
that are required by Definition 3 should work equally well even when new oracle
functionality is added. However, this clearly cannot be the case, as relative to O,
the thing being constructed (key agreement) cannot exist while the thing it would
be constructed from (a one-way permutation) definitely does.
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Reingold et al. [37] formalize this result in a more general setting and in the
following way:

Definition 7. There exists a relativizing reduction from a primitive P to a primi-
tive Q , if for every oracle Π, if Q exists relative to Π then so does P .

Lemma 1. For any two primitives P and Q, if there exists a fully-black-box re-
duction from P to Q then there exists a relativizing reduction from P to Q as
well. Conversely, if no such relativizing reduction exists then no fully-black-box
reduction can exist either.

However, it turns out that one can usually rule out even stronger forms of
reductions if one is capable of embedding the required oracle O directly inside
an implementation f of Q such that O can be computed with oracle access to f
and vice versa. This technique was first used by Simon [39] but was later strongly
generalized by Reingold et al. [37].

Definition 8. We say that a primitiveQ allows embedding if for any f ′ ∈ Qf and
any oracle Π : {0, 1}∗ → {0, 1} there exists f ∈ Qf such that the following hold:

• There exists a POTM Gf
′,Π that computes f given oracle access to Π.

• There exists a POTM Pf that computes Π given oracle access to f .

• If there exists a polynomial-time oracle machine MΠ that Q-breaks f then
there exists a POTM (M′)Π that Q-breaks f ′.

As an example, one-way functions are embeddable, as you can construct f :
{0, 1}n → {0, 1}m by taking f = f ′ everywhere except on inputs where the first
n
2 input bits are all 0 in which case the 2n/2 such inputs are just used to encode
the responses to queries of Π. Such an embedding does not interfere with security
arguments, as it increases the success probability by only a negligible amount.

Theorem 2 (Reingold et al. 2004). Let P be any primitive andQ be any primitive
that allows embedding. Then there exists a relativizing reduction from P to Q if
and only if there exist a ∀∃-semi-black-box reduction from P to Q.

As most primitives seem to allow for embedding, their result can be used to
generalize most of the known separation results.

2.2 Historical Perspective

The result of Reingold et al. [37] given in the above represents the state of the art in
oracle separation methodologies in cryptology. We will now provide a historical
overview of how the subfield developed by giving an overview of four milestone
results.
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2.2.1 Rudich and Impagliazzo 1989

The first oracle separation result was proven by Rudich and Impagliazzo [27] in
1989. Their proof model, being the oldest known for establishing cryptographic
separations, is still in use today, probably because of its simplicity and lack of
bothersome technical details. Their proof methodology can be formalized as the
following meta-theorem.

Theorem 3 (Rudich, Impagliazzo 1989). Assume a world where P = NP that is
augmented by the addition of a random oracleO. If in such a world a primitiveQ
exists but a primitive P does not, then no fully black-box reduction can exist from
P to Q.

Their model makes two very simple computational assumptions – existence
of an exponential amount of public shared randomness (i.e., a random oracle)
and computational powers just above our current reach (NP problems being
tractable). Despite its simplicity, it has proven to be a fairly powerful proof model,
as it has seen continual use throughout the past two decades [27, 19, 20, 21].

It is also worth noting that ifQ is embeddable, the results in this model can be
generalized to also exclude ∀∃-semi black-box reductions by applying Theorem 2.
As such an embedding seems possible for most of the primitives, the proof model
is fairly strong in terms of the results that can be achieved by following it.

2.2.2 Simon 1998

The result of Simon [39] provided the second conceptual breakthrough in sep-
aration methodologies and paved way for most of the following results in the
field. The main contribution of that paper was to notice that one can actually
custom-design the oracle used for the separation to provide exactly the function-
ality needed and nothing more.

To be precise, the author constructed an oracle f that was itself an instance
of Q (in his case, a one-way permutation) but that also had embedded into it an
adversary for every implementation of P (a collision-finder for a hash function
family with a specified circuit). As f itself was proven to be a secure instance of
Q, but would clearly break any instance of P , it would be clear that no black-box
reduction could exist from P to Q.

Essentially, the proof methodology of the paper was exactly the same as for-
malized in Theorem 2. However, the original paper of Simon [39] concerns just
the one separation without giving any thought to the more general meta-level im-
plications. The fully general result was proven only 6 years later by Reingold et
al. [37].
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2.2.3 Reingold, Trevisan and Vadhan 2004

This paper presented the first fully general framework for separation results by
giving formal definitions for primitives and providing for a full hierarchy of re-
ductions of varying degrees of black-boxness. As most of our previous exposition
is based directly on their results, we will refrain from discussing them further here.

2.2.4 Hsiao and Reyzin 2004

This paper [25] took a step forward in a yet another direction. Noting that the
Rudich-Impagliazzo model can be used to obtain stronger results than originally
intended, Hsiao and Reyzin sought to find a simpler proof model which would still
be sufficient for ruling out fully black-box reductions. They determined that one
can actually introduce an extra oracle into the equation, considerably simplifying
the framework for proving separation results.

Theorem 4 (Hsiao and Reyzin 2004). If there are two oracles A and f such that

• There is a poly-time oracle machine Qf that implements Q.

• For every poly-time oracle machine Pf that implements P , there is a poly-
time oracle machine Sf,A that breaks Pf .

• There is no poly-time oracle machine T such that Tf,A breaks Qf .

then there exist no fully black-box reductions from P to Q.

This allowed for conceptual simplification as the oracle could freely be di-
vided into two parts – f that helps to realize Q and A that directly deals with
breaking any instance of P .

That might not seem like much in the first glance. However, this should be put
into context by noting that most of the complexity in Simon [39] arose because
the universal adversary oracle there actually had to be able to break constructions
that had access to that same adversary oracle (i.e., constructions of the form Pf,A

instead of just Pf ). Avoiding such self-referencing makes proofs considerably
easier both to write and to follow and for that reason this model has been used by
numerous subsequent authors [14, 3, 7, 28], this in spite of the fact that it only
rules out fully black-box reductions instead of semi black-box reductions that can
be ruled out with the previously proposed methods.

2.3 Proofs for Lower Bounds

The method of oracle separation has proven quite fruitful in exploring the limits
of black-box reductions by showing that there are numerous cases in which such a
reduction between two primitives is clearly impossible. Nevertheless, we do have
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reductions for many important cases and it would also be very interesting to study
the limits of reductions that do actually exist. Two most notable publications from
that direction of research are those of by Kim, Simon and Tetali [29] and Gennaro
and Trevisan [18].

2.3.1 Kim, Simon and Tetali 1999

A big step in that direction was taken by Kim, Simon and Tetali [29] who noticed
that although a reduction (due to Naor and Yung [34]) exists from one-way per-
mutations to universal one-way hash functions, it is so inefficient as to be nearly
useless in practice. They showed that some of that inefficiency is inherently un-
avoidable by proving that any fully black-box reduction for an ε-compressing uni-
versal one-way hash function would need to call the underlying permutation a
number of times proportional to the square root of the security parameter. This
was done in a similar fashion to [39] but with the added assumption that the con-
struction makes less than Ω(

√
n/ log(n)) oracle queries. As all the reductions that

make less queries are ruled out, the result does indeed imply that more queries are
needed for a black-box reduction to be feasible, hence providing a lower bound
on the number of oracle queries.

2.3.2 Gennaro and Trevisan 2000

The bound of [29] was strengthened to linear by Gennaro and Trevisan [18] which
could be interpreted as proving the optimality of Naor-Yung construction (up to
a constant factor). However, their result was interesting for another reason as
well. Namely, all the previous separation results hold only in the uniform model
of computation. This is because nearly all of them make essential use of oracle
families, where an oracle is chosen randomly, instead of starting off with one fixed
oracle. However, to prove the separation results, one needs to fix a suitable oracle
and this is usually done via non-constructive argumentation. For that approach to
work, one has to assume a countable number of adversary constructions, which is
the case in the uniform model but ceases to be true in the non-uniform case.

Gennaro and Trevisan took a different approach. They first proved that un-
der appropriate random oracles, one-way functions and permutations exist that
are secure even in the non-uniform model (thus replicating the result of Impagli-
azzo [26]). They then proceeded to show that the existence of UOWHF that makes
less than a linear number of oracle calls (i.e., calls to one-way permutation) would
automatically imply the existence of a UOWHF without any assumptions, which
would, in turn, imply P 6= NP. This means that constructing such a reduction
is at the very least beyond the current scope of knowledge1. Their argumentation
cleverly avoids the need to pick one exact oracle for the separation and as such

1Although, technically, the proof can be made unconditional by giving the proof relative to a
PSPACE-oracle in which case P = NP
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will also work even when non-uniform adversaries are concerned. Their approach
can be formalized as follows.

Theorem 5 (Gennaro and Trevisan 2000). Assume a non-uniform computational
world where P = NP and where there is an oracle f that implementsQ securely
even in the non-uniform model. If P does not exist in such a world, no (potentially
non-uniform) semi black-box reduction from P to Q is possible (even relative to
non-uniform adversaries).

This presents a significant step forward, as most of the results that prove the
existence of a reduction are shown in the non-uniform model, i.e., they assume
security against non-uniform adversaries and show that that is preserved in the re-
duction. When a separation exists in the uniform model only, it still leaves room
for the case where the underlying primitive is insecure against non-uniform ad-
versaries. In that case, however, the separation result becomes nearly meaningless
in the non-uniform model since it is essentially just showing that we cannot give
a general construction for a secure instance of P from an insecure instance ofQ.

Formally, to fix that problem, one would just need to show that the underlying
primitives are secure under non-uniform adversaries, which is somewhat easier
than doing the whole proof in the non-uniform model. Still, the work of Gen-
naro and Trevisan [18] can be seen as having pointed out a fairly major technical
shortcoming in the previous proofs. This has been acknowledged implicitly by
other authors [15, 16, 17] who have since used the proof model of [18] with the
justification that it can deal with non-uniform reductions.
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CHAPTER 3

HASH-TREE BASED TIME-STAMPING

Most of the author’s original work is concerned with oracle separation methods in
general. However, some of the results do have practical applications to the field of
time-stamping schemes. As such, it makes sense to give a brief introduction into
that topic as well.

3.1 Model of Time-stamping

The underlying problem for time-stamping is fairly simple. Imagine an inventor
who has just invented something that will change the world and give him a large
profit margin whilst doing it. However, he fears that someone else may also come
up with the same thing in the near future or, even worse, steal the idea and be able
to patent it before he himself does. The inventor is therefore interested in binding
the document containing the invention with the current time and date so that he
would later be able to prove that he has indeed had that document at least since
that time.

First of all, it is worth noting that conventional means of achieving this have
been in place for hundreds of years already. Firstly – patent offices themselves
function in that role, as once they accept something for investigation, they mark
down the time they received the documents. If someone later tries to file for a
patent for the same idea under a different name, he will be turned down. For
documents that do not directly contain inventions, notaries can serve the same
role, as in most countries, one of the main functions of notaries is to vouch for the
validity of documents and agreements.

However, both of these options have numerous flaws. Firstly, both patents and
notary services are fairly expensive, which means that a poor inventor might not
be able to defend himself. Secondly, both require you to reveal the document that
you are time-stamping, which one might be somewhat reluctant to do in certain
cases. Thirdly and possibly most importantly, they are very prone to attack by a
corrupted patent clerk or notary, who can later just reformat the same document,
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write an earlier date and then put his friends name under it instead of the real
inventors.

The first two of these problems can be mitigated by having a cheap trusted
authority that is willing to time-stamp closed envelopes. This is usually available
in most countries under the guise of the national postal service. Indeed, sending a
document to yourself in a sealed envelope and then keeping it sealed til the date
of creation needed to be proved (like in court) was often used to settle patent and
copyright disputes in earlier times1. However, this approach does not solve the
third problem, as a postal clerk can still fairly easily use the postal stamp that is a
few days old.

3.2 Scheme of Haber and Stornetta

In a modern world, where most documents are stored on digital media rather than
paper and where a larger company can easily have thousands of documents created
per minute, the preceding solutions are clearly inadequate if one seeks to have
everything stamped. As such, a large-scale digital solution is clearly called for.
The main ideas for such a scheme were laid out by Haber and Stornetta [23].

Their main idea was to compute a hash value of the document and then com-
bine all these hash values for a whole day into a single (short) bitstring, which
can then be published in a daily newspaper with large circulation on the next day.
As recalling all the newspapers of any given day is infeasible (except in a truly
Orwellian society), this will provide for very strong dating verification. Using
hash functions also gives guarantees on privacy. What is then left is only the third
problem, i.e., the worry that a malicious time-stamping authority might be able to
back-date documents of his choosing.

The scheme therefore tries to make it hard for the authority to later certify
time-stamps on documents that he did not actually use while creating the value
that was published in the paper. This is done by using a hash tree to create the
certificates for time-stamped documents.

The scheme uses two distinct hash functions – hc : {0, 1}∗ → {0, 1}k to
compute the initial hash values of the document (and which can be done by the
clients themselves to ensure privacy) and hs : {0, 1}2k → {0, 1}k which is used
by the server to combine the client hash values into the published value. All the
client hash values x1, . . . , xn ∈ {0, 1}k are hashed together in a tree structure
(called hash or Merkle tree), yielding one final k-bit hash value r ∈ {0, 1}k that is
then published. Each client is sent a certificate c = (x, n, z) where x is the value
being certified, n = n1n2 . . . nl, ni ∈ {0, 1} describes the path from x down to
the root and z = (z1, . . . , zl) ∈ ({0, 1}k)l gives the information to verify that
path.

1At some point, US court system stopped accepting postal stamps as proof of timing and since
then, the practice has gradually declined.
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Figure 3.1: A larger tree with a path marked from x4.

As an example, we describe the certificate of x4 in fig. 3.1. The sequence n
encodes the structure of the path starting from the original value x4 downwards
while the sequence z gives the other inputs used alongside x4 and values cal-
culated from that. As x4 is the left input for the first hs invocation on the path,
n1 = 1 and we take z1 to be the other half of the input for the hs invocation (which
in this case is hs(x5, x6)). We now move down to the next invocation on the path
and see that the output y2 of the previous call is now the right input of the new hs
invocation. We thus set n2 = 0 to signify that y2 is the right input and then take
z2 to be the second input into this box (which in this case is hs(x1, hs(x2, x3))).
The third and final element on the path has the previous hs calls output y3 as the
left input again so we set n3 = 1 and take z3 to be the other input again. Since
there are no more hs invocations, the certificate for x4 for the tree given in fig. 3.1
is c = (x4, 101, (z1, z2, z3)).

Essentially, the certificate just specifies a hash chain from the certified value
x down to the supposed root value r, providing information both about its shape
n and the other values z1, . . . , zl that are used in the hashing. The verification
algorithm V just computes the end result of the hash chain. One can then verify
the validity by comparing the output of V with the published public root value r.

This motivates the following general definition of a time-stamping scheme.

Definition 9. A time-stamping scheme is a triple T = (Com,Cert,Ver) of effi-
cient algorithms, where:

• Com is a commitment algorithm which, on input a setX of requests, outputs
a commitment r = Com(X ).
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• Cert is a certificate generation algorithm which, on input a set X and an
element x ∈ X , generates a certificate c = Cert(x,X ).

• Ver is a verification algorithm which, on input a request x, a certificate c
and a commitment r, outputs 1 or 0, depending on whether x is a member
of X (the set that corresponds to the commitment r). It is assumed that for
every set X of requests and every member-request x ∈ X the following
correctness condition holds:

Ver(x,Cert(x,X ),Com(X )) = 1 . (3.1)

In the concrete example of tree-based time-stamping, Com outputs the root r
of the hash tree, Cert is the procedure of creating z, n, and Ver just checks whether
V(x, n, z) = r.

3.2.1 Security Definitions

As mentioned before, the main security concern for such a scheme is for a cheat-
ing time-stamping authority who should not be able to back-date any documents.
Haber and Stornetta [22] originally defined security in just such a way – they con-
sidered their scheme broken if the authority could produce a time-stamp for any
document of his choosing that he did not directly use in the hash tree construction.

However, Buldas and Saarepera [10] showed that such a security criterion was
obviously flawed as a trivial attack existed against it: it sufficed for the adversary
to choose two documents, d1, d2, generate their hash values x1 = hc(d1), x2 =
hc(d2) and instead of using these values directly in the hash tree construction just
perform the first step in private by computing x = hs(x1, x2) and then have the
system time-stamp that value x. He now has two distinct time-stamped documents
while officially having only queried one stamp.

This flaw is easy to fix by just bounding the shape of the trees by fixing the
depth of all the leaves. However, it should be fairly easy to convince oneself
that the previous "attack" micht actually a fairly legitimate and perhaps even de-
sired behavior, as it allows the clients to keep secret how many documents they
are having stamped. In reality, it does not constitute a real attack against the com-
mon understanding of time-stamping security, as it allows one to "back-date" only
documents that actually did exist at the time they are back-dated to. Buldas and
Saarepera [10] thus concluded that it is only the security definition that is flawed
and set out to give a definition more fitting for practical purposes by only consid-
ering back-dating of "novel" documents.

Novelty is a somewhat elusive concept, however. In [10] they settled for an
entropy-based definition where novel was taken to mean a document that is cho-
sen from any distribution with high-enough max-entropy. To prove security for
such a case, they needed to assume a fairly exotic security criterion called chain-
resistance from the hash function hs.
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Definition 10. A hash function h : {0, 1}2k → {0, 1}k is (t, ε)-chain-resistant
(relative to a distributionDk on {0, 1}k) if for every t-time adversary A = (A1,A2)

Pr[(r, a)← A1, x← Dk, (n, z)← A2(x, a) : V(x, n, z) = r] < ε , (3.2)

where x, n, z, r are as in the example above.

Unless specified otherwise, the distribution D is chosen to be the uniform
distribution over all the possible bitstrings of length k.

This notion of chain-resistance is fairly hard to test for, however. As such, one
would be very interested in constructing functions secure in this sense from some
more sensible security assumptions. Buldas and Saarepera [10] showed that one
cannot use black-box methods to show that a collision-resistant function is secure
in this sense, but they still left open the question of whether a function is secure
in this sense could possibly be constructed based on a collision-resistant function,
perhaps with just some minor modifications.

As mentioned before, such a security condition is only required in the case
where the tree shape is not fixed, i.e., if certificates of any shape are accepted.
It was shown by Buldas and Saarepera [10] that if one restricts the scheme so
that only a polynomially bounded number of different valid hash chain shapes are
considered valid, it turns out that collision-resistance of hs is enough to achieve
security. Limiting the certificate space is actually fairly easy to do (by, for in-
stance, having the verification algorithm check that the hash chain is of exactly
the prescribed length) and the security is then much easier to prove based on
standard assumptions. For that reason, such bounded time-stamping schemes
are the ones actually used in practical implementations (such as GuardTime -
www.guardtime.com).

31





CHAPTER 4

POSSIBILITY OF REDUCING
CHAIN-RESISTANCE TO

COLLISION-RESISTANCE

In this chapter we cover the work that was presented by the author and his super-
visor in the paper "Can We Construct Unbounded Time-Stamping Schemes from
Collision-Free Hash Functions?" [7].

The research direction originally proposed for this thesis was to investigate
the possibility of constructing chain-resistant hash functions based on collision-
resistant ones. Since Buldas and Saarepera [10], it has been known that no black-
box self-reduction can exist for that, i.e., that no hash function can be proven to be
chain-resistant based purely on the assumption that it is collision-resistant. How-
ever, that still left open the possibility of constructing chain-resistant functions
from collision-resistant ones. Our aim was to investigate the feasibility of such an
approach.

As there seemed to be no obvious ways of giving such a construction, we con-
centrated on trying to prove that such a black-box reduction is actually impossible.
We attempted a fairly straightforward approach based on the framework of Hsiao
and Reyzin [25] where we used a random oracle to implement the underlying
collision resistant function h : {0, 1}m → {0, 1}n. Constructing the adversary
part of the oracle turned out to be somewhat tricky, however. To be precise, we
needed an oracle O that would be able to break any construction Hh with respect
to the chain-resistance property, which meant it had to be able to provide time-
stamping certificates to at least a (reverse) polynomial fraction of all the possible
inputs for Hh. As a collision can easily be extracted from two conflicting chains
(i.e., two chains that result in the same root value but cannot be part of the same
tree), the most obvious candidate for a chain-resistance breaking oracle would be
O = (O1,O2) where O1(H) just returns the root value of a large (exponential-
sized) hash tree for Hh which then allows O2(x) to honestly deal out a certificate
for x, assuming x was indeed used as input at some point inside the tree.
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However, this approach has very clear limitations. For instance, it can be
shown that if the full Merkle tree where all the k-bit inputs are provided is con-
structed by the oracle, then H can be built in such a way as to guarantee that a root
value contains a collision for h. The way to achieve this is actually quite simple.
The idea is to construct Hh : {0, 1}4m → {0, 1}2m so that each input to H is a
pair of inputs for h. H just tests, whether either of the pairs is a collision for h
and if that is the case, passes that pair downwards. Since we are dealing with a
full tree, each 2m bit input is presented, which means that a collision is found in
at least one of the leaves. As a collision always propagates down to the root, this
guarantees that the root value will indeed yield the desired result.

However, there is no requirement to generate a full tree, as it is completely
acceptable for the oracle to break H on a fraction of the inputs, as long as the
fraction is non-negligible. However, one would still need to be able to show that
the partial adversary is not malleable to similar exploitation.

To prove a full separation result, one would need to show that no adversary
construction for collision-resistance could benefit from the chain-resistance ad-
versary oracle. Exploring the limits of Hsiao and Reyzin [25], it turned out that
it is actually sufficient if we can construct such an unexploitable oracle once the
adversary has already been specified.

Theorem 6. If for all POTM pairs R = (G) there exist AR and fR such that

(a) fR implements Q.

(b) There is a polynomial-time oracle machine DAR,fR that breaks GfR .

(c) There is no polynomial-time oracle machine B such that BAR,fR breaks fR,

then there exist no black-box reductions from P to Q.

This meant that to prove a separation result, one would need to be able to show
that for each adversary construction, an oracle can be chosen so that no adversary
can be constructed using it.

We assume the adversary makes just one O1 query, i.e., sees the root of only
one large hash tree. This is actually a completely reasonable assumption, as for
fully black box reductions, we can assume a fixed construction H = Ph for Hh

and that is the only hash function to which we need to answer the O1 query.
We first determined that if only a polynomial fraction of inputs is to be pre-

sented, one can always construct an oracle so that the preceding method of ex-
ploitation that just checked whether input values produced a collision would not
work. Indeed, we showed an even more general result, namely that any con-
struction of H that made all of its h-dependent decisions based solely on collision
queries of type h(x1) = h(x2) will fail to produce a collision. This was done
simply by showing that we can always construct a tree in such a way as to avoid
showing any collisions inside the constructed tree.
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Theorem 7. Assume that H : {0, 1}2k → {0, 1}k is a POTM construction with an
oracle ch for h where h : {0, 1}n → {0, 1}m is chosen uniformly from a family
of hash functions F . We also assume that for uniformly chosen (x, y), x 6= y, the
probability that it forms a collision is 2−ω(log(n)). Then the probability of being
able to construct a hash tree of size at least 2k

p(n) for H that doesn’t show any
collisions of h is overwhelming.

We then tried to investigate, what other types of queries about h would still al-
low us to prove the same result. The preceding result was fairly easy to generalize
to the case where the oracle would also answer questions of the form h(x) = y for
given x and y. Using a clever trick, it was also possible to show, that comparison
queries of the form h(x1) ≥ h(x2) for given x1, x2 can also be dealt with. In
total, we were able to show that if H only uses these types of information about h,
then the a suitable choice of oracle is guaranteed to exist.

We will now discuss the implications of the results. First thing we have to note
is that we did not rule out the existence of a black-box reduction. However, we
did show that if such a reduction were to exist, it would have to be pretty strange.
For instance, it would either have to use two separate constructions H and H′ in its
security proof, or, if it made due with just one, the security proof would have to
make essential use of the bit representation of the output of h – as any adversaries
that just used ordering information or input-output pair verification are ruled out
by our results. In this sense, our result can be seen as somewhat analogous to
the impossibility results known for the "generic model of groups" which too only
assume limited access to the actual implementation. It is the view of the author
that these results can be taken as strong evidence against the existence of a general
black-box reduction.
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CHAPTER 5

ORACLE SEPARATION IN THE
NON-UNIFORM COMPUTATIONAL

MODEL

In this chapter we will try to give a brief overview of the work of the author of
this thesis and his co-authors that was presented in "Oracle Separation in the Non-
Uniform Model" [6] and "Black-Box Separations and their Adaptability to the
Non-Uniform Model" [9].

As noted previously, most of the separation results that have been proven to
date only work in the uniform model of computation. We were interested in rem-
edying the situation by trying to strengthen the separations that have already been
shown in the uniform model into the non-uniform model.

Throughout this whole chapter, we will part with our normal conventions and
assume that Turing machines are non-uniform and not randomized, unless other-
wise stated.

The main reason why most proofs of separation results fail in the non-uniform
model is actually quite simple. Separation oracles that are used are generally not
deterministic but rather chosen from a large (usually infinite) family of different
possibilities. However, for the separation theorems to hold, one fixed oracle needs
to be demonstrated. To do that, the authors usually resort to a technique that is best
called "Oracle extraction" where the existence of a fixed oracle that is suitable for
the separation is derived using averaging and counting arguments over the sets of
all the possible (adversary) constructions. Due to the inherent use of countability
in these arguments, this step was irredeemable in the non-uniform model and was
replaced with a probability-theoretic argument that worked directly with oracle
families rather than one fixed oracle.

However, there were many technical problems that needed to be overcome
in order to formalize such an approach. First of all, the definition of a primitive
given by Reingold et al. [37] had to be revised to account for adversaries that are
successful only with some probability. It also seemed to make sense to draw a
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clear distinction between deterministic and randomized primitives. This resulted
in the following two definitions.

Definition 11. A deterministic primitiveP is a set of functions of type f : {0, 1}∗ →
{0, 1}∗. Every primitive has an advantage function ADVPk (·, ·), which given as
input the security parameter k ∈ N, an instance f of P , and an oracle Turing
machine AO (an adversary) returns a real number ADVPk (f,AO) ∈ [0, 1] (the
advantage of AO). The function ADVPk (f, ·) is extended to probabilistic Turing
machines by taking the average over their randomness strings1. We say that AO

breaks an instance f of P if ADVPk (f,AO) 6= k−ω(1). If for a fixed oracle O no
probabilistic poly-time oracle Turing machine AO breaks f then f is said to be
secure relative to O.

Definition 12. Let P be a deterministic primitive. Then the corresponding ran-
domized primitive Pr is the set Pr = {f : Ω × {0, 1}∗ → {0, 1}∗|∀r ∈ Ω :

f(r, ·) ∈ P} and ADVPr
k (f, ·) = E

r∈Ω

[
ADVPr

k (f(r, ·), ·)
]
, where Ω is a random-

ness space.

Both of these definitions are actually fairly natural extensions of those pro-
vided in [37]. However, they allow for a more precise handling of reductions by
providing convenient means of averaging the success probabilities of adversaries
over different oracles.

Drawing the distinction between deterministic and randomized primitives is
actually a conceptual simplification suggested by one of the co-authors. Essen-
tially, since no computability assumptions are made in the definitions, a family of
oracles all of which implement Q can be seen as just a single randomized imple-
mentation where each specific oracle corresponds to a randomness string. Most of
the separation results first essentially prove that no reduction can exist from such
a (potentially randomized) instance of P to such a randomized instance of Q and
then perform the oracle extraction step, which essentially amounts to showing that
the non-existence of a reduction in the randomized case implies the non-existence
of a reduction in the deterministic case as well.

The key intuition behind the main result of [6] is to prove the same impli-
cation, but with more direct probabilistic argumentation that would avoid oracle
extraction. However, there seem to be inherent limitations on when that can be ac-
complished. The notion of semi-black-box reduction was first introduced in [19].
It was later slightly redefined in a somewhat weaker way in [37]. It turns out
that a distinction between a stronger and a weaker definition is actually crucial, as
the boundary beyond which generic strengthening to non-uniform model becomes
impossible seems to occur just on the border of the following (stricter) definition
and the Definition 4 given in Chapter 1.

1Each fixed randomness string gives a deterministic poly-time Turing machine for which
ADVP() is already defined.
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Definition 13. There exists a strong semi black-box reduction from a primitive P
to a primitive Q if there exists a polynomial-time oracle machine G such that:

• Correctness: For every implementation f ∈ Qf we have that Gf ∈ Pf .

• Security: For all POTM A there exists a POTM SA so that for every imple-
mentation f ∈ Qf , if Af P-breaks Gf , then SfA Q-breaks f .

The only difference between the two notions is that in the weaker, more gen-
eral case of Definition 4, the construction SA is allowed to depend on both A and
f , while in the stricter case, it has to be the same for all f .

When using the whole family of oracles for separation instead of just a single
fixed oracle, one more complication arises. For the averaging argument to work,
some uniformity needs to be assumed from the security reductions. This can be
formalized by the following notion.

Definition 14. We say that a reduction from P to Q is poly-preserving if the cor-
responding mapping A 7→ B in the security guarantee (S) decreases the advantage
by at most a polynomial amount, i.e., exists c ≥ 1 such that

ADVQk (f,B) ≥
[
ADVPk (Pf ,A)

]c
.

This finally allows us to state the separation theorem for the non-uniform
model that deals directly with oracle families.

Theorem 8. If we consider only poly-preserving reductions, the existence of fully
black-box or strong semi black-box reductions for randomized primitives (in the
non-uniform world) implies the corresponding existence results for deterministic
primitives and vice versa.

The same line of research is continued in the second paper [9], which takes a
critical look at the previous work on the different reduction types and the methods
used to rule them out. Firstly, it turned out that the problem statement of [6]
had been somewhat misguided. Namely, it turned out that the standard oracle
extraction techniques are actually sufficient to rule out non-uniform separations
for fully and strong semi black-box reductions in the randomized case, allowing us
to drop the poly-preserving assumption for the cases covered in [6]. Nevertheless,
it was possible to salvage the averaging-based separation approach to give realistic
separation conditions for the weaker reduction types.

This systematic approach results in a unifying framework that extends the
taxonomy of Reingold et al. [37], combining their results with those of Hsiao
and Reyzin [25] and Buldas et al. [6]. The reductions form a linear hierarchy
with Fully Black-box reductions being the strongest and Variable Semi Black-box
reductions being the weakest. This means that if a separation result is proven that
rules out one of the weaker types of separations, it trivially implies that none of
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the stronger types of reductions exist either. For each reduction type, there are
two ways to approach the separation – either by oracle extraction or by averaging
arguments. The criterions derived by averaging-based methods are usually weaker
and easier to apply, but they only work for poly-preserving reductions2. The new
taxonomy is summarized in Table 5.1.

As is evident from Table 5.1, separations based on oracle extraction will need a
countability argument if they are to go any lower than Strong Semi Black-box, and
thus will only work for the non-uniform model from that point onward. However,
it is worth noting that averaging-based techniques might still apply, provided that
strong enough bounds can be proven for non-uniform constructions Sfϕ(f) that
have oracle-dependent advice strings ϕ(f).

Such oracle-dependent advice has only recently come into consideration. Un-
ruh [40] provided a general method whereby most results proven in the standard
Random Oracle Model can be transformed to also hold in the model where adver-
saries have access to a polynomial-length oracle-dependent advice. As separation
oracles are rarely pure random oracles, this result on its own is of only limited
use.

However, as conjectured by Unruh [40], a similar result can be proven for
arbitrary oracles. To be precise, we prove the following.

Theorem 9. Let F be any distribution of Oracles and let f ← F. We say that f
is consistent with a matching M = {x1 → y1, . . . , xm → ym} if f(xi) = yi for
all i ∈ {1, 2, . . . ,m}. Let ϕ(f) be an oracle function with an output of length
p. Then there is an oracle function S such that Sf is a matching of length n and
the following holds: For any probabilistic oracle Turing machine A that makes at
most q queries to its oracle, ∆(AF(ϕ(F));AF/S(ϕ(F))) ≤

√
pq
2m , where F/S is

an oracle sampled according to F conditioned only on being consistent with SF

(which is also a random variable).

This theorem allows us to generalize the separation result of Simon [39] to
hold in the Weak Semi Black-box sense and in the non-uniform model, thus show-
ing that the averaging-based approach does indeed have benefits over the standard
extraction-based methods.

2So the Reduction Condition given in the table is somewhat different for the Averaging-based
approach, but the quantifier order remains the same.
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CHAPTER 6

LOWER BOUNDING SECURITY LOSS

This chapter describes the work presented by the author of this thesis and his
co-authors in "Efficiency bounds for adversary constructions in black-box reduc-
tions" and "Optimally tight security proofs for hash-then-publish time-stamping"
[4, 8] which deals mainly with the efficiency of security proofs.

In the previous chapter, we introduced the assumption of poly-preservedness
to the adversarial constructions to be able to show stronger results in the non-
uniform model. It requires that the advantage of the adversary construction for
P be a polynomial of the advantage of the adversary for Q that is used in the
reduction, i.e., that the success probability does not drop too much within the
adversary construction.

We note that at first thought, it would seem that this constraint could be used
to show bounds on reduction efficiency. If one managed to prove that reductions
for which the advantage drops by less than a power of c cannot exist under certain
oracles, he would be able to lower bound the reduction efficiency of the secu-
rity proof in the sense of success probability. Quick reflection reveals that this
might not be the most sensible thing to do, however, as success probability of
adversaries can usually be strongly amplified by just running them multiple times
in succession and, as such, meaningful bounds in that respect would seem quite
improbable.

However, this problem could fairly easily be remedied by also taking into
account the running-time of the adversaries. Instead of considering purely the ad-
vantage, it makes more sense to consider the time-success ratio of the adversary,
i.e., the expected running-time TIMEk(A, f) of A on breaking f divided by its
success probability ADVk(A, f). This measure is better suited for bounding as
it essentially reflects the amount of time (on average) it takes to break the prim-
itive f by repeatedly calling A until it finally succeeds. This measure is robust
against the generic success amplification technique and as such, one would hope
that meaningful bounds in terms of that measure should be feasible. To give the
definition further generality, we actually allow the construction access to some ad-
ditional (non-black box) information - namely a bound on the success probability
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of the underlying adversary A for P used in the security reduction. This results
in the following definition for power-c success-specific reductions which can be
seen as a generalization of security-preserving reductions as defined in Luby [32].

Definition 15. We say that there exists a power c-secure success-specific black-
box reduction from primitive P to primitive Q iff there is a poly-time oracle ma-
chine P and a polynomial p such that for every δ > 0 there is a poly-time oracle
machine Sδ so that for all A such that ADVk(A,P

f ) ≥ δ the following conditions
hold:

1. For any function f that implements Q, the function Pf implements P .

2. For any pair (A, f) of functions we have

TIMEk(S
A,f
δ , f)

ADVk(S
A,f
δ , f)

≤ p(k) ·
[

TIMEk(A,P
f )

ADVk(A,Pf )

]c
.

for sufficiently large values of k.

We note that the existence of a power-c reduction implies the existence of a
poly-preserving reduction. As only fully black-box reductions are considered1,
all the results henceforth mentioned can easily be seen to hold in the non-uniform
model by following the methodology outlined in the previous chapter.

The main result of the first paper [4] is the following meta-theorem for proving
lower bounds on c for power-c reductions.

Theorem 10. If for every pair (S,P) of poly-time oracle machines and for every
δ > 0 there is a probability distribution (A, f)← ΩS,P,δ so that:

• f implements Q and Pf implements P for every (A, f) in the range of
ΩS,P,δ;

• ADVk(A,P
f ) = δ and TIMEk(A,P

f ) = O(kc0) for some c0 for all (A, f)
in the range of ΩS,P,δ;

• for every polynomial q(k) there exists δ(k) such that limk→∞ δ(k) = 0
and:

lim
k→∞

δ(k)c

q(k)
·

E
(A,f)←ΩS,P,δ(k)

[
TIMEk(S

A,f , f)
]

E
(A,f)←ΩS,P,δ(k)

[ADVk(SA,f , f)]
> 1 ,

then there are no power c-secure success-specific black-box reductions of P toQ.

1Formally, that is not quite correct, due to the increased generality from success-specificity.
However, this is straightforward to account for in the argumentation.
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The theorem may seem overly technical at the first glance. A simpler state-
ment was initially considered, but sadly it lacked the generality that was required
to prove actual lower bounds. Most of the seeming complexity (such as the intro-
duction of δ) in the theorem statement is there because of practical considerations
so that the theorem would actually allow us to prove non-trivial lower bounds.

Practical considerations dictate another restriction as well. Namely, it is hard
to fulfill the assumptions of Theorem 10 without assuming any sort of time-
uniformity from the security reduction. As such, we formulated a fairly mild
notion of it called oracle-independence, which just requires the running time to
fluctuate with a sub-exponential magnitude relative to different input adversaries.

Definition 16. We say that the reduction is oracle-independent if the running time
TIMEk(S

A,f
δ , f) of S is between m(k, δ) and u(k)m(k, δ) for all oracles Ak that

achieve an advantage of δ against Pf where m is polynomial and u(k) = 2o(k)

and does not depend on δ.

To show that these techniques can indeed be used, we demonstrated two cases.
Firstly, as a simple illustrative example, we showed the impossibility of a sub-
linear self-reduction from one-wayness to collision-resistance, thus proving the
optimality of the known folklore reduction in which the collision-resistance adver-
sary simply randmly chooses an input x and then runs the one-wayness adversary
to invert h(x).

Of more interest is the second result that was proved, which demonstrated
the impossibility of power-c reductions from division-resistance to collision resis-
tance for c < 1.5.

Definition 17. A cryptographic 2-1 hash function h = {hk} is said to be division-
resistant if for every poly-time adversary A = (A1,A2) the following probability

Pr
[
r←{0, 1}p(k), y←A1(r), x1←{0, 1}k, x2←A2(y, x1):hk(r, x1‖x2)=y

]

is negligible.

Theorem 11. Let h = {hk} be a cryptographic 2-1 hash function that is collision-
resistant. Then for c < 1.5 there exist no power c-secure success-specific oracle-
independent (possibly non-uniform) black-box reductions SA,f showing that h is
also division-resistant.

This result is important for two reasons. Firstly, it shows the applicability of
this approach to even fairly non-trivial cases, where the lower bound for c is not
1 nor even 2. Secondly, the result actually has far-reaching practical implications
for tree-based time-stamping schemes, which were discussed in [8].

Division-resistance (which is basically security against random chosen prefix
collisions) in itself is a fairly non-standard security requirement for a hash func-
tion. However, it is essentially the bare minimum that is required to construct
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a secure bounded hash tree based time-stamping scheme, since any adversary
that can break division-resistance can (nearly trivially) be converted to one that
breaks bounded hash tree based time-stamping schemes2. This means that there
is an inherent lower bound of c = 1.5 for security reductions that prove secu-
rity of bounded tree-based time-stamping schemes based purely on the collision-
resistance assumption of the used hash function.

The next question any theoretician would ask at this point is whether the lower
bound is tight, i.e., whether a power-1.5 reduction actually exists. This question
is answered affirmatively in [8].

It is fairly easy to verify that the bounded hash-tree based time-stamping
scheme described in Chapter 3 easily fits into this framework.

The security criterion for time-stamping that is presented in this paper is some-
what different from the one that can be derived directly from Definition 10.

Definition 18. A time-stamping scheme is secure if for an unpredictable (A1,A2):

Pr
[
(r, a)←A1(1k), (x, c)←A2(r, a) : Ver(x, c, r) = 1

]
= k−ω(1) . (6.1)

where unpredictability means that the output x of A2 is impossible to predict with
non-negligible probability by a PTM, even with full information about the inter-
nals and the output of A1.

In order to prove a power-1.5 reduction to collision resistance, all that one
has to assume about the time-stamping scheme is that the certificates have only
a limited number N of different possible shapes ρ and if one sees two different
certificates c1 and c2 that have the same shapes ρ(c1) = ρ(c2) then a collision can
be found for the hash function that the security is being reduced to.

Definition 19. A time-stamping scheme is said to exhibit the collision-extraction
property if, whenever Verh(x1, c1, r) = Verh(x2, c2, r) = 1, ρ(c1) = ρ(c2), and
(x1, c1) 6= (x2, c2), then the h-calls of Verh(xi, ci, r) (i = 1, 2) comprise an
h-collision.

If one considers the shape of the hash chain of the certificate as "shape" in the
previous definition, it is easy to verify3 that bounded tree-based time-stamping
schemes indeed have that property. However, there may be more complicated
schemes that also have the same property and as such, the claim is somewhat
more general.

Under these assumptions, it is fairly easy and straightforward to show by stan-
dard methods that if time-stamping adversary runs in time t and succeeds with
probability δ then there exists a construction that breaks collision-resistance which

2Division resistance is equivalent to breaking security at the leaves by switching out one of the
two inputs to a hash box while leaving the rest of the tree unaltered.

3With reasoning completely analogous to the security reduction in Theorem 1.
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runs in time t′ ≈ 2t and succeeds with probability δ′ = δ2

N , which constitutes a
power-2 reduction since t′

δ′ ≈ 2N t
δ2

. Best reduction known in the previous litera-
ture is that of Buldas and Laur [5] where they showed t′

δ′ ≈ 48
√
N t

δ2
– improving

the reduction considerably in terms of N but leaving it essentially the same in
terms of the time-success power ratio. This meant that in the currently known
literature, power 1.5 had not been achieved yet.

Nevertheless, such a reduction turned out to be possible. By a precise combi-
natorial analysis, it was possible to demonstrate that a reduction exists for which
the security loss can be described by the formula t′

δ′ ≈ 14
√
N t

δ1.5
, presenting a

major increase in the reduction increase over the state of the art and also achiev-
ing the provably optimal power ratio of 1.5. Efficiency gains here turned out to
actually have practical consequences, as they now allow realistic security guaran-
tees for practical global-sized time-stamping services (with N in the order of 256)
while still using only moderately sized hash functions of 256 bit outputs – some-
thing that the previous reductions failed to demonstrate but which is crucial for
the security of some current implementations already in use (such as GuardTime).
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CHAPTER 7

DETERMINISTIC RANDOM ORACLES

This chapter aims to give an overview of the results presented by the author in the
paper "Deterministic Random Oracles" [36].

As noted in Chapter 5, one of the main obstacles to generalizing oracle separa-
tion results is the fact that oracle families are used instead of a single fixed oracle
to introduce randomness into the model. This, however, poses problems when one
tries to show the non-existence of separations. In such a case one would normally
have to find one fixed oracle relative to which the result holds. If one starts out
with a family of oracles, fixing one of them usually involves non-constructive ar-
guments that make heavy use of the countability of the sets involved. Sadly, many
of them do not work in the non-uniform model.

Looking at the separation result presented by Gennaro and Trevisan [18] that
was the first one proven in the non-uniform model, it becomes apparent that the
main difficulty for direct proofs in the non-uniform model is being able to demon-
strate the security of an implementation f of the underlying primitive Q which
is usually constructed based on the oracle. To achieve it, they make use of com-
binatorial arguments over a fixed output length k1 that basically argue that if Af

can invert f : {0, 1}k → {0, 1}k then f has to be chosen from a relatively small
number of choices. As the number of one-way functions (or permutations) is
considerably larger, any adversary circuit A for that input length can thus be suc-
cessful on only a small fraction of them. As there is also a limited number of
circuits, this is sufficient to show that there exist functions that are secure against
all circuits and this happens with larger and larger probability as k increases.

This argument is somewhat reminiscent of the types of proofs done in the field
of algorithmic information theory, which is built around the notion of Chaitin-
Kolmogorov-Solomonoff complexity. What is interesting, however, is that this
theory provides a deterministic notion of randomness. We were interested in
whether this could be exploited to yield an alternative model for random oracles
that does not rely on a truly random oracle family but rather assumes a fixed oracle

1They use the size of the output setN instead of security parameter k. For our purposes, we just
define N = 2k.
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which nonetheless possesses all the properties commonly associated with random
oracles on average. If that were the case, it would perhaps allow one to bypass
the oracle extraction step in the separations by assuming a fixed oracle from the
beginning.

The main concept in Algorithmic Information Theory (AIT) is that of (self-
delimiting or Chaitin) complexity H(x) of a finite bitstring x, first introduced by
Levin [30] but popularized by Chaitin [11]. To be precise, H(x) is defined as the
length |x′| of the shortest program and input pair x′ = (p, i) such that U(x′) = x
where U is some fixed (self-delimiting)2 Universal Turing Machine.

Although deterministic randomness can be defined in many different ways,
the most well known of them is probably the following characterization based on
Chaitin complexity of finite strings.

Definition 20. A bit sequence x ∈ {0, 1}ω is said to be algorithmically random
when there exists a constant cx (the randomness threshold) such that all of its
prefixes xn have complexity H(xn) ≥ n+ cx.

Such sequences are analogous to truly random sequences in many ways. As
such, it makes sense to define the Algorithmically Random Oracle Model as just
replacing the "truly" random oracle with an oracle Or : {0, 1}∗ → {0, 1} based
on such an algorithmically random bit sequence r. In the simplest case, this is
achieved by assuming the natural bijection between N and {0, 1}∗ and setting
Or(j) equal to the j-th bit of r.

Our first step was, of course, to prove that such algorithmically random ora-
cles possess at least some commonalities with the standard random oracles. To
do that, we show that that they can be used to construct very strong one-way
functions in the trivial way by defining the one-way function {fk|k ∈ N} as
frn(i) = rni,...,n(i+1)−1 (i.e. as the ni-th to n(i+ 1)− 1-th bits of r).

Theorem 12. Let r be an algorithmically random sequence and let frn be defined
as before. If m = m(n) is such that m ≥ n then {frn|n ∈ N} is a one-way
function (secure even in the non-uniform model).

We also demonstrate that a one-way permutation oracle can be constructed
based on r in an analogous way. Both proofs are fairly simple, presenting a blend
of techniques from cryptography and AIT. In short, they show that if an adver-
sary existed, it would imply a shorter description of O that should be possible,
thus refuting the assumption that r is random. In some sense, they can be seen
as formalizing the idea of [18] but within a different framework which makes
generalizations potentially simpler.

Both results hold with respect to any algorithmically random bitstring r. This
has interesting implications as there is a well-known result that states randomly

2Self-delimiting string is a string which encodes its own length in some way so that on parsing
it the point where it ends can readily be verified. This assumption is essential for most of the results
in modern AIT but the exact reasons for it are beyond the scope of this chapter.
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chosen bit sequence x ∈ {0, 1}ω is algorithmically random with probability 1.
This means that anything proven in AROM (i.e. proven relative to an algorithmi-
cally random oracle without extra assumptions) will also be true in the standard
ROM. More interestingly, however, we prove that the converse also holds, i.e. that
under reasonable assumptions, anything proven secure in the standard ROM will
also be secure relative to any AROM.

Theorem 13. Assume that a construction CO is an instance of some primitive P
(that has a computable security criterion3 w.r.t. a random oracle O. Then CO

is secure in ROM precisely when Cr is secure for all algorithmically random bit
sequences r.

Our work also shows how one can use the tools of AIT to prove security-
related results. This introduces a new and potentially very powerful theoretical
tool into the domain of Cryptology. We can only hope that our work will be
followed up by others who will strengthen that connection so that it may prove
beneficial for both the AIT and cryptology communities.

3Computability of the security criterion is an essentially technical restriction stating that the
success probability of an adversary has to be computable for all poly-time adversaries.
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CONCLUSIONS AND FUTURE
RESEARCH

In this work we have explored the limits of the oracle separation technique in many
different ways. Initially, we were concerned with just one concrete separation –
from chain-resistance to collision-resistance – and explored just one possible or-
acle which seemed to have implications for that case. Later work was concerned
with more general themes, from trying to determine whether the already known
results could be generalized to the non-uniform model to seeing what other mean-
ingful lower bounds could be proved, to even describing an alternative models
of oracles that would allow one to replace a random oracle family with just one,
"deterministically random" oracle.

Nevertheless, there are many open questions that remain in the field of oracle
separation. The question that is by far of most interest to the author is whether the
results presented in the paper discussing deterministic randomness could be built
upon to prove separation results. It would also be interesting to see, what other
implications the "algorithmically random oracle model" would have.

The work on lower bounds has gained increasing popularity over the past
decade [29, 18, 16, 2, 17, 24, 31, 4]. Although most of this work has concentrated
on lower-bounding the number of invocations of the underlying primitive, there
are also other things that can be lower-bounded as has been demonstrated in our
work with the security loss of reduction. There may well be more parameters of
reductions for which meaningful bounds could be obtained and it would indeed
be interesting to see any such new types of bounds being introduced and proven.

Socrates is often quoted saying "I know only that I know nothing". Although
things are not quite that bad with oracle separation, it is clear that there is much
to still discover about the technique. If anything, this thesis has showed us that by
pointing to new and interesting possible directions of inquiry. However, this is the
nature of science – to pose questions by answering previous ones. In that sense,
we hope that the thesis has served its purpose.
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KOKKUVÕTE
(SUMMARY IN ESTONIAN)

ORAAKLIGA MUSTA KASTI
ERALDUSTEHNIKAD

RAKENDUSTEGA
AJATEMBELDUSELE

Krüptoloogia on teadus turvalisest andmesidest. Tõestatava turvalisuse saavuta-
miseks tuleb aga reeglina teha eeldusi. Lihtsaimatel juhtudel piirduvad need eel-
dused lihtsalt turvatava süsteemi kirjeldusega. Reeglina tuleb protokolli turvalisu-
se näitamiseks teha aga ka arvutuslikke eeldusi. Näiteks piisab tihti eeldusest, et
suurte arvude tegurdamine on arvutuslikult raske ning ajamahukas. Vahel on aga
lihtsam teha natuke üldisemaid eelduseid, eeldades juba mõne teist tüüpi turva-
lise süsteemi olemasolu. Näiteks on võimalik praktiliselt kogu salajase võtmega
krüptograafia ehitada üles pelgalt eeldusest, et eksisteerib vähemalt üks raskesti
pööratav ühesuunaline funktsioon.

Sellised teise süsteemi turvalisuse eeldusel põhinevad tõestused on reeglina
väga lihtsa struktuuriga. Kõigepealt näidatakse, kuidas seda teist süsteemi saab
kasutada alamkomponendina käesoleva süsteemi realiseerimisel. Turvalisuse tões-
tamiseks näidatakse seejärel, kuidas käesoleva süsteemi murtavusest järeldub au-
tomaatselt ka komponendina kasutatud süsteemi murtavus. See annab tõepoolest
turvalisuse tõestuse, sest kuna me eeldame, et teist süsteemi murda ei saa, ei saa
järelikult murda ka käesolevat. Selliseid turvatõestuseid nimetatakse üldiselt re-
duktsioonideks ning enamus tänapäevasest krüptograafiast on just nende najal üles
ehitatud.

Enamasti kasutatakse reduktsioonides teist süsteemi väga lihtsal moel: eelda-
takse, et on olemas mingi turvaline selle teise süsteemi implementatsioon millele
on niiöelda musta kasti juurdepääs – sellele saab anda sisendeid ning see annab
väljundeid, kuid seal sees toimuva kohta igasugune lisainfo puudub. Turvatões-
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tuse poole peal tehakse aga vastuväiteline eeldus, et uus süsteem on murtav ning
seega on meie käsutuses musta kastina ka mõni seda murda oskav vastane. Seda
vastast kasutades konstrueeritakse siis vastane teisele süsteemile, mille turvalisust
eeldati. Sellised musta kasti reduktsioonid on oma struktuurilt kõige lihtsamad
ning praktiliselt kõik reduktsioonid vastavad tegelikult ka nendele eeldustele.

Musta kasti reduktsioonide abil on võimalik tõestada väga huvitavaid tulemu-
si, kuid nende kasutamisel on siiski teatavad piirid. Juba üle 20 a tagasi näitasid
Rudich ja Impagliazzo [27], et ühesuunalise funktsiooni olemasolu ei ole piisav
niinimetatud salajase võtme krüptograafia realiseerimiseks ainult musta kasti re-
duktsioone kasutades. Seda tõestasid nad niinimetatud oraakliga eralduse meeto-
di abil, rakendades ühesuunalise funktsiooni rollis väga kavalat enda poolt konst-
rueeritud musta kasti, mille enamus väljundeid on valitud ühtlaselt ja juhuslikult,
kuid mille teatud sisendite korral vastab ta muidu väga raskesti vastatavatele, klas-
si PSPACE kuuluvatele küsimustele. Ligipääs sellisele oraaklile tekitab ühelt
poolt olukorra, kus meie konstrueeritud funktsiooni juhuslikult valitud osa annab
pea ideaalse ühesuunalise funktsiooni, kuid kus teiselt poolt P = NP mille tõt-
tu avaliku võtme krüptograafia kindlasti välistatud on. Kuigi selline oraakel on
võimalik vaid teoreetiliselt, välistab see ometi musta kasti reduktsiooni võimalik-
kuse. Seda tüüpi reduktsioon peaks ju töötama ka sellist konstrueeritud oraaklit
musta kastina kasutades, kuna kasti kohta ei tehta tõestuses lisaeelduseid.

Selline lähenemine osutus väga viljakaks, ning seda arendati peagi edasi teiste
autorite poolt. Näiteks tõestasid Kim, Simon ja Tetali [29] seda meetodit kasuta-
des alampiiri sellele, kui mitu korda peab turvalise räsifunktsiooni saavutamiseks
ühesuunalist funktsiooni kasutades toda ühesuunalist funktsiooni välja kutsuma
– näidati seega mitte reduktsiooni võimatust, vaid selle põhimõttelist efektiivsu-
se piiri. Igal juhul on oraakliga eralduse näol tegemist praeguseks laialt levinud
tõestusmeetodiga [27, 39, 29, 18, 19, 20, 12, 16, 38, 25, 14, 17, 24, 21, 28, 31].

Selles doktoritöös uuritakse oraakliga eralduse meetodi erinevaid uusi raken-
dusvõimalusi. Töö põhineb neljal avaldatud ja kahel avaldamata artiklil.

Neist esimene artikkel „Kollisioonivabadel räsifunktsioonidel põhinevate piiran-
guteta ajatempliskeemide võimalikkusest’„vaatleb algselt Hsiao ja Reyzini [25]
poolt kasutatud kahe oraakliga eralduse raamistikku, laiendab seda veidi ning ka-
sutab seda seejärel et näidata reduktsiooni võimatust kollisioonivabadusest piira-
tud ajatempliskeemini teatud lisakitsenduste korral, mida võiks tinglikult nime-
tada ühe väljakutsega geneeriliseks mudeliks. Töö ei välista küll otseselt musta
kasti reduktsiooni, kuid viitab siiski tugevalt selle olemasolu ebatõenäolisusele.

Teine ja kolmas artikkel, „Oraakliga eraldamine mitteühtlases mudelis” ning
„Musta kasti eraldused ja nende üldistatavus mitteühtlasesse mudelisse”, on juba
natukene konkreetsemad. Mõlema artikli aluseks on üks huvitav tehniline tähe-
lepanek. Nimelt tõestatakse enamus reduktsioone niinimetatud mitteühtlases mu-
delis, kus vastane võib omada teatava koguse lisainfot, näiteks eelmistelt murd-
miskatsetelt. Enamus eraldustulemusi tõestatakse aga ainult ühtlases mudelis, kus
sellist lisainfot ei võimaldata. Antud kaks artiklit uurivad võimalusi, kuidas ju-
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