Exploring termhood using language models

Jody Foo
Linköping University
Linköping, Sweden
jody.foo@liu.se

Abstract
Term extraction metrics are mostly based on frequency counts. This can be a problem when trying to extract previously unseen multi-word terms. This paper explores whether smoothed language models can be used instead. Although a simplistic use of language models is examined in this paper, the results indicate that with more refinement, smoothed language models may be used instead of unsmoothed frequency-count based termhood metrics.

1 Background
Terminology work is the process of creating, harmonizing and standardizing term banks. The process involves the use of human terminologists and domain experts to a high degree, which can be costly for even small sized (e.g. 300 terms) term banks.

Automatic term extraction (ATE) or automatic term recognition (ATR) is a research area where methods researched that can to some degree automate the task of finding term candidates from document collections.

For the discussions in this paper we will be considering ATE used to facilitate terminology work done by terminologists. Looking from above, a workflow may be as follows.

1. Extract term candidates from corpus
2. Let domain expert process term candidates
3. Let terminologists create a term bank

This paper concerns step 1 which can be broken down into the following smaller steps.

a) Extract phrases
b) Asses termhood of phrases
c) Output term candidates

The following assumptions are used in this paper regarding the context of terminology.

- Term banks are used to reduce misunderstandings, eliminate ambiguity and raise the efficiency of communication between domain experts within the same domain, and to aid non-experts to understand domain specific texts.
- Terms represent Concepts.
- Definitions are attached to Concepts, not to terms.
- Terminologists are detectives that work together with domain experts to maintain a consistent terminology within the domain.

1.1 Term ranking concepts
Term ranking metrics can be categorized in several ways. One facet divides metrics into contrastive and non-contrastive measures. The contrastive model was introduced by Basili et al (2001) and explicitly argues that distributional differences between different document collections can be used to say something about extracted phrases.

The concept of termhood was introduced by Kageura and Umino (1996) and is defined as “The degree to which a stable lexical unit is related to some domain-specific concepts.”. Unithood was also introduced by Kageura and Umino (1996) and is defined as “the degree of strength or stability of syntagmatic combinations and collocations”. Both Wong and Liu (2009), and Zhang et al (2008) provide good overviews of termhood and unithood related metrics such as C-Value/NC-Value (Frantzi et al, 1998), Weirdness (Ahmad et al, 1999), Termextractor (Sclano and Velardi, 2007).

The ideal goal regarding termhood is to find a metric that correlates perfectly with the concept of termhood. Such a metric does however not yet exist and it is quite probable that constructing such a metric is a near impossible task for several reasons; one of them being that the properties of terms are difficult to capture. With
regard to actual work done by terminologists, a
termhood metric is quite artificial. Also, it is
important to keep in mind that a usable term
ranking metric does not necessarily measure
termhood – i.e. it may not be necessary to use a
termhood metric to implement a useful term
extraction application.

1.2 Support Vector Machines

In this paper, a Support Vector Machine
classifier is used in an attempt to classify phrases
into term candidates and non-term candidates.

The framework used is the e1071 package for
R1 (Dimitriadou et al 2009), which interfaces
with libSVM, a Support Vector Machines
implementation (Chang and Lin, 2001).

Support Vector Machines were introduced by
Boser, et al (1992) and is a linear classifier that
can use kernels to also classify non-linear data.

2 Questions

The existing research on term extraction is
focused on term extraction as a once-off process
using relatively large document collections.
However, in reality, one may want to perform
term extraction on smaller document sets
containing new unseen documents from a
previously processed domain. This may present a
problem for frequency-count based metrics for
two reasons

1 The document set may be too small for
frequency based term metrics to be of use.
2 The first problem may be solved using a
larger document collection is used to produce
the metric values for extracted words/phrases
from the smaller document collection. However,
previously unseen multi-word
terms cannot be assigned a score.

One way of solving problem 2, may be to use
probability and perplexity scores from smoothed
n-gram language models instead. The key point
here is that a smoothed language model can
produce a probability score for a multi-word
term that uses a combination of words that has
never been seen in previous document collec-
tions. Language Models have not been used in
this way to the author’s knowledge.

However, Patry and Langlais (2005) used
language models of POS tags to improve phrase
extraction beyond ordinary POS pattern extrac-
tion.

The work described in this paper is a
preliminary study on using smoothed n-gram
(word) language models to capture termhood.

3 Dataset

In this paper, two corpora are used 1) the British
National Corpus (BNC) (BNC Consortium,
2000) and 2) English patent texts from the C04B
IPC subclass (lime; magnesia; slag; cements;
compositions thereof) as well as a set of domain
expert validated terms from the subclass (note:
the list of validated terms is not complete). See
Table 1 for details of the used patent corpus.

<table>
<thead>
<tr>
<th>C04B statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of segments (sentences)</td>
<td>96,390</td>
</tr>
<tr>
<td>Number of tokens</td>
<td>2,395,177</td>
</tr>
<tr>
<td>Number of characters</td>
<td>1,2836,222</td>
</tr>
<tr>
<td>Validated terms</td>
<td>2,677</td>
</tr>
</tbody>
</table>

Table 1 C04B patent document corpus in numbers

3.1 Language models

Both the BNC corpus and C04B corpus were
lemmatized using the commercial tagger
Conexor Machinse Syntax2. The lemmatized
corpora were then processed using SRI Language
Modeling Toolkit, which produced one n-gram
language model per corpus (two language
models in total).

4 Phrase extraction and validation

The phrases from the dataset first extracted using
IPhraxtor, a phrase extractor developed at Fodina
Language Technology AB. A randomly sampled
subset was then validated with regard to term
candidates and non-term candidates.

4.1 Phrase extraction

Using IPhraxtor, noun phrases were extracted
from the C04B corpus resulting in 101,191
extracted phrases. Among these phrases, 2,143 of
the validated terms were found.

4.2 Term candidate validation

A sample was then extracted for manual term
candidate markup. The sample was processed in
Microsoft Excel where a non-domain-expert
classified the phrases as either term candidates
or non-term candidates. Note that the classifica-
tion is between term candidates and non-term
candidates; not between term and non-term. The
reason is that the process we want to improve

1 http://www-r-project.org/
2 http://www.connexor.eu/technology/machinse/machinesyntax/
outputs term candidates, not terms. Below are the guidelines used during the manual validation.

1. When validating the phrase as a term candidate the whole phrase must be considered, not just a part of the phrase. E.g. the phrase "mold temperature" may be considered a term candidate, but not "measure mold temperature".

2. Non-term candidates are
 a. grammatically incomplete phrases, e.g. "involves passage", "improves compressive strength".
 b. phrases that contain non words, misspelled words, or tokenization errors, e.g. "diet(51a", "grains")
 c. phrases that are obviously general language such as idioms and general collocations, e.g. "infinite length", "major role".
 d. phrases containing numbers
 e. phrases starting with a verb
 f. chemical formulas, e.g. H20 are not terms. Names of chemicals however, are, e.g. hydrogen oxide.
 g. phrases starting with a "subjective" or referring adjective, e.g. desired, intended, indicated. Quantifying adjectives however, are fine, e.g. poor.

Regarding guideline 2c, it is still a decision that depends on the validators experience and knowledge. Therefore, it is recommended that validators are domain experts in at least one field. For example the word "accurate" might be classified as a non-term candidate by a validator not familiar with the term "accuracy" in e.g. the domain of machine learning. Regarding guideline 2e; no phrases starting with a verb were intentionally extracted, but POS-tagger errors resulted in a few such phrases being included.

5. Contrastive features

The validated, extracted phrases were annotated with several features using the previously created language models. Each phrase was given a logarithmic probability value (logProb) and a perplexity value (ppl), first using the BNC language model, then the domain specific C04B language model. A probability ratio using the logProb_{C04B}/logProb_{BNC} was also calculated and added. Finally, each phrase was annotated with the number of words in the feature. Each phrase also belonged to the class term candidate or non-term candidate. All values were normalized to the scale of 0-1. The features are summarized in Table 2.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>class</td>
<td>term candidate/non-term candidate</td>
</tr>
<tr>
<td>number of words</td>
<td>number of words in phrase</td>
</tr>
<tr>
<td>logProb_{BNC}</td>
<td>logarithmic probability of phrase in BNC language model</td>
</tr>
<tr>
<td>ppl_{BNC}</td>
<td>perplexity value of phrase in BNC language model</td>
</tr>
<tr>
<td>logProb_{C04B}</td>
<td>logarithmic probability of phrase in C04B language model</td>
</tr>
<tr>
<td>ppl_{C04B}</td>
<td>perplexity value of phrase in C04B language model</td>
</tr>
<tr>
<td>logProbRatio</td>
<td>the ratio between logProb_{C04B} and logProb_{BNC}</td>
</tr>
</tbody>
</table>

6. Looking for patterns

To understand the results of the SVM classification experiment, extracted phrases were ordered by class (term candidates first) and plotting their corresponding feature values in graphs. Figures 2-4, are examples of such graphs. In Figure 1, the precision of the ordered list is presented. This just shows how many term candidates and how many non-term candidates are in the list (# correct stops increasing where the non-term candidates begin). From Figures 2-4 it is clear that there does not seem to be any visible correlation between the language model output and the phrases classified as term candidates.
A simple SVM experiment was conducted using the 1800 classified phrases. First a model was trained using 1200 of the phrases. Then the model was used to predict the class of the 600 phrases that were held back during training. The model used, predicted term candidates with a precision of 66.4% and a recall of 88.0%. Considering that the test partition contained 368 term candidate phrases, i.e. 61.3% of the test data were term candidates, the result of the classification is not much better than using the extracted phrases as they are.

8 Discussion and future work

Though the results from the classification experiment are not that strong, they were also the result of a rather simplistic use of language model provided features. The frequency count based metrics described in current research are still much more refined, as using the raw probability and perplexity values can be compared to using raw phrase frequency counts. Therefore, the author believes that there is more to gain from a language model approach. A higher level of refinement however is needed.

For example, a next step could be to consider phrases of different word length separately, as phrases containing more words have a lower probability in an n-gram language model by nature.

References

