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Introduction

Given a differential module F over a commutative ring with a differential d,
where d is an endomorphism of a module F satisfying d> = 0, one can measure

the non-exactness of the sequence F LELE by the homologies of this dif-
ferential module E which can be viewed as the study of the equation d* = 0.
This equation is a basis for several important structures in modern algebra,
differential geometry and theoretical physics to point out only three of them
which are the homological algebra [46], the theory of de Rham cohomologies
on a smooth manifolds and the BRST-quantization in gauge field theories.
The theory of de Rham cohomologies on a smooth manifold M originated
with the work of de Rham when he proved that H*(Q(M)) = H*(M,R) for
the de Rham algebra of differential forms on a manifold M, i.e. the coho-
mologies of the de Rham complex are isomorphic to the real cohomologies
of a manifold, and this immediately provided a link between the analysis on
a manifold and its topology. From an algebraic point of view the de Rham
algebra of differential forms on a smooth manifold is a graded differential
algebra.

An idea to generalize the concept of a differential module and to elaborate
the corresponding algebraic structures by giving the mentioned above basic
property of differential d> = 0 a more general form d¥ = 0, N > 2 seems
to be very natural. Taking the equation dV¥ = 0 as a starting point one
should choose a space where a calculus with d¥ = 0 will be constructed. As
a calculus with d¥ = 0 may be considered as a generalization of d*> = 0 and
taking into account that there is an exterior calculus of differential forms
with exterior differential d> = 0 on a smooth manifold one way to construct
d™ = 0 is to take a smooth manifold and to consider objects on this manifold
more general than the differentials forms. This approach was proposed and
studied in [22, 23, 24]. The second approach arises within the framework



of noncommutative geometry and it is based on g-deformed structures such
as graded ¢-Leibniz rule, graded g-commutator, graded inner ¢-derivation,
where ¢ is a primitive Nth root of unity.

The first approach to d¥ = 0 is based on the tensors with mixed symmetries.
Let us remind that a differential p-form

W = Wiyiy..q, dx"dx™ ... dx',

can be identified with the skew-symmetric tensor field {ws,s,..i, }. If we iden-
tify a differential p-form with the skew-symmetric tensor field then locally
an exterior differential d can be written in the form

A{Wiyiy i } = {A 00 (Wiyis..iy) }

where A is the alternation with respect to subscripts iy, 1s,...,7, and 0 :
{Wiris..ip } — {35 (Wiris..i,) }. In this case d? = 0 follows from the fact that
partial derivatives commute with each other and differentiating and alter-
nating twice we get zero. The basic idea of the first approach is to consider
tensor fields with a more general kind of symmetry which is determined by
Young diagrams and to replace the alternation 4 by Young symmetrizer
Y. In order to be more precise let us assume that we have a sequence of
Young diagrams (Y},),en, where Young diagram Y}, consists of p boxes. This
sequence of Young diagrams induces the sequence of vector spaces {Q’{,p }ren
of smooth covariant tensor fields of degree p with symmetry determined by
the Young diagram Y,. Then the operator
d=Y,00: Q% —O"
where ), is the Young symmetrizer of a diagram Y, is of degree one. It can

be proved that if each Young diagram Y), has strictly less columns than N
then dV = 0.

The second approach was proposed and studied in the series of papers [34,
19, 20, 21] and it has led to the structures such as differential N-complex, N-
cochain complex, generalized cohomologies of N-cochain complex and graded
g-differential algebra, where ¢ is a primitive Nth root of unity. In the paper
[34] the author developed the algebraic structures based on d¥ = 0 such as
N-complex, homologies of N-complex as well as constructed an algebra of
differential forms with exterior differential d satisfying d = 0 on a vector



space R", considered a connection in a vector bundle and studied characteris-
tic classes constructed by means of differential forms with exterior differential
dN = 0. It is worth noting that in the case of a primitive cubic root of unity
the curvature form of connection resembles the Chern-Simons form which is
widely used in gauge theory and topological quantum field theories [44, 49].

A notion of graded g¢-differential algebra was introduced in [20] and it may be
viewed as a generalization of a graded differential algebra. It is well known
that a connection and its curvature are basic elements of the theory of fiber
bundles and they play an important role not only in a modern differential
geometry but also in theoretical physics namely in a gauge field theory. The
development of a theory of connections in fibre bundles has been closely
related to the development of a theoretical physics. The advent of supersym-
metric field theories in the 70’s of the previous century aroused interest for
Za-graded structures which became known in theoretical physics under the
name of superstructures for instance supermanifold, super algebra, super Lie
algebra, super Lie group, super vector bundle and so on. This direction of
development has led to a concept of superconnection which was introduced
and studied in [42]. The emergence of noncommutative geometry in the 80’s
of the previous century was a powerful spur to the development of a theory
of connections on modules [16, 21, 22, 25, 26, 27, 28, 44]. A basic algebraic
structure used in the theory of connections on modules is a graded differ-
ential algebra. A graded differential algebra is an algebraic model for the
de Rham algebra of differential forms on a smooth manifold. Consequently
considering a concept of graded g¢-differential algebra which is more general
structure than a graded differential algebra we can develop a generalization
of the theory of connections on modules. One of the aims of this thesis is to
present and study algebraic structures based on the relation d = 0 and to
generalize a concept of connection and its curvature applying a concept of
graded ¢-differential algebra to the theory of connections on modules.

Chapter 1 is devoted to N-complexes and their cohomologies. In Section
1.1. we present the basic notions of homological algebra such as differential
module, the homology of differential module, graded module, cochain com-
plex, cohomologies of a cochain complex and cosimplicial module. We give
statements which will be useful in what follows such as the exact triangle
of homologies for an exact sequence of differential modules, the Kiinneth
formula for cohomologies for tensor product of cochain complexes. There



are also several examples of cochain complexes such as the cochain complex
Hochshild cochains and Chevalley-Eilenberg complex of a Lie algebra. In
Section 1.2. we start with a calculus of ¢g-numbers which will play a very
important role in this thesis. Then we present the notions of N-differential
module, generalized homology of order m of N-differential module and give
several propositions about homology of N-differential modules. In Section
1.3. we consider N-complexes and their cohomologies. We begin with the
definition of a cochain N-complex of modules. We also remind a reader
the notions such as graded g-commutator, graded ¢-derivation of degree m,
graded ¢-Leibniz rule and inner graded ¢-derivation. Then we present the ex-
act sequence in cohomologies for a short exact sequence of N-complexes. We
show that N-complex can be constructed with the help of pre-cosimplicial
K-module. Next we prove Theorem 1.3.7 which will be very important in the
next chapters. This theorem is very useful in the sense that we can construct
various cochain N-complexes by means of this theorem. Theorem 1.3.7 as-
serts if their exist an element v of grading one of a graded associative unital
algebra ./ which satisfies vV € Z°(«7), where 2°(&/) is the graded center
of &7, then the inner graded g-derivation ad? is N-differential. We prove
(Theorem 1.3.8.) that the generalized cohomologies of cochain N-complex
of Theorem 1.3.7 are trivial. We end this section with a generalized Clif-
ford algebra, explaining how this type of algebra can be equipped with the
structure of cochain N-complex by means of Theorem 1.3.7.

Chapter 2 is devoted to the concepts of graded differential and graded g¢-
differential algebras. In Section 2.1. we give a brief overview of graded
differential algebras which play an important role in the modern differential
geometry. We mention two well known examples of graded differential alge-
bras in differential geometry which are the de Rham algebra of differential
forms on a smooth manifold and the graded differential algebra of cochains
on the Lie algebra g of a Lie group GG. The next example of a graded differ-
ential algebra which is briefly described in this section is the universal graded
differential envelope Q(.27) of a graded associative unital algebra <7. We also
remind a reader the notion of first order (coordinate) differential calculus
over an associative unital algebra, which is widely used in the noncommuta-
tive geometry. At the end of Section 2.1. we describe the structure of the
reduced Wess-Zumino algebra of differential forms on a reduced quantum
plane. In Section 2.2 we give the definition of a graded ¢-differential algebra.
We introduce the algebra of polynomials and endow it with the structure
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of graded g¢-differential algebra. We introduce two operators D, V and the
polynomials fi, which are defined with the help of recurrent relation. We
prove the Theorem 2.2.4 which give explicit power expansion formulae for the
operator D and the polynomials f;. Section 2.3. is devoted to the algebra of
differential forms on a reduced quantum plane where our approach is based
on the notion of graded ¢-differential algebra.

Chapter 3 is devoted to the generalization of the theory of connection by
means of the notion of graded g-differential algebra. Section 3.1. has an
introductory character and makes reader familiar with the basic notions of
differential geometry such as connection and its curvature in the context
of vector bundles. We generalize a concept of (2-connection proposed by
M. Dubois-Violette in [20], where € is a graded differential algebra with
differential d. We use an algebraic approach based on the concept of graded
g-differential algebra to define a notion of N-connection and show that in
the case of N = 2 we get the algebraic analog of a classical connection. To
better understand the structure of N-connection we introduce the notions
of dual N-connection, N-connection consistent with a Hermitian structure
of module. We define the notion of curvature of N-connection and prove
that it satisfies the analog of Bianchi identity. At the end of this section
we prove that every projective module admits an N-connection. In Section
3.2. we introduce a construction of Zy-connection, which can be viewed as a
generalization of Zs-graded connection (superconnection). In Section 3.3 we
consider the local structure of N-connection and its curvature, introducing
the notion of matrix of N-connection. We express the components of the
curvature of N-connection in the terms of the matrix of N-connection, this
allows us to define a curvature matrix of N-connection. We consider the form
of the curvature matrix of N-connection in two special cases, when N = 2
and N = 3. Making use of the algebra of polynomials introduced in Section
2.2 we consider the N-curvature form of N-connection form and give the
explicit power expansion formulae for N-curvature form.

11



Chapter 1

N-complexes and cohomologies

1.1 Cochain complexes and cohomologies

Let K be a commutative ring with a unit, £ be a left K-module and End F be
the left K-module of endomorphisms of E. If FE, F are left K-modules then
the K-module of homomorphism from F to F will be denoted by Hom (E, F).

Definition 1.1.1. A module F endowed with an endomorphism d € End Ef
is said to be a differential module with differential or coboundary operator d
if endomorphism d satisfies d*> = 0. In the case when K is a field a differential
module E will be referred to as a differential vector space.

It is easy to see that
Kerd={ue E:du=0}, Imd={ueFE:3Jvek, u=dv},

are the submodules of a module E. From the nilpotency property of a dif-
ferential d> = 0 it follows Imd C Kerd C E, and one can measure the

non-exactness of the sequence LptE by means of the quotient module
H(FE) = Kerd/Im d which will be referred to as the homology of a differential
module E.

Let E, F be differential modules respectively with differentials d : £ — F,
d:.F—F.

Definition 1.1.2. A homomorphism of modules ¢ € Hom (F, F') is said to
be a homomorphism of differential modules F, F' if it satisfies pod = d' 0 ¢.

12



If ¢ : E— F is a homomorphism of differential modules respectively with
differentials d,d’" and v € Kerd then d'(¢(u)) = d' o ¢(u) = ¢ od(u) =
¢(0) = 0/, where 0,0" are the zeroes of differential modules F, E’. Hence we
have ¢ (Kerd) C Kerd' and analogously ¢ (Imd) C Imd’. Consequently the
mapping ¢, : H(E)— H(F) defined by

o« ([u]) = [p(u)], wu € Kerd, (1.1.1)

where [u] € H(E), [¢p(u)] € H(F) are the homology classes of u and ¢(u), is
the homomorphism of homologies of differential modules F, F'. Thus a ho-
momorphism ¢ : F— F of differential modules induces the homomorphism
¢. : H(E) — H(F) of their homologies. Let us remind that a sequence of
homomorphisms of differential modules
R ¢ A7 | ﬁEl (z)l—tl EZ+1_>

is said to be an exact sequence if for any ¢ we have Im ¢; = Ker ¢;11. It can
be proved [20]

Proposition 1.1.3. If 0—F % F % G0 is an exact sequence of ho-
momorphisms of differential modules then there exists a homomorphism of
homologies 0 : H(G) — H(E) such that the triangle of homomorphisms

/ X (1.1.2)

Proof. Let us prove Im ¢, = Ker, which means the exactness of the tri-
angle of homomorphisms (1.1.2) at H(F'). Let dg,dr,dg be differentials
correspondingly of differential modules E, F, G. If [y] € Im ¢, C H(F') then
there exists [z] € H(E) such that ¢.([z]) = [y]. Making use of (1.1.1) we get
[y] = [¢(x)] which means that elements y, ¢(x) belong to the same homology
class. Consequently there exists ¢y’ € F' such that y — ¢(z) = dpy’. Applying
a homomorphism 1 to the both sides of this relation we get

Uy — ¢(x)) = P(dry') = P(y) — o ¢(x) = da(¥(y)).

1S exact.

13



Denoting z = 9(y’) and taking into account the exactness of the sequence
E % F % G which for any x give 1 o ¢(z) = 0 we finally get (y) = dgz.
Hence [¢(y)] = 0 and making use of (1.1.1) we get [¢(y)] = ¥.([y]) = 0 which
gives [y] € Kert,. Thus Im ¢, C Ker, and proving similarly Ker, C
Im ¢, we finally get Im ¢, = Ker 1.

In order to construct the homomorphism 0 : H(G) — H(E) we begin with
[2] € H(G) which means dgz = 0. Since v is surjective there exists y € F
such that ¥(y) = z. We have 0 = dgz = dg(¢¥(y)) = ¥(dr(y)). Hence
dr(y) € Kervy but Kerty = Im¢. Thus there exists x € E such that ¢(x) =
dr(y). Applying a differential dr to both sides

dr(¢(2)) = di;(y) = ¢(dr(z)) =0,

and taking into account that ¢ is injective we conclude dg(z) = 0. We define
the hohomorphism 0 : H(G) — H(FE) by 9([z]) = [z]. It can be shown that
the triangle of homomorphisms (1.1.2) is exact at H(F) and H(G). O

Let us mention that an exact sequence of homomorphisms of modules
0—ELF4 G -0

is called a short exact sequence of homomorphisms and in the case of differ-
ential modules a homomorphism 0 : H(G) — H(FE) is called a connecting
homomorphism of a short exact sequence.

Definition 1.1.4. Let I' be an additive group. A module F is said to be a
[-graded module if it is given together with a direct sum decomposition into
submodules E* C E labeled by i € T, i.e.

We will call an element v € E* a homogeneous element of grading i of I'-
graded module E. The grading of a homogeneous element u € E* will be
denoted by |u| € T, i.e. |u| = i. If E' = @;epE' is another T-graded module
then a homomorphism of modules ¢ : E—FE" is said to be a homomorphism
of T-graded modules if ¢(E?) C E', i.e. a homomorphism ¢ preserves I'-
graded structures of F, E'.

We will use the following three types of ['-gradations:

14



i) I'-gradations where I' = Z is the additive group of integers. In this case
we will call £ = ®;cz B a Z-graded module.

ii) I-gradations where I' = Zy is an additive group of residue classes
modulo N, ie. Zy = {0,1,...,N — 1}, where i is a residue class
modulo N. In this case a module E = @;cz, E" will be called Zy-
graded or N-graded module.

ii) T-gradations where I' = Z, = {0, 1} is the group of residue classes of
modulo 2 with two elements 0, 1 and we will write £ = E, ® E_ instead
of E = E5 ® Ey. In this case we will call E a semi-graded module.
Obviously a semi-grade module is a particular case of N-graded module
and we treat it separately since the Zsy-graded structures are of great
importance in supergeometry and supersymmetric field theories.

It is worth mentioning that in what follows the Z-graded and Zy-graded
structures will be most frequently used gradations. Obviously if we have a
Z-graded module E then it is always possible to pass from Z-gradation of
E to Zy-gradation. In most structures which will be defined and studied
in this thesis can be used either Z-gradation or Zy-gradation and in order
not to mention this every time we adopt a convention that the term ”graded
module” means either Z-graded module or Zy-graded module. In order to
simplify notations we will denote a graded module by F = @;czE* having in
mind that in this formula Z can be replaced by Zy.

Definition 1.1.5. A Z-graded module E = ®;czE* is said to be a positive
graded module if for every i < 0 a corresponding submodule E’ is trivial,
i.e. B =0 for i < 0. In the case of a positive graded module E we will use
notation F = ®;cnE* which means that for i < 0 a corresponding submodule
E' is trivial.

Definition 1.1.6. A differential module E with differential d is said to be
a (positive) cochain complexr with differential or coboundary operator d if E
is a (positive) graded module F = @®;czE* and d is a homogeneous mapping
of degree 1 with respect to a graded structure of E, i.e. d: ' — ETl. A
semi-cochain complex E is a semi-graded differential module £ = F, & E_
with differential d satisfying d : £, — E.

If E is a cochain complex with coboundary operator d then in what follows we
will call d either a differential of a cochain complex or a coboundary operator

15



usually using the latter when studying cohomology of a cochain complex. Let
E,E'" be two cochain complexes correspondingly with differentials d,d’. A
homomorphism of cochain complexes ¢ : F —= E’ is a homomorphism of
graded differential modules, i.e. it satisfies ¢(E*) C Eipod=do¢. If
E, E’ are two semi-cochain complexes then ¢ : E— E’ is a homomorphism
of semi-cochain complexes if it is a homomorphism of differential modules
satisfying ¢(Ey) C E/.. The homology H(E) of a cochain complex E has
the structure of a graded module which is induced by a graded structure of
E as follows
HY(E)=KerdN E'/ImdN E".

Hence H(E) = @®;czH(E), and the homology H(FE) is usually referred to
as a cohomology of a cochain complex E. Similarly a cohomology H(FE) of a
semi-cochain complex is a semi-graded module H(E) = H(E,) & H(E-).

Let Ey, Es be two cochain complexes correspondingly with differentials d;, ds.
The tensor product of graded modules Ey, F5 is the graded module whose
gradation is defined as follows

E) ® By = ®pez(Er @ E)", (1.1.3)
where (E; @ Fy)* = @y -1 Bl ® E). Let us define
du®v) = di(u) @ v+ (=1)"u @ dy(v), (1.1.4)
where u is a homogeneous element of F, and v € E,. Clearly
d: (B ® By — (B, ® Ey)*.
Since d? = d3 = 0 we have

Puev) = dd(u) @)+ (—D"d(u® dy(v))
— B u) ® v+ (~1) (1) @ da(v)
=) dy (1) © da(v) + (=1)*u @ dy(v) = 0
Consequently the tensor product of graded modules F; ® F, with graded
structure defined by (1.1.3) and with differential d defined by (1.1.4) is the
cochain complex which will be referred to as the tensor product of cochain
complexes Fy, F5. Tt is well known that the cohomology of the tensor product

of two cochain complexes is equal to the tensor product of cohomologies of
these cochain complexes, i.e.
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Proposition 1.1.7. Let K be a field of characteristic zero and Ey, E5 be
cochain complexes. Then

H(E, ® By) = H(Ey) ® H(E,). (1.1.5)

The statement (1.1.5) of Proposition 1.1.7 bears the name of Kiinneth for-
mula.

From Proposition 1.1.3 it follows that given an exact sequence of homomor-
phisms of cochain complexes

0—F 4, F A G—0
we have the exact sequence of homomorphisms of cohomologies of these
cochain complexes
A HE) S H(F)S H(G) S HTY(E) — ...

In the case of a semi-cochain complex F = E, & E_ the corresponding exact
sequence of homomorphisms of cohomologies can be represented in the form
of the hexagon diagram

A cochain complex can be constructed by means of a pre-cosimplial module.

Definition 1.1.8. A positive graded module F = ®,cnE™ together with
homomorphisms of degree one fy, f1, fo, ..., fa, ..., Where

g g o

and

gt I e s,

17



is said to be a pre-cosimplicial module if homomorphisms fo, f1,..., fa,...
satisfy the relations

fiofi=fiofi-1, 1<y (1.1.6)

Homomorphisms fy, f1,..., fa, ... are called the coface homomorphisms of a
pre-cosimplial module F.

From this definition it follows that in the case of a pre-cosimplicial module
we have the following sequence of modules (or submodules of E)

fn+2
fnt1 Jnt1
In In fn
Ja . . .
f3 I3 : : :
f2 J2 f2 J2 f2 f2
f1 f1 J1 f1 f1 f1 f1
go o pr S, fo B2 fo I fo - fo o fo e fo
together with coface homomorphisms fy, f1, fo,..., fn,.... The above dia-
gram shows that each part E"— E"™! of this sequence is equipped with the
n + 2 coface homomorphisms fy, fi,..., far1. For example in the case of the

part B! — E? we have three coface homomorphisms fy, fi1, fo : Bt —= E?
which satisfy

f10f0:f§7 f20fo=foo f1, f20f1:f12-
For each n € N we define d : E* — E"*! by

n+1

d= Z(—nif,-. (1.1.7)

Calculating d? we get

& = Y (1)) (-1 fi= (1) f;0 f;
7=0 i=0 =0 i=0
n n+1 n
= Y (=DM fiofi+ DD (D)o f;
’_i_o ];1f1>l z;O
= Z ( z+]fj Z Z z+]fz fJ,1
12520 j=1,j>i i=0



n n

= Z (=1)Ff 0 f — Z (—1)"*f;0 f; = 0. (1.1.8)

i>5>0 2520

Hence d is the differential of a positive graded module F and E is the positive
cochain complex. The differential d defined in (1.1.7) is called the simplicial
differential, and the cohomology H(FE) = @,enE™ of this positive cochain
complex is called the cohomology of pre-cosimplicial module.

Definition 1.1.9. A pre-cosimplicial module E with coface homomorphisms
fos f1s fa, - ooy fn, ... is said to be a cosimplicial module if a positive graded
module F is endowed in addition to coface homomorphisms with codegen-
eracy homomorphisms sg, S1,82,.-.,Sn, ..., where for each n > 0 and ¢ €
{0,1,2,...,n} the homomorphisms s; : E"™! —= E™ satisfy

SjS8i = SiSj+1, 1 S j (119)
and o
Jisj—1, 1<

sifi = ldg,, t=jori=j3+1,k>j (1.1.10)
fic1s5, 12>

Definition 1.1.10. An element u € E™ of a cosimplicial module F is said to
be a normalized cochain of degree n if s;(u) = 0 for any i € {0,1,2,...,n—1}.

Let us denote by N™"(E) C E™ the submodule of normalized cochains of
degree n and by N(E) C E the graded submodule of normalized cochains.
It is easily proved that if u € N"(E) then du € N""'(E), where d is the
simplicial differential. Hence N(FE) is the subcomplex of a cochain complex
E. Tt can also be proved [46] that the cohomology of the cochain complex of
normalized cochains N (E) is isomorphic to cohomology of a cochain complex
E ie. HIN(E) = N(E)).

Let .o/ be an associative unital K-algebra and .# be an .«/-bimodule. An .-
valued Hochschild n-cochain is a K-linear mapping w : ®".«/ — .# , where
Q" = A QA R...®. Evidently the set of all .#-valued Hochschild

n-cochains is a K-module which we denote by C"(<, .#). If we identify
CN, M) = M then C(A, M) = ®nenC™ (A, M) is the positive graded

19



module of .Z-valued Hochschild cochains. For each n € N we define the

homomorphisms of degree one fo, fi,..., fni1 : E" —= E™"1 as follows
Jo(w)(wo, w1, ., 2n) = Tow(21, 225 . . ., Tp),
fz(w) Lo, L1y - - - afﬁn) = w(l’O, L1y 5 Tj—2, Li—1Tj; Tit1, - - - an):
fn—}—l(u})(x()v T1,. .. axn) = W(Io, Liy- - )In—l) T,y

where 1 < i < n,x9,21,...,%, € &. For instance if n = 0 then an element

m € Co, M) = .M is an element of an &/-bimodule .#, and the above

formulae take on the form

folm)(xg) = zom,  fi(m)(xo) = mxo.

Hence in this simple case the homomorphisms fy, fi : E° —= E' are the
right and left multiplication of elements of .&7-bimodule .Z by elements of an
algebra 7. It can be verified that the homomorphisms fo, f1, ..., fni1 satisfy
the coface homomorphisms relations (1.1.6). Consequently C(<f, .#) is the
pre-cosimplicial module and equipping the positive graded module C'(<, .#)
with simplicial differential d defined in (1.1.7) we get the positive cochain
complex C(&, .# ) with differential d which is called in this case a Hochschild
differential. The cohomologies of this cochain complex are called Hochschild
cohomologies of an associative algebra 7. The pre-cosimplicial module of
Hochschild cochains C(«7, #) becomes the cosimplicial module if for any
integer ¢ € {0,1,2,...,n — 1} we define the codegeneracy homomorphisms

s;: C(A, M) —=C" Y, M) as follows
si(w)(xy, Ty o Tpo1) = WXy, Ty oo Ty L, Tig1y e oy Te1)s (1.1.11)

where w € C"™(A, M ).

Let g be a Lie algebra over a commutative ring K and V be a left K-
module. The left K-module EndV is the Lie algebra over a commutative
ring K if we endow it with the Lie commutator [A,B] = Ao B — Bo A,
where A, B € End V. Let ¢ be a representation of Lie algebra g in V' which
means that ¢ : g — EndV is a homomorphism of Lie algebras, i.e. for
any z,y € g it holds ¢([z,y]) = [p(x), ¢(y)]. An V-valued n-cochain w is
a skew-symmetric K-linear mapping w : gRg® ... ®g —=V and the left
DA ———

K-module of V-valued n-cochains will be denoted by C"(g, V). The direct

20



sum C(g,V) = ®,enC"(g, V), where C%(g, V) = V, is the positive graded
K-module. This module is a positive cochain complex if for any n € N one
defines the coboundary operator d : C"(g, V) —= C""(g, V) by

n+1
dw($17w27'--7xn+1) - Z(_ )Z+1¢((I)i) (x17x27"'7£.i7"'7xn+1)

H— o o
+§ T[Ty 25y T1y ooy By ooy By ey Tns),
1<J

where Z; stands for omitted element. The cochain complex
g, V)L Cl g, V)L ... L CMg V)L otig V) S .., (1.1.12)

is called the Chevalley-Filenberg complex of a Lie algebra g with values in
V. The cohomology of this cochain complex H(g, V) is called the V-valued
cohomology of a Lie algebra g.

1.2 N-differential module and homologies

A concept of cohomology of a differential module or of a cochain complex
with coboundary operator d is based on the quadratic nilpotency condition
d> = 0. It is obvious that one can construct a generalization of a concept
of cohomology of a cochain complex if the quadratic nilpotency d? = 0 is
replaced by a more general nilpotency condition d” = 0, where N is an in-
teger satisfying NV > 2. For the first time the question why we construct a
cohomology theory taking d> = 0 and not d¥ = 0, where N is any integer
greater than one, was posed in the paper [34], where the author developed the
structures based on a general nilpotency condition d = 0 and applied those
structures to construct a generalization of the de Rham complex on a smooth
manifold and generalization of characteristic classes of a vector bundle. The
same idea to consider a more general nilpotency condition d¥ = 0 instead of
quadratic one was independently proposed in [29], where the authors elabo-
rated a generalization of a cochain complex and its cohomologies, and later
these generalizations were studied in the series of papers [19, 20, 22, 36]. In
this section we describe a notion of an N-differential module, which can be
considered as a generalization of a notion of differential module, define the
generalized homologies of an N-differential module and state the conditions
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which ensure the triviality of these generalized homologies. Since several
structures related with a notion of N-differential complex and its homolo-
gies are based on a calculus of g-numbers we begin this section with brief
description of g-numbers and of corresponding notations.

Let K be a commutative ring with a unit. Fixing an element ¢ € K of this
commutative ring one defines the mapping [ ], : n € N—=[n], € K by setting
[0], = 0 and

n—1
ly=1+q+¢+...+¢" "' => ¢ n>1
k=0

The g-factorial of [n], € K, where n € N, is defined by

—=

0] =1, [n]!=1[1;[2]; ... [nly= [klg, n>1.

k=1

If k,n are integers satisfying 0 < k < n,n > 1 then the Gaussian ¢g-binomial
coefficients are defined by

[ : ] B mq![ﬁq—! Kl

The Gaussian g-binomial coefficients satisfy the recursion relation

S A R PSS P

[n?]q _ [Z]q”nﬂk[kﬁlh (1.2.2)

Let us fix an integer N such that N > 1. Following the paper [35] we state
two assumptions on a commutative ring K and on an element ¢ of this ring:

(ml) [N]q = 07
(M) [N], =0 and the elements [2], ..., [N — 1], are invertible.

It is easy to see that if an element ¢ of a ring K satisfies the condition ()
then ¢V = 1 and this implies that ¢ is an invertible element of a ring K. It
is worth mentioning that the Gaussian g-binomial coefficients in the case of
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an element ¢ € K satisfying the assumption (9My) have very useful property
which we shall often use in what follows in order to prove several propositions
and theorems. This property is

[]H —0, ke{l2,.. . N—1}, (1.2.3)
q

where ¢ € K satisfies (My).

The most important example of the above described structure, which will be
used throughout this thesis, is the field of complex numbers, i.e. if we take
K = C then a complex number ¢ satisfying the assumption (%) is an Nth
root of unity different from 1 and a complex number ¢ satisfying the assump-
tion (My) is a primitive Nth root of unity, for instance g = exp (27i/N).

Now we turn to a generalization of a differential module. Let E be a left
K-module.

Definition 1.2.1. A left K-module F is said to be an N-differential module
if it is equipped with an endomorphism d : E —= E which satisfies d"¥ = 0.
An endomorphism d will be referred to as an N-differential of N-differential
module E. If K is a field then N-differential module E will be referred to as
an N -differential vector space.

It is clear that according to the definition (1.1.1) given in the previous section
and to the above definition an 2-differential module is a differential module
which means that a notion of N-differential module can be considered as a
generalization of notion of differential module.

Let us fix a positive integer m € {1,2,..., N —1} and split up the Nth power
of N-differential d as follows d = d™od"~™. Then the nilpotency condition
for N-differential can be written in the form dV = d™ o d¥~™ = 0 and this
leads to possible generalization of a concept of cohomology. For each integer
1 <m < N —1 one can define the submodules

Zm(E) = {2 €E:d"s=0}CE, (1.2.4)
Bn(E) = {x€E:3yckE, x=d "™y} CE. (1.2.5)

From d" = 0 it follows that B,,(F) C Z,.(E).
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Definition 1.2.2. For each m € {1,2,...,N — 1} the quotient module
H,.(F) := Z,(F)/B,(E) is said to be a generalized homology of order m of
N-differential module F.

It should be mention that in the case of classical theory of homology with
d?> =0 (i.e. N =2) there is only one choice for a value of m in the formulae
(1.2.4),(1.2.5) which is m = 1 and in this case we have only homologies of or-
der one which are easily identified with the ordinary homologies of differential
module by Z,(E) = Z(E), Bi(E) = B(E), H\(E) = H(E) = Z(E)/B(E).
In what follows we shall denote by [z] € H,,(E) the generalized homology
class of order m generated by an element x € Z,,(E).

Let E, F' be N-differential modules with N-differentials correspondingly d, d'.
The definition 1.1.2 of a homomorphism of differential modules given in the
previous section is easily generalized to N-differential modules as follows: a
homomorphism of modules ¢ € Hom (F, F') is said to be a homomorphism
of N-differential modules E, F' if it satisfies ¢ od = d' o ¢. As in the case
of differential modules a homomorphism ¢ of N-differential modules F, F
induces the homomorphism of their homologies. Indeed if we fix an integer
m € {1,2,...,N — 1} and consider a homomorphism ¢ : £ — F of N-
differential modules respectively with differentials d, d’ then for each element
x € Zn(E) it holds (d')™(p(x)) = (d)™o¢(x) = pod™(x) = ¢(0) = 0/, where
0,0" are respectively the zeroes of differential modules F, E’. Hence we have
¢ (Zm(E)) C Zn(F) and analogously ¢ (B,,(E)) C B,,(F). Consequently
the mapping ¢, : H,,(E) — H,,(F) defined by

¢«([2]) = [¢(2)], = € Zn(E) (1.2.6)

where [x] € H,,(E), [¢(z)] € H,,(F) are the homology classes of order M of
z and ¢(x), is the homomorphism of homologies of N-differential modules
E, F. Thus a homomorphism ¢ : E — F' of N-differential modules induces
the homomorphism ¢, : H,,(E) — H,,(F') of their homologies of order m.

It turns out that in the case of N-differential modules one can prove a propo-
sition [20] which is similar to the exact triangle proposition (1.1.3) for differ-
ential modules proved in the previous section.

Proposition 1.2.3. If 0—F % F %G = 0is an evact sequence of N -
differential modules then for every m € {1,2,..., N —1} there are homomor-
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phisms 0 : Hy,(G) — Hy_m(E) such that the following hexagon diagram

Ho(F) Hin(G)
= T
o (E) Hy—m(E)
X o /
Hy m(G) Hy_(F)

18 exact.

Proof. We begin the proof of this proposition with the exactness of the
above diagram at the vertex H,,(F), i.e. we will show Im¢, = Ker,.
Let dg,dp,dg be N-differentials correspondingly of N-differential modules
E,F,G. For any [y| € Im¢, C H,,(F) there exists [z] € H,,(F) such that
¢«([x]) = [y]. From (1.2.6) it follows [y] = [¢(z)] which implies y — ¢(z) = 2,
where z € B,,(F'). Obviously ¢(z) € B,,(G). Applying a homomorphism 1)
to the both sides of y — ¢(x) = z and taking into account the exactness of
the sequence F 2 F Y G we get ¥(y) = ¢¥(z). Hence ¥(y) € B,,(G) and
[¢¥(y)] = 0 in homologies of order m of a N-differential module G. Conse-
quently [¢(y)] = ¥.([y]) = 0 which gives [y] € Ker,. Thus Im ¢, C Ker 1,
and proving similarly Ker, C Im ¢, we obtain Im ¢, = Ker ..

The connecting homomorphism 0 : H,,(G) — Hy_,(E) of homologies can
be constructed as follows: let [z] € H,,(G), i.e. dfx = 0. As 9 is surjective
homomorphism there exists y € F' such that ¥(y) = z. We have ¢ (d%(y)) =
dx = 0. Hence dj?(y) € Kervy but Kery = Im¢. Thus there exists z € £
such that ¢(z) = d(y). Differentiating both sides of this relation N — m
times with respect to dr we obtain

dp~"(0(2)) = dp(y) = 0 = ¢(dp " (2)) = 0.

As ¢ is injective we conclude d% ™(z) = 0. Now let us define the homo-
morphism 0 : H,,(G) — Hy_,,(E) by 0([z]) = [2], where [z] € Hy_,(E).
It is easy to prove Imd C Ker ¢, and Im1), C Kerd. Indeed the former is
equivalent to ¢, o d = 0 and the latter is equivalent to 0 o ¥, = 0. We have

¢+ 0 9([a]) = ¢u([2]) = [9(2)] = [dF (y)] = 0 € Hy—m(F).
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If [z] = ¥.([y]), where x € Z,,(G),y € Z,(F) and 0([z]) = [z], where
2 € Zy(E), then ¢(z) = d(y) but d(y) = 0 which implies ¢(z) = 0, and
because of injectivity of ¢ we obtain z = 0 and [z] = 0. Similarly one can
show Ker ¢, C Im 0 and Ker 0 C Im),, and this ends the proof. m

It is obvious that each element z of the submodule Z,,(F) also satisfies
d™ 'z = d(d™z) = 0 and consequently Z,,(E) C Z,,+1(E). Similarly for
each element y of the submodule B,,(E) we have y = dV ="z = dVN~m+ (dz)
which means B,,(F) C B,+1(F). Hence one can define the inclusion 7 :
Zm(E)—Zyn1(E) and @ : By, (E) — By,41(E) which induces the inclusion
of homologies i, : Hp,(E)—=H,,1+1(E), where i,([z]) = [i(z)] and z € Z,,(E).
Thus we have the sequence

% Tx

H(E) 2> Hy(E) 2> ... " Hy_1(E).

Ifx € Z,11(F) then d™z = 0. Consequently the element dz € dZ,,1(F) sat-

isfies ™z = 0 which means dz € Z,,(E). Hence dZ,,1(E) C Z,(E). Anal-

ogously for each y € B,,11(F) there exists # € F such that y = dV~(m+ly

which implies dy = d¥~™x. Hence dB,;1(E) C B,(E). From this it

follows that if x € Z,,1(F) then one can define d,([z]) = [dz] where

di : Hpi1(E) — H,,(E). Thus the N-differential d generates the sequence
Hy o (E) 2 Hy o(E) 5 ... % H(B).

It can be shown [29] that the generalized homologies of different order of an
N-differential module E are not independent.

Proposition 1.2.4. For any integers l,m satisfyingl > 1,m > 1,1+ m <
N — 1 the following diagram

m
d*

Hyyn(E) H(E)
iz/ g\wm
H,(E) Hy_n(E)
dh } L/z*
HNfl(E) = HN—(H—m) (E)

18 exact.
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Let us remind a reader that in the previous section a homomorphism ¢ :
E — E’ of differentials modules E, E’ with differentials d, d’ is defined as a
homomorphism of modules which commutes with differentials ¢ o d = d' o ¢.
This definition is applicable to N-differential modules, i.e. if E, E' are N-
differential modules with N-differentials d, d’ then ¢ : E— E’ is said to be a
homomorphism of N-differentials modules if in addition to the requirement
to be a homomorphism of modules it satisfies ¢ o d = d' o ¢. It is evident
that ¢(Z,(E)) C Zn(E'), o(Bn(E)) C By(E') and hence a homomorphism
¢ induces the homomorphism of homologies of order m of N-differential
modules F, E" which will be denoted just as in the case of differential modules

by ¢..

For applications of the theory of homologies of differential modules it is
important to find the conditions which guarantee that the generalized ho-
mologies of an N-differential module is trivial. One criteria for generalized
homologies to be trivial is stated in the following proposition [34].

Proposition 1.2.5. Let E be an N-differential module with N -differential
d. If there exists an integer p € {1,2,...,N — 1} such that a generalized
homology of order p of an N-differential module E is trivial, i.e. H,(E) =0,
then generalized homology of any order of E is trivial, i.e. H,(E) =0 for
anym € {1,2,...,N —1}.

The next very useful criteria for generalized homologies of an N-differential
module to be trivial is related with suitable generalization of homotopy given
in [34]. Here we give this criteria in the form proposed in [22].

Proposition 1.2.6. Let E be an N-differential module with N -differential
d. If there exist endomorphisms hg, hy,...,hn_1 € End E which satisfy the
relation

AV ho+d¥ 2 hyd+ ..+ dV T R R dE 4 4 Ay dV T = 1dg,

where Idg : E—FE is the identity mapping, then the generalized homologies
of any order p € {1,2,...,N — 1} of N-differential module E is trivial, i.e.
H,(E)=0.

The following proposition [22] can be used in order to show that the gen-
eralized homologies of an N-differential module are zeros in the case of a
commutative ring K and its element ¢ € K which satisfy the assumption

(My).
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Proposition 1.2.7. Let K and q € K satisfy the assumption (Nz). Then
for any integer k € {1,2,..., N —1} a generalized homology Hy(E) of an N -
differential K-module is trivial if there exists an endomorphism h : E—FE
which obeys the relation

hod—qdoh=1dg,
where d 1s an N-differential of E.

1.3 N-complexes and cohomologies

We start this section with a definition of N-complex [34] which is a general-
ization of the notion of cochain complex given in Section 1.1.

Definition 1.3.1. An N-differential module E with N-differential d is said
to be a cochain N-complex of modules or simply N-complex if E is a graded
module F = @z F* and its N-differential d has degree 1 with respect to a
graded structure of E, i.e. d: EF — EFL,

It is worth mentioning that if N-differential of a graded N-differential module
E has degree -1, i.e. d: E¥*!' —= E* then E is called a chain N-complex of
modules [34]. Since in this thesis our main concern is cochain N-complexes
in what follows N-complex stands for cochain N-complex of modules. Ac-
cording to this terminology we will call H,,(E), where m € {1,2,..., N — 1}
a cohomology of order m of N-complex F.

It is easy to see that the cohomologies of order m of an N-complex F, where
m € {1,2,..., N — 1}, inherit a graded structure of module E. Indeed let us
fix me{1,2,...,N — 1}, k € Z and define the submodules

7E(E) = {x € E¥:d"x =0} C E",
(B) = {zeB":3ye EFmN o =aV"™y} c Z5(E).
Then H,,(E) = ®rezHY (E), where H* (E) = Zk (E)/BE (E).

Let E = ®rezE*, F = @pezF* be two N-complexes with N-differentials
respectively d,d’. A homomorphism of N-complexes ¢ : F— F' is a homo-
morphism of N-differential modules E, F' which is of degree 0 with respect
to graded structures of F and F. This can be illustrated by the following
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commutative diagram

d d d

..HEk*)Ek—H*)...

P,k
d d d

*)Fk*)Fk—H*)

From the hexagon diagram of Proposition 1.2.3 it follows that a short exact
sequence of N-complexes

—ELFLG—0
induces the exact sequence in cohomologies of these N-complexes
&gk Ry B oERG) S EE(R) S
& HE () B HE(G) S HEPY(B) 5

Similarly the exact hexagon of Proposition 1.2.4 gives rise to the following
exact sequence in cohomologies of an N-complex F

k i k a3 rk+m Y= m k+m d
- Hm (E> - Hl+m<E) - Hl (E) — HN—m(E) -
d. k+m+l1 o R di\f—(H—m) PN
- HN—(H‘W)(E) — HyT (E) H)WYE) — ...

An N-complex can be constructed [19] with the help of pre-cosimplicial K-
module E = @,z E™ whose coface endomorphisms are fy, fi,..., fn.... Let
us assume that ¢ € K satisfies the assumption (M), i.e. [N],=0, and for any
integer m > 0 define the endomorphism d,, of a module E by

o = Ot + "> (1) fusmap  BM— B (1.3.1)
r=0
where
n—m-++1
om= Y df (1.3.2)
i=0

For instance if m = 0, 1 then

n+1

dy = ZqifiiEn%EnHa
i=0
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n
o= Y g fi— " B BT
i=0
Obviously an endomorphism d,,, has degree one with respect to graded struc-
ture of a module E, ie. d,, : E" — E"L,

Proposition 1.3.2. If E is a pre-cosimplicial module with coface endomor-
phisms fo, fi,-- .y fu,... and ¢ € K satisfies the assumption (M) then for
any integer m > 0 the endomorphism d,, of a module E defined by (1.3.1) is
an N-differential, i.e. dY =0, and a graded module E endowed with d,, is a
positive N-complex.

We can construct an N-complex by means of a graded associative unital al-
gebra and this kind of N-complex is very important for the present thesis
because we will use it the following sections to construct an analog of differ-
ential forms with exterior differential d = 0 on a reduced quantum plane
and to construct a generalization of connection form and connection. This
structure is proposed and studied in the papers [2, 3, 9].

From now on and until the end of this section we assume that

e K is the field of complex numbers C,
e g € Cis a primitive Nth root of unity,

e graded structure stands for Zy-graded structure.

Let & = ®pezy " = ' D A @ ... D V! be a Zy-graded associative
unital algebra whose identity element is denoted by 1. It is worth mentioning
that in order to avoid cumbersome notations we use simplified notations for
gradings (which are the elements of the group of residue classes modulo
N) of an algebra &/ denoting them simply by 0,1,..., N — 1 instead of
0,1,...,N —1. We remind a reader that a notion of graded associative
unital algebra includes in addition to usual axioms (vector space over C,
associativity, identity element) a requirement for a law of composition to be
consistent with a graded structure of an algebra in the sense that for any
homogeneous elements u, v € 7 it holds

luv| = [uf + o], (1.3.3)

where |ul, [v], |u 4+ v| € Zy are the gradings. Let us list few basic facts con-
cerning a structure of a graded algebra. From (1.3.3) it follows immediately
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that the subspace &° C & of elements of grading zero is the subalgebra
of an algebra /. Since this subalgebra plays an important role in several
structures related to a graded algebra .7 we will denote it by 2, i.e. A = &7°.
It is easy to see that each subspace &' C & of homogeneous elements of
grading ¢ is the A-bimodule. Hence in the case of a graded algebra o7 we
have the set of A-bimodules &7°, &', o7? ... &/V~!. The graded subspace
Z (o) C @ generated by homogeneous elements u € /%, which for any
v € o satisfy uv = (—1)*vu, is called a graded center of a graded algebra

o

Definition 1.3.3. Let &/ = EBkeZN,Q%k be a graded associative unital al-
gebra over C and u € &%, v € &' be homogeneous elements. The graded
commutator |, |: % @ o' — &/* is defined by

[u,v] = uv — (=1)"vu. (1.3.4)

Definition 1.3.4. A graded derivation of degree m of a graded algebra .o is
a linear mapping 0 : o — o of degree m with respect to graded structure
of o7, ie. §:.9/" —= /"™ which satisfies

S(uv) = d(u) v+ (=1)™ud(v), (1.3.5)

where u is a homogeneous element of grading [, i.e. u € &/'. If m is even
then ¢ is a derivation of an algebra o/, and if m is odd then ¢ is called
an antiderivation of a graded algebra 7. The property (1.3.5) of a graded
derivation is called graded Leibniz rule.

Given a homogeneous element v € @™ of grading m one associates to it a
graded derivation of degree m, which is denoted by ad,, as follows

ad, (u) = [v,u] = vu — (=1)™uv, (1.3.6)

where v € @7!. The graded derivation ad, is called an inner graded derivation
of an algebra 7.

The notions of graded commutator and graded derivation of a graded algebra
can be generalized within the framework of noncommutative geometry and
the theory of quantum groups with the help of ¢g-deformations. In general ¢
may be any complex number different from 1 but for our purpose we need ¢
to be a primitive Nth root of unity.
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Definition 1.3.5. Let &/ = @®pez, " be a graded associative unital algebra

over C and u € &% v € &' be homogeneous elements. The graded q-
commutator [ , |, : Z* @ &' — o/**! is defined by

[u,v], = uv — ¢"vu, (1.3.7)
where ¢ is a primitive Nth root of unity.

Definition 1.3.6. A graded q-derivation of degree m of a graded algebra o7
is a linear mapping ¢ : & —= &7 of degree m with respect to graded structure
of &, ie. §:.4/—= /"™ which satisfies the graded g-Leibniz rule

S(uv) = d(u) v+ ¢™ud(v), (1.3.8)
where u is a homogeneous element of grading [, i.e. u € &7*.

In analogy with an inner graded derivation one defines an inner graded g¢-
derivation of degree m of a graded algebra .o# associated to an element v €
/™ by the formula

ad?(u) = [v,u], = vu — ¢™uw, (1.3.9)

where u € &/!. It is easy to verify that an inner graded g-derivation is a
graded ¢-derivation.

The following theorem [2] can be used to construct a cochain N-complex for
a certain class of graded associative unital algebras. It is worth mentioning
that in [2] the author only suggests that this theorem can be proved by
means of mathematical induction. In the present thesis we give a complete
proof of the following theorem and prove a proposition which asserts that
the generalized cohomologies of a cochain N-complex, constructed in the
following theorem, are trivial.

Theorem 1.3.7. Let &/ = @z, A" be a graded associative unital algebra
and q be a primitive Nth root of unity. If there exists an element v € /' of
grading one which satisfies the condition v™ € Z°(&/) then the inner graded
q-derivation d = adl of degree 1 is an N-differential and the sequence

AL L L L N (1.3.10)

1s the cochain N-complez.
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Proof. We begin the proof with a power expansion of d*, where 1 < k < N.
Let u be a homogeneous element of an algebra 7 whose grading will be de-
noted by |u|. For the first values of k = 1,2, 3 a straightforward computation
gives

du = [v,uly =vu—q"uv
dPu = (v v ul,l, =v*u— g2, vuv + @y e?
s Uy Ulglq q q q y
BPu = viu— q|“|[3]qv2 uv+ qQ‘“‘H[S]qU wv? — ¢y 03,

We state that for any k& € {1,2,..., N} and any homogeneous u € &7 a power
expansion of d* has the form

k
d*u = Z(—l)ipi [ lf } V", (1.3.11)
i q

where p; = ¢’*°0) and o (i) = @ We proof this statement by means of
mathematical induction assuming that the above power expansion (1.3.11)
for d* is true and then showing that it has the same form for k& + 1. Indeed
we have

ot = at) = a( Y b ])

_ ] |: :| k+1 z z \u\—}-k k— 1 i+1)

k k
_ ; A i Jul+k k k—i, i+l
- A L
q

=0



u k —1 7
—l—Q‘ H_kpi—l [ i—1 } )UkH uv
q

+(_1)k+1q\u\+kpk u’ukH.

q

_ vk+1u—|—§;(—l)i<pi { Ij }

Now the coefficients in the last expansion we can write as follows

k k k , , 2
. lul+k — k+o(i—1)—o(i)
pl|:7/:|q+q pl—1|:2_1:|q pl(|:2:|q+q |:,L_1:|q>’

and making use of

J(i—l)—o(i)—(i_l)z(i_Q)—i(igl)—l—i

together with the recurrent relation for g-binomial coefficients (1.2.2) we get

MR Pt i
q q q

As pr1 = ¢"*Fp, we finally obtain

k1
d" My = Z(—l)ipi [ K 1 ] VP,
q

7
=0

and this ends the proof of the formula for power expansion of d*.

Now our aim is to show that the power expansion (1.3.11) implies d¥u = 0
for any v € o/. Indeed making use of (1.3.11) we can express the Nth power
of d as follows

a N
N, _ Vi k=i, i
d u—ZO:( 1)pl{ ; Lv uv’. (1.3.12)
Now we take into account that ¢ is a primitive Nth root of unity. In this
case we can apply (1.2.3) which gives
[]ZV] —0, ie{l,2... N—1}
q

Hence the terms in (1.3.12), which are numbered with i = 1,2,..., N — 1,
vanish, and we are left with two terms

dNu =N u 4 (=1)N My o™,
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As v¥ is the element of grading zero (modulo N) of the graded center 2 (<)
we can rewrite the above formula as follows

N(N —1)

dNu = (1+ (—1)Nq"(N))qu, o(N) = 5

In order to show that the multiplier in the above formula vanish for any
N > 2 we consider separately two cases for N to be an odd or even positive
integer. If N is an odd positive integer then the multiplier 1 + (—1)V¢g"™)
vanish because in this case

L+ ()Y =1 (g")7 =0,
If N is an even positive integer then
14+ (—DNg™ =14 ()Y ' =14 (-1 ' =0

Hence for any N > 2 we have d¥ = 0, and this ends the proof of the
theorem. O

Theorem 1.3.8. Let g be a primitive Nth root of unity, o/ = Biez, A"
be a graded associative unital algebra with an element v € </ satisfying
vV = X1, where A # 0 and 1 is the identity element of an algebra </. Then
the generalized cohomologies H,(<7) of the cochain N-complex of Theorem
1.8.7

AL L L L N (1.3.13)

with N-differential d = ad?, induced by an element v, are trivial, i.e. for any
ne{l,2,...,N — 1} we have H, (/) = 0.

Proof. Let us define the endomorphism h of the vector space of &7 as follows

1 N-1
h(u) = m v T,

where u is an element of an algebra 7. If u is a homogeneous element of a
graded algebra 7 then |h(u)| = |u] + N — 1, where |u| is the grading of an
element u. For any homogeneous u € o/ we have

(hod—gqdoh)(u) = h(du)—qd(h(u))

= h(ad?(u)) — ﬁ ad? (vV~1y)
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= U, Ulg) — q v, oV !
= o) = s o,
u q N ul+N—-1, N—1
= h(vu—d ‘uv)—(l_q)/\(v u— gl v )
_ 1 N, _ g 1, .
BT P TP S
4N —qM oM
T—gx” "=

_ B9

TP S

The endomorphism h : & —= .o/ of the vector space of an algebra <7 satisfies
hod—qdoh =1d, and applying Proposition 1.2.7 we conclude that the
generalized cohomology of the cochain N-complex

d d d d _
S gt S S S N
are trivial. ]

Let us mention that there is a class of algebras which satisfy the conditions
formulated in Theorem 1.3.7, and we can use this kind of algebras to construct
cochain N-modules. These algebras are called generalized Clifford algebras.

Definition 1.3.9. A generalized Clifford algebra CIJ)V, where p, N are integers
satisfying p > 1, N > 2, is an associative unital algebra over the complex
numbers C generated by a set of p canonical generators {xy, s, ..., x,} which
are subjected to the relations

T T = ng(j*i):Uj r, N =1, 4,j7=12,...,p (1.3.14)
where sg(k) is the usual sign function, and 1 is the identity element of an
algebra.

Since Theorem 1.3.7 deals with a graded algebra we can endow a generalized
Clifford algebra with an Zy-gradation. There are several ways to equip a
generalized Clifford algebra with Zy-gradation. One possible way of doing
this is to assign the grading zero to the identity element 1, the grading one to
each generator z; and to define the grading of any product of generators as the
sum of gradings of its factors modulo N. From the definition of generalized
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Clifford algebra it follows that each generator x;, i € {1,2,...,p} satisfies
the condition of Theorem 1.3.7, i.e. ¥ =1 € 2/(€)), where 2(¢]) C ¢
is the graded center of a generalized Clifford algebra. Hence we can use each
generator to construct an N-differential d, and then a generalized Clifford
algebra endowed with an appropriate Zy-gradation becomes a cochain N-
complex. A more general way to construct an N-differential by means of an
element v of grading one satisfying vV € 2 (Q:;V ) is to take the linear com-
bination of generators x1,xo, ..., x, with complex coefficients A, Ao, ..., Ay,
ie.

V=MT1+ AT+ AT (1.3.15)

In the next chapter we will give a more detailed description of this construc-
tion proving that

p P
V= NV =[N e z(@).
i=0 i=0

Hence the element v defined in (1.3.15) induces the N-differential, and a
generalized Clifford algebra @i,v becomes the cochain N-complex. In the next
chapter we will show that this kind of cochain N-complexes can be used to
construct a generalized exterior calculus with exterior differential d¥ = 0 on
a reduced quantum plane.

It should be mentioned that a matrix cochain N-complex proposed in [22]
is a particular case of the above described cochain N-complex. Indeed let
My /(C) be the algebra of square matrices of order N. The matrices EJ', where
k,l € {1,2,...,N} defined by (Ef'); = 6¥ 0] form the basis for the algebra
My (C). The structure constants with respect to this basis are determined by
EF ET = 6% E'. The matrix algebra My(C) becomes an Zy-graded algebra if
one attributes the grading k—I (modulo N) to the matrix EF. Then My (C) =
@Biczy My (C), where M4 (C), is the subspace of homogeneous elements of
grading 7. Evidently the matrix V' = ZkN:jl M EFTY 4 Ay EY, where )\, are
arbitrary complex numbers, has grading one, i.e. V € M (C). It can be
verified that V¥ = A\ \y... Ay 1. Consequently according to Theorem 1.3.7
the inner g-derivation d induced by matrix V is the N-differential and the
graded matrix algebra My (C) endowed with d is the cochain N-complex.
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Chapter 2

Graded differential algebras
and exterior calculus

2.1 Graded differential algebras

Throughout this chapter K will be either the field of real or complex numbers.
We begin this section with a series of definitions.

Definition 2.1.1. A graded differential algebra is a graded associative unital
K-algebra o/ = @;cz97" together with a linear mapping d : &/ — .o/, where

i) d: /" — /" for any integer i € Z, i.e. d is of degree 1,

i) duv) = d(u)v + (=1)ud(v) for any homogeneous u € &7 and any
v € o, i.e. d satisfies the graded Leibniz rule,

iii) d?u =0 for any u € <.

A linear mapping d : o — &/ is called a differential of a graded differ-
ential algebra o/. The properties i) and ii) show that differential d is an
antiderivation of a graded algebra o7

Definition 2.1.2. Let &/, % be two graded differential algebras with differ-
entials correspondingly d,d’. A linear mapping ¢ : &/ —= £ is said to be a
homomorphism of graded differential algebras if

i) ¢: " —= A for any integer i € Z,
i) ¢(uv) = ¢(u) p(v) for any u,v € o7,
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iii) pod=d o¢.

Definition 2.1.3. A graded differential algebra .o/ is said to be commuta-
tive graded differential if it is commutative graded algebra, i.e. the graded
commutator of any two homogeneous elements u,v € & vanishes [u,v] =
uv — (—1)kl =,

Making use of the notions introduced in the previous chapter we can say that
a graded differential algebra o7 with differential d is a cochain complex whose
cohomology is the quotient space H(«/) = Z(</)/B(</), where Z(4/) =
{u e & :du = 0,ie. u € Kerd} C & and B(#) = {u € & : Jv €
o ,u = dv,i.e. u € Imd} C Z(</). The cohomology of a graded differential
algebra inherits the graded structure of &, i.e. H(&) = @®;czH (&), where
H(o) = Zj()/Bi(«). Clearly Z(«/) C & is the graded subalgebra
of &, and B(«/) C Z(</) is the graded bilateral ideal in Z(</). Hence
the cohomology H(<7) is a graded algebra. If o/ is commutative graded
differential algebra then its cohomology H (<) is also commutative graded
algebra. A homomorphism ¢ : &/ — 2% of graded differential algebras <7, #
induces the homomorphism of their cohomologies which will be denoted by

6. : H(of) — H(B).

Graded differential algebras play an important role in modern differential
geometry. If M is a smooth finite dimensional manifold then the de Rham
algebra of differential forms Q(M) = @,QP(M) together with exterior differ-
ential d is a commutative graded differential algebra. If M, N are two smooth
finite dimensional manifolds then a smooth mapping ¢ : M — N induces
with the help of pull-back of differential forms the homomorphism of graded
differential algebras ¢* : Q(N) — Q(M). The cohomologies of the commu-
tative graded differential algebra Q(M) is called the de Rham cohomologies
of a manifold M, and they play an important role in differential topology of
manifolds.

The next important example of a graded differential algebra is based on the
Chevalley-Eilenberg cochain complex of V-valued cochains on a Lie algebra
g, where V' is a vector space of representation of g. The description of this
cochain complex is given at the end of the Section 1.1 of the previous chapter.
Let G be a Lie group, g be a Lie algebra of G, C™(g) be the vector space
of K-valued n-cochains, i.e. if w € C"(g) then w is a skew-symmetric linear
mapping w: g g® ... ® g (n times) — K. Obviously the vector space of
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K-valued n-cochains C"(g) can be identified with A"g*. In turn the vector
space A"g" can be identified with the vector space (2 (G) of left-invariant
differential n-forms on a Lie group GG. Then the exterior differential d induces
the differential on the vector space C(g) = @,C"(g) and we get the cochain

complex
d

C%g) L CMg) L. L cn(g) S omtig) L., (2.1.1)
Obviously C(g) equipped with the differential d is the graded differential
algebra whose multiplication is induced by the exterior multiplication of left-
invariant differential forms on a Lie group G. It is worth mentioning that in
the case of a compact Lie group G the cohomology of C(g) is isomorphic to
the de Rham cohomology of G.

If @/, % are graded differential algebras then we can consider the tensor
product of cochain complexes &/ ® % which is also the cochain complex.
This cochain complex becomes a graded differential algebra if one endows it
with multiplication

(u®v) (W @) = (=D (yu') @ (vo). (2.1.2)

The cochain complex o7 ® & endowed with the multiplication (2.1.2) will be
referred to as the tensor product of graded differential algebras.

Theorem 2.1.4. Let &/ = @;cz9™ be a positive graded algebra which is
also a cosimplicial module whose coface and degeneracy homomorphisms are
denoted respectively by fo, f1,- -+ fa,... and So, S1,...,8n,.... If for any ho-
mogeneous elements u,v € & and for any integer i € {0,1,..., |u|+ |v|+ 1}
the multiplication (u,v) —=wv in o/ and coface homomorphisms are related
by

filuv) = { filwe, i< lul (2.1.3)

U fimpu(v), 1> |ul
and
Srupr1(w) v =u fo(v), (2.1.4)

then a graded algebra of endowed with the simplicial differential d is a graded
differential algebra. If in addition to relations (2.1.3),(2.1.4) for any i €

{0,1,...,|u| + |v| — 1} the codegeneracy homomorphisms satisfy
'  osi(uw)v, i< |y
si(uv) = { s (®), i Jul (2.1.5)
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then the subcomplex of normalized cochains N(</) C f is the subalgebra of
a graded differential algebra < .

An important example of a graded differential algebra is based on Proposition
2.1.4. Let o/ be an associative unital K-algebra with the unit 1. Let us
denote the tensor algebra of & by T(«/) = @enT' (), where T' (/) =
®"*le/. We remind a reader that the multiplication «/% x &7/ — A™J in
T(g/) is given by

(M QU ®...QU) (1 OV®...QUV;) =U1 QU ... QU RV RV Q... RQvj,

and T'(/) is the associative unital algebra. For any integer n > 0 and i €
{1,2...,n} we define the homomorphisms of vector spaces f; : & —.a/™ "
and s;_ : /" — /™! as follows

folup @ uy ® ... @ uy) 1RugR@u ® ... QR Uy,

fz(u0®u1®®un) = WU R..0U_1RTRuU;® ... R Uy,
fori(Wo@u ® ... 0u,) = WU X...Qu, X1,
( )

Si_1U0®U1®...®U,n = U0®U1®®U,Z_1U1®®Un

It can be checked that the homomorphisms f;, s; satisfy respectively the co-
face and degeneracy homomorphisms conditions together with the conditions
(2.1.3),(2.1.4),(2.1.5) of the Theorem 2.1.4. Thus the tensor algebra T'(.7)
equipped with the homomorphisms f;, s; is the cosimplicial K-vector space
and it is the graded differential algebra if we endow it with the simplicial
differential d.

Definition 2.1.5. The graded differential subalgebra N(7T'(«/)) C T(</) of
normalized cochains is called the universal graded differential envelope of a

graded algebra <7 and is denoted by Q(.«).

Definition 2.1.6. Let o/ be an associative unital algebra and .# be an
&7/-bimodule. A linear mapping d : & —.# which satisfies the Leibniz rule

d(uv) =d(u)v+ud(v), wuved

is called an . -valued first order differential calculus or simply . -valued
differential calculus over an algebra o7. A mapping d is referred to as differ-
ential of differential calculus. If <7 is freely generated by a set of generators
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{x'}ier, A is a free right (or left) </-module with the basis {e'};c;, and

o L M is an M -valued differential calculus, where differential d satisfies
the condition e = dz?, then a differential calculus is called a coordinate
differential calculus over & with values in ..

Let us mention that if &/ is an algebra of functions and </ L s a
coordinate differential calculus over &7 then each z‘, where i € I, can be
viewed as a coordinate function. If o7 is a graded differential algebra with
differential d and the subalgebra of elements of grading zero 27° denoted by
2 then as it was mentioned before 27! is the 2-bimodule and it is easy to

see that A % o7 is the «7'-valued differential calculus over 2.

Definition 2.1.7. Let 2 be an associative unital algebra. If there exists a
graded differential algebra .27 such that 27 is isomorphic to 2 then < is
called an exterior calculus over an algebra 2. In this case the elements of
/" are called differentials forms of degree i of exterior calculus.

As an example of an exterior calculus over an algebra we can consider the
universal graded differential envelope Q(.27) of an associative unital algebra
/. This exterior calculus is usually referred to as the universal exterior
calculus over an algebra <7 or the algebra of universal differential forms on
o/ [17]. It is worth mentioning that the universal exterior calculus over an
algebra o is the biggest exterior calculus whose subalgebra of elements of
degree zero is an algebra .o/, and any other exterior calculus over an algebra
is a quotient algebra by some (graded) differential ideal. For the practical
purpose it is usually not convenient to use the algebra of universal differential
forms and there are few approaches of how to construct a ”smaller” exterior
calculus [10, 30, 32, 39, 43, 48]. In this section we will give a brief description
of one of these approaches [48] which yields the Wess-Zumino algebra Qy
of differential forms on a reduced quantum plane.

Let o % # is a differential calculus over an algebra &7 such that .# is
a finite freely generated right «/-module with a basis {e;}?_;. Then the
4/-bimodule structure on .# is uniquely determined by the commutation
relation

ve' = ¢l R(u);, (2.1.6)

where R : o/ — Mat, (<) is a homomorphism from an algebra . to the
algebra of .o/-valued square matrices of order n. Here we assume that R(u) =
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(R(u)}) € Mat,,(«7) is a square matrix of order n whose entry R(u)! is at the
intersection of its jth column and ith row. Thus for any u,v € & we have

R(uv)] = R(u)iR(v); & R(uv) = R(u)R(v),
where R(u)R(v) is the product of two matrices.

Definition 2.1.8. Let o % .4 be a differential calculus such that .7 is a
finite freely generated right .o/-module with a basis {e;} ;. The mappings
Op : & — o/, where k € {1,2,...,n}, uniquely defined by

dv = e oL(v), ved (2.1.7)
are called the right partial derivatives of differential calculus o/ L.

Proposition 2.1.9. If &/ LM isa differential calculus over an algebra <of
such that A is a finite freely generated right of -module with a basis {e;},
then the right partial derivatives Oy : &/ —= o of this differential calculus
satisfy

O (uv) = O (u) v + R(u),0;(v). (2.1.8)

The property (2.1.8) is called the twisted (with homomorphism R) Leibniz
rule for partial derivatives.

Let x,y be two variables which obey the commutation relation

Ty=qyuw, (2.1.9)

where ¢ # 0,1 is a complex number. These two variables generate the alge-
bra of polynomials over the complex numbers which we denote by B[z, y].
This algebra is an associative algebra of polynomials over C and the identity
element of this algebra will be denoted by 1. In noncommutative geometry
and theoretical physics a polynomial P € B, [z, y] is interpreted as a function
on a quantum plane with two noncommuting coordinate functions x,y and
the algebra of polynomials B,[x,y] is interpreted as the algebra of (polyno-
mial) functions on a quantum plane [16, 40, 41]. If we fix an integer N > 2
and impose the additional condition

oV =y =1, (2.1.10)

43



then a quantum plane is called a reduced quantum plane. Hence an algebra of
functions on a reduced quantum plane is the algebra of polynomials generated
by two variables z,y which obey the commutation relation (2.1.9) and the
relation (2.1.10). Let us mention that from an algebraic point of view an
algebra of functions on a reduced quantum plane may be identified with
the generalized Clifford algebra €5 with two generators z,y (see Definition
1.3.9). In order not to make the notations very complicated we will denote the
algebra of functions on a reduced quantum plane by the same symbol €%, It is
well known that the generalized Clifford algebras have matrix representations
[45], and in the particular case of the algebra €5’ the generators of this algebra
x,y can be identified with the square matrices of order N

1 0 0 .. 0 0
0 ¢g' 0 0 0
0 0 g2 0 0
x = . : (2.1.11)
0 0 O g V=2 0
0 0 0 0 g V-1
010 ...00
0 1 ... 00
000 ...00
y=1| . . . . . ], (2.1.12)
000 ...01
100 ...00

where ¢ is a primitive Nth root of unity. As the matrices (2.1.11),(2.1.12)
generate the algebra Mat y(C) of square matrices of order N we can identify
the algebra of functions on a reduced quantum plane with the algebra of
matrices Maty (C).

It is obvious that if we wish to construct differential-geometric structures on
a reduced quantum plane then we should have an analog of a group acting on
a reduced quantum plane. This analog of a group is called a reduced quantum
unimodular group at a primitive Nth root of unity and it is constructed as
follows: let a, 3,7,6 be noncommuting symbols such that the left and right
coaction of the second order matrix, whose entries are «, 3,7, d, on a reduced
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quantum plane defined by

s ()=o) (3) e

AR(J: y):(x y)®(3§)z(z’ y’). (2.1.14)

will preserve the basic relations (2.1.9),(2.1.10), i.e. left and right coaction
satisfy the relations

Apr(ry —qyz) = 0, (2.1.15)
Apg(z™ —1) = 0, (2.1.16)
App(y¥ —1) = 0. (2.1.17)

Evidently the matrix relations (2.1.13),(2.1.14) are equivalent to

Ap(z) = a®z+pB®y,
ALly) = 7®x+6®y,
Ap(z) = 1®@a+y®p,
Ar(y) = z®@7+y®4,

and we extend V, Vi as homomorphisms Ay : €Y —=F @ €Y and Ay :
e —¢) ® §, ie. from the algebra of functions on a reduced quantum
plane €Y to the algebra § ® €Y (left coaction) or to the algebra €Y @ §
(right coaction), where § is the algebra generated by the symbols «, (3,7,
which satisfy certain relations. These relations can be found by means of
(2.1.15), (2.1.16), (2.1.17), and a straightforward computation gives

aff = qPa 66 =qop, (2.1.18)
ay = qra, 30 =qov, (2.1.19)
By = 68, ad—da=(q—q")By. (2.1.20)

The element 2 = ad — q By € Z(F) belongs to the center of the algebra §
and it is called a g-determinant of the second order matrix

(27)
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Since the aim is to construct an analog of unimodular group one imposes
the additional relation @ = 1. The generator J can be expressed in terms of
other generators as follows

§ = a1+ qBy),

which implies that the algebra § is spanned by the monomials o/37v* where
i,7,k € {0,1,..., N — 1}. Hence the dimension of the vector space of the
algebra § is 3".

It is very important that the algebra § is a Hopf algebra. Let us remind a
reader the definition of Hopf algebra.

Definition 2.1.10. An associative unital algebra H over a field K with
multiplication m : H ® H — H is said to be a Hopf algebra if it is endowed
with comultiplication A : H — H ® H, counit ¢ : H— K and antipode
S : H— H that satisfy

. i[dg @ A)A=(A®idy)A: H—H ® H ® H (coassociativity),
2. m(idy ® €)A = m(e ® idy)A = idy (counitarity),
3. m(idg ® S)A = m(S @idy)A = te,

where ¢ : K — H is the unit map for H.

The algebra § becomes the Hopf algebra if one defines the comultiplication

A(a) a®a+ e,
AB) = a®f+B®4,
AR) = 1®a+di®7,
A() = Y®I+0®34,

the antipode

S(a) =46, S(B)=—q¢"'B, S(v) =—-q7, S0)=a,



The algebra of differential forms on a reduced quantum plane Qy,; with the
differential d is called the reduced Wess-Zumino algebra [17, 48]. The reduced
Wess-Zumino algebra is the Zs-graded differential algebra

Qwz =Wyy ® Uy ® NWyy,s

where the subalgebra of forms of degree zero (¥, is the algebra of functions
on a reduced quantum plane €’ (algebra of polynomials generated by the co-
ordinate functions x, y which are subjected to the relations (2.1.9), (2.1.10)),
the bimodule of differential forms of degree one i, is the bimodule over
the algebra of functions €2 freely generated by the differentials of coordinate
functions dx, dy, and the bimodule of differentials forms of degree two Q% ,
is the bimodule over €% freely generated by dz dy. In order to be more exact
we can describe the structure of the reduced Wess-Zumino algebra in a more
explicit way. As it was mentioned before any function f(z,y) € €Y = QY,,
on a reduced quantum plane is a polynomial

f,y) =) fuwrty”.

The bimodule structure of Qi is determined by the relations

vde = ¢dew, zdy=qdyz+(¢*—1)dry, (2.1.21)
yde = qdzy, ydy=qdyy. (2.1.22)

The differential d : Q%, — Qi is defined by d(z) = dz,d(y) = dy and it
satisfies the Leibniz rule. Hence Q,, % QL ., is the first order coordinate
differential calculus over the algebra Q,, (see Definition 2.1.6). From the
bimodule structure of };,,, determined by the relations (2.1.21), (2.1.22) it
follows that the homomorphism R : QY,, — Maty(Q2}},,) induced by the
bimodule structure has the form

R(z) = ( q‘;x (¢* 1)y ) ,R(y) = ( ay ! ) (2.1.23)

qx 0 ¢’y

It was explained earlier in this section that a coordinate differential calculus
over an algebra induces the right partial derivatives which satisfy the twisted
Leibniz rule. In the case of a reduced quantum plane we have the first order
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coordinate differential calculus QY , <, O}, and this calculus induces the
right partial derivatives as follows
of of
d(f) = de — + dy =,
(f) 9c T Yy,
where f is a function on a reduced quantum plane. Taking into account that
these right partial derivatives satisfy the twisted Leibniz rule which is twisted
with the help of matrices (2.1.23) we can easily calculate

%x = 1+q2wa%+(q2—1)ya%, (2.1.24)
(%y _ qya%, (2.1.25)
(%x _ qxa%, (2.1.26)
a%y _ 1+q2ya%_ (2.1.27)

The structure of graded differential algebra of €y is determined by the
relations

(dx)? = (dy)* =0, dedy+q*dyde =0, d*>=0. (2.1.28)

From this it follows immediately that any 2-form on a reduced quantum
plane, i.e. an element of Q% ,, can be written in the form

S” fula,y)aty” do dy. (2.1.29)

v

2.2 Graded ¢-differential algebras

In this section we will describe a natural generalization of the notion of
graded differential algebra which was introduced in [20] and studied in the
series of paper[2, 21, 22, 29]. The key idea of this generalization is the same
as in the case of a differential module and a cochain complex (described in
the previous chapter), where the basic property d> = 0 of a differential d
is given a more general form dV = 0, N > 2. However in the case of a
graded differential algebra we also have, in addition to a structure of cochain
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complex, a structure of graded associative unital algebra, and consequently
a more general property dV = 0 of differential should be consistent with this
structure which means that the graded Leibniz rule should be represented in
a more general form. It is clear that if our aim is to define a graded algebra
which is more general than a graded differential algebra by means of replacing
the basic property of differential d> = 0 by a more general one d¥ = 0, N > 2
then we should also replace the graded Leibniz rule by a more general graded
g-Leibniz rule. In this section we also use the cochain N-complex described
in the Theorem 1.3.7 to construct a graded g-differential algebra. Then
we will describe a graded g-differential polynomial algebra which arises in
relation with a connection form. In the next chapter this algebra will be
used for calculation the curvature of connection form. Finally making use
of a generalized Clifford algebra we will construct an algebra of differential
forms on a reduced quantum plane.

In this section K is the field of complex numbers C and ¢ is a primitive Nth
root of unity, where N > 2.

Definition 2.2.1. A graded q-differential algebra is a graded associative uni-
tal algebra &/ = @z " endowed with a linear mapping d of degree one
such that the sequence

L gt L gk & g
is an N-complex with N-differential d satisfying the graded g¢-Leibniz rule
d(uv) = d(u) v + ¢*ud(v), (2.2.1)
where u € &% v € .

In the previous chapter it is shown (1.3.6) that a homogeneous element of
grading one v € &1 of a graded algebra .« induces the inner graded g-
derivation by means of a graded g-commutator as follows

v = adl(u) = [v,u), = vu — ¢"uv, (2.2.2)
where u € &/*.
Taking into account the following facts:

e an inner graded g-derivation satisfies the graded ¢-Leibniz rule (1.3.8),
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e the inner graded ¢-derivation d = ad?, induced by an element of grading
one v € &/ such that vV € 2°(/), is the N-differential of the cochain
complex (Theorem 1.3.7)

d 1 d d d
N e N N L RN

we conclude

Corollary 2.2.2. Let &/ be a graded associative unital algebra o/ = ®/*,
and q be a primitive Nth root of unity. If there exists an element of grading
one v € & which satisfies the condition v~ € Z(&), where Z (&) is
the graded center of <7, then a graded algebra </ endowed with the inner
graded q-derivation d = adl is the graded q-differential algebra and d is its
N-differential.

Later in this section we will use the Corollary 2.2.2 in order to construct an
algebra of differential forms on a reduced quantum plane with N-differential
d. It is worth noting that the Corollary 2.2.2 can be generalized within the
framework of the theory of (o, 7)-derivations developed by S. Silvestrov and
his collaborators, and this generalization is proposed in [38]. We will briefly
describe the main result proved in [38]. Let K be a commutative associative
ring with unity, and ./ be an associative unital K-algebra. Let ¢ C </ be a
subset of .7 which generates the K-algebra K[¥]. Let 0 : K[9]|— K|¥] be
an K-algebra endomorphism defined by o(u) = ¢(v,u) u for a fixed v € K[¥]
and any u € K[¥], where ¢ is a mapping ¢ : {v} x K[¥9]|— 2Z(K[¥]). Here
Z(K[¥]) is the center of K[¥4]. Let us define A(u) = vu — o(u)v, where
u € K[¥]. This is an o-derivation on K[¥| with values in /. If K[¥] is
a two-sided ideal in o7, then A(K[¥9]) C K[¥], and hence A becomes a
o-derivation of K[¥].

Theorem 2.2.3. ([38]) Let v € K[¥4] be such that vV € Z(K[¥4]) for
some N > 2. Suppose that ¢(v,v) is a primitive Nth root of unity and
that (p(v,u))N =1 for any u € K[¥]. Then AN (u) =0 for any u € K[¥].

Let &7 be a graded g-differential algebra with N-differential d and the sub-
space of elements of grading zero denoted by 2. As it was mentioned before
the subspace 2 C & of elements of grading zero is the subalgebra of an
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algebra 7, and each subspace &/* C & of elements of grading i can be
considered as the 2-bimodule. Hence we have the following sequence

Ay /N (2.2.3)

of the A-bimodules. It is important that the part A—Ls o771 of this sequence
is the differential calculus over the algebra 2 because in this case d satisfies
the Leibniz rule.

The next graded g¢-differential algebra arises in relation with an algebraic
model of a connection form and this algebraic model is based on exterior
calculus with differential satisfying d”¥ = 0. A graded g-differential algebra
of polynomials related to connection form was introduced and studied in [9].
In the next chapter we will show in what way this algebra can be used in
order to calculate the curvature of a connection form.

Let Ny = {i € Z : i > 1} be the set of integers greater than or equal
to one and {0, a;};en, be the set of variables. We consider the algebra of
polynomials 3,[0, a] over C generated by the set of variables {9, a; };en, which
are subjected to the commutation relations

0a = ql a;0 + ait1, Vi e Ny (224)

where ¢ is any complex number different from zero. We denote the identity
element of this algebra by 1. Obviously we can split up the set of variables of
the algebra ,[0, a] into two subsets {0}, {a; }ien, which generate respectively
the subalgebras B,[0] C B,[0, a] and P,[a] C B,[0, a]. Hence the subalgebra
PB,[0] is generated by a single variable 9, and the subalgebra B,[a] is freely
generated by the set of variables {a;}ien, because we do not assume any
relation between variables a;.

Now our aim is to equip the algebra of polynomials ,[0, a] with a graded
structure so that 3,[0, a] will become a graded algebra. This can be done
as follows: we assign grading zero to the identity element 1 of the algebra
B,[0, a], grading one to the generator d and grading i to a generator a;, where
¢t € Ni. Thus making use of previously defined notations we can describe the
graded structure of generators of 3,[0, a| by the formulae

/=0, [o|=|a|=1 |a|l=i i>2. (2.2.5)
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As usual we extend this graded structure to the whole algebra 9,[0, a] by
defining the grading of any product of variables {9, a;}icn, as the sum of
gradings of its factors. It is easy to see that the algebra of polynomials
B,[0, a] becomes the positively graded algebra. Hence we can write

mq [Da CL] = @kGleg [av CL],

where ‘,B’; [0, a] is the subspace of homogeneous polynomials of grading k. It
should be mentioned that the graded structure of [0, a] induces the graded
structures of the subalgebras B,[9], B,[a] which are positively graded alge-
bras as well. Clearly the positively graded algebra 93,0, a] becomes the Zy-
graded algebra, where N any integer greater than 1, if we slightly modify the
above described gradation by taking all gradings modulo N. Let us denote by
Lin B, [a] the algebra of C-endomorphisms of the vector space of the algebra
PB,la]. Obviously Lin‘P,[a] is the graded algebra with gradation induced by
the gradation of 8,[a]. Having defined the positively graded structure of the
algebra ,[0,a] we can apply the notions of graded commutator and inner
graded g-derivation described in the previous chapter to study the structure
of P, [0, a]. First of all we observe that the commutation relations (2.2.4) can
be written by means of graded commutator and inner graded ¢-derivation in
the form

[D, Cli]q = Aj4+1, or ad%(az) = Aj+1, (226)

where ¢ € N;. This form of commutation relations suggests us to introduce
the inner graded g-derivation ad} associated with a variable 9, which we will
denote by d and consider it as the inner graded ¢-derivation of the algebra
PB,la] (generated by the set of variables {a;}ien, ), i-€.

d = adf, d: PByla] — PB,lal. (2.2.7)

Obviously d is the inner graded ¢-derivation of grading one of the Zy-graded
algebra ,[a]. From the commutation relations (2.2.6) it follows that

d(]]_) = O, d(al) = Aj4+1,

for any @ > 1. Let us define D,V € Lin‘B,[a] of grading one and the
polynomials fj, € P,[a], where k is an integer greater than or equal to zero,
by the formulae

D(P) = d(P)+a P, (2.2.8)
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V(P) = d(P)+[a1, P, (2.2.9)

fo = 1,
i = ai,
fr = D(fe-1), (2.2.10)

where P € P,[a] is a homogeneous polynomial. We can write the linear
mapping V in the form V = ad{,, which clearly shows that V is the inner
graded g-derivation of the algebra P [a]. Hence for any polynomials P, Q €
B,la], where P is a homogeneous, it holds

D(PQ) = D(P)Q+¢"'Pd(Q), (2.2.11)
V(PQ) = V(P) +¢"'PV(Q). (2.2.12)

For the first values of k we calculate by means of the recurrent relation
(2.2.10)

fo = az+adi,
fs = 034’@2@14—[2(1@1@2—1—0/1,
Ji = a4+a3a1+[3]qa1a3+[ lq a3
+ agal + 3], aas + [2], arasa; + aj, (2.2.13)
fs = a5+ asa; + [4]; a1a4 + [4]4 azas

4
+ { 9 } asaz + azai + [3], azar + [4], azaias
q

4
+Elad+ | 5 | dont Bhoa
q
+ 2], araza} + [3], ajaza; + asal + [4], atas + af.

Getting a bit ahead we would like to point out that the polynomials f; may
be interpreted as the curvature of a connection if we view the generator a;
as an algebraic model for a connection one form. Let us remind that if £ is
a positive integer then a composition of an integer k is a way of writing k as
the sum of strictly positive integers. For example if k = 3 then

3=3,3=2+1,3=1+23=1+1+1

Let Uy be the set of all compositions of an integer k. We will write a com-
position of an integer k in the form of a sequence of strictly positive integers
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o = (i1,%9,...,1,), where i; + i + ... 4+ i, = k. Let us denote

kl = ilu
ky = i1+,
ks = 11 419+ 13,
k1 = i1+t 4 ...+ 0.

It is well known that the number of elements in the set Uj is 2¥=!. The
following proposition gives an explicit formula for the polynomials fy:

Theorem 2.2.4. For any integer k > 2 we have the following expansion of
power of the operator D and the expansion of a polynomial fi in terms of
generators a;:

A Tk -
D —»Ej{i]ﬂd :

=0
ky —1 ks —1 E—1
fk = Z|: :| |: :| |: :| A Qg+« Ay
= k1 v ko ‘ K .
where 0 = (iy, 19, ... ,1,) is a composition of an integer k.

Proof. We will prove the expansion formulae of this theorem by the method
of mathematical induction. In order to prove the expansion of power of the
operator D by means of mathematical induction we begin with the base case
and show that this formula holds when k is equal to 1. This is true because

Dz[é]{%d+{}]?ﬁ=d+ay

Next step in the proof is an inductive step, i.e. we assume that the expansion
formula holds for some integer £ > 1 and show that it also holds when k£ + 1
is substituted for k. Indeed we have

k

D = D(D’f):D(ZHLfid’f—i)

=0
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D(f)d" 4 ' fid* 1)

; k
— |: ' fz—‘rl dk—z 4 qz fidk—Q—l—z)
=0 L q
k—1
:| fz+1 k—i +4q Z |: :| fz dk+17i + dk+1
=0 i=1 q
— fk—l—l + Z ) :| fz dk+171 + qzz |: ) :| fz dk+171 + dk+1
i=1 q =1 q

k il k k1 k+1
{i_anLq{.}q)fzd +d

fi dk+l—i + dk-i—l

Il
=
N
_|_
| — 7 N | — | — /N /N

Thus the expansion of power of the operator D is proved. Now if we apply
the both sides of the proved formula to a; we obtain

k

fen =3 { " ] [ (2.2.14)

=0

and this is the recurrent formula for the polynomials f; which we will use in
the second part of the present proof in order to prove the expansion formula

for f.

We start the proof of the expansion formula for a polynomial f; with the base
case when k = 2. In this case there are two compositions 2 =2, 2 =1+ 1.

Hence we have
1 1 1
p 1] e [2] [1] et
q q q

Comparing this result with the first formula in (2.2.13) we see that in the
case when k£ = 2 the expansion formula for f; is correct. The next step is
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an inductive step, i.e. we assume that the expansion formula holds for some
positive integer £ > 2 and show that it also holds when £k + 1 is substituted
for k. Let us consider the sum

b [ k2é1»1 ] [ kgé; 1 ] . { ;7 ] iy - G, (2.2.15)
q q L

ocWi1

where o = (iy,49,...,4,,0-11) is a composition of an integer k£ + 1. Hence
i+ ...+ % + 441 = k+ 1. Our aim is to show that this sum is equal to
the polynomial fy;. Let us fix an integer ¢ € {0,1,...,k} and a generator
api1—;. 1t is clear that if we select the compositions of an integer k + 1
which have the form (iy,4s,...,i, k + 1 — i), i.e. the last integer of each
composition is previously fixed integer k + 1 — ¢, and we remove in each

composition the last integer then the set of compositions (i1, g, . .., i,) is the
set of all compositions of an integer i, i.e. {(i1,42,...,%.)} = ¥;. Indeed we
have

i it A EFl—i=k41,

which implies 21 + i3 + ... 4+ ¢, = i. Consequently if we select in the sum
(2.2.15) all terms with i1 = k+ 1 —1¢ (i.e. containing a generator aj,1_; at
the end of a product of generators) then we get the sum

E |: kz -1 :| |: ]Cg -1 :| cee |: k :| A iy o - Qg Q145 (2216)
ki ko i
O'E\I’k+1 q q q

where the sum is taken over the compositions of integer k£ + 1 which have the
form o = (iy,42, ..., k+1—1) € ¥ry1. We would like to point out that the
product of binomial coefficients of each term in this sum contains the factor

|,

Hence we can write the sum (2.2.16) as follows
k ko —1 ks —1 i—1
[ ¢ } (Z [ k1 } [ ko } [ Ky 1 } iz Gz "'air) k41—,
q Te‘lji q q q

where 7 = (i1,42,...,%,) € ¥; and the sum is taken over all compositions of
integer i. Now we make use of the assumption of an inductive step that the ex-
pansion formula for a polynomial f,, holds for each integer m € {1,2,... k}.
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Hence the sum in the previous formula is equal to f;, i.e

3 ke —17 [ks—1 e
I B I S LR e

TEW,

Thus the sum (2.2.16) is equal to
k
[ i } fi @14,
q

and summing up all these terms with respect to i we get the sum (2.2.15).
Consequently the sum (2.2.15) we started with is equal to the sum

YTk
Z [ i } fiak+1—i>
q

=0

which in turn is equal to fx41 (see the recurrent relation (2.2.14)). This ends
the proof. H

We remind a reader that the parameter ¢ which plays an important role in
the structure of an the algebra 3,[0, a| is any complex number different from
zero. Now we are going to study the structure of the algebra of polynomials
B,[0,a] at a primitive Nth root of unity, i.e. we assume ¢ to be a primitive
Nth root of unity. We may expect that in this case the infinite set of variables
{0,a1,as,...} is "cut off” and we get an algebra whose vector space is finite
dimensional. Indeed we can prove the following proposition:

Proposition 2.2.5. Let PB,[0,a] be the algebra of polynomials generated by
the set of variables {9, a;}ien, which obey the commutation relations (2.2.4).
If we assume that q is a primitive Nth root of unity and the variable 0 s
subjected to the additional relation 0N = \-1, where ) is any complex number,
then for any integer k > N a variable aj, vanishes, i.e. the algebra B,[0, al
is generated by the finite set of variables {9, ak}kj\’:_l1 which obey the relations

0a; = qa10+ aq,
0ay, = q2 a90 + as,
(2.2.17)
dan—s = ¢ Pan_20+an_1,
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dany_1 = an-_10,
N = AL

The inner graded q-derivation d = ad} : P,[a]—=B,[a] associated to variable
0 is the N-differential, i.e. d¥ =0, and the sequence

P a) S Pila) S P[] S

is the cochain N-complex. The graded algebra B,[a] equipped with the N -
differential d is the graded q-differential algebra.

Proof. We suppose that the algebra of polynomials is equipped with the
Zy-gradation as it was explained earlier (2.2.5). It easily follows from the
commutation relations of the algebra ,[0, a] that for any integer k£ > 2 we
have

[ dk(al),

where d = ad? is the inner graded g-derivation associated with a variable 0.
Making use of the expansion of power of an inner graded g-derivation derived
in the proof of the Theorem 1.3.7 we obtain

_ _ gk _ q\k _ & 1N k k—i i
ap = a, = d*(ar) = (add)*(ar) =) (-1)'p; | o

i=

Thus if ¢ is a primitive Nth root of unity, ? satisfies 9 = \-1 and k = N
all terms of the sum in the right-hand side of the above expansion formula
vanish (see the proof of the Theorem 1.3.7). Consequently we have ay =
any1 = ... =0 and this ends the proof. ]

Let us denote by B,[0, a] the finite dimensional graded algebra generated
by {0,a}r ' which obey relations (2.2.17) and by B,[a] the graded g-
differential algebra generated by {ak}kN:jl and equipped with N-differential
d. Now we give the following definition:

Definition 2.2.6. The generator a; of the Zy-graded g-differential algebra
PB,[a] will be called the N-connection form and the algebra P, [a| will be called
the algebra of N-connection form. The operator D = d+ ay : P,[a] —B,[a]
will be called the covariant N -differential, and the the polynomial fy of
grading zero will be called the curvature of N-connection form.
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Proposition 2.2.7. If B,[a] is the algebra of N-connection form and d is
its N -differential then the Nth power of the covariant N -differential D is the
operator of multiplication by fn.

Proof. The proof of this proposition is based on the first expansion formula
proved in the Theorem 2.2.4. Indeed we can expand an Nth power of the
covariant N-differential D into the sum of products of polynomials f; and
the powers of the N-differential d as follows

N

=0

As q is a primitive Nth root of unity this expansion can be essentially simpli-
fied in the case k = N if we take into account that all g-binomial coefficients
with i € {1,2,..., N — 1} vanish. The first term in this expansion also van-
ishes because d is the N-differential. Hence for any polynomial P € B,a]

we have
DN(P):fN'Pv

and this ends the proof. O]

Proposition 2.2.8. If*B,[a] is the algebra of connection form and fx is the
curvature of connection form then the curvature satisfies the identity

V(fy) =0. (2.2.18)

Proof. Let us remind a reader that V = d +ad] . We prove this proposition
by means of the recurrent relation for polynomials f

k

Jir1 = Z [ l; } Ji Q1.
q

=0

Substituting N for k£ in the above relation we obtain

N
fN+1 = Z |: N :| fz aAN+1—i- (2219)

]
=0

As ¢ is a primitive Nth root of unity we have



for any integer i € {1,2,..., N — 1}. Consequently there are only two terms
with non-zero ¢-binomial coefficients (labeled by ¢ = 0, N) at the right-hand
side of the relation (2.2.19) and

vt = foany + fvaa.

The first term at the right-hand side of the above formula is also zero because
of ayy1 = 0 (Proposition 2.2.5). Hence

0 = fN+1 - fN a1 = D(fN) - fNCl1
= d(fn)+ a1 fxv — fxvar = d(fn) + a1, fn]g = (d+ad] ) (fx) = V(fn).

]

We will call the identity (2.2.18) the Bianchi identity for curvature of N-
connection form. It is worth mentioning that we can write the Bianchi
identity in a different way if we consider the covariant N-differential D
and the curvature fy as the linear operators D, fx : Byla] — B, [a], ie.
D, fy € Lin,[a], where fy is the operator of multiplication by fy (we de-
note it by the same symbol as the curvature fy in order not to make the
notations very complicated). Then the Bianchi identity may be written in
the form

[D7 fNLZ =0.
Indeed

[vaN]q = Dofy—fnoD
= d(fy)+ fvod+ai fn— fvod— fya
= d(fn)+[a1, fnlg = V(fx) =0.

2.3 N-differential forms on reduced quantum
plane

In this section we show that a graded g¢-differential algebra may be con-
structed by means of differential forms on a reduced quantum plane. This
is important for a notion of N-connection which we will develop in Chap-
ter 3 because our approach to a notion of N-connection is based on the
algebraic structures such as a graded g-differential algebra, module over a
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graded g¢-differential algebra, and in order to give this algebraic approach
a geometric meaning we should have an algebra of differential forms which
is a graded g¢-differential algebra. Let us remind that a reduced quantum
plane is described at the end of Section 2.1, and the reduced Wess-Zumino
algebra Q7 is the algebra of differential forms on a reduced quantum plane
with differential satisfying d*> = 0 (exterior differential). In this section we
construct an algebra of differential forms on a reduced quantum plane which
is the graded g-differential algebra with N-differential d satisfying d¥ = 0,
and this algebra may be viewed as an analog of the reduced Wess-Zumino
algebra. Our approach is different from the one proposed in [17] and is based
on the Theorem 1.3.7. A first order coordinate differential calculus in our
approach is very similar to the one of the reduced Wess-Zumino algebra but
the structure of the algebra with respect to higher degree differential forms
is different. The reason is d* # 0 for k € {2,3,..., N — 1} which implies the
presence of higher order differentials d’x, d3z, ..., d" tx, d?*y, d%y,...,d" "1y
in our approach whereas in the case of the reduced Wess-Zumino algebra one
has d*z = d?y = 0. This section is based on the paper [3].

Let us remind that a generalized Clifford algebra is an algebra over the com-
plex numbers C generated by a set of canonical generators {1, 2, ...,2,}
which are subjected to the relations

vir; = ¢80 g 2N =1, i,j=1,2...,p (2.3.1)
where sg(k) is the usual sign function, and 1 is the identity element of an
algebra. We will use the generalized Clifford algebra with four generators,
i.e. p =4, in order to construct an algebra of differential forms on a reduced
quantum plane with N-differential d satisfying d¥ = 0. In this section we
will denote the generalized Clifford algebra with four generators x, xs, 3, 74
which obey the relations (2.3.1) by €y. We split the set of generators of this
algebra into two pairs x1,r3 and w9, x4 denoting the generators of the first
pair by z,y, i.e. x = x1,y = x3, and the generators of the second pair by
u, v, 1.e. u = xe,v = xy4. From (2.3.1) it follows

ry = qyur, N =yN =1, (2.3.2)
Tu = qurw, TVv=qux, (2.3.3)
yu = ¢ luy, yv=quy, (2.3.4)
uv = quu, u =N = 1. (2.3.5)

61



Let B be the subalgebra of the algebra €y generated by x,y. The relations
(2.3.2) show that the generators z,y can be interpreted as coordinate func-
tions on a reduced quantum plane [17], and thus the subalgebra By can be
interpreted as the algebra of (polynomial) functions on a reduced quantum
plane. Our next step is to construct an N-differential d with the help of The-
orem 1.3.7 and the algebra By endowed with an N-differential d will become
a graded g¢-differential algebra. Obviously for this we need to define a graded
structure of Py. We do this as follows: we assign the grading zero to the
generators x,y and the grading one to the generators u,v. Hence denoting
as before the grading of an element w by |w| we can write

7] = |y| =0, |u] = |v] =1, (2.3.6)

where 0, 1 are the residue classes of 0,1 modulo N. As usual the grading of
any product of generators x,y, u, v is the sum of gradings of its factors. Ob-
viously €y = @iezy €%, where €%, is the subspace of homogeneous elements
of grading 4, and €% = Py.

Proposition 2.3.1. For any \,u € C an element w = Au + pv € @v
satisfies W € Z(€y), where Z(&y) is the center of the algebra €.

Proof. For any 2 < k < N we have
k =k k=1, 1,1, k=l
w —;{l]q)\ pwvtut (2.3.7)
Since ¢ is a primitive Nth root of unity we have [ ];f } =0for1 <[ < N-1.
Thus taking k = N in (2.3.7) we obtain '
WV =MV 4NN = N 4 M1 e Z(ey).
]

Now it follows from Theorem 1.3.7 that the inner graded g-derivation d = adf,
associated to an element w = Au + pv € €4 is the N-differential of the Zy-
graded algebra €x. Hence the generalized Clifford algebra €y endowed with
the Zy-graded structure (2.3.6) and with the N-differential d is the graded g-
differential algebra. It should be mentioned that in our approach w is a fixed
element of grading one, and hence the structure of the graded ¢-differential
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algebra €y depends on a choice of element w. Consequently the numbers
A, it can be considered as the free parameters of our approach.

The N-differential d induces the differentials of coordinate functions x*d>d:z:,

Yy i>dy, and later in this section we will show that any element of grading
k > 0 of the graded g-differential algebra €y can be expressed in terms of
the differentials of coordinates dx, dy. Since N-differential d satisfies d = 0
the sequence of vector spaces

Ll bel L L el T L e S (2.3.8)
is the cochain N-complex. The N-differential d can be viewed as a higher
order analog of exterior differential on a reduced quantum plane. Accordingly
to this analogy we will call the graded g-differential algebra €y the algebra
of q-differential forms on the reduced quantum plane and its elements of
grading k& > 0, written in terms of the differentials dx, dy, the g¢-differential
k-forms. The cochain N-complex (2.3.8) will be called the reduced quantum
de Rham N-compler. We will describe the cohomologies of this N-complex
H(€y) with the help of notions of closed and exact ¢-differential forms. An
g-differential form 6 will be called an m-closed gq-differential form, where
1<m< N —1,if d"0 = 0, and an ¢-differential n-form 6 will be called an
q-differential l-exact form if there exists an ¢-differential (n — {)-form p such
that d'p = 6. It follows from d" = 0 that each g-differential (N — m)-exact
form is m-closed. Let us denote the vector space of m-closed ¢-differential
forms by Z™(€y), and the vector space of (N —m)-exact ¢-differential forms
by B™(€y). Then the cohomologies of the reduced quantum de Rham N-
complex is H™(Cy) = Z™(€y)/B™(€x). Now we can prove an analog of
Poincaré lemma for the reduced quantum de Rham N-complex.

Proposition 2.3.2. The cohomologies of the reduced quantum de Rham N -
complex are trivial, i.e. for anym € {0,1,2..., N — 1} we have H™(€y) =
0. Thus any m-closed q-differential form on a reduced quantum plane is
exact.

The statement of this proposition immediately follows from Theorem 1.3.8.

Our next aim is to describe the structure of the algebra of g-differential forms
in terms of the differentials of coordinates dz,dy. We begin with the first

order differential calculus Py <, @v: where By is the algebra of polynomial
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functions, d is the N-differential and €} is the (y,Px)-bimodule of ¢-
differential 1-forms. Evidently dz,dy € (’J}V. Let us express the differentials
dx,dy in terms of the generators of €y. It is worth mentioning that in what
follows we shall use the structure of the right Py-module of €} to write
g-differential 1-forms in terms of differentials. We have the relations

Tw=qur, Yw = wi vy, (2.3.9)
where w = Au+ pv, wy = ¢ *Au+ qpv. Using these relations we obtain
der =|w,z]l,=1—q wz, dy=[w,yl;=(w—w1)y, (2.3.10)
where
w—w =1-¢gHAu+ (1 -q)uv. (2.3.11)
It is evident that the right §8y-module € is a free right module and {u,v}
is the basis for this right module.

Proposition 2.3.3. For any integer N > 3 the right By -module of q-differ-
ential 1-forms €k is freely generated by the differentials of coordinates dzx, dy.

Proof. Let f,h € Py be functions on a reduced quantum plane. Making
use of (2.3.10),(2.3.11) and taking into account that {u,v} is the basis for
the right P n-module Qi\, we can show that the equality dx f + dyh = 0 is
equivalent to the system of equations

(I-q@zf+(1—-qgHyh = 0,
xf4+yh = 0.

Multiplying the second equation by ¢ — 1 and adding it to the first equation
we obtain (¢—¢ ™ ')h=0. Asq—q~' # 0 for N > 3 we conclude that h = 0.
In the same way we show that f = 0, and this proves that the differentials
dx, dy are linearly independent ¢-differential 1-forms.

In order to prove that any g¢-differential 1-form is a linear combination of
differentials we find the transition matrix from the basis {u, v} to the basis
{dz,dy}. Let us denote the algebra of square matrices of order 2, whose
entries are the elements of the algebra Py, by Mats(Py). Then (dx dy) =
(u v)- A, where A € Mato(Py), and from (2.3.10) we find

(A= rz (1-¢ Ay
A((l—q)w (I—q)py )
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It should be noted that the transition matrix depends on the coordinates of a
point of a reduced quantum plane. As the coordinates of a reduced quantum
plane obey the relations 2V = 1,y" = 1 they are invertible elements of the
algebra Py and 71 = N1 =1 = yN=1 If N > 3 then the matrix A is an
invertible matrix and
e 1 ( ANlget pla! )
1-)\ Ayt pwley™ )

Consequently we have

q -1 -1
= ———(d —d 2.3.12
u (1_q2))\(m yy ), ( )

1

v = ———(deat +qdyyt). 2.3.13
(1—-¢)n ( ) ( )
Now any ¢-differential 1-form § =u f +vh € Q:]iv, where f,h € Py, can be
expressed in terms of the differentials, and this ends the proof. ]

From Proposition 2.3.3 it follows that the first order differential calculus

Py > ¢k is the coordinate calculus with coordinate differential d [12, 13]. If
we have a coordinate calculus then a coordinate differential of this calculus in-
duces the right partial derivatives which satisfy the twisted Leibniz rule. The
second term at the right hand side of the twisted Leibniz rule for right partial
derivative depends on the twisting homomorphism R : By —= Maty(Py),
and this homomorphism is determined by the relation between the right and
left module structures of the bimodule €};. Hence for any function f € Py

we have
R = (o) ). (23.14)
where
fdr = drri(f)+dyralf), (2.3.15)
fdy = dxria(f)+dyra(f). (2.3.16)

Since P is the algebra of polynomials generated by two variables x, y, which
are subjected to the relations zy = q yx, ¥ = 1, y" = 1, it is sufficient to
find the explicit formula for the homomorphism R in the case of coordinate
functions x,y. Taking f = x and f =y in (2.3.15), (2.3.16) we find

_(qx O ( al'y qalg-Daty?
R(z) = ( 0 ¢ ) R(y) = ( (G—Dz ¢ —q+1)y ) (2.3.17)
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Putting the entries of these matrices into the relations (2.3.15), (2.3.16) we
get

1
rdr =qdrx, ydr=-dry+(¢—1)dyxz, (2.3.18)
q

-1 dx:t:_ly2+—q2_q+1

rdy = ¢ dyz, ydy= a dyy. (2.3.19)

The right partial derivatives induced by the N-differential d are defined by

L of of
df—dx%—kdya—y.

These right partial derivatives satisfy the twisted Leibniz rule

MDY a4 ran 3,
olfh) _ of oh oh
oy 8—yh+7“21(f)%+7“22(f)a—y'

Using the twisted Leibniz rule and (2.3.17) we find

oz he1 Ox* B

Fr (klg 2", By 0,

a_yl _ [y(¢ " = 1) 21y a_yl _ o' +1) 4
O =g +1) Oy ¢ Mg+ 1)T

Using these formulae we can calculate the partial derivatives of any function

N-—1
= Z Cu ¥y € P

k,1=0

For instance the derivative with respect to z of f is

of — hepi @1 k=11
%—klz()([k]q“'q [l]q q+1 ) Gy

We remind that the set of generators {x,u,y,v} of the generalized Clifford
algebra €y has been split into two parts, where the first part {z,y} gener-
ates the algebra of polynomials By, and the second part {u,v} generates
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the N-differential calculus By KR Qﬁ}\,. We have already proved that any
g-differential 1-form # = u f + vh € €} can be uniquely written as a linear
combination of the differentials dx,dy where coefficients of a linear combi-
nation are polynomials in coordinate functions of a reduced quantum plane
x,y. If we consider z,y,dx,dy as the generators for the algebra €y then
we may divide the algebraic relations between the new generators into three
parts. The first part contains the relations

vy =qyz, 2V =yV =1,

which determine the structure of the algebra 3y of polynomials on a reduced
quantum plane. The second part determines the structure of the first order

coordinate calculus Py <, ¢}, and consists of the relations (2.3.18),(2.3.19)
between coordinates x,y and their differentials

1
rdr =qdrz, ydr=-dry+(q—1)dyx,
q

—1 2 1
drx'y* + % dy y.

vdy = ¢* dyx, ydy="1

The third part will contain the relations between the differentials dx, dy, and
this part of relations originates from the structure of a graded g¢-differential
algebra of €. It should be pointed out that unlike the reduced Wess-Zumino
algebra of differential forms proposed in [17] we do not impose the relations
(dz)? = (dy)* = 0. It is evident that the commutation relation uv = qou
written in terms of differentials dz, dy will give us a quadratic relation for the
differentials dx, dy, and the relations u” = v" = 1 will lead to two relations
of degree N with respect to differentials.

Proposition 2.3.4. The commutation relation uv = qvu for the generators
u, v written in terms of the differentials dz, dy takes on the form

drdy = v dydz + v (dz)* 27y + 75 (dy)* vy~ ', (2.3.20)
where L ) a 5
+q q— —q')q
— = - === 2.3.21
il 92 ) Y2 2(] ) V3 9 ( )
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This proposition can be proved by straightforward computation with the help
of the formulae (2.3.12), (2.3.13) and the relations (2.3.18), (2.3.19).

The relation (2.3.20) allows us to choose the ordered set of monomials B,
where

B = {(dx)*, dy(da)*"", ..., (dy)*dw, (dy)*}, 2<k <N -1,

as the basis for the right ‘By-module of g-differential k-forms ¢k, For ex-
ample the right By-module of g-differential 2-forms €% is spanned by the
monomials (dr)?, dy dx, (dy)?. Hence any g-differential k-form 6 on the re-
duced quantum plane can be uniquely expressed as follows:

0= (d:z:)k fo+ aly(alac)k*1 fi+... (dy)k*1d$ Jr—1+ (dy)k T,

where fo, f1,..., fr € Pn are polynomials. The peculiar property of our
approach with differential d satisfying d” = 0 is an appearance of the higher
order differentials of coordinates, and this gives us a possibility to construct
one more basis for the module of ¢-differential 2-forms. Indeed as d* # 0 for
k running integers from 2 to N —1 we have the set of higher order differentials
of coordinates d?z, d?y, ,...,d"'x,d" "1y, and we can use these higher order
differentials to construct a basis for €%. The elements w,w;,w — w; can be
written as ¢-differential 1-forms as follows:

1 1 B
dex™, w1 =

w dra ' —dyy™?, w—w =dyy ' (2.3.22)

:1—q 1—g¢q

Differentiating w we obtain

dw = [w,w], = (dz)?z™ 2 (2.3.23)

q(1 —q)

where dw is the g-differential 2-form. Now we can write the second order
differential d?z as a g-differential 2-form as follows:

d*r = (1 - q)dwz) = (1 —q)(d(w)z +qudz) = %(dz)%_l. (2.3.24)

Expressing the second order differential dy in terms of (dz)?, dy dz, (dy)? we
prove the following proposition:
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Proposition 2.3.5. The second order differential d*y can be written as fol-

lows:
d*y = L (—1 drdy — qdydx)z™! (2.3.25)
y 1 q2 y q y * * *

Proof. As dy = (w — w1)y, yw = w1y we have
Py = [, (w—w)yl = (Ww —w1) = ¢ (@ —w)w1) Y.

Now applying the formula (2.3.22) and the multiplication rules (2.3.18),
(2.3.19) we get the expression (2.3.25). O

Propositions 2.3.4, 2.3.5 show that we can replace the basis B, by the basis
B, in the right B y-module of g-differential 2-forms €%, where

B, = {(dz)?, dydx, (dy)*}, B, = {d*v,dydx,d*y}.

We point out that from Proposition 2.3.5 it follows that the relation (2.3.20)
can be written by means of the second order differential d?y in a more sym-
metric form

dx dy = ¢* dydr + ¢*(1 — q) d*y =. (2.3.26)

We end this section by considering the structure of algebra of g-differential
forms on a reduced quantum plane at square root of unity and at cubic root
of unity, i.e. in the case of N = 2 and N = 3. If N = 2 then ¢ is the
primitive square root of unity, i.e. ¢ = —1. In this case d? = 0, i.e. d is the
exterior differential. It is interesting that in this particular case it follows
from Proposition 2.3.5 that

d*y = %(dwdy—l—dydx):ﬁ—O,

which implies dz dy = —dydx. Hence this is a classical case of the algebra
of differential forms with anticommuting differentials of coordinates.

If N = 3 then we have the algebra of g¢-differentials forms on a reduced
quantum plane at cubic root of unity with differential d satisfying d* = 0.
It can be verified that now the right hand sides of the formulae (2.3.24),
(2.3.25) are the 1-closed g-differential 2-forms, i.e.

1
d((dz)’2™") =0,  d(drdya™ —qdydea™")=0.
q
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The last term in the relation (2.3.20) vanishes because ¢ is a primitive cube
root of unity and satisfies ¢® —1 = 0. Making use of the relation 14+¢+¢* =0
we can write the coefficient ~; as follows:

1+q¢* 1+4¢ ¢
’}/1: = = —

2 2 2

Hence the relation for the differentials (2.3.20) with respect to the basis B
takes on the form

dr dy = g (—dy dr + (¢ — 1)d*z y). (2.3.27)

Comparing with the relation for differentials in the previous case, where
d*> = 0 and doedy = —dydx, we see that the peculiar property of the first
non-classical case of exterior calculus, where the differential d satisfies d®> = 0,
is the appearance of second order differentials in the commutation relation
for differentials dx, dy, which ”deform” the classical anticommutativity of
differentials.
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Chapter 3

Generalization of the theory of
connections

The general goal of this chapter is to describe a concept of N-connection
on modules and N-connection form by means of the notion of graded g¢-
differential algebra. The chapter is based on [1, 4, 6, 7, 8, 9].

3.1 Connection on vector bundles

This section has an introductory character and makes reader familiar with
the main notions of differential geometry such as connection and its curvature
in the context of vector bundles. The section is based heavily on [11, 47].

We begin with the geometric definition of a vector bundle.

Definition 3.1.1. Let M be a smooth manifold. A smooth manifold F
together with a smooth surjection 7 : E'— M is called a real vector bundle
of rank k, if the following conditions are satisfied:

i) E, = 7 !(z) has the structure of k-dimensional vector space over the
field of real numbers for every z € M;

i1) there exists an open cover {U,}acs, where J is the set of indexes, of
manifold M, ie. U, C M and M = |J U,, and a diffeomorphism

aed

Vg mY(U,) —= U, x R¥ such that ¢, (E,) = {z} x R* and map
Yt E, — {z} x RF 2% R* is a vector space isomorphism for each
r e U,.

71



The manifold E is said to be the total space of the vector bundle, M is the
base space, and the vector spaces E, are the fibers. It is possible equally well
to consider the fiber E, over the field C instead of R, obtaining the notion
of a complex vector bundle. We will often make use of the convention just
calling the vector bundle E, letting the rest of data be implicit.

The open neighborhood U, together with the diffeomorphism ), is called a
local trivialization of the vector bundle. For two local trivializations (U,, )
and (Ug, 13) we define a smooth composite map goth; ! : Uyg X RF—=U, 5 x
R*, where U,3 = U, NUgs # (), by

v oy (2,0) = (z,9a(v)).

For every fixed x the above composition is a linear isomorphism of R*. Thus,
the composition map g o ¢, induces a smooth map

g7 : Uys — GL(k, R).

These are called the transition functions of the vector bundle E. The transi-
tion functions gg satisfy the following conditions:

gggfgl =1 on U,NUzNU,, cocycle condition,
go =1 on U,,

where the product is a matrix product and [ is the identity matrix of order

k.

A smooth section of a vector bundle E over M is a smooth map s : M —FE
assigning to each x € M a vector s(x) in the fiber F,, i.e. mos = Idys, where
Id,; is the identity map of M. The set of all smooth sections, denoted by
['(M, E), is an infinite-dimensional real vector space, and is also a module
over C*°(M), the algebra of smooth functions on M, if we define (f - s)(x) =
f(z) - s(x) and (s1 + s2)(z) = s1(x) + s2(x), where z € M, f € C™(M),
s, 81, 89 € I'(M, E). We will use the notation I'(U, F) to emphasize the vector
space of smooth sections of E|y over an open subset U of the base manifold
M. A frame for the vector bundle E over U is a set of k smooth sections
{s1,82,...,8c}, where s; : U—=7"1(U), such that {s;(z), s2(z),...,sk(z)}
is a basis for fiber E, for any x € U.

We give some examples of a vector bundles. The first example is a tangent

bundle TM = |J T,M, where T, M is a tangent space at x, of a smooth
zeEM
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manifold M. Tangent bundle is a real vector bundle of rank n, where dim M =
n. The smooth sections of T'M are the vector fields. Let U C M be a
neighborhood of x. Derivations {% |2 (% ey ey a% | ¢ form a basis for T, M

at x € U. The vector field 2" : M—T M can be represented locally as 27|y =

A aiz‘ with coefficients 2™ smooth functions. The second example is a
i=1

cotangent bundle. The fiber 7'M at x € M of a cotangent bundle T*M =
U T:M is the dual to T, M. The smooth section of a cotangent bundle is a
xeM

differential 1-form on a manifold M and its local expression is w|y = > w;dz?,

i=1
where {dz',da?,... dz"} is a dual basis to {75}, (da'(3%) = 0%). The
exterior algebra bundle APT*M, whose fiber at € M is the antisymmetric
tensor product of degree p of vector spaces TXM and ANT*M = @ NPT*M.
p=0
The smooth sections of the vector bundle AT*M is a smooth differential forms
and the space of differential forms is denoted by Q(M). The elements of the
space QP(M) = I'(M, A\PT* M) are the differential forms of degree p or briefly
p-forms. In a neighborhood U of an arbitrary point € M a differential
p-form w can be uniquely represented in local coordinates xt, 22, ... 2" by
an expression

wly = E Wiyig...ipdx™ Ndx™ N\ ... ANdx™,
1< <i2<...<ip<n

where dz! = {dz™* A ... ANdz?}, T = (i1,49,...,1p) and 1 <4y <ig < ... <
ip < n, form a basis for APT*M. Suppose that 27, 25, ..., Z, are the vector
fields on the manifold M and w is a p-form, then w(Z7, Z3,...,Z,) is a
smooth function given by

w21, Zay .o, 2p)(2) = we(Z24(2), Za(x), ..., Zp(x)) €R

for x € U C M. It means p-forms act on p-tuples of vector fields to give
real-valued function.

Suppose that E is a vector bundle of rank k over M and {e,}/,_; is a frame
over U C M for E. Then the local representation of the smooth section

se (U, E) is
E
sly = Zsaea,
a=1
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where s* are smooth functions on U. For simplicity of notation we continue
to write s|y = s“e, (Einstein summation convention assumed). It is worth
mentioning that this assumption will be needed throughout the chapter.

Let us now consider differential forms with values in vector bundle E over
M. Differential p-form w is said to be E-valued p-form if

wo(21(2), Z2(2), ..., Zp(x)) € 77 (2) = E;
and the section w(21, 23, ..., %Z,) : U—=71"YU), such that
T w (21, Zay o, ),

is a smooth section of vector bundle E, where 27, 23, ..., %, are smooth
vector fields on U C M and x € U. Therefore, E-valued differential form of
degree p is a smooth section of the tensor product APT*M ® E. Hence the
space of such forms is

OP(M,E)=T(M,\N"T*"M ® E).
Following [47] it can be shown that there exists the isomorphism of spaces
(M, E) = QP (M) @coo(any I'(M, E). (3.1.1)

The image of w ® s under the above isomorphism is denoted by w - s €
OP(M, E), for w being the differential form of degree p and s being the
smooth section of vector bundle E. Let us describe a local representation
for a E-valued differential form. If {e,}*_, is a frame for E over an open
set U, then making use of the local representation of an arbitrary section
s € (U, E) and p-form w € QP(U) we get

(W) = (Wiiy.iydz™ Adz AL Ad2') @ (s%eq)
= wili?--*ipsa<dxii A d$i2 Ao A d-Tip) & €a
= Wi, ST (AT AT AL A dT™) - eq,

where — stands for isomorphism 3.1.1. For the general case, a local repre-
sentation for an arbitrary 6 € QP(U, E) is given by

Qr(U,E) 2 [QP(U)]F = QP (U) x ... x QP(U),

kti‘rrnes
where
Ol =0 (dz** Ndx N\ ... ANdx'P) - e,.

1112...0p
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Definition 3.1.2. A connection D on vector bundle F over manifold M is
a linear map

D:T(M,E)—QY(M, E),

which satisfies
D(f-s)=df -s+ fDs, (3.1.2)

where f € C*°(M) and s € I'(M, E).

Now we give a local description of a connection. Let {e,} be a frame over U
for a vector bundle E, equipped with a connection D. If s € T'(U, E) is an
arbitrary section of vector bundle E then the action of connection D on this
section is

Ds = D(s%,) = ds“e, + s De,

We define the matrix of connection © by setting © = (65), where Deg = 0fe,.
The entries 05 are differential 1-forms. Therefore, the action of the connection
D on sections of a vector bundle E can be represented

Ds = (ds” + 0°5%)eg,

or, in the matrix form,
Ds=ds+ 0 -s,

where the section s and its differential are considered as columns of & com-
ponents, i.e.

st ds!

52 ds?
5= , ds= )

sk dsF

The next aim is definition of the curvature of a connection. Let E be a vector
bundle of rank k, equipped with a connection D. The curvature matrix ¥
associated with the connection matrix © is an k X & matrix of 2-forms defined
as

V=do+0OAN0.

Componentwise, this is
_ 0
Y5 =dbig + 05 N0
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The curvature of connection is defined to be the element F € Q?(M,EndE),
which locally have the form

UV=do+0OAN0.

A connection D can be extended to E-valued differential forms of higher
order D : QP(M, E) — QPTY(M, E). Let {e,}*_, be a frame over U for a
vector bundle E. It is easy to see that operator D? = D o D coincide with
an operator of multiplication by F. Indeed,

(D?s)* = d(ds™ +055") + 05 A (ds” + 67s7)
= df3s’ — 05 Nds” + 05 Nds® + (05 N 6DS)
= (df5 + 05 A G)) s,
—_—— —
v
Thus the curvature measures the failure of the sequence
D D 02
M, E) — Q(M,E) — Q*(M,E)— ...

to be a cochain complex in the sense of de Rham cohomology.

Let ©, ¥ be the local connection and its curvature forms with respect to the
frame {e,}!,_, for the vector bundle E with a connection D. The curvature
form satisfies the Bianchi identity d¥ = [V, ©]. Indeed,

dvg = d(dog + 05 NO) = d*05 + doS A0 — 05 A db)
= (05 +0; NOJ) NGOy — 07 NOTNO)
— 05N (dOy+ 0] NOF) + 05 N0 NGOG
= YOO} — 02 AP = [, 0]5.

It is necessary to examine how the connection matrix and the curvature
matrix behave, if we pass from one frame to another. Suppose that G =
(95) € GL(k,R) is a change of frame

{ea}](i:l - {(ge)a}lgz:h

ie. (ge)a = egg’ = &4, for a vector bundle E. Let ©, ¥ and ©, ¥ be
the connection and curvature matrices in terms of the frames {e,}%_, and
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{(9€)att_, = {€a}E_,, respectively. Upon applying the connection D to the
frames we get De, = 0%es and Dé, = 07¢5. Therefore,

D(éa) = D(gze’y) = éggge'yy
on the other hand,
D(gey) = dgle, + gib5eq,
comparing coefficients, we get
03g%e, = dgley + 930%e,
or in the matrix form 3
0 =G"'eG+6daG.

It shows that the components of connection with respect to different frames
are related by gauge transformation. Now we show that the curvature form

transforms as .
U =G G,

To this end, we use the fact that dG~'G + G~'dG = 0. We obtain

¥

d® + O A6 =d(G'OG + G G)

(GT'OGG™HG) A (GG + G71dG)

(dGYHY AOG + G71dOG — GO A dG + dG™' A dG
G'ONOG +G'OANIG +

GG A (GT'OG) + (G71HG) A (GTHG)

= —(G7YG) A (GTIOG)GTHdO + O AO)G + dG™! A dG
+ (G7HG) A (GT'OG) —dG™P A dG = GG

+

+ +

3.2 N-connection on modules

In this section we propose a notion of N-connection, which is a generalization
of a concept of )-connection on modules. A theory of {2-connection can be
found in an excellent survey [21] and this was a motivation of our general-
ization. We study the structure of an N-connection, define its curvature and
prove the Bianchi identity [1, 4]. We define the dual N-connection and N-
connection consistent with the Hermitian structure of a module. We prove

7



that every projective module admits an N-connection. This section is based

on [7, 8.

We begin this section by recalling the notion of {2-connection given in [21].
Suppose that 2 is an unital associative algebra over the field of complex
numbers and £ is a left module over 2. Let Q) be a graded differential algebra
with differential d, such that Q° = 2, it means that the map d : A — Q! is
a differential calculus over 2. Since an subspace of elements of grading one
can be viewed as a (2, 2l)-bimodule, the tensor product Q' ®g & clearly has
the structure of left 2-module.

Definition 3.2.1. A linear map V : £ —=Q! ®g & is called an Q-connection
if it satisfies
V(us) = du ®q s +uV(s)

for any u € A and s € £.

Similarly to the case of connections on vector bundles, this map has a natural
extension V :  ®g & — Q) ®g £ by setting

V(v ®g s) = dw ®g s + (—1)PwV(s),
where w € QP and s € £.

Now our aim is to generalize a notion of (2-connection taking graded g¢-
differential algebra instead of graded differential algebra 2. Let 2 be an
unital associative C-algebra, (2, is a graded g¢-differential algebra with V-
differential d and A = Qg. Let £ be a left A-module. Considering algebra (2,
as the (2, A)-bimodule we take the tensor product of left 2-modules 2, ®y &
which clearly has the structure of left 2-module. To shorten the notation,
we denote this left A-module by §. Taking into account that an algebra (2,
can be viewed as the direct sum of (2, A)-bimodules €, we can split the left
2A-module § into the direct sum of the left A-modules F* = Qé ®q & [18],
ie. § = ®;F", which means that § inherits the graded structure of algebra
},, and § is the graded left A-module. It is worth noting that the left 2A-
submodule §° = A ®g & of elements of grading zero is isomorphic to a left
2A-module £, where isomorphism ¢ : £ —=F° can be defined for any s € £ by

p(s) = e s, (3.2.1)

where e is the identity element of algebra 2A. Since a graded g¢-differential
algebra Q, can be viewed as the (£, {2,)-bimodule, the left 2A-module § can
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be also considered as the left 2,-module [18] and we will use this structure
to describe a concept of N-connection. Let us mention that multiplication
by elements of QF, where i # 0, does not preserve the graded structure of the
left 2,-module §.

The tensor product § has also the structure of the vector space over C where
this vector space is the tensor product of the vector spaces €1, and £. It is
evident that § is a graded vector space, i.e. § = @;§', where § = Q} ®c £.
Due to the structure of vector space of § we can introduce the notion of linear
operator on §. We denote the vector space of linear operators on § by £(F).
The structure of the graded vector space of § induces the structure of a graded
vector space on £(F), and we shall denote the subspace of homogeneous linear
operators of degree i by £(F).

Definition 3.2.2. An N-connection on the left ,-module § is a linear
operator V, : § — § of degree one satisfying the condition

V,(w ®q8) = dw @g 5+ ¢ wV,(s), (3.2.2)

where w € Q';, s € &, and |w]| is the degree of the homogeneous element of
algebra €.

Making use of the previously introduced notations we can write V, € £'(F).
It is worth pointing out that if N = 2 then ¢ = —1, and in this particular case
the Definition 3.2.2 gives us the algebraic analog of a classical connection.
Indeed, making use of the Definition 3.1.2, we see that connection on vector
bundle can be viewed as a linear map on a left module of sections of vector
bundle, taking values a algebra of differential 1-forms with values in this
vector bundle, which clearly has a structure of a left module over an algebra
of smooth functions on a base manifold. In this case relation (3.1.2) is a
particular case of (3.2.2) for N = 2. Hence a concept of a N-connection can
be viewed as a generalization of a classical connection.

In the same manner as in Definition 3.2.2 one can define an N-connection on
right modules. If £% is a right 2-module, a N-connection on & = £ @y ,
is a linear map V, : & —® of degree one such that V,({ ®yw) = & Qg dw +
q“V,(é)w for any € € £ and homogeneous element w € Q.

Let &€ be a left A-module. The set of all homomorphisms of £ into 2 has the
structure of the dual module of the left A-module £ and is denoted by £*. It
is evident that £* is a right A-module.
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Definition 3.2.3. A linear map V} : & — & @qy chz defined as follows

Vo)) = d(n(€)) —n(V,(8)),

where £ € £, n € £ and V, is an N-connection on &, is said to be the dual
connection of V,.

It is easy to verify that Vj has a structure of N-connection on the right
module £*. Indeed, for any f € /A, n € £, £ € £ we have

Vi€ = dnf(€) — f)(V&) =dn)f) —n(V)f
= dn(&))f +n(&) @udf —n(V&)f =n(§) @adf +Vi(n())f

In order to define a Hermitian structure on a right 2-module £ we assume 2
to be a graded g-differential algebra with involution % such that the largest
linear subset contained in the convex cone C' € 2 generated by a*a is equal to
zero, i.e. C'N(—C) = 0. The right A-module £ is called a Hermitian module
if £ is endowed with a sesquilinear map h : £ x &€ — 2 which satisfies

h(fw,&w') = w*h(, &', Vw,w' €U, V¢, & €€,
hE &) e, VEe& and h(£,€) =0 =€ =0.

We have used the convention for sesquilinear map to take the second argu-
ment to be linear, therefore we define a Hermitian structure on right modules.
In a similar manner one can define a Hermitian structure on left modules.

Definition 3.2.4. An N-connection V, on a Hermitian right 2-module £ is
said to be consistent with a Hermitian structure of £ if it satisfies

dh(§,€) = h(V4(§). &) + h(& Vo(£)),
where £,& € €.

Our next aim is to define a curvature of N-connection. Following [1] we start
with

Proposition 3.2.5. The N-th power of any N-connection V, is the endo-
morphism of degree N of the left Q,-module §.
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Proof. 1t suffices to verify that for any homogeneous element w € (2, an
endomorphism V, € £'(F) satisfies the condition

Vil (w @ s) = w VY (s).

We expand the k-th power of V, as follows

Vk (w @y s) Z gm! [ m ] d"mw Vi'(s), (3.2.3)

q
where [ :1 ] are the ¢g-binomial coefficients. Since d is the N-differential of a
q

graded ¢-differential algebra ©, we have d¥w = 0. According to [ 7]:71 ] =0

q
for 1 <m < N — 1, we see that in the case of Kk = N the expansion (3.2.3)
takes the following form

Vi (w @y s) = “lw VI (s) =w VN (s) (3.2.4)
and this clearly shows that Vév is the endomorphism of the left (2;-module
5. ]

This proposition allows us to define the curvature of N-connection as follows

Definition 3.2.6. The endomorphism F' = Vév of degree N of the left (2,
module § is said to be the curvature of a N-connection V,.

Suppose that £(F) is the graded vector space. We proceed to show that £(F)
has a structure of graded algebra. To this end, we take the product Ao B of
two linear operators A, B of the vector space § as an algebra multiplication.
If A: §—F is a homogeneous linear operator than we can extend it to
the linear operator Ly : £(F) — £(§) on the whole graded algebra of linear
operators £(§) by means of the graded g-commutator as follows

Lu(B)=[A,B],=AoB—¢4PIBo A, (3.2.5)

where B is a homogeneous linear operator. It makes allowable to extend an
N-connection V, to the linear operator on the vector space £(§)

Vi (A) =V, A, =V,0A—-¢¥ A0V, (3.2.6)
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where A is a homogeneous linear operator. As it follows from the Definition
(3.2.2), V, is the linear operator of degree one on the vector space £(F),
Le. V,: £(F) — £1(F), and V, satisfies the graded ¢-Leibniz rule with
respect to the algebra structure of £(F). Consequently the curvature F' of an
N-connection can be viewed as the linear operator of degree N on the vector
space §, i.e. F € £Y(§F). Therefore one can act on F' by N-connection V,,
and it holds that

Proposition 3.2.7. For any N-connection V, the curvature F' of this con-
nection satisfies the Bianchi identity V,(F) = 0.

Proof. We have
Vo(F) = [anF]q:quF_qNFovq:VéVH_véVH = 0.

O

The following theorem shows that not every left A-module admits an N-
connection [8]. In analogy with the theory of Q-connection [21] we can prove
that there is an N-connection on every projective module. Let us first prove
the following proposition.

Proposition 3.2.8. If £ =ARV s a free A-module, where V' is a C-vector
space, then V, = d ® Iy, is N-connection on £ and this connection is flat,
i.e. its curvature vanishes.

Proof. Indeed, V,: A®V —Q, @ (A® V) and

Vo(flgaw) = (@doIv)(flgev) =d(fg)@v=
= (dfg) @v+ f(dg®@v) =df @ (9®@v) + fV,(g®0),

where f,g € A, v € V. As d¥ = 0 and ¢ is the primitive Nth root of unity,

we get VI (f(g@wv) = > [ an ] d*f(dmg ®v) =0, i. e. the curvature
k+m=N q
of such a N-connection vanishes. ]

Theorem 3.2.9. Every projective module admits an N -connection.
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Proof. Let P be a projective module. From the theory of modules it is
known that a module P is projective if and only if there exists a module
N such that & =P @& N is a free module [37]. A free left A-module £ can
be represented as the tensor product A ® V, where V is a C-vector space.
A linear map Vy, = 7o (d® Iy) : P —=Q @y P is a N-connection on a
projective module P, where d ® I, is a N-connection on a left 2A-module
£, m is the projection on the first summand in the direct sum P & N and
T(w R (O V) = wum(g ®v) = w g m, where w € Q, g€ A v eV,
m € P. Taking into account Proposition 3.2.8 we get

Vi(fm) = w((d® Iv)(fm)) = m(df @am+ fdm) =
= df ®an(m) + [Vy(m) = df ®am+ [V,(m),
where f € A, m € P. m

3.3 Generalization of superconnection

Superconnections were introduced by D. Quillen and V. Mathai [42] as ge-
ometric objects associated with graded vector bundles whereby the integer
grading by differential form degree is replaced by a Zs-grading. In order to
generalize the notion of a superconnection to any integer N > 2 we need a
Zn-graded analog of an algebra of differential forms, assuming that a vector
bundle has also a Zy-graded structure we can elaborate a generalization of
superconnection following the scheme proposed by D. Quillen and V. Mathai.
This section is based on [1, 6] where Z y-connection was defined and studied.

Following [11] we begin this section with the brief description of Quillen’s
concept of superconnection. Suppose that the vector bundle F over M has
a Zg-graded structure £ = ET @ E~, ie. the fibers of this vector bun-
dle E, = Ef ® E;, © € M, are Zy-graded complex vector spaces. Let
QM) = @,Q(M) be a graded algebra of smooth differential forms on the
base manifold M with a natural Z-graded structure defined by the degree
of differential form. Let us also mention that Q(M) is a Zy-graded algebra,
where the grading of a homogeneous differential form equals to its degree
modulo 2. The space Q(M, E) of smooth E-valued differential forms on M
has a Z x Zs-grading, but we will be concerned with its total Z,-grading,
which will be denoted by

QM,E)=Q"(M,E)®Q (M, E),
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where

OF(M, E) = @p(sz(M, EE) @ ¥+ (M, EJF)). (3.3.1)

Keeping in mind the isomorphism of spaces (3.1.1), we see that the total
grading of a homogeneous differential form with values in F is the sum of
two gradings, where the first grading is determined by the graded structure
of the algebra of differential forms and the second comes from the graded
structure of Zs-graded bundle E. For instance, 1-form ¢ € Q!(M, E) such
that 0(2°) e '(M,E~),VZ € I'(M,TM), is a form of even grading under
the total grading of the differential form 6.

A superconnection on a vector bundle F is a linear operator of odd degree
A:QF(M,E)—QF (M, E)
which satisfies Leibniz rule
AwNAB) =dwAb+ (—1)¥lwAA®), (3.3.2)

where w € Q(M) and 6 € Q(M, E).

We now in a position to show how the generalization of superconnection can
be constructed. To do this, we use the notion of N-connection, introduced in
the previous section. Our approach is based on the algebraic structures such
as differential algebras and modules. Let 2 be an unital associative C-algebra
and d : A —=€), be an N-differential calculus over 2A. The basic difference
from the concept of an N-connection is that we suppose here that there is
a graded structure on a left A-module £. Let £ = @keZNSk be a Zy-graded
left A-module. In the same manner like it was done in the previous section
we construct the tensor product § = €2, ®g &£, which may be considered
as a left €),-module. Since a graded g-differential algebra (2, can also be
viewed as a (2, 2()-bimodule, the tensor product § has the left 2-module
structure. It should be mentioned that §, being the tensor product of two
vector spaces over C, has also a structure of a C-vector space. The space
of endomorphisms of the vector space §, denoted by Endc(F), becomes a
graded differential algebra if the multiplication is defined by a product of
two endomorphisms.

The left Q,-module § becomes a graded left 2;-module if we construct Zy-
graded structure on it as follows: given two homogeneous elements w €
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(1,, s € £ one defines the total grading of the element w ®g s € § by
|w ®g 5| = |w[ +[s].

Then
§= @keZNSk, 3= @m+l:k3m’l = D=k 2" Qg 51,

where k,l,m € Zy. It should be mentioned that if we consider the ten-
sor product § as the left {2,-module then multiplication by a homogeneous
element w € Q, of grading k maps an element ¢ € ™ into the element
w( € FmHRL I we consider the tensor product § as the left 2A-module then
multiplication by any element u € 2 preserves the Zy-graded structure of
§. Hence if m + 1 = k then ™! is the left A-submodule of a left A-module
§*. The Zy-graded left A-module F! = D) Da &l is isomorphic to a left
A-module £. We define the isomorphism ¢ : £ —=F% analogously with 3.2.1
by ¢(s) = e Qg s, where e is the identity element of 2. We emphasize that
this isomorphism preserves the graded structures of the left A-modules £ and
3 e ¢ E'—=Q," @y &

Definition 3.3.1. An Zy-connection on the graded left Q,-module § is an
endomorphism Az, of degree 1 of the vector space § satisfying the condition

Azy(w Q) =d(w) ¢+ ¢¥lw Az, (C),

where w € €, ¢ € §, and d is the N-differential of a graded g-differential
algebra €.

An Zn-connection Az, can be extended to act on the Zy-graded algebra
End¢(§) in a way consistent with the graded g-Leibniz rule if we define for
any A € End¢ ()

Az (A) = [Agy, Al = Az, 0 A— ¢ A0 Ay (3.3.3)
Consequently Az, : End%(§) — : Endit(F) and
Az, (AB) = Az, (A) o B+ ¢4 Ao Ay, (B).
We proceed to show that in the case of N = 2 an Zy-connection can be

realized as a superconnection. Geometrically speaking, suppose that F is a
superbundle with a base M. In this case Q, = @,Q(M) is the algebra of
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differential forms on a manifold M and d is the exterior differential of this
algebra. Let 2 =T°(M, E) = C*(M) be the algebra of smooth functions on
a manifold M, and I'(M, E) is the left Zy-graded I'°(M, E)-module of smooth
sections of a superbundle F. The tensor product § = Q, ®y £ is the space
of E-valued smooth differential forms on M. The space Endc(F) is the space
of differential forms on a manifold M with the values in the superbundle
End(FE), the g-commutator becomes the supercommutator. Summarizing,
the definition of an Zj-connection coincides in this special case with the
definition of a superconnection.

In order to better understand what an Zy-connection consists of, we use an
algebraic analog of a covariant derivative. The left A-modules §*, §**! can
be split into the direct sums

&k — @ 3'm,l — 3;0,16 D gl,k—l D 8;2,k—2 D... O %rN—l,k—&-l’

m+l=k

%vk:—i-l — @ %vm,l — 30,]6-5—1 D gl,k D g?,k—l D...D .fSN—l,k-i-Q'

m—+l=k+1

Let us introduce following projections of the left 2-modules onto their -
submodules

pij:§—=F7, pi:F— @ 3 e Qq%QSapz & —&l
Each projection is the homomorphism of the corresponding left 2A-modules,
Dy = T Qg pr and
Pri(w @y s) = Tp(w) @opi(s), Yw € Qs €.

The pair (€, d) is the differential calculus over an algebra 2 and £ is a left
2-module.

Proposition 3.3.2. The linear map D = p; o Az, o ¢ is the covariant
derivative on a left A-module £ with respect to the differential calculus (€0, d).
The covariant derivative D preserves the Zy-graded structures of the left -
modules € and Q; Qo &k, ie. D:FF—FLF.

Proof. The proof is based on the following observation. For any f € /U, s € £
we have

D(fs) = pi(Azy(p(fs))) = pi(A(fe(s))) = pr(dfp(s) + fAp(s))
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= pi(df(e @as)) + fpi(Ap(s)) = (df ®us)+ fD(s )*
= ZP1,z(du®mS)+fD( =m(d ®mz¢l )+ fD(s

l
— df ®us+ fD(s). (3.3.4)

O

The task is now to define a curvature of Zy-connection. Analogously to
Proposition 3.2.5 one can show that the N-th power of an endomorphism
Az, € Endg(F) is the grading zero endomorphism of the left 2l-module .

Definition 3.3.3. The curvature F' of an Zy-connection Az, is the endo-
morphism A]ZVN of grading zero of the left Zy-graded 2,-module §:

F = A}, € Endg (3).

At the end of this section we consider the example of Zy-connection [1].
We extend the N-differential of a graded g¢-differential algebra (2, to the
Zy-graded left (2,-module § in a way consistent with the graded g¢-Leibniz
rule by putting d(w ®g s) = d(w) @y s, where w € ,, s € £. It is evident
that d € Endc(§). Let L be an endomorphism of grading 1 of a left -
module &, i.e. L € Endy(£). This endomorphism can be extended to the
(};-endomorphism of the left {2,-module § in a way consistent with the Z -
graded structure of § by means of L(w ®g s) = ¢*'w ®g L(s). Indeed if
( =w®gy s €F then

L(0¢) = L(0(w ®x 5)) = L((w) @q 5) = ¢""I(0w) @ L(s)  (3.3.5)

Obviously L € End%zq (%) € Endg(F). The endomorphism Az, = d + L of
grading 1 of the vector space § is a Zy-connection. Indeed for any w €
)y, € § we have

Azy(w() = (d+ L)(w() = d(w() + L(w()
= dw) ¢ +¢¥wd(¢) +¢“wL(C)
= dW)¢ +¢"w Az, (Q).

We can decompose L into the homogeneous parts L;;,4, j € Zy with respect
to the Zy-graduation of £, where L;; : £ —£*. This components form the
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matrix

0 0 0 0 LO,N*I
Lig 0 0 0 0

0 Ly 0 0 0

0 0 Lsy 0 0

0o 0 0 .. 0 0

0 0 0 ... Lyoya O

Let us denote by {d™, L1 Ly... Ly}, where m, k are non-negative integers,
the sum of all possible products made up of the mappings d, L1, Lo, . .., L,
where each product contains m-times the differential d and k£ mappings
Ly, Lo, ..., L succeeding in the same order. For m = 2,k = 1 we have
{d*, L} =d* L +dLd+ Ld* The curvature of the Zy-connection Az, can
be written as follows F = Aj) =37 = {d™ L*}. Using the matrix asso-
ciated to L we obtain the N x N-matrix corresponding to the curvature F,
where the entry Fj; of this matrix can be written as follows

Fy = Z {d™ Lii1 Licvio. . Ljy1j},

m+k=N,i,j€Zy

where m, k are non-negative integers running m,k = 0,1,..., N, and each
product in {d™, L;;—1 Li—1;—2 ... Lj;11;} contains k entries of the matrix as-
sociated to L which means that ¢ — 7 = k. For instance if N = 2 we obtain
the matrix of a superconnection D = d + L and the matrix of its curva-
ture which can be written in the standard notations of the supergeometry
& = EN & =E,LT = Lgi, L~ = L as follows

0 L- L-Lt dL-
b (S B) re(BE )
3.4 Local structure of an /N-connection

In this section we consider an algebraic analog of the local structure of a
vector bundle. Connection on the vector bundle of finite rank over a finite
dimensional smooth manifold can be studied locally by choosing a local triv-
ialization of the vector bundle and this leads to the basis for the module of
sections of this vector bundle. This section is based on [7, 9]
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Let us concentrate now on an algebraic analog of the local structure of an N-
connection V, (3.2.2). For this purpose we assume & to be a finitely generated
free left ™-module. Let ¢ = {e,};_; be a basis for a left module £. Any
element s € £ can be expressed as s = s'¢,. As it was mentioned above
E =~ 30 (3.2.1). Therefore the basis for a module £ induces the basis f =
{fu} =1, where f, = e®ge,, for the left 2A-module F. For any £ € §° we have
¢ = &"f,. Taking into account that §° C § and § is the left Q,-module we
can multiply the elements of the basis f by elements of a graded ¢-differential
algebra Q. It is easily seen that if w € Y, then for any p we have wf, € §".
Consequently we can express any element of the §* as a linear combination of
f, with coefficients from Q}. Indeed let w ®gs be an element of F = Q' ®g £.
Then

wRys = (we)Qqy(s'e,) = (west) qge,

= (ws'e) ®g e, =ws" (e @y e,) =wfy,
where w* = ws* € Q.

Let §° be a finitely generated free module with a basis f = {f,},—;, and
s = stf, € §°, where s# € 2. Since N-connection V, is a linear operator
of degree one, it follows that V,(s) € §', and making use of ¢-Leibniz rule
(3.2.2) we can express the element V,(s) as follows

Vo(s) = V(') = ds" @afu + 5" V(fu)- (3.4.1)

Let Mat,(£2,) be the vector space of square matrices of order r whose en-
tries are the elements of a graded g-differential algebra €1,. If each entry
of a matrix © = (¢};) is an element of a homogeneous subspace Q. ie.
0}, € (2, then © will be refereed to as a homogeneous matrix of degree 7 and
we shall denote the vector space of such matrices by Mat’.(€,). Obviously
Mat,(€,) = ®;Mat’(€,). The vector space Mat,(£,) of 7 x r-matrices be-
comes the associative unital graded algebra if we define the product of two
matrices © = (0}),0" = (¢/) € Mat,(€,) as follows

(00 =670". (3.4.2)

If ©,0" € Mat,(2,) are homogeneous matrices then we define the graded
g-commutator by [0,0'], = © 0’ —¢®l®le’©. We extend the N-differential
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d of a graded g-differential algebra €, to the algebra Mat,(€2,) as follows
dO = d(0) = (do,).

Since any element of a left A-module §' can be expressed in terms of the
basis f = {f,.}},=; with coefficients from Q}, we have

V(i) = 0,50, (3.4.3)

where 0 € Qé In analogy with the classical theory of connections on vector
bundles we introduce a notion of a matrix of N-connection.

Definition 3.4.1. An r x r-matrix © = (6};), whose entries 0}, are the ele-

ments of Q ie. © € Mat}(€),), is said to be a matriz of an N -connection
V, with respect to the basis f of the left 2-module F°.

Combining (3.4.1) with (3.4.3) we obtain

V,(s) = (ds" + s"08) §,. (3.4.4)

Let f = {f',}},=1 be another basis for the left 2-module §° with the same
number of elements (this will always be the case if 2 is a division algebra
or if 2 is commutative). Then §, = g7f,, where G = (g;) € Mat](€,) is a
transition matrix from the basis f to the basis . It is well known [33] that in
the case of finitely generated free module transition matrix is an invertible
matrix. If we denote by 0" the coefficients of V, with respect to a basis
and g are the entries of the inverse matrix G~! then

0" = dgl gt + g70,3",

and this clearly shows that the components of V, with respect to different
bases of module §° are related by the gauge transformation.

Our next aim is to express the components of the curvature F of a N-
connection V, in the terms of the entries of the matrix © of a N-connection
V,. Computation in successive steps allows us to introduce polynomials
Pt € qu on the entries of the matrix of N-connection and their differentials.
We have

Vq(3> = (dsu+3y65)fua
U=

v
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Vals) = (d*" + [2gds"0} + s"(d0)) + q0707))f.

YE = dO" + q 050", (3.4.5)
Vi) = (05 Bl 0 + [3],ds" (A6 + a70%)

(A0 (a+ )AOLO% + POTAL + 070704 )
PR = P08+ (g + ) dOg 0% + ¢ 6 dOk + ¢* 07,076" (3.4.6)

Therefore, the kth power of N-connection V, has the following form

k — £ k k—l 0w
Vils) = > || A

=0
= (dFs* gt + [Klgd st b 4 s R, (347)

We can calculate the polynomials wllf by means of the following recursion
formula

Pl = Ayl g gl gy, (3.4.8)

or in the matrix form
U= qu 1ol e, (3.4.9)

We begin with the polynomial 1/)2’” = 0, ¢ € 2, and e is the identity element of

A C €. From (3.4.7) it follows that if k = N then the first term d¥¢# /™"
in this expansion vanishes because of the N-nilpotency of the N-differential
d, and the next terms corresponding to the [ values from 1 to N — 1 also
vanish because of the property of g-binomial coefficients. Hence if k = N
then the formula (3.4.7) takes on the form

V() = stV g, (3.4.10)

In order to simplify the notations and assuming that N is fixed we shall
v (N,N)v
denote ¢, = ¢y :

Definition 3.4.2. An (rx7)-matrix ¥ = (), whose entries are the elements
of degree N of a graded g¢-differential algebra €2, is said to be the curvature
matriz of a N-connection V.
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Obviously ¥ € Mat” (€,). In new notations the formula (3.4.10) can be writ-
ten as follows Vfl\f (s) = s" 97 §,, and it shows that Vé\' is the endomorphism
of degree N of the left (0;-module §.

Let us consider the expressions for curvature in two cases when N = 2 and
N = 3. If N = 2 then ¢ = —1, and a graded g¢-differential algebra €, is a
graded differential algebra with differential d satisfying d> = 0. This is a
classical case, and if we assume that €, is the algebra of differential forms on
a smooth manifold M with exterior differential d and exterior multiplication
A, € is the module of smooth sections of a vector bundle £ over M, V, is a
connection on F, ¢ is a local frame of a vector bundle F then © is the matrix
of 1-forms of a connection V, and we have for the components of curvature
Yy, = db;—076;. In this case (), is super-commutative algebra and we can put
the expressions for components of curvature into the form ¢y, = df}; + 6,67
or by means of matrices ¥ = d© + © - © in which we recognize the classical
expression for the curvature.

If N =3 then g = exp( %) is the cubic root of unity satisfying the relations
¢ =1,1+q+¢* = 0. This is a first non-classical case of a g-connection,
and the formula (3.4.6) gives the following expression for the curvature of a
N-connection

Uy = &0+ (¢ +q°) dO%05 + 7 05 0 + ¢° 0,0706)

w prT o
2 nv onv 2 no v T No OV
= A0, — dO50Y + 2605 by + 07,070"
2 v a1 % 2 no v T NO OV
= d20% — (d636% — 4% 605, d6Y) + 07070"

It is useful to write the above expression for the curvature in a matrix form

U = d°0 — [dO, 0], + 6° (3.4.11)
From Proposition 3.2.7 it follows that the curvature of a N-connection sat-
isfies the Bianchi identity. If %, 1! are the components of an /N-connection

V, and its curvature F' with respect to a basis f for the module § then the
Bianchi identity takes on the form

e A

The last part of this section is devoted to the structure of N-connection forms
and their curvature. We apply the algebra of polynomials [0, a] over C,
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constructed in the Section 2.2 to study the structure of N-curvature. Let €,
be a graded g¢-differential algebra.

Definition 3.4.3. We will call an element of degree one © € Qé an N-
connection form in a graded g¢-differential algebra €2;,. The linear operator
of degree one V, = d + © will be referred to as a covariant N-differential
induced by a N-connection form ©.

We remind that d is an N-differential which means that d* # 0 for 1 < k <
N — 1 and if we successively apply it to an N-connection form © we get
the sequence of elements ©,d0,d*0, ..., d" 'O, where d*© € Q}*!. Let us
denote

@1 - @
O, = do
Oy = d''e.

We denote by Q,[0] the graded subalgebra of €2, generated by elements
©1,0,,...,0y. For any integer £k = 1,2,..., N we define the polynomial
F € Q,]0] by the formula Fj, = Vi~'(0). Evidently the subalgebra €,[©)]
is isomorphic to the graded g-differential algebra B,[a] of Section 2.2. if we
identify ©;—=a;. Then the polynomials F}, are identified with the polynomials
fr and we can apply all formulae proved in the case of B,[a] to study the
structure of Q,[©].

Definition 3.4.4. Let [, €], be the subspace spanned by graded g-com-
mutators [u, v] = uv —¢"I*lyu. A trace on (), is a degree zero homomorphism
7 from the N-complex 2, to an N-complex V with N-differential d', i.e.
d'T = 7d, which satisfy 7[Q, Q,], =0

Definition 3.4.5. The Chern character form of a graded g-differential alge-
bra €, is

Iy
nl

ch(0,7) = 7(—).

Proposition 3.4.6. The Chern character form is closed, i.e.

d(ch(©, 7)) =0.
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The proof follows from Bianchi identity.

It follows from Theorem 2.2.4 that for any integer 1 < k£ < N the kth power
of the covariant N-differential V, can be expanded as follows

k
(Vo)F =) { ’j } Fod =t =d" + [k F1d" " + .o+ 0] Froad + Fy,
q

=0

where Fy, = (V,)*"1(©). Particularly if k = N then the Nth power of the
covariant N-differential V, is the operator of multiplication by the element
Fy of grading zero. It makes possible to define the curvature of an N-
connection form O as follows

Definition 3.4.7. The N-curvature form of an N-connection form © is the
element of grading zero Fy € .

Theorem 2.2.4 gives the explicit power expansion formula for N-curvature
form of an N-connection

B ko — 1 ks — 1 k—1
F, = Z[ . ] { b ] [ kr_l} 0,,0,,...0;,

where Y, is the set of all compositions of an integer 1 < kK < N, 0 =
(11,19, ...,1,) is composition of an integer k in the form of a sequence of
strictly positive integers , where iy + i + ...+ 4, = N, and

ki = i,
ko = i1+ 19,
kg - il +’LQ "’ig,
kry = 14 io+ ...+ 0.

Hence we obtain the expressions for N-curvature form

F, = dO+ 07 (3.4.12)
F, = d°0+dO0 +[2],0d0 + 67, (3.4.13)
F, = d°©+(d°©)6 +[3],0 (d*6) + [3],(de)?

+dO 6% + [3],0%dO + [2],0d0 6 + 6% (3.4.14)
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Fy = d'©+(d°©)06 +[4],0 (d*°0) + [4], (d*0) de

4 { , ] 46 (26) + (d20) 0 + [3], (d0)2 ©

4
2
+ 3,0 d*0 6 + 2,0 d0 6% + [3],62d0 6

+dO ©°* + [4],6%d6 + ©°. (3.4.15)

+[4]qd@@d@+[2]q[4}q@(d@)2+{ ] 0?d*6
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Kokkuvote

Gradueeritud g-diferentsiaalalgebrad ja
algebralised mudelid mittekommutatiivses geomeetrias

Diferentsiaalmooduli moéiste votsid kasutusele H. Cartan ja S. Eilenberg [14].
Olgu FE diferentsiaalmoodul iile kommutatiivse ringi ja d selle mooduli dife-
rentsiaal, st d on mooduli F endomorfism, mis rahuldab tingimust d? = 0.
Tingimusest d> = 0 jiareldub, et Imd C Kerd. Faktormoodulit Kerd/Imd
nimetatakse diferentsiaalmooduli homoloogiaks. Diferentsiaalmooduli ho-
moloogia moodab, kui palju jada E % E % E erineb tapsest jadast. Tun-
dub loomulik itldistada diferentsiaalmooduli moistet, kirjutades tingimuse
d?> = 0 iildisemal kujul dV = 0, kus N > 2. Sellise iildistuse idee pakuti
vélja soltumatult toodes [34] ja [29], ning seda uuriti pohjalikult artiklites
[19, 20, 22, 36]. Antud iildistuse uurimise tulemuseks said jargmised struk-
tuurid: N-diferentsiaalkompleks, koahelate N-kompleks ja selle tldistatud
kohomoloogiad, gradueeritud ¢-diferentsiaalalgebra, kus ¢ on N-inda astme
algjuur.

Kaesoleva vaitekirja uurimisobjektideks on gradueeritud N-diferentsiaalmoo-
dulid, gradueeritud g¢-diferentsiaalalgebrad, selle iildistatud kohomoloogiad,
gradueeritud ¢-diferentsiaalalgebra abil konstrueeritud diferentsiaalvormide
algebra taandatud kvanttasandil, seostuse vormi poolt tekitatud gradueeri-
tud g¢-diferentsiaalalgebra, seostuse uldistus.

Vaitekirja esimeses peatiikis tutvustatakse lugejale N-kompleksi ja selle ko-
homoloogia teooriat. Peatiiki esimene paragrahv on piihendatud koahelate
kompleksidele ja kohomoloogiatele. On toodud jargmised moisted: diferen-
tsiaalmoodul, diferentsiaalmoodulite homomorfism, diferentsiaalmooduli ho-
moloogia, gradueeritud diferentsiaalmoodul, koahelate kompleks. On tutvus-
tatud tulemused, mis on jargnevates osades vajalikud: diferentsiaalmoodulite
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tapsete jadade homoloogiate tapsed kolmnurgad, koahelate komplekside ten-
sorkorrutise kohomoloogiate Kiinnethi valem. On toodud ka koahelate kom-
plekside naited, nendehulgas, Hochschildi koahelate kompleks, Chevalley-Ei-
lenbergi kompleks. Teises paragrahvis kirjeldatakse N-diferentsiaalmooduli
struktuuri. Paragrahv algab g-arvutusega, seejarel defineeritakse N-diferent-
siaalmoodul ja selle iildistatud homoloogiad. Tuuakse kriteeriumid selleks,
et tldistatud homoloogiad oleksid triviaalsed. Kolmandas paragrahvis kes-
kendutakse N-kompleksi struktuurile. Defineeritakse gradueeritud g¢-kom-
mutaatori ja gradueeritud ¢-derivatsiooni moisted. Néaidatakse, et N-komp-
leks voib olla konstrueeritud gradueeritud assotsiatiivse algebra abil; sellised
N-kompleksid méangivad olulist rolli edaspidistes struktuurides, sest nende
abil konstrueeritakse diferentsiaalvormide analoogid taandatud kvanttasandil
ning seostuse ja seostuse vormi iildistused. Toestatakse kriteerium koahe-
late N-kompleksi konstrueerimiseks teatud liiki gradueeritud assotsiatiivse
ithikuga algebra jaoks. Tuleb mainida, et teoreem esineb toestamata kujul
juba artiklis [2]. Viitekirjas esitatakse teoreemi pohjalik toestus, lisaks sellele
toestatakse jareldus, mis viidab, et sellise koahelate N-kompleksi tildistatud
kohomoloogiad on triviaalsed. Paragrahvi lIopuosas tuuakse iildistatud Clif-
fordi algebra definitsioon ning naidatakse, kuidas antud algebra voib olla
varustatud koahelate N-kompleksi struktuuriga.

Viitekirja teine peatiikk on ptihendatud gradueeritud diferentsiaalalgebratele
ja nende tldistustele. Esimeses paragrahvis vaadeldakse gradueeritud dife-
rentsiaalalgebra olulisi néiteid: diferentsiaalvormide de Rhami algebra, Lie
rithma Lie algebral koahelate gradueeritud diferentsiaalalgebra, assotsiatiivse
ithikuga algebra universaalne gradueeritud holmav algebra. Kirjeldatakse
taandatud Wess-Zumino diferentsiaalvormide algebra taandatud kvanttasan-
dil. Teises paragrahvis kasitletakse gradueeritud ¢-diferentsiaalalgebra struk-
tuuri, mis kujutab endast gradueeritud diferentsiaalalgebra tildistust juhul,
kui diferentsiaal rahuldab tingimust dV = 0, N > 2, ja gradueeritud Leib-
nizi reegel on asendatud gradueeritud ¢-Leibnizi reegliga. Konstrueeritakse
N-seostuse vormiga seotud poliinoomide gradueeritud ¢-diferentsiaalalgebra
struktuur. Toestatakse valem, mis naitab, kuidas N-koveruse vormi alge-
braline analoog astmes k avaldub poliinoomide algebra moodustajate kaudu.
Toestatakse, et N-seostuse vormi koverus rahuldab Bianchi samasust. Need
tulemused on avaldatud artiklis [9]. Viimases paragrahvis, tuginedes artiklile
[3], kirjeldatakse N-diferentsiaalvormide algebrat taandatud kvanttasandil.
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Kolmas peatiikk algab selliste oluliste diferentsiaalgeomeetria struktuuridega
nagu seostus vektorkihtkonnal ja selle koverus. Teises paragrahvis kon-
strueeritakse seostuse iildistus, mis tugineb g-diferentsiaalalgebra moistele.
N-seostuse idee pakkus vélja V. Abramov artiklis [1], kus N-seostus definee-
ritakse seostuse teooria algebralise formalismi raames. Viitekirjas uuritakse
N-seostuse struktuuri ja toestatakse, et igal projektiivsel moodulil eksisteerib
N-seostus. Tuuakse sisse mooduli Hermite’i struktuuriga kooskolalise N-
seostuse moiste. Toestatakse Bianchi samasus seostuse koveruse jaoks. Need
tulemused on ilmunud artiklites [7, 8]. Kolmandas paragrahvis tuginedes
artiklile [6], on kirjeldatud superseostust tldistav Zy-seostus; selleks eel-
datakse, et moodulil on olemas ka gradueeritud struktuur. Peatiiki viimane
osa on piihendatud N-seostuse lokaalsele kirjeldusele.
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Hochschild cohomologies, 20

Hochschild differential, 20

Homology of differential module, 12

Homomorphism of graded differential
algebras, 38

Hopf algebra, 46

Inner graded derivation, 31
Kiinneth formula, 17
Local trivialization, 72
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