
DISSERTATIONES ASTRONOMIAE UNIVERSITATIS TARTUENSIS 
16 





DISSERTATIONES ASTRONOMIAE UNIVERSITATIS TARTUENSIS 
16 

 
 
 
 
 

 

ANTI HIRV 
 
 

Estimation of time delays  
from light curves  

of gravitationally lensed quasars 
  

   
 
 
 
 
 
 
 
 
 
 

 
 

 



This study was carried out at the Tartu Observatory, Estonia.

The Dissertation was admitted on June 17, 2011, in partial fulfilment of
the requirements for the degree of Doctor of Philosophy in physics (astro-
physics), and allowed for defence by the Council of the Institute of Physics,
University of Tartu.

Supervisor: Ph.D. Jaan Pelt,
Tartu Observatory,
Estonia

Opponents: Prof. Lutz Wisotzki,
Leibniz-Institut für Astrophysik (AIP),
Potsdam, Germany

Prof. dr. Luitje Vincent Ewoud Koopmans,
Kapteyn Astronomical Institute,
Groningen, the Netherlands

Defence: August 26, 2011, at the University of Tartu, Estonia

ISSN
ISBN 978-9949-19-758-3 (trukis)¨
ISBN 978-9949-19-759-0 (PDF)
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Introduction

Already in 1704 Isaac Newton proposed that gravitational field of massive
bodies could possibly bend light rays and the deflection could be strongest
at the least distance. In 1804 Johann Georg von Soldner (see Soldner 1804)
calculated using Newtonian mechanics the deflection angle for a light ray
passing near the limb of the Sun. However, nobody took these results
seriously as the wave description of light was widely acknowledged in 18th
and 19th century.

In 1911, before completing his theory of general relativity, Albert Ein-
stein investigated the influence of gravity on light (see Einstein 1911) and
got a value for the deflection angle for the Sun that was very close to the
result derived by Soldner. In his unpublished notes in 1912 Einstein (see
Renn et al. 1997) has analysed the possibility of double image due to the
gravitational deflection of light and the magnification of these images. In
1915, with the help of his theory of general relativity, Einstein was able to
predict the angle of light deflection near the Sun correctly.

According to Einstein’s theory of general relativity mass warps space-
time. The light rays, propagating along the geodesics of curved space-time
are bended as well. If there is a massive object – gravitational lens – near
the line of sight between a distant source and an observer, the gravita-
tional lensing, i.e. gravitational deforming of light rays, will result. Arthur
Eddington and his collaborators (see Dyson et al. 1920) registered the grav-
itational displacement of the background star images near the limb of the
Sun during the solar eclipse in 1919. They confirmed that gravity bends
light rays, and the deflection angle predicted by Einstein is right within
their observational accuracy.

Eddington (1920) was probably the first to publish the discussion on
possible formation of multiple images of a background star by the gravita-
tional lensing effect of a foreground one (see Refsdal & Surdej 1994; Renn
et al. 1997). In 1924 Orest Chwolson (see Chwolson 1924) predicted again
the possible forming of multiple images of a background star, when a fore-
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ground star acts as a lens. Furthermore, he suggested that, if two stars
at different distances and an observer are perfectly aligned, the observer
would see a ring-shaped image of the more distant star around the closer
one. In 1936 Albert Einstein published a more detailed and famous article
about this topic. As Einstein (1936) also considered only stars for the lens,
he claimed that the gravitational lensing effects can not be observed at
cosmological distances, as the angular separation of the lensed images of a
background star would be too small (in order of milli-arcseconds).

In 1937 Fritz Zwicky (Zwicky 1937a,b) predicted that these effects can
be detected in cosmological scales if we have a galaxy for the lens. He
also predicted that distant galaxies can be used as telescopes to observe
otherwise too faint objects behind them. However, the observations must
be carried out with high accuracy, as the effect is still small. If a galaxy acts
as a lens, the separation between lensed images is only a few arcseconds
(see Refsdal 1964a; Refsdal & Surdej 1994).

As lensed images have different flight paths, the corresponding flight
times are in general not equal (due to different path lengths and Shapiro
effect). If the source signal is variable, we may first identify a feature in one
light curve and after some time delay find it in the other. Why are the time
delays important? The cosmological aspects of the time delay gravitational
lensing were first discussed by Sjur Refsdal (see Refsdal 1964b,a). Using
the red-shifts of the source and the lens, angular separation and intensities
of the lensed images, the estimated or assumed angular mass distribution
of the lens, and the measured time delay, one can fix the Hubble parameter
H0 independently of the “cosmic distance ladder”. (For larger red-shifts
we must also include the values of cosmological curvature and density pa-
rameters into the computation.)

Refsdal considered supernovae for the sources, as the gravitationally
lensed quasars were not yet discovered (although, the first optical quasar
3C 273 was identified by Maarten Schmidt 1963, it took more than a decade
to discover a lensed one). In 1979 the first extra-galactic gravitationally
lensed object, the “double” quasar QSO 0957+561 was discovered by Den-
nis Walsh et al. (1979). By analysing the spectra and light curves of the
“double” quasar, it has been established that the two images A and B are
actually gravitational mirages of a single quasar. Today it is known that a
massive foreground galaxy produces the two images.

This was a brief review of the history of the gravitational lensing. For
more detailed treatments, the reader may have a look at Coles (2001);
Refsdal & Surdej (1994); Schneider et al. (2006); Wambsganss (1998).
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Although there are about 200 known galaxy scale lens systems (see Treu
2010), the number of lensed quasars which have the time delays estimated
and can be used for determining H0, is still close to 10 . . . 20. One problem
is that the time delay estimation needs a much longer time series than is
the delay value itself. Typical time delays for galaxy scale lens systems are
in the range of weeks to months (with tails extending from hours to years).
On the other hand, all the detected lenses are not suitable for establishing
the Hubble parameter, as their observables may fall too close to the de-
tection limits. As every observed lens system has its own problems with
observational accuracy and established mass distribution of the lens, there
are much higher number of individual time delay measurements needed to
settle the H0. We can overcome the uncertainty of H0 arising from the
degeneracies in building the mass distribution models, if we use a large
number of different lens systems with measured time delays. As described
by Coe & Moustakas (2009); Oguri & Marshall (2010), it is then possible
to suppress the errors due to incorrect lens models. A recent step in this
direction was taken by Paraficz & Hjorth (2010) who use 18 lenses with
measured time delays and non-parametric modelling of the mass profiles to
estimate H0.

Although we will introduce the cosmological applications of the time
delay gravitational lensing in the context of fixing the H0, there are im-
portant parallel efforts going on. Knowing the H0, we can use time delay
gravitational lenses for measuring masses of galaxies and estimating the
distribution of galaxy masses in the Universe. For an example of deriving
the rotation curve of the lensing galaxy from the time delay measurements
see Kochanek et al. (2006). Moreover we can estimate the time delays be-
tween (somehow selected) nearby images in massive photometry programs
(for an example, see LSST Science Collaborations et al. 2009) and detect
new lens systems this way. We can also shift the light curves of a given
source by the estimated time delay to get a combined time series with a
better sampling, which in turn, can be used for studying the source itself.
Just to mention, correct time delay measurements are also needed in other
astrophysical applications where the reverberation of variable radiation is
registered and analysed (for example the reverberation mapping of the ac-
tive galactic nuclei).

As observational time series are noisy and often gapped, we can not
print two nice light curves on transparencies and find the time delay just by
looking at the data. Although, there have been much work done already,
present time delay estimation algorithms often work correctly only with
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the time series they have tested to work. Some methods can not deal
with gapped data, other can not take the microlensing into account. Every
method has at least some parameters, that are set subjectively by user.

From the introduction just presented, we formulate the following goals
for the thesis.

• For a large number of lenses to be used in either fixing H0 or mea-
suring the masses of galaxies in the near future, there is need for
an automatic time delay estimation method that does not involve
the problems mentioned above. The same type of algorithm is also
needed for discovering new gravitational lenses.

• As the approach proposed by Press et al. (1992a) seems to be very
close to an automatic method, we are going to point out, why it may
give wrong results, especially, with the Vanderriest et al. (1989) data.

• As longer time series can be often obtained with smaller telescopes
in not very good seeing conditions, there is also need for time delay
estimation methods from blended light curves. It may be also useful
to apply algorithms for blended data to reveal possible unresolved
images in the case of massive photometry (LSST).

As the result of the study presented in the current thesis1, an automatic
time delay estimation method was developed and evaluated that gives cor-
rect results with different sets of observational data with as few as possible
“user set parameters” (see Hirv et al. 2011). The approach, to be proposed,
connects the good ideas from previous well known methods avoiding their
weaknesses. Two special algorithms for blended images were built and
tested with artificial data (see Hirv et al. 2007a,b). Many problems were
removed from methodology that could lead to wrong time delay estima-
tions. As there was a large amount of time used for testing and improving
the algorithms, the final results reflect only a part of the actual work that
has been done.

The thesis is organised as follows. In Chapter 1 we present a brief
overview of the theory of strong gravitational lensing. We show how mul-
tiple images and time delays between their light curves are formed. We
describe the problem of estimating H0 as one possible application of the
time delay gravitational lensing. We provide a short discussion of the pop-
ular time delay estimation methods, and formulate the motivation of the
present study by pointing out their major drawbacks. In Chapter 2 we

1The relevant computer programs can be requested from the author of the thesis.

12



give a more detailed treatment of the problems involved in the time delay
estimation process. We form our combined algorithm for measuring time
delays from light curves of resolved images by complementing the selected
old good ideas with our improvements. We also present the two methods
for blended data. We discuss the possibilities of testing the methods and
estimating the precision of the measured time delays. In Chapter 3 we
present the results of applying developed methods, as well as the explana-
tion, why we may get wrong results with the original Press et al. (1992a)
approach. We will also point out how to establish requirements for suffi-
cient observational quality of the data to be processed. In Chapter 4 we
summarise the results and introduce the problems left to be analysed in
further studies.

13
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Chapter 1

Overview

1.1 Three types of gravitational lensing

Gravitational lensing phenomena are classified into three types based on
the strength of the effect. Strong lensing involves large image distortions
like Einstein ring, arcs, multiple images. The (total) intensity of lensed im-
ages may be many times greater than the intensity of the source would be
without lensing, as shown by Refsdal (1964b). As such, strong lenses may
be used to investigate very faint sources that would be invisible otherwise.
Strong lensing is the only type, where we can measure time delays between
different images. Weak lensing (see Schneider et al. 2006) introduces only
minor image distortions that can be detected statistically using a large
number of observations of different background objects. We may study the
foreground mass (and dark matter) distribution by analysing slight changes
of the shape of many background objects. Microlensing effect (see Schneider
et al. 2006) alters only the brightness of the source as the deflection angle is
here too small to be resolved. Microlensing in lensing galaxies results from
the fact, that the mass of the galaxies is not distributed smoothly, but some
fraction of it is in stars. The moving stars in the lensing galaxy produce
many microimages of the distant source. These microimages can not be
resolved, as the typical deflection angles are a few micro-arcseconds. How-
ever, as the stars move and the lens, source and observer move as well, the
net effect of many microlenses changes in time. Hence, microlensing adds
additional variability to the macroimages produced by strong lensing. The
microlensing effect should produce variability that is uncorrelated between
different macroimages. The characteristic time-scales of microlensing are
of order a decade or less.

14



1.2 Theory of strong gravitational lensing and an

application to cosmology

As time delays can be measured between light curves of separated images
caused by strong lensing, we present here a brief introduction into the
relevant theory (for more detailed treatment see Refsdal & Surdej 1994;
Courbin & Minniti 2002; Schneider et al. 2006). Although there are de-
velopments for strong field gravitational lensing and large deflection an-
gles that describe strong lensing in close vicinity of black holes (see for
instance Virbhadra & Ellis 2000; Virbhadra & Keeton 2008; Bozza 2010),
the chances of observing involved relativistic images and, moreover, obtain-
ing good enough light curves for quite a short time delay measurements,
are poor at present time. Just to mention, the angular separation of rel-
ativistic images for the Galactic supermassive black hole should be a few
microarcseconds and time delays related to not relativistic images should
be in the order of minutes. We work always in the weak field limit and, con-
sequently, with small deflection angles when time delays between distant
quasar images are measured.

1.2.1 The deflection angle

The deflection angle in the weak field approximation of Einstein’s theory of
general relativity for a light ray passing near a spherically symmetric mass
M at a distance ξ is

α̂ =
4GM

c2ξ
, (1.1)

where G is the constant of gravitation and c is the velocity of light. For
the weak field approximation to hold, ξ must be much larger than the
Schwarzschild radius of the mass, ξ � Rsc ≡ 2GMc−2. According to this
condition, the deflection angle must be small, α̂� 1.

For a not spherically symmetric mass distribution and weak field we
may calculate the deflection angle as a vector sum of elementary deflec-
tions caused by an ensemble of mass points. Let a light ray move along
a spatial trajectory (ξ1(λ), ξ2(λ), r3(λ)) and pass a mass distribution with
volume density ρ(r). Let us choose the coordinates so that the light ray
propagates along the base vector r̂3 before reaching the mass distribution.
If the deflection angle is small and the lens has small size compared to the
distances involved, we may use the geometrically thin lens approximation
where the path of a light ray can be approximated as a straight line in the
neighbourhood of the lens. If this condition is satisfied, and keeping in mind
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the chosen coordinate system, the impact vector of the light ray relative to
an arbitrary optical axis drawn parallel to r̂3, ξ = (ξ1, ξ2), is independent
of r3 and affine parameter λ throughout all the lens. The impact vector
relative to a mass element at r′ = (ξ′1, ξ

′
2, r

′
3), ξ − ξ′ is also independent of

r′3 as ξ is independent of r3.
As the impact vectors relative to all mass elements of the lens are inde-

pendent of r3 in geometrically thin lens approximation, we may project the
mass density of the lens onto a plane perpendicular to the incoming light
ray and define the surface mass density

Σ(ξ) ≡

∫

dr3ρ(ξ1, ξ2, r3). (1.2)

Finally we may write the deflection angle for a not spherically symmetric
mass distribution as a double integral

α̂(ξ) =
4G

c2

∫

d2ξ′Σ(ξ′)
ξ − ξ′

|ξ − ξ′|2
, (1.3)

where d2ξ′ ≡ dξ′1dξ
′
2, d2ξ′Σ(ξ′) is the mass element at ξ′ and ξ−ξ′

|ξ−ξ′|
gives

the direction of the elementary deflection caused by the mass element. α̂(ξ)
is a two-dimensional vector.

The geometrically thin lens model is valid in most astrophysical situ-
ations including quasar lensing by galaxies and clusters of galaxies. The
geometrically thin lens approximation can not be applied if the lensing mass
is distributed along all the way between the source and observer, which may
be the case in weak lensing.

1.2.2 The lens equation

There is a typical gravitational lensing situation depicted in Fig. 1.1. An
observer at point O sees a lensed image I of a distant source S. The lensing
mass distribution is located at distance Dd from the observer. The source
lies at distance Ds from the observer and at distance Dds from the lens.
The actual light ray curves smoothly due to the lensing mass, but as the Dd

and Dds are much larger than the dimensions of the lens in our practical
situations, we may approximate the real lensed light ray with a straight
line with a kink at the lens position. Moreover, we may well use the weak
field and geometrically thin lens approximations. As the deflection angle α̂

is very small, the exact definition of the optical axis does not matter. We
define the optical axis as a straight line from the observer to the position

16



Figure 1.1: The basic geometry of a gravitational lens. (Figure with little modifications
from Schneider 1995).

of the lens. The source and lens planes are perpendicular to the optical
axis and are located at the distances of the source and lens respectively.
We denote the position vector of the source in the source plane as η, the
position vector of the lensed image in the source plane as γ and the impact
vector of the light ray in the lens plane as ξ. The observer sees lensed
image at an angular position θ but he or she can not, in general case, see
the unlensed source, as we can not remove the lens physically. In other
words, the true position angle β of the source can not be observed directly.

Note, that η, γ and ξ as well as α̂, θ and β are two-dimensional vectors.
ξ and η are not parallel in general case. The position and deflection angles
in Fig. 1.1 have been highly magnified for clarity. We need not to worry
about the fact, that the light ray from the source does not hit the lens plane
(where the components of ξ are measured) at right angle. The deviation
from right angle is very small as the deflection angle is very small. We may
well use Eq. 1.3 to calculate α̂. The same considerations apply when we

17
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approximate the triangle with α̂ as a right triangle.
Keeping in mind that for small angles tanx = x, we can read from

Fig. 1.1 that η = Dsβ, γ = Dsθ and γ − η = Ddsα̂(ξ). Now we can write

Dsθ = Dsβ +Ddsα̂(ξ). (1.4)

Reading from Fig. 1.1 that ξ = Ddθ, we obtain the lens equation from
Eq. 1.4

β = θ −
Dds

Ds
α̂(Ddθ), (1.5)

which allows us to calculate the generally not observable β. By defining
the scaled deflection angle as

α(θ) =
Dds

Ds
α̂(Ddθ), (1.6)

we can rewrite the lens equation

β = θ − α(θ). (1.7)

Let us define the critical surface mass density

Σcr =
c2

4πG

Ds

DdDds
(1.8)

and the dimensionless surface mass density or convergence

κ(θ) =
Σ(Ddθ)

Σcr
. (1.9)

There may be more than one value of θ that satisfies the lens equation for
a given β, i.e., the lens may produce multiple images of a single source.
It can be shown that a mass distribution which has κ ≥ 1 somewhere,
produces multiple images for some source positions. Hence, strong lenses
have Σ ≥ Σcr.

Using Eqs. 1.3, 1.6, 1.8, 1.9 and keeping in mind that ξ = Ddθ and
d2ξ′ = D2

dd
2θ′, we can write the scaled deflection angle in terms of the

observable angular position θ

α(θ) =
1

π

∫

d2θ′κ(θ′)
θ − θ′

|θ − θ′|2
. (1.10)

We used relations between angles and distances from Euclidean geome-
try to derive the lens equation and formulae for the scaled deflection angle.
The derived equations hold also in an expanding universe if we interpret
the distances as angular diameter distances.
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1.2.3 Some cosmological notes

We will represent here some cosmological notations that are needed to un-
derstand the time delay and Hubble constant relation in gravitational lens-
ing. For more detailed treatment see Schneider et al. (2006) and references
therein.

The light, radiated from a comoving source at time t2 and observed at
time t1 > t2 by a comoving observer, is redshifted by a factor z12. The
redshift and the cosmic scale factor a(t) are related as

1 + z12 = a(t1)/a(t2). (1.11)

a(t) is interpreted as the expansion history of the Universe and is normalised
so that today, a(t0) = 1.

The expansion rate H(t) of the Universe is defined as

H(t) = ȧa−1, (1.12)

and its current value H0 is called Hubble constant.
If we set the cosmological constant Λ = 0 and curvature parameter

K = 0, then the current density of the Universe can be expressed as

ρcr =
3H2

0

8πG
. (1.13)

The critical density ρcr is used to define the density parameters

Ωm =
ρm0

ρcr
; Ωr =

ρr0

ρcr
; ΩΛ =

ρv

ρcr
, (1.14)

where ρm0, ρr0 and ρv are the present densities of matter, radiation and
vacuum respectively. (The vacuum density is assumed to be constant in
time.)

Let ω(z1) and ω(z2) be the comoving radial coordinates of two sources
at redshifts z1 < z2. The comoving distance ω(z1, z2) = ω(z2) − ω(z1)
between these sources can be expressed as

ω(z1, z2) =
c

H0

∫ a(z1)

a(z2)
[aΩm + a2(1 − Ωm − ΩΛ) + a4ΩΛ]−1/2da. (1.15)

The angular diameter distance Dang(z1, z2) of a source at redshift z2 seen
by an observer at redshift z1 < z2 can be written as

Dang(z1, z2) = a(z2)fK [ω(z1, z2)], (1.16)
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where the comoving angular diameter distance fK(ω) depends on the cur-
vature parameter K as

fK(ω) = |K|−1/2 sinh[|K|1/2ω]. (1.17)

Note that fK(ω) = ω if K = 0 (the flat Universe).

1.2.4 The time delay and Hubble constant

Following Cooke & Kantowski (1975) the time delay between alternative
images in a gravitational lens system must be sum of two components.
First, as the path lengths of light rays of individual images are generally
not equal, the propagation times of light must be uneven. Second, the
propagation times differ also due to the Shapiro effect that retards light in
gravitational field of the lens.

By defining the deflection potential

ψ(θ) =
1

π

∫

d2θ′κ(θ′) ln |θ − θ′|, (1.18)

and the Fermat potential

τ(θ;β) =
1

2
(θ − β)2 − ψ(θ), (1.19)

the time delay between two lensed images at positions θ(1) and θ(2) can be
written as (see Schneider 1985; Schneider et al. 2006)

∆t =
Dang

d Dang
s

cDang
ds

(1 + zd)[τ(θ
(1);β) − τ(θ(2);β)], (1.20)

where zd is the redshift of the lens and the distances are measured as angular
diameter distances. The source position β enters into the Fermat potential
as parameter. The deflection potential ψ(θ) describes the potential time
delay and the geometric time delay is described by the 1

2(θ − β)2 term.
Note, that there is an alternative wavefront method for deriving the

expression of the time delay introduced by Refsdal (1964b,a, 1966) and
Kayser & Refsdal (1983).

Now we have all the necessary relations to describe how the Hubble
constant is connected to the time delay between the two gravitationally
lensed images of a distant source. H0 enters into Eq. 1.20 through the
angular diameter distances. We can see from Eqs. 1.15, 1.17 and 1.16
that Dang(z1, z2) ∼ cH−1

0 . As the redshift and Fermat potential are both
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dimensionless, we can read from Eq. 1.20 that ∆t ∼ H−1
0 . In order to

express the angular diameter distances in the units of cH−1
0 we need to

take the following two steps. First, to calculate the values of the cosmic
scale factor (Eq. 1.11), we have to estimate the redshifts of the source and
the lens. Second, as Dang(z1, z2) depends also on the curvature parameter
and density parameters, we need to fix these as well. To derive the values of
the Fermat potential (Eq. 1.19), we have to measure the positional angles
of the images and determine the positional angle of the source using the
lens equation (Eq. 1.7) with Eqs. 1.10, 1.9 and 1.8. Additionally we need
to fix the model of the surface mass density of the lens to compute the
values of the scaled deflection angle (Eq. 1.10) and the deflection potential
(Eq. 1.18). Finally, to estimate H0 from Eq. 1.20 we need to measure the
time delay, which is the topic of the present thesis.

1.2.5 Images and magnification

The gravitational lensing effect does not depend on wavelength of light.
When we talk about light, the same applies for any kind of electromagnetic
radiation. The gravitational lensing conserves the surface brightness of
the source. We will not prove this here, but if it is true, we can expect
that a sheet-like source with constant surface brightness is gravitationally
lensed into a sheet-like image with constant surface brightness. This is
exactly what happens with the cosmic microwave background radiation –
we observe smoothly distributed radiation and no high amplifications due
to the large scale structure (Courbin & Minniti 2002).

The relative positioning of the source, the lens and the observer, and also
the surface mass distribution of the lens, as well as the shape of the source
determine what the observer will see. For example, if a spatially unresolved
source, an intervening axisymmetric massive object and an observer lie on
a straight line, the observer will see an Einstein ring. If the lens is not
so well alined, the observer will see arcs of light around the lensing object
(see Refsdal & Surdej 1994). It is also possible to see the Einstein ring for
a not perfectly axisymmetric lens due to proper combination of the mass
distribution of the lens and the extent of the physical source (see Schneider
et al. 2006).

The Fermat’s principle says that real light rays take paths that corre-
spond to the stationary points of the arrival-time surface. I.e. the images
can be found in either minima, maxima or saddle points of the arrival-time
surface. As has been shown by Schneider (1985), the Fermat potential
τ(θ;β) is, up to an affine transformation, the light travel time in a gravi-
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tational lensing situation. Hence,

∇τ(θ;β) = 0 (1.21)

is the condition not only for the stationary points of the Fermat potential,
but also for the arrival-time surface and gives us the location of the images.
Eq. 1.21 is equivalent to the lens equation.

If a source is much smaller than the angular scale on which the lens
properties change, we can express the inverse of magnification as a Jacobian
matrix

M−1(θ) =
∂β

∂θ
= ∇∇τ(θ;β), (1.22)

which tells us how much source-plane displacement is needed to produce
a given small image displacement. Eq. 1.22 means that the curvature
of the arrival-time surface is the inverse of magnification. Broad hills in
the arrival-time surface correspond to highly magnified images while sharp
peaks correspond to images demagnified into unobservability. The magni-
fication M is a 2D tensor. The determinant detM defines a scalar magni-
fication, or ratio of image area to source area for a ‘small’ source.

As the gravitational lensing may change the apparent shape of lensed
objects and conserves the surface brightness, it may give significant flux
amplification. (This can also be applied to the unresolved microlensing case,
if we analyse every microlensing act separately and assume that physical
images are unresolved only due to our poor telescopes.) If dωi and dωs

are the solid angles covered by a lensed image and an unlensed source with
constant surface brightness (which is the practical case in quasar lensing),
the ratio

|µ| =
dωi

dωs
(1.23)

gives the flux amplification due to lensing. For a ‘small’ source µ = detM .
µ can be either positive or negative, the observed fluxes of images are
determined by the absolute value |µ|. If the lens produces several images
of a single source, the total flux amplification is given by the sum of all
individual image amplifications.

In any lens there can be closed, smooth curves, on which the deter-
minant detM−1(θ) = 0. These curves are called critical curves. The
corresponding curves in the source plane, which are obtained from the crit-
ical curves using the lens equation are known as caustics. A gravitational
lens may produce very high flux amplification, if the source lies on or close
to a caustic (µ = detM is formally infinite in this case). If we move a
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(‘small’) source across the caustic, a pair of images near the corresponding
critical curve is either created or destroyed, depending on the direction of
the movement.

1.2.6 Model degeneracies and making use of future optical

imaging surveys

It occurs that the observed image positions, flux ratios and time delay ratios
can be reproduced with different mass models of the lens. If κ(θ) is a mass
distribution that provides a good fit to these observables, there is the whole
family of mass models

κλ(θ) = (1 − λ) + λκ(θ), (1.24)

that provides an equally good fit to the data. λ may have all values that do
not turn the surface mass density negative. As the first term corresponds
to adding a homogeneous mass-sheet with constant surface mass density
κc = 1 − λ to the mass distribution, the problem is known as mass-sheet
degeneracy. The second term corresponds to scaling of the ‘original’ sur-
face mass density due to the mass-sheet. Adding a constant surface density
mass-sheet corresponds to inserting a group or a cluster of galaxies into
the model of the lens. As lensing galaxies belong always into some group,
determining the group contribution is critical but difficult part of our mod-
elling. If we insert a mass-sheet with the surface mass density κc into our
‘original’ model which gave time delay ∆t, the resulting time delay will
transform into λ∆t, while the observed image positions, flux ratios and
time delay ratios remain unchanged. As determining the real κc with high
enough precision is rather difficult, we may get wrong H0 estimation from
the given time delay lens. Neglecting the extra surface mass density coming
from nearby objects leads to an overestimate of the Hubble constant. For
most cases this error is probably . 10%.

In addition, for many lens systems there is a degeneracy (within obser-
vational errors) in choosing the ‘original’ surface mass density model even
without considering the possible mass-sheet.

It seems that there is little hope for finding a ‘golden’ lens for a precise
H0 estimation. In some cases the error of time delay measurement due to
little quasar variability dominates, in other cases we have major problems
with the model of the lens or even with the astrometry of the quasar images.
On the other hand, according to Coe & Moustakas (2009); Oguri & Marshall
(2010) we can hope to reduce the uncertainty of H0 down to ∼ 1% (1σ
precision) if thousands of strong gravitational lens systems detected by the
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Large Synoptic Survey Telescope (LSST) are to be analysed. When using
large number of gravitational lens systems with measured time delays from
future optical imaging surveys, we do not need to know the exact surface
mass density profile of a lens. An average profile is used instead. The mass-
sheet contributions to a single lens system also need not to be measured as
we can make use of the knowledge about the distribution of the mass-sheet
surface mass densities. In a recent study Paraficz & Hjorth (2010) take
a step in this direction and use 18 lenses with measured time delays and
non-parametric modelling of the mass profiles to estimate H0.

The time delay estimation procedure for a large number of lenses is
easier and more reliable, if we have an automatic scheme for that. There-
fore, moving towards an automatic time delay estimation is the aim of the
present thesis.

1.3 Time delays and basic problems

The light from the source quasar is deflected in a gravitational lens system
into multiple images f1, . . . , fR due to the gravitational field of the inter-
vening galaxy. The source variability g(t) shows itself in the measured light
curves. Because of different flight paths (and also different lags due to the
Shapiro effect) the total flight times Φr, r = 1, . . . , R differ. Consequently,
we can only measure replicas of the source curve with different delays:

fr(t) = F (g(t− Φr)), r = 1, 2, . . . , R. (1.25)

Additional distortions (physical and instrumental) are depicted here using
the function F (the exact form of it depends on particular experiment).
For a fully resolved case we will have in total R continuous curves fr(t).
What observer measures are values of fr(t) or their combinations (blends)
at certain moments of time t∗i , i = 1, 2, . . . , N . As an example of a real
time series to work with, we represent in Fig. 3.2 the 131 point and 2926
day long light curve of the QSO 0957+561 provided by Vanderriest et al.
(1989).

We can measure the differential time delay ∆to,p = Φp − Φo between
each pair of images fo, fp. The time delay ∆to,p is positive if the variability
of the image o is preceding the variability of the p image. From R(R−1)/2
delays only R− 1 can be considered as independent.

Depending on a number of measured channels and their content we can
now have different schemes to work with:
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• Unresolved measurements. Sometimes we have only summed up com-
bination of different channels. It occurs that when certain conditions
are met, it is still possible to unscramble the single input curve and
estimate separate time delays involved, see Geiger & Schneider (1996)
for details.

• Two separate fully resolved channels. This is the most often treated
case.

• Multiple (R > 2) of resolved channels. For a particular method see
Pelt et al. (1998a).

• At least one unblended channel and some blends. This particular case
is elaborated in Hirv et al. (2007a).

• Only blends. Very special cases can be strictly analysed, see Hirv
et al. (2007b) for an example.

To expose the basic problems involved in the time delay analysis, we
will center our attention to the classical scheme with two fully resolved
observed curve. Very often the computational approaches for two curves
are illustrated by using two graphical images of the input curves depicted on
transparencies. By shifting plots against each other along time direction
and along magnitudes we can seek for a combination where both curves
form together a picture with less scatter. The basic problems of the time
delay analysis are revealed already in this demonstration:

• For different time delays the area where curves can be compared is
different. Computational methods must take this into account by
proper normalisation of statistics involved.

• The final image of juxtaposed curves depends on mutual position of
the two curves as well as on the inherent scatter of each single channel.
The both aspects must be considered with care. The measurement
errors assigned by observers should be taken into account properly.

• We must be extra careful to make difference between the cases when
continuous pattern occurs due to the real similarity of the two curves
or due to the occurring of data points of the one curve in gaps of the
other data set.

• After finding the best juxtaposition it is still possible that the parts of
the curves show significant differences. In the context of gravitational
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lensing it is often assumed that microlensing effects for one or both
curves can be involved.

As we will see below there are different approaches to treat the listed prob-
lems.

1.4 Time delay estimation methods and our mo-

tivation

Here we will briefly discuss different methods for time delay estimation in
astrophysical problems. As it will be shown below the severity of problems
involved in the algorithms developed so far is strong motivation for working
towards a better method, which depends less on user set parameters, can
properly handle observational gaps and microlensing effect. The need for
methods for blended light curves is emphasised as well.

To unify the treatment below we use the following notation. There
are two sets of data points A and B (time, measured value and standard
deviation for every point) with NA points t∗i , a

∗
i , σ

∗
i , i = 1, 2, . . . , NA and NB

points t∗j , b
∗
j , σ

∗
j , j = 1, 2, . . . , NB . It is not assumed that NA = NB . If the

observer given estimates for standard deviations are missing then we can
set σ∗i = 1 and σ∗j = 1 (in the sense of relative weights). When comparing
two data sets we often need to adjust the data to take into account time
delay, differences in magnification, baseline levels etc. For adjusted data
sets we will use the simplest notation: if both sets are treated separately
then we have triples ti, ai, σi and tj , bj , σj and if the sets are combined using
certain trial time delay ∆t∗ we use triples tl, yl, σl, l = 1, 2, . . . , L. In some
cases L = NA +NB but not always. The procedure of shifting in time and
scaling in amplitude or shifting in baseline of two light curves for estimating
the time delays is called matching.

In some formulae the notation for statistical weights W = 1/σ2 (with
proper indexes) is more appropriate.

1.4.1 Resolved images

The basics of time delay estimation between two sampled light curves can
be formulated as follows. We shift one light curve by a trial differential time
delay and correct it for different magnification (for the data in relative flux
units) or baseline shift (for the data in magnitudes). Then we estimate the
goodness of match by computing the value of a certain statistic or merit
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function. The maximum (or minimum) value of the merit function indicates
the best combination of the trial parameters.

There are a number of different time delay estimation methods used
by various research groups. For a short review of the popular methods see
for instance Kundic et al. (1997). Some recent more peculiar approaches
can be found in Hjorth et al. (1992), Pijpers (1997), Barkana (1997), Burud
et al. (2001), Gil-Merino et al. (2002), and Cuevas-Tello et al. (2006). These
methods can roughly be divided into three classes:

• cross-correlation based methods;

• methods based on interpolation (linear, polynomial, spline, etc.);

• methods which use dispersion spectra.

1.4.1.1 Methods based on cross-correlation

Two continuous curves a(t) and b(t) can be correlated for various delays
∆t∗ by computing

CF (∆t∗) =
E{[a(t) − ā][b(t+ ∆t∗) − b̄]}

σaσb
, (1.26)

where application of E{. . .} denotes taking statistical expectation, ā, b̄ are
the mean values (estimated or known) and σa and σb are the corresponding
standard deviations. It is hoped that correct delay ∆tAB will reveal itself
as a strongest or at least major maximum in correlation curve.

There are many ways to approximate notion of correlation function for
discrete time series. For instance we can define certain fixed step (say
tl = lδt+ t0, l = 0, 1, . . . , L − 1) grid in time, where t0 is the starting time
point of our time series; interpolate every observed point of the A curve
to the nearest grid point; shift the B curve in time by ∆t∗ and interpolate
every shifted point of the B curve to the nearest grid point. Finally we
select pairs au, bu with same time moments and, using standard definition
for the discrete correlation function, we can compute an approximation

DCFs(∆t
∗) =

1

U − 1

U
∑

u=1
(au − ā)(bu − b̄)

σaσb
, (1.27)

where U is the number of pairs. There is no need to say that for our sparse
data sets the resulting correlation function estimate will probably have gaps
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and considerable scatter due to the fact that the large part of the pairs to
be correlated is missing. Sometimes it is proposed that we can add to our
data sets artificial points which are obtained by linear interpolation, see
for instance Gaskell & Sparke (1986) or Gaskell & Peterson (1987). This
approach, even when useful in some contexts, can not be used for a data
with significant gaps.

More common and often used is an approach proposed in Edelson &
Krolik (1988). First, for each pair of observations they define:

Fij =
(ai − ā)(bj − b̄)

√

(σ2
a − e2ai

)(σ2
b − e2bj

)
, (1.28)

where e2ai
and e2bj

are measurement errors for A and B set correspondingly.
Then the moving window with width ν is used to compute the discrete
correlation function:

DCF (∆t∗) =

∑

i,j
SijFij

∑

i,j
Sij

, (1.29)

with inclusion condition:

Sij =

{

1, when |ti − tj − ∆t∗| ≤ ν/2,
0, otherwise.

(1.30)

Depending on circumstances we can compute DCF (∆t∗) for overlapping
windows or just for a row of nonoverlapping but fully covering set of win-
dows. The free parameter of the procedure - width of the window ν - is
chosen as a compromise value to get enough resolution when trading it
against statistical stability. Without certain objective method to fix it we
can not consider DCF computation as an automatic procedure.

In the original formulation of the DCF (∆t∗) the means and dispersions
for computing Fij values are global, they are computed for the full data sets
A and B. We can also consider a form of the correlation function where
these values are computed separately - for the each bin (see Lehar et al.
1992; Gil-Merino et al. 2002). This allows us to take into account possible
nonstationarity of the underlying processes. However, the problem with
freely chosen bin size remains.

All DCF based methods do not take explicitly into account the possi-
bility of microlensing.
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1.4.1.2 Dispersion spectra

The simplest dispersion spectrum can be computed from two time series
quite similarly to DCF . We just define differences:

Dij =
(ai − bj)

2

2
, (1.31)

and form ∆t∗ dependent function

DS(∆t∗) =

∑

i,j
SijDij

∑

i,j
Sij

, (1.32)

where the inclusion condition Sij can be computed as in Eq. 1.30. The
full range of different implementations of this simple scheme is presented
in Pelt et al. (1996). For instance we can use one of the input series in
adjusted form bj = mb∗j + h where m and h are unknown magnification
and baseline shift correspondingly. The differences will now depend on
unknown parameters:

Dij(m,h) =
(ai − bj)

2

2
, (1.33)

and so do also the dispersion spectra DS(∆t∗,m, h). Resulting spectrum
can be computed by performing minimisation:

DS(∆t∗) = min
m,h

DS(∆t∗,m, h). (1.34)

If our data is in magnitudes, we include the baseline shift h as a free param-
eter in the computation of the dispersion spectrum and fix magnification
m ≡ 1; otherwise we use magnification m as a free parameter and fix base-
line shift h ≡ 0. Methods using dispersion spectra allow also easily to
take into account unequal quality of different observations (by introducing
weights into squared differences), and microlensing.

The averaging bin size ν is still a free parameter for DS-type methods
and consequently we are not too much better off if to compare with DCF -
style methods.

1.4.1.3 Interpolation based methods

To fill gaps in observed data series we can use different interpolation or
approximation schemes. In principle it is possible to fit certain model
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curves (polynomials, splines etc) to the both curves and then compare
continuous (or regularly sampled) model curves. However, most often the
researchers use methods where a model for source curve is built and both
observed sequences are then fitted (with proper delay or delays) to the
model curve (see for instance Lehar et al. 1992; Barkana 1997; Burud et al.
2001; Cuevas-Tello et al. 2006). In these methods statistical weights can
be easily used.

The resolution – statistical stability trade-off for interpolation methods
is achieved by proper (but basically, not automatic) choice of the model
form (polynomial degree, number of nodes for splines etc). The microlens-
ing effects or other low-frequency disturbations can not be detected easily,
because they will be hidden in the common model curve for both light
curves. Consequently, in some contexts it would be useful to interpolate
(or approximate) input curves separately. Then the misfit between them
will indicate possible distortions.

Most important deficiency of the fitting to the common model curve
is of course tendency to obtain results with good characteristics of the fit
but still indicating wrong delays. This happens if the data contains nearly
periodic gaps. It can fairly well happen (and it indeed does so often) that
with certain delay the observed points of the A curve fit into time gaps of
the B curve.

1.4.1.4 Using optimal prediction

Somewhat apart from other methods stands a method developed by Press
et al. (1992a, below PRH), refined by Rybicki & Kleyna (1994) and lucidly
presented by Haarsma et al. (1997). In principle, this method is nearest
to that which can be called automatic, but it still has some drawbacks
which we are going to analyse and resolve in Section 2.1.1. Because our
discussion below heavily uses notions and ideas promoted in these papers
we will describe here the original method in some detail.

We start from a model of the observed data

y(t) = s(t) + n(t), (1.35)

where s(t) is original (source) signal and n(t) is observational noise. The
observed sample vector is then

yi ≡ y(ti), i = 1, 2, . . . , N. (1.36)

Here yi denotes any time series, not explicitly combined ones. Our goal for
a moment is to “predict” signal value for a particular time point so that

30



predicted value is as close as possible to the real one or so that prediction
error:

E{e2(t)} ≡ E{[ŝ(t) − s(t)]2} (1.37)

is minimised. Estimate ŝ(t) that is linear in the data points yi:

ŝ(t) =

N
∑

i=1

yiqi(t), (1.38)

can be formed using N “trial” functions qi(t). By substituting estimate ŝ(t)
into expression to be minimised we can get formulae for “trial” functions
and predicted value.

Using notations
Cij ≡ E{s(ti)s(tj)}
ci(t) ≡ E{s(ti)s(t)}
cc(t) ≡ E{s(t)s(t)}
n2

i ≡ E{n(ti)n(ti)}
Bij = Cij + n2

i δij

(1.39)

(where δij = 1 when i = j and δij = 0 elsewhere) we introduce covariance
matrix B with elements Bij and two vectors q and c with elements qi(t)
and ci(t).

It occurs (see PRH), that using these notations the “trial” functions in
the form

q(t) = B−1c(t), (1.40)

can be used to get actual “optimal” predictions

ŝ(t) = yT B−1c(t), (1.41)

with corresponding expected estimation errors

E{e2(t)} = cc(t) − cT (t)B−1c(t). (1.42)

For practical computations PRH assume the stationarity of the source pro-
cess. We will show in Section 2.1.1.5 how the values of Cij, ci(t) (and cc(t))
are estimated. From this point on, to use the optimal prediction for time
delay measurements, one can proceed through three different paths.

In PRH authors show that optimal reconstruction of s(t) is equivalent
to a reconstruction that minimises the value of χ2:

χ2 =
∑

i,j

yiAijyj, (1.43)
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where the matrix A is the matrix inverse of the total covariance matrix B

A = B−1 ≡
{

Ckm + n2
kδkm

}−1
, (1.44)

and yi-s are adjusted observational data (shifted by time delay and mag-
nitude difference B curve combined with A curve, mean ȳ subtracted).
Correspondingly they use the following scheme to estimate the time delays:

• Let us assume that the underlying source process s(t) is stationary
and its autocorrelation function can be described by simple analytical
form (with small number of parameters).

• For a particular trial time delay ∆t∗ and other free parameters (gen-
eral mean of the process ȳ, magnitude difference between two compo-
nents ∆yAB) we can compute χ2 and use it as a criterion to compare
different parameterisations.

• The time delay and parameters which minimise criterion value is then
used as a solution.

In actual computations authors use certain optimisations and approxima-
tions to obtain final solution. For instance they minimise χ2 along the free
parameter ȳ analytically and estimate magnitude differences using “point-
wise” fitting of the two curves (we come to that after a while). But these
are minor aspects of the adopted procedure.

The second method is important modification for the PRH method
suggested in Rybicki & Kleyna (1994) and applied by Haarsma et al. (1997).
Instead of formal minimisation of the χ2 they take off from Gaussian model
of the process with probability distribution of the data vector:

P (y) = [(2π)N |B|]−1/2e−1/2χ2

. (1.45)

Correspondingly, for correct solution of the time delay estimation problem
they propose to minimise log likelihood Q

Q = log(|B|) +
∑

i,j

yiAijyj, (1.46)

where adjusted observations yi as well as determinant |B| depend on free
parameters.

As the problems hidden in the described above algorithm will be anal-
ysed in detail later, we only name here the most important ones. First,
the algorithms which are based on the minimisation of the global χ2 or Q
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statistic of the combined curve do not allow to take the microlensing effect
into account properly. Second, the problem with correct normalisation of
the χ2 or Q arises if we are unable to eliminate the microlensing effect.
Third, using the global χ2 or Q, it is possible that we fit data of one curve
into the gaps of the other and get a wrong result for the time delay.

The third method which uses prediction ideology is somewhat naive
use of the predicted process values itself. Let us call this method as a
“pointwise minimisation”. Let us fix a particular trial time delay ∆t∗.
For each component we can interpolate values at times corresponding to
the observations of the other component and compute standard errors for
predicted values (restricting the pairing to the overlapping area of the two
curves). Using the obtained pairs we can now form a standard χ2 measure
of goodness-of-fit:

χ2 =
∑

k

(âk − bk)
2

δ2k
+

∑

l

(al − b̂l)
2

δ2l
, (1.47)

where δ2k and δ2l are combined variances (observer given variance plus vari-
ance of predicted value). And again, the best combination, to be adopted
as a solution, is set of parameters which minimises the χ2. This type of
criterion function was used already by PRH, but only in the context of es-
timating magnitude difference between two light curves. We take Eq. 1.47
as a starting point for the criterion function for our combined time delay
estimation method.

1.4.2 Unresolved images

As the time delays may be in order of hundreds of days for real gravitational
lens systems, long-lasting monitoring of quasar images is often needed.
Longtime use of telescopes, that can resolve all the subimages of a lensed
quasar, is rather expensive. Time is money, especially for large telescopes!
As we need to use smaller ones at not so good seeing conditions, photometric
aperture may cover several images and we will get blended light curves. It
occurs that it is possible to measure time delays between different images
even if the data is blended. On the other hand, if the data is blended and
we do not take this fact into account, we may get incorrect results for the
time delay. When trying to find a new lens system by its time delays, we
do not know the mass distribution of the lens – consequently, it is worth
considering the possible blending as well.

From physical considerations we can predict that the components of
the blends are certain weighted sums of the time-shifted source variability
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curves. Typically, the time delays between blended components are re-
markably shorter than the delays between images, which are significantly
separated. A singular case of blending, where we observe only the sum
of multiple components, was analysed in Geiger & Schneider (1996). In
this method a certain amount of extra information is used from additional
interferometric observations.

Below we will introduce time delay estimation algorithms for the cases,
where one image is composed of two blended subimages and the other may
be a single component image (see Hirv et al. 2007a) or a blend of two
subimages (see Hirv et al. 2007b) as well.
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Chapter 2

Methodology

2.1 Estimating time delays from resolved images

We continue here with a more detailed discussion of the different statistical
and computational problems involved in the time delay estimation process.
Through the following treatment we will formulate the combined time delay
estimation algorithm for two light curves of resolved images (see Hirv et al.
2011).

2.1.1 Problems and solutions in the time delay estimation

2.1.1.1 Normalisation

If we compare curve A with shifted in time by ∆t∗ curve B then there is
only certain interval in time where both curves have observed values. For
longer delays this overlap area is shorter and for shorter delays it is longer.

For methods with χ2 calculation for the combined curve the correct
approach is not self-evident. Original authors (as far as we understand
from PRH) use for evaluation of the different delays the same number of
data points L = NA+NB . It may fairly well be that for an ideal case, where
actual data is a realisation of a stochastic process whose properties match
these of hypothesised model, this approach can be considered as correct.
But for real data this is certainly not so.

For instance, when input data contains correlated errors due to the
microlensing, the scatter for combined curve in overlap area is certainly
higher if to compare with scatter in the parts where only one curve is ob-
served. The length of the high scatter area depends on delay and this
dependency will show up in χ2(∆t∗) or Q(∆t∗) curves. One possible so-
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lution is a computation of criteria for only overlapping subsets and using
proper normalisation using degrees of freedom involved. Unfortunately this
approach can sometimes fail - due to the long and nearly periodic gaps in
the data.

In methods where dispersion spectra or pointwise differences (Eq. 1.47)
are calculated it is quite easy to take the microlensing and periodic gaps
into account (see the discussion below).

2.1.1.2 Fitting data into gaps

As we saw above, the different time delay estimation schemes can be divided
into two classes.

In the first class the input data sets A and B are merged using trial
delay, and combined data set is used as it is – without taking into account
the origin (A or B) of data points. Different delays are then compared by
modelling of the combined data set using certain analytical (polynomials,
splines) or statistical (χ2,Q) models and criteria.

In the second class the original data points enter into estimation scheme
only in pairs where one point is from A curve and the other one from B
curve.

The principal difference of the two schemes reveals itself in the cases
where input data has long and more or less periodic gaps in it (say, due
to the skipping of certain seasons, when observations are not feasible). For
some trial delays it can now happen that for a particular shift in time the
observations from curve A happen to fit into gaps of the B curve. The first
class methods can be quite happy with this, the general scatter around
continuous model is at the level of the observational errors and only these
parts of the combined curve, where data points are mixed, add extra scatter.
As a result there is quite high probability to get spurious minima in the
criterion curves. The susceptibility of the data to such distortions can be
estimated by computing data windows either in the form proposed in PRH
(Fig. 8) or as a pair count spectra as this is done in Pelt et al. (1994).

The DS and DCF type methods overcome the problem of nearly periodic
gaps in an obvious way – we do not fit data onto a common model curve
and regions where one curve has long gaps are not used in computing the
merit function. The scatter due to data points from different light curves
is analysed only.

The pointwise minimisation (Eq. 1.47) also measures the difference of
the two light curves only, and, in regions where one curve has gaps, ap-
propriate weights for interpolated points are assigned. Even the long and
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continuous stretches of the one input curve do not have any effect on final
dispersion estimates. We think that this is one of the important properties
of the pointwise minimisation.

2.1.1.3 Decorrelation length

The long gaps in input data sets, even if not periodic, are of grave concern
from another point of view too – in methods where only data point pairs
enter into valuations, the pairs whose time moments differ too much can
obtain great influence. However, the probability that ai point and corre-
sponding bj point are correlated is quite low if time difference ti − tj is long
enough. The term decorrelation is often used in this context. The inclusion
parameter ν introduced in the DCF and DS methods is used to skip all
the data point pairs from our statistics if the time difference exceeds this
prescribed value.

Using the pointwise minimisation (Eq. 1.47), we do not need either
inclusion condition Sij, nor inclusion parameter ν. In the computation of
the criterion function we can always use pairs of observed and interpolated
points (with appropriate weights) from different curves at the same time
moments. In this way we can get rid off from another free parameter.
We begin to see that the pointwise minimisation is the best type of merit
function.

2.1.1.4 Correlated errors

In the context of gravitational lens research the time delay estimation is
often complicated by the feature called microlensing. From the mathemat-
ical point of view this means that the two curves to be compared are not
exactly similar but one or both of them contain extra low frequency com-
ponent and we can not hope to achieve perfect fit of the two components,
even for a correct delay.

The possibility of extra nuisance components is generally ignored and
only perfect matches are seeked for. In this case the extra components
(as supposed) are included into schemes as a part of observational noise.
But often the complications can be severe enough to spoil whole analysis.
This is especially true when after matching the final difference curve will
have long and systematic excursion away from a mean (zero) level. These
kinds of correlated errors indicate that we need to work with models where
possible long term low frequency components are included somehow into
matching scheme. For instance in Kochanek et al. (2006), Courbin et al.
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(2010) authors use separate polynomial models to describe intrinsic (source)
variability and extrinsic variability (microlensing). It is also possible to take
into account low frequency trends by preprocessing input data sets. In this
case the low degree polynomials are fitted into both light curves before
matching procedure (see Pelt et al. 1994).

As we do not know, which image is affected by microlensing or other
distortions, immediate subtracting of smooth trend models from observed
data is not the best solution. However, if the selected trial time delay ∆t∗

is correct, we may suppose that the variability of the difference curve of
the appropriately shifted A and B sequences can contain smooth trend
component.

Inserting this idea and proper normalisation by the sums of weights into
Eq. 1.47 we get finally the following match criterion (or combined dispersion
spectrum) for a trial time delay:

CDS(∆t∗) = min
p1,p2,...,pP

1

2

[

∑

k

[âk − bk − h(p1, p2, . . . , pP , tk)]
2Wk

∑

k

Wk
+

+

∑

l

[al − b̂l − h(p1, p2, . . . , pP , tl)]
2Wl

∑

l

Wl

]

, (2.1)

where h(p1, p2, . . . , pP , t) is a smooth time dependent trend model (polyno-
mial or spline) with parameters p1, p2, . . . , pP . The combined weights Wk

are calculated as

Wk =
Wâk

Wbk

Wâk
+Wbk

, (2.2)

where Wâk
and Wbk

are weights of predicted and observed points from A
and B curve respectively. (The combined weights Wl are calculated in the
similar way. When writing out the Eq. 2.2 we keep in mind that in the
standard formulation of the χ2 statistic the weights are calculated for the
differences.)

Using the combined dispersion spectrum for merit function allows us to
take properly into account the microlensing effect; fitting data into gaps and
corresponding drawbacks are avoided; correct weighting and normalisation
of this statistic is quite obvious.

Note, that as we work with data in magnitudes, we assume the mag-
nification m ≡ 1.0. Adjusting the data for the baseline shift is included
in the procedure of subtracting the polynomial trend (P = 0 corresponds
to the constant shift). We have divided the criterion by 2 to get it as the
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estimator of the dispersion. The trend parameters p1, p2, . . . , pP can be
estimated using standard least squares fit method. The number of trend
parameters P is a free parameter of the procedure.

To include the extrinsic component elimination procedure into fully
automatic algorithm we need a method to fix the parameter P . Our ex-
perience with actual computations shows that the best way to do this is
to perform analysis with a full range of possible P values. In most cases
the combined dispersion spectra do not change significantly if we change P
value. Only seldom the presence of a strong nuisance component demands
inclusion of a significant trend component. In our final computer code we
used simple polynomials with the degrees P = 0 . . . 10. The final result of
the time delay analysis is then formulated as a particular delay value with
estimated error bars and a range of the trend parameter P values for which
alternative solutions remain inside the claimed interval.

The proposed method for subtraction of the trend component is usable
if the number of time points in a time series is sufficient and we do not seek
for too large ∆tAB for the time coverage of the given data set. Otherwise
the polynomial may fit and reduce the variability of the quasar. The same
happens, if we use too high polynomial degree for the given time series.
The results should be taken with extra care if our method suddenly starts
reporting large time delays near the varying limits of the trial parameter,
when the degree of the polynomial is increased. The best way to get an
idea what is going on then, is just to look at the final combined dispersion
spectra (Eq. 2.1) for different polynomial degrees. For most light curves the
trial time delay ∆t∗ can be safely varied from 0.0 to ±(timecoverage)/2.5.
Then we can get stable time delay for some subset of polynomials and may
improve the result compared to matching schemes, where correlated errors
are not included. Note, that in our combined time delay estimation method
to be outlined in Section 2.1.2, ∆t∗ can be varied in even wider range – from
0.0 to ±(timecoverage)/2.0, if we do not want to subtract the microlensing
distortions.

Subtracting different trends from the difference curve may help us to
identify new lens systems. In this case we do not know whether there are
any time delays between nearby images in a field of a photometric survey.
However, we may get a stable time delay, which is in the detection range
of our method, with different polynomial degrees. This may be considered
as motivation for further studies of the given pair of images.
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2.1.1.5 Optimal prediction

To get the interpolated intensities for Eq. 2.1 we will use the optimal predic-
tion presented by PRH. For the completeness and also to bring out problems
encountered, we describe here some important details of the method.

Estimation of the autocorrelation function Prediction based meth-
ods involve assumption that underlying source process which is observed
through different channels is stationary and consequently with simple cor-
relation structure:

Cij = E {s(ti)s(tj)} ≡ C(ti − tj) ≡ C(T ), (2.3)

where the autocorrelation function C(T ) is to be estimated from data.
For that purpose PRH introduce first-order structure function V (T ) of the
source process:

V (T ) =
1

2
E

{

[s(t+ T ) − s(t)]2
}

, (2.4)

and then get
C(T ) = E

{

s2
}

− V (T ), (2.5)

where E
{

s2
}

is the estimated variance of the source process. It is important
to notice that in prediction procedures we need C(T ) values for a continuous
range of argument and therefore we should have a certain parametric model
for it.

From the observed data we can compute point estimates for the struc-
ture function of the source process

vij =
1

2

[

(yi − yj)
2 − n2

i − n2
j

]

, Tij = |ti − tj|, (2.6)

which can be binned and averaged. Finally a continuous parametrised
model is fitted into the binned curve to get a continuous approximation
of the V (T ). In PRH the power-law type model for a structure function
is postulated and consequently the linear model in log-log coordinates is
used. Authors of the original method claim that the overall procedure of
time delay estimation is quite robust against small changes in the linear
model parameters estimated from data.

Structure function Following PRH – to estimate V (T ), we compute
time-lags Tij and point estimates of the structure function vij for every
independent pair of data points. We sort Tij and vij pairs by the value of
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Tij , bin and compute the bin averages T ij and vij . We average Pbin points
for every bin. Next we skip bins unsuitable for the model of V (T ) (see the

discussion below) and compute vl = log(vij
1

2 ) and T l = log(T ij) and find
the linear model for the logarithmic structure function v l = aT l + b. The
particular value for the bin size Pbin is in principle free parameter of the
procedure. However the final results practically do not depend on it. The
light curves we analysed were long enough to use Pbin = 85 as in PRH, but
for shorter data sets, where there would be too few bins, Pbin should be
reduced.

Next we will discuss the problems we found in the PRH treatment of the
structure function. PRH use pointwise subtraction of observational noise
to estimate V (T ), as shown in Eq. 2.6. The use of the linear model for the
logarithmic structure function is certainly over-simplification. As discussed
by Hovatta et al. (2007) and Hughes et al. (1992), an ideal structure func-
tion of observational data should contain a plateau at the variance level of
observational noise, rising part, and finally, a plateau at the total variance
level at long time-lags. The structure function V (T ) of the source pro-
cess should begin from zero level at zero time-lag and have a long time-lag
plateau at the level of E

{

s2
}

. Usually we do not have zero time-lags in our
time series, even if observations from different sites are combined. However,
the beginning of V (T ) estimated from observational data may also lie on
negative level in real cases, as for nearby to the zero lag data points yi and
yj point estimates in Eq. 2.6 tend to be negative (estimated observational
dispersions can be quite large, if to compare with differences). The V (T )
values can not be negative by definition. To avoid negative bin averages
we need then – either rather large averaging bins, or we can skip the bins
with negative means all together. In the original paper (PRH) the first
averaging bin for the A curve was skipped from computations but it was
retained for the B curve. The skipping of data points or adjustment of the
bin size – both methods involve manual nudging which is unacceptable for
fully automatic methods.

The real structure function may sometimes have highly oscillating large
time-lag end, that may even cause negative slope for the linear fit (in log-
log scale). As discussed by Emmanoulopoulos et al. (2010), the position of
the upper turning point of a structure function depends not only on the
underlying process but also on the length of the time series. Consequently,
the possible (oscillating) large time-lag plateau may not be connected to the
real underlying quasar variability and should be excluded from the model.

There are even more critical remarks about the use of the structure
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function. Authors in Emmanoulopoulos et al. (2010) claim that estimat-
ing the slope of the linear part of the logarithmic structure function of the
source process can be done with a rather large error. But, as it was stated
already in PRH, the results of optimal prediction are not sensitive to the
exact parameters (slope and intercept) of the logarithmic structure func-
tion. We implemented the simple linear fit model of the PRH, but added
some modifications to the structure function building procedure.

First, to avoid problems around zero lag value we skipped from our fit
all the bins that were smaller than the squared mean observational noise
level n2. Bins with bigger values are not so sensitive to observational un-
certainties and are supposed to provide information about the power law
type behaviour of the structure function. This is fully automatic step and
can be always performed.

Second, we also implemented the skipping of the possible (oscillating)
high level plateau from the linear fit. However, during concrete time delay
estimation computations it occurred that this procedure was redundant for
our test data and the results did not depend on its use. The robustness of
the linear model assumption was also stated in the original PRH paper.

And finally we postulated high level constant plateau value at the level
of asymptotic variance E

{

s2
}

. In this way our structure functions can have
two parts: rising part from the linear fit in log-log plane and horizontal
plateau at the variance level.

Variance estimation The variance value has an important role in the
algorithmic implementation of the PRH type methods. However the precise
or well founded estimate for it is seldom available. For instance, to estimate
E

{

s2
}

, authors in Rybicki & Press (1992) suggest to take it as 10 . . . 100
times the data sample variance. We found the result of optimal prediction
to be quite insensitive to this arbitrary constant, even if it was taken as
large as 104 times of the measured variance.

As we do not know more about the variance of the source process than
it can be guessed from the observed part of the time series, we estimate
E

{

s2
}

as the value of the largest bin (vij) of the structure function. For
the large sample of concrete computations this occurred good enough and
covariance matrices were invertible. However, in the final code we also allow
iterative doubling of the variance value, until to the point where covariance
matrices can be correctly inverted. This procedure is again fully automatic
and does not need manual nudging. As an alternative, the singular value
decomposition technique can be used when the covariance matrix is ill
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conditioned (see Cuevas-Tello et al. 2006).
Having now the value for the variance, we can fix final form for the

structure function. First, we calculate the time-lag Tmax,

Tmax =

[

E
{

s2
}

102b

]
1

2a

, (2.7)

where the linear model of V (T ) in log-log coordinates reaches the

log(E
{

s2
}

1

2 ) value and turn our model to plateau of E
{

s2
}

for longer
time-lags. We can do that, since we do not know anything about the struc-
ture function above the estimated E

{

s2
}

level. The final model for the
structure function of the underlying process V (T ) is now:

V (T ) =

{

102bT 2a, when 0 ≤ T ≤ Tmax,
E

{

s2
}

, otherwise.
(2.8)

It is clear from the definition that our structure functions and also corre-
sponding autocorrelation functions are always positive.

2.1.2 The outline of the combined method

Taking into account ideas discussed in Section 2.1.1, we formulate now the
combined procedure for the time delay estimation.

• First we subtract mean values from both light curves and subtract
mean time moment of one curve from the time points of both curves.
This puts our data into general position so that irrelevant particular-
ities of the time and amplitude measurements will be ignored.

• For each trial time delay ∆t∗

– We shift the A light curve by a trial time delay ∆t∗ and select
points in time-shifted curves that overlap in time. Important
point here is that for different delays, regions where match can
be performed are of different length. This is taken into account
by normalising in the criterion function CDS(∆t∗).

– Next we interpolate using optimal prediction technique values
for A curve at the time points of the B curve and vice versa. We
have now two curves that have the same number of data points
and the same sampling structure. For every time point we will
have one original value and one interpolated value.
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– We fit smooth polynomial trend into the difference curve to elim-
inate the possible low frequency distortions due to the microlens-
ing and compute CDS(∆t∗) value (see Eq. 2.1).

• The global minimum in the run of CDS(∆t∗) is the statistic used
to select the best candidate for the true delay value ∆tAB. This
minimisation procedure can be repeated for different trend models.

• For the established best delay values the error bars can be computed
using bootstrap or a simple procedure described in Section 2.5.

2.2 Estimating time delays from one resolved im-

age and a blend of two subimages

The resolution of our observational equipment may be good enough to
resolve the most separated images of a lensed quasar. We can estimate the
time delay between these images using the combined method presented in
Section 2.1. But we should make sure, if either one or both of our images are
blends or not. Sometimes we know it from higher resolution observations,
but we can also test the data ourselves. In the present section we describe
a time delay estimation algorithm for a resolved image and a blend of two
subimages. The algorithm was presented and tested by Hirv et al. (2007a).

As the work with blended cases was carried out before developing the
combined method which uses optimal prediction and proper treatment of
the microlensing effect, we will use the standard form of the dispersion
spectrum for the merit function1.

To give the reader basic guidelines for time delay estimation in this
blended case, we will use here somewhat oversimplified model for the time
delayed components of the lensed image:

fr(t) = arg(t− Φr), r = 1, 2, 3, (2.9)

where ar enables us to take into account the possible different amplification
of the images. We ignore the microlensing effect (variability of amplification
coefficients ar in time) and also other possible distortions.

We observe one pure image, say f1(t) = a1g(t − Φ1) and one blend
Θ(t) = f2(t) + f3(t) = a2g(t − Φ2) + a3g(t − Φ3). These curves can not
be matched directly to recover the differential time delays ∆t1,2 = Φ2 −Φ1

1Note, it is also possible to modify the combined method presented above for this
blended case. For a short discussion see Section 2.2.2.
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and ∆t2,3 = Φ3 − Φ2. But we can use the “clean” curve f1(t) to build
an artificial blend curve Γ(t) = f1(t) + εf1(t − ∆s), where ε and ∆s are
free parameters to be determined. In the terms of the source curve we
get Γ(t) = a1g(t − Φ1) + εa1g(t − Φ1 − ∆s). It is not hard to see that
in a fortunate case when ∆s = ∆t2,3 and ε = a3/a2, the observed blend
can be matched with the artificial blend by shifting the Γ(t) in time by
∆t1,2 and amplifying it by a2/a1. The factor a2/a1 corresponds to the m
parameter in the real sampled cases, that is calculated for every set of the
trial parameters using the least squares fit (see Section 2.2.1). Then we will
have three basic parameters to vary: the two artificial blend parameters ε
and ∆s, and ∆l to estimate the time delay ∆t1,2.

If the data is in magnitudes, we can not form the replica of the observed
blend directly from the unblended curve. Then we have to switch our light
curves into the relative flux units for the fist step, using the definition of
apparent magnitude

mx = −2.5 log10(Fx/F
0
x ), (2.10)

wheremx is the apparent magnitude in the band x and Fx/F
0
x is the relative

flux in the band x compared to a standard star.
As the real light curves are discretely sampled, not continuous functions,

we must know, how to add them to build artificial blends and how to
subtract them to calculate the dispersion spectrum.

2.2.1 Subtraction of sampled curves

Below we will define statistical distance or statistical difference between
any two sampled curves ti, ai,Wi, i = 1, 2, . . . , NA and tj, bj ,Wj , j =
1, 2, . . . , NB . Input data sets can be original data tables, data with shifted
time arguments, or artificial blends computed from input data by adding
time-shifted variants of it.

In the case of one resolved image and a blend of two subimages the two
curves to be subtracted are: the artificial blend ti,Γi,Wi, i = 1, 2, . . . , NΓ

and the observed blend tj,Θj ,Wj , j = 1, 2, . . . , NΘ. As these curves are in
relative flux units, we assume that the artificial blend can be amplified by
an unknown magnification coefficient m to achieve the match. The baseline
shift is not needed in this case, and we may fix h ≡ 0. To be still more
general in our treatment, we include h into our equations as well.

For a particular set of input parameters we can form a table of triples:

ti + tj
2

, (mai + h− bj)
2,Wi,j, (2.11)
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where Wi,j are the statistical weights for every row. The actual values for
the m and h parameters are to be estimated using the least-squares rou-
tine, and they are always calculated for every set of free parameters in our
method. (In the case of one resolved image and a blend we have ∆l,∆s, ε
for the free parameters.) All the rows in the table of triples are not equally
significant. If it happens that ti = tj, then we can assign a full weight to
the corresponding row. But if the time difference between the two points
is quite large (say larger than a certain pregiven value ν), then compar-
ing the values for different curves does not make sense. Following these
heuristics we introduce slightly modified version of inclusion condition or
downweighting function that takes into account the change of the strength
of correlation between different data points according to their distance in
time:

Si,j =

{

1 −
|ti−tj |

ν , if |ti − tj| ≤ ν,
0, if |ti − tj| > ν

. (2.12)

Finally, the combined statistical weights for every row in the table of
squared differences (Eq. 2.11) can be written as:

Wi,j = Si,j
WiWj

Wi +m2Wj
. (2.13)

(There is no need to compute rows for too distant pairs of points that would
have zero weights. We write the Eq. 2.13 for the differences and not for
the squared differences, as we will use it in the next Eq., which is in fact
a generalisation of the standard χ2 statistic. In the standard formulation
of the χ2 statistic the weights are calculated just for the differences. Note,
that fixing h ≡ 0 does not change Eq. 2.13.) The normalised estimator of
the dispersion of the difference between the two curves is now

DS =
1

2
min
m,h

∑

i,j(mai + h− bj)
2Wi,j

∑

i,j Wi,j
, (2.14)

and we may call it statistical distance or statistical difference. From the
point of view of the time delay estimation scheme, it is also a merit function
to compare different sets of trial parameters.

Because one of the parameters we search for, m, is included in the
weight system, the minimisation proceeds iteratively. We first fix m = 1,
and compute the weights using this value. Then we use a standard weighted
least-squares routine to estimate both the parametersm and h. By inserting
the estimated m back into the weights, we can proceed iteratively until
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convergence is achieved. Fortunately, only a small number (about four for
0.1% precision) of iterations is needed.

For particular shifts the overlapping part of one curve can be approx-
imately matched with the mirror image of the other, and then the least
squares fit finds negative m value. The distance computation procedure
must take this possibility into account and exclude “mirror matches”. We
simply invert the negative m values. Then the corresponding set of trial
parameters can not be recognised as the best one.

2.2.2 Addition of sampled curves

Below we compute a discrete analogue to the combined curve Γ(t) = f1(t)+
εf1(t− ∆s). Let us denote the discrete versions of f1(t) and f1(t− ∆s) as
ti, ai,Wi, i = 1, 2, . . . , NA and tj, bj ,Wj , j = 1, 2, . . . , NB . Note, that here
NA ≡ NB , but the discrete addition procedure can also be used for any
pair of sampled data sets with overlapping time domain. If we use it for
building the artificial blend in the case of one resolved image and a blend
of two subimages, we work with data in relative flux units and include the
magnification coefficient ε into our equations. Using similar considerations
as above for the case of subtraction, we can form the triples

ti + tj
2

, ai + εbj,Wi,j , (2.15)

where the combined weights

Wi,j = Si,j
WiWj

ε2Wi +Wj
, (2.16)

consist of appropriately propagated weights and downweighting function.
The total number of selected triples (we do not need these with zero

weights) depends on the sampling and the downweighting parameter ν. In
Fig. 2.1 we have added an original time series (lower part of the figure) and
its shifted version to form a combined curve (upper part of the figure). In
the case of a dense sampling, our constructed data set is quite redundant,
especially for larger values of ν. If the sampling step is longer than ν, we
may get sparser time series as well. It is very hard to choose a proper value
for ν from purely theoretical considerations. However, the proper range of
usable values can be established by using model or trial calculations. The
sets of triples Eq. 2.11 or Eq. 2.15 can be looked upon as a new input data
set for further operations.
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Figure 2.1: Combining an original time series with its shifted version. Depending on the
spacing of time points and the downweighting parameter ν, the resulting series can be
sparser (middle part of the series) or denser (right part). The combined error estimates
are larger than the original (given) values.

Note, in the case of a clean image and a blend it is, in principle, possible
to use the optimal prediction technique on the shifted unblended curve.
First, we can shift the clean curve by trial time delays ∆l and ∆l + ∆s to
make the two components of the artificial blend. Then we can (in parts
overlapping in time) predict values of these components at the time points
of the observed blend and after applying the trial magnification coefficient ε,
compose the artificial blend by pointwise summation of the predicted values.
When computing the dispersion spectrum, we can now subtract directly the
corresponding points (at the same time moments only) of the observed and
artificial blend. Then we would not need the downweighting parameter.
An alternative way to apply the optimal prediction is to interpolate the
intensity values of the unblended curve with a rather dense step. Then
we can use simple linear interpolation in composing the artificial blend
and computing the pointwise dispersion spectrum. However, we have not
studied the possibility to use the optimal prediction in the case of two
blended images. In principle, it is also possible to include the polynomial
correction against microlensing into the blended algorithms, as it was done
in calculation of the combined dispersion spectrum (Eq. 2.1).
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2.2.3 Finding the best matching parameters

For every set of trial parameters ∆l,∆s, ε we statistically subtract the ob-
served and artificial blend and evaluate their distance DS. We search for
the global minimum of the DS that corresponds to the best parameter com-
bination. For some sets of trial parameters the distance computation can
reveal “mirror matches”. These sets actually cause “perfect” mismatches
of the selected regions of the light curves and are discarded as discussed in
Section 2.2.1.

There is one interesting aspect in this global search procedure – it is
essentially degenerate. The degeneracy comes from the fact that the long
and short delays between the blend components can be computed differ-
ently. The short delay depends on how we assign names to hypothetical
parts of the blend. In one case the delay is Φ3 − Φ2, but in another case
Φ2−Φ3. And corresponding long delays will be also different: Φ2−Φ1 and
Φ3 − Φ1. This degeneracy results in symmetrically placed minima on the
grid of the time delays (see for instance Fig. 3.10). For finite sequences both
solutions can give slightly different values for the merit function because
of the boundary effects. Sometimes physical considerations can define the
proper order of total flight times and then we do not need to compute full
grids, but can restrict our computations to only one half of them. How-
ever, as a sanity check, it is worth to compute merit function values for a
larger parameter grid. Then the overall pattern of symmetrically shaped
and mirrored minima allow us to get the general impression of the validity
of our solutions.

It is also important to check how the actual distribution of time mo-
ments in input data sets influences the the number of data point pairs that
are used in computing the final expression for dispersion. Even in the case
of the comparison of two pure (one of them shifted) light curves, it is not
ruled out that for a particular time delay the observations of one curve oc-
cur just in the gaps of the other. The well-known controversy on the time
delay of the classical double quasar QSO 0957+561 was just a result of this
kind of accident (see for details Press et al. 1992a,b; Pelt et al. 1994). In
this case, the number of pairs that can be used to compute the merit func-
tion may be reduced too much and we may get statistically unstable DS
value. Multidimensional graphs of the parameter dependent pair counts or
sums of weights from Eq. 2.14 can reveal regions where there may not be
sufficient information to estimate the parameters of the model.
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2.2.4 Choosing the downweighting parameter

Sampling determines the shortest possible delay we are able to find from
the particular data. If the downweighting parameter ν (see Eq. 2.12) is too
small for a given sampling, we will have too few pairs in the calculation of
the merit function and the map of DS will be poor due to noise and bound-
ary effects. On the other hand, enlargement of ν is limited because of the
smoothing effect of this parameter – using larger ν reduces the possibility
of finding shorter time delays.

We can use an interactive simulation for estimating the suitable down-
weighting parameter for real observational data. First, we generate artifi-
cial noise-free curves with some pregiven time delays, using the sampling
of our real data. Then starting from small downweighting parameter (say
ν = 0.5), we move on towards larger ones and recalculate the plot of DS
and recover the time delays for each ν. In general, there is an optimal ν
for a given sampling which recovers the time delays correctly and produces
clearest minimum on the DS surface. Once we have found the optimum,
further enlargement of downweighting parameter will not improve the re-
sults. It is also possible, that for a given sampling and time-delay system,
there is no working downweighting parameter at all. Even for a correctly
estimated value of ν the overall success of the algorithm depends on the
length of the time series, noise level and absolute values of actual time
delays.

As a rule of thumb ν should be kept equal to or smaller than half of the
shortest possible time delay ∆ts we are trying to find. For sound statistics,
we should have on the average at least 3–5 pairs for every observed time
point when combining and subtracting the time series. In practice it would
be useful to carry on computations with varying values of ν to check sta-
tistical stability and robustness. See for instance Pelt et al. (1996) where
such an analysis was used for a simple case of delay estimation.

2.3 Estimating time delays from two blends of

two subimages

A specific case of lensed images, when we have two blended light curves of
two subimages in each, was developed and tested by Hirv et al. (2007b).
Below we will describe the method in some detail.

Let us have a quasar image split into four components by an inter-
vening gravitational lens. Formally we have four functions of the quasar
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source variability g(t): fr(t) = arg(t−Φr), r = 1, . . . , 4, where ar are the
magnification coefficients and Φr are the flight times. We ignore again the
microlensing effect (variability of ar in time) and also other possible distor-
tions. Our observational equipment can supposedly record only two images
as the close pairs of f1, f2 and of f3, f4 are blended together due to insuffi-
cient resolution. Thus the corresponding signals Θ1(t) and Θ2(t), that we
are going to observe, are the following functions of the source variability:

Θ1(t) = a1g(t− Φ1) + a2g(t− Φ2), (2.17)

Θ2(t) = a3g(t− Φ3) + a4g(t− Φ4). (2.18)

As the spatial separation of f1 and f2 is small, we may assume, that
a1 ≈ a2 and similarly a3 ≈ a4 for f3 and f4. The amplification ratio
between Θ1(t) and Θ2(t) is then ≈ a1/a3. Let the time delay between
f1(t) and f2(t) be ∆a ≡ ∆t1,2 = Φ2 − Φ1, and the time delay between
the components of the second image ∆b ≡ ∆t3,4 = Φ4 − Φ3. These delays
are typically rather short due to nearby flight paths for the component
images. As the paths of f1(t) and f3(t) differ significantly (larger spatial
separation), the corresponding delay ∆c ≡ ∆t1,3 = Φ3 − Φ1 is the longest
one. Now we can rewrite the Eqs. (2.17) and (2.18) in terms of the first
subimage f1(t) and relative time delays:

Θ1(t) = f1(t) + f1(t− ∆a), (2.19)

Θ2(t) = f1(t− ∆c) + f1(t− ∆c− ∆b). (2.20)

To keep things easier to follow we did not divide the right side of
Eq. (2.20) by the amplification ratio ≈ a1/a3. The fact, that Θ1(t) and
Θ2(t) may have different amplitudes (or baselines in logarithmic scale) is
taken into account in our matching algorithm. As a schematic example
of the initial variability, the f1(t) is shown as a single-peaked function in
Fig. 2.2. Shifting it by delays ∆a, ∆b and ∆c and adding the results as
in the Eqs. (2.19) and (2.20) we get the double peaked blends Θ1(t) and
Θ2(t) of the source variability.

To recover all the three independent time delays ∆c, ∆a and ∆b hidden
in the light curves Θ1(t) and Θ2(t), we will combine the data using three
trial delays δc, δa and δb into artificial blends Γ1(t) and Γ2(t):

Γ1(t) = Θ1(t− δc) + Θ1(t− δc − δb), (2.21)

Γ2(t) = Θ2(t) + Θ2(t− δa). (2.22)
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Figure 2.2: Graphical explanation of the method. See text for details.

If it happens, that δc = ∆c, δa = ∆a and δb = ∆b, the difference of
Γ1(t) and Γ2(t) vanishes to zero and this is the situation we are going to
search for. The composition of the artificial blends Γ1(t) and Γ2(t), when
the trial delays match the initial delays, is also shown in Fig. 2.2. For
clarity we plotted the components of the artificial blends before and after
adding. Blends and components that have the same origin are plotted using
the same line type. As we can see, artificial blends have the same profile,
when trial delays correspond to the initial ones, and the difference between
Γ1(t) and Γ2(t) vanishes. This is the idea of our method in terms of the
continuous and noise-free light curves.

For real sampled and noisy data we use the algorithms described in
Sections 2.2.2, 2.2.1, 2.2.4.

Taking into account assumptions made before, we may compose our
two artificial blends to be matched either from observational data given
in magnitudes or in relative flux units. In order to compose an artificial
blend, we denote the time shifted versions of the same observed blend as
ti, ai,Wi, i = 1, 2, . . . , NA and tj, bj ,Wj , j = 1, 2, . . . , NB , and add them as
described in Section 2.2.2. Note, that NA ≡ NB here. In composing the
artificial blends Γ1 and Γ2 we do not need the magnification coefficient and
we fix ε ≡ 1 in the Eqs. 2.15, 2.16.

Next, by varying trial delays δc, δa and δb we recalculate the artificial
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blends Γ1, Γ2 and compute the statistical distance DS between them (see
Eq. 2.14). In the case of logarithmic light curves we use the baseline shift h
as regression parameter and fix amplification m ≡ 1. If we prefer to work
in relative flux units we have m as regression parameter and we fix h ≡ 0
in the computation of the dispersion spectrum.

By varying trial delays δc, δa and δb over pre-given grids, we are search-
ing for the global minimum of statistical distance DS which corresponds
to the recovered time-delay system. Keeping in mind that negative m val-
ues in the computation of the statistical difference are useless we exclude
corresponding values of DS from the search.

Recovering the time-delay system is still a degenerate problem. The
mirrored values of short delays ∆a and ∆b are also valid. For a single data
set we can get four equally correct solutions: ∆c, ∆a and ∆b; ∆c+∆b, ∆a
and −∆b; ∆c−∆a, −∆a and ∆b; and ∆c−∆a+∆b, −∆a and −∆b. (In-
terchanging Θ1 and Θ2 gives us four additional sets of solutions, where ∆c
is mirrored and ∆a and ∆b are interchanged.) All the four solutions form
detectable minima in the three-dimensional grid of DS values. For finite
sequences these minima may have slightly different merit function values.
Our method just finds formally the deepest minimum and corresponding
time-delay system. The recovered set of time delays may be considered real,
if it shows up as a visually noticeable minimum in the two-dimensional slice
of statistical distance values. Formal error estimation is possible using the
bootstrap-type techniques and ideas from Pelt et al. (1996).

Our method does not work if |∆a| = |∆b|. Both observed blends are
then similar, and we can recover only the largest delay ∆c using simplest
“one-dimensional” dispersion spectrum. Having a value for the long delay
it is then in principle possible to recover the short delay (the same for both
blends) from the combined data using the methods described in Geiger &
Schneider (1996). (The combining of two photometric series with estimated
long delay allows sometimes – if microlensing effect is negligible – to get a
data set with twice the original mean sampling rate.)

The case of |∆a| = |∆b| may be promptly recognised from the plot ofDS
values – one of the four possible solutions has a characteristic distribution
along straight line of DS values (see for instance Fig. 3.17). We may also
hit an arbitrary solution corresponding to mirrored arbitrary short delays,
which shows up as a normal minimum in the two-dimensional plot of DS
values. Hence the solutions where |δa| ≈ |δb| should be handled with care.
A three-dimensional plot of DS values would be useful here.

Our method for two blends recovers the time delays correctly also for
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a clean image and a blend. However, as it will be discussed later, the
sensitivity to observational noise of the method for two blends is higher.
It is sensible to use proper method for the nature of a given problem. For
unknown nature, it is worth trying both algorithms.

2.4 Evaluation of the methods

2.4.1 Resolved images

There are two different ways to evaluate algorithms for time delay estima-
tion. First, we can use simple random walk for generating artificial light
curves with known time delays and sample them randomly or use sam-
pling of some real time series. Then we apply different time delay finding
methods to the generated data.

However, algorithm that works best on generated light curves, may
not always perform well on real observational data. As we are unable
to simulate all observational effects, method that is trained to work on
artificial data may give wrong results in real case. Hence we decided to use
real observational data for evaluating time delay estimation procedures for
resolved images.

If the time series is well sampled, has sufficient time coverage and rea-
sonably small observational errors, the results of applying all useable time
delay finding methods should converge on the same value. The situation
changes when we use them for time series of lower quality and shorter dura-
bility. The method, that works well and gives the same answer with data
of both higher and lower quality of the same object, should be recognised
as more stable and consistent.

2.4.2 Blended images

Currently we do not have blended observational sequences at our disposal,
that are long enough, sampled well and have noise level our methods can
work with. So, to test the blended methods, we had to build artificial
sequences.

2.4.2.1 Generating test curves

The generation of simulated data is simplified by the fact that model curves
for different images can be computed from the same source curve. We used
a simple random walk procedure to generate the source variability curves.

54



The time steps for the curves were selected according to two principles: they
must be shorter than typical sampling intervals and they must be longer
than typical photometric integration times. So we generated the initial
time points by using random step sizes from the interval [0.2, 1.8] days.
The simulated intensities were obtained by adding a random value of ±1.0
cumulatively in each step. It was interesting to observe that sometimes
the generated curve was quite poor in features (minima and maxima, etc.).
In these cases we discarded them. There is a similar effect when dealing
with actual lens systems. A quasar can be “quiet” for a long time and its
photometry is not sufficient for time delay estimation.

The generated source variability curve was then used to read off (using
appropriate time shifts and linear interpolation) all the image components
fr. In the case of one resolved image and a blend we have to work in
the relative flux units. Hence, to simulate different magnifications of the
lensed images, we amplified one component of the simulated blend by the
amplification coefficient a3. In the case of two blends we also chose the
relative flux units and magnified one blend against the other by a3. (The
inherently important assumption of the method for two blends is that both
components of a given blend have nearly equal magnification coefficients.)
We used linear interpolation for composing our test blends.

The simulated light curves can be resampled using generated or real
observed sequences of time points and linear interpolation. To take into
account daylight and randomly changing observational conditions, part of
the time points were discarded in generating the simulated samplings.

Different levels of Gaussian noise may be added to the simulated light
curves to check our methods’ stability against noise. We can use the weight
systems of real observed time series for our simulated data. In this case
we have to scale the simulated curves or observed standard errors appro-
priately. We chose to scale standard errors given by observer according
to the ratio of the full amplitudes of the real and simulated data. Next
these scaled errors were used as standard deviations for Gaussian noise
components, which were added to each point of simulated data.

One of the generated curves and the blend constructed from it is shown
in Fig. 3.3.

2.5 Estimating the precision of the results

In the case of resolved images we may obtain robust confidence intervals
for time delays using bootstrap technique (see Pelt et al. 1996). We can
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take the optimal prediction of the light curve as a model and resample the
residuals between observed and model curves to get bootstrap estimations
of the time delay. As such procedure may be very time-consuming and
giving the most accurate error bars was not the aim of our work, we used
another idea by PRH instead: the interval of the trial time delay ∆t∗,
that increases the χ2(∆t∗) curve by 4 units from its minimum χ2(∆tAB),
corresponds approximately to the 95% formal confidence interval of the
time delay ∆tAB. In order to use this approach, we have to rescale the
minimum of our CDS(∆t∗) curve to the value of χ2(∆tAB) that can be
obtained from the not normalised version of Eq. 2.1:

χ2(∆tAB) = min
p1,p2,...,pP

[

∑

k

[âk − bk − h(p1, p2, . . . , pP , tk)]
2Wk +

+
∑

l

[al − b̂l − h(p1, p2, . . . , pP , tl)]
2Wl

]

. (2.23)

After rescaling, the CDS(∆t∗) curve has the same normalisation in the
proximity of the minimum point as it is for χ2(∆t∗). A parabola can be fit-
ted into the neighbourhood of the CDS(∆t∗) minimum to make estimating
the error bars easier.

In the case of blended images and simulated light curves we can esti-
mate the errors of the time delays and magnification coefficient using Monte
Carlo type calculations. We add appropriately scaled Gaussian noise com-
ponents to the noise-free model curves, so that the expected signal-to-noise
ratios were the same as those for observational data. We repeat this, say,
3000 . . . 5000 times and store the obtained time delays and magnification
coefficients. From this resulting table we calculate the standard deviations
for the estimated parameters.
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Chapter 3

Discussion and results

3.1 Requirements for observations

If a galaxy acts as a lens, the separation between lensed images is only a
few arcseconds (see Refsdal 1964a; Refsdal & Surdej 1994). We need high
angular resolution and good seeing for observations of lensed quasars.

If the quasar is not in quiet state, we can measure the time delays
between light curves of different images. As the time delays may be in order
of several days to hundreds of days for real gravitational lenses (see Refsdal
& Surdej 1994; Schneider et al. 2006), longtime monitoring of quasar images
is needed. The total time base of observations must be determined from the
expected length of the longest time delays. We cannot sensibly find longer
time delays from the observed time series, than about half of the length of
the time series itself. Moreover, if we want to take the possible microlensing
into account in the case of resolved images, the longest sensible trial time
delay is about 1/2.5 of the duration of the time series. This results from
the fact that using the simple polynomial h(p1, p2, . . . , pP , t) we start to fit
and reduce the variability of the quasar in addition to the microlensing,
if the overlapping part of the two light curves is too short for the given
polynomial degree. Using trigonometric polynomials is probably a better
choice, when large shifts are analysed.

The source must have brightness variations on time scale that is shorter
than the monitoring period. Sampling should be dense enough to match the
characteristic periods of variability of the source quasar. The pair counts
or sums of weights for every parameter combination to be compared must
be large enough to avoid statistically unstable merit function values (see
Sections 2.2.3, 2.2.4 and Fig. 3.15) – i.e. sufficiently dense sampling is
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needed again. This is especially important for the blended methods where
interpolation is not used. For the CDS statistic, recovering the charac-
teristic periods of the source variability with sampling, is still crucial. Al-
though our methodology does not fit data into gaps, a sufficiently dense and
truly random distribution of the time points is still the best choice. Un-
fortunately, ground-based astronomical observations tend to have (nearly
periodic) gaps. To lessen the effect of gaps, combined observations from
different sites can be used.

3.1.1 The tolerable noise level of the observational data

The more inhomogeneous and larger are the observational errors for a given
sampling, the noisier is the minimum of the dispersion spectrum and the
more insecure is the result of the time delay estimation.

To see, whether the noise level of the observational data is tolerable
for our time delay estimation algorithm, we can build simulated noise-
free light curves using the sampling of the observational data and add
gradually varying levels of Gaussian noise to them. Next we try to recover
the foreknown time delays from these simulated data sets. We look for the
signal to noise ratio (S/N) of the simulated data when we loose the solution
and compare it with the S/N of the real observed data. The observational
data can be considered usable if the S/N of it is higher than for the usable
test data.

Let us take the case of a clean image and a blend of two subimages
as an example here. We analysed the light curves of the QSO 0957+561
provided by Schild1. We selected for further calculations a 4202 day long
sampling-interval from the original time series. We composed simulated
data with pregiven ∆t1,2 = 420.15 days, ∆t2,3 = 20.21 days, a3 = 0.8 and
added different amount of Gaussian noise to it. The trial amplification
coefficient was held fixed (ε ≡ 0.9) at the value recovered for the noise
level corresponding to the original data. The trial delays were varied in the
ranges [360, 480] × [−40, 40] with 0.1 day step. The different noise levels
and corresponding results are given in Table 3.1. The plots for four noise
levels are given in Fig. 3.1. It is clearly seen how the minima are smeared
out when the noise level rises. As it was mentioned above, sometimes the
solution can jump to its mirror place (and in this case we essentially do not
lose it). For higher noise values we can completely lose the correct solution.
As we can see, noise level must be kept under 5% of the amplitude of light

1http://cfa-www.harvard.edu/˜rschild/fulldata2.txt
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curve (or the S/N above 20) for the given sampling in order to use the
method for a clean image and a blend. Fortunately, the mean noise levels
for the selected sampling interval of the observed data were 4% and 3% for
the A and B curves respectively.

Figure 3.1: Vanishing of the characteristic minima of the merit function values due to
observational errors in the case of a clean image and a blend of two subimages. The noise
levels are (clockwise from upper left): 0%, 2%, 5%, and 10%. Values on the colour key
represent the log(DS) and spacing of the contours. The same type of colour key is used
in all two-dimensional plots.

The process of calculating the DS values in the algorithm for two blends
is different from its analog for a clean curve and a blend. The calculation
of the DS involves here differences of the observed data sums. In the case
of a clean image and a blend, we have differences of original data points
and combined sums. From what follows that total scatter of the differences
in the method for two blends is somewhat higher and statistical stability
is lower. Consequently, the two blend method demands data with higher
quality. We found that for Schild’s sampling the S/N ≥ 50 or the noise
level under 2% was needed for the method for two blends to work properly.
Consequently, we could not use the method for two blends for searching
the time delays from Schild’s data.
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Table 3.1: Location of global minima depending on added Gaussian noise in the case of
a clean image and a blend of two subimages.

Noise ∆l ∆s

(percent)

0 420.6 19.0
1 420.5 19.9
2 419.9 19.1
3 438.5 −19.0
4 423.4 20.0
5 419.5 26.9
6 417.5 80.9
10 480.0 46.9
15 499.4 80.9
20 481.4 43.9

3.2 Data sets

In Table 3.2 we present the real observed data sets used for testing the time
delay finding algorithms for resolved images, and some simulated data sets
used for testing the methods for blended images. The reference, object,
number of time points and duration of each light curve are given. In the
same table we also present the time delays for real data found by original
authors; the foreknown time delays and magnification coefficients for simu-
lated data; and our results as well. For the real data we give also the range
of accepted polynomial degrees. Note, that ∆tA,B is positive, if variability
of the A image is preceding the variability of the B image.
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As an example of a real observed time series the light curves of
QSO 0957+561 by Vanderriest et al. (1989) are shown in Fig. 3.2.
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Figure 3.2: A 2926 day long photometric time series of QSO 0957+561 by Vanderriest
et al. (1989). B colour of Johnson, 131 points, A curve is upper and B curve is lower (B
is shifted by +0.4 magnitudes).

The TEST-1 simulated time series for a clean image and a blend of
two subimages has daylight caps and additional random gaps to take into
account changing observational conditions. 5% of Gaussian noise was added
to the both curves. The light curves of TEST-1 are depicted in Fig. 3.3.

The TEST-2 simulated light curves for a clean image and a blend
were sampled using the time points of the observational time series of the
QSO 0957+561 by Schild. The parameters used in this simulation are
mostly the same as in Section 3.1.1, but the noise part was generated using
the observational standard errors. The standard errors given by Schild were
scaled according to the ratio of the full amplitudes of the real and simu-
lated data. Next these scaled errors were used as standard deviations for
Gaussian noise components, which were added to each point of simulated
data.

The TEST-3 and TEST-4 simulated light curves for a clean image and
a blend have the sampling and weights according to the full 6806 day time
series of the QSO 0957+561 by Schild.

In the TEST-5, TEST-6 and TEST-7 simulated data sets for the case of
two blended images we have multiplied the blend Θ2 by the amplification
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Figure 3.3: The TEST-1 data – a basic computer-generated random walk f1 (lower curve)
and a computer generated blend curve Θ (∆t1,2 = 50.2, ∆t2,3 = 10.6, the amplification
coefficient a3 = 1.3; we added 5% noise to both curves and shifted the blend up by 60
units).

factor a3 = 0.8. These sets have random sampling with gaps in day time
only. The level of Gaussian noise for the particular run of set TEST-5 given
in Table 3.2 is 3%. The TEST-6 and TEST-7 sets have no noise added.
The TEST-5 light curves are depicted in Fig. 3.4.

3.3 Using the methods for time delay estimation

3.3.1 Resolved images

The results of using our combined method for time delay estimation from
real observed data is given in the first 8 lines of the Table 3.2. Uncertainties
of order 3%–5% or less in the time delay measurements are needed to
estimate H0 with sufficient precision (Schneider et al. 2006). We can see
from Table 3.2 that for some data sets the precision of the time delay
estimate falls well into that range.

The important point about Table 3.2 is that all computations for the
real observed light curves are done with one and the same algorithmic
set up. Even the only free parameter of the structure function building
procedure (the number of observation pairs in bin) was set to be Pbin = 85
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Figure 3.4: The TEST-5 data – the computer-generated blends Θ1 (lower curve) and
Θ2 (shifted up by 130 units). ∆c = 420.2, ∆a = 20.2, ∆b = 56.5 days and a3 = 0.8.
The standard deviation of the added Gaussian noise is 3% of the amplitude of the light
curves.

for all tests. The step of trial time delay ∆t∗ was 1.0 days. In general
case we can vary ∆t∗ in the range from 0.0 to ±(timecoverage)/2.5. For a
single sharp event in the light curves this may not be the case, especially
if a predicted feature is observed to establish the time delay value (see for
an example Kundic et al. 1995, 1997). We chose to vary ∆t∗ in the ranges
used by original authors.

For QSO 0957+561 and HE 1104-1805 we have three separate time
series. As we got consistent results for these light curves of different time
coverages, samplings and weight systems, we can say that our method is
quite stable against variable observational quality.

Details about particular data sets follow.

3.3.1.1 QSO 0957+561

As the first test data for our method we used the three photometric time
series of the most well known lens system QSO 0957+561, published by
Vanderriest et al. (1989), by Schild2 and by Kundic et al. (1997). All the
three data sets were analysed previously multiple of times.

2http://cfa-www.harvard.edu/˜rschild/fulldata2.txt
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Vanderriest et al. (1989) got initially 415 ± 20 days for the time delay
between the A and B light curves. They used cross-correlation method
on interpolated light curves and also cross-covariance method with discrete
Fourier transform to obtain that value. PRH analysed the same data set
and found 536 ± 14 days instead. In Pelt et al. (1994) the both delays
were obtained by using different schemes of analysis. Later Pelt et al.
(1998b) analysed a much longer and detailed data set provided by Schild
and reported 416.3± 1.7 days for the time delay. In the interesting project
Kundic et al. (1995) found a significant drop in the photometry of the
A component light curve. The observed event was used to predict time
moment for a similar drop in the B curve. The follow up observations
one and half year later confirmed the value 417 ± 3 days (Kundic et al.
1997). The currently accepted time delay value for this system is still
around 417 days (see Colley et al. 2003; Shalyapin et al. 2008, and references
therein). However there are another probable values around 422 . . . 426 days
which are supported by some authors (Oscoz et al. 2001; Goicoechea 2002;
Ovaldsen et al. 2003).

Together with combined method we implemented the PRH method and
applied it to the Vanderriest et al. (1989) data. As in original paper we got
536±10 days for the time delay (see Fig. 3.5). But, using our new approach
(ignoring possible microlensing), we got 440 ± 6 days (see Fig. 3.6). This
value is somewhat nearer to the currently accepted value but still off target.
Much more clearer picture is revealed when we perform delay search using
polynomial trend models. In Table 3.3 we listed our results for a range of
polynomial degrees. Three specific spectra are also depicted in Fig. 3.7.

From the results of our fully automatic combined method (see Table 3.2,
Table 3.3 and Figs. 3.6-3.7) we can conclude the following:

• Vanderriest data, no trend. The pointwise matching using Eq. 2.1
gives somewhat more realistic delay estimate if to compare with PRH
method (440 against 536, true value assumed to be around 417 days).
The effect of data fitting into the gaps is not so pronounced, but result
is still off target.

• Vanderriest data, with trend model. For degrees P = 1 . . . 9 we got
consistent set of delay values well inside of error bars of the current
best estimates and also similar to the value obtained in the original
paper. From what follows that original implementation of the PRH
method was unsuccessful because of two reasons – data fitting into
the gaps due to the use of global χ2 matching criterion and also due to
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Figure 3.5: The χ2 curve of the PRH method applied to the Vanderriest et al. (1989)
data. Delay estimate ∆tAB = 536 days.
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Figure 3.6: The output curve of the combined method applied to the Vanderriest et al.
(1989) data. Extrinsic variability ignored (P = 0), delay estimate ∆tAB = 440 days.
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Table 3.3: Trend effect on time delays.

Polyn. deg. QSO 0957+5611 HE 1104-18052 HE 0435-12233 SDSS J1004+41124

P A,B A,B A,D A,B
(days) (days) (days) (days)

0 440 -158 -18 -40
1 412 -159 -16 -40
2 412 -158 -15 -43
3 415 -160 -15 -38
4 415 -160 -15 -40
5 416 -160 -15 -40
6 413 -160 -15 -40
7 416 -160 -15 -40
8 416 -160 -14 -40
9 412 -160 -14 -40
10 531 -156 -14 -40

1 Vanderriest et al. (1989); 2 Wyrzykowski et al. (2003); 3 Kochanek et al.
(2006); 4 Fohlmeister et al. (2008).
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Figure 3.7: Combined dispersion spectra for three different polynomial degrees. Vander-
riest et al. (1989) data. See Table 3.3 for delay estimates for different P values.
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the leaving off possibility of microlensing. This important conclusion
is of separate interest (see Press & Rybicki 1997).

• Schild’s data. Paradoxically, the most abundant and longest data se-
ries for the double quasar does not help us to fix time delay finally
and sharply. We are not going to solve here this so called small con-
troversy of the QSO 0957+561 time delay (see Goicoechea 2002; Hirv
et al. 2007a; Shalyapin et al. 2008) and leave it for further studies.

• Kundić’s (g-filter) data. The time delay 417 days (also confirmed by
use of the combined method) between two sharp features in the A
and B light curves is used by many authors as the definitive value.
However, because of short controversy we are not so convinced. Long
time statistical behaviour of the light curves is quite complex and
final word is not said.

3.3.1.2 Other data sets

From Table 3.2 and Table 3.3 the results for other five observational data
sets can be read off. One of the particular solutions is also illustrated in
Fig. 3.8.
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Figure 3.8: Combined dispersion spectra for three different polynomial degrees.
Kochanek et al. (2006) data. See Table 3.3 for delay estimates for different P values.

We take an opportunity to stress once more – all the results obtained are
computed by using our software as a black-box. No manual nudging, fixing
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certain free parameters or extra selection among different variants. Typical
output of our code is just a list of delays for different trend degrees and as
it is seen from Table 3.3 this is enough – the best estimate reveals itself as
a sequence of similar or absolutely equal values in the list. Of course, there
are some important restrictions. We must have enough observations, the
sampling must have a reasonably good coverage, the observational errors
should not be exceedingly large etc. But these are just standard demands
for a good photometry.

3.3.2 One resolved image and a blend of two subimages

3.3.2.1 Random sampling

First we used the TEST-1 simulated light curves (see Section 3.2 for details)
to show the different capabilities of the method for resolved images and the
method for one resolved image and a blend. If the TEST-1 curves are used
as input for the resolved algorithm, the delay ∆t1,2 can be recovered, but
with remarkable error due to blending. The resolved algorithm reported
∆t1,2 ≈ 59 days. The resulting dispersion curve is depicted in Fig. 3.9.
However, the blend was generated by using ∆t1,2 = 50.2 days, ∆t2,3 = 10.6
days and a3 = 1.3.

Figure 3.9: A dispersion spectrum computed for the TEST-1 simulated light curves
using the resolved algorithm. It reveals a shift ∆t1,2 ≈ 59 days. However, the blend was
generated by using ∆t1,2 = 50.2 days and ∆t2,3 = 10.6 days. Consequently, blending can
mask proper time delay values. The fully resolved case is shown in Fig. 3.10.

To recover both delays, we have to apply our method with artificial
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blend. A three-parameter search grid [−360, 360 : 1.0] × [−90, 90 : 1.0] ×
[0.6, 1.6 : 0.1]3 was used. The value for downweighting parameter ν was
taken at 2.5 days. (See Section 2.2.4 for discussion on choosing the value
of parameter ν.) Our method reported the general minimum of the merit
function at ∆l = 50 days, ∆s = 11 days, and ε = 1.1. The two-dimensional
slice at ε = 1.1 of the search grid is given in Fig. 3.10. In this plot we can
clearly see the degenerate character of our procedure.

Figure 3.10: The two-dimensional grid of merit function values for a computer generated
random walk and a blend computed from it (TEST-1). The general minimum must
indicate the true pair of long and short delay values. The plot demonstrates degeneracy
in full-scale computations well – there is obvious symmetry between the areas for positive
and negative values of short delays.

We can see that our algorithm did not exactly recover the amplification
ratio parameter (we found 1.1 instead of 1.3). This is quite typical – for
every particular pair of delay values the merit function dependence on the
parameter ε is quite weak and the corresponding curve has a wide minimum
around the correct value.

For high quality data (with small errors) we can look for a final solution
with higher precision. For each strong minima found during the rough
analysis, we can build refined local parameter grids in the vicinities of the

3Here and below we use a systematic notation for search grids. Inside the square
brackets we give the minimum and maximum values for the parameter in question, fol-
lowed by the grid step.
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preliminary solutions. An example of such local refinement is given in the
next subsection.

3.3.2.2 Real sampling

As it was discussed in Section 3.1.1, the noise level of Schild’s light curves
of the QSO 0957+561 is tolerable for our algorithm for a clean image and a
blend, and we can use their sampling and weight system for generating test
data. So, the TEST-2 simulated light curves (see Section 3.2 for details)
with the observational time points and weight system of the Schild’s time
series were used to test our method under real sampling conditions. The
values of parameters used in TEST-2 simulation were: ∆t1,2 = 420.15
days, ∆t2,3 = 20.21 days, a3 = 0.8. A crude search grid [−150, 1000 :
1.0]×[−200, 200 : 1.0]×[0.6, 1.6 : 0.1] was used to estimate the amplification
parameter a3. The grid slice with the best trial value ε = 0.9 ± 0.1 was
then used to refine other two parameters. (The value for the downweighting
parameter ν was taken at 7 days here.) Finally we got the best estimates
for the delays ∆l = 420.2±0.8 days, ∆s = 20.0±1.2 days. The plot of merit
function values in the slice [−150, 1000 : 0.1] × [−200, 200 : 0.1] is shown in
Fig. 3.11. The error bars of the result were computed using Monte Carlo
type calculations as it was described in Section 2.5.

Figure 3.11: Merit function values for simulated data and real sampling (TEST-2).
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As the results recover the initial parameters well and we can see the two
symmetrically placed minima, we can say that our method works correctly
under the real sampling conditions.

3.3.2.3 Results for a real system

To evaluate the new method in a more realistic context, we used the mas-
ter data set for the double quasar QSO 0957+561 A,B kindly provided by
Rudy Schild (R-band optical CCD photometry; see Table 3.2 for details).
As far as we know, the components of the system itself cannot be consid-
ered as blends and consequently we used this data set as a model for time
point spacing and observational error distribution for a long and realistic
monitoring programme, as was discussed in Section 3.3.2.2. In the course of
experimentation we also performed some calculations with the full Schild’s
data set and got unexpected results. Assuming that B is a blend, we indeed
got a distribution characteristic to the blended case, shown in Fig. 3.12. We
found the estimates for the time delays in real data at ∆l = 412,∆s = 22
days. In the current section, the value for the downweighting parameter ν
was taken 10 days and the amplification factor was held fixed at ε ≡ 1.0.
(a3/a2 ≈ 1.0 is the expected value for short ∆t2,3).

Figure 3.12: Merit function values for the actual double quasar QSO 0957+561 data. It
differs significantly from Fig. 3.13.

To convince ourselves that the symmetric minima in Fig. 3.12 are not
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caused by boundary effects of our computational algorithm, we performed
some additional tests. First we used the real time moments and error
estimates from the Schild’s data set and built a pair of artificial curves
TEST-3 (see Section 3.2 for details) with a given single time delay between
the two curves ∆t1,2 = 412 days. The resulting two-dimensional slice of the
merit function is shown in Fig. 3.13. It is well seen that there is one unique
global minimum near the true delay value, indicating that we do not have
a blend here; the delay applied is recovered and the estimated short shift
value (if we assume that the B curve is a blend) is zero. Consequently, our
method does not generate symmetrically placed minima just as an artifact
of the procedure.

Figure 3.13: Merit function values for a random walk and its shifted version – TEST-3
(∆t1,2 = 412 days). Time points and standard errors are from Rudy Schild’s monitoring
programme.

Finally we built an artificial blended model TEST-4 with the long and
short delays found from the real curves A and B. The resulting grid is
shown in Fig. 3.14. From the last simulation we found the time delay
estimates ∆l = 412, ∆s = 25 days, indicating that the time delay values
found from the real data are real. The three-day long estimation error in
short shift characterises the precision of the algorithm at the given level of
observational accuracy.

To check how statistically stable the merit function values are for dif-
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Figure 3.14: Merit function values for a computer generated random walk and the blend
computed from it using the parameters found from the real observational data – TEST-4.

ferent parameter combinations, we calculated sums of weights for the time
delay grid of Schild’s data. As it is seen from Fig. 3.15, ∆l = 412 and
∆s = 22 days fall into the region of higher weights and should be consid-
ered as a reliable result. It is currently very difficult to tell why the B
curve of the classical double quasar behaves as a blend. It is known that
there is something wrong with the estimated time delays and magnification
ratios (if optical data is compared with radio data). The peculiar form
of microlensing proposed in Press & Rybicki (1998) can solve the problem
of magnification ratios. However, it is hard to expect that the spacing of
microlensing events in time can mimic a proper blend. In another devel-
opment, Goicoechea (2002) singles out the different features in the double
quasar light curves which give different values for time delays. As a pos-
sible explanation he uses a quasar model with spatially distant flares, as
discussed also in Yonehara (1999) and Yonehara et al. (2003). Similar and
even more radical ideas can be found in Schild (2005). Our computations
show that not only single events, but the full B curve of the system can be
decomposed into a sum of two similar and shifted curves. What theoretical
interpretation can be given to this phenomenon remains an open question.

Note, we also got similar results when the A curve was assumed to be
a blend. However, applying the method for two blends was not successful
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Figure 3.15: The sums of weights for the time delay space of Schild’s data. Zero values
represent areas of “mirror matches” with negative parameter m values. (See Section 2.2.1
for the discussion about m.)

3.3.3 Two blends of two subimages

First we analysed the TEST-5 simulated data set which is described in
Section 3.2 and depicted in Fig. 3.4. The time delays used in this simulation
were ∆c = 420.2, ∆a = 20.2, ∆b = 56.5 days. From the experiments with
different noise levels for the given sampling we found that we should keep
the S/N ≥ 30 for the method to work properly. So, the Gaussian noise with
standard deviation of 3% of the amplitude of light curves is acceptable
for our method for the TEST-5 sampling. For the TEST-5 (as well as
for TEST-6 and TEST-7) data the optimal downweighting parameter was
ν = 1.5. We performed a three-dimensional search for time delays, using
the one day step size and the following limits for trial delays: δc = 370...470,
δa = −30...70, δb = 6...106 days. We found a global minimum of the DS
at δc = 417, δa = 19, δb = 59 days.

Our method does not work, if |∆a| = |∆b|. However, having well sam-
pled data and low noise, it is still possible to get a solution for very close
short delays. For example, we made a noiseless simulation TEST-6 (see
Section 3.2 for details) where ∆c = 420.2, ∆a = 56.5, ∆b = 50.1 days. We
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Figure 3.16: DS values for very close short delays. ∆c = 420.2, ∆a = 56.5, ∆b = 50.1
days (TEST-6).

Figure 3.17: DS values for ∆a = ∆b = 20.2, ∆c = 420.2 days (TEST-7).
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fixed the long trial delay at foreknown value δc ≡ 420.2 days when the data
was analysed. Then the given time delays were recovered correctly. The
resulting plot of DS values is shown in Fig. 3.16. Even a one day difference
between ∆a and ∆b in a noiseless case is still tolerable for the method, but
then the minimum on the DS surface is not very convincing indeed.

The singular situation of TEST-7 where initial ∆c = 420.2, ∆a = 20.2,
∆b = 20.2 days is shown in Fig. 3.17. We can see a characteristic distri-
bution along straight line of DS values and no minima. To get the char-
acteristic picture depicted in Fig. 3.17 the long trial delay was fixed again
at foreknown value δc ≡ 420.2 days when analysing the TEST-7 data set.
Without fixing the δc, we may also hit an arbitrary solution corresponding
to mirrored arbitrary short delays and get nice but spurious pictures of DS
minima as it was discussed in Section 2.3.
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Chapter 4

Conclusions

To turn the gravitational lensing into a precise tool for measuring H0, we
need to overcome the degeneracies and uncertainties associated with the
modelling of the mass profiles of the lenses. Using a large number of lenses
with measured time delays and simultaneous non-parametric modelling of
the mass profiles with shared H0 is a promising approach (see Paraficz
& Hjorth 2010). Knowing the value of H0 we can use the time delay
gravitational lenses to measure the masses of galaxies and establish the
corresponding mass distribution in the Universe. We can match the light
curves of a given source by the estimated time delay and magnification
difference to get a combined time series with better sampling, which in
turn, can be used in studies of the source. The time delays, found between
light curves of nearby images in the data of large photometry programs, can
be used to discover new lens systems. For these purposes we need a time
delay estimation method that has as few as possible user set parameters
and performs well in real situations. As a result of our study, such an
automatic method was developed and tested with different sets of observed
data. We have also removed many problems from methodology, which could
lead to wrong time delay estimations (fitting data into gaps, ignoring of
extrinsic variation etc).

As one important result, we can conclude that the original algorithm by
PRH gave wrong result with the Vanderriest et al. (1989) data because of
two reasons – data fitting into the gaps due to the use of global χ2 matching
criterion and also due to the leaving off possibility of microlensing.

The proposed method for fully automatic time delay estimation is ac-
tually a combination of good sides of different previously well known ap-
proaches. First we use cross-interpolation scheme which was introduced in
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Gaskell & Sparke (1986) and Gaskell & Peterson (1987). Then we com-
pute actual interpolated values using linear prediction scheme introduced
in PRH. We added to this scheme only minor improvements - rules for
excluding certain bins of the structure function, computing the variance
level, as well as using the estimated variance in building the model of the
structure function. The use of pointwise χ2(∆t∗) matching criteria is ubiq-
uitous, but not always with correct normalisation. And finally, the trend
component fitting into the differences is implementation of ideas from Pelt
et al. (1996). In this way the step undertaken is relatively small. However,
we were somewhat amazed how persistently the combined method landed
at or very near to the already established delay values. We can say, that the
method works automatically and gives correct results for light curves that
are long enough, have sufficiently low noise level and are sampled according
to the requirements of the given time delay estimation task.

As longer photometric time series can be often obtained using telescopes
with modest apertures at not very good seeing conditions, two special algo-
rithms were built, which allow us to estimate integral time-delay systems for
blended (not fully resolved) light curves. The two new methods were devel-
oped before the combined one and then the automatic use of them was not
considered; also the possible microlensing effect was ignored. Hence they
are based on computing of the standard dispersion spectrum, introduced
in Pelt et al. (1994) and refined in Pelt et al. (1996). These methods were
tested to work with simulated data, as we do not have long enough and well
sampled blended data sets yet. However, applying the blended algorithms
allow us to get interesting results, which would have been unnoticed other-
wise. Using the method for a resolved image and a blend of two subimages,
we showed that the light curve of the B image of the QSO 0957+561 can
be considered as a blend.

The automatic method can be modified for use with the data of one
resolved image and a blend of two subimages. The treatment of the mi-
crolensing can be included into both blended methods.

The developed software modules can be also used to plan new observa-
tions. We can model situations that may occur in real long-time monitoring
programmes. By varying model parameters we can estimate sufficient sam-
pling and durations for observational sessions as well as the accuracy of
observation needed. On the other hand, even accurately planned sessions
can result in a failure because the source quasars themselves can show per-
sistent stationarity or the time series observed can be contaminated by
strong microlensing which is unacceptable for the present formulation of
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the blended algorithms.
We believe that the automatic method for estimating time delays be-

tween resolved images can be used to analyse data which will flow out from
the extensive photometric programs planned. It is also worth considering
to apply blended algorithms in processing this data. We hope that the
availability of the new methods for blended images gives an extra moti-
vation for astronomers observing at telescopes with modest resolutions to
carry out long monitoring programmes for gravitational lens systems.

There are also some problems left to be solved in subsequent studies.
First, we should establish more robust constraints of the significance of
the estimated (or discovered) time delays. Getting a stable time delay
with different polynomial degrees within the detection range of our method
may not be sufficient to suppress false alarms if the real time delay is
much longer, or there is no time delay at all. Using Monte Carlo type
calculations may be considered here. Second, it is worth implementing the
singular value decomposition method for possible cases of ill conditioned
covariance matrices. Third, the small controversy of the time delay of the
QSO 0957+561 (412 . . . 417 against 422 . . . 426 days) needs to be explained.
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also my colleague Tõnu Viik for their help on writing the papers. My grat-
itude goes to Jaan Pelt and to my colleagues Tõnis Eenmäe, Lauri Juhan
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Summary in Estonian

Gravitatsiooniläätsest põhjustatud

kvasarite mitmikkujutiste vaheliste

ajanihete mõõtmine

Kauge kvasari ja maise vaatleja vahelise vaatekiire lähedale jäävad massiiv-
sed objektid toimivad gravitatsiooniläätsena. Käesolevas töös käsitletakse
nn tugevaid gravitatsiooniläätsi, kus tekivad mitmikkujutised. Tuge-
vas läätses on valguskiiri kallutavaks massiivseks objektiks enamasti
(hiid)galaktika. Valgus (või muu elektromagnetkiirgus) saab läätse tõttu
tulla vaatlejani eri teid pidi. Eri teid mööda kulgemine võtab kvasari sig-
naalil erinevalt aega; ka Shapiro efektist tingitud viivitus võib eri kujutistel
olla erinev. Kujutiste heleduskõverate vahel on seega ajanihked, mida me
saame mõõta.

Milleks mõõta ajanihkeid? Sjur Refsdal (vaata Refsdal 1964b,a) näitas,
et me saame määrata Hubble parameetrit H0, teades allika ja läätse
punanihkeid, kujutiste heledusi ja nurkkaugusi, läätse massijaotust ning
mõõdetud ajanihet. (Suuremate punanihete korral peame lisaks arvesse
võtma kosmoloogiliste kõverus- ja tihedusparameetrite väärtused.) Seejuu-
res on oluline, et H0 hindamiseks ei pea me tarvitama nn kosmilist redelit
ja pääseme sellega seotud ebatäpsustest. Tegelikkus pole siiski nii lihtne –
osutub, et vaatlusandmetega saavad klappida erinevad läätse massijaotuse
mudelid, mis annavad erinevadH0 väärtused. Kauge galaktika massijaotuse
ja vaatekiire lähedusse jääva täiendava massi paigutuse ühene vaatluslik
mõõtmine pole aga enamasti piisava täpsusega võimalik.

Läätse massijaotuse modelleerimisega seotud määramatust H0 hinnan-
gus saab maha suruda, kui kasutame suurt arvu mõõdetud ajanihetega
läätsesüsteeme (vaata Coe & Moustakas 2009; Oguri & Marshall 2010;
Paraficz & Hjorth 2010). Teades H0 väärtust, saab omakorda määrata
läätsgalaktikate masse ja galaktikate masside jaotust. Ka see eeldab suure
hulga ajanihete mõõtmist. Me peame hindama suurt arvu ajanihkeid ka
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siis, kui tahame nende abil avastada uusi gravitatsiooniläätsi massilise foto-
meetria andmetest. Ajas nihutatud heleduskõveraid saab mõõdetud aja-
nihke abil kokku nihutada. Sedasi saame allikast parema vaatlusrea kui
vaid üksikuid kujutisi uurides.

Suure arvu ajanihete usaldusväärseks mõõtmiseks on vaja meetodit,
mis ei nõua kasutaja poolset sekkumist ja subjektiivsete parameetrite
sisestamist. Üks käesoleva töö eesmärk oligi automaatse ajanihete leid-
mise metoodika välja töötamine ja katsetamine reaalsete vaatlusandme-
tega. Töö käigus koostati algoritm (vaata Hirv et al. 2011), mis vähemalt
kasutatud vaatlusandmete korral töötas automaatselt ja leidis teiste auto-
rite tulemustega kooskõlalised ajanihete väärtused. Meetod pandi kokku
juba kaua kasutusel olnud ideedest, ühendades tuntud algoritmide head
küljed. Esiteks rakendame heleduskõveratesse punktide ristinterpoleerimise
skeemi, mida tarvitasid Gaskell & Sparke (1986) ja Gaskell & Peterson
(1987). Interpoleeritud väärtuste arvutamiseks kasutame lineaarse ennus-
tamise metoodikat, mille võtsid kasutusele Press et al. (1992a). Viimati
mainitud metoodikas täiustasime struktuurifunktsiooni koostamist, disper-
sioonitaseme hindamist. Vaatlusandmetega sobivaima ajanihke leidmiseks
tarvitame nn kombineeritud dispersioonispektrit, mis on sisuliselt laialt
levinud punktipaariviisilise χ2(∆t∗) korrektsema normeeringuga analoog.
Mikroläätseefekti mõju kõrvaldamiseks rakendame polünoomi sobitamist
heleduskõverate vahesse, mida kasutasid Pelt et al. (1996).

Kuigi tehtud samm on selles valguses suhteliselt väike, oleme me
üllatunud, kui kindlalt uus meetod andis juba tunnustatud ajanihete
väärtustega väga lähedasi või identseid vastuseid. Usume, et meetod töötab
korrektselt ka teiste piisavalt pikkade aegridadega, mille müratase ja vaat-
luspunktide tihedus vastavad ülesande püstitusele.

Näitasime, et Press et al. (1992a) said QSO 0957+561 jaoks vale aja-
nihke väärtuse kahel põhjusel: nende kasutatud globaalne χ2-statistik ei ole
stabiilne ligikaudu perioodiliste vaatluspauside suhtes; nad jätsid arvesta-
mata mikroläätseefekti.

Kui gravitatsiooniläätsena toimib (hiid)galaktika, on tekkinud kujutiste
nurkkaugused vaid mõne kaaresekundi suurusjärgus. Kasutades vaatlus-
teks väiksemaid teleskoope halvemates vaatlustingimustes, võivad vähem
eraldatud kujutised jääda lahutamata ehk kokku sulada. Koostasime kaks
meetodit kokku sulanud kujutiste heleduskõveratest ajanihete mõõtmiseks.
Esiteks, kui vaatlejani jõuab kvasari signaal ühe lahutatud kujutise ja ühe
kahest kujutisest kokku sulanud kujutise kaudu (vaata Hirv et al. 2007a).
Teiseks, kui vaatleja registreerib kaks kokku sulanud kujutist, mis kumbki
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koosnevad kahest kujutisest (vaata Hirv et al. 2007b). Algoritmid tes-
titi simuleeritud andmetel, sest piisavalt kvaliteetseid liitunud kujutistega
aegridu ei olnud veel saada. Kuna mitte lahutatud kujutistele mõeldud
meetodid koostati enne automaatset, siis on nendes kasutatud standard-
set dispersioonispektrit, mille võtsid kasutusele Pelt et al. (1994, 1996).
Ka mikroläätseefekt jäetakse nende praeguses formuleeringus arvestamata.
Samas võime neid rakendades saada huvitavaid tulemusi – esimese meetodi
abil leidsime, et QSO 0957+561 B kujutist võib vaadelda kui kahe kokku
sulanud kujutise summat. Märgime, et automaatset meetodit saab kohan-
dada ühe lahutatud ja ühe kokku sulanud kujutise juhtumi tarbeks. Kahe
kokku sulanud kujutise korral pole see korrektne. Mikroläätseefekti saab
põhimõtteliselt arvesse võtta mõlemal juhul.

Koostatud metoodikat saab kasutada ka uute vaatluste planeerimiseks.
Me saame simuleerida reaalseid vaatlusandmeid ning hinnata vajalikku
vaatlustäpsust, aegrea pikkust ja vaatluspunktide tihedust oodatavate aja-
nihete piisava täpsusega mõõtmiseks. Usume, et meie automaatset ajani-
hete leidmise meetodit saab rakendada planeeritavatest suurtest fotomeet-
riaprojektidest tulevate andmete töötlemiseks. Loodame, et kokku sula-
nud kujutiste jaoks loodud meetodid julgustavad vaatlejaid tegema pikki
vaatlusridu teleskoopidega, mis muidu jääks gravitatsiooniläätsede kuju-
tiste vaatlemiseks sobimatutesse vaatlustingimustesse. Ka kvaliteetsematele
massilise fotomeetria aegridadele võib rakendada kokku sulanud kujutistele
loodud algoritme, et avastada võimalikke lahutamata jäänud kujutisi.

Edasise töö käigus on plaanis tegeleda järgmiste probleemidega. 1. Mee-
tod peaks hindama leitud ajanihete statistilist olulisust. 2. Võimalike
raskesti pööratavate kovariatsioonimaatriksite tarbeks tuleb rakendada
töökindlamat algoritmi. 3. Nn väike vastuolu QSO 0957+561 erinevate
autorite poolt saadud ajanihete väärtuste vahel vajab lahendamist.
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