Aire Arge

LIIGESLIIKUVUS, LIHASTOONUS JA POSTURAALNE STABIILSUS 2-KUULISE HARJUTUSPROGRAMMI JÄRGSELT HALLUX VALGUS DEFORMATSIOONIGA NAISTEL

Magistritöö

Füsioteraapia erialal

Juhendaja: teadur MD PhD Helena Gapeyeva

TARTU ÜLIKOOL
Kehakultuuriteaduskond
Spordibioloogia ja füsioteraapia instituut

TARTU 2013
Sisukord

AVALDATUD PUBLIKATSIOONID .. 4
TÖÖS KASUTATUD LÜHENDID ... 5
SISSEJUHATUS ... 6
1. KIRJANDUSE ÜLEVAADE ... 7
 1.1. Hallux Valgus’e süptomid ja etioloogia ... 7
 1.2. Hallux Valgus deformatsiooni raskusastmed ... 8
 1.3. Hallux Valgus’est tingitud tugi-liikumisaparaadi muutused ... 9
 1.4. Hallux Valgus’e ravi .. 10
 1.5. Harjutuste mõju Hallux Valgus’e patsientidele .. 12
2. TÖÖ EESMÄRK JA ÜLESANDED .. 15
3. TÖÖ METOODIKA ... 16
 3.1. Vaatlusalused ... 16
 3.2. Uurimismeetodid .. 17
 3.3. Harjutusprogramm ... 28
 3.4 Uuringu korraldus ... 29
 3.5. Andmete statistiline töötlus .. 30
4. TÖÖ TULEMUSEDE .. 31
 4.1. Treeningpäeviku andmed ... 31
 4.2. Jalalaba subjektiivne valu tugevus ja funktsioon ... 31
 4.3. Liigesliikuvuse pärast 2-kuulist KKHP .. 33
 4.4. Lihaamoo se muutused pärast 2-kuulist KKHP ... 35
 4.5. Podomeetria ... 41
 4.6. Stabilomeetria .. 41
5. TÖÖ TULEMUSTE ARUTELU .. 44
6. JÄRELDUSED .. 51
KASUTATUD KIRJANDUS: ... 52
SUMMARY .. 56
TÄNUVAVALDUS .. 58
LISAD ... 59
 LISA 1. Jala funktsiooni küsimustik (Foot Function Index) .. 60
 LISA 2. Kodune kehaline harjutusprogramm ... 61
 LISA 3. Teraapiapäevik .. 66
LISA 4. Säärelihaste toonuse näitajad ... 67
LISA 5. Lihastevaheline toonuse suhted... 68
AVALDATUD PUBLIKATSIOONID

Artiklid kohalikes kogumikes:

Konverentside teesid:

TÖÖS KASUTATUD LÜHENDID

AP anterioposterioorne
COP keha survetsenter (centre of pressure ingl.k)
EDL pikk varvastesirutaja (m. extensor digitorum longus lad. k)
EKSP grupp eksperimentaalgrupp
EMTP-liiges esimene metatarsofalangeaalliliigis e. pöia-faalanksi liiges
FFI jala funktsiooni indeks (Foot Function Index, ingl.k)
GM sääremarjalihase mediaalne pea (m. gastrocnemius caput mediale, lad.k)
HV esimese pöia-faalanksi liigese deformatsioon (Hallux Valgus, lad. k)
IM-nurk intermetatarsaalnurk e. pöialuude vaheline nurk
KKHP kodune kehaline harjutusprogramm
KMI kehamassi indeks
KON grupp kontrollrühm
max maksimum
med mediaan
min miinimum
ML mediolateraalne
PL pikk pindluulilihas (m. peroneus longus, lad k)
PROM passiivne liigese liikuvusulatus
SD standardhälve
TA eesmine sääreluulilihas (m.tibialis anterior, lad. k)
SISSEJUHATUS

Hallux Valgus (HV) ehk sissepöördunud suur varas on esimese pöia-faalanksi liigese deformatsioon, kus on toimunud jalalabas mitmed struktuursed muutused. Seda peetakse progressiivseks ja pöördumatuks deformatsiooniks (Glasoe jt, 2010; Nix jt, 2010). *HV* esineb erinevatel andmetel ligi 23% inimestest, neist 90% on naised (Jones jt, 2012). Kergematel *HV* juhtudel on probleem vaid kosmeetiline, haiguse hilises faasis tekivad könnimustri häired, jalalaba liigese liikuvuse piiratus, muutub keha raskuse koormusjaotus tallale, esinevad valu liigutustel ja könnil ning probleemid jalanõude valikul (Bayar jt, 2011).

Kerge kuni mõõduka *HV* puhul soovitatakse kasutada ortoose, haritakse patsienti sobivate jalatsite kandmisest ning juhendatakse ortooside kombineerimist spetsiaalsete harjutuste ja teipimisega, mis võivad kuni mõõduka *HV* puhul sümptomid leevendada (Bayar jt, 2011). Hilises faasis *HV* puhul on enamasti näidustatud korrigeeriv kirurgia (Schuh jt, 2009).

Füsioterapeutilist sekkumist *HV* hilises faasis peetakse oluliseks peamiselt postoperatiivselt (Schuh jt, 2009). Harjutuste mõju kohta jalalaba liigese funktsioonile *HV* hilise faasi korral enne operatsiooni leidub vähe kirjandust, samuti tihti mõnele inimesele operatiivne ravi ei sobi ning oleks vajalik teada kas ka selles faasis annab harjutuste sooritamine positiivset efekti.

1. KIRJANDUSE ÜLEVAADE

1.1. Hallux Valgus’e sümptomid ja etioloogia

Hallux Valgus (HV) on multifaktoriaalne jalalaba deformatsioon, kus 1. metatarsaalluu on kaldunud keha keskjoone suhtes mediaalsele ja suurvarba proksimaalne ja distaalne lüli lateraalsele (joonis 1.). Lisaks esinevad eelnevast tingitud muutused jalalaba lihaste asetuses, suurvarba pikad fleksor- ja ekstensorlihased liiguvad esimesest metatarsofalangeaalligisesest (EMTP-liigesest) lateraalsele, avaldades deformatsioonile vibunööri-efekti. Metatarsaalluu pea mediaalsele küljele võib tekkida survest ja hõõrdumisest sarvkiht, liigeskapsel tiheneb, liiges muutub põletikuliseks, moodustub luuväljakasv e. eksostoos (Bayar jt, 2011; Magee, 2006; Menz jt, 2010).

![Joonis 1. Hallux Valguse deformatsioon (avaldatud vaatlusaluse nõusolekuga).](image)

1.2. Hallux Valgus deformatsioonide raskusastmed
HV jaotatakse raskusastme järgi kaheks astmeks. Esimene astme (kongruentne HV) puhul on MTP-nurk 20° ja 30° vahel. Deformatsioon ei progreseeri, EMTP-liigeses on liigespinnad kontakteerumata. Selle astme puhul ei ole ravi tavaliselt vajalik ja suurim probleem on kosmeetiline (Magee, 2006).

Teine aste (patoloogiline HV) on potentsiaalselt progresseeruv deformatsioon, kus MTP-nurk jääb vahekauguse 20°-60°. Sel juhul ei pruugi liigespinnad MTP-liigeses olla kontakteerunud ning vaid esineda ka subluxatsiooni. Suurvarba lähendajaliühise (m. adductor hallucis) pinge töölt võib suur varvas minna pronatsiooni, nii et varbaküüs pöördub mediaalsele. Väga suure valgus-asendi puhul liigub suur varvas teise varba alla või peale (Magee, 2006).

Piqué-Vidal jt (2009) artiklis oli välja toodud geomeetriline lähenemine HV raskusastmete hindamisel. Selle meetodi puhul oli läbi esimene metatasaalluu, proksimaalse ja distaalse taastusel liigetelde tõmmatud tasapinnaline kaar, millest tuleneva ringjoone keskpunkt asukoht labajala suhtes oli tõlgendatav HV raskusastmena. Mida rohkem labajala piirides ja mediaalselt asetseb ringi keskpunkt, seda tõsisema kliinilise HV raskusastmega on tegemist (joonis 2.).

Joonis 2. Mõõduka (A) ja raske astmega (B) Hallux Valgus deformatsioon ja nende geomeetriline hindamine (Piqué-Vidal jt, 2009).

1.3. Hallux Valgus’t tingitud tugi-liikumisaparaadi muutused
Lisaks HV raskusastmele tuleks hinnata ka valu esinemist puhkeolekus ja koormustel (VAS-skaalal) ning kõnni võimet. HV-ga seoses võib olla piiratud labajala liigeste liikuvus nii valu ja põletikuliste protsesside kui ka liigese teljelisuse muutuste tõttu. Muutused jalalabas võivad tekitada häireid nii könnimustris kui keha tasakaalus. On leitud seoseid
HV esinemise ja muudes kehaosades lokaliseeruva valu vahel (Bayari jt, 2011; Glasoe jt, 2010; Menz jt, 2011).

1.4. Hallux Valgus’e ravi

HV terapiaia eesmärk on deformatsiooni vähendada ning sellest tingitud kaebusi leevendada. Põhigised raviliigid on konservatiivsed ja operatiivsed, sõltudes valu tugevusest ja deformatsiooni asteist. Kergema HV astme puhul soovitatakse harjutusi harinud, et säilitada ja taastada liigesliikuvust ja lihajõu tasakaalu, kasutatakse varbavahe tugesit ja erinevaid lahaseid, et vältida deformatsiooni süvenemist ja venitada pehmteid kudesid (Glasoe jt, 2010). Orthooside ja tallatugedest kasutamine on laialt levinud, et leevendada valu

Küllaltgi suur protsent (25–33%) patsienti ei ole rahul operatsiooni tulemustega, isegi kui valu ja EMTP-nurk on vähenenud, mis tähendab, et patsientidel on olnud siiski erinevad ootused operatsioonile kui kirurgil (Tai jt, 2008). Seda kõike arvesse võttes peaks olema operatiivne ravi siiski viimane valikuvariant.

1.5. Harjutuste mõju Hallux Valgus’e patsientidele
Kirjandust füsioteraapia mõjust hilisemas faasis HV deformatsioonile preoperatiivses staadiumis on vähe. Schuh jt (2009) kirjeldavad postoperatiivset harjutasprogrammi, mille alla kuuluvad könnitreening, pika pindluulihase (m. peroneus longus (PL)) selektiivne tugevdamine, pika pindluulihase ja eesmize sääreluulihase (m. tibialis anterior (TA)) fastsiaalsed vabastamistehnikad, köökidest MTP-liigeste manipulatsioonid ja mobilisatsioonid parandamaks liikuvust, samuti EMTP-liigese traksion, suurvarba ekstensoreid ja fleksoreid tugevdavad kontsentrilised harjutused (Schuh jt, 2009). Preoperatiivset soovitatakse tavaliselt ortoose, patsiendi harimist korrektsete jaalatsite valiku teemal ning orotseid kombineerimist teipimisega, mis võivad mõõduka HV puhul sümptomeid leevendada või parandada ajutiselt või püsivalt (Bayar jt, 2011).

leevendamisel kui elastse deformatsiooni vähendamisel. Uuringutulemustest järelasid nad, et ortooside kasutus HV ravimisel ei ole nii efektiivne kui spetsiaalsed harjutused.

HV deformatsiooni puhul jalalaba harjutuste sooritamise eemärgiks on säilitada liigeslikuvust, venitada liigeseid ümbritsevat sidekude ja parandada lihasjõudu (Bayar jt, 2011). Paljude kirjandusallikate järgi saab järelada, et harjutuste sooritamine on efektiivne vaid HV algusjärgus ning et väljendunud HVkorral leevendab kaebusi ainult operatiivne ravi. Siiski peab olema operatiivne ravi paljudele juhtumitele alles viimaseks valikuks, siis kui enam ükski konservatiivne ravimeetod ei ole aidanud. Kirjandust spetsiaalsete
harjutuste mõjust ka hilises faasis HV deformatsioonile, kui on juba näidustud operatiivne ravi, kahjuks leidub väga vähe.
2. TÖÖ EESMÄRK JA ÜLESANDED

Eesmärk:

Antud uurimistöö eesmärks oli hinnata esimese metatarsofalangeaalliigese (EMTP-liigese) liikuvust ja valu tugevust, säärelihiaste toonust, jalatalla survejaotust ja posturaalkontrolli enne ja pärast 2-kuulise individuaalse koduurjutusprogrammi (KKHP) sooritamist naistel hilises hallux valgusdeformatsiooniga preoperatiivselt ning vörrelda tulemusi terviseprobleemidetasamaelitest naistest moodustatud kontrollgrupiga.

Ülesanded:

Töös püstitati järgmised ülesanded:

1. Hinnata haaratud jala subjektiivset valu tugevust ja funktsiooni.
3. Hinnata säärelihiaste toonust puhkeolekus ja kontraktsioonil, võrrelda sääre eesmise ja tagumise lihasgrupi omavahelist suhet.
4. Hinnata survejõudude jaotust jalatallalle.
5. Analüüsid posturaalse kontrolli näitajaid seismisel ühel jalal stabiilsel ja mittestabiilsel tasapinnal.
6. Vörrelda tulemusi enne ja pärast harjutusprogrammi sooritamist ja kontrollgrupiga.
3. TÖÖ METOODIKA

3.1. Vaatlusalused
Uuringus osales vabatahtlikult 14 naispatsienti vanuses 40-65 eluaastat, kellel esines HV deformatsioon, kus EMTP-nurk oli suurem kui 20°, (keskmine±SD 30,6 ± 8,5°) (eksperimentaalgrupp (EKSP grupp)). Kõikidel vaatlusalusteltestati kliiniline ülevaatuse Tartu Ülikooli Kliinikumi traumatoloogia ja ortopeedia osakonna kirurgi poolt ajavahemikus juuli kuni august 2012. a. ning neile oli määratud kuue kuu jooksul HV korrigeeriv operatsioon. Kontrollgrupi (KON grupp) moodustasid 10 jalavaevusteta ja tervisekaebusteta naist vanuses 46-64 eluaastat. Kontrollgrupi valiku kriteeriumiks oli eksperimentaalgrupi vaatluseltega sobiv vanus ja kehalise aktiivsuse määr. Vaatlusaluste vanus ja antropomeetrilised näitajad on välja toodud tabelis 1.

Uuringu esimeses etapis osales 14 vaatlusalust, kellest pärast 2-kuulist koduse kehalise harjutusprogrammi (KKHP) läbimist osales kordusuuringus 10 vaatlusalust. Tulemuste analüüsimisel kasutati antud töös mõlemast uuringust osa võtnud 10 vaatlusaluse andmeid. Kordusuuringul mitteosaluseid väljatoodud olid: muu haigestumine (n=1), ajapuudusel harjutuste mittesooritamine (n=2) ja valu ägenemise tõttu katkestatud harjutamine (n=1).

Kümnest vaatlusalusest olid operatsioonile suunatud parema jalaHV deformatsiooniga 3 naist ja vasaku jalaga 7 naist. Kolmel eksperimentaalgrupi vaatlusalusel oli eelnevalt teostatud ka kontralateraalse jala HV korrigeeriv operatsioon. Jalavaevuste (valu ja funktsioonihäirete) esinemise kestust oli keskmiselt 11,4 aastat (min 1,5 aastat, max 35 aastat).

Uuringust väljalülitavad kriteeriumid nii eksperimentaal- kui kontrollgrupis olid tasakaaluhäired; reumatoidartriit ja teised artriidid; teised ortopeedilised ja neuroloogilised haigused; luumurrud eelmise aasta jooksul; kognitiivsed probleemid; suurvarba paindumine teiste varvaste alla või peale; tugev valu, mis oleks takistanud harjutuste sooritamist ja ajapuudus harjutuste sooritamiseks (eksperimentaalgrupil).
Tabel 1. Vaatlusaluste vanus, antropomeetrilised näitajad ja kehalise aktiivsuse määr Baecke küsimustiku põhjal (Baecke, 1982) (keskmine ± SD).

<table>
<thead>
<tr>
<th>Parameeter</th>
<th>Eksperimentaalgrupp</th>
<th>Kontrollgrupp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enne KKHP</td>
<td>Pärast KKHP</td>
</tr>
<tr>
<td>Vanus (aastad)</td>
<td>55,5 ± 6,9</td>
<td>55,5 ± 6,9</td>
</tr>
<tr>
<td>Pikkus (cm)</td>
<td>163,4 ± 5,5</td>
<td>163,4 ± 5,5</td>
</tr>
<tr>
<td>Kehamass (kg)</td>
<td>62,2 ± 9,6</td>
<td>62,8 ± 9,8</td>
</tr>
<tr>
<td>KMI (kg/m²)</td>
<td>23,4 ± 2,9</td>
<td>23,5 ± 2,9</td>
</tr>
<tr>
<td>Baecke indeks</td>
<td>8,3 ± 1,0</td>
<td>8,5 ± 1,2</td>
</tr>
<tr>
<td>N</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

KMI – kehamassi indeks; p>0,05

3.2. Uurimismeetodid

3.2.1. Jalalaba valu tugevuse ja funktsiooni subjektiivne hindamine

Tegevuspiirangute alaskaalaga hinnati, kui palju esines raskusi teatud tegevustel – toas käimine, ebatasasel pinnal käimine, 500 m läbimine, trepist üles-alla liikumine, pääkkadel seismine, toolilt tõusmine, könnitee servast üles astumine ja kiiresti käimine. ”1” tähistas raskuste puudumist, ”10” võimetust tegevust sooritada. Tegevuspiirangute alaskaala maksimaalne punktisumma, mis tähistas halvimat seisundit, oli samuti 90 p.

Aktiivsuspiirangute alaskaala koosnes 5-st küsimusest, kus hinnati kuivörd jalaprobleemide tõttu vaatlusalune piirab igapäevaseid tegevusi ning kas kasutab liikumiseks abivahendeid (ortoose). Maksimaalne punktisumma (50 p) tähistas täielikku liikumisvõimetust.

Maksimaalne FFI punktisumma kokku on 230 p, mis näitab pidevat maksimaalset valu ja täielikku liikuvus- ja tegevuse piiratust jalaprobleemide tõttu (Agel jt, 2005).

3.2.3. Goniomeetria

Haaratud jala EMTP-liigese ja hüppeliigese dorsaal- ja plantaarfleksiooni passiivse liikuvusulatuse (PROM) mõõtmiseks kasutati standartset mehaanilist goniomeetrit (Whitehall Manufacturing, USA). Uuritav istus teraapiaalual, jalad üle ääre, hüppeliiges vabas asendis (joonis 3A). Uuringu läbiviива teostas EMTP-liigese fleksiooni ja ekstensiooni ning hüppeliigese dorsaal- ja plantaarfleksiooni passiivset maksimaalse liigutusulatuseni või valupiirini ning fikseeris näidu. Mõõtmised teostati 3 korda ja võeti analüüsiks parim tulemus (Jones jt, 2012). Arvutati liikuvuse suurenemine protsentuaalselt esimese mõõtmise tulemust võlvel (a-b)/a x 100 [%], kus “a” on mõõtmise tulemus enne KKHP sooritamist ja “b” mõõtmise tulemus pärast KKHP sooritamist.EMTP-liigese abduktioonasendit ehk MTP-nurka (HV) ja IM-nurka mõõdeti ortopeedi poolt röntgeniülesvõttelt ühekordselt (joonis 3B.)
Joonis 3. Metatarsofalangeaalliigese passiivse liikuvuse mõõtmine goniomeetriga (A) ning EMTP-liigese (HV) ja intermetatarsaalnurga (IM) hindamine röntgeniülesvõttelt (B).

3.2.3. Müotonomeetria

Säärelihaste toonuse mõõtmiseks kasutati kaasaskantavat müomeetrit Myoton-3 (Müomeetria OÜ, Eesti) koos vastava tarkvaraga Myoton®. Uurimistöö raames mõõdeti bilateraalselt järgmiseid lihaseid: eesmine sääreluulilias (m. tibialis anterior (TA)), pikk varvastesirutaja (m. extensor digitorum longus (EDL)), pikk pindluulilias (m. peroneus longus (PL)), sääremarjalihase mediaalne pea (m. gastrocnemius caput mediale (GM)).

Mõõtmised teostati lamades ja püsti asendis nii puhkeolekus kui kontraktsioonil. Lamades oli vaatlusalune mõõdetava lihasgrupile vastavalt teraapialual selili, külili või kõhuli, käed olid asetatud kõrval piki keha. TA toonuse mõõtmisel oli uuritav teraapialual selili, põlvliigiste alla oli asetatud tugi (poolsilinndriline vahtpadi) (joonis 4). EDL ja PL toonuse mõõtmisel oli vaatlusalune teraapialual küliliasendis, testitav jalg toetus poolsilindrisele vahtpadjale (joonis 5.). GM toonuse mõõtmisel oli vaatlusalune teraapialual kõhuli, käed kõrval, hüppeliigiste alla oli asetatud tugi (joonis 6.).
Joonis 4. Vaatlusluse asend **M. tibialis anterior**toonuse mõõtmisel lamades puhkeolekus.

Joonis 5. Vaatlusluse asend **m. extensor digitorum longus** ja **m. peroneus longus**e toonuse mõõtmisel lamades puhkeolekus.
Vaatlusaluse asend m. gastrocnemius caput mediae toonuse mõõtmisel lamades puhkeolekus.

Et mõõta lihastoonust kontraktsioonil lamades asendis, paluti vaatlusalusel tahteliselt lihast maksimaalselt pingutada 3-5 s vältel ning mõõtmised sooritati pingutuse jooksul. TA kontraktsiooni ajal toonust mõõtes sooritas uuritav testitava jala hüppeliigese maksimaalse dorsaalfleksiooni (joonis 7), EDL ja PL lihaseid testides sooritas uuritav hüppeliigese dorsaalfleksiooni koos pronatsiooniga (joonis 8.). GM kontraktsiooni sooritas uuritav hüppeliigese maksimaalse plantaarfleksiooniga (joonis 9.).
Joonis 7. *M. tibialis anteriori* toonuse mõõtmne lamades kontraktsioonil.

Joonis 8. *M. extensor digitorum longus’eja m. peroneus longus’e* toonuse mõõtmne lamades kontraktsioonil.

Püstiasendis paluti vaatlusalusel toetuda võrdselt mõlemale jalale täistallale puusade laiusel harkseisus. Julgestuseks ja vajadusest keha tasakaalu hoidmiseks oli uuritava ette asetatud seljatoega tool käte toetamiseks. Teostati mõõtmised kõikides eelnevalt mainitud punktides (Joonis 10.)

![Image](image1)

Joonis 10. Vaatlusaluse asend säärelihaste toonuse mõõtisel seistes puhkeasendis (A) ja *m. peroneus longus* etoonuse mõõtisel seistes (B).

Kontrahheerunud TA toonuse mõõtmiseks püstiasendis paluti uuritaval seista kandadel ja tõsta päkad maast lahti, kasutades minimaalselt käte tuge tasakaalu hoidmisel (joonis 11A). EDL ja PL toonuse mõõtmiseks pingutusel paluti uuritaval kandadele toetudes.
sooritada hüppeliigesest dorsaalfdleksioon ja pronatsioon (joonis 11B). GM testimisel kontraktsioonil sooritas uuritav maksimaalset ulatuses tõusu pääkadele (joonis 11C.).

Joonis 11. Vaatlusaluste asend lihastoonuse mõõtmisel seistes kontraktsioonil: m. tibialis anteriori (A), m. extensor digitorum longus ja m. peroneus longus'e (B) ja m. gastrocnemius caput mediale (C).

Antud töö liikuvusulatuse ja lihastoonuse muutuste analüüseks enne ja pärast 2-kuulist KKHP sooritamist kasutati eskperimentaalrühma rohkem haaratud jala (mis on suunatud kirurgiale) andmeid, kuna teine jalg oli neil kas analoogse HV haaratusega (kergem aste) või juba eelnevalt opereeritud. Kontrollrühma vaatlusalustel kasutati vastavate andmete vördluses domineeriva jala mõõtmistulemusi.
3.2.4. Podomeetria

Jalatalle mõjuvate survejõudude jaotuse uurimiseks kasutati podomeetrilist süsteemi *Digital Biometry Images Scanning System (Diagnostic Support S.r.l., Itaalia)*, mis koosneb dynamograafilisest platvormist (4 sensorit/cm\(^2\)) ja kõnnirajast. Staatilise seismistesti sooritamiseks astus vaatlusalune paljajalu platvormile, testija abistas jalakandade asetamisel õigesse paika. Enne testi sooritamist kasutati vaatlusaluse asendi standariseerimiseks kannapiirajat (joonis 12A.). Testi sooritamise jooksul paluti vaatlusaluse paljajalu hoida stabiilset asendit, keharaskus jaotatud võrdselt mõlemale jalale, käed all kõrval, pilk suunatud ette (joonis 12B.).

![Joonis 12](image1.jpg)

Joonis 12. Jalatallale mõjuvate survejõudude jaotuse uurimine seistes. Kannapiiraja kasutamine vaatlusaluse asendi standariseerimiseks (A) ja vaatlusaluse asend testimisel (B).

Jalatalls survejaotuvuse näitajad registreeriti Milletrix®tarkvaraga (*Diagnostic Support S.r.l., Itaalia*) 5 s seismise jooksul. Analüüsi järgmised näitajad: HV haaratud ja mittehaaratud jala pöiaosa (*forefoot*) ja kannaoa (*rearfoot*) keharaskuse jaotuse keskmise näitaja toepinna suhtes (g/cm\(^2\)) ja suhtelise koormuse jaotuvuse (%) näitajahehahamassi suhtes (Joonis 13.) ning pöia lateraalse ja mediaalse osa koormuse suhet (joonis 14.).

3.2.5. Stabilomeetria

Vaatlusaluste staatilise keha tasakaalu mõõtmiseks kasutati dümamograafilist platvormi Kistler 9286A (Šveits) mõõtmetega 60x40 cm ja BTS Elite liigutusanalüüsi Sway tarkvara (BTS S.p.A, Itaalia). Testimisel seisis vaatlusalune ühel jalal ühel platvormil, kõik katsed tehti paljajalu, avatud silmadega 15 s jooksul, käed kõrval. Testi sooritamisel fikseeris vaatlusalune pilgu 2 m kaugusele silmade kõrgusele asetatud ristiga pildile. Vaatlusalusel paluti hoida võimalikult stabiilset asendit. Teostati kolm testi:

1. Seismine stabiilsel tasapinnal (joonis 15A)

2. Seismine ebastabiilsel horisontaalsel tasapinnal - poroloonist padjal Airex Balance Pad Plus (Alcan Airex AG, Šveits, mõõted pikkus x laius x kõrgus on 50x41x6 cm) (joonis 15B)

3. Seismine ebastabiilsel kiilpadjal kaldenurgaga 10° - poroloonist kiilul Airex Balance Wedge (Alcan Airex AG, Šveits, mõõted pikkus x laius on 50x41 cm ja kõrgus 6 cm distaalsemas osas ja 1 cm proksimaalses osas) (joonis 15C)

A B C

Joonis 15. Staatilise keha tasakaalu testimine kolmel eri tasapinnal: stabiilsel (A), horisontaalsel ebastabiilsel (B) ja ebastabiilsel tasapinnal kaldenurgaga 10° (C).

Analüüsiti järgmisi keha tasakaalu iseloomustavaid parameetreid:

1. Keha survetsentri (COP) nihke näitajad: survetsentri ette-tahasuunaline (AP) ja
külgsuunaline (ML) kõikumine (mm).

2. COP kõikumise trajektoori näitajad: nihke raadius (*trace equivalent radius* ingl.k.) (mm) ja moodustatud kujungi pindala (*trace equivalent area* ingl.k.) (mm).

3.3. Harjutusprogramm

Uuringus osalejatel paluti sooritada KKHP 2 korda päevas kestusega umbes 20 min kahe kuu vältel. Iga eksperimentaalgrupis osalente sai pärast esimest uuringut endaga kaasa treeningmapi, milles olid illustreeritud harjutuskava (Lisa 2.), treeningpäevik (Lisa 3.) ning abivahendid harjutuste sooritamiseks (ogapall läbimõõduga 6 cm, kivikesed läbimõõduga umbes 1 cm). Harjutused vaadati ja prooviti koos töö autoriga läbi ja vajadusel anti vaatluslalustele lisaselgitusi. Treeningpäevikusse märkis uuritav kahe kuu jooksul iga päev tehtud harjutuste arvu, treeningule kulunud aja ja enesetunde päeva jooksul. Lisaks pandi kirja valu ja pingutuse tugevus, väsimuse tase harjutuste sooritamisel ning valu tugevus enne ja pärast KKHP sooritamist. hindamiseks kasutati modifitseeritud Borgi skaalat (0-10 punkti, kus ”0” on valu puudumine ja minimaalne pingutus ja väsimus ning ”10” on maksimaalne valu, pingutus ja väsimus).
3.4 Uuringu korraldus

Laboris selgitati uuringus osalejatele uuringu eesmärke ning nad andsid allkirja vabatahtlikult uuringus osalemise kohta.

Uuringute läbiviimine toimus järgnevalt:

1. Vaatlusalused täitsid üldankeedi, mis sisaldas küsimusi nende tervisliku seisundi kohta, vastasid FFI ankeedi küsimustele jala funktsiooni ja valu tugevuse hindamiseks ja küsimustele kehalise aktiivsuse määra hindamiseks (Beacke, 1982).

2. Mõõdeti vaatlusaluste kehapikkus seinale kinnitatava mõõdulindiga (täpsusega ± 1 mm) ja kehamass meditsiinilise elektronkaaluga (täpsusega ± 0,05 kg).

4. Mõõdeti säärelihaste (TA, EDL, PL, GM) toonust lamades puhkeolekus ja kontraktsioonil ning püsti seistes puhkeolekus ja kontraktsioonil.

5. Hinnati jalatallale mõjuvate survejõudude jaotust seismisel.

6. Registreeriti posturaalse stabiilsuse näitajad ühel jalal seismisel avatud silmadega kolmel erineval tasapinnal.
3.5. Andmete statistiline töötlus
Tulemuste statistilisel töötlusel kasutati standartset tarkvara MS Excel 2003. Arvutati kõikide näitajate arimeetiline keskmine ja standarthälve (±SD). Eksperimentaalgrupi näitajate erinevusi enne ja pärast KKHP teostamist analüüsiti Student paaris t-testiga. Eksperimentaalgrupi ja kontrollgrupi näitajate erinevusi analüüsiti Student paaritu t-testiga. FFI skoori erinevusi hinnati Wilcoxon meetodil. Madalaimaks statistilise olulisuse nivooks võeti p<0,05.
4. TÖÖ TULEMUSED

4.1. Treeningpäeviku andmed

Tabel 2: Teraapiapäevikusse kantud andmete kokkuvõte.

<table>
<thead>
<tr>
<th>Näitaja</th>
<th>Keskmine</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>Med</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treeningu maht (päeva)</td>
<td>53,4</td>
<td>9,1</td>
<td>42</td>
<td>69</td>
<td>51</td>
</tr>
<tr>
<td>Treeningu aeg (min)</td>
<td>32,0</td>
<td>15,0</td>
<td>19</td>
<td>59</td>
<td>28,4</td>
</tr>
<tr>
<td>Enesetunne päeva jooksul (0-5)</td>
<td>4,3</td>
<td>0,78</td>
<td>2,9</td>
<td>5</td>
<td>4,7</td>
</tr>
<tr>
<td>Valu tugevus (0-10)</td>
<td>1,7</td>
<td>1,4</td>
<td>0</td>
<td>3,6</td>
<td>2</td>
</tr>
<tr>
<td>Pingutuse tase (0-10)</td>
<td>2,0</td>
<td>1,3</td>
<td>0</td>
<td>3,7</td>
<td>2</td>
</tr>
<tr>
<td>Väsimus (0-10)</td>
<td>1,8</td>
<td>1,4</td>
<td>0</td>
<td>3,7</td>
<td>2,3</td>
</tr>
<tr>
<td>Valu tugevus enne treeningut (0-10)</td>
<td>1,3</td>
<td>1,2</td>
<td>0</td>
<td>3,2</td>
<td>1</td>
</tr>
<tr>
<td>Valu tugevus pärast treeningut (0-10)</td>
<td>1,5</td>
<td>1,3</td>
<td>0</td>
<td>3,4</td>
<td>1,1</td>
</tr>
<tr>
<td>Kõndimine (min)</td>
<td>78,8</td>
<td>32,2</td>
<td>17,1</td>
<td>119,3</td>
<td>80,3</td>
</tr>
</tbody>
</table>

Min – minimum; Max – maksimum; Med - mediaan

4.2. Jalalabasubjektiivne valu tugevus ja funktsioon

FFI skoori subjektiivse valu ja jala funktsiooni hinnangu tulemused on toodud joonisel 16. Valu alaskaala skoor vähenes peale KKHP sooritamist oluliselt (p<0,01). Valu alaskaala kõige väiksem punktisumma esimesel hindamisel oli 17 p, suurim 78 p (FFI valu alaskaala maksimum on 90 p). Pärast KKHP oli FFI valu väikseim summa 9 p, suurim 48 p. FFI valu alaskaala punktisumma oli esimesel testil keskmiselt 36,3 p ja pärast KKHP läbimist 21,4 p – valu vähenes keskmiselt 41%.

FFI tegevuspiirangute alaskaala skoor vähenes pärast KKHP sooritamist oluliselt (p<0,05) vörrelde seisuga enne KKHP sooritamist. Enne KKHP oli tegevuspiirangute alaskaala keskmine skoor 30 p, peale KKHP oli keskmine 17,45 p – tegevuspiirangud vähenesid keskmiselt 41,8%.
Aktiivsuse piirangute alaskaala skoor oli enne KKHP sooritamist viiel vaatlusalusel 10-st 5 p - ehk ei esinenud mingeid piiranguid. Maksimaalne skoor oli 16 p. Pärast KKHP sooritamist oli kaheksal isikul aktiivsuse piirangute alaskaala skoor 5 p ning maksimaalne skoor oli 13 p. Siiski statistiliselt olulist erinevust skooris ei esinenud vürreldes enne ja pärast KKHP.

FFI summa vähenes samuti peale KKHP sooritamist oluliselt (p<0,01). Enne KKHP sooritamist oli keskmine FFI skoor 73,8 p, pärast KKHP oli see 45,15 p.

Joonis 16. Esimese metatarsofalangeaalliigese valu tugevuse, tegevuspiirangute ja aktiivsuse piirangute näitajad (Foot Function Index skoor) enne ja pärast 2-kuulise kehaliste harjutuste programmi teostamist HV deformatsiooniga naistel (keskmine ±SD). *p<0,05; **p<0,01.

Kehaline aktiivsust hinnati Baecke küsimustikuga (Baecke, 1982), mis koosnes kolmest osast - töö, sport ja vaba aeg, kus igas alaosas arvutati indeks ning üldskoor. Keskmine küsimustiku punktisumma enne KKHP sooritamist oli 45 p, pärast KKHP-d oli see 46,6 p. Pärast kahe kuu KKHP sooritamist esines tendents suurenemisele vaba aja indeksi osas, kuid statistiliselt oluline erinevus ei olnud (Tabel 3.).
Tabel 3. Kehaline aktiivsus naistel vanuses 40-65 aastat (keskmine ± SD), (Baecke küsimustik, Baecke jt, 1982).

<table>
<thead>
<tr>
<th>Näitaja</th>
<th>Eksperimentaalgrupp</th>
<th>Kontroll</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enne KKHP</td>
<td>Pärast KKHP</td>
</tr>
<tr>
<td>Töö indeks</td>
<td>2,9 ± 0,6</td>
<td>2,9 ± 1,1</td>
</tr>
<tr>
<td>Spordi indeks</td>
<td>2,3 ± 0,9</td>
<td>2,3 ± 1,0</td>
</tr>
<tr>
<td>Vaba aja indeks</td>
<td>3,1 ± 0,7</td>
<td>3,3 ± 0,8</td>
</tr>
<tr>
<td>Küsimustiku indeks</td>
<td>8,3 ± 1,0</td>
<td>8,5 ± 1,2</td>
</tr>
</tbody>
</table>

p>0,05

4.3. Liigesliikuvus pärast 2-kuulist KKHP

EKSP grupi naistel oli haaratud jala keskmine EMTP-liigese nurk 30,6°, IM nurk oli 14,8° enne KKHP. EKSP grupi haaratud jala EMTP-liigese PROM suurennes (p>0,05) fleksioonil keskmiselt 5,5° (35,5 % algtulemusest) ja ekstensioonil suurenes oluliselt (p<0,001) vastavalt 16° (33,3 % algtulemusest) pärast 2-kuu KKHP teostamist vääribedes enne seda (joonis 17). Enne KKHP sooritamist olid miinimumväärtused PROM fleksioonil ja ekstensioonil vastavalt 5° ja 35°, pärast KKHP sooritamist olid miinimumväärtused PROM fleksioonil ja ekstensioonil vastavalt 10° ja 50°. Maksimumväärtused enne KKHP sooritamist olid vastavalt 35° ja 85°, pärast KKHP sooritamist olid maksimumväärtused vastavalt 35° ja 90°.

Kontrollgrupi EMTP-liigese PROM oli fleksioonil keskmiselt 22,8° ja ekstensioonil 85,6°. Pärast KKHP sooritamist HV-ga naistel PROM EMTP-liigeses fleksioonil oluliselt ei erinenud, ning ekstensioonil jääid tulemused madalamale kui KON grupil.
Joonis 17. Esimene metatarsofalangeaalligese passiivne liikuvus fleksioonil ja ekstensioonil enne ja pärast 2-kuulise koduse kehaliste harjutuste programmi teostamist HV deformatsiooniga naistel ja kontrollrühmal (keskmine ±SD). ***p<0,001.

Pärast KKHP sooritamist hüppeliigese PROM dorsaal- ja plantaarfleksioonil oluliselt ei paranenud võrreldes enne KKHP sooritamist. EKSP ja KON rühma antud näitajate vahel olulist erinevust ei esinenud (Tabel 4.).

Tabel 4. Hüppeliigese passiivne liikuvusHV-ga naistelja kontrollrühma naistel vanuses 40-65 aastat(keskmine ± SD).

<table>
<thead>
<tr>
<th>PROM</th>
<th>Eksperimentaalgrupp</th>
<th>Kontrollgrupp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enne KKHP</td>
<td>Pärast KKHP</td>
</tr>
<tr>
<td>DF</td>
<td>24,2 ± 5,1</td>
<td>23,7 ± 5,6</td>
</tr>
<tr>
<td>PF</td>
<td>42,4 ± 9,5</td>
<td>43,8 ± 7,6</td>
</tr>
</tbody>
</table>

DF – dorsaalfleksioon; PF – plantaarfleksioon; p>0,05
4.4. Lihastoonuse muutused pärast 2-kuulist KKHP
Lihastoonuse hindamisel vörreldi lihase omavõnkesageduse (frequency) keskmiste muutust ja tulemuste omavahelisi suhteid sääre eesmäel lihastel (dorsaalfleksorid) (TA, EDL, PL) tagumiste lihasteega (plantaarfleksorid) (GM). Lihaste võnkesageduse keskmised näitajad ja muutuste trendid on toodud tabelis (Lisa 4.).

4.3.1. Lihastoonus lamades puhkeolekus
Lamades puhkeolekus suurenud vaid GM lihase omavõnkesagedus statistiliselt oluliselt (p<0,05) pärast KKHP sooritamist vörrelduna enne KKHP. Vörrelduna KON grupiga oli EKSP grupil enne KKHP sooritamist lihastoonus oluliselt (p<0,05) suurem TA ja PL lihastel. Vörrelduna KON grupiga oli EKSP grupil pärast KKHP sooritamist lihase omavõnbkesagedus oluliselt (p<0,05) suurem TA lihasel (joonis 18.)

![Diagram showing frequency levels](image)

Joonis 18. Lihastoonuse näitajad (omavõnkesagedus, Hz)lamades puhkeolekusene ja pärast 2-kuulise koduse kehaliste harjutuste programmi teostamist HV deformatsiooniga naistel ja kontrollrühmal (keskmine ±SD). TA – *m. tibialis anterior*, EDL – *m. extensor digitorum longus*, PL – *m. peroneus longus*, GM – *m. gastrocnemius caput mediale.*p<0,05.
4.3.2. Lihastoonus lamades kontraktsioonil

Lamades kontraktsioonil olulisi erinevusi mõõdetavate lihaste omavõnkesagedustes EKSP grupil enne ja pärast KKHP sooritamist ei leitud. Võrrelduna KON grupiga oli EKSP grupil enne KKHP sooritamist omavõnkesagedus oluliselt (p<0.05) suurem TA lihasel. Võrreldes KON grupiga oli EKSP grupil pärast KKHP sooritamist omavõnkesagedus oluliselt (p<0.05) suurem TA lihasel (joonis 19).

![Graph](image)

Joonis 19. Lihastoonuse näitajad (omavõnkesagedus, Hz)lamades kontraktsioonil enne ja pärast 2-kuulise koduse kehaliste harjutuste programmi teostamist HV deformatsiooniga naistel ja kontrollrühmal (keskmine ±SD). TA – *m. tibialis anterior*, EDL – *m. extensor digitorum longus*, PL – *m. peroneus longus*, GM – *m. gastrocnemius caput mediale,* *p<0.05.*

4.3.3. Lihastoonus seistes puhkeolekus

Seistes puhkeolekus olulisi erinevusi EKSP grupil mõõdetud lisaste toonuse näitajates enne ja pärast KKHP sooritamist ei esinenud. Võrrelduna KON grupiga oli EKSP grupil enne KKHP sooritamist lihaste omavõnkesagedus oluliselt (p<0.05) suurem vaid TA lihasel. Pärast KKHP sooritamist ei leitud EKSP grupil lihastoonuses olulisi muutusiVõrreldes KON grupiga (joonis 20.).
4.3.4. Lihastoonus seistes kontraktsioonil

Seistes kontraktsioonil olulisid erinevusi üheski uuritud lihases EKSP grupil lihastoonuse näitajates enneja pärast KKHP sooritamist ei esinenud. Vörrelduna KON grupiga oli EKSP grupil enne KKHP sooritamist lihase omavõnkesagedus oluliselt (p<0,05) suurem TA ja EDL lihastel. EKSP grupil oli pärast KKHP sooritamist omavõnkesagedus oluliselt (p<0,05) suurem EDL ja PL lihastel. Vörreldes KON grupiga (joonis 21.).

Joonis 20. Lihastoonuse näitajad (omavõnkesagedus, Hz)seistes puhkeolekus enne ja pärast 2-kuulise koduse kehaliste harjutuste programmi teostamist HV deformatsiooniga naistel ja kontrollrühmal (keskmine ±SD). TA – *m. tibialis anterior*, EDL – *m. extensor digitorum longus*, PL – *m. peroneus longus*, GM – *m. gastrocnemius caput mediale*, *p<0,05.*

Joonis 21. Lihastoonuse näitajad (omavõnkesagedus, Hz)seistes kontraktsioonil enne ja pärast 2-kuulise koduse kehaliste harjutuste programmi teostamist HV deformatsiooniga naistel ja kontrollrühmal (keskmine ±SD). TA – *m. tibialis anterior*, EDL – *m. extensor digitorum longus*, PL – *m. peroneus longus*, GM – *m. gastrocnemius caput mediale*, *p<0,05.*
4.3.5. Säärelihaste toonuste omavahelised suhted

Säärelihaste toonuse näitajate suheteväärtused on äratoodud tabelis lisades (Lisa 5). Eksperimentaalgrupi TA:GM ja PL:GM lihaste omavõnkesageduse suhe lamades lõdvastunult vähenes oluliselt pärast KKHP sooritamist (p<0.05) (joonis 22.). Võrreldes kontrollgrupiga oli eksperimentaalgrupi TA:GM ja PL:GM toonuse näitajate suhe nii lamades kui püsti kõikidel mõõtmistel enne KKHP sooritamist oluliselt suurem (p<0.05) (joonised 22.-25.). EDL:GM suhe oli seistes mõõtmisel oluliselt suurem (p<0.05) enne KKHP võrreldes kontrollgrupiga (joonised 24.-25.).

![Diagram](image.png)

Joonis 22. Lihastoonuse suhted lamades puhkeolekus enne ja pärast 2-kuulise koduse kehaliste harjutuste programmi teostamist HV deformatsiooniga naistel ja kontrollrühmal (keskmine ±SD). *p<0,05.
Joonis 23. Lihastoonuse suhted lamades kontraktsioonil enne ja pärast 2-kuulise koduse kehaliste harjutuste programmi teostamist HV deformatsiooniga naistel ja kontrollrühmal (keskmine ±SD). TA – m. tibialis anterior, EDL – m. extensor digitorum longus, PL – m. peroneus longus, GM – m. gastrocnemius caput mediale, *p<0,05.

Joonis 24. Lihastoonuse suhted seistes puhkeolekus enne ja pärast 2-kuulise koduse kehaliste harjutuste programmi teostamist HV deformatsiooniga naistel ja kontrollrühmal (keskmine ±SD). TA – m. tibialis anterior, EDL – m. extensor digitorum longus, PL – m. peroneus longus, GM – m. gastrocnemius caput mediale, *p<0,05.
Joonis 25. Lihastoonuse suhted seistes kontraktsioonil enne ja pärast 2-kuulise koduse kehaliste harjutuste programmi teostamist HV deformatsiooniga naistel ja kontrollrühmal (keskmine ±SD). TA – m. tibialis anterior, EDL – m. extensor digitorum longus, PL – m. peroneus longus, GM – m. gastrocnemius caput mediale,*p<0,05.
4.5. Podomeetria
Analüüsiti HV haaratud ja mittehaaratud jala pöiaosa (forefoot) ja kannaoosa (rearfoot) suhtelise survejõudude näitajaid jalatallale(%) kehamassi suhtes ja keskmisi näitajaid (g/cm²). EKSP grupi suhteline survejõud enne KKHP haaratud jalal (H) oli keskmiselt 51, 2 % pöiaosal ja 48,8 % kannaoosal, pärast KKHP on vastavad tulemused 49,9 % ja 50,1 %, kuid statistiliselt olulist muutust ei leitud. Samuti ei esinenud EKSP grupi kummagi mõõtmiskorra tulemuste ja KON grupi domineeriva jala mõõtistulemuste vahel statistilist olulist erinevust. Analüüsiti ka jalatalla pöia lateraalsele ja mediaalsele osale langeva surve jaotust. Olulist erinevust gruppide vahel ei leitud (Tabel 7.).

Tabel 7. Suhteline survejõudude jaotus jalatalla pöia- ja kannaoalse ning pöiaosale langeva surve jaotus lateraalse ja mediaalse osa vahel naistel vanuses 40-65 aastat (keskmine ± SD).

<table>
<thead>
<tr>
<th>Näitaja</th>
<th>Eksperimentaalgrupp</th>
<th>Kontrollgrupp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enne KKHP</td>
<td>Pärast KKHP</td>
</tr>
<tr>
<td>H jalg</td>
<td>MH jalg</td>
<td>H jalg</td>
</tr>
<tr>
<td>(Weight ratio) Suhteline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>survejõudude jaotus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>jalatallale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jala kannaoasa</td>
<td>48,8 ± 8,2</td>
<td>52,3 ± 8,6</td>
</tr>
<tr>
<td>Jala pöiaosa</td>
<td>51,2 ± 8,2</td>
<td>47,8 ± 8,6</td>
</tr>
<tr>
<td>Survejõudude jaotus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pöiaosale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lat. külg</td>
<td>42,5 ± 7,4</td>
<td>43,2 ± 5,6</td>
</tr>
<tr>
<td>med. külg</td>
<td>57,5 ± 7,5</td>
<td>56,8 ± 5,6</td>
</tr>
</tbody>
</table>

H – haaratud; MH – mittehaaratud; D – domineeriv; MD – mittedomineeriv; p>0,05

4.6. Stabilomeetria

4.5.1. Keha survetsenti nihe ML ja AP suunas
Keha survetsenti (COP) nihe tulemused ühel jalal seistes avatud silmadega erinevatel tasapindadel on toodud tabelis 8. Ei leitud olulist erinevust COP nihkumises ML ja AP suunas võrreldes vaatlusaluseid enne ja pärast KKHP sooritamist. Samuti ei olnud olulist erinevust EKSP grupi ja KON grupi tulemuste vahel. COP nihkumine ML ja AP suunas ei erinenud oluliselt ka stabiilse ja ebastabiilsete tasapindade võrdlusel nii horisontaalsel (Airex Balance Pad Plus) kui kaldega padjal seismesel (Airex Balance Wedge).
4.5.2. Keha survetsentri nihke pindala ja raadius

COP nihke pindala ja raadiuse tulemused seismisel ühel jalal avatud silmadega erinevatel tasapindadel on toodud tabelis 8. Vaatlusaluste COP kõikumise pindala ja raadiuse keskmised väärtsed vähenesid pärast KKHP sooritamist võrreldes tulemustega enne KKHP-d, kuid olulist erinevust ei leitud. Samuti ei leitud olulist erinevust EKSP grupi kummagi mõõtmiskorra ja KON grupi tulemuste vahel.

Võrreldes erinevaid tasapindu oli enne KKHP sooritamist COP kõikumise pindala stabiilsel tasapinnal seistes oluliselt väiksem (p<0,05) võrreldes seismisega ebastabiilsel padjal.

Pärast KKHP sooritamist oli COP kõikumise pindala stabiilsel tasapinnal seistes oluliselt väiksem (p<0,05) võrreldes ebastabiilsel padjal seistes. COP kõikumise pindala stabiilsel tasapinnal seistes oli oluliselt väiksem (p<0,05) võrreldes seismisega ebastabiilsel kiilul. COP kõikumise pindala seistes ebastabiilsel padjal oli oluliselt suurem (p<0,05) võrreldes seismisega ebastabiilsel kiilul. Pärast KKHP sooritamist oli COP kõikumise raadius stabiilsel tasapinnal seistes oluliselt väiksem (p<0,05) võrreldes seismisega ebastabiilsel padjal. COP kõikumise raadius stabiilsel tasapinnal seistes oli oluliselt väiksem (p<0,05) võrreldes seismisega ebastabiilsel kiilul.

KON grupil oli COP kõikumise pindala stabiilsel tasapinnal seistes oluliselt väiksem (p<0,05) võrreldes ebastabiilsel padjal seistes. COP kõikumise raadius stabiilsel tasapinnal seistes oli KON grupil oluliselt väiksem (p<0,05) võrreldes seismisega ebastabiilsel padjal.
Tabel 8. Keha survetsentri nihe külgsuunas (ML) ja ette-taha suunas (AP) ning pindala ja raadius mõõdetuna dünomograafilise platvormigaHV-ga naiste haratud jalal ja kontrollrühma naiste domineerival jalal seismesel 15 s jooksul stabiilsel ja mittestabiilsel tasapinnal (keskmine ± SD).

<table>
<thead>
<tr>
<th>Enne KKHP</th>
<th>COP nihe</th>
<th>COP teepikkus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ML (mm)</td>
<td>AP (mm)</td>
</tr>
<tr>
<td>Stabiilne pind</td>
<td>38,21 ± 14,1</td>
<td>15,49 ± 13,3</td>
</tr>
<tr>
<td>Airex padjal</td>
<td>31,04 ± 19,5</td>
<td>12,73 ± 9,40</td>
</tr>
<tr>
<td>Airex kiilul</td>
<td>41,01 ± 9,60</td>
<td>9,93 ± 9,20</td>
</tr>
<tr>
<td>Pärast KKHP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stabiilne pind</td>
<td>52,80 ± 31,0</td>
<td>17,92 ± 13,3</td>
</tr>
<tr>
<td>Airex padjal</td>
<td>48,19 ± 32,8</td>
<td>21,39 ± 18,4</td>
</tr>
<tr>
<td>Airex kiilul</td>
<td>42,47 ± 34,9</td>
<td>20,82 ± 13,9</td>
</tr>
<tr>
<td>Kontrollgrupp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stabiilne pind</td>
<td>53,10 ± 22,3</td>
<td>11,7 ± 8,60</td>
</tr>
<tr>
<td>Airex padjal</td>
<td>43,80 ± 28,1</td>
<td>11,8 ± 9,70</td>
</tr>
<tr>
<td>Airex kiilul</td>
<td>43,50 ± 27,7</td>
<td>17,5 ± 14,8</td>
</tr>
</tbody>
</table>

*p<0,05; Stabiilne pind/Airex padi,
 α p<0,05; Stabiilne pind/Airex kiil,
 # p<0,05; Airex padi/Airex kiil.
5. TÖÖ TULEMUSTE ARUTELU

Ravimeetodid, mis keskinduvad jala biomehaanilisele funktsioonile nagu lihastreening, manuaalteraapia ja ortooside kasutamine, võivad aitada vältida HV deformatsiooni ja selle sümptomite progressiooni (Nix jt, 2013).

Uuringu põhilles leidud olid: 1) Hilises faasis HV deformatsiooniga naistel esines EMTP-liigese liikuvuspiiratus fleksioonil (plantaarfleksioonil) ja oluline liikuvuspiiratus ekstensioonil (dorsaalfleksioonil) võrreldes terve kontrollgrupiga. Kahe-kuulise KKHP sooritamisel järgselt suurenes EMTP liikuvus ekstensioonil oluliselt, kuid jää väiksemaks kontrollgrupi liikuvusest. 2) Hilises faasis HV deformatsiooniga naistel esines oluline tugevusega subjektiivne valu haaratud jalas ja tegevuspiirangud. Pärast KKHP sooritamist jäi valu ja tegevuspiirangud vähenedis oluliselt. 3) EKSP grupil oli enne KKHP sooritamist TA toonuse toonuse suhe kõikidel mõõdetud oluliselt suurem kui KON grupil, pärast KKHP sooritamist vähenes TA toonuse oluliselt püstitatud mõõtmisel. 4) Enne KKHP sooritamist oli kõikidele mõõtmisel oluliselt suurem kui KON grupil. Pärast KKHP sooritamist oli kõikidele mõõtmisel oluliselt suurem KON grupil.
Jala subjektiivne valu tugevus ja funktsioon

Antud töös esines FFI küsimustiku põhjalEKSP grupis hindamisel enne KKHP sarnase deformatsiooninurgaga naistel valu tugevus väga erinevalt – FFI valu alakaala vähiksem tulemus oli 17 p, suurim aga 78 p (vähiksem võimalik tulemus oleks olnud 9 p, max 90 p). Oluliselt erines ka tegevuspiirangute alakaala tulemused - vähiksem tulemus 10 p (ehk piiranguid ei esine) ja suurim tulemus 54 (n=2).

Töös leiti, et taashindamisel pärast KKHP sooritamist oli nii valu kui tegevuspiirangute skaalade skoorid oluliselt vähenedud. Aktiivsuse piirangute alakaala skoori tulemustes olulist erinevust ei saadud, kuid see esines tõenäoliselt asjaolust, et vaatlusaluste toimetuleku tase oli ja algselt heal tasemel. FFI kasutamise sobivusest keskmisest kõrgema igapäevategevustega toimetuleku tasemega isikute puhul arutlesid Agel jt (2005).

Arvati, et FFI sobib kõige paremini hindamaks jalaprobleeme ja seda on keskmisest madalam toimetulekatase.

Vaatlusaluste keskmine üldine kehaline aktiivsus oli Baecke küsimustiku põhjal keskmise tasemega – EKSP grupil enne KKHP indeks 8,3, pärast KKHP indeks 8,5 ning KON grupil index 7,7. Subjektiivse hinnangu põhjal toimis EKSP grupil kahe kuu jooksul kehalises aktiivsuseta sõnast just vaba ajalt tegevuste osas, kuigi statistiliselt see ei erinenud oluliselt. See võib olla mõjutatud valu ja sellest tulenevate piirangute vähemmisest FFI tulemuste alasel.

Liigesliikuvus

Jalalaba liigese liikuvuse vähemine HV-ga seoses on põhjustatud valuust, põletikulistest protsessidest EMTP-liigese piirkonnas ning liigese deformatsioonist (Bayar jt, 2011). Konservatiivse sekkumisega uuringutes keskendutakse aga põhiliselt HV deformatsiooni vähendamisele, liigese liikuvusele plantaar- ja dorsaalfleksioonil pööratakse väh tähenduse (Jedynak 2009; Bayarjt, 2011:). Antud töös uuriti EMTP-liigese ja

Lihastoonus
Enamasti seostatakse HV deformatsiooni muutustega jalatallalihiaste toonuses (Wen et al., 2012). Säärelihaste toonuse jaHV seoste kohta leidub kirjandust vähe. Vaatlusalustel

Liigutustel ümber liigestelje osaleb alati kaks antagonistlikku lihasrühma. Üks grupp tekitab liigutuses vajaliku jõumomendi, samal ajal on teine lihasgrupp väljavenitatud.

Käesoleva töö tulemuste põhjal võib kokkuvõttes järeldada, etHV-ga naistel on TA toonus võrreldes terviseporbleemideta kontrollrühma naistega oluliselt suurem ning sääre eesmiste lihaste toonus on enamustel mõõtmistel suurem tagumiste lihaste toonusest. KKHP sooritamise järgselt leiti sääre eesmise ja tagumise rühma lihaste toonustetasakaalustumine ligi pooltel mõõtmistel.

Podomeetria

Antud töös hinnati ka pöiaosale langeva koormuse jaotuvust pöia lateraalse ja mediaalse osa vahel, kus jalatald oli jaotatud kuueks regiooniks: jalatalla pöia-, kesk- ja kannaoa ning need omakorda lateraalseks ja mediaalseks pooleks. Olulist erinevust pöiaosale langeva koormuse jaotuvuseskahe grupi vahel ei leitud enne ega ka pärast KKHP sooritamist, kuid surve pöiaosa mediaalsel küljel vähenedes pärast KKHP sooritamist 9 %.

Stabilomeetria

Käesolevas töös vörreldi tulemusi erinevate tasapindade vahel ja leiti et COP kõikumise pindala oli oluliselt (p<0,05) väiksem mõlemas grupis stabiilsel seistes võrrelduna seismisega ebastabiilsel 6cm paksusel tasakaalupadjal. Pärast KKHP oli COP nihke pindala seistes ebastabiilsel padjal oluliselt suurem (p<0,05) vörreldes seismisega ebastabiilsel kiilul. COP kõikumise raadius oli oluliselt (p<0,05) väiksem EKSP grupil pärast KKHP sooritamist ja KON grupil seistes stabiilsel pinnal vörreldes seismisega ebastabiilsel padjal. Vörreldes ebastabiilsel patja ja kiilu, leiti et COP kõikumise raadius oli oluliselt (p<0,05) suurem padjal EKSP grupis pärast KKHP sooritamist. Kuigi padja läbimõõt ja kiilu läbimõõt kõige paksemast kohast on mõlemal 6 cm, on kiil ühelt poolt öhem ja seetõttu stabiilsem kui padi.
Uuringu limiteerivad faktorid

Seetõttu jäeti vaatlusaluste hulgast välja kõik üle 65. aasta vanuses patsiendid.

Lihastoonuse hindamisel kasutati uuritavatel kontraktsioonil tahtelist pingutust, mitte isomeetrilist lihaskontraktsiooni. Selle kasutuse puhul oleksid tulemused andnud kontraktsioonil rohkem täpsust pingutuse taseme standardiseerimisel ja kõikide vaatlusaluste võrdluse.

Uuringud viidi läbi kahes jaos, kus osa vaatlusalustest käisid uuringutel ja sooritasid harjutusprogrammi suvel ning osad vaatlusalused talvel. On võimalik, et ka vaba aja kehaliste tegevuste ja tihedamini kasutatavate jalatsite tõusib ning võrdluse mingil määral.

Tulemuste praktiline väljund

6. JÄRELDUSED

1. Hilises faasis Hallux Valguse (HV) deformatsiooniga naistel esines olulise tugevusega subjektiivne valu haaratud jalas ja tegevuspiirangud, mis vähnesid oluliselt (vastavalt 41 % ja 41,8 %) pärast koduse kehalise harjutusprogrammi sooritamist.

2. Hilises faasis HV deformatsiooniga naistel esines EMTP-liigesemiteoluline liikuvuspiiratus fleksioonil (plantaarfleksioonil) ja oluline liikuvuspiiratus ekstensioonil (dorsaalfleksioonil) võrreldes samaaaliste terviseprobleemideta naistega (kontrollgrupp). Pärast 2-kuulise koduse kehalise harjutusprogrammi sooritamist suurennes EMTP-liigese liikuvus ekstensioonil oluliselt (33,3 %), kuid jäi väiksemaks kontrollgrupi liikuvusest.

3. HV deformatsiooniga naistel oli enne koduse kehalise harjutusprogrammi sooritamist m. tibialis anteriori toonus oluliselt suurem kui kontrollgrupil. Pärast 2-kuulist koduse kehalise harjutusprogrammi sooritamist vähenedes m. tibialis anterioritoonus oluliselt püstiasendis mõõtmistel.

4. Enne harjutusprogrammi sooritamist oli HV deformatsiooniga naistel m. tibialis anteriori ja m. gastrocnemius caput mediale toonuse suhe(TA:GM) kõikidel mõõtmistel oluliselt suurem kui kontrollgrupil. Pärast harjutusprogrammi sooritamist oli TA:GM toonuste suhe oluliselt suurem kontrollgrupist vaid kontraktsioonidel mõõdetuna.

5. Keharaskuse survejaotuvus jalatalla osadele ei erinedud oluliselt HV deformatsiooniga naistel enne ja pärast koduse kehalise harjutusprogrammi sooritamist ega vörrelduna kontrollgrupiga kummalgi mõõtmisel.

6. Olulist erinevust posturaalse kontrolli näitajatesHV deformatsiooniga naistel vörreldes kontrollgrupiga ühel jalal seismisel stabiilsel ja ebastabiilsel tasapinnal ei esinenud. Mõlemas grupis oli keharaskuskeskme kõikumise raadius ja pindala oluliselt väiksemad seistes stabiilsel pinnal vörrelduna ebastabiilsel padjal seismisega.
KASUTATUD KIRJANDUS:

Joint flexibility, muscle tone and postural stability in women with *Hallux Valgus* after two-month home exercise programme

Aire Arge

SUMMARY

The purpose of this study was to investigate the effect of 2-month home exercise programme (HEP) on joint mobility, pain of the first metatarsophalangeal joint (MTPJ), muscle tone in calf muscles, plantar pressure and postural stability in women with advanced phase *Hallux Valgus* (HV)(EXP group) and to compare data with age-matched healthy women (controls, CON). 14 women with advanced phase HV (HV angle more than 20°) and 10 healthy women (CON, mean age 56,2 ± 6,4 years) participated in this study. Data of 10 women (mean age 55,5 ± 6,9 years) with advanced HV who participated in the study before and after HEP were analysed. All participants of EXP group received illustrated home exercise program which they followed independently for two months. Research was conducted at the Laboratory of Kinesiology and Biomechanics of University of Tartu. Passive mobility (PROM) of MTPJ was measured with a standard mechanical goniometer. Foot pain and disability was assessed by Foot Function Index (FFI). Calf muscle tone was measured with hand-held myotonometer Myoton-3 (Müomeetria OÜ, Estonia). Plantar pressure distribution was measured with podometry system *Digital Biometry Images Scanning System* (Diagnostic Support S.r.l., Italy). For the analysis of postural stability during 15 s unipedal standing on stable and unstable surface (firm and foam, respectively), force plate Kistler 9286A (Schwitzerland) and movement analyzing system Elite Clinic (BTS S.pA, Italy) were used with SWAY® software.

Most important results were:

1. After two-month HEP subjectively assessed pain and foot function decreased (FFI pain score decreased 41% and disability score decreased 41.8 %).

2. First MTPJ flexibility was impaired in women with advanced phase HV compared to healthy controls. After two-month HEP a 33% increase in the PROM dorsal flexion of the first MTPJ was noted compared with the joint mobility before HEP, also PROM plantar flexion increased considerably but no significant difference was noted.
3. In EXP group muscle tone of tibialis anterior (TA) was significantly higher before HEP compared to CON. After 2-month HEP significant decrease of TA tone was noted at standing position.

4. The ratio between muscle tone of TA:GM in all measurement positions before HEP was significantly higher in women with HV before HEP compared to CON and this decreased significantly after 2-month HEP in relaxed state during lying and standing positions.

5. There was no significant difference noted in plantar pressure between involved and uninvolved leg and dominant and non-dominant leg in controls before and after HEP and compared to CON, as well as between forefoot and rearfoot for both legs in all subjects.

6. There was no significant difference between groups in postural stability characteristics during single leg standing on stable (firm) and unstable (foam) surface pre- and post-HEP and as compared to controls.

In conclusion it is possible to say that in advanced phase HV two-month HEP was an effective therapeutic approach for increasing first MTP-joint mobility, reducing foot pain and disability. Also, the imbalance of muscle tone in antagonist muscles of the calf was reduced in some measurements.

Acknowledgements:
This study was partly supported by the Estonian Ministry of Education and Research project SF0180030s07 and Estonian Science Foundation project 7939.
TÄNUVALDUS

Tänan oma töö juhendajat Helena Gapeyevat osutatud abi eest.
Suur aitäh TÜ traumatoloogia ja ortoopeedia kliiniku arst-ortopeed dotsent Aleks Lenznerile uuritavate kliinilise vaatluse ja radioloogilise uuringu analüüsi eest.
Antud magistritöö teostati Eesti Haridus- ja kultuuriministeeriumi projekti SF0180030s07 ja Eesti Teadusfondi projekt 7939 raames.
LISAD
LISA 1. Jala funktsiooni küsimustik (*Foot Function Index*)

(Budiman-Mak jt, 1991) Industrial Physical Therapy, Inc www.industrialpt.com
(15.06.2012)

<table>
<thead>
<tr>
<th>Nimi/Kood ________________________</th>
<th>Kuupäev: ____________________</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valu. Valu tugevus jalas/jalgades:</td>
<td></td>
</tr>
<tr>
<td>1. Kõige hullemal valu ajal</td>
<td></td>
</tr>
<tr>
<td>2. Jala valu hommikul</td>
<td></td>
</tr>
<tr>
<td>3. Valu paljajalul käies</td>
<td></td>
</tr>
<tr>
<td>4. Valu paljajalu seistes</td>
<td></td>
</tr>
<tr>
<td>5. Valu kingadega käies</td>
<td></td>
</tr>
<tr>
<td>6. Valu kingadega seistes</td>
<td></td>
</tr>
<tr>
<td>7. Valu ortoosidega käies</td>
<td></td>
</tr>
<tr>
<td>8. Valu ortoosidega seistes</td>
<td></td>
</tr>
<tr>
<td>9. Jalavalu päeva lõpus</td>
<td></td>
</tr>
<tr>
<td>Tegevuspiirangud. Kui palju raskusi esines järgmiste tegevuste sooritamisel:</td>
<td></td>
</tr>
<tr>
<td>10. Toas ringikäimine</td>
<td>Ei esine raskusi 1 2 3 4 5 6 7 8 9 10</td>
</tr>
<tr>
<td>11. Väljas ebatasasel pinnal käimine</td>
<td></td>
</tr>
<tr>
<td>12. 500 m käimine</td>
<td></td>
</tr>
<tr>
<td>13. Trepist üles käimine</td>
<td></td>
</tr>
<tr>
<td>14. Trepist alla käimine</td>
<td></td>
</tr>
<tr>
<td>15. Päkkadel seismine</td>
<td></td>
</tr>
<tr>
<td>16. Toolilt püsti tõusmine</td>
<td></td>
</tr>
<tr>
<td>17. Kõnnitee servast üles astumine</td>
<td></td>
</tr>
<tr>
<td>18. Kiiresti käimine</td>
<td></td>
</tr>
<tr>
<td>Aktiivsuse piirangud. Kui palju te jalgade tõttu…:</td>
<td></td>
</tr>
<tr>
<td>19. Püsite terve päeva kodus?</td>
<td>Üldse mitte 1 2 3 4 5 6 7 8 9 10</td>
</tr>
<tr>
<td>20. Püsite terve päeva voodis?</td>
<td></td>
</tr>
<tr>
<td>21. Piirate oma tegevusi?</td>
<td></td>
</tr>
<tr>
<td>22. Kasutate abivahendeid toas?</td>
<td></td>
</tr>
<tr>
<td>23. Kasutate abivahendeid väljas?</td>
<td></td>
</tr>
</tbody>
</table>
LISA 2. Kodune kehaline harjutusprogramm
(koostatudmagistritöö autori A.ARGE poolt, kasutades Jedynak, 2009; Schuh jt, 2009; Bayar jt, 2011 uueringuid)

1. Istudes toolil, tallad toetatud põrandale. Vii varbad võimalikult harali, seejärel taas kokku. Lihtsustamiseks võib hoida suurt varvast põrandaga kontaktis. Tee harjutust mõlema jalaga 10-16 korda.

5. Istudes toolil, tõsta varvastega kivikesi ükshaaval põrandalt topsi. Tõsta mõlema jalaga 10 kivi.

7. Seistes püsti, käed puusas (kui on raske hoida tasakaalu, hoia kinni tooli seljatoest), tõuse võimalikult kõrgele varvastele, hoia 2 sekundit, seejärel seisa kandadel 2 sekundit. Hoia keha ja põlved sirged. Tee harjutust 10-16 korda.

10. Istudes toolil, aseta talla alla ogaeine pall, rulli sellega kogu talla alt 30 sekundit. Korda teise jalaga.

NB! Ära tee ühtegi harjutust läbi valu. Lõdvesta jalgu iga harjutuse vahel.

Tee harjutuskava läbi hommikul kohe peale ärkamist ja õhtul enne magama minemist 😊
LISA 3. Teraapiapäevik

<table>
<thead>
<tr>
<th>Nimi</th>
<th>Kuu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kuupäev</th>
<th>Mitu korda harjutust sooritasin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harjutuse nr</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

Märkused
- kõndisin õues (min)
- Enesetunne (1-5)*
- Borg valu
- Borg pingutuse tugevus
- Borg väsimus
- Valu enne treeningut
- Valu pärast treeningut
- Treeningu aeg

*Enesetunne
5-väga hea, 4-hea,
3-keskmine, 2-halb,
1-väga halb
LISA4. Säärelihaste toonuse näitajad
Lihaste toonuse näitajad (omavõnkesagedus) eksperimentaalgrupil enne ja pärast KKHP ning kontrollgrupil (keskmine±SD).

<table>
<thead>
<tr>
<th>Lihas</th>
<th>Omavõnke sagedus (Hz) ja muutuse trend ¹⁾⁾</th>
<th>Eksperimentaalgrupp</th>
<th>Kontrollgrupp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enne KKHP</td>
<td>Pärast KKHP</td>
<td></td>
</tr>
<tr>
<td>M. tibialis anterior</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamades lõdvestunult</td>
<td>17.95± 2.20ᵃ</td>
<td>16.81± 1.58ᵇ↓</td>
<td>14.86 ± 1.73</td>
</tr>
<tr>
<td>Lamades pingutades</td>
<td>34.12± 4.14ᵃ</td>
<td>30.90± 6.63ᵇ↓</td>
<td>23.78 ± 6.44</td>
</tr>
<tr>
<td>Seistes lõdvestunult</td>
<td>20.09± 3.10ᵃ</td>
<td>18.38± 3.56 ↓</td>
<td>16.74 ± 2.83</td>
</tr>
<tr>
<td>Seistes pingutades</td>
<td>30.57± 2.98ᵃ</td>
<td>30.28± 4.17</td>
<td>26.67 ± 4.27</td>
</tr>
<tr>
<td>M. extensor digitorum longus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamades lõdvestunult</td>
<td>16.55± 2.01</td>
<td>15.76± 1.43 ↓</td>
<td>16.01 ± 1.39</td>
</tr>
<tr>
<td>Lamades pingutades</td>
<td>27.87± 4.70</td>
<td>28.02± 4.43 ↓</td>
<td>26.71 ± 6.97</td>
</tr>
<tr>
<td>Seistes lõdvestunult</td>
<td>24.26± 4.34</td>
<td>22.00± 2.17 ↓</td>
<td>22.26 ± 3.47</td>
</tr>
<tr>
<td>Seistes pingutades</td>
<td>29.82± 4.39ᵃ</td>
<td>29.42± 2.59ᵇ</td>
<td>25.31 ± 3.41</td>
</tr>
<tr>
<td>M. peroneus longus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamades lõdvestunult</td>
<td>17.67± 2.47ᵃ</td>
<td>16.16± 0.88 ↓</td>
<td>15.65 ± 1.67</td>
</tr>
<tr>
<td>Lamades pingutades</td>
<td>27.27± 2.79</td>
<td>26.83± 3.89 ↓</td>
<td>23.61 ± 5.8</td>
</tr>
<tr>
<td>Seistes lõdvestunult</td>
<td>26.17± 3.91</td>
<td>24.60± 1.92 ↓</td>
<td>22.82 ± 4.72</td>
</tr>
<tr>
<td>Seistes pingutades</td>
<td>27.77± 2.70</td>
<td>29.69± 3.12ᵇ↑</td>
<td>24.76 ± 3.96</td>
</tr>
<tr>
<td>M.gastrocnemius caput mediale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamades lõdvestunult</td>
<td>11.52± 0.58</td>
<td>12.12± 0.55ᵇ↑</td>
<td>11.98 ± 1.05</td>
</tr>
<tr>
<td>Lamades pingutades</td>
<td>14.13± 2.82</td>
<td>14.66± 2.21 ↑</td>
<td>15.48 ± 3.01</td>
</tr>
<tr>
<td>Seistes lõdvestunult</td>
<td>19.82± 3.03</td>
<td>20.99± 3.41 ↑</td>
<td>22.64 ± 4.79</td>
</tr>
<tr>
<td>Seistes pingutades</td>
<td>19.57± 2.78</td>
<td>20.04± 3.20 ↑</td>
<td>21.74 ± 3.18</td>
</tr>
</tbody>
</table>

* p<0.05; enne/pärast KKHP;
ᵃ p<0.05; enne KKHP/Kontroll;
ᵇ p<0.05; pärast KKHP/Kontroll;
allakriipsutatud olulisema erinevusega andmed.
LISA 5. Lihestevahelise toonuse suhted

Lihestevaheline toonuse näitajate (omavõnkesagedus, Hz) suhe enne ja pärast koduse kehalise harjutusprogrammi teostamist ja kontrollgrupil (keskmine ± SD).

<table>
<thead>
<tr>
<th>Mõõtmisasend</th>
<th>Lihaustoonuse suhte väärtestad ja muutuste trend (↑↓)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA:GM</td>
<td></td>
</tr>
<tr>
<td>Lamades lõdvestunult</td>
<td>1.56 ± 0.16<sup>a</sup></td>
</tr>
<tr>
<td>Lamades pingutades</td>
<td>2.53 ± 0.68<sup>a</sup></td>
</tr>
<tr>
<td>Seistes lõdvestunult</td>
<td>1.02 ± 0.13<sup>a</sup></td>
</tr>
<tr>
<td>Seistes pingutades</td>
<td>1.60 ± 0.31<sup>a</sup></td>
</tr>
<tr>
<td>EDL:GM</td>
<td></td>
</tr>
<tr>
<td>Lamades lõdvestunult</td>
<td>1.44 ± 0.16</td>
</tr>
<tr>
<td>Lamades pingutades</td>
<td>2.10 ± 0.74</td>
</tr>
<tr>
<td>Seistes lõdvestunult</td>
<td>1.25 ± 0.3<sup>a</sup></td>
</tr>
<tr>
<td>Seistes pingutades</td>
<td>1.55 ± 0.32<sup>a</sup></td>
</tr>
<tr>
<td>PL:GM</td>
<td></td>
</tr>
<tr>
<td>Lamades lõdvestunult</td>
<td>1.54 ± 0.22<sup>a</sup></td>
</tr>
<tr>
<td>Lamades pingutades</td>
<td>2.02 ± 0.51<sup>a</sup></td>
</tr>
<tr>
<td>Seistes lõdvestunult</td>
<td>1.35 ± 0.29<sup>a</sup></td>
</tr>
<tr>
<td>Seistes pingutades</td>
<td>1.45 ± 0.28<sup>a</sup></td>
</tr>
</tbody>
</table>

* p<0,05; enne/pärast KKHP;
^a p<0,05; enne KKHP/Kontroll;
p<0,05; pärast KKHP/Kontroll.