URMAS JOOST

Impurity and preparation dependent properties of titania thin films

Tartu 2014

ISSN 2228-0928
URMAS JOOST

Impurity and preparation dependent properties of titania thin films
Institute of Physics, Faculty of Science and Technology, University of Tartu, Estonia

The Dissertation was admitted on June 19, 2014, in partial fulfilment of the requirements for the degree of Doctor of Philosophy in materials science, and allowed for defence by the Scientific Council on Materials Science of the Faculty of Science and Technology of the University of Tartu.

Supervisor: Dr. Vambola Kisand, Institute of Physics, University of Tartu

Opponent: Prof. Mika Valden, Optoelectronics Research Centre, Tampere University of Technology

Commencement: August 26, 2014 at University of Tartu, Tartu, Estonia

This work has been partially supported by graduate school “Functional materials and technologies” receiving funding from the European Social Fund under project 1.2.0401.09-0079 in Estonia.

ISSN 2228-0928

Copyright: Urmas Joost, 2014

University of Tartu Press
www.tyk.ee
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>6</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>8</td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>9</td>
</tr>
<tr>
<td>2 LITERATURE OVERVIEW</td>
<td>11</td>
</tr>
<tr>
<td>2.1 Sol-gel method</td>
<td>11</td>
</tr>
<tr>
<td>2.2 Spin coating</td>
<td>13</td>
</tr>
<tr>
<td>2.3 Photo-induced processes</td>
<td>14</td>
</tr>
<tr>
<td>2.4 Photocatalysis</td>
<td>14</td>
</tr>
<tr>
<td>2.5 Superhydrophilicity</td>
<td>15</td>
</tr>
<tr>
<td>2.6 Band gap engineering</td>
<td>16</td>
</tr>
<tr>
<td>2.7 X-ray photoelectron spectroscopy</td>
<td>18</td>
</tr>
<tr>
<td>3 MATERIALS AND METHODS</td>
<td>23</td>
</tr>
<tr>
<td>3.1 Preparation of the films</td>
<td>23</td>
</tr>
<tr>
<td>3.2 XPS studies</td>
<td>24</td>
</tr>
<tr>
<td>3.3 Characterization of hydrophilic and photo-catalytic properties</td>
<td>25</td>
</tr>
<tr>
<td>3.4 Optical measurements</td>
<td>25</td>
</tr>
<tr>
<td>3.5 Microscopy and surface morphology</td>
<td>25</td>
</tr>
<tr>
<td>4 RESULTS AND DISCUSSION</td>
<td>26</td>
</tr>
<tr>
<td>4.1 Structure of the films</td>
<td>26</td>
</tr>
<tr>
<td>4.2 Changes in chemical composition and elemental distribution during annealing</td>
<td>36</td>
</tr>
<tr>
<td>4.3 Photo-induced processes on the surfaces of the films</td>
<td>41</td>
</tr>
<tr>
<td>4.4 Titania nanoparticle based thin films</td>
<td>47</td>
</tr>
<tr>
<td>5 CONCLUSIONS</td>
<td>53</td>
</tr>
<tr>
<td>6 KOKKUVÔTE</td>
<td>56</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>58</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>59</td>
</tr>
<tr>
<td>PUBLICATIONS</td>
<td>67</td>
</tr>
<tr>
<td>CURRICULUM VITAE</td>
<td>151</td>
</tr>
</tbody>
</table>
LIST OF PUBLICATIONS

AUTHOR’S CONTRIBUTION

As can be seen from the list of publications the present research involves an output of numerous people. The reason lies in the complex nature of the samples, which requires application of various experimental techniques for their characterization and an expertise of a number of scientists. The outcome produced within the frame of the research papers is a group effort. Author’s contribution to each research paper is given in the list below.

I. The Author participated in preparation of the manuscript. The Author is responsible for preparing the samples using sol-gel method, measuring of XPS spectra, AFM images and light-induced hydrophilic properties of the samples.

II. The Author participated in preparation of the manuscript. The Author is responsible for preparing the samples using sol-gel method, Author participated in the measurement of XPS spectra, measured AFM images, Raman spectra, UV-Vis absorbance and light-induced hydrophilic properties of the samples.

III. The Author participated in preparation of the manuscript. The Author is responsible for preparing the samples using sol-gel method, Author participated in XPS and XAS measurements, measured AFM images, Raman spectra, UV-Vis absorbance and light-induced hydrophilic properties of the samples.

IV. The Author is responsible for the manuscript and preparing the samples using sol-gel method. The Author participated in XPS measurements and analysed the data, interpreted Raman spectra, measured UV-Vis absorbance and estimated optical band gaps. The Author also measured hydrophilic properties of the samples and the photocatalytic activity of the samples.

V. The Author is responsible for the manuscript, synthesising the nanoparticles using sol-gel method and preparation of the films. The Author participated in XPS measurements, analysed XPS data and interpreted Raman spectra.

VI. The Author is co-responsible for the manuscript (together with K. Ju-ganson and M. Visnapuu). The Author is responsible for synthesising the nanoparticles using sol-gel method and preparation of the films. The Author also measured and analysed the XPS spectra.
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES</td>
<td>Auger electron spectroscopy</td>
</tr>
<tr>
<td>AFM</td>
<td>Atomic force microscopy</td>
</tr>
<tr>
<td>AMRSF</td>
<td>Average matrix relative sensitivity factors</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony forming units</td>
</tr>
<tr>
<td>DLS</td>
<td>Dynamic light scattering</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy dispersive X-ray</td>
</tr>
<tr>
<td>FIB</td>
<td>Focused ion beam</td>
</tr>
<tr>
<td>FWHM</td>
<td>Full width at half maximum</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>PES</td>
<td>Photoelectron spectroscopy</td>
</tr>
<tr>
<td>REELS</td>
<td>Reflection electron energy loss spectroscopy</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>UHV</td>
<td>Ultra-high vacuum</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>UV-A</td>
<td>Ultraviolet A, 315-400 nm</td>
</tr>
<tr>
<td>UV-B</td>
<td>Ultraviolet B, 280-315 nm</td>
</tr>
<tr>
<td>UV-Vis</td>
<td>Ultraviolet, visible</td>
</tr>
<tr>
<td>UV-Vis-NIR</td>
<td>Ultraviolet, visible, near-infrared</td>
</tr>
<tr>
<td>XAS</td>
<td>X-ray absorption spectroscopy</td>
</tr>
<tr>
<td>XPS</td>
<td>X-ray photoelectron spectroscopy</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

Titania (TiO$_2$) is widely used in industry and our everyday life, it finds use as white pigment and anticaking agent in paints, plastic, paper and other consumer products. It also finds application in sunscreens as UV blocker and foodstuff as coloring agent (E171).

Titania has been considered as a perspective material for many advanced applications. It has been studied extensively as a promising photocatalyst [1], solar cell material [2], biocompatible material [3], material for anti-fogging and self-cleaning coatings [4, 5]. Nanostructure, crystal structure, purity and other qualities, all play important roles in many of titania applications. For example, the efficiency of TiO$_2$ photocatalytic properties depends besides its crystal structure also on the grain size [6]. Even the adhesion of living cells on titania films (extremely important for medical implants) depends on the nanostructure of the material [3]. The efficiency of a dye sensitized solar cells is as well influenced by the nanostructure of the material, since the grain size of the material directly influences amount of dye adsorbed on titania surface [7].

Titania has three main crystalline phases: anatase, rutile and brookite. Anatase and rutile are tetragonal and brookite is orthorhombic. Although rutile and anatase are from the same crystal system the lattices are quite different, so are the properties. For example, only anatase exhibits remarkable photocatalytic [8] and photo induced superhydrophilic [4] properties.

A number of deposition methods have been used to prepare doped titania films such as sputtering [9], chemical solution deposition [10], pulsed laser deposition [11], and sol–gel method [12]. For practical applications sol–gel method is widely used because it provides numerous advantages over other fabrication techniques. In certain cases important aspects of the film preparation, such as flexibility in introducing a dopant in large concentrations, purity, homogeneity, stoichiometry, possibility to coat large and complex areas and cost-effectiveness can be achieved by sol–gel method [13].

In the present work influence of the type of the impurity element, substrate pretreatment and annealing temperature to the film structure and photo-induced properties was investigated. Also the influence of surface morphology and specific surface area to the photo-induced properties of the films was investigated.

It is important to note that scientific community uses the word “doping” in narrower (semiconductor physics) and wider meaning. In the present work word doping is used in very general sense, i.e. as synonym for “introducing impurity element to the system”. Most probably our doped samples after annealing include two kinds of components: (i) the impurity atoms in the TiO$_2$ crystal lattice, and (ii) separate phases of impurity atom-based compounds.

It is important to know the behaviour of impurities during annealing and formation of the films, the distribution of the impurity elements is crucial in the forming of the photocatalyst films during annealing. The impurity element in the crystalline lattice can change the electronic properties of titania and the band gap can be shrunk [14, 15, 16]. Photocatalytic reactions occur on the surface
and therefore the behaviour of impurity atoms on the surface is especially important. It is possible that photoactive processes are slowed down considerably when the active surface is covered by non-photocatalytically active compounds.

Our general motivation to deal with the present topic lies in the possible future applications of this system as self-cleaning coatings for windows. Such coatings must have both significant photocatalytic and hydrophilic properties. Aim of the present work is to enhance knowledge about effect of annealing temperature, substrate material, influence of different impurity atoms, film morphology and structure to properties of titania thin films using various experimental techniques. Therefore we chose high impurity atom levels for our experiments (concentration of Ni, Co, and Cu were 4.2, 4.2, and 10 atomic percent, respectively). Such a high impurity level allows to investigate precisely the influence of the impurity elements in this complex oxide system with several experimental techniques to confirm or exclude the presence of different compounds, crystal structures, segregation, etc. Also the influence of high specific surface area of the films was investigated by preparing thin films from titania anatase nanoparticles. The ultimate purpose of this work was to contribute into the development of effective and easy to manufacture self-cleaning surface that could be used in outdoor lighting conditions.
2 LITERATURE OVERVIEW

2.1 Sol-gel method

Sol-gel method enables to produce glasses and ceramics at relatively low temperatures and with relatively low cost. The method is very versatile and enables to prepare a variety of structures e.g. aerogels, xerogels, fibres, nanoparticles and films with precisely controlled parameters of the material e.g. crystallinity, phase composition, grain size and composition.

Chemistry of the sol-gel process is based on hydrolysis and condensation of molecular precursors. Mainly there are two different routes depending on whether the precursor is an aqueous solution of an inorganic salt or a metallo-organic compound. The present overview is focused on the second route i.e. the hydrolysis and condensation reactions of a metallo-organic precursor (M(OR)$_n$; M refers to metal ion, -OR to the alkoxy group). Electronegative alkoxy groups (-OR) make the metal ion very susceptible to nucleophilic substitution reactions; therefore, it readily reacts with water.

The overall reaction can be written as follows [17]:

$$M(OR)_n + nH_2O \rightarrow M(OH)_n + nROH$$

The process in detail is complicated and the final oxide network is formed by influence of two chemical processes: hydrolysis and condensation. Hydrolysis process can be written in more detail [17]:

$$H_2O+M-OR \rightarrow H_2O: \rightarrow M(OH) \rightarrow H\rightarrow M - O^R_H \rightarrow H\rightarrow M - OH + ROH$$

In hydrolysis the first step (a) is a nucleophilic addition of water molecule to the positively charged metal atom M, which leads to the transition state (b) where the coordination number of metal atom has increased by one. The second step involves a proton transfer within (b) leading to the intermediate state (c). A proton from the entering water is transferred to the negatively charged oxygen of an adjacent -OR group. The third step is the departure of the better leaving group (c) leading to metal hydroxide and an alcohol (d). The whole process follows nucleophilic substitution mechanism.

Condensation is a complex process and can occur as soon as hydroxyl groups (-OH) are formed. Depending on experimental conditions three competitive processes have to be considered.

Alkoxolation is a reaction by which a bridging oxo- group is formed through an elimination of an alcohol molecule. The mechanism is basically the same as in hydrolysis with M (metal atom) replacing H in the entering group [17]:

$$MOH + MOR \rightarrow M - OR \rightarrow M - O - M \rightarrow ROH$$
Oxolation follows the same mechanism as alkoxolation, but the R-group of the leaving species is a proton [17]:

\[MOH + MOH \ (a) \rightarrow MOH (b) \rightarrow M - O - M \ (c) \rightarrow MOM + H_2O \ (d) \]

Olation can occur when the full coordination of the metal is not satisfied in alkoxide molecule. In this case bridging hydroxo-groups can be formed through the elimination of the solvent molecule. The latter can be either H₂O or ROH (alcohol) depending on the water content in the medium [17].

\[M - OH + M - O^H_R \rightarrow M - OH - M + ROH \]
\[M - OH + M - O^H_H \rightarrow M - OH - M + H_2O \]

These four reactions are involved in transfer of the molecular precursors into an oxide network. The resulting structure and morphology of the material strongly depends on the contribution of each reaction. The contributions from each reaction depend on the choice of the alkoxide (type of the metal and alkyl groups) and the reaction conditions (pH, water/alkoxide ratio, temperature, concentration) [17].

In case of titanium alkoxides the initial hydrolysis is fast but the condensation process is slow and the last alkoxide groups are difficult to remove [18, 19]. The condensation starts shortly after the initial hydrolysis step [19]. Hydrolysis and condensation reach metastable state and the reaction can go both ways. The consumption of water at low initial (H₂O/TiO₂<1) water/alkoxide ratio is almost complete. At higher initial water/alkoxide ratios the water is only partially consumed and its consumption tends toward a limiting value and depends upon the complexation ratio of the metal atom. It is also concluded that majority of OH groups are engaged in forming oxo-bridges [20].

In sol-gel process stages involving hydrolysis and condensation reactions are usually conducted in relatively dilute solutions to ensure homogeneity of the processes. Liquid state also simplifies the processing of the material into thin films and coatings. A layer of solid material is formed on a surface after the solvent has been removed. Often highly volatile solvents are used and the drying process is fast. During drying most of the solvent evaporates from the film. When drying takes place in an atmosphere containing water vapour, then hydrolysis and condensation processes continue. Internal stresses appear and may cause the film to crack when drying process is too rapid (cracking process is extensively investigated by J. Jõgi et al. [21]).

To form crystalline material the sample has to be annealed. During annealing, changes in the film structure take place: drying, evaporation, oxidation of the organics and crystal phase transitions occur and modify the film structure. As organic residue burns out, the film becomes porous. During further heat treatment the pores collapse and the film becomes denser.
The crystal phase composition of titania is strongly dependent on the choice of preparation method, materials and different parameters used in the process. Sol-gel titania obtained by partial hydrolysis of alkoxides usually yields amorphous material. Crystalline structure is achieved by annealing samples at relatively high temperatures. Anatase crystal phase usually appears after thermal treatment at 400 °C or higher [22, 23, 24]. The phase transition to rutile usually occurs around 800 °C or above [22, 23, 24, 25]. Phase transition temperatures can be influenced by different dopants. For example Mn^{2+} ion concentrations up to 1.5 mol% can stabilize the anatase phase and increase the anatase to rutile conversion temperature, but concentrations over 2 mol% lower the phase transition temperature and accelerate the process [26]. An addition of Si^{4+} inhibits the phase transition from anatase to rutile [27, 28]. The change in the phase transition temperature is caused by the formation of an anatase solid solution containing silicon [29] that stabilizes anatase phase. Also Fe^{3+} doping increases the phase transition temperature from anatase to rutile [28]. Even different substrate materials can influence the phase composition of the material and crystal phase transition temperatures [30].

When sol-gel process is slowed down by adding complexing agents or using nonhydrolytic hydroxylation reactions the crystal phase composition can be strongly modified. The addition of diethylamine as complexing agent results in much lower phase transition temperatures for both anatase and rutile i.e. 323 °C and 560 °C, respectively [31]. Sol-gel process can even yield crystalline anatase titania using temperatures as low as 60 °C [32]. Nonhydrolytic sol-gel can be very versatile and yield titania with very high surface area and different crystalline phases (anatase [33, 34, 35], rutile [35] and brookite [35]) depending on the reaction conditions and reagents used.

2.2 Spin coating

Spin coating is a method that enables to cover objects of different shape and size with uniform thin solid films and to control the film thickness with good reproducibility. It is a very robust and reliable method when preparing samples in laboratory scale. Usually a solution of solid material is used as a precursor, the solution is dropped at the centre of a substrate that is spinning or will be spun afterwards. The thickness of the resulting film depends on the viscosity of the solution, the angular speed of the substrate, and the concentration of the solid material in the solution. Mathematical description of the processes occurring during spin coating is relatively difficult. Never-the-less, D. Meyerhofer has proposed an approximation that describes the formation of films during spin coating well enough to provide useful tendencies in the practical application of spin coating method. For example estimating the thickness change of the films when changing the rotation speeds or the concentration of solid material in the solution [36]:

\[\text{Thickness} = \text{Viscosity} \times \text{Angular speed}^2 \times \text{Concentration} \times \text{Time} \]

13
\[h_f = \left(\frac{2}{3} \right)^{\frac{1}{3}} c_0 (1 - c_0)^{-\frac{1}{3}} \omega^{-\frac{2}{3}} \nu_0^{\frac{1}{3}} \]

Where \(h_f \) is final film thickness, \(c_0 \) is initial concentration of the solid material, \(\omega \) is the angular speed, \(\nu_0 \) is the kinematic viscosity of the solution.

Different materials can be used to produce different films e.g. polymer films [37], oxide films [38], nanoparticle films [39] and to create films with different properties and thickness. The thickness of the films can be successfully varied in wide ranges from thin films (>200 nm) to ultra-thin films (<200 nm) [40].

2.3 Photo-induced processes

Photocatalysis and light-induced superhydrophilicity in case of titania are two separate processes which can be activated by the absorption of light. Absorption of a photon with enough energy leads to excitation of an electron from the valence band to the conduction band and creation of a hole in valence band. The photogenerated electron-hole pairs may recombine or drive photo-induced processes. The subsequent mode of action of the generated electron-hole pair will determine which process takes place.

The lifetime of photogenerated electron-hole pairs depends on the structure and electronic properties of the materials, but also the compounds present in the reaction medium can influence photocatalytic reactions. Modification of the materials electronic structure by doping influences the lifetime of electron-hole pairs. The nature and concentration of dopants might play an important role in the lifetime of electron-hole pairs; in some cases the dopant can act as recombination centre and decrease the lifetime of electron-hole pairs [41, 42]. Also, the presence of hole scavengers such as methanol can increase the efficiency of photocatalytic degradation by trapping holes [41, 43].

2.4 Photocatalysis

It has been shown that titania can photo-degrade very different organic compounds [44, 45] [46]. It is assumed that photocatalytic oxidation and reduction reactions occur simultaneously, otherwise charges would build up. Photocatalysis is initiated by electron transfer to oxygen molecule, which is considered also the rate determining step of the reaction. Photogenerated electrons are strong enough reducers to produce \(\text{O}_2^- \) (superoxide ion). The produced superoxide ion is an effective oxygenation agent and will effectively attack neutral species and surface absorbed radicals. Photoholes will oxidize surface absorbed \(\text{H}_2\text{O}, -\text{OH} \) and surface titanol groups (>\(\text{TiOH} \)) into hydroxyl radicals. It is assumed that electron and hole transfer occur simultaneously to maintain charge balance of the process [13]. Also \(\cdot\text{OH} \) radicals can be generated by other reactions, for example [47]:

\[\cdot\text{OH} \text{ radicals} \]
On the example of halocarbons it has been shown that the photo-degradation process is initiated by surface adsorbed •OH radicals [48]. There is also evidence that •OH radicals are major species behind photocatalytic degradation of organic compounds and photocatalytic deactivation of microbes. Although other reactive oxygen species also take part of the photocatalytic degradation processes, most of the effect is due to •OH radicals [49, 50] that not only act on TiO₂ surface but can diffuse to the surrounding solution or through small distances in air and effectively degrade organic compounds even not directly in contact with the photocatalyst [49, 51]. Oxidation by •OH radicals might not be the only mechanism of oxidation. It was shown by Tachikawa et al. [52] that oxidation efficiency depends on the strength of adsorption of the oxidized molecule to the surface of TiO₂. R. B. Draper et al. [53] conclude that many oxidation reactions on the surface of TiO₂ may occur by direct electron transfer from the organic molecule to TiO₂.

2.5 Superhydrophilicity

Over time different mechanisms have been proposed to explain why titania has light-induced superhydrophilic properties. The most widespread theory is that Ti⁴⁺ cations will be reduced to Ti³⁺ by photoelectrons and at the same time photo-holes are trapped at lattice sites (usually bridging oxygen) or close to the surface of the semiconductor. This will weaken the bond between oxygen and titanium allowing oxygen atoms to escape and create oxygen vacancies. Water will dissociatively absorb on the oxygen vacancies and hydroxylate the surface [13, 54, 55, 56, 57].

It has also been proposed that the change in hydrophilic properties of titania is caused by the photo-oxidation of different contaminants on the surface of titania [58, 59, 60]. Yan et al. [58] were not able to fully explain their experimental results concerning photo-oxidation of organic layer and conclude that the mechanism needs further study. Zubkov et al. [59] compared the IR spectra of UV irradiated high surface area TiO₂ samples with spectra obtained from non-irradiated samples and found no difference between the spectra. If there had been dissociative adsorption of H₂O on TiO₂ surface as a result of UV irradiation the OH bands in the IR spectra would have changed. J. M. White et al. [60] show that there is no difference in water adsorption on stoichiometric and slightly reduced surfaces of TiO₂ indicating that Ti³⁺ has no relation to the light-induced hydrophilic properties of TiO₂. Light-induced hydrophilic properties cannot be explained only by photo-oxidation of organic contaminant layer on the surface because there are materials that exhibit photocatalytic

\[
\begin{align*}
O_2 + 2e^- + 2H^+ & \longrightarrow H_2O_2 \\
O_2^+ + O_2^- + 2H^+ & \longrightarrow H_2O_2 + O_2 \\
H_2O_2 + e^- & \longrightarrow ‘OH + OH^- \\
H_2O_2 + O_2^- & \longrightarrow ‘OH + OH^- + O_2 \\
H_2O_2 + h\nu & \longrightarrow ‘OH + ‘OH
\end{align*}
\]
properties but do not exhibit light-induced hydrophilic properties and *vice versa* [61]. Nevertheless, the ability to photo-oxidize contaminants on the surface is important to achieve near zero water contact angles, because surface adsorbed contamination layer present on every surface in ambient atmosphere, is usually somewhat hydrophobic.

2.6 Band gap engineering

Photo-induced processes occur when the photon energy of light absorbed in the semiconductor exceeds the band gap of the material. Band gap of TiO$_2$ anatase and rutile crystalline phase is 3.2 and 3.0 eV, respectively [62, 13]. There are many strategies to inject electrons to the conduction band of titania using light with photon energy smaller than the band gap of the semiconductor material. Dye molecules can be used to photo-sensitize titania [63, 64, 65], and inject electrons from excited state of the molecule to conduction band of the semiconductor. The adsorbed dye is oxidized upon electron injection and degradation of the dye molecule is avoided by the presence of electron donors. Using dye-sensitization different organic compounds can be oxidized but the oxidation potential of the system is limited to the redox potentials of the active species (oxidized dye molecules) [66]. Photo-sensitization of titania can also occur via surface complex formation between an organic compound and the photocatalyst [67, 68]. The corresponding process is very similar to dye-sensitization, but in this case the active molecules are bound to the semiconductor surface.

Band gap of titania can be shrunk and thus visible light can be utilized to drive photo-induced processes. The band gap is effectively shrunk by doping the material with different elements including nonmetals (N, halogens, B, and C) and metals, often transition metals e.g. Fe, Ni, Co, Cu, V, [14] are preferred. Narrowing of optical band gap by doping due to creation of additional electronic states is also suggested by theoretical calculations (Fig. 1). The strategy is to create additional bands in the band gap of the semiconductor material. For example nitrogen impurity creates additional localized states 0.14 eV above the valence band when nitrogen substitutes oxygen and 0.73 eV above valence band when nitrogen is interstitial [69] [15]. NiO modified P25 titania (far-spread commercial titania nanopowder, primary particle mean size 21 nm, anatase/rutile mixture) shows additional absorbance in the visible region and band gap reduction up to 0.8 eV due to the creation of additional states above the valence band of titania [16]. Optical band gap narrowing and absorbance in the visible region has also been observed when titania is doped with Co [70], Fe [71, 72], Cu [72, 73] and other metals.
Figure 1. Density of states (DOS) calculated for metal doped rutile TiO$_2$, gray solid lines are TiO$_2$ rutile DOS and black lines represent DOS of the dopant [74].

Visible light can also be utilized to drive photocatalytic reactions by using semiconductor coupling. When a wide band gap semiconductor is coupled with a narrow band gap semiconductor and the narrow band gap semiconductor conduction band level is more negative than the level of wide band gap semiconductor photogenerated conduction band electrons can be transferred from the narrow band gap semiconductor to the wide band gap semiconductor. In order for this kind of a system to work the semiconductors should be photocorrosion resistant, the narrow band gap semiconductor should be able to be excited by visible light and conduction band of the narrow band gap semiconductor should be more negative than the conduction band of the wide band gap semiconductor. The separation of photoelectrons from photoholes also enhances the lifetime of photogenerated electron-hole pairs further improving the efficiency of the photocatalyst system [43]. CdS and CdSe have been successfully coupled with TiO$_2$ for several applications, for example photo-degradation of 2-chlorophenol [75] and 4-chlorophenol [76] or hydrogen photo-production [77].
2.7 X-ray photoelectron spectroscopy

X-ray photoelectron spectroscopy (XPS) is based on photoelectric effect. When the energy of incident light exceeds the binding energy of an electron, electromagnetic radiation interacts with matter in a way that electrons are emitted. Part of the energy of the radiation is used to free the electron from the nucleus, part of it is used to remove the electron from the material surface and the rest forms the kinetic energy of the electron. Emitted electrons are detected and their kinetic energy is measured to form a spectrum, which contains information about the elemental composition and the chemical bonds in the surface layer of the sample. Electron mean free path is very small [78], thus the probed layer of the sample is extremely thin. The mean free path of electrons is determined by electron-electron and electron-phonon interactions. When dealing with high-energy electrons, electron-phonon interactions lose their relevance and only electron-electron interactions have to be taken into account. The cross-section σ for electron-electron interaction is given as [78]:

$$\frac{d^2\sigma}{d\Omega dq} = \hbar \frac{\hbar^2}{(n e a_0)^2 q^2} \frac{1}{\epsilon(q,\omega)}$$

where $\hbar q$ is the momentum transfer, ω the energy transfer in the scattering process, $a_0 = 0.529$ Å (the Bohr radius) and Ω is the solid angle into which the electrons are scattered. From this equation by integration over all energy transfers and momentum transfers the inverse of average mean free path λ^{-1} is obtained. λ^{-1} is essentially determined by the dielectric function [78], which is specific to the material under study and therefore the mean free path is characteristic property of each material. For the energies of interest ($E_{kin} > 10$ eV), a free-electron gas can approximately describe the electrons since binding energy of valence electrons is in the order of 10 eV. In this case the plasma frequency, which is a function of only the electron density, determines the loss function [78]. The mean electron-electron distance r_s then describes the inverse electron mean free path which is roughly equal for all materials [78]

$$\lambda^{-1} \approx \sqrt{\frac{3}{E_{kin}}} \frac{a_0 R}{r_s^2} ln \left[\frac{4}{9\pi} \frac{E_{kin} R}{R} r_s^2 \right]$$

where $R=13.6$ eV, r_s is measured in units of Bohr radius a_0, and E_{kin} is the kinetic energy of the electron. Since it is experimentally very difficult to measure the mean free path such a relationship is extremely useful in practice, the estimated electron mean free path can be seen on Fig. 2.
Figure 2. Electron mean free path as a function of kinetic energy for various metals. The data indicate a universal curve with a minimum at 2-5 Å for kinetic energies of 50-100 eV. The scatter of the data is evident from the values obtained at $E_{\text{kin}}=1480$ eV [78].

Shifts in the binding energy of an element can occur for different chemical forms of the same atom. This energy difference is called “chemical shift”. Chemical shifts arise due to the differences in screening ability of the electrons of an element in different chemical states. For example in sodium azide (NaN_3) there are two equivalent negatively charged nitrogens N^- and one positively charged nitrogen N^+. The negative charges (electrons) screen the nuclear charge of nitrogen atom and therefore the binding energy of N^- is smaller than of N^+, for which screening is absent (Fig. 3). Similar mechanisms are also responsible for chemical shifts in photo-lines of other elements for example C 1s [78]. Chemical shifts can give information about the chemical local bonding environment of the element. Energy of photoelectrons is affected by formal oxidation state of the atom, the identity of its nearest-neighbour atom and bonding hybridization to that nearest-neighbour atom.

Figure 3. Chemical shifts for the C 1s levels in ethyl trifluoro-acetate, acetone and the N 1s levels in sodium azide [78].
In addition to photoemission lines sometimes so called satellite lines can be observed in the spectrum (Fig. 4). Satellite lines occur when photoemission results in more than one final state. Different screening channels cause satellites in open shell f or d metal ions. The metal ion is assumed to have an unoccupied d level in the initial state. In the photoemission process this empty d level is pulled below the top of the valence band, and formally represents a positive charge on the photoionized ion, generating what is called a two-hole state containing the photohole and the hole provided by the empty state. In metal, it is assumed that the two holes can be screened from the broad sp conduction band, which produces the final state (1). In a different process, charge is transferred from the sp band into the lower d level, thereby producing the second final state (2). Since the localized d level is more efficient in screening than the extended sp band, this second final state has a smaller binding energy than the first one [78].

In insulators the situation is similar. In the initial state the metal ion has an unoccupied d level and an unoccupied broad sp band, which are both pulled down by the core hole to below the top of the ligand valence band. The screening can now occur by charge transfer out of the occupied ligand levels into the metal sp (final-state (1)) band or into the metal d level (final-state (2)), as seen in Fig. 4 [78].

Figure 4. Schematic representation of the Kotani-Toyozawa model for photoelectron spectroscopy (PES) from a core level in a metal and an insulator [78].
In XPS spectra also Auger lines can be present. Auger process occurs when a core electron is removed, and the core hole is filled with an outer shell electron. If the energy difference between the two electron orbitals is transferred to another outer shell electron, it can be ejected and detected. The kinetic energy of the ejected electron does not depend on the excitation energy, but only on the energy difference of the outer shell electron orbital and the core hole to be filled.

One of the most important issues associated with quantitative and chemical analysis using XPS is background correction due to inelastic scattering of electrons. Usually there are three choices: “linear”, “Shirley”, and “Tougaard” background correction methods. Linear approximation of background is the simplest and crudest method, but can be found useful in cases where the background is simple and high accuracy is not needed. Shirley background correction method is very widely used. In Shirley background correction method the background intensity at any given binding energy is proportional to the intensity of the total peak area above the background in the lower binding energy peak range. This approximation is easy to use and the errors are generally not too big. Tougaard method tries to quantitatively describe the physical processes leading to formation of background. S. Hüfner [78] describes and compares Shirley and Tougaard background correction methods. In comparison with the experimental results “Shirley” and “Tougaard” methods perform similarly but differ from the experimental results (REELS) considerably, as can be seen in Fig. 5. Reflection electron energy loss spectroscopy (REELS) is the best method to obtain information about the background in XPS and AES spectroscopy. The main difference between information acquired from REELS and XPS and AES background will come from the fact that REELS electrons will penetrate the surface twice and surface plasmons are enhanced in REELS spectrum [79]. In case of pure samples Tougaard background gives very similar results to REELS data, but Tougaard background correction method could benefit from taking surface excitations into account [80]. The choice of the background correction method is not critical, more important is the consistent use and systematic use of the same background and integration limits throughout one analysis [81, 82].

It has been demonstrated by S. Tougaard [83] that information about the surface structure and chemical composition distribution can be extracted from XPS spectra. Information on the concentration depth profile in the surface region up to 5λ (λ, free mean path) depth is primarily contained in the spectral energy region up to 100 eV (kinetic energy scale) before the photo-line and is essentially completely contained by the energy region up to 200 eV before the photo-line. The method is based on the fact that with every inelastic scattering event electron loses 15-30 eV of energy, and by analyzing the background shape it is possible to deduce the surface structure of the sample.
Figure 5. Comparison between Shirley and Tougaard background correction methods [78].
3 MATERIALS AND METHODS

3.1 Preparation of the films
In the present work two different types of thin films were investigated. The thin sol-gel films were prepared by using sol-gel method and spin coating. The films prepared were always uniform and without visible cracks. Commercially available chemicals were used: titanium (IV) n-butoxide (Vertec, purity 98+% or Sigma–Aldrich, reagent grade), nickel chloride hexahydrate (Alfa Aesar, purity 99.95%), cobalt nitrate hexahydrate (Alfa Aesar, purity 99.95%), copper (II) nitrate hemi(pentahydrate) (Sigma-Aldrich, purum), p-toluene sulfonic acid (PTSA) (Sigma- Aldrich, reagent plus), acetyl acetone (acac) (Sigma-Aldrich, reagent plus), butanol (Sigma-Aldrich). The chemicals were used as received; only butanol was further purified by distillation over CaH₂ to remove water. The films were prepared on different substrates: silicon monocrystal Si(100), fused silica and soda-lime glass. The impurity elements were introduced as salts of the respective element during the synthesis of the precursor. It was assumed that the impurity elements were distributed homogenously in the precursor material and no contradicting evidences were found during later investigation of the samples. Usually the precursor was dissolved in butanol and the coating parameters were optimized for the process to achieve films with good quality. After preparation the films were stored at ambient conditions for several days to allow the films to dry and the hydrolysis process to occur slowly. After drying the precursor films were annealed at a wide range of temperatures, from room temperature to 1200 °C in air atmosphere to burn off the organic residue and turn the amorphous sol-gel material into crystalline TiO₂. Further details about the preparation of titania thin films can be found in the published works (I, II, III, IV, V).

Besides thin sol-gel films, the present work also investigated nanoparticle based thin films. Namely, using sol-gel method it is possible to synthesize highly crystalline titania anatase nanoparticles at low temperatures in liquid media. The particles are readily dispersible in different solvents for example acetone and lower alcohols, especially in ethanol. Good quality nanoparticle based films can be manufactured using these nanoparticles. Such films were prepared slightly differently than the sol-gel titania films. The synthesis of the nanoparticles is based on the work done by E. Scholan and C. Sanchez [32] but synthesis parameters were slightly modified and optimized to achieve better crystallinity of the material. Extremely small nanoparticles with good anatase structure and narrow size distribution were prepared (see Fig. 6 and 7). The nanoparticles were dispersed in acetone or ethanol and spin coated onto substrates. More details about thin nanoparticle based films are given in work [V].
3.2 XPS studies

The XPS was carried out in our home laboratory using Scienta SES-100 electron energy analyzer and nonmonochromatized Thermo XR3E2 twin anode X-ray source with characteristic energies of 1253.6 eV (Mg Kα1,2 FWHM 0.68 eV) and 1486.6 eV (Al Kα1,2 FWHM 0.83 eV). All XPS measurements were conducted in ultra-high vacuum (UHV) conditions. The angle between incoming photon beam and the axis of the electron energy analyzer was 45° and the sample normal was parallel to the axis of the electron energy analyzer.

Measurements employing synchrotron radiation were carried out at beamline D1011 of the MAX II storage ring (Lund, Sweden). Beamline D1011 is equipped with a modified SX-700 plane grating monochromator. For measuring the XPS spectra, an electron energy analyzer (SCIENTA SES-200) in the fixed analyzer transmission (FAT) mode with 200 eV pass energy was used. The binding energy scales for the XPS experiments were referenced to the binding energy of Ti 2p3/2 (458.6 eV) photoemission line.

To estimate overall atomic concentrations of different compounds and elements average matrix relative sensitivity factors (AMRSF) procedure [84] and our instruments transmission function were used. Raw data was processed using Casa XPS [85] software. Data processing involved removal of Kα and Kβ satellites, removal of background and fitting of components. However, the absolute amounts of different compounds and elements have to be considered cautiously and are given to outline trends only due to the possibility of surface region deviation from chemical homogeneity in the working range of photoelectron spectroscopy (surface region with thickness up to three electron mean free paths).
3.3 Characterization of hydrophilic and photo-catalytic properties

The degree of hydrophilicity was estimated by measuring the contact angle of a water drop on the film, i.e. the angle at which the liquid–vapour interface meets the solid–liquid interface. We performed the contact angle measurements using a sessile drop method.

Photocatalytic activity of thin titania films was measured using model contaminants Rhodamine 6G, Brilliant Blue FCF, stearic acid, oleic acid and linoleic acid. Brilliant Blue FCF (absorbance maximum at 628 nm) and Rhodamine 6G (absorbance maximum at 530 nm) were chosen due to their high absorbance coefficients in the visible region that enables to monitor small changes in the amount of dye on the surface of the films. Stearic acid, oleic acid and linoleic acid were chosen to study the mechanisms involved in the decomposition of different fatty acids. In case of Rhodamine 6G and Brilliant Blue FCF the surface was irradiated with a low pressure mercury lamp (maximum at 254 nm) and in case of fatty acids UV lamp with emission in the UV-A range (maximum at 355 nm) was used.

3.4 Optical measurements

Optical transmission and reflection measurements were conducted with a Jasco V-570 (UV/Vis/NIR) spectrometer with specular reflectance accessory.

The crystalline phases of the titania films were examined by measuring room-temperature Raman spectra of the films prepared on a fused-silica substrate using Renishaw micro-Raman setup equipped with 514 nm continuous mode argon ion laser and the spectral resolution was approximately 1.5 cm$^{-1}$.

Dynamic light scattering (DLS) measurements were performed on Malvern Zetasizer Nano, utilizing He-Ne laser (633 nm). Measurement range is material dependent but the maximal range according to the manufacturer specifications is from 0.3 nm to 5 μm.

3.5 Microscopy and surface morphology

Scanning electron microscope (SEM) images were measured and elemental distributions were determined by using an SEM-FIB instrument (FEI Helios 600) equipped with an energy dispersive x-ray (EDX) detector (Oxford Instruments) and option to use focused ion beam (FIB) for cutting the sample.

Investigations of morphological properties of the samples surfaces were performed with atomic force microscopes (AFM) SMENA-B (NT-MDT) and Veeco AFM. Typically, tapping mode was utilized in order to provide optimal performance.
4 RESULTS AND DISCUSSION

4.1 Structure of the films

Structure of the prepared films was thoroughly investigated using multiple techniques [I, II, III, IV, V]. Before annealing sol-gel films were amorphous and the surface was very smooth as can be observed in Fig. 8(a), 9(a) and 10(a,b). The appearance and evolution of granular structures on the surface of titania thin films coincides very well with the appearance of crystalline structure as can be observed from XRD diffractograms of undoped, nickel and cobalt doped titania thin sol-gel films (Fig. 12, 13 and 14) and Raman spectra of nickel, cobalt and copper doped titania thin sol-gel films (Fig. 15, 16 and 17). Anatase crystal phase usually appeared during heating between 300–450 °C, transition from anatase to rutile crystal phase took place above 700 °C, and exact temperature in both cases depended strongly on doping of the material. The appearance of rutile phase on different annealing temperatures leads us to believe that the impurities influence strongly the structure of titania thin sol-gel films.

The crystallite size of sol-gel thin films grows during annealing and the extent of crystallite growth can be linked to appearance of rutile phase. Note that the mean grain size of undoped titania thin films was smaller than the mean grain size of cobalt doped titania thin films at high annealing temperatures (Fig. 9). In case of cobalt doped titania films the crystal phase transition from anatase to rutile started at 750 °C (Fig. 16) and ended at 950 °C but in undoped titania films the transition started at 100 °C higher temperatures and was not complete even at 1050 °C as can be seen from Fig. 12. In addition to grain size, the content of rutile was higher for cobalt doped titania films compared to undoped titania films at high annealing temperatures, suggesting that crystallites consisting of rutile grow larger than crystallites consisting of anatase at any given annealing temperature.

The impurity metal formed secondary compounds inside the titania matrix during annealing. Raman spectra of all three metal doped titania thin films showed besides anatase (bands at 144 cm\(^{-1}\) (\(E_g\)), 197 cm\(^{-1}\) (\(E_g\)), 399 cm\(^{-1}\) (\(B_{1g}\)), 513 cm\(^{-1}\) (\(A_{1g}\)), 519 cm\(^{-1}\) (\(B_{1g}\)), and 639 cm\(^{-1}\) (\(E_g\)) [86]) and rutile (bands at 143 cm\(^{-1}\) (\(B_{1g}\)), 447 cm\(^{-1}\) (\(E_g\)), 612 cm\(^{-1}\) (\(A_{1g}\)), 826 cm\(^{-1}\) (\(B_{2g}\)) [87]) the existence of a secondary compounds (Fig. 15, 16 and 17). Raman spectra of nickel doped thin films showed bands linked to NiTiO\(_3\) [88, 89], cobalt doped titania thin films showed bands linked to CoTiO\(_3\) [90]. Titania films with high copper loading showed bands linked to CuO [91]. Nickel and cobalt with TiO\(_2\) tend to form titanates [92, 93, 94]. Usually the secondary compounds appeared during annealing, which indicated the segregation of the impurity element out of the titania matrix. One of the driving forces behind the segregation might be oxidation state differences between the impurity atom and Ti\(^{+4}\), the most common oxidation states are for nickel +2, +3, for cobalt +2, +3 and for copper +1, +2. For example when Ti\(^{+4}\) ion is replaced in the lattice by Ni\(^{2+}\) ion the charge difference has to be compensated.
Figure 8. AFM images of a precursor film (a) and nickel containing TiO$_2$ thin films on SiO$_2$/Si(100) substrate annealed at 550 °C (b), 750 °C (c) and 950 °C (d). The altitude scale is shown on the right of each image. Note that horizontal scales on the images are different [III].
Figure 9. AFM images of undoped TiO$_2$ precursor film (a) prepared at 25 °C, undoped TiO$_2$ (b, d, f) and cobalt doped TiO$_2$ (c, e, g) thin films annealed at 550, 750 and 950 °C. The altitude scale is shown on the right on each image [II].
Figure 10. AFM images of copper-doped titania films on SiO$_2$/Si(100) (a, c, e, g) and fused-silica (b, d, f, h) substrates. Precursor film (a, b), films annealed at 400 (c, d), 800 (e, f) and 900 °C (g, h). Films on SiO$_2$/Si(100) substrates are on the left, films on fused-silica substrates are depicted on the right. Note that horizontal scales of the images are different [IV].
Figure 11. SEM images of 100, 300, 400, 500 °C annealed titania nanoparticle films on SiO$_2$/Si(100) substrates [V].
Figure 12. XRD patterns of sol–gel prepared undoped TiO$_2$ thin films after thermal treatment at different temperatures [II].

Figure 13. XRD patterns of sol–gel prepared nickel doped TiO$_2$ samples on SiO$_2$/Si(100) substrate after thermal treatment at different temperatures [III].

Figure 14. XRD patterns of sol–gel prepared cobalt doped TiO$_2$ thin films prepared on SiO$_2$/Si(100) substrate after thermal treatment at different temperatures [II].
Figure 15. Raman spectra of nickel doped TiO$_2$ films prepared on SiO$_2$/Si(100) substrate and annealed at different temperatures. Raman spectrum of a precursor film is shown as well (marked as 25 °C). Lines and capital letters demonstrate the positions of TiO$_2$ anatase (blue), TiO$_2$ rutile (red) and NiTiO$_3$ (black) bands. Si substrate bands are shown with arrows [III].

Figure 16. Raman spectra of cobalt doped TiO$_2$ films prepared on SiO$_2$/Si(100) substrate and annealed at different temperatures. Raman spectrum of precursor film is shown as well (marked as 25 °C). Lines and capital letters demonstrate the positions of TiO$_2$ anatase (blue), TiO$_2$ rutile (red) or CoTiO$_3$ (black) bands. Si substrate bands are shown with arrows [II].

Figure 17. Raman spectra of copper doped TiO$_2$ films prepared on fused silica substrate and annealed at different temperatures. Vertical lines and capital letters demonstrate the position of TiO$_2$ anatase (blue), TiO$_2$ rutile (red) and CuO bands (black) [IV].

Figure 18. Raman spectra of titania nanoparticle based thin films annealed at different temperatures. Raman spectrum of non-heated film is marked as 25 °C [V].
Figure 19. SEM images of nickel doped titania on SiO$_2$/Si(100) substrate annealed at 450 °C (a) and 850 °C (c). EDX spectra of the oxygen and titanium distributions in cross-section of nickel containing titania film on SiO$_2$/Si(100) substrate annealed at 450 (b) and 850 °C (d). On the left side of EDX line scans sketch is shown, which corresponds to cross-section of film. From top to bottom: nickel doped titania layer, SiO$_x$ interlayer (only Fig. 19 d) and the substrate. [III].

The phase transition temperature from anatase to rutile was also influenced by the substrate pre-treatment as can be observed from our work with nickel doped titania thin sol-gel films on SiO$_2$/Si(100) and HF etched Si(100) substrates [I, III]. In order to detect SiO$_2$ interlayer or the absence of it between films and substrates we either (i) cut the film, cleaned created cross-section with FIB and measured EDX or (ii) etched rectangular hollow into the films with FIB and measured EDX from the created cross-section. Fig. 19(a) and 19(c) demonstrates cross-sections of cut films imaged with SEM. In EDX experiments we focused on changes between oxygen K$_\alpha$ and titanium K$_\alpha$ radiation as a function of thickness. In Fig. 19(b) and 19(d) oxygen (unfilled dots) and titanium (filled dots) distribution in cross-section of nickel containing titania films on SiO$_2$/Si(100) substrate are demonstrated. Silica interlayers could be observed only for samples annealed at high temperatures (850 and 900 °C, respectively) for both SiO$_2$/Si(100) substrates (Fig. 19) and HF etched Si(100) substrates. Unfortunately this method is not sensitive enough to detect thin interlayers and native oxide layer on SiO$_2$/Si(100) substrates and films annealed at lower temperatures, so the differences between HF etched and SiO$_2$/Si(100) substrates could not be shown.
During annealing beside changes in the structure of sol-gel films also film thickness decreased remarkably. For example, the precursor film with high copper loading was 250 nm thick and after annealing at 900 °C the thickness of the film decreased to approximately 82 nm *i.e.* more than 3 times (Fig. 20). At lower annealing temperatures film thickness decreased slowly and the decrease can be linked to the decrease of carbon content in the films (Table 1). The sharpest decrease took place during annealing between 500 and 600 °C. This significant decrease of the film thickness is probably related to crystallization of the film. In case of Cu doped thin films intensity of anatase Raman bands increased significantly when annealing temperature was raised from 500 to 600 °C (Fig. 18, red and blue lines, respectively) indicating transformation of amorphous material to anatase. The thickness behaviour during annealing of all sol-gel films with different impurity atoms was principally the same.

Figure 20. Film thicknesses of copper doped titania thin films evaluated with AFM on SiO₂/Si(100) substrate. Solid lines are eye guides only [IV].

Table 1. Relative concentrations of different compounds and elements (atomic percent) in surface region of copper-doped titania films prepared on SiO₂/Si(100) substrates annealed at different temperatures. Note that compounds undetected by XPS are not taken into account in this table [IV].

<table>
<thead>
<tr>
<th>Copper compounds</th>
<th>Ti</th>
<th>C</th>
<th>O</th>
<th>Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu₂O</td>
<td>CuO</td>
<td>Cu(OH)₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 °C</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>200 °C</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>300 °C</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td>400 °C</td>
<td>6</td>
<td>17</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>500 °C</td>
<td>1</td>
<td>18</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>600 °C</td>
<td>3</td>
<td>16</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>700 °C</td>
<td>1</td>
<td>10</td>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td>800 °C</td>
<td>1</td>
<td>1</td>
<td>23</td>
<td>13</td>
</tr>
<tr>
<td>900 °C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
</tr>
</tbody>
</table>
Besides sol-gel films, thin TiO$_2$ nanoparticle based films were prepared [V]. These films had anatase structure from the beginning (Fig. 7) and did not need additional thermal treatment to change amorphous material into crystalline anatase. In this case thermal treatment was only necessary to adhere the films to the substrate and make them mechanically more durable. Films without thermal treatment and films annealed at 100 °C were not durable enough to survive the subsequent washing in ultrasound bath. Films annealed at 200 °C or higher were stable enough to survive washing treatment. The films consisted of small nanoparticles and thus had high specific surface area as can be observed in Fig. 11. Thermal treatment up to 400 °C did not influence the morphology of the films considerably, only slight sintering of the particles was observable. From Fig. 11 it can be seen that the particle size started to increase only after the films were annealed at 500 °C. The same conclusion can be drawn from Raman spectra of titania nanoparticle based thin films (Fig. 18). Raman studies show that the nanoparticle films consisted of anatase. Anatase bands were observed around 144 (E$_g$), 197 (E$_g$) and 397 (B$_{1g}$) cm$^{-1}$ which correlate well with the literature data [86]. The band originally around 150 cm$^{-1}$ is shifted at higher annealing temperatures to lower values which are consistent with the work of Li Bassi et al. [87] where a shift of 144 cm$^{-1}$ band to higher values in case of small nanoparticles is shown. From Fig. 16 it can be observed that the band at 150 cm$^{-1}$ does not start to shift until 400 °C but at 500 °C has already shifted to 144 cm$^{-1}$ as is reported in literature for bulk anatase [86].

Sol-gel based titania thin films required higher annealing temperatures (over 500 °C) to achieve photo-active anatase crystal phase, annealing at high temperatures resulted also in removal of organic material from the sol-gel films.
Titania nanoparticle based films consisted of anatase nanoparticles already before annealing, which makes annealing at high temperatures for crystallization unnecessary. But organic material still needs to be removed and therefore different methods can be applied. One possibility is to anneal the nanoparticle based films in air atmosphere. As can be observed from Fig. 21 annealing is very effective in removal of organic material. The carbon content decreased from 44% to 11% when the nanoparticle based thin films were annealed from room temperature to 400 °C. Annealing to 400 °C did not yet change drastically the morphology and the surface area of the films as was observed by microscopy. During further annealing titania nanoparticle thin films acted similarly to sol-gel films. The thickness of the nanoparticle based films decreased during annealing, but in this case the change in thickness was entirely caused by the removal of organic material from inside region of the films. There was no sharp decrease in the film thickness related to the formation of anatase crystalline phase as could be observed for sol-gel films (Fig. 20 and 22). Destruction of the initial nanostructure of the film can be observed from Fig. 11 for titania nanoparticle thin films annealed at 500 °C. Washing of the films in deionized water and photocatalytic removal of organic material using UV irradiation were also tested for cleaning of samples but the results were not as good, namely, the organic material in the films was replaced with the organic contamination present in the deionised water [V].

4.2 Changes in chemical composition and elemental distribution during annealing

All of the titania thin films showed photoelectron lines of titanium, oxygen, carbon and the added impurity element [I, II, III, IV]. Photoelectron lines of silicon were observable for sol-gel thin films annealed at high temperatures on SiO2/Si(100) and HF etched Si(100) substrates when the crystallites grew large and narrow gaps between the crystallites were formed. Some of the substrate became exposed giving rise to the Si signal in the spectrum. Sodium and calcium photo-lines were observed due to their diffusion from substrate only when the copper doped titania thin films were prepared on soda-lime glass and annealed at 500 °C (Fig. 23) and above. Sulphur photo-lines were observable in case of titania nanoparticle based thin films [V]. A typical overview spectra of doped titania thin films is shown in Fig. 23.

During annealing the structure of the sol-gel precursor film changed. As well during preparation of precursor once homogeneously distributed impurity elements started to segregate to the surface of the film, resulting in increased concentration of the doping element on the film surface. XPS as surface sensitive technique is extremely suitable for monitoring such changes. This was observed for all three metals investigated in this study as can be observed from Table 1, Fig. 24 and 25. The segregation starting temperature and the extent of
segregation depended of the specific impurity element and the substrate pre-treatment.

Segregation of nickel and cobalt out of titania matrix can also be driven by a second reason, namely formation of NiTiO$_3$ from NiO and TiO$_2$ (and CoTiO$_3$ from CoO and TiO$_2$) is thermodynamically feasible (standard Gibbs free energy is negative) in the temperature range used in this study [95, 96]. Diffusion of the impurity element in the oxide matrix is limited at low temperatures, so annealing is needed to initiate the process. Segregation process starts when temperatures get high enough to overcome the activation energy needed for the impurity elements to diffuse inside the titania matrix. The appearance of NiTiO$_3$ (Fig. 15) and CoTiO$_3$ (Fig. 16) in the samples coincides very well with the segregation of nickel (Fig. 24) and cobalt (Fig. 25) to the surface of the thin films. Out of the three investigated dopants copper behaved slightly differently, copper did not form titanates and was not detected on the surface when copper doped sol-gel thin film were annealed at 900 °C for an hour. The reason behind this was the high vapour pressure of CuO at high temperatures (9×10^{-4} mbar (7×10^{-4} mm Hg) at 900 °C [97]), enabling the evaporation of copper from the surface layer. However X-ray fluorescence (XRF) analysis (which is more bulk sensitive compared to XPS) demonstrated that copper was still present in the deeper layers of copper doped titanias thin films after annealing to 900 °C. Copper concentration of samples annealed at 900 °C dropped to 65% compared to 700 °C (highest surface concentration of copper compounds according to XPS) annealed sample based on XRF analysis.

Figure 23. XPS overview spectrum of copper-doped titania film on soda-lime glass substrate annealed at 500 °C for 12 h. Inset on the upper left corner shows XPS spectra of copper 2p lines with smaller scan step [IV].

Figure 24. Intensity ratio of Ni 2p and Ti 2p photo lines of nickel doped TiO$_2$ films on SiO$_2$/Si(100) (dashed line) and HF-etched Si(100) (solid line) substrate annealed at different temperatures. The respective ratio for a non-heated, aged precursor film is marked as 25 °C is shown as well. The lines are eye guide only [III].
Annealing can change besides the elemental distribution of the impurity metal also the chemical nature of the dopant. It has to be noted that copper was introduced as Cu$^{2+}$ ion into the precursor. In synthesis process of the precursor copper(II) nitrate hemi(pentahydrate) was used as the copper source. During synthesis of the precursor, the solution stayed blue indicating that copper existed in the solution as Cu$^{2+}$ (in case of Cu$^{1+}$ solution should be reddish brown). During drying of the films copper was reduced from Cu$^{2+}$ to Cu$^{1+}$. Similar reduction of Cu$^{2+}$ to Cu$^{1+}$ was also noticed by Lopez et al. [98] and they proposed a mechanism to explain this phenomenon: hydroxide radicals are formed during dehydroxylation of the film and reduce Cu$^{2+}$ to Cu$^{1+}$.

Figure 25. Intensity ratio of the Co 2p and Ti 2p photo-lines of cobalt doped TiO$_2$ films on SiO$_2$/Si(100) substrate annealed at different temperatures. The corresponding ratio for the non-heated, aged precursor film marked as 25 °C. The solid line is an eye guide only [II].

Figure 26. Cu 2p$_{3/2}$ photo-line of copper-doped titania thin films on SiO$_2$/Si(100) substrate. At 700 °C annealed copper doped titania film with contributions from Cu$_2$O (red), Cu(OH)$_2$ (green) and CuO (black) fitted under the line [IV].
Fig. 27 displays the Cu 2p photoelectron spectra of the copper doped titania thin films. The observed photoelectron lines are typical for Cu$^{1+}$ and Cu$^{2+}$ compounds [99]. It can be seen that during annealing Cu$^{1+}$ is oxidised to Cu$^{2+}$. Cu 2p$_{3/2}$ photo-lines shift to higher binding energy and the appearance of a satellite structure is evidence of presence of Cu$^{2+}$ compounds [100], e.g. as CuO or Cu(OH)$_2$. Deconvolution of Cu 2p$_{3/2}$ photoelectron spectrum measured from copper-doped titania film on SiO$_2$/Si(100) substrate annealed at 700 °C is demonstrated in Fig. 26. From the deconvoluted spectra it can be observed that copper exists in three different oxides/hydroxides [101] among which Cu$^{2+}$ exists as two different chemical compounds CuO and Cu(OH)$_2$. In principle, besides Cu$_2$O, CuO and Cu(OH)$_2$ copper carbonate (CuCO$_3$) might form in the sample, since copper carbonates are formed very often during corrosion of copper surfaces in ambient atmosphere. However in case of copper doped titania films under study, the presence of copper carbonate can be excluded,
since C 1s spectra (Fig. 28) show no signs of CO$_3^{2-}$ at the higher binding energy side of C 1s spectra (289.1–289.6 eV) [102, 103]. CuO appeared in samples annealed at 300 °C or higher temperatures. With the appearance of CuO also Cu(OH)$_2$ appeared, but it is unlikely that Cu(OH)$_2$ forms during annealing, since the decomposition temperature of Cu(OH)$_2$ is 185 °C [104]. It is feasible to conclude that Cu(OH)$_2$ formed during storage of the copper doped titania thin sol-gel films in ambient atmosphere and the amount of the transformation from CuO to Cu(OH)$_2$ depends on the exact surface structure and morphology of the films. Transformation from CuO to Cu(OH)$_2$ is accelerated in case of samples annealed at and above 500 °C and Cu(OH)$_2$ starts to dominate in samples annealed at and above 700 °C.

If XPS offers possibility to investigate surface region then EDX enables to monitor lateral changes in chemical composition of the samples. Segregation of the impurity element in the titania matrix was observed in sol-gel thin titania films for all three investigated impurity elements. Nickel, cobalt and copper rich regions seem to consist of slightly larger crystallites than undoped samples and appeared on EDX mapping images as light areas (Fig. 29, 30, and 31). Also silicon can be observed in the gaps between the crystallites in the EDX image maps of films annealed at high temperatures.

![Figure 29. SEM and EDX image (the full image and the insets, respectively) of nickel doped TiO$_2$ films prepared on SiO$_2$/Si(100) substrates annealed at 850 °C. EDX images of Ni L$_{\alpha,\beta}$ and Si K$_{\alpha}$ are measured from the area inside the black rectangles and are presented as black and white insets [III].](image)

![Figure 30. SEM and EDX image (the full image and the inset, respectively) of cobalt doped TiO$_2$ films prepared on SiO$_2$/Si(100) substrates annealed at 750 °C. EDX image of Co L$_{\alpha}$ is measured from the area inside the black rectangles and is presented as black and white inset [II].](image)
4.3 Photo-induced processes on the surfaces of the films

In order to drive the photo-induced processes semiconductor material has to be illuminated and electron-hole pairs have to be created. Band gap of anatase and rutile is 3.2 eV and 3.0 eV, respectively [62, 13]. Photocatalytically more active anatase has wider band gap, which corresponds to photon energy in the UV region. The Sun has only limited light intensity in the UV region and a fraction of it reaches the sea level on Earth as can be seen from Fig. 32. In case of anatase photo-induced processes can be driven only by UV-light with wavelength less than 385 nm, which makes the useful properties of titania very difficult to apply in real-life applications. In order to increase the efficiency of photo-induced processes of titania, it is necessary to modify the electronic structure of the material (primarily to shrink the band gap while retaining the properties of TiO₂ important for the particular application).
Figure 32. Solar irradiance spectrum on sea level, the data origins from the ASTM G-173 table [105].

Figure 33. UV–Vis absorption spectra of the nickel doped TiO$_2$ and undoped TiO$_2$ reference films annealed at 550 °C (a), 750 °C (b) and 950 °C (c). The spectra are plotted as $\alpha^{1/2}$ versus photon energy graphs [III].
Figure 34. UV-Vis absorption spectra of the undoped TiO$_2$ and the cobalt doped TiO$_2$ films annealed at 550, 750 and 950 °C. The spectra are plotted as $\alpha^{1/2}$ versus photon energy graphs [II].

Figure 35. UV-Vis absorption spectra of the copper-doped TiO$_2$ films precursor film (a) and films annealed at 300 (b) and 700 (c) °C. The spectra are plotted as $\alpha^{1/2}$ versus photon energy graphs [IV].
To evaluate optical properties of doped and pristine titania films UV–Vis transmittance and reflectance measurements were carried out on films prepared on fused-silica substrates [II, III, IV]. The optical absorption coefficients α (Fig. 33-35) were calculated [106] from the measured transmittance (T) and reflectivity (R) by using the evaluated thickness of film (d). From this data the estimation for optical band gap width was deduced. The optical absorption edge of sol-gel titania thin films was shifted to lower energies by addition of nickel (Fig. 33) and cobalt (Fig. 34) relative to the pristine titania thin sol-gel films. Copper did not change the position of absorption edge but created additional absorption in the visible region of the spectrum, as can be observed from Fig. 35. The shifts in the absorbance edge and additional absorbance in the visible region is probably due to the creation of additional electronic states by the impurity atom in the electronic structure of titania. The influence of secondary compounds and phase shift from anatase to rutile can influence the optical properties of the films and cannot be neglected. For example the band gap of NiTiO$_3$, CoTiO$_3$ and CuO are 2.18, 2.25 and 1.7 eV [107, 108], respectively and will also contribute to the absorbance of doped titania thin films in the visible region.

The surface is called superhydrophilic when a water droplet placed on the surface takes an irregular shape and the contact angle between the droplet and the surface is close to zero degrees. Fig. 36 and 37 demonstrate change of the contact angle as a function of UV-illumination time for Ni and Co doped and undoped TiO$_2$ samples prepared on SiO$_2$/Si(100) and annealed at different temperatures. As can be seen by comparing Fig. 36 and Fig. 37 undoped titania achieved near zero contact angles sooner than nickel doped titania. Actually, nickel doping did not enhance UV-light induced hydrophilic properties of titania thin sol-gel films, nevertheless nickel doped titania thin sol-gel films on HF etched Si(100) substrates were able to achieve near zero contact angles when irradiated with an UV diode (photon energy 3.35 eV) mimicking the UV part of the solar irradiance spectrum as can be observed from Fig. 38. Addition of cobalt totally inactivated the light-induced hydrophilic properties of titania thin sol-gel films as can be observed from Fig. 37.

The inhibition of light-induced hydrophilic properties on nickel and cobalt doped titania thin sol-gel films might be due to the blocking of titania surface by nickel and cobalt rich compounds. Also the behaviour of impurity elements in the lattice of titania or secondary compounds in the titania matrix as recombination centres for electron-hole pairs cannot be ruled out and can contribute to the decreased light-induced hydrophilic properties of nickel and cobalt doped titania films compared to the undoped films.
Figure 36. Change of the contact angle as a function of UV-illumination time for the nickel doped TiO$_2$ samples prepared on SiO$_2$/Si(100) and annealed at different temperatures. Each point represents the duration of UV-illumination before one water droplet was placed on the surface and the contact angle was measured. The illumination source was a Hg-lamp (dominating photon energy 4.89 eV). Solid lines are eye guides only [III].

Figure 37. Change of the contact angle as a function of UV-illumination time for the cobalt doped and undoped samples prepared on SiO$_2$/Si(100) and annealed at different temperatures. Each point represents duration of UV-illumination before one water droplet was placed on the surface and contact angle was measured. The illumination source was a Hg-lamp (dominating photon energy 4.89 eV). Solid lines are eye guides only [II].

Figure 38. Change of the contact angle as a function of UV-illumination time for the nickel doped samples annealed at 700 °C and 800 °C. UV diode (photon energy 3.35 eV) was used to illuminate the surface [I].

Figure 39. Water droplet contact angles measured on copper-doped titania films prepared on soda-lime glass and annealed at 500 °C for 6–12 h. Contact angles were measured without additional UV exposure (i.e. natural hydrophilicity), 5 and 40 days after annealing of the films [IV].
Additional experiments were conducted to investigate and compare photocatalytic activity of copper doped titania thin sol-gel films to undoped titania films. For technical reasons (film preparation, and UV-Vis measurements) the films were prepared on relatively large and optically transparent soda-lime glass substrates. Films were irradiated with UV-light (dominating photon energy 4.89 eV) in controlled conditions (humidity, temperature). The results (Fig. 40) indicate that photocatalytic degradation of organic material was inhibited by copper doping. Low photocatalytic activity of copper-doped titania films can be explained by several reasons. According to Xin et al. [109] excessive oxygen vacancies and Cu compounds at high concentrations can become recombination centres of photo-induced electrons and holes. It would be advantageous to compare photocatalytic activity of our films on different substrates but unfortunately we were not able to measure photocatalytic activity of our films on fused-silica and SiO2/Si(100) substrates due to restrictions of our setup.

Natural hydrophilicity is a material’s property to exhibit small contact angles between the water droplet and the surface without UV-irradiation. Contrary to thin sol-gel titania films doped with either nickel, cobalt or copper prepared on SiO2/Si(100) or HF washed Si(100) substrates washed with HF, copper doped titania thin sol-gel films prepared on soda-lime glass substrates exhibited naturally hydrophilic surfaces. No irradiation with light was needed to achieve low contact angles (Fig. 39). Measurements of copper doped thin sol-gel films prepared on soda-lime substrates were conducted 5 and 40 days after annealing to ensure time stability of the effect. The films were kept in normal laboratory conditions in the dark and were not irradiated with UV-light prior to measurement. Measurements were conducted twice. The first measurement was
conducted on a film as it was and the second measurement was performed after washing the film with distilled water and drying it in air to eliminate effects caused by different air humidity on different measurement days. Contact angles of copper doped titania thin sol-gel films on fused silica substrate were also measured but the contact angles did not reach low values. Differences in natural hydrophilicity of copper doped titania films on different substrates might be due to different structure and composition of the films. Permpoon et al. [110] have shown that mixed SiO$_2$/TiO$_2$ films are naturally hydrophilic due to surface acidity. Surface acidity creates OH groups on the surface through dissociative adsorption of water molecules. To achieve high surface acidity a mixed phase has to be present. According to Tanabe et al. [111] surface acidity of binary oxides is caused by excessive charges on the doping atom that form because negative atom in the lattice retains its coordination number when bonding to the impurity atom. Charge imbalance might also be one of the reasons why copper segregates out as a separate phase when films are prepared on SiO$_2$/Si(100) silica substrates. When sodium diffuses into the film and destroys the crystal structure of anatase, copper solubility increases and an acidic surface can be formed.

It is important to note that sodium diffusion from the soda-lime glass substrate to the film was observed (see Fig. 23). In case of nickel, cobalt and copper-doped titania films on SiO$_2$/Si(100) substrates or Si(100)substrates washed with HF, XPS data shows that different dopant rich compounds segregate to the surface (Fig. 24, 25, Table 1), i.e. phase separation is in process and mixed phases do not form. Segregation can also be observed from Fig. 29–31 where EDX image maps of nickel, cobalt and copper doped titania films on SiO$_2$/Si(100) substrates show formation of dopant rich regions. For similarly prepared films on soda-lime glass substrates no diffusion of copper oxides to the surface occurs as can be seen from XPS measurements [IV] explaining the difference in surface properties of the films. Unfortunately EDX images of copper doped titania films on soda-lime glass could not be obtained due to heavy charging effects.

4.4 Titania nanoparticle based thin films

In previous chapters the influence of annealing temperature, nature of the impurity atoms, the substrate type and pre-treatment to the properties of sol-gel thin film samples were investigated. In contrast, most of the parameters of the nanoparticles based thin films are determined by the synthesized nanoparticles before thin film preparation and annealing [V, VI]. The crystalline structure and surface morphology are determined by the synthesis of titania nanoparticles (nanoparticle size and crystalline phase). With nanoparticle based systems extremely high specific surface areas of the films can be achieved. Sol-gel thin films need to be annealed to high temperatures to achieve photoactive anatase phase, but at high temperatures the grain size increases to several tens of
nanometres (Fig. 8-10), making it impossible to achieve similar morphology and crystalline structure as nanoparticle based thin films.

Nanoparticles with anatase crystal structure can be synthesized with diameters less than 10 nm (Fig. 6, 7) using wet chemistry methods. The particles are easily dispersible in a wide range of solvents in high concentrations (concentrations more than 10% in weight are achievable) and the dispersions are very stable and show no signs of agglomeration and precipitation in the timescale of one year.

Experiments with the nanoparticle based thin films were carried out to evaluate the photocatalytic and bactericidal activity of the films and were conducted in a humidity and temperature controlled environment to ensure the repeatability of the experiments [VI]. Realistic values were chosen for the temperature, humidity and UV-A light intensity to estimate the performance of the titania nanoparticle thin films in “real world” applications. Intensity of the irradiation was measured to be ca. 22 W/m² in the UV-A region and less than 0.1 W/m² in the UV-B region at the surface of the sample. According to ASTM G-173 table [105] UV-A irradiation intensity on the sea level on earth is ca. 30 W*m⁻² and total integrated irradiance for the direct sunlight (used in this work) is taken to be 900.1 W*m⁻². Titania nanoparticle based thin films showed good photocatalytic activity in the UV-A range, as can be observed from decomposition of fatty acids on the surface after UV-illumination (Fig. 42 and 43).

Three different fatty acids – stearic (C18:0), oleic (C18:1 cis-9) and linoleic acid (C18:2 cis-9,12) – were chosen to study the photo-oxidation processes on nanoparticle based titania thin films (Fig. 41). Changes in chemical structure of these acids, the most abundant fatty acids in bacterial cell membranes [112, 113], induced by UV-illuminated titania nanoparticle based thin films were analysed by X-ray photoelectron spectroscopy. The experiment was performed by coating above-mentioned fatty acids on titania nanoparticle based thin films and irradiating with UV-light. XPS spectra obtained from the fatty acids before treatment corresponded well to their structure and the number of carbon atoms in each different chemical state (see Fig. 42). C 1s XPS band components from sp² carbon (two single bonds and one double bond) at 284.1 ± 0.1 eV [114], sp³ carbon (four single bonds) at 284.8 ± 0.1 eV [115] and carboxylic group (marked as O-C=O) at 288.2 ± 0.1 eV [114, 102, 116] could be identified. In oleic and linoleic acid C 1s spectra contributions from both, sp³ and sp² carbons as well as from carboxylic group could be detected (see division of C 1s experimental spectra into the sub-bands); in stearic acid the contributions from sp³ carbon and carboxylic group could be identified (Fig. 42, 0 minutes irradiation time). In case of stearic acid C 1s spectra, position of the contribution from the carboxylic group is at slightly higher energy at 288.6 ± 0.1 eV (Fig. 42 (a)). In the C 1s spectra of stearic and oleic acid the intensity of the contribution from carboxylic group is suppressed due to the tendency of fatty acids to form oriented monolayers [117, 118] where the hydrocarbon chain is located perpendicular to substrate plane, carboxylic group is located on the substrate and the length of molecule is comparable to the escape depth of photoelectrons [119].
Figure 41. Chemical structure of stearic (C18:0), oleic (C18:1 cis-9) and linoleic acid (C18:2 cis-9,12).

As XPS measurements of photo-oxidized fatty acids were conducted in ultra-high vacuum (pressure in the order of 10^{-10} mbar), photo-oxidation products with low molecular mass and molecules that were not absorbed on the titania surface were removed leaving behind fatty acids directly linked to the surface of nano-TiO$_2$ films. The latter enabled the monitoring of chemical changes that occurred to fatty acids without the interference from other photo-oxidation products.

XPS spectra of the fatty acids after their exposure to UV-illumination on nano-TiO$_2$ films (Fig. 42) suggested that photo-oxidation of unsaturated and saturated fatty acids were different. Photo-oxidation of stearic acid (saturated) did not induce any changes in the structure of the fatty acid. Only decrease in sp3 carbons and carbon in carboxylic groups (marked as O-C=O) was observed (Fig. 42 (a)). Thus, in case of this saturated fatty acid no other chemical changes than shortening of the alkyl chain resulting finally in total mineralization of the molecule was detected during photo-oxidation.
However, photo-oxidation of oleic (Fig. 42 (b)) and linoleic acid (Fig. 42 (c))
(both unsaturated) was different due to the radical reactions associated with
carbon double bond. In the C 1s spectra of oleic and linoleic acid a shoulder
related to C-O bond [114, 102] appeared at 286.2 ± 0.1 eV already after 1 min
of UV-illumination. The appearance of C-O bonds during photo-oxidation of
unsaturated fatty acids can be linked to the formation of peroxides, as is
proposed by several authors [120, 121, 122]. Formation of peroxides in oleic
and linoleic acids was most likely driven by •OH radicals (created by TiO₂
during UV-A irradiation) attacking a hydrogen atom in R-H and by that,
creating a carbon radical R•. In the next step, molecular oxygen is added to R•
creating a peroxyl radical ROO•. Peroxyl radical abstracts a hydrogen from the
R-H bond creating a lipid hydroperoxide ROOH. Each lipid hydroperoxide
contains one C-O bond between carbon and oxygen [121]. Formation of C-O
bond was relatively fast: during the first three minutes of photo-oxidation the
relative number of C-O bonds in oleic and linoleic acid layers increased (Fig. 43
(b) and Fig. 43 (c)), and then started to decrease as the total carbon composition
decreased due to photo-oxidation. After 3 min of exposure the amount of C-O
carbon became similar to the remaining amount of sp³ carbon for both oleic and
linoleic acid layers indicating that the change in the chemical composition of
unsaturated fatty acids was quite extensive. One •OH radical can initiate a
process resulting in peroxidation of several fatty acids (radical chain reaction);
thus, even very low concentrations of •OH radicals can cause significant
oxidative damage to the components of bacterial cellular membrane. The time
required for total photo-mineralization was similar for all three fatty acids. After 10 min of exposure to UV-illumination on nano-TiO$_2$ thin film the peaks for all carbon compounds had disappeared in the XPS spectra suggesting total mineralization of fatty acids.

![Figure 43. Decomposition of stearic (a), oleic (b) and linoleic (c) acid and change in their chemical composition after their exposure to UV-A illumination on titania thin nanoparticle based films [VI].](image)

As stearic, oleic and linoleic acids are the main components of bacterial membranes [113, 123] it can be suggested that the chemical changes observed in XPS analysis of fatty acids could also take place in living cells when exposed to UV-activated TiO$_2$. The experiments with fatty acids suggest that in short time, saturated fatty acids will mineralize and unsaturated fatty acids will change in chemical composition and mineralize. Changes and rapid decomposition of fatty acids is probably the reason behind fast inactivation of *E. coli* on titania nanoparticle based thin films (Fig. 44), making the nanoparticle based thin films an effective self-cleaning and disinfecting system. In microbiology, colony-forming units per milliliter (CFU/ml) is a rough estimate of the number of bacteria able to form colonies in bacterial suspensions *i.e.* regarded as viable. Cell viability tests were used due to their simplicity and their ability to describe the surface from the standpoint of the application as a self-cleaning antibacterial surface.
Figure 44. Colony forming potential of *E. coli* in different exposure conditions. The effect of UV-irradiation length on colony forming potential of *E. coli* applied onto silicon substrates (blue) or titania thin nanoparticle based films (grey) [VI].

Good photo-induced properties of the nanoparticle based films are most likely caused by the extremely high specific surface area of such films. Surface region of titania can trap photoholes, photoelectrons are effectively trapped by surface adsorbed oxygen [13] increasing the lifetime of photo-generated electron hole pairs.
5 CONCLUSIONS

Sol-gel method was used to prepare titania thin films directly or to synthesize anatase nanoparticles, which were used afterwards for nanoparticle based thin film preparation. The sol-gel films were doped with cobalt, nickel and copper and the effects of doping and different annealing temperatures were systematically investigated using different techniques. It is important to note that scientific community uses the word “doping” in narrower (semiconductor physics) and wider meaning. In the present work word “doping” is used in very general sense, i.e. as synonym for “introducing impurity element to the system”.

During annealing of sol-gel thin films several different processes occur simultaneously and all of them will contribute to the formation of the structure and chemical composition of the films. It was shown that at first the sol-gel films during annealing dry, organic material evaporates and oxidizes, the structure of the film becomes denser. Increasing temperature anatase crystalline structure starts to appear around 300-450 °C, and the phase transition from anatase to rutile crystal phase occurs above 700 °C.

Two different experimental techniques were used to study segregation of impurity: XPS to determine the changes in the chemical composition of the film surfaces and EDX to determine the elemental distribution of the films in horizontal dimensions. Both experiments demonstrated the segregation of the doping element, XPS results show that the concentration of the doping elements increases in the surface region during annealing and EDX measurements show horizontal segregation of the doping element into dopant rich regions. Probably both of the experiments describe two sides of the same process. It was demonstrated that exact crystal phase transition temperature and extent are highly dependent on the doping element and the substrate pre-treatment.

It was shown that also extent of segregation and the critical temperature, when the segregation starts depend on the type of the impurity element and pre-treatment of substrates. One of the driving forces behind the segregation might be oxidation state differences between the impurity atom and Ti$^{4+}$. The most common oxidation states in compounds are for nickel +2, +3, for cobalt +2, +3 and for copper +1, +2. For example when Ti$^{4+}$ ion is replaced in the lattice by Ni$^{2+}$ ion the charge difference has to be compensated. Segregation of nickel and cobalt out of titania matrix can be also drive by a second reason, namely formation of NiTiO$_3$ from TiO$_2$ and NiO (or CoTiO$_3$ from TiO$_2$ and CoO) is thermodynamically feasible in the temperature range used in this study. The appearance of NiTiO$_3$ and CoTiO$_3$ in the samples coincides well with the segregation of nickel and cobalt to the surface of the thin films. The system is complicated and it is likely that also other factors contribute to the segregation process of the impurity element out of titania matrix.

It was demonstrated that addition of doping element shifts the optical absorption edge of the material to lower energies or creates additional absorption bands in the visible region. The shifts of the absorption edge and additional absorbance in the visible region are probably due to the creation of
additional states by the impurity atom in the electronic structure of titania. The influence of secondary compounds and crystal phase shift from anatase to rutile (different band gaps) can influence the optical properties of the films and cannot be neglected. For example the band gaps of NiTiO$_3$, CoTiO$_3$ and CuO are in the visible region and will also contribute to the absorbance in the doped titania thin films in the visible region. It was demonstrated that transition metal doping modifies the optical absorbance of titania thin films, thought the positive effects to photoactivity of the material are not extensive. The most probable explanation for that is the formation of regions with increased metal concentrations during heating of samples. That means metal impurities do not appear in a regular TiO$_2$ crystal lattice but completely new system is formed. However, theoretical predictions about improvement of hydrophilic and photocatalytic properties are based on standpoint of single metal impurity atoms in regular TiO$_2$ crystal. The inhibition of light-induced hydrophilic properties on nickel and cobalt doped titania thin sol-gel films might also be due to the blocking of titania surface by inactive nickel and cobalt rich compounds.

Therefore it is still reasonable to continue investigations of doped TiO$_2$, but most probably sol-gel process which includes heating at rather high temperatures is not the best method for preparation of metal doped TiO$_2$ samples with homogeneous impurity distribution.

It was demonstrated in the present work, that segregation of the doping element can be avoided by sodium impurities in the TiO$_2$ thin films. When segregation of the doping element is avoided, naturally hydrophilic surfaces can be achieved, though sodium impurities also destroy the crystalline structure of titania resulting in adverse effects to photoactivity of the material.

In the case of titania nanoparticle based thin films the crystalline structure (anatase) and surface morphology are determined by the synthesis of titania nanoparticles. With nanoparticle based systems extremely high specific surface areas of the films can be achieved. Also the temperature needed in post-treatment for achieving good photo-induced properties is considerably lower than for sol-gel titania thin films. Annealing of titania anatase nanoparticle films is necessary to adhere films to the substrate and to remove organic material from the films. In contrast to sol-gel titania thin films which achieve greatest activity after being annealed at 550 °C, titania nanoparticle based thin films can be used already after annealing at 400 °C. Both, good photoactivity and low treatment temperature are very important for improvement of industrial application and cost-effectiveness of TiO$_2$ based materials. Titania nanoparticle thin films show good photo-induced properties even with low UV-A irradiation intensities and could be used in normal sunlight conditions as self-cleaning and bactericidal surfaces.

It was shown that the titania anatase nanoparticles based thin films exhibit high photocatalytic activity and rapidly decompose different fatty acids on the surface of the films. Investigated fatty acids are important components of bacterial cell membrane, but also extremely good model contaminants. It was demonstrated that during decomposition also the chemical nature of unsaturated
fatty acids changes. Chemical changes and rapid decomposition of fatty acids is the reason behind fast inactivation of E. coli bacteria on titania nanoparticle based thin films, showing that these are effective self-cleaning and disinfecting systems. This system could be easily scaled up and used to coat large surfaces, due to the simplicity of the nanoparticle based film preparation and easy handling of the nanoparticle dispersions. The high effectiveness of the nanoparticle based films in lighting conditions comparable to the sunlight, is especially interesting for potential future applications.
6 KOKKUVÕTE

Lisandist ja valmistamistingimustest sõltuvad õhukeste TiO$_2$ kilede omadused

Eelnevast võib järeldada, et fotokatalüütiliste pindade valmistamise uurimine on jätkuvalt aktuaalne, kuid arvatavasti ei ole sool-geel meetod metalliga ühtlaselt dopeeritud TiO₂ kilede valmistamiseks sobiv. Suurenenud segumine on selle meetodi puhul vajalik fotoaktiivse anataasiga kristallstruktuuri formeerimiseks, kuid samas võhjustab kuumutamine lisandi segregatsiooni TiO₂ maatriksist kõrge metallisisaldusega regioonidesse.

Käesolevas töös näidati, et dopandi ühtlast jaotust maatriksis on võimalik saavutada naatriumi lisandi abil, mis aitab kaasa ka iseeneslikult hüdrofililise pindade tekkele. Samas hävitab naatrium fotoaktiivse anataasi faasi ja mõjutab pindade fotokatalüütilist aktiivsust negatiivselt.

Käesolevas töös uuriti alternatiivselt ka TiO₂ nanoosakestest valmistatud kilesid, mis on kristallilised (anataasi faasis) juba enne kuumumist. Selliste kilede omadused on määratud suures osas puhul vajalik fotoaktiivse anataasiga kristallstruktuuri formaerimiseks ja nende kilede puhul on võimalik saavutada suurt eripinda. Selliste kilede valmistamisjärgsete kuumutustemperatuuride fotoaktiivsete omaduste saavutamiseks on vürdeldes sool-geel kiledega madalamad. Kui sool-geel meetodil valmistatud õhukeste TiO₂ kilede puhul saabub kõige tugevam fotoaktiivsus kuumutustemperatuuril 550 °C juures, siis nanoosakestel baseeruvate kilede korral on vajalik kuumutustemperatuur 400 °C. Oluline on seejuures märkida, et kuna nanoosakes on juba algusest peale anataasi faasis, siis nanoosakestel baseeruvate kilede korral on kuumutamine vajalik sidumaks nanoosakesi substraradi külge ja orgaanilise materjali eemaldamiseks.

Seega võib antud töö tulemuste põhjal väita, et TiO₂ nanoosakestest valmistatud kiled madalad tõötlemistemperatuurid, head fotokatalüütilised omadused ning lihtne valmistamismenetlikka teevad neist perspektiivistika materjali tööstuslikeks rakendusteks.
ACKNOWLEDGEMENTS

I would like to thank the following persons for their support and help during the preparation of this work: Vambola Kisand, Meeri Visnapuu, Angela Ivask, Anne Kahru, Katre Juganson, Leonard Matisen, Rainer Pärna, Ergo Nõmmiste, and everybody else who contributed to this work.

I acknowledge the following agencies and foundations for the financial support: Graduate School “Functional Materials and Technologies” (European Social Fund project 1.2.0401.09-0079), Estonian Research Council (target-financed theme IUT2-25, grants 8216, 8737 and 7615); Estonian Nanotechnology Competence Center (EU29996); ERDF projects (“IRGLASS” 3.2.1101.12-0027, “TRIBOFILM” 3.2.1101.12-0028, “Nano-Com” 3.2.1101.12-0010, “Mesosystems: Theory and Applications” TK114, “High-technology Materials for Sustainable Development” TK117); Development Fund of University of Tartu.
REFERENCES

PUBLICATIONS
CURRICULUM VITAE

Name: Urmas Joost
Date of Birth: 05.11.1985
Nationality: Estonian
Phone number: 5801 7909
E-mail: urmas.joost@ut.ee
Occupation: University of Tartu, Institute of Physics, engineer

Education:
2005 – 2008 University of Tartu B.Sc. (Materials Science)
1996 – 2005 Jõhvi High school
1996 Sinimäe High school
1993 – 1996 Toila High school

Language skills: Estonian, English

Career:
2011–2014 University of Tartu, Institute of Physics, Engineer
2010–2011 University of Tartu, Institute of Physics, Specialist
2008–2014 NanoTAK AS
2008– University of Tartu, Institute of Physics, Engineer

List of publications:
Publications included in the thesis:

Publications not related to the thesis:

Stipends and honours:
2009 University of Tartu, Institute of Physics student stipend
2008 University of Tartu, Institute of Physics student stipend

Hobbies:
Model cars, cycling, reading
ELULOOKIRJELDUS

Nimi: Urmas Joost
Sünniaeg: 05.11.1985, Toila vald
Kodakondsus: Eesti
Telefon: 5801 7909
E-post: urmas.joost@ut.ee
Töökoht: Tartu Ülikool, Loodus- ja tehnoloogiateaduskond, Tartu Ülikooli Füüsika Instituut; insener

Haridus:
2008–2010 Tartu Ülikool, Tehnikateaduse magister (rakenduslik mõõteeadus)
2005–2008 Tartu Ülikool, Tehnikateaduse bakalaureus (materjaliteadus)
1996–2005 Jõhvi Gümmaasium
1996 Sinimäe Gümmaasium
1993–1996 Toila Gümmaasium

Keelteoskus: Eesti keel, Inglise keel

Töökogemus:
2011–2014 Tartu Ülikool, Loodus- ja tehnoloogiateaduskond, Tartu Ülikooli Füüsika Instituut, Insener
2010–2011 Tartu Ülikool, Loodus- ja tehnoloogiateaduskond, Tartu Ülikooli Füüsika Instituut, Spetsialist
2008–2014 NanoTAK AS
2008– Tartu Ülikool, Loodus- ja tehnoloogiateaduskond, Tartu Ülikooli Füüsika Instituut; Insener

Teaduslik ja arendustegevus:
Peamised uurimisvaldkonnad:
Metallidega dopeeritud titaan dioksiid kilede valmistamine sool-geel meetodil ja nende karakteriseerimine erinevate meetoditega (röntgen fotoelektron spektroskoopia, Raman spektroskoopia, UV-Vis spektroskoopia, teravik-mikroskoopia, aatomjõumikroskoopia, sünkrotron-röntgenspektroskoopia).

Publikatsioonide loetelu:
Publikatsioonid doktoritöös:

153

Publikatsioonid, mis ei ole doktoritööga seotud:

Saadud uurimistoetused ja stipendiumid:
2009 Tartu Ülikooli Füüsika Instituudi üliõpilasstipendium
2008 Tartu Ülikooli Füüsika Instituudi üliõpilasstipendium

Huvialad:
Automudelism, jalgrattasõit, ilukirjandus.