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Abstract

Managed run-time systems with garbage collection, like Java Virtual Ma-

chines, have proved themselves as boosters for developer productivity and

have removed the burden of manual memory management by using auto-

matic garbage collection. There used to be two major potential sources of

bugs associated with manual memory management: dangling pointers and

memory leaks. While garbage collection completely solves the problem of

dangling pointers, the problem of memory leaks is solved only partially,

as garbage collector cannot reclaim objects which are still referenced while

being unused. Such memory leaks pose a major problem for long-running

processes with finite amount of heap, as finally the heap will become ex-

hausted and the program will inevitably crash.

Prominent research for the solution against memory leaks in Java appli-

cations was mostly conducted before Java Virtual Machines received pow-

erful programming interfaces for monitoring and instrumentation and often

rely on modification of the virtual machine and garbage collector.

Current thesis classifies existing approaches for memory leak detection,

both automatic and manual, and proposes a novel lightweight approach

for automatic memory leak detection, utilizing monitoring capabilities and

programming interfaces of modern Java Virtual Machines. Instead of using

staleness indicators for particular class instances, the approach considers

statistical parameters describing evolution of objects in the heap to find

outliers in terms of object lifetimes grouped by their allocation site. Thesis
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defines and analyzes such a major indicator as the number of surviving

generations for objects created at one allocation site. Thesis demonstrates

that this indicator can be effectively used to identify memory leaks.

Shortcomings of using only the number of surviving generations for

memory leak are also analyzed. Analysis is based on the data which was

acquired from hundreds of different applications, where initial implemen-

tation of the method was successfully deployed. As a result of the analysis

new supportive statistical metrics are identified and used to further enhance

the method using machine learning to decrease the number of both false

positives and false negatives.

Case studies of the method were conducted with several real-world and

application frameworks and are described in the thesis in order to observe

detection quality of the method along with the analysis of the performance

overhead which is added by the implementation.
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Chapter 1

Introduction

Managed languages and run-time systems offer several benefits for the de-

veloper by abstracting away operating systems and hardware architectures.

More high-level services are provided by the virtual machine, thus requiring

less low-level code to be written by a developer. Run-time system verifies

the code while loading, and executes it in a security sandbox. Deployment

cost and complexity is lower, because the same code can be executed on all

platforms where run-time system is supported. All this leads to a better

productivity for the application developer.

Both managed and un-managed modern programming languages rely

on dynamic memory allocation. This allows allocation and de-allocation

of memory on demand, not knowing required amounts of memory upfront

during compilation. Dynamic allocation occurs in a heap, rather than on

the stack during execution or statically during compilation. Memory which

is allocated in the heap is accessed through a reference. Usually a reference

is a pointer to a memory address where allocated memory resides. Heap

allocation allows to dynamically choose allocation size, use recursive data

structures like maps or trees. Use of references allows returning newly

created objects from methods, passing references to other methods, and

sharing references between methods.
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If memory which is allocated on the stack or statically is freed by the

operating system when the application exits, then memory allocated dy-

namically in the heap has to be de-allocated by the application. This can

be performed explicitly by the application or automatically by the run-

time system. Explicit de-allocation occurs by calling C’s free function

or C++’s delete operator. Run-time systems use garbage collection to

reclaim unused memory. Manual de-allocation may result it two types of

problems.

First, memory may be freed while there are still references to it. Such

a reference is called a dangling pointer. If the program tries to access the

memory pointed to by the danging pointer the result is unpredictable, as

it is unknown what the run-time system will do with de-allocated memory.

There are two possible outcomes of this situation: immediate crash or

incorrect results. Immediate crash being the best outcome, as incorrect

results and probable later crash are much more hard to debug.

Second, the programmer may forget to free an object which is no longer

used by the application. This leads to a memory leak. While in small

applications memory leaks may pose no noticeable problems, in large long-

running applications memory leaks may lead to a severe performance degra-

dation or even a crash.

Concurrent programming and shared state further amplify these prob-

lems. Liveness of an object becomes a global property, but the decision

to deallocate that object still remains local. Solutions proposed over time

range from not using heap allocation when possible, to pass and return ob-

jects by value, rather than by reference, to use custom allocators to manage

a pool of objects [Jone 11].
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1.1 Problem statement

Automatic dynamic memory management resolves most of issues created

by the manual memory management. Garbage collection (GC) prevents

dangling pointers, as an object can be reclaimed if there is no reference to

it from a reachable object. And also memory leaks in previously defined

form cannot occur, as unreachable objects will be removed by the garbage

collector. Reclamation decisions are left to the central garbage collector,

which has knowledge of all objects on the heap and knows which threads

may access them, so it also solves the problem of global liveness and local

deallocation.

However, memory leak problem is not solved completely by the garbage

collection. Although all objects which are not not accessible for the program

are guaranteed to be reclaimed, garbage collection cannot guarantee the

absence of space leaks. Objects and data structures, which are reachable,

but are growing without limit, or just never accessed again by the program,

are not reclaimed and are wasting heap space [Jone 11].

Current thesis focuses on solving the remaining part of memory leak

problem for applications running in a Java Virtual Machine (JVM) – a

widely used garbage collected run-time environment. According to Tiobe

Programming Community Index [Tiob 14], an indicator of the popularity

of programming languages, since 2001 by 2014 Java was the most popular

programming language for 10 years out of 13. Java progressed not only

as a language but most importantly as a cross-platform runtime environ-

ment with garbage collection. In recent years we can observe an increase in

popularity of languages such as Scala, Clojure, Groovy, etc. which all uti-

lize Java Virtual Machine and its bytecode to create platform-independent

applications.

A condition in the JVM when a new object cannot be allocated in the

heap, because there is not enough space to accommodate it, ends up by

JVM throwing java.lang.OutOfMemoryError. There may be two reasons
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leading to such outcome. There might be plenty of free heap, but the pro-

gram may try to fit too much data into heap at once because of a program-

ming error, poor choice of algorithms, poor implementation of an algorithm

or just the amount of data has grown over time, so that a database query

started returning too much data. In such case either changing the algo-

rithm so that it would not load so much data at once or just increasing

heap size can help. The good part of this situation is that the source of

the problem is immediately visible in the stack trace – method which was

trying to allocate too much memory at once is on the top of the call stack.

Another reason for such outcome is the memory leak in terms defined ear-

lier – heap filling with objects which are not used anymore, but cannot be

collected by the garbage collector because of a forgotten reference.

In case of a memory leak the heap is depleted gradually by unused ob-

jects until there is no more space for any random part of the program to

continue. This means several bad things. The biggest problems is that

OutOfMemoryError is thrown in a random piece of code in the program

which has nothing to do with the actual source of the problem. The mem-

ory leak may grow slowly or be caused by some specific use case, which

makes it hard to debug and reproduce anywhere outside of a production

environment. When the heap utilization reaches its limits garbage collector

has hard times trying to free any memory required for the program, which

means that the garbage collector spends most of the applications’ CPU

time, which seems like application becomes unresponsive, or just hangs.

The problem of detecting memory leaks in Java applications was ad-

dressed before, however there’s still plenty room for improvement. Proba-

bly the most popular way to find sources of memory leaks today is still a

manual heap dump investigation. Although sometimes effective and sim-

ple, there are many scenarios where it falls short. In large applications,

with several gigabytes of normally used heap it may be difficult to separate

leaking objects from non-leaking ones. In addition, large heap dumps may
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consume a lot of resources to be analyzed. Acquisition of the heap dump

must be triggered at the right time or several heap dumps are required to

see the evolution of the heap contents. Heap dump also misses any tempo-

ral information and sources of the leaked objects. All these difficulties are

amplified by the human factor, as certain expertise is required to analyze

heap dumps.

Specialized, much less adopted, approaches targeted specifically for

memory leak detection also have limitations. For example, because of the

automatic memory management, reachability graph is so non-deterministic

that it makes static analysis on a general level still unfeasible and costly to

perform, which limits its application to just a subset of specific scenarios

which are known to be causing the leak [Shah 00, Dist 10].

Efficient runtime analysis techniques which account for actual object

usage were proposed before efficient JVM tooling for monitoring and byte-

code instrumentation made their way to production JVMs. This led to

solutions modifying the internals of JVMs and garbage collectors, which

are too critical components for such supportive utility functionality.

Current thesis describes the technique for memory leak detection in

Java applications which account for temporal information, creation sites of

objects and general application behavior while observing statistical metrics

of the application which can be obtained using standard monitoring capa-

bilities of modern Java virtual machines without modifying the code of a

garbage collector.

1.2 Contributions of the thesis

The main contributions of the current thesis are following.

• Classification of existing memory leak detection approaches is cre-

ated, separating leak detection methods into online, offline and hy-

brid methods with following sub-classification. Metrics observed by
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the approaches and methods used for their quality assessment were

compared and summarized. A notion of intrusiveness is introduced

and existing methods are compared against this new metric.

• A formal definition of the genCount metric for java applications is

given, and algorithm for memory leak detection, using genCount met-

ric grouped by allocation sites, is described.

• The proposed algorithm was implemented in the leak detection tool

called Plumbr. The tool was implemented as a Java agent using

standard Java programming interfaces which facilitated ease of de-

ployment and performance of the tool allowed its usage in many pro-

duction environments. The tool was made available for public use

and was used to collect the statistical snapshots of real applications

running in real production environments, thus collected statistics are

not synthetic and reflect real use of real applications.

• An infrastructure for gathering statistical information about alloca-

tion behaviour from thousands of applications was created and de-

ployed. The collected data was used to verify the applicability of

initial hypothesis and analyze its shortcomings.

• As a result of the analysis of collected statistical data about Java

applications, new metrics were designed and machine learning was

applied to improve the detection quality of the initial implementation.

• Plumbr was evaluated on real applications and frameworks and its

detection quality was compared with the existing state of the art

approach, which was using Java Virtual Machine modifications to

measure object staleness and it was shown that statistical approach

for memory leak detection performs better, especially considering its

low intrusiveness.
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1.3 Outline

Chapter 2 discusses state of the art for the research addressed by the

thesis. State of the art includes garbage collection and machine learning.

Terminology related to automatic memory management and garbage col-

lection is followed by the description of four basic algorithms for garbage

collection. Garbage collection algorithms used in the HotSpot Java Virtual

Machine along with description of the heap layout are described. Garbage

collection algorithms used in competitive virtual machines are described

briefly.

Basic machine learning concepts, performance evaluation metrics along

with short description of further used classification algorithms are pre-

sented. Section covering machine learning describes basic details required

to comprehend practical application of classification algorithms required

for the thesis.

Chapter 3 continues state of the art chapter by reviewing the pre-

liminary work related to the memory leak detection in Java applications.

Existing approaches are classified from the point of view of assessed met-

rics, performance overhead and intrusiveness. In addition, the methods

are classified into online, offline and hybrid groups based on their features.

Classification of the existing research outlines areas which are to be ad-

dressed and improved by the thesis.

Classification of the memory leak detection approaches is previously

published in [vSor 14a].

Chapter 4 introduces statistical approach for an automatic memory

leak detection in Java applications. Chapter describes how weak genera-

tional hypothesis which works for generational garbage collectors can be

used to detect objects which do not conform to the hypothesis. An impor-

tant concept of number of survived allocations, of genCount is presented

along with the analysis of its strengths and weaknesses. The approach was

implemented in the commercial memory leak detection tool Plumbr and its
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implementation details are discussed in the chapter including the analysis

of the runtime performance overhead using DaCapo benchmarks. Perfor-

mance of the leak detection is assessed and areas requiring further attention

are identified.

Description of the statistical approach and the analysis were previously

published in [vSor 11a],[vSor 14b].

Chapter 5 describes how machine learning was used to improve the

baseline leak detection quality set by the implementation described in

Chapter 4. First, the data sets used for learning and validation are de-

scribed. It is followed by the description of the design process conducted

to identify new attributes which should be used for learning. In addition to

the dominating genCount attribute, 5 additional statistical attributes are

proposed, which are further used for machine learning. Results of the learn-

ing with C4.5, PART and Random Forest classifiers are compared with the

baseline, showing significant improvement in memory leak detection per-

formance.

Experimental results of C4.5 and PART algorithms were previously pub-

lished in [vSor 13]

Chapter 6 contains descriptions of 4 case studies conducted to eval-

uate detection and runtime performance of the initial implementation of

the statistical approach for memory leak detection. Case studies include

validation of known memory leak from existing open source framework Ac-

tiveMQ, real-world eHealth web-application, along with a description of a

memory leak in HtmlUnit framework which was found while testing and de-

veloping Plumbr. In addition, a comparative case study with an alternative

memory leak detection tool, LeakChaser, is described.

Parts of the chapter 6, including case studies of ActiveMQ and the

eHealth web application, were previously published in [vSor 11b].

Chapter 7 concludes the findings of the thesis and discusses the future

research directions associated with this research.
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Chapter 2

State of the Art

2.1 Garbage Collection

Automatic garbage collection and compilation to cross-platform compatible

byte code are two most important and distinct features of any Java virtual

machine. While cross-platform compatible byte code greatly simplifies de-

ployment of applications across different operating systems and hardware

architectures, automatic garbage collections simplifies the life of applica-

tion developers taking away the burden of manual memory management.

Understanding of the main principles of garbage collection is also necessary

before addressing the memory leak issue we are trying to fix.

This section gives an overview of the terminology related to garbage

collection and reviews most popular collectors used in modern JVMs.

2.1.1 Terminology

The Heap. The pool of memory where dynamic allocation takes place.

Section 2.5.3 of the Java Virtual Machine Specification [Lind 13] defines

the Java heap as follows:
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Heap. The Java Virtual Machine has a heap that is shared

among all Java Virtual Machine threads. The heap is the run-

time data area from which memory for all class instances and

arrays is allocated.

The heap is created on virtual machine start-up. Heap stor-

age for objects is reclaimed by an automatic storage manage-

ment system (known as a garbage collector); objects are never

explicitly deallocated. The Java Virtual Machine assumes no

particular type of automatic storage management system, and

the storage management technique may be chosen according to

the implementor’s system requirements. The heap may be of a

fixed size or may be expanded as required by the computation

and may be contracted if a larger heap becomes unnecessary.

The memory for the heap does not need to be contiguous.

A Java Virtual Machine implementation may pro-

vide the programmer or the user control over the ini-

tial size of the heap, as well as, if the heap can be

dynamically expanded or contracted, control over the

maximum and minimum heap size.

The following exceptional condition is associated with the

heap:

• a computation requires more heap than can be made avail-

able by the automatic storage management system, the

Java Virtual Machine throws an OutOfMemoryError.

It must be noted that the JVM process, launched by the operating

system, has its own native heap, managed by the operating system. The

java heap is allocated within native heap and is managed by the JVM. Also,

Java Virtual Machine specification does not prescribe how the heap should

be structured, or how garbage collection should be performed. These are

implementation details of particular virtual machines and relevant design

decisions are driven by the requirements of the garbage collector algorithm.
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The mutator and the collector. A garbage-collected program is sep-

arated into two semi-independent parts. The mutator executes application

code (usually in several threads), allocates new objects, and mutates object

graph by changing reference fields so that they refer to different destination

objects. References may be contained in heap objects or in roots – static

variables, thread stacks, etc. As a result of such mutations an object may

get disconnected from the roots and become unreachable by following any

sequence of edges from the roots. The collector executes garbage collection

code (possibly in several threads) which discovers unreachable objects and

reclaims their storage [Jone 11].

The mutator roots. In addition to the heap memory, mutator threads

have a direct access to a set of references without traversing object graph.

These references are called roots. Objects referenced by roots are called root

objects [Jone 11]. Roots include references and variables on stack, static

variables, threads, and Java Native Interface (JNI) references (reference

from the native code to a Java object).

Reachability, liveness and staleness. An object is called reachable

when there exists a path to it from any root. The liveness of the object is

defined as an object being actively used in addition to being just reachable,

i.e., if reachability is a property, which prevents the garbage collector from

freeing the object, then liveness of the object shows whether the object is

still needed for the application. Liveness can be measured only during run-

time and is not available, for example, in a heap dump. Liveness, however,

cannot be predicted

Staleness of an object indicates whether an object has not been used

for a while. Staleness can be measured as a time since an object was last

used/accessed by the application, and the longer an object is not used,

the more stale it becomes. Staleness of an object is the best indicator of

an unused object; however, it can be expensive to calculate and obtain,

as all accesses of an object by the program must be captured. Staleness
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can be measured only during runtime and the information required for the

calculation is not available, for example, in a heap dump.

Strong references and reference objects. A reference from one

object to another via direct field or variable reference is called a strong

reference. An object is strongly reachable if it can be reached from the GC

roots via strong references only (without traversing any reference objects).

If an object is strongly reachable, it cannot be garbage collected.

Weak/soft reference is a reference from one object to another made by

using proxy objects implementing an interface of java.lang.Reference.

Implementations include java.lang.ref.WeakReference, java.lang.ref

.SoftReference, java.lang.ref.PhantomReference. These reference clas-

ses are of special meaning to the garbage collector. If an object is reachable

only via weak reference object then the object is called weakly reachable.

If an object is reachable only via a soft reference then the object is

called softly reachable. If an object is weakly reachable, then it is eligible

for finalization (a special method to be called before the object can be

disposed) and garbage collection, and thus will be reclaimed. The reference

object will be notified that the object it was referring was collected. If an

object is softly reachable, then the garbage collector can choose not to

collect the object as soon it becomes softly reachable but it can leave the

object on the heap until memory pressure arises. Softly reachable objects

are guaranteed to be collected before java.lang.OutOfMemoryError will

be thrown (see [Orac 13]).

All instances of reference classes may be associated with a reference

queue. When an object, pointed to by the reference object, is enqueued for

garbage collection, the reference object may be notified about this event

via the reference queue. If weak and soft references may make an enqueued

object strongly reachable again, thus preventing the collection, then phan-

tom references are only notified about objects which are already collected

and thus cannot be made strongly reachable again. Phantom references can
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be used for an alternative implementation of finalization, or for enforcing

an order in which objects are collected. These uses are quite advanced and

thus phantom references are seldom used in practice.

Dangling references, loitering references and objects. In pro-

gramming languages with manual memory management a dangling pointer

emerges when the object, to which the pointer was pointing is freed, but

the pointer itself is not nullified. Thanks to garbage collection dangling

pointers do not occur in managed languages; however, the term is often

encountered in respective literature.

Unnecessary/loitering reference indicates a situation when the object,

to which the reference is pointing, is no longer needed from the applica-

tion perspective; however, because of the reference, it cannot be reclaimed

by the garbage collector. If the reference is removed, the unneeded ob-

ject will be reclaimed. Loitering references cause memory leaks in runtime

environments with garbage collection.

Loitering object is a condition causing leaks in languages with manual

memory management. This happens when the reference to the allocated

memory is lost, but the memory region has not been deallocated. Loitering

objects are not an issue in garbage collected languages, thanks to garbage

collection, which detects object with no incoming references and reclaims

the occupied memory.

Stop-The-World operation. Some garbage collectors require that

the mutator threads are stopped, while the collection is performed. Threads

may be stopped at a safepoint. There are several reasons for this require-

ment. For example, collectors may relocate objects and thus existing ref-

erences must be updated. Stopping the threads simplifies synchronization

and allow for some operations to complete faster. Further optimization of

particular implementations are targeting to reduce the length of the stop-

the-world pause as much as possible. Optimizations include parallelizing

collection, if there are multiple CPUs available, or running some phases
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of the collection concurrently with the application and stopping the appli-

cation only for compaction. These details will be described in following

subsections.

2.1.2 Mark-sweep garbage collection

Mark-sweep garbage collection is one of the first algorithms for garbage

collection, described by McCarthy [McCa 60] for the LISP programming

language. The algorithm works in two steps. Starting from the roots, it tra-

verses all objects that can be reached by following intermediate references.

This phase is called tracing. During this traversal, objects are marked as

reachable. The next step, sweeping, removes all unmarked objects from the

heap, as they cannot be reached, and thus are unused.

Tracing is an indirect algorithm, i.e., it does not detect garbage, rather

it detects reachable objects and everything else is considered to be garbage

[Jone 11]. A direct algorithm is the reference counting, which considers an

object to be garbage if it has no incoming references. However, as garbage

collectors used in modern Java virtual machines are all tracing collectors,

reference counting is not described in further detail.

In the simplest form mark-sweep is fully stop-the-world operation. How-

ever, it is possible to reduce the length of the pause, for example, by stop-

ping the threads briefly to scan their stacks and further perform marking

concurrently.

Mark-sweep collection does not move objects, thus it is a subject for

heap fragmentation. Heap fragmentation means that although there might

be enough of free space in the heap, none of it is in contiguous block, which

is big enough for the requested allocation. Although there are strategies for

keeping fragmentation low, they all require overhead during the allocation

phase, while the block with correct size has to be found at first. In addition

strategies for reducing fragmentation make assumptions about object sizes
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and do not work well enough in a long-running application which allocates

objects of various sizes.

2.1.3 Mark-compact garbage collection

The unfragmented heap allows very fast sequential allocation, because the

object may be always allocated next to the used memory. Such allocation

technique is called bump the pointer, as the allocation only consist of ‘bump-

ing’ the pointer to the end of allocated memory. To take advantage of such

fast allocation, the heap must be compacted at some point. Mark-compact

collection addresses exactly this issue.

The first phase of mark-compact is marking, the same as in mark-sweep

collection. The second phase performs compaction by relocating the objects

and updating the references to all live object which have moved. The

compaction itself may be performed using different approaches: arbitrary,

linearising or sliding. Arbitrary approach relocates objects without regard

for their original order or whether they point to one another. Linearising

approach relocates objects so that related (referenced) objects are as close

as possible. Sliding approach slides objects to the one side of the heap,

squeezing out garbage, thereby maintaining original allocation order in the

heap [Jone 11]. In any of these approaches old objects tend to accumulate

on the bottom of the heap.

The downside of this approach is that in order to compact the heap,

several passes over heap must be performed by the collector, which increases

the time of the collection.

2.1.4 Copying garbage collection

Further advancement of the mark-compact collector is copying collector,

where instead of compacting the whole heap using several passes, the

semispace copying is performed. The heap is divided into two semispaces:
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fromspace and tospace. Objects are allocated in one semispace only. Af-

ter marking, collector performs evacuation or scavenging of all survived

objects from one semispace to another and the first semispace is not used

until next collection. This allows to perform compaction in one pass over

the semispace, compared to multiple passes required by mark-compact al-

gorithm.

Copying collection allows fast allocation and is easier to implement than

the mark-compact. It is not subjected to fragmentation compared to the

mark-sweep. However, in its simplest form, copying collector requires twice

as much memory compared to the mark-sweep or mark-compact algorithms,

or with the same amount of heap it will require twice as much collections

[Jone 11].

2.1.5 Generational garbage collection

As noted in subsection 2.1.3, long-lived and older objects tend to accumu-

late on the bottom of the heap. Some compacting collectors avoid com-

pacting these areas, but they have to be visited during the tracing in order

to identify reachable objects. In addition to these observations, two gen-

erational hypotheses are stated: weak generational hypothesis and strong

generational hypothesis.

The weak generational hypothesis states that most newly created ob-

jects live for a very short period of time [Lieb 83], or ‘die young’. Weak

generational hypothesis is supported by multiple research results from ob-

ject oriented (Smalltalk, Java) and functional (MacLisp, Common Lisp,

Haskell, Standard ML/N) programming languages.

The strong generational hypothesis states, that even for objects which

are not newly created, younger object will have a lower survival rate than

older ones. For this hypothesis there is much less evidence and long-lived

objects may have much more complex lifetime patterns depending on the

application.
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Generational collectors use weak generational hypothesis and separate

the heap into regions based on the object age, or generations, and apply best

collection algorithm to each generation separately. Younger generations are

collected before old generations and objects that survive long enough are

promoted, or tenured to older generations [Unga 84]. Most generational

collectors collect young generation using copying and old generation using

mark-sweep or mark-compact.

The documentation for Oracle HotSpot JVM contains figure 2.1 which

depicts the average distribution of survived bytes over different garbage

collection cycles.

Figure 2.1: Distribution of survived bytes over generations

Distribution of survived bytes over generations, source: [Java]

2.1.6 Garbage collectors in HotSpot JVM

Oracle HotSpot/OpenJDK is the reference implementation of the Java

Virtual Machine specification [Lind 13]. It was first released in 1999 by Sun

Microsystems. In year 2006 HotSpot JVM was licensed under GPL license,

which is now known as OpenJDK and which became official Java 7 reference

implementation. In 2010 Oracle corporation acquired Sun Microsystems

and since then Sun HotSpot JVM became Oracle HotSpot JVM. In year

2014 version 8 of HotSpot JVM was released.
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As the HotSpot JVM, being a reference implementation, is the most

widely used, its heap layout and garbage collectors are reviewed in more

detail. HotSpot JVMs utilizes generational garbage collection and as of

version 5, 6, 7, and 8 have four generations ([Java]) – young, survivor, old

and permanent (called MetaSpace in version 8). The layout of the heap

is shown on Figure 2.2. Virtual regions mean that although maximum

heap setting may be specified using -Xmx parameter, actual sizes of the

generations may be smaller, depending on the actual usage. Generations

may be resized up to a maximum size at the expense of virtual unallocated

space.

The permanent generation keeps objects which should not be collected

at all or should be collected very rarely (e.g., on application redeploy in the

application server). Class definitions, the string pool, static fields, etc., are

kept in the permanent generation. In Java 8 permanent generation, which

was held in the heap, is replaced with MetaSpace, which is allocated in the

native heap, outside of Java heap, and by default is not limited, in contrast

with previous implementation.
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Figure 2.2: Heap layout in HotSpot JVM

All regular objects are created in the young generation. Young collector

is a copying collector, which copies survived objects to the survivor gen-

eration. Survivor space is a semispace, where survived objects are copied

from one semispace to the other during young collection. After surviv-

ing a number of young garbage collection cycles, objects are promoted to

the old generation. When old generation fills up, the collection of the old

30



generation is triggered. Old generation is performed using mark-compact

collection. Garbage collection which occurs only in young generation, is

called minor collection, and collection of the old generation is called major

collection.

HotSpot includes several implementations of the garbage collector which

can be selected using command line parameters. The serial collector is a

single-threaded collector, which is best suited for single-processor systems.

The parallel collector performs collections in parallel, utilizing multiple

processors or cores. Both evacuation and compaction can be performed

in parallel (parallel compaction was introduced in Java 5 update 6 and

is enabled by default since Java 7 update 4). Parallel collection reduces

the duration of the stop-the-world pause and is therefore also called the

throughput collector.

The concurrent collector is a concurrent mark-sweep (CMS) collector

which performs part of the marking and sweeping concurrently with the

application. The main goal of CMS is to keep enough free memory in

tenured space so that promotion (which is still stop-the-world operation)

won’t fail. As CMS is a non-compacting, fragmentation may occur and due

to fragmentation promotion may still fail. Promotion failure will trigger

the compaction, which is performed in a single thread.
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Figure 2.3: Heap layout for Garbage First (G1) collector

The last collector is the Garbage First (G1) collector [Detl 04]. It was

first introduced in Java 6 as an experimental feature and is official in Java 7.

G1 was designed to reduce long pauses for large heaps and solve main CMS
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problem – fragmentation due to lack of concurrent compaction. Although

G1 has the same generations as other collectors, it organizes the heap dif-

ferently, as shown on Figure 2.3. Instead of having continuous eden and

tenured regions, they are divided into smaller fixed-sized regions, which

can be collected separately. Humongous regions are intended for alloca-

tions which occupy more than 3/4 of the heap region. Size of humongous

regions are multiples of the default region size. As is the CMS, so is the G1

a partly concurrent collector. G1 performs the marking concurrently and

then evacuates as a stop-the-world operation. Also, like the CMS, G1 can

suffer from promotion failure, which triggers the full GC.

2.1.7 Garbage collection in other Java Virtual Machines

IBM J9 is a proprietary Java virtual machine developed by IBM. J9 is

mostly distributed as a part of other IBM products, like IBM WebSphere

application server, and thus is rarely used on its own outside of these prod-

ucts. J9 support started with Java 5. IBM J9 also uses generational con-

current mark-sweep garbage collection. Young generation is called nursery

in J9. Unlike HotSpot’s separate eden and survivor spaces, nursery is fully

semispace and its semispaces are called allocate and survivor [Gene].

J9 also includes a balanced collector, similar to G1 collector in HotSpot.

It divides the heap into smaller regions and performs frequently partly

concurrent collections of these smaller regions instead of infrequent but

long collections of large regions, especially on large heaps.

Oracle jRockit is a proprietary Java virtual machine, initially devel-

oped by Appeal Virtual Machines, later acquired by BEA Systems in 2002,

which in turn was acquired by Oracle corp. in 2008. After acquisition by

Oracle, jRockit started to be integrated into HotSpot.

jRockit have two options for memory layout: single generation or two

generations. In single generational layout the heap is collected using ei-

ther the mostly concurrent or the parallel mark-compact collector. In two
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generational layout the heap is divided into the nursery and old regions,

where after minor collections survived objects are promoted directly into

old generation. Two-generational layout may also be collected with either

the mostly concurrent or the parallel collector [Tuni].

Jikes RVM is the Research Virtual Machine, designed to provide a

platform for experimentation with technologies related to the construction

of virtual machines. Jikes RVM is itself implemented in Java. Jikes RVM

includes The Memory Management Toolkit (MMTk) for use in research of

memory management advances, therefore Jikes RVM contains implementa-

tions of all kinds of garbage collectors. However, despite the state-of-the-

art research in the virtual machine area, the Jikes’ class library is not so

state-of-the-art and is not fully compatible with OpenJDK, therefore not

all software written in Java may run on Jikes [The 10].

Azul Zing is the proprietary commercial JVM from Azul systems.

Its distinctive feature is the Continuously Concurrent Compacting Collec-

tor (C4). It solves the main problem of other mark-compact collectors –

expensive compaction pause which eventually will occur regardless of the

internal optimizations of a collector. The compaction pause is the most

expensive part of the collection because, while objects are relocated during

compaction, all references pointing to the relocated object must also be

updated. The more live objects and references there are in the heap, the

longer the compaction pause will take. C4 solves this problem by using

hardware read barriers. Since 2005 Azul has provided required features

in custom hardware system Vega with custom multi-core processors and

specialized kernel. Since 2010 Azul implemented required feature set us-

ing modern x86 processors and respective supporting modules in the Linux

kernel [Tene 11]. The idea of using read barriers (or Loaded Value Barrier,

LVB) for garbage collection is to delay updating the references to relo-

cated object only when the respective reference is actually read, instead of

updating all references at once during collection.
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2.2 Machine Learning

A formal definition of machine learning can be stated as follows [Mitc 97]:

Definition 1. A computer program is said to learn from experience E

with respect to some class of tasks T and performance measure P , if its

performance at tasks in T , as measured by P , improves with experience E.

So, to apply machine learning one has to define a set of data to learn

from (E), a measure of performance to improve (P ) and identify tasks (T )

which the learning has to achieve.

Tasks, performed by the machine learning can be separated into com-

mon types. These types include among others:

• Classification: Assigning a label, or a class, to the data. Probably

the most classic example of a classification problem is the detection

of spam email.

• Regression: Data is assigned a real floating-point value instead of a

label. Again, a classic example is prediction of a stock price over

time.

• Clustering : Data is divided into groups based on similarity. Examples

of clustering include market research, sequence analysis in bioinfor-

matics, etc.

• Association rule learning : Discovering relations between attributes

in the data. Widely used in data mining, for example business rules

mining from the large database of facts about the customers.

Classification is the most relevant type of machine learning tasks in the

context of current thesis. Leaking objects must be identified to separate a

memory leak, thus objects are assigned one of two labels – leaking or not

leaking. Classification task which has only two labels to assign is called

binary classification.
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One may find clustering suited for the task of dividing objects into

two clusters of leaking and not leaking objects. However, main difference

between clustering and classification is that classification has a predefined

set of labels to assign, whereas clustering tries to find any similarities in

the data instead of having any predefined groups.

2.2.1 Evaluation of the performance

According to the definition, a measure of performance to improve is also

required to apply machine learning. In terms of performance, each result

returned by the binary classifier belongs to one of 4 possible outcomes:

1. true positive (TP) – a leaking object was correctly identified as leaking

by the classifier,

2. true negative (TN) – a non-leaking object was correctly identified as

non-leaking by the classifier,

3. false positive (FP) – a non-leaking object was incorrectly identified

as leaking by the classifier,

4. false negative (FN) – a leaking object was incorrectly identified as

non-leaking by the classifier.

Such outcomes are usually presented in a form of confusion matrix

shown in Table 2.1.

Predicted
Actual Leaking Non-leaking

Leaking True Positive (TP) False Negative (FN)
Non-leaking False Positive (FP) True negative (TN)

Table 2.1: Confusion matrix
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All further relevant performance metrics are calculated from these four

metrics. First relevant derived quality metrics are precision (or sensitivity)

defined as 2.1 and recall (or specificity) defined as 2.2. In the context of

memory leak detection precision indicates fraction of detected leaks which

are actually leaks, and recall indicates fraction of leaks detected by the

classifier out of all actual leaks.

precision =
tp

tp + fp
(2.1)

recall =
tp

tp + fn
(2.2)

Last, a combined measure for the classifier performance is required.

There are two alternatives to choose from: accuracy and F-measure. Accu-

racy shows a fraction of classifier decisions that are correct and is defined as

(tp+ tn)/(tp+ fp+ fn+ tn). The problem with accuracy in the context of

memory leak detection is that it also accounts for true negatives. However,

the number of leaking objects in an application in normal conditions, i.e.,

not in a synthetic test, is very small. So, labeling everything as non-leaking

would still produce a very high accuracy, which is not desirable.

An alternative to the accuracy is the F-measure, which is a weighted

harmonic mean of precision and recall. Using harmonic mean instead of

arithmetic mean avoids the possibility to get a high combined measure by

labelling all allocations as leaking and thus get 100% recall and therefore

at least 50% arithmetic mean. When the values of precision and recall

differ greatly, harmonic mean is closer to the minimal value, rather than to

arithmetic mean. Using weight in the F-measure makes it possible to favor

precision or recall in the resulting measure [Mann 08]. In case of memory

leaks precision and recall may be treated equally (all memory leaks must

be detected – high recall; as small number of false alarms as possible – high

precision) thus even weighting will be used. F-measure with even weighting,
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or balanced, is also called and F1 score and is defined as:

F1 =
2 · precision · recall
precision + recall

(2.3)

Another metric commonly used to evaluate classification algorithms is a

ROC (Receiver Operating Characteristics) curve and area under the ROC

curve (AUC). ROC curve plots true positive rate (defined as tp/(tp + fn),

or recall) against the false positive rate (fp/(fp+tn), or 1−precision) and

the AUC shows the probability that a classifier will rank random positive

instance higher than random negative instance. In case of discrete classifiers

such ranking can be obtained when probabilities of belonging to one class

or another are compared.

Classification algorithms can produce models of different kinds, but

on high level they can be divided into two major categories: black box

and white box. While black box models may provide good results, they

give little understanding on how data attributes affect the final decision.

Examples of black-box models include artificial neural networks, support

vector machines, etc. White box models on the other hand can be inter-

preted, understood and thus implemented and debugged, especially when

the number of attributes in not very high. This last feature is important

from the practical and engineering standpoint – generated model may be

easily implemented in any language, deployed to the end-user and results

can be interpreted in case of wrong results. For this reason white box clas-

sification algorithms are of primary interest in the context of current thesis.

Examples of white box models include decision trees and rule sets.

2.2.2 C4.5 classifier

C4.5 is a general classification algorithm widely used in practice and devel-

oped by Ross Quinlan [Quin 93]. It produces a decision tree in a form of a

set of if-then rules. Each rule in a non-leaf node in the decision tree must

contain a test that will divide the training cases. The main question is how
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to select the best rule to be used in a node? An ideal binary rule would

divide all elements in a data set into correct classes. Such an ideal rule

usually is hard or impossible to find. C4.5 builds an initial tree and then

iteratively globally improves it using heuristic techniques, namely concepts

of information entropy and information gain. These concepts from infor-

mation theory allow choosing the rules which extract the maximum amount

of information from a set of cases, with a constraint that only single at-

tribute may participate in the rule. Improving the decision tree implies

dropping redundant rules and optimizing remaining.

2.2.3 PART classifier

Another classifier, PART, generates a decision list based on the repeated

generation of partial decision trees in a separate-and-conquer manner [Fran 98].

Separate-and-conquer stands for removing all instances in the data set for

which each new rule matches. Partly PART is based on the C4.5, but in-

stead of generating full decision tree and optimizing it (which is a complex

and time consuming process), as C4.5 does, PART builds “partial” decision

trees which contains branches to undefined subtrees.

2.2.4 Random Forest classifier

Random Forest classifier is introduced by Leo Breiman in [Brei 01] and it

belongs to the ensemble of trees family of decision tree classifiers. Its formal

definition is as follows:

Definition 1. A random forest is a classifier consisting of a collection of

tree-structured classifiers {h(x,Θk), k = 1, . . .} where the {Θk} are inde-

pendent identically distributed random vectors and each tree casts a unit

vote for the most popular class at input x.

This definition is explained by Breiman [Brei 01] as follows:
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Random Forests grows many classification trees. To classify a

new object from an input vector, put the input vector down each

of the trees in the forest. Each tree gives a classification, and

we say the tree ”votes” for that class. The forest chooses the

classification having the most votes (over all the trees in the

forest).

Three important parameters define how the forest is grown: number of

trees, number of features and depth of the tree to be generated. Number of

trees specifies how many trees should there be in the forest. Trees are grown

using binary splitting, where each decision node is split in two children.

Number of features defines how many random variables are chosen for any

particular tree to start growing.

Random Forest classifier copes well with data sets including large num-

ber of attributes and data sets with small number of samples.

2.3 Summary

This chapter described basic terminology related to the dynamic memory

management and garbage collection, and discussed the state of the art

in garbage collection in Java virtual machines. Conceptual approaches

for garbage collection like mark-sweep, mark-compact and generational

garbage collection were described. Most widely used heap layouts of mod-

ern Java virtual machines were described.

The chapter also introduced basic machine learning concepts and ap-

proaches for evaluating the performance of learning algorithms in a volume

required for practical application of the machine learning in current thesis.

Further used classifiers, C4.5, PART and Random Forest, were introduced.
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Chapter 3

Classification of Memory

Leak Detection Techniques

An online search for the terms “memory leak java” or “OutOfMemory-

Error” finds thousands of blog posts, forum, and mailing list discussions,

which means that memory leaks in JVM languages are not just a theoretical

problem. Memory leak detection has been studied over the years and several

solutions have been proposed. In [vSor 14a] memory leak approaches were

reviewed considering their implementation complexity, measured metrics,

and intrusiveness. As a result, the classification of memory leak detection

from analyzed standpoints is proposed.

The state-of-the-art approaches for memory leak detection can be clas-

sified as methods implementing:

1. online detection, further separating methods into

(a) measuring staleness,

(b) detecting growth,

2. offline detection, including methods

(a) analyzing captured stated, e.g., heap dumps,
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(b) using visualization to aid manual leak detection,

(c) static analysis of the source code.

3. Hybrid methods, combining features from both online and offline ap-

proaches.

Following sections will describe state of the art in research according to

the defined classification.

3.1 Online methods

Online methods actively monitor and interact with the running virtual ma-

chine in order to detect leaking objects. The advantages of online methods

are access to run-time information, such as allocation trace, an object’s live-

ness and activity. The main problem of online methods is that they impose

overhead on the running application. Some methods use metrics, which are

very expensive to measure, thus limiting the applicability of these methods

in real production systems. Another limitation is the kind of information,

which is used for detection – several online methods rely on features not

present in modern production JVMs and require modification of either the

garbage collector or some other JVM internals (or both). Such methods are

implemented in research JVMs like Jikes RVM which limits their adoption

in industrial use, as it is highly unlikely that administrators of a critical

system (which probably may only use a JVM, which is certified for use with

a particular very expensive hardware or operating system) will deploy such

a system in production on a research JVM just to find the memory leak.

Self-healing systems including a fair amount of research are an interest-

ing succession of online leak detection methods. In addition to detecting

the leak and reporting it to the user, self-healing systems extend runtime

of the system suffering from a memory leak by providing countermeasures,

such as swapping out leaked objects, or weaken references that keep leaking

objects reachable.
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On the conceptual level, online methods can be divided into two groups:

staleness detection and growth analysis. In the following subsections these

groups will be reviewed in more detail.

3.1.1 Staleness detection

As defined in Section 2.1.1, the staleness of the object is measured as the

time since the program last actively used it. The intuition behind this met-

ric is simple: if an object remains long enough in memory and is not used,

then it is probably leaked. The main problem with staleness detection is

that recording all object accesses without modifying the JVM is extremely

expensive, as in addition to each read access there will be also one write ac-

cess to somehow track the usage. As usage of brute force methods is clearly

ineffective for this purpose, researchers try to find ways to implement this

complex task more effectively.

Bond et al. [Bond 06] proposes Bell (Bit Encoding Leak Location) —

encoding and decoding of per-object leak-related information using a single

bit. It is a probabilistic encoding, which loses a lot of information, but

given sufficiently many objects and a known finite set of allocations (every

program has a finite number of lines of code where objects are instantiated),

encoded data can be decoded with high confidence. To store allocation sites

encoded with Bell for each object, one of four free bits in an object header

in Jikes RVM was used, which means that no new memory overhead is

introduced.

After implementing proposed bit-encoding in a Jikes RVM, Bond et al.

implemented a leak detection approach utilizing Bell in a leak detection tool

called Sleigh. In addition to one bit of allocation encoding in the object

header, Sleigh adds the last-used site using Bell and a two-bit saturating

stale counter, counting the time since the object was last accessed. The

stale counter is implemented as a logarithmic counter, i.e., the counter

contains a logarithm of the time which passed since the last object access.
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Since the counter occupies two bits, it saturates at a value of 3. The base

of the logarithm counter is fixed to 4 in [Bond 06].

These counters are added using the remaining 3 free bits in the object

header. Sleigh instruments all methods to update the last-used site counter

and reset the staleness counter whenever the object is referenced during

program execution. Jikes RVM’s garbage collector is changed in a way

that when it traverses an object graph it increments the staleness counter

after every predefined number of collections.

Leak detection is performed by periodically decoding and analyzing

highly stale objects. Execution time overhead is 29% but by using the

adaptive statistical profiling technique described by Chilimbi in [Haus 04]

this overhead is further reduced to 11%.

Bell was later used by Tang et al. in the LeakSurvivor [Tang 08], which

is one of the self-healing methods. LeakSurvivor uses Sleigh to detect po-

tential leaks, and then swaps them out and in, if needed. If a previously

swapped out potential leaking object is swapped back in, the object is

marked as not leaking. LeakSurvivor keeps track of swapped out objects

using the Swap Out Table (SOT).

LeakSurvivor is implemented as a part of the garbage collector in the

Jikes RVM [The 10].

A very similar self-healing system is implemented by Bond and McKin-

ley in the tool named Melt described in [Bond 08]. The general approach

to swapping objects from the heap to disk and back is the same: to detect

object staleness, store stale objects to disk, and activate stale objects when

needed. Staleness detection is implemented by changing both the garbage

collector (to mark the object during the collection phase as stale) and dy-

namic compiler (to instrument bytecode to unmark the object on use). The

collector also moves the stale object to disk.

If a stale object is referencing an active object, then a compacting or

copying garbage collector may move the active object in the heap and the
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reference in the stale object must be updated to point to the new location

of the active object. To mitigate this problem, stub-scion pairs are used,

where the stale object on the heap is replaced with a scion (an object

pointing to a stale object) and the stub part is swapped out. Scions are

special to collectors and cannot be relocated by them. Melt keeps track of

swapped out objects using a scion table.

Melt is implemented in the garbage collector of Jikes RVM [The 10].

LeakSurvivor and Melt were developed concurrently and the main differ-

ence between the two is that Melt guarantees “space and time proportional

to in-use memory” [Bond 08]. This means that Melt is able to handle the

case when in-memory object references swapped out a stale object and this

in-memory object becomes stale on its own. In this case, LeakSurvivor still

keeps the reference between the now two stale objects in the heap, whereas

Melt is able to swap out that reference as well, thus freeing more heap.

In addition, it is claimed that Melt incurs less stale object detection CPU

overhead – 6% in Melt vs 21% in LeakSurvivor.

Evolutionary improvement to Melt is described by Bond and McKinley

in [Bond 09]. As an improvement from previous work ([Bond 08]), instead

of monitoring object staleness, whole data structure (object subgraph) stal-

eness is identified and instead of swapping out the data structure it is re-

claimed (pruned) altogether. Bell [Bond 06] is used to detect staleness of

the data structure.

The leak pruning approach waits for the heap to become exhausted

(the threshold is defined externally by specifying expected memory use)

before predicting and reclaiming possibly dead objects. Reclaiming such a

reference is called reference poisoning, and when the application accesses a

poisoned reference, an error is thrown. This preserves application semantics

as if leaking objects have not been reclaimed and then the program would

run out of memory anyway (guaranteed by the fact that heap exhaustion

triggers pruning).
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Leak pruning is implemented in the garbage collector of Jikes RVM

[The 10].

Another leak detection technique utilizing object staleness is proposed

in [Rays 07] by Rayside and Mendel, where object ownership profiling is

described. In addition to memory leak detection, the described profiling

technique can be used to detect memory usage inefficiencies in the profiled

application. Such inefficiencies (or anti-patterns) include:

1. extending a mutable base class – inheritance of unneeded fields, oc-

cupying heap;

2. failure to release dormant references – also known as a leaking listen-

ers anti-pattern, a reference which was created when an object was

active but keeps holding the object after it became inactive;

3. construction of zombie references – a references which were created

after the object became inactive;

4. tangled ownership contexts – expected encapsulated data structure

referring to unexpected external structures;

5. bloated facade – heavyweight facade object (providing unified access

to some subsystem) with lots of internal dependencies; when used

not as a singleton, may introduce significant overhead; if a long-lived

object, requiring only small subset of functionality retains a reference

to such a facade.

Object ownership profiling technique records the unique identifier of

every object, its size, time of creation, collection time, source and target of

every method call or field access. Collected trace is analyzed by plotting

allocated space of reachable and active (actively referenced in the trace)

objects over time. An observation which can be made from these plots is

whether an object is alive much longer than it is used, i.e., stale, in which
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case there is some memory inefficiency or leak. In addition, these plots

show how much space is occupied by unneeded data.

Collected information is presented to the programmer as an object own-

ership hierarchy which is annotated with the aforementioned plots showing

space occupied by the objects over the time of reachability and liveness.

Analysis, which has to be performed by the programmer, consists of cor-

relating object ownership, retained heap size, reachable time and liveness

time to infer memory leaks or memory usage inefficiencies.

As the authors admit, instrumenting as much bytecode as possible is

extremely expensive, which makes object ownership profiling a very heavy-

weight method to be used to diagnose complicated memory problems in

the development environment.

The last method using staleness as a main indicator for memory leak

detection is a method for “precise memory leak detection for Java soft-

ware using container profiling” described in [Xu 08, Xu 13] by Xu et al.

The method’s main assumption is the observation that most of the leaks

happen via collection classes (or containers, e.g., classes belonging to Java

Collections API). So, instead of monitoring all objects equally, the approach

focuses on monitoring only collection classes for growth and element access

times to detect staleness.

Instead of starting with the assumption that there are no leaks in the

application and detecting leaks, the method starts by suspecting all con-

tainers and during the runtime it rules out non-leaking ones. Containers

are identified by code annotations which map add, get and remove opera-

tions to actual implementation. For the default Java collections API this is

performed automatically, but corresponding methods in custom collections

must be annotated manually by the user.

Next, the application’s total memory consumption is monitored to rule

out non- leaking collections. If heap usage is growing over a period of

time, then the containers’ size changes are correlated with the overall heap
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consumption. If the container is not growing along with the heap, then this

container is ruled out.

Leak candidates are ordered by leak confidence, which is composed of

memory usage contribution and staleness contribution. Leak confidence

is defined as an exponential function of staleness contribution, indicating

that staleness is a more important parameter. An important difference

in staleness calculation, compared to the one given in Section 2.1.1, is

that staleness is computed as the time since the object was placed into, or

retrieved from the collection, rather than the time since use of the object.

One aspect, which this approach does not account for, is the origin

of the objects in the collection. The allocation site of the object being

leaked is valuable information to find and fix the source of the leak. This

contrasts with previous approaches, which also tracked allocation sites of

leaking objects, whereas this method only monitors containers of leaking

objects.

3.1.2 Growth analysis

Online leak detection algorithms based on growth analysis look at various

parameters growing over time while the application is working. These var-

ious parameters can be the cumulative size of objects of a certain type,

object count, or the number of different generations. The current subsec-

tion reviews these approaches in more detail.

There are two ways to instrument a running Java program: by per-

forming direct bytecode instrumentation using an agent or using an aspect-

oriented programming (AOP, see [Kicz 97]) library. If bytecode instrumen-

tation allows for changing any place in the code and is the most low-level

approach available in the JVM, then AOP operates with higher level con-

cepts to select what to instrument – join points. Usually join points are

either method calls or field references. AOP libraries allow code to be added

before, after or around the join points.
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In 2007, Chen et al. in [Chen 07] described the usage of AOP for

memory leak detection, implementing this approach in the FindLeaks tool.

FindLeaks analyzes memory leaks by using an AspectJ [Ecli 13] library to

collect information about instantiation and references to leaking objects.

The intuition behind FindLeaks is simple – track object creation and dis-

posal and if more objects of a certain class are created than freed, then this

particular class is leaking. In addition allocation traces of objects are also

collected to be presented to the end-user. The end-user must specify the

package to monitor, so that only a subset of the application can be tracked.

Notification mechanism provided by WeakReference class is used to track

object destruction.

Leak detection itself operates on the three aforementioned hash tables to

calculate ratios between construction and destruction over time to calculate

trends and present that information to the end-user in a color-coded form

for visual evaluation.

Unfortunately, the publication [Chen 07] does not provide any perfor-

mance analysis. From the description, the method looks quite heavyweight,

both CPU and memory wise, as it maintains a separate object hash table

which lists all created objects, a reference hash table with reference related

information, and a method hash table to keep track of references pointing

in/outside of the package which was enabled for tracking.

In 2006 Jump and McKinley in [Jump 07, Jump 06] described a mem-

ory leak detection approach performing size growth analysis. The authors

have implemented a dynamic memory leak detection approach for garbage-

collected languages in a tool called Cork.

The main contribution of the work is the description and construction

of the Type Points-From Graph (TPFG) data structure, which summarizes

dynamic object graph by class. The usual representation of the heap is the

objects point-to graph, where each node is a single object and each directed

edge is an outgoing reference (from the object holding the reference to
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the object being pointed to). Nodes in TPFG summarize objects by their

class while edges contain references between types turned backwards – the

outgoing directed edge describes incoming references. Nodes of TPFG are

annotated with volumes of live objects for each class. Edges of TPFG are

weighted by the volume of nodes to which edges are pointing to.

To fill TPFG with data, the authors have modified Jikes RVM’s [The 10]

garbage collector in order to update TPFG with size data on every full col-

lection while the collector scans the heap. The authors report very low

overhead, both in terms of space and time – less than 1% and 2.3% respec-

tively.

To find memory leaks, TPFG’s evolution is analyzed over time in terms

of growing types. Cork reports a chain of references between types starting

from the growing nodes up to non-growing nodes. Along with a chain

of references, Cork also reports type-based allocation sites. A type based

allocation site means that for each leaking class all allocation sites are

reported, not only allocations which constructed leaking objects.

In 2011 an idea for the statistical approach to memory leak detection,

which is the main topic for current thesis, was first presented [vSor 11a,

vSor 11b]. The method was refined and further researched in subsequent

years ([vSor 13, vSor 14b]) and also implemented in the commercial tool

called Plumbr. The method falls in the growth detection category. Al-

though the method looks for objects that are steadily created but not freed

over a period of time, the method does not account for object access times,

thus it is a growth and not a staleness detection method.

The statistical approach for memory leak detection is the main contri-

bution of the current thesis and thus will be described in detail in following

chapters 4 and 5.

A separate group of methods, utilizing growth detection, is composed

out of self-healing systems, which monitor the growth of heap usage and

then try to swap out or weaken references to specially marked objects.
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The first work on self-healing systems involving memory leak recovery

for Java applications is described in [Brei 07] by Breitgand et al. and

covering the Panacea self-healing framework. Leak toleration is only one

feature of this general self-healing framework. For Panacea to work, a

programmer must annotate the code with annotations defining classes that

can be accessed by tools, i.e., (Healers) for monitoring, configuration and

management tasks during runtime.

A healer intended to fix memory leaks, ObjectDumpHealer, can swap

out annotated objects to disk when the heap fills above a predefined ratio.

Objects that are annotated as @Dumpable, are replaced by the proxy object

which, if needed, can swap the original object out and then swap in, when

accessed. Thus, from the point of view of the leak detection the approach

doesn’t provide any mechanism to detect leaking objects automatically and

swap them out, rather requiring the developer to annotate certain classes

suitable for such management.

This solution is therefore intended to survive any memory shortage by

swapping out objects rather than throwing the OutOfMemoryError. A nice

feature of the approach is that it can be implemented in a non-intrusive

way, using only bytecode modification.

Evolutionary research in this field is described by Goldstein et al., in

[Gold 07], which adds a new healer agent to the aforementioned Panacea

framework (see [Brei 07]) – LoiteringObjectsHealer. The principle of opera-

tion of the LoiteringObjectsHealer is very similar to the ObjectDumpHealer

described by Breitgand. From the description the only noticeable improve-

ment seems to be the ability to notice when proxy objects are garbage col-

lected (using finalizers) so that swapped out objects can also be reclaimed.
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3.2 Offline methods

Offline methods are intended to help the programmer analyze what has

happened in the program by analyzing either dumps or by gathering some

other data to analyze and visualize without affecting the running system.

The advantages of such methods are clearly low overhead, especially in

the case of heap dump analysis, which can be acquired as a post-mortem

artifact of the JVM.

The weak point of offline analysis, and heap dumps in particular, is that

runtime information like allocation trace or other runtime behavior is not

available offline.

Heap dumps, for example, miss allocation information, thus it is not

possible to detect where leaked objects were created. Also, heap dumps do

not contain temporal information about when leaked objects were created.

Both of these questions are important to understanding why a leak happens

in the first place. Another complication is that by default a heap dump is

not created when an OutOfMemoryError is thrown, and an additional JVM

parameter must be provided in startup scripts. This means that if a leak

requires several days to grow big enough and crash the application, then

to start working on the heap dump another couple of days are needed to

get the dump (which also will include crashing the production environment

and affecting end users).

As the heap dump contains all the information stored in the heap by

the application, it also may contain sensitive data, which may not be seen

by developers, thus making it complicated to find and fix the leak.

Other types of offline analysis include visualization techniques, which

visualize data in a way that helps a programmer spot memory usage prob-

lems in general and find memory leaks in particular.

This section focuses on both dump analysis and visualization tech-

niques.
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3.2.1 Analysis of captured state

Analysis of captured state is widely used in different forms in the work

previously reviewed. Capture of state can take different forms. The most

popular and standard way to capture the state is to generate a heap dump

using standard tools. Unless the leak detection technique involves chang-

ing the garbage collector (which traverses the object graph in the heap)

heap dump analysis is the easiest way to discover the reference chain from

the leaking object to garbage collection roots. Although by default JVM

provides means for creating heap dumps, state capture used in the work

reviewed take different forms: full heap dump [Maxw 10], partial heap

dump [Mitc 03] or custom reference dump. Visualization techniques (Sec-

tion 3.2.2) also use heap dumps either to apply distinct visualization syntax

([De P 99]) or analyze heap regions for memory problems ([Reis 09]).

The first tool which must be mentioned is Eclipse MAT [The 11] –

a production quality open-source tool for heap dump analysis and explo-

ration. Among others, it also contains a function to find dominators and

the largest objects, which greatly helps in manual leak analysis.

The next tool specifically focusing on partial heap dump analysis for

memory leak detection, is LeakBot, described by Mitchell and Sevitsky in

[Mitc 03]. The distinctive feature of the approach is that it observes leaks

on a data structure level, rather than viewing single objects, and it performs

partial dump analysis to monitor structure evolution.

On a high level, LeakBot operates in three steps. First, LeakBot au-

tomatically ranks data structures by their likelihood of containing leaks.

This is achieved by taking a number of snapshots and finding growing data

structures using ranking. Ranking of the candidates is also performed in

three steps, where each next step is more expensive to perform, but it oper-

ates on a smaller set of candidates. The first step uses eight binary metrics

divided into structural and temporal metrics, which can rule out many ob-

jects using cheap metrics, e.g. observation that an array in Java cannot
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grow and thus cannot be a leak root. The second ranking step is based on

mixture metrics, which depend on the particular data structure and include

attributes like structure size or reference structure between objects. Gat-

ing functions combine mixture metrics depending on the context to refine

ranking. The third ranking step is called iterative fixpoint ranking, which

analyzes the remaining candidates from the point of view of domination

(see the definition of a dominator below). As a result, the first step prunes

the set of candidate structures using object reference graph properties and

predefined knowledge of how leaks can occur.

In the second step, LeakBot uses co-evolving regions – regions as big

as possible, but evolving in a coherent way – to identify suspicious regions

within a data structure dominated by a leak root and to characterize their

evolution.

In the third step, LeakBot uses results from the first two steps to moni-

tor evolution of the structures by taking and comparing partial heap dumps

containing suspected structures. The third step performs evolutionary trac-

ing, which in a loop refines rankings generated by the first two steps.

LeakBot is implemented as a JVMPI agent1.

Maxwell et al. in [Maxw 10] described how to apply graph mining

algorithms to find memory leaks in heap dumps. An important contribution

of the work is that the object graph stored in the dump is preprocessed to

build a dominator tree of the objects and then this dominator tree is mined

for recurring sub-graphs.

In graph theory, a dominator relationship is defined as follows: “A node

x dominates a node y in a directed graph iff all paths to the node y must pass

through the node x” [Maxw 10]. In application to memory leak detection

the dominator will be the single object responsible for keeping reachable

an entire subgraph of leaking objects, e.g., a collection object holding all

leaked objects.

1JVMPI is a profiling interface for Java which has been deprecated in favor of JVMTI
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To compute the dominator tree an implementation of the Lengauer-

Tarjan algorithm [Leng 79] from Boost library [Boos] was used.

3.2.2 Visualization

Visualization approaches are used to help programmers visualize the heap

in a way that could help them easily spot memory regions with the most

objects having the largest volume.

The first approach to cover is a work from 1999 by DePauw and Sevitsky

analyzing the visualization of reference patterns implemented in JInsight1

([De P 99]).

The main contribution of the approach is the creation of visual syntax

to order graph nodes (representing objects) based on their age and also

colorizing them according to age. To reduce the number of elements on the

screen, reference patterns are extracted and visualized instead of all objects.

Reference patterns are intended to eliminate repetitive reference sequences,

effectively eliminating redundancy. Generated visual representation allows

interactive exploration.

The reason to create such a visual syntax is an observation that memory

leaks occur during well-defined operations (e.g., user interaction) which are

supposed to release all temporary objects. Thus, if a programmer specified

the time boundaries of such operations, then the tool can find objects that

were created during that operation but cannot be freed after the operation

has been completed, as the reference to the expected temporary object

has outlived the operation itself and probably leaked. To specify such

time boundaries the programmer has to take two heap snapshots with the

JInsight tool – before and after the operation. Snapshots are constructed so

that unreachable objects are not dumped. Next, snapshots are compared

and the difference – objects created in the meantime and still reachable –

1JInsight is a now abandoned profiling and visualization tool developed by IBM
research.
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is visualized using the visual syntax described earlier. Along with leaked

parts, the paths to GC roots are also visualized.

The next attempt to use visualization to aid memory leak detection

was described ten years later, in 2009 by Reiss in [Reis 09]. In his work,

Reiss applies visualization techniques not only to find memory leaks, but

also to detect Java memory problems in general. In addition to memory

leaks, three more problems are addressed: inefficient use of memory, churn,

and unexpected increases in memory size. Inefficient use of memory is

characterized by several levels of intermediate objects between the code

using the data and the data itself, especially if the data itself is small, but

all intermediate objects occupy more space than the data itself. Churn

describes a situation wherein the program is creating a lot of short-lived

objects, thus creating a lot of allocation and garbage collection overhead1.

So, leak detection is only a possible side effect of visualizing the Java heap

focused on an object subgraph size.

The idea is to visualize the object ownership graph in a way that is

easy to read and grasp by utilizing shapes, coloring, hatching, hue and

saturation. The data to achieve this is gathered by periodically traversing

the heap, aggregating space used by object hierarchies, and visualizing the

object graph as a tree focused on the size of objects.

3.2.3 Static analysis

Static analysis of the source code to detect memory leaks is very popular for

languages with manual memory management, like C or C++. In languages

with garbage collection, like Java, however, it can be very expensive to

statically determine object reachability, particularly in large applications.

For this reason, proposed static analysis approaches, which also have a

1It must be noted that modern garbage collectors are so efficient that a recommended
practice by JVM vendors is to create a lot of short-lived objects, as collection of young
heap space is much more efficient than full collections covering old generations, where
long-lived objects are finally evacuated.
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reported implementation, can handle only certain conditions, like array

leaks or objects escaping from loops.

In 2010, Distefano and Filipovic in [Dist 10] described bi-abductive in-

ference as an approach for static analysis of the Java code for memory leak

detection. Bi-abductive inference is a process of analyzing the data flow

in the application in two directions – along the flow of the application and

backwards. During first pass forward, structures that are allocated along

the flow of the application are identified. During the second pass back-

wards, it is examined which allocated structures are actually needed for

the execution. Next, information from both passes is combined to detect

which objects are allocated but unused by the subsequent code. Unfor-

tunately, the paper does not contain any implementation details or case

studies of real leaks.

The state of the art in the application of static analysis for memory leak

detection is represented by LeakChecker by Dacong, Xu et al. [Yan 14]. The

cornerstone of the method is the observation that the most severe leaks are

caused by events that happen often. Usually the parts of the code that are

executed the most are loops. Thus, LeakChecker analyzes each important

loop in a program and detects the objects that escape one iteration of the

loop and never flow back into any later iteration from the memory locations

to which they escape [Yan 14]. Important loops must be defined by the

programmer and may also include code, which, although is executed often,

is not represented as a loop structure. Examples of such code may include

web request handlers or code, which is invoked by component frameworks.

LeakChecker’s average false positive rate is reported to be 49.8%;
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3.3 Hybrid methods

Hybrid methods combine both online and offline analysis phases to achieve

the best results; however, they may require user interaction to help analyze

intermediate results or prepare data for the next steps.

In 2000, Shaham et al. has published a paper about the automatic

removal of array memory leaks in Java [Shah 00]. It handles one specific

type of leaks: objects, which are no longer used by the application, but are

referenced from an array. An array leak is defined as the region of an array,

which contains references to objects that are never used. As an example

the stack implementation is brought, in which the stack is implemented

as an array and the implementation maintains a pointer to the top of the

stack as an index within the array. When pop operation returns the top of

the stack, it returns the object and decrements the stack pointer, but does

not clear the reference in the array. This way the array keeps the unneeded

reference and prevents the object from being collected.

The approach described performs static analysis of the bytecode of Java

classes to detect such array leaks. Next, it sets a flag on a class so that

the garbage collector can reclaim unused regions in an array. This last

feature makes this otherwise static approach a hybrid approach, because

static offline analysis creates an input for the garbage collector to use during

runtime.

In 2011 Xu et al. in [Xu 11] described LeakChaser – a three-step itera-

tive profiling methodology to find causes of memory leaks in Java applica-

tions.

Leak detection is presented as a three-step iterative process. Steps are

called tiers or levels: Tier H (High), M (Medium) and L (Low). The main

idea is to split the application into user-level transactions and perform

analysis in terms of these transactions. One of the ideas behind this pro-

filing technique is that each level requires a different amount of knowledge

about the system from the programmer. On the high level, the tool tries
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to infer transaction-local and shared objects by itself, requiring almost no

knowledge about the system. On the medium level, the programmer has

to specify transaction boundaries and shared objects by annotating the

code. On the low level, the user can specify per-object lifetime invariants.

Moreover, layers, while expecting a different amount of familiarity with the

system, allow the programmer to become more familiar with the system

while iterating through the levels.

The memory leak detection process using LeakChaser’s three tiers is

about specifying and asserting which object should escape the previously

mentioned user transactions’ boundaries (shared objects). The lower the

tier, the more precisely it is possible to specify the boundaries down to the

assertions that object a should be freed before object b.

LeakChaser was implemented in Jikes RVM by adding following changes

to the JVM: The object header was modified to include allocation site in-

formation, the previously mentioned assertion checks and management of

the assertion table were added to garbage collectors. However, as noted in

[Xu 11], the described implementation was applicable only to non-generational

garbage collectors, because partial heap scans performed by generational

collectors may produce both false positives and negatives.

An alternative general-level approach to handle loitering objects instead

of swapping them out is to use weak references instead of strong references,

which will allow the default garbage collector to reclaim loitering objects

only if they are referred by a weak reference. The idea is described by

Brian Goetz in [Goet 05], which is cited by several works in the field. The

main question of such an approach is how to find references eligible for such

substitution?

Quian et al. approaches this question by describing the technique of

inferring weak references to fix Java memory leaks in [Qian 12].

The general work flow of the method can be described as follows: to per-

form analysis on which references can be weakened (described below), then
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calculate occupied size, rank potential weakening candidates by size, and

report the results to the programmer. Based on the report, the programmer

can choose whether to use weak references instead of strong references.

Weakening analysis is composed of three steps: During the first step

the program’s execution trace is recorded. The execution trace contains

all reference mutations of all objects’ incoming references. This is required

for the second step – offline analysis and creation of reference snapshots

for each object to detect references which can be weakened. Third step

instruments references that can be weakened to collect the object sizes for

ranking. References that can be weakened are at first assumed to be all

valid for weakening, next they are reviewed using following three rejection

rules (cited from [Qian 12]):

1. For a still-in-use object, if there is only one reference to it, then the

single reference should not be weakened;

2. For a still-in-use object, if there are multiple references to it, but all

these references are instances of the same class field, then the class

field should not be weakened;

3. For a still-in-use object, if there are multiple references to it, then at

least one of them should not be weakened.

Whether an object is still in use is identified by inspection of the exe-

cution trace – whether the reference is used or not.

The approach described can be useful in ranking the contents of the

cache to see which cache items are actually used and which are not.

Unfortunately, the publication does not contain a performance analysis

of the method, although it would be interesting to see such an analysis, be-

cause recording of the mutation trace alone can be very resource-consuming

task. It is also not clear whether it is possible to use such a method any-

where except the development environment, because of the performance

overhead.
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3.4 Comparison of the approaches

Subsection 3.4.1 compares the metrics which are observed by the reviewed

methods. Subsection 3.4.2 examines the methods reviewed from the point

of view of performance. The performance aspects in focus include both

runtime performance and leak detection performance. The main goal of

such comparison is to see which methodologies are used across the works

to assess performance and whether the results are comparable. Next, Sub-

section 3.4.3 classifies approaches based on intrusiveness.

3.4.1 Observed metrics

Table 3.1 summarizes and compares discussed state-of-the-art approaches

based on metrics which these methods collect, monitor and evaluate in order

to detect the leaks. Criteria are elaborated using the following classification.

Generality – defines whether a method is general or limited within some

predefined package, or whether it is designed to work only with certain types

(arrays or containers) or is applied only to objects, which are previously

annotated or otherwise marked by a programmer. Allowing memory leaks

to be searched only within a certain package or handle annotated classes

imposes most of the constraints in the work reviewed.

Object creation – a metric available only for online methods, indicating

that the leak detection method somehow uses an object creation event as

a part of metrics used for memory leak detection.

Object destruction – a metric available only for online methods, indi-

cating that the leak detection method somehow uses an object destruction

event as a part of metrics used for memory leak detection.

Size – methods using the size of the object (or object subgraph). Size

is widely used in several methods. Some methods monitor constant size

growth, some relate total memory growth with data structure growth, some
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use size as a threshold, some use size for ranking leak candidates, and

visualization methods use size to distinguish objects visually.

Object access – some methods monitor object access. Accessing an

object means that it is not stale, so this property shows that the object is

in use and is not a leak. If not implemented inside JVM, this metric is very

expensive as for each read access one write operation must be performed.

Time – several approaches are accounting time in some form. However,

few of the approaches do it in the same way. A time classifier can be

used to drive a staleness counter, record times of creation and destruction

of objects (either to record lifetime or just track birth times) or be the

source of object lifetime constraints and assertions. Time accounting also

varies between methods ranging from wall clock time recording (e.g., time of

taking a heap dump) to counting the number of garbage collections passed

since the start of the application.

Capture of the state – several methods rely on analysis of the state kept

in memory. State may be captured in several ways, ranging from full heap

dump to only selected references or data structures. One or another way

to capture memory state and analyze it offline is performed by most of

the approaches. Memory may be captured either once or periodically to

analyze heap evolution offline. Object swapping means that some objects

are swapped out from the heap to the disk.
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3.4.2 Performance evaluation methodologies

An important attribute of any memory leak detection approach is its per-

formance evaluation. Such evaluation should cover leak detection preci-

sion, false positive rate and performance overhead in terms of CPU time

and memory consumption. Although for offline methods and visualization

techniques runtime performance overhead does not apply, leak detection

precision still matters (except for visualization techniques, where a human

carries out the leak detection).

Reported leaks in open source software are most often used as a detec-

tion performance measurement. Such open source software includes Eclipse

(several different leaks), Alloy IDE, JDK, ArgoUML, RSSOwl, ActiveMQ,

HtmlUnit, Jigsaw, Delaunay, Mckoi and the Drools framework. Leaks in

SpecJBB and SpecJVM, which are closed source but are used for bench-

marking, are also used to evaluate leak detection.

Performance overhead measurement across different approaches can be

summarized as follows: The most popular approaches to measuring perfor-

mance overhead are to use existing performance benchmarking harnesses

– SpecJVM and DaCapo benchmarks. Some approaches measure perfor-

mance overhead using the same benchmarks which are used for assessing

leak detection quality. The interpretation of the measurement results and

approaches for experiment setup, however, vary across different authors –

number of runs of benchmarks varies and the reported numbers for the

benchmarks also vary. Some report best times, while some report aver-

age times. To conclude the comparison of the performance measurement

approaches it must be noted that it is hard to compare methods objec-

tively based on their performance overhead metrics, as there is no common

measurement approach.

Tables 3.2 and 3.3 summarize tools and methods used to measure leak

detection performance and performance overhead. In these tables, ‘N/A’

stands for ‘Not Applicable’ and ‘—’ stands for ‘not described in the paper.’
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As measurement of the runtime performance overhead is not applica-

ble to offline methods, static analysis and visualization, the table 3.3 does

not include following methods: LeakBot [Mitc 03], Graph mining on heap

dumps [Maxw 10], Reference patterns visualization [De P 99], Heap visu-

alization [Reis 09], Array Memory Leaks removal [Shah 00], Bi-Abduction

[Dist 10] and LeakChecker [Yan 14].

Table 3.2: Summary of leak detection quality assessment approaches

Method Leak detection performance evaluation
Sleigh (Bell) [Bond 06] Known leaks in SPEC JBB2000 and Eclipse
Object owner-
ship profiling
[Rays 06, Rays 07]

Case studies: known leak in Alloy IDE V3

Container profiling
[Xu 08, Xu 13]

Known leak in SpecJBB 2000, JDK bugs #6209673 and #6559589 (leaks in
swing and awt)

FindLeaks [Chen 07] Known leaks in ArgoUML and RSSOwl
Cork [Jump 06,
Jump 07]

Leaks in SPECjbb2000, Eclipse 3.1.2, fop, jess (from SpecJVM)

Statistical approach
[vSor 14b, vSor 11a,
vSor 11b]

Known leaks in ActiveMQ, htmlunit, custom web-application

Panacea [Brei 07] N/A
Loitering Objects
Healer [Gold 07]

N/A

LeakSurvivor
[Tang 08]

Eclipse, SPECjbb2000, Jigsaw

Melt [Bond 08] Time to crash is measured with leaks in EclipseDiff, EclipseCP, JbbMod,
ListLeak, SwapLeak, MySQL client, Delaunay, SPECjbb2000, DualLeak,
Mckoi. 5 out of 10 leaks are tolerated, until disk space is exhausted.

Leak pruning
[Bond 09]

Time to crash is measured with leaks in EclipseDiff, EclipseCP, JbbMod,
ListLeak, SwapLeak, MySQL client, Delaunay, SPECjbb2000, DualLeak,
Mckoi. 5 out of 10 leaks are tolerated, until disk space is exhausted.

Weakening inference
[Qian 12]

—

LeakBot [Mitc 03] —
Graph mining on heap
dumps [Maxw 10]

Synthetic leaks, Existing J2EE application, MVEL parser of Drools frame-
work

Reference patterns vi-
sualization [De P 99]

N/A

Heap visualization
[Reis 09]

N/A

Array Memory Leaks
removal [Shah 00]

—

Bi-Abduction [Dist 10] —
LeakChaser [Xu 11] Diff (Eclipse bug #115789), Editor (Eclipse bug #139465), SPECjbb2000,

MySQL leak, Mckoi
LeakChecker [Yan 14] SPECjbb2000, Eclipse Diff, Mckoi, log4j, FindBugs, Derby
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3.4.3 Intrusiveness

In the case of online methods, which monitor execution of the application,

in addition to the performance overhead, it is also important how complex

the deployment of the method is.

Each of the methods needs a way to gather data on which to base

the leak detection. Data required for the leak detection may come from

different sources, all of which require different levels of effort to collect

or implement collection of such data in an efficient way. Selection of the

data collection source dictates how hard it is to deploy one or another leak

detection approach.

Although offline methods analyze or visualize either source code or some

kind of captured state, they may require some modifications to the config-

uration (e.g., attach a Java agent) to obtain the required information.

We define the intrusiveness of the leak detection methods as a special

criterion, which describes how much effort is required in order to use the

implementation of the proposed method to find the leak. The following

scale of intrusiveness is proposed:

Low. No code modifications are needed; the method can be imple-

mented in a way such that deployment requires either start script modifi-

cation, or it can be deployed into the running application. Implicit speci-

fication of parts of the application to monitor may be required. In case of

state analysis or offline analysis, the data can be acquired using bundled

tools with low intrusion.

Medium. Changes to the application code or the configuration are

required (e.g., adding annotations). Modifications to the application code,

even minor ones, require the application to be rebuilt and redeployed. In

some environments building and redeploying an application requires a lot

of time and an effort of several people, which makes even a tiny change to

the source code to become a barrier for the use of a method.
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High. The JVM, the garbage collector or the environment requires

modification. It is obvious, that modification of such important infrastruc-

tural component, as it is a Java virtual machine, is not a trivial task for

any kind of application. Of course, once the method will be incorporated

in a real production-ready Java virtual machine, like HotSpot or J9, the

use of such method becomes trivial. However, getting the implementation

of a memory leak detection method into production JVM is even more

non-trivial. The problem with methods modifying the JVM or garbage

collector to take advantage of ‘unused bits’ in the object header is that in

actual JVMs there is no such concept as ‘unused bits’ in the object header.

For example, in HotSpot JVM ‘unused’ bits in an object header are used

and shared by several subsystems – garbage collector itself (to count gen-

erations to decide promotion from survivors to tenured generation), perfor-

mance optimizations for locking and a place to keep the identity hash code,

which all use the same bits in the header, effectively interfering with each

other.

Six deployment methods were identified in reviewed memory leak de-

tection approaches and are listed below. Along with the description of the

deployment the estimation of the intrusiveness is given based on previous

definitions.

1. Garbage collector (GC ) modifications. Although the garbage collec-

tor seems to be the best tool to integrate leak detection algorithms

or at least make available some special counters, it is also one of the

most complex parts of a JVM and is crucial for the performance of the

whole virtual machine. As explained earlier, very intrusive, though

low overhead approach.

2. Java virtual machine (JVM ) modifications. Some leak detection ap-

proaches require more modifications besides the garbage collector to
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be able to track object instantiation-related events or store some ad-

ditional data in the object header. Very intrusive approach.

3. Application modifications to include special annotations or changes

for the leak detection method to work. Medium intrusion.

4. A method relying on aspect-oriented programming (AOP) to add

monitoring and analysis pointcuts to the code can be either low or

medium intrusive.

5. A method can be implemented using bytecode modification with the

help of an agent (either JVMTI or Java agent). Low intrusion, can

be added with a single start parameter.

6. Analysis of the state captured using standard tools, such as heap

dumps. Heap dumps and other sorts of state capture can be obtained

from the running application without any modification of the running

code, making these low intrusive methods.

Table 3.4 summarizes the intrusiveness of all approaches reviewed in

previously defined terms.

3.4.4 Discussion

In previous subsections, memory leak detection methods were reviewed

from several different perspectives: observed metrics, performance over-

head, evaluation methodologies, and intrusiveness.

The observed metrics largely define the quality of the leak detection.

Most relevant metrics, like staleness of objects or size growth patterns,

can provide the best leak detection results, so that little additional manual

labor might be required to identify the leak. However, the quality of such

metrics comes at the expense of performance overhead and intrusiveness.

From the point of view of performance and intrusiveness, the best way

would be a formal verification of the source code. Unfortunately, this is very
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Table 3.4: Comparison of leak detection intrusiveness

Approach Year GC JVM App. Agent AOP State Intrusion
Online, Staleness analysis

Sleigh (Bell) [Bond 06] 2006 X X - - - - High
Object ownership 2006 - - - X - - Low
profiling [Rays 06, Rays 07]
Container profiling 2008 - - X X - - Medium
[Xu 08, Xu 13]
LeakSurvivor [Tang 08] 2008 X X - - - - High
Melt [Bond 08] 2008 X X - - - - High
Leak pruning [Bond 09] 2009 X X - - - - High

Online, Growth analysis
FindLeaks [Chen 07] 2007 - - - - X - Medium
Cork [Jump 07, Jump 06] 2006 X - - - - X High
Statistical approach 2011 - - - X - X Low
[vSor 14b, vSor 11a, vSor 11b]
Panacea [Brei 07] 2007 - - X X - - Medium
LoiteringObjectsHealer 2007 - - X X - - Medium
[Gold 07]

Offline, Analysis of captured state
LeakBot [Mitc 03] 2003 - - - X - X Low
Graph mining on 2010 - - - - - X Low
heap dumps [Maxw 10]

Offline, Visualization
Reference patterns 1999 - - - - - X Low
visualization [De P 99]
Heap visualization [Reis 09] 2009 - - - X - - Low

Offline, Static analysis
Bi-Abductive inference 2011 - - - - - - Low
[Dist 10]
LeakChecker [Yan 14] 2014 - - - - - - Low

Hybrid
Array Memory 2000 X - - - - - High
Leaks removal [Shah 00]
LeakChaser [Xu 11] 2011 X X X - - - High
Weakening inference [Qian 12] 2012 - - - X - X Low

hard in practice because of the dynamic nature and non-determinism of the

reachability graph at any particular moment introduced by the garbage

collector. This can be observed from the static analysis methods, of which

the state of the art covers only a very limited set of features.

The next preference from the performance standpoint is the state cap-

ture, which is second best to the low-intrusive approaches. It seems that

heap dump analysis tools are the most popular for manual leak detection

in everyday use. However, state capture presents only a static image of the

state, leaving out any temporal or dynamic details, which are important
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to separate true and false positives. The offline approaches observed pro-

vide good information for the developer, but he must infer details of the

application behavior manually by inspecting the source code.

Simplicity (in terms of performance overhead and intrusiveness) of anal-

ysis of the state capture can be seen in the number of tools that are available

for manual heap dump analysis and visualization, starting with specialized

tools like Eclipse Memory Analyzer Tool, jhat or jvisualvm (part of the

Oracle JDK and OpenJdk), and other tools provided by the JVM vendors

and commercial profilers (e.g., YourKit, JProfiler, etc.).

The only methods that try to perform fully automatic leak detection are

online methods, which observe both the state and its dynamic properties.

From the quality point of view they are the best, but from the performance

overhead and intrusiveness point of view they are the worst.

Therefore, selection of the method to be used should be based on the

balance and trade-offs between quality, performance and intrusiveness.

3.5 Summary

This chapter continues the state of the art review from by reviewing ex-

isting approaches for memory leak detection in Java applications. The

classification of the approaches was proposed, separating them into online,

offline and hybrid approaches with further sub-categories. Different as-

pects of the state of the art methods were compared, including observed

metrics, runtime and leak detection performance evaluation methodologies,

and implementation and deployment effort, or intrusiveness.
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Chapter 4

Statistical Approach for

Memory Leak Detection

The current chapter describes the statistical approach for memory leak de-

tection in detail. Section 4.1 covers background information about general

concepts needed to understand the method. Subsection 4.2.1 gives a formal

definition of the methods along with necessary definitions. Subsection 4.2.2

describes how the method can be implemented in the real world and sub-

section 4.2.3 describes how detected leaks can be reported in an efficient

way. A detailed analysis and case studies will follow in section 4.3 and

chapter 6 respectively.

4.1 Background

Before the method can be addressed, a memory leak must be defined in

order to gain a common understanding. An object that is no longer needed

for the application, but cannot be garbage-collected, is said to be leaked.

However, a single leaked object is usually not a problem, unless the object

occupies a significant amount of memory. Much more dangerous is a situa-

tion where objects are leaked constantly, over and over again. This causes

the leak to grow until it fills the entire available heap and the JVM runs
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out of memory. In the context of this thesis a definition of a memory leak

is narrowed as a set of leaking objects accumulating over time.

The variety of types of objects in a typical application is limited by the

number of classes in the application1. The number of types of simultane-

ously leaking objects is in turn a subset of all classes of the application

and usually this subset is rather small. So, to track leaking objects we

may group them by their class, to observe common metrics. However, it is

obvious that observing objects based only on their class will produce too

many false alarms because very common classes, like String or Integer, are

used in too many places and are often leaked as well. So, observing further

properties on a class level is too coarse. To mitigate this, instead of gath-

ering statistics (which will be described in further detail) on a class level,

we gather statistics with the granularity of an allocation site. This means

that objects of the same class, but created in different places in the code,

are treated as different classes. Experiments showed that such approach

yields good measures of true positives (real leaks) and excludes a lot of

false positives (non-leaks identified to be leaks by the algorithm). Further

in the text, we will use the term allocation to denote instances of a class

created at a particular allocation site.

As was described in chapter 2, the driving force behind generational

garbage collection is the weak generational hypothesis, which states that

most objects die young, so the heap can be separated into regions, or gener-

ations, which will hold objects based on their age and each of these regions

will be cleaned by a garbage collector of the appropriate type to achieve

the best performance. Statistical approach for memory leak detection in

Java applications proposes to use the same weak generational hypothesis

but for memory leak detection. Following sections describe how.

1In the case of dynamic class generation, there is a possibility that an application
may have an unlimited number of classes. This scenario is not considered in the thesis,
although unbounded number of classes being generated may be seen as a special case of
a memory leak in regard to the current definition.

74



4.2 Statistical approach for memory leak detec-

tion

4.2.1 Definitions

Let garbage collections in the application be GC = (gc1, gc2, . . . , gcn). If

an object is created between garbage collections gci and gci+1, where i ≥ 1,

it is said to belong to generation gi. If an object is created before gc1, it is

said to belong to g0.

Let C be the set of all allocation sites in the application. Then, after

any garbage collection gcj ∈ GC, for each allocation c ∈ C, we can define

the function G : (c, gcj)→ {0, 1}j , such that for i ∈ {0, . . . , j},

G(c, gcj)i =

 1
if after gcj there exists a live object of
allocation c created in generation gi

0 otherwise
(4.1)

Using these definitions, we can capture a snapshot of the distribution

of ages of live objects of an allocation at any point in time.

Next, let us define a function which, given the vector G(c, gcj), will

indicate how many different generations have live objects of the allocation

c after garbage collection gcj
1:

genCount(G(c, gcj)) =

j∑
i=0

G(c, gcj)i (4.2)

Let us illustrate these definitions with an example of how instances of

classes representing a typical web application in Java, implementations of

a Servlet, HttpSession and HttpRequest, behave. In figure 4.1 they are

marked respectively Srv, Ses and Req.

1genCount is first described by Formanek and Sporar as ’generation count’ in
[Form 06]
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Figure 4.1: Illustration of the genCount concept

During initialization of the application, an instance of Servlet is created.

From Figure 4.1, it can be seen that the instance was created just before

the very first garbage collector (gc1) was run. Thus the instance of Servlet

belongs to generation g0. After gc1 the following values can be calculated:

G(Srv, gc1) = (1), genCount(G(Srv, gc1)) = 1

G(Ses, gc1) = (0), genCount(G(Ses, gc1)) = 0

G(Req, gc1) = (0), genCount(G(Req, gc1)) = 0

After initialization of the application is completed, it can start serving

requests. The initialization of the application is finished by garbage collec-

tion gc4 and the first request is served during the gc4. From Figure 4.1,

it can be seen that there are instances of Session and Request created to

serve that first request, and these instances are alive during gc4. After gc4

has finished, the following values can be calculated:

G(Srv, gc4) = (1, 0, 0, 0), genCount(G(Srv, gc4)) = 1

G(Ses, gc4) = (0, 0, 0, 1), genCount(G(Ses, gc4)) = 1

G(Req, gc4) = (0, 0, 0, 1), genCount(G(Req, gc4)) = 1

After garbage collection number 8, i.e. gc8, from Figure 4.1, it can be

seen that there are instances of all three classes in the heap, which are

reachable, i.e. alive. Servlet, which was created in generation g0 and is
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expected to be the only instance in the whole application is indeed still alive.

Two instances of Session, which were created in g3 and g5 are reachable

after gc8. A Request created in generation g7 is also reachable after gc8.

So, after gc8 the following values can be calculated:

G(Srv, gc8) = (1, 0, 0, 0, 0, 0, 0, 0), genCount(G(Srv, gc8)) = 1

G(Ses, gc8) = (0, 0, 0, 1, 0, 1, 0, 0), genCount(G(Ses, gc8)) = 2

G(Req, gc8) = (0, 0, 0, 0, 0, 0, 0, 1), genCount(G(Req, gc8)) = 1

HTTP requests in a typical web application are usually short-lived ob-

jects – they are created when the request comes in and are discarded when

the result is rendered to the output stream of a response. HTTP session

objects, in contrast, are alive over several requests within the session. Ses-

sion objects are made unreachable (eligible for collection) after user logs

out by specifically signaling the servlet container that the session may be

invalidated or when a session timeout occurs, which is configurable using

the servlet parameters.

So, after gc9, the instance of Servlet created at g0 is still alive. Instances

of Session created at g3 and g5 are alive. Request from g7 is now collected,

but there is a new Request created at g8, which survived the collection gc9.

So, after gc9, the following values can be calculated:

G(Srv, gc9) = (1, 0, 0, 0, 0, 0, 0, 0, 0), genCount(G(Srv, gc9)) = 1

G(Ses, gc9) = (0, 0, 0, 1, 0, 1, 0, 0, 0), genCount(G(Ses, gc9)) = 2

G(Req, gc9) = (0, 0, 0, 0, 0, 0, 0, 0, 1), genCount(G(Req, gc9)) = 1

The Session created in g5 was invalidated due to a timeout or logout

action, so it was collected by gc10. However, a Session created in g3 is

active and Requests are coming in within that session. So, after gc10, the

following values can be calculated:

G(Srv, gc10) = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0), genCount(G(Srv, gc10)) = 1

G(Ses, gc10) = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0), genCount(G(Ses, gc10)) = 1

G(Req, gc10) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1), genCount(G(Req, gc10)) = 1
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Finally, let us fast-forward to after garbage collection gc14. It can be

observed that the Servlet is still alive and there is still only one instance

of it on the heap – the one created in g0. There is also one active Session

created back in g3 and a fresh one created in g10. Instances of Request after

gc14 are alive in two generations – g12 and g13. After gc14, the following

values can be calculated:

G(Srv, gc14) = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

genCount(G(Srv, gc14)) = 1

G(Ses, gc14) = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0),

genCount(G(Ses, gc14)) = 2

G(Req, gc14) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1),

genCount(G(Req, gc14)) = 2

The intuition behind the statistical method for memory leak detection

is as follows. In a healthy application, there are some objects created

at the beginning of the application, belong to early generations, and live

until the application terminates. These objects are said to be long-lived

(like Servlet in the previous example). Short-lived objects are created

to serve incoming requests, keep a session state, maintain user interaction

(like Session and Request in the previous example), and are kept alive only

for several generations. This is also backed up by the weak generational

hypothesis. By intuition, a leak is a condition when objects of some class

are created regularly at some allocation site, but are not reclaimed by the

garbage collector, as they are held by a forgotten reference. Such leaking

allocation is illustrated on the Figure 4.1 in the gc14 section and is marked

as Leak.

So, in the case of leaking objects of allocation c, the following holds:

lim
j→∞

genCount(G(c, gcj)) =∞ (4.3)
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In the case of well-behaved allocations and taking the weak generational

hypothesis into consideration, the following holds:

lim
j→∞

genCount(G(c, gcj)) ≤M (4.4)

Where M is a value dependant to the combination of the application, JVM

configuration, usage of the application, the garbage collection algorithm,

the environment, etc. The main factor affecting M is how often garbage

collection runs – if it runs frequently enough that even short-lived objects

survive several collections, then M is larger. Alternatively, if collections

run infrequently, then M would be small.

After specifying the initial hypothesis about using genCount to detect

memory leaks, proof of concept was implemented (described in subsection

4.2.2). Using such proof of concept implementation, we were able to col-

lect statistical data about different applications across different customers.

To gather this information, snapshots of G vectors were taken after each

full garbage collection in the applications. Based on these snapshots, we

were able to analyze real numbers. By the time of the analysis, we had

collected 13, 851 snapshots from 1, 272 different customers. These snap-

shots contained 31, 568, 128 allocations in total. The anonymity of the

collected data prevented us from distinguishing whether a customer had

one or several different applications; however, it was possible to distinguish

between different customers. So, to analyze the number of allocations per

application, statistical means of the number of allocations within all the

applications belonging to one customer were counted. Results for the allo-

cation counts are presented in Table 4.1 and results for genCount counts

are presented in Table 4.2. While allocation counts show the sizes of the

applications we have investigated, genCount counts show whether our hy-

pothesis about generally small genCount values holds.

Table 4.2 shows that equation 4.4 holds, given the maximum value for

genCount in examined samples to be 69, 335, whereas the 95th percentile
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Min 1
1st Quartile 161
Median 788
Mean 1, 691
3rd Quartile 2, 124
95th Percentile 6, 379
Max 24, 427

Table 4.1: Distribution of the
number of allocations per appli-
cation

Min 1
1st Quartile 1
Median 1
Mean 6
3rd Quartile 2
95th Percentile 14
Max 69, 335

Table 4.2: Distribution of
genCount values for allocations

for 31, 568, 128 observed allocations is 14. Assuming that most of the allo-

cations are not leaking, their genCount remains small.

The main challenge of the approach is how to detect the unbounded

growth of the genCount function for some set of allocations over time,

as soon as possible1, and not to generate too many false positives. The

proof of concept solution presented in [vSor 11b] used a simple threshold

technique to distinguish between normal allocations and leaking allocations.

Algorithm 4.1 expresses the described technique using pseudocode.

In algorithm 4.1 two implied functions are used; the detailed implemen-

tation of them is currently not relevant. The first function is sortByGen-

CountV alue, which is called on line 7; this function is expected to sort

allocations by their genCount value in ascending order. The result of such

sorting is illustrated by Figure 4.4 in section 4.3.2. The second implied

function is the sublist(C, i, j) on line 12, which returns part of the array

C, starting at element i until element j.

1Detecting the leak as soon as possible is desirable in cases where the existence of
the leak is yet unknown. Detecting and reporting the leak as soon as possible will give
more time for the operations team to plan for a restart, by paying more attention to heap
usage trends, should OutOfMemoryError happen.
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Algorithm 4.1: Memory leak detection algorithm

1 f indLeaks ( A l l o c a t i o n [ ] C) {
2 int [ ] genCounts

3 f o r each A l l o c a t i o n c ∈ C {
4 genCounts [ c ] = genCount ( c )

5 }
6 // order a l l o c a t i o n s by t h e i r genCount va lue s

7 sortByGenCountValue ( genCounts , C)

8 // t r a v e r s e from l a r g e genCounts to smal l

9 for ( int i=genCounts . s i z e ( ) ; i >0; i−−) {
10 gap = genCounts [ i ] / genCounts [ i −1]

11 i f ( gap > THRESHOLD) {
12 return s u b l i s t (C, i , genCounts . l ength )

13 }
14 }
15 return [ ]

16 }

An important new concept is introduced in algorithm 4.1 on line 10 –

gap, which is a ratio between the genCount values of two neighbors after

the allocations are sorted by genCount. Operating with ratio rather than

difference between neighbors allows for the use of relative values, which al-

lows for the normalization of values across different applications. Selection

of the gap threshold must be balanced between reporting too many false

positives too early (if the threshold is too small), and reporting too late,

thereby leaving no time to perform further analysis and reporting (if the

threshold is too large). There are two possibilities for choosing the threshold

– constant value and dynamic value specifically tuned for or automatically

identified for a particular application. Dynamic selection requires several

application runs to determine the threshold, but this is undesirable behav-

ior as we would like to detect the leak before it crashes the application for

the first time. Another argument against such a dynamic threshold is that

it may become overfitted for some specific usage scenario and fail in a real

leak situation. So we chose to use a constant value. It gives good balance
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in the majority of situations and applies additional pre-checks to verify the

leak status in real-world scenarios (e.g., calculate the size of detected leak-

ing objects and whether their size is too small, based on some heuristics,

then ignore the leak until it grows bigger). We evaluated different threshold

values during testing before releasing Plumbr for general use, and identified

that the constant value between 3 and 5 gives good a balance in terms of

detection time and false positive rate. It was also confirmed by real cases

we analyzed while preparing section 4.3. We will discuss issues with the

selection of the threshold in more detail in the analysis of the statistical

approach presented in section 4.3.2.

4.2.2 Implementation of the tracking code

Implementation of the automated statistical approach for memory leak de-

tection consists of two JVM agents: the Java agent and the native agent.

The native agent is required because not all required monitoring infor-

mation is available through Java APIs. Thus, native agent is responsible for

gathering low-level information, e.g., garbage collection and object freeing

events, which are collected using Java Virtual Machine Tooling Interface

(JVMTI, [Sun 06]) callbacks. Responsibilities of the native agent include:

• Marking objects using JVMTI tags (64 bit values, which can be as-

signed to any object using JVMTI’s SetTag method). Every tracked

object receives a unique identifier, generated by the Java agent. The

tag is attached to the object regardless of whether the object was

moved by the garbage collector from one generation to another. Tags

are stored by the JVM outside of the heap, thereby not impacting

the Java heap consumption.

• Listening for JVMTI ObjectFree callbacks and notifying the Java

agent about objects which were freed by the garbage collector.
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• Generating reference dumps (custom data structure, which differs

from the HPROF heap dump format which is generated by the JVM).

Whereas the heap dump contains all the data in the heap, reference

dump contains only minimal reference descriptors (source object iden-

tifier, target object identifier, type of the reference, field/array index)

needed to find the shortest path from the leaking objects to the GC

root. The reference dump also occupies less space because it does not

contain the actual data and is optimized to find the shortest paths in

the needed direction (from objects to GC roots). Reference dumps

are generated on request from the Java agent. The size of the dump

is directly dependent on the number of references in the heap.

The native agent provides low-level utility functions for the Java agent,

which orchestrates all the work. The Java agent communicates with the

native agent using Java Native Interface (JNI, [Lian 99]) method calls.

The Java agent operates with the following flow:

1. Track the allocation of objects using byte code instrumentation – this

is implemented by instrumenting allocation sites (places in the code

where either the constructor is called, or cloning or serialization is

performed). Instrumented code invokes a callback method which reg-

isters the object creation event and also the allocation site. Sampling

is used to reduce overhead, so not all created objects are tracked.

The number of tracked objects is driven by an internal queue, where

new objects are placed. The queue is limited in size and when it fills

up, it is processed to register new objects in internal structures. New

objects are not accepted until the queue is processed. Accumulat-

ing objects in the queue uses weak references to maintain the link to

the object until the native agent tags it. Such implementation gives

an advantage: very short-lived objects can be collected before they

become tracked by Plumbr.
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2. After each full garbage collection the Java agent analyzes object age

distribution using the statistical method for memory leak detection

(algorithm 4.1). This analysis is invoked only after full garbage col-

lections, which ensures that tracked statistics do not contain objects,

which are located in the old generation, but are already unreachable.

3. If algorithm 4.1 reports a non-empty set of allocations, these alloca-

tions are reported as leak candidates.

4. If the previous step has identified a set of leak candidates, the refer-

ence dump is requested from the native agent and a graph analysis

starts discovering paths from leaking objects to garbage collection

roots. This analysis is performed in a separate Java process to reduce

memory overhead on the host process. It is also important to note

that the reference dump is created only after the statistical method

has indicated leaking allocations. Discussion of the reference path

discovery follows in section 4.2.3.

5. The report is generated. An example leak report is shown in Figure

4.2. The report is generated for the HtmlUnit case study presented

in detail in section 6.3.

6. At the moment of writing, due to implementation details, after gen-

erating first report, Plumbr stops tracking. This is implemented via

a quick return from the tracking callback, rather than removing byte-

code modifications from the application code.

4.2.3 Resolution of the leaking reference path

After some allocations are reported to be leaking, Plumbr must report

the reference chains, which prevent leaking objects from being collected.

Dijkstra’s algorithm for the shortest path search is used to find the paths
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Figure 4.2: Example memory leak report generated by Plumbr

from leaking objects to GC roots. There are some issues which affect the

time required to find the path for different kinds of leaks.

As one allocation is responsible for the creation of all the objects which

we mark as leaking, the first issue to solve is to select the actual instances

from which to perform the search. To keep performance overhead and

search time down, we select random objects with an average age (for that

particular allocation) as the starting point. Average age is chosen because

young objects may still be in active use and referenced by stack variables

(the discussion on stack references will follow) and old objects may be some

application-wide cached instances. To maintain a balance between precise
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reporting of all paths and performance overhead, the heuristic of selecting

middle-aged instances is chosen.

When the search for the shortest path from the leaking object to the

garbage collection root is performed, only certain types of references are

followed: fields, static fields and stack local variables. We assume that

most of leaks happen via instance fields and static fields (usually, there

is a collection object in a field or static field where leaking objects are

accumulated). Stack local variables, however, are expected to be very-

short lived (they are alive only within a call to a method) and thus, even

if a reference path traverses such reference, they are ignored at first. The

reason for that is that if there is a leaking collection stored in a field, and

at the moment of the reference dump creation, there is a method, which

is accessing that collection via stack local variable, then it is desirable to

report a path traversing the field, not the local variable (as a local variable

is one of the GC roots, it will end the search for the shortest path as soon

as encountered). To do that, shortest path search algorithm is trying to

reach the GC root via field as the first preference. However, if traversing

the reference graph via fields doesn’t lead to the root, then stack local

variables are followed. However, it takes more time, as all reachable field

references must be traversed before stack locals.

Leaks via stack local variables can happen in applications which are

working in an infinite loop (see HtmlUnit case study in section 6.3), e.g.,

polling applications.

Another problem is that objects usually leak in clusters, i.e. there

is one composite object, which is actually leaking by being placed in a

collection and then forgotten, but all fields of the object are also leaked

with the object. If the object graph underlying the leaking object is more

complex then even more allocations are reported as leak suspects (which

they actually are), but for the final report we must find that one core

object that holds all other leaking objects. This is the reason why objects
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are not reported and analyzed one by one, but are at first gathered and

then analyzed as a graph to produce a meaningful report.

To report only a path to such a composite object, merging of reference

chains is performed. Figure 4.3 illustrates the concept: let F , E, D and

W be detected leaking allocations. Let D be a composite object and one

of its fields holds a reference to E, and E in turn references F . The search

for the shortest paths will return 4 paths – one for each detected leaking

allocation. For allocations E and F it can be seen that their shortest path

traverses another leaking allocation, which is located closer to the root D,

so paths for allocations E and F are discarded and only allocations D and

W are reported.

A B C D E F

A B C D E

A B C D

F:

E:

D:

X Y V WW: Z

Report

Leak D:

Leak W:

A B C DD:

X Y V WW: Z

Figure 4.3: Merging of leaking chains

It may happen that an analysis and report generation must be per-

formed in a very memory-limited environment1 – a memory leak is con-

suming free heap space on one side and our analysis also requires some

heap for the analysis on the other side. This may lead to a situation where

JVM runs out of heap before the analysis ends. To mitigate this situation

Plumbr stores a reference dump file and the accompanying metadata, so

that an analysis can also be performed offline. However, some run time

information will not be available in the report.

Such a hybrid approach combines the benefits of both online (e.g., pro-

filers which monitor live data and have access to required reflection and

1For detailed analysis of embeddable graph manipulation libraries see [vSor 12]
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behavior information) and offline (heap dump analysis in a separate envi-

ronment) memory leak detection approaches. There is no need to wait for

the next time leak shows itself, to attempt to repeat the analysis online.

Instead, perform the remaining analysis offline, which can be done much

faster since such tight memory restrictions do not apply.

4.3 Analysis of the leak detection performance

There are two major perspectives to performance analysis of a tool such

as Plumbr – detection quality and runtime performance. Detection quality

shows how good is the tool at it’s main task – memory leak detection.

Runtime performance shows how much performance overhead imposes such

a tool for the application being monitored. Current section evaluates both

aspects.

4.3.1 Detection performance

Automated memory leak detection is in essence a task of assigning labels

’leaking’ and ’not leaking’ to allocations, or binary classification of allo-

cations into ’leaking’ and ’non-leaking’ groups. If at least one allocation

is leaking, then there’s a leak in the application. Thus, quality metrics

applicable to classification algorithms (or classifiers) may be used.

Verified ’right answers’ are required to create a confusion table and

calculate previously defined metrics for any classification algorithm. In

case of memory leak detection the leaking status of the application has to

be obtained and verified manually. To manually verify the leaking status,

source statistical data which was used by the Plumbr is required. To collect

such information Plumbr was modified to collect and serialize the data used

by the detection algorithm for offline (outside of a running application)

analysis. Such serialized statistical data contained information about live
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allocations and their G vectors (defined in equation 4.1). Further such

serialized data will be called statistical snapshots.

Such snapshots were created each time before detection would run, i.e.,

after each full garbage collection, when G vectors are updated with collected

allocations. Tracking code of Plumbr was also modified in a way that it

performed the detection based on the same serialized data, so that both

runtime and offline analyses would base their decisions on the same data.

Statistic snapshots were captured for each application execution separately.

In offline snapshots were grouped by the user and the application run (or

session).

As a first solution, uploading such statistical snapshots to us for an

analysis was left to be performed manually by users. However, to simplify

this process for users and improve uploading activity for us, automatic

uploading of snapshots was implemented. After such automatic uploading

solution was deployed, users of Plumbr were effortlessly contributing to the

collection of memory usage and object liveness statistics.

Given such statistical snapshots it was possible to start evaluating the

performance of the detection algorithm and further develop it. As men-

tioned previously, to evaluate the detection performance, a set of snapshots

had to be selected and leaking statuses had to be verified by hand. 200

sessions were selected for the study. These sessions were selected in a way,

trying to include sessions from different users and applications. Selected

sessions were studied manually and leaking statuses were assigned at the

allocation level. So, if an application contained at least one leaking alloca-

tion, the application itself was considered to be leaking. Next, results were

compared with leaking resolutions produced by the statistical approach and

detection quality assessment metrics were calculated.

Statistical snapshots contain data on an allocation level and snapshots

themselves are grouped in sessions. So, the detection performance can be

evaluated also on two levels: session level and allocation level. Session level
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shows whether the leak was detected in the application and allocation level

shows how correctly were leaking allocations identified within the appli-

cation. Confusion matrices for both application and allocation level are

shown in tables 4.3 and 4.4.

Predicted
Actual Leaking Non-leaking

Leaking 88 21
Non-leaking 46 45

Table 4.3: Application level confusion matrix

Predicted
Actual Leaking Non-leaking

Leaking 1128 1177
Non-leaking 2232 442251

Table 4.4: Allocation level confusion matrix

On the application level precision is 0.8, recall is 0.65, the F1-score is

0.71. Which can be interpreted as following: statistical approach can cor-

rectly identify around 71% of leaking applications. This may seem a good

result, however at the allocation level precision is 0.49, recall is 0.33 and the

F-score is 0.39. This means that although the leak was correctly identified

in 71% of applications, fully correct leaking allocations were identified only

for 39% of allocations. From the confusion matrix 4.4 can be seen that on

allocation level number of false positives (1177) is comparable to number of

true positives (1128) and number of false negatives (2232) is almost twice

as much as true positives.

These observations lead to the conclusion that although on applica-

tion level detection performance is relatively good for a single metric like

genCount, there is plenty of room for improvement in terms of detection
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performance on allocation level. While successful cases are analyzed in

section 6, following subsections analyze kinds of problems contributing to

false results to reveal weaknesses which must be addressed to improve the

algorithm.

4.3.2 Lack of sufficient gap in the genCount histogram

The most complex issue with algorithm 4.1 presented in section 4 is the

choice of the THRESHOLD constant referenced on line 11, which identifies

how different the value of genCount for the set of leaking allocations in

comparison to normal allocations must be. If the threshold is too low,

the algorithm will detect too many false positives. If the threshold is too

high, there will be too many false negatives and there is a danger that the

application will run out of memory before the algorithm detects anything at

all, or that late detection will not leave any time or resources for reference

path analysis (an issue in HtmlUnit case study, section 6.3).
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Analysis of the results of the algorithm has also shown that there are

certain cases without a clear difference between leaking and non-leaking

allocations, i.e. in real world applications genCount distribution may not

have a clear gap exceeding a predefined threshold, thus clearly separating

allocations into leaking and not leaking.
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Figures 4.4 and 4.5 illustrate the problem. These figures represent parts

of the genCount histograms from real web applications of different sized

code bases. On the X-axis, there are indexes of allocations in a set of

allocations ordered by their genCount value. The Y -axis shows their actual

genCount value. For the sake of clarity and readability only allocations

with higher genCount values are shown; however, most of these allocations

usually have a small genCount, as shown in section 4.

In the first case (Figure 4.4), the gap can be clearly seen and it is easily

detectable using a threshold value. In the second case (figure 4.5) genCount

gradually increases over allocations, which means that using the threshold

technique is not possible for separating leaking allocations from non-leaking

ones. This problem can be particularly evident in large applications with a

lot of classes under heavy load, complex user interaction, caches and heavy

sessions with varying lifespan. The issue was observed in the eHealth web

application case study (see section 6.2).

An alternative approach can be taken by losing the whole concept of

the gap threshold, presenting the user with a prioritized list of potentially

leaking allocation sites, allowing the user to review them, and select the

true positive ones. However, shortest path search must be completed and

paths must be merged to perform leak analysis. In order to perform path

search, leak candidates must be specified. This means that the process

of leak detection cannot be automatic and human interaction is required

before the final result is produced. This may not be always possible for

long running processes, when the leak is detected at a time when there’s

no human available to perform selection or such selection will take place

when the process will be running out of memory and the analysis could

not be performed. Another important role of separation of a group of leak

candidates in an automated way is to exclude a possibility of human error

which could exclude the actual root cause of the leak. So there has to be
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a way to automatically separate a group of allocations exhibiting similar

lifecycles.

4.3.3 Distribution uniformity

In addition to the problem of genCount value growth and the existence

of a gap between allocations, there is also an issue with distribution uni-

formity within values contributing to the genCount – vector returned by

the function G(c, gcn) defined in equation 4.1 in section 4. To recap, vector

G(c, gcn) shows which generations have live objects from allocation c and it

has a length of n (total number of garbage collection generations elapsed).

Consider the example shown in Figure 4.6. This figure shows the distri-

butions of live generations of four allocations within a corresponding vector

returned by G(c, gcn), where n = 400, meaning that 400 garbage collection

generations have elapsed since the start of the application. A dot on the

graph at coordinates (x, y) means that for each allocation x, there is at

least one live object created in generation y.

In this example, all four allocations have the same genCount of 20, but

the values in vector G(c, gcn) are distributed differently. If we consider that

purely looking at the genCount parameter (genCount of allocation c counts

the number of dots on the graph for any given c) is enough, if threshold

criteria are met, then all of them should conclude one thing – probability

of leaking. However, this figure shows that given the same genCount it

also should be considered how the values contributing to the genCount are

distributed throughout time.

In the case of allocation 1, all of its live objects are concentrated within

the first 50 generations, which means that these objects were created during

system start-up and their number will most likely remain stable, as they

probably belong to the application’s base classes, meaning that equation

4.3 does not hold even if the genCount threshold requirement is met.
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Figure 4.6: Distribution of values within G(c, gcn) with equal genCount

Synthetic example of the distribution of values within G(c, gcn) with
equal genCount

In the case of allocation 2, all of its live objects are concentrated within

the last 100 generations, which means that these can be objects serving

incoming requests and which remain alive over several requests. For ex-

ample, HTTP session objects in a web application will remain reachable

between requests and can survive enough garbage collections to reach the

genCount threshold compared to other application classes. However, after

the HTTP session timeout will be reached relevant objects will become eli-

gible for garbage collection. Again, equation 4.3 does not hold and looking

purely at the genCount threshold is not enough to mark the allocation as

leaking.

Allocation 3 represents a hybrid case between cases 1 and 2 where some

live instances were created during start-up and some live instances are used

for serving incoming requests. Thus, allocation 3 is displaying properties of

both allocations 1 and 2 and the genCount value of allocation 3 is limited

by some constant M as defined in equation 4.4. So, even if this constant
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M is larger by a threshold compared to other allocations, it is still not a

leak.

Allocation 4, even visually, can be perceived as being a leak as its in-

stances are constantly created since the start of the application and some of

its instances have remained alive during the entire run-time. Which, given

that a threshold condition is met, can be a good enough reason to mark a

class as leaking, as we can assume that this pattern will continue.

To further improve the statistical method a separate indicative property

is needed to handle the distribution problem.

4.3.4 Factory methods

Because instances of a class can be created in many different places in the

code, the notion of allocation, as described in section 4, is used. Although

the allocation site indicates the line of code where the instance of a class

is created, sometimes it is not enough to identify the source of the leak,

as more context (or deeper stack trace, as the allocation is the top of the

call stack) is needed. One common example of where one allocation site is

not enough are factory methods. Methods implementing the factory design

pattern produce objects which are used in many places within the applica-

tion. Efficient tracking of the full instantiation context is more difficult, as

it introduces a greater run time overhead to track full stack traces instead

of a single allocation site.

One possible solution to this problem is to apply some sort of context-

sensitive points-to analysis, e.g. object-sensitivity [Mila 05], as a prepro-

cessing step. As a result of this preprocessing, it would be possible to

distinguish between allocations based on the callers of the factory method,

rather than the factory method itself.
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4.3.5 Application uptime and load

When analyzing the distribution of generations of live objects and their

uniformity, two other important aspects arose – application uptime and

its load. As the goal of the statistical method is to provide high proba-

bility memory leak detection as soon as possible, which contradicts with

the definition of a memory leak (equation 4.3), which in term expects un-

limited growth over time, it means that we should wait longer to see if

the leak really is growing without limits. Given a uniformly distributed

vector of generations, such as allocation 4 in Figure 4.6, and knowing that

the application was running for a day, we may say with high probability

that instances of allocation 4 are quite probably leaking, as the heap con-

tains reachable objects which were created during a day, which is probably

longer than any HTTP session timeout. Given the same distribution and

knowing that the application was running for less than a minute, we should

probably wait a little longer to see if objects will be garbage collected. Un-

fortunately, the estimation of long or short uptime duration is very relative

and depends on application usage, meaning that we cannot provide a rule

of thumb to detect whether an application was working long enough.

The load of the application is also a relevant topic of the uptime issue.

It emerged when comparing real world applications with synthetic tests,

which are often created to test leak detection algorithms. While server-side

applications tend to work continuously for a long period of time, meaning

the leak has time to grow and we have time to detect it, then synthetic tests

work as a fast burst of only leaking memory and will exhaust the heap too

quickly for the statistical method to detect anything.

4.3.6 Lazy application caches

There can be two types of caches in the applications – eager caches and

lazy caches. An eager cache will be loaded with data once and it will be

alive for a certain period of time. From genCount’s point of view, an eager
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cache will have lot of objects within one or several close generations, such

as allocations 1 and 2 in Figure 4.6. So, eager caches are not erroneously

identified as leaks.

Lazy caches, on the contrary, are filled with data when needed, so in

some cases such caches may look like leaks. Well-behaved caches must

somehow be restricted from occupying the entire heap. If this restriction

is not in place, then the cache can cause OutOfMemoryError and a sub-

sequent crash of the JVM, which makes the cache ill-behaved. However,

some lazy caches may be smart enough to monitor memory usage and

unload unused objects only when heap usage exceeds a certain threshold.

Some special handling must be added to the automated statistical approach

to distinguish such caches from memory leaks, which is a research topic all

its own.

4.4 Analysis of the runtime performance

To measure the overhead of Plumbr, DaCapo Benchmark suite version 9.12

was used [Blac 06]. Benchmarks were executed on Oracle HotSpot JVM

1.7.0 09 running on a 2.70 GHz IntelTMCoreTMi7 CPU with 8 GB of RAM,

SSD drive and MacOS X 10.8 operating system. DaCapo benchmark was

set up to perform 30 iterations of all benchmarks.

To record memory usage during the execution, the same technique was

used as during the case studies. The execution time of benchmarks was

also recorded. Memory usage graphs cover all 30 sequential executions of

benchmarks (to get a bigger picture which would account for warm-up),

whereas execution time was analyzed separately from all runs.

Measurements of execution times are summarized in Table 4.5, showing

the minimum, maximum, mean and standard deviation of execution times

with and without Plumbr. The total mean overhead across all benchmarks’

9725



mean run times is 41%. The negative overhead percentage for maximum

avrora benchmark execution times can be explained by the first iterations

when the warm-up was not yet completed and this is the period which

produces the longest runs in the whole suite. Large deviations across runs

are caused by the overall short execution times; even a slight change in

conditions results in a relatively large deviation. This may be attributed

to be a problem of the DaCapo benchmark suite, which outputs its results

as execution times instead of a compound score, like the SpecJVM bench-

mark suite. Considering complex environment setup with Plumbr being

attached, and that numerous components need to be initialized first, such

short benchmarks may not be the best way to evaluate the performance of

such a complex system.

To illustrate memory overhead, we show the top 5 longest-running

benchmarks: eclipse (Figure 4.7), tradesoap (Figure 4.11), tomcat (Figure

4.9), tradebeans (Figure 4.10) and sunflow (Figure 4.8).

From the results, we can calculate the mean execution time overhead

over all benchmarks: 41%. Although, actual values for particular tests

fluctuate from 2% on avrora and luindex up to 127% on eclipse. Inspection

of GC logs showed that collectors’ throughput in case of eclipse benchmark

is almost twice as big with Plumbr as without and accumulated pause

times is nearly ten times bigger. This indicates that eclipse allocates large

Min Mean Max Std dev
Benchmark Cl. Pl. OH Cl. Pl. OH Cl. Pl. OH Cl. Pl.
avrora 3 828 3 939 3% 3 984 4 058 2% 5 799 5 532 -5% 389 296
batik 1 099 1 193 9% 1 350 1 526 13% 6 253 8 275 32% 939 1 286
eclipse 19 838 46 490 134% 21 680 49 117 127% 42 905 77 455 81% 4 179 5 599
fop 225 387 72% 416 683 64% 2 938 4 191 43% 512 701
h2 4 242 5 136 21% 4 691 5 772 23% 6 929 7 429 7% 459 446
jython 1 662 2 640 59% 2 211 3 356 52% 11 424 15 549 36% 1 809 2 370
luindex 524 527 1% 650 664 2% 1 422 2 396 68% 197 352
lusearch 1 257 2 479 97% 1 482 2 748 85% 5 632 6 156 9% 789 651
pmd 1 811 2 283 26% 2 068 2 767 34% 6 172 9 580 55% 823 1 488
sunflow 3 560 6 231 75% 3 798 6 418 69% 4 481 8 445 88% 139 398
tomcat 2 156 2 491 16% 2 439 2 971 22% 5 151 7 158 39% 581 854
tradebeans 5 013 7 081 41% 5 173 7 283 41% 7 084 10 724 51% 364 657
tradesoap 9 550 11 887 24% 15 991 16 583 4% 21 096 39 776 89% 2 152 4 859
xalan 1 380 1 868 35% 1 652 2 307 40% 6 165 10 508 70% 885 1 572

Table 4.5: DaCapo benchmark results in milliseconds without (Cl) and with
Plumbr (Pl.) attached
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Figure 4.7: Memory usage for eclipse benchmark
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Figure 4.8: Memory usage for sunflow benchmark
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Figure 4.9: Memory usage for tomcat benchmark

amounts of objects, which lead to high tracking overhead. From this, it

can be concluded that actual performance overhead of Plumbr is very much

dependent on the application and which subsystem (CPU-intensive, high

object creation ratio, I/O, etc.) the application is stressing.

The same set of benchmarks was also executed on different machines –

on the Amazon EC2 cloud instance and on a PC with a traditional hard
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Figure 4.10: Memory usage for tradebeans benchmark
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Figure 4.11: Memory usage for tradesoap benchmark

drive. It was observed that because of slower disk access performance,

execution time overhead was lower than the average 41% shown previously

– as disk I/O operations take more time from the total execution time, the

CPU part decreases in total time, so Plumbr overhead is less perceivable.

4.5 Summary

This chapter described the statistical approach for the memory leak detec-

tion in Java applications, the most important contribution of the thesis.

The notion of genCount along with formal definition was presented. The

proof of concept algorithm, utilizing introduced concept, along with its im-

plementation details were described. An implementation of the described

algorithm called Plumbr was presented. Plumbr was used by actual end

users to collect the data for the validation of the concept. Based on the col-

100



lected statistics it was concluded that the hypothesis about using genCount

as a major indicator for memory leak detection was valid. The analysis of

the data along with the evaluation of the detection performance and the

runtime performance were also presented in the current chapter.
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Chapter 5

Improving Statistical

Approach using Machine

Learning

As analysis in section 4.3.1 revealed, using single metric like genCount and

a simple algorithm utilizing a constant threshold value, detects presence of

the leak in the application with F1 score of 0.71. However, fully correct

leaking allocations are identified with F1 score of only 0.39. Also, it was

shown that additional attributes could improve statistical memory leak

detection. However, when using one or two attributes it is easy to analyze

them by hand, but when using multiple attributes and considering their

combinations, manual analysis becomes unfeasible. Machine learning was

chosen to help introduce additional parameters for the leak detection.

As definition in section 2.2 suggests, to apply machine learning one has

to define a set of data to learn from (E), a measure of performance to

improve (P ) and identify tasks (T ) which the learning has to achieve. In

the case of memory leak detection the task to perform T may be formulated

as: identify which allocations in the application are leaking. The source of

experience E is composed of statistical snapshots as described in section
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4.3.1. The measure of performance to improve P will be the F1 score, as

defined in section 2.2.

5.1 Setting the baseline

To use a wider range of attributes supervised machine learning was used.

To apply supervised learning, a set of examples of java allocations and

their leakage statuses is required. Possible leakage statuses of a class are

discrete: leaking and not leaking. If the outcome of the supervised learning

is discrete then the function that associates the attributes’ values and the

leakage status is called a classifier and in that case supervised learning

algorithms are also called classification algorithms.

Before setting off to feature design and application of any concrete learn-

ing algorithms a baseline and a data set must be defined in order to have

clear understanding of what is the starting point and what is desired to be

achieved.

As described in section 4.3.1, source data for the leak detection per

application is a set of statistical snapshots, where each snapshot in the set

is acquired after a full garbage collection. One snapshot contains a set of

all allocations c ∈ C in the application and a vector G(c, gcj), as defined in

section 4.2.1. By the beginning of the learning process there was a set of

statistical snapshots from 10 894 application runs (sessions), collected from

974 different users, who were using Plumbr. Out of these, 200 sessions were

hand-picked, manually inspected, and actual leaking statuses were assigned

on an allocation level. Sessions were chosen in a way that exactly half of

those 200 sessions contained allocations with the leakage status leaking.

Snapshots from these 200 sessions will be referred as full data set.

Applications were separated into two sets for training and for testing

of classification algorithms in a proportion of 2/3 for training and 1/3 for

testing. The training set contained 134 applications in total, 67 applications
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out of those contained leaking allocations and 67 applications consisted only

of not leaking allocations. The rest 66 applications were selected into testing

data set. Training set consisted of 287 776 allocations and 0.5% of them

were leaking. Testing set consisted of approximately 159 037 allocations

and 0.7% of them were leaking.

To fix the baseline before proceeding to testing classifiers, the statis-

tical approach was applied to the testing data set, which will be used for

validation of the classifiers. As testing set constitutes 1/3 of the full data

set and fraction of leaking allocations is so small, then using the numbers

calculated in section 4.3.1 from the full data set is not feasible as they differ

from the results obtained from the testing data set.

Predicted
Actual Leaking Non-leaking

Leaking 511 367
Non-leaking 577 157 582

Table 5.1: Baseline confusion matrix

Confusion matrix for the baseline is shown in Table 5.1. Baseline pre-

cision is 0.582, recall is 0.469 and the F1-score is 0.51.

5.2 Design of attributes

Attribute identification is the first task in the implementation of machine

learning. Attributes of an allocation, which can be used for learning, can be

any features which can be used to characterize the allocation, e.g., name of

the class, number of live objects, genCount value, number of all generations

and ratios of combinations of other attributes. Further on, a specification

of an attribute and its value is called a feature.

To identify learning attributes statistical snapshots accompanied with

leakage statuses on an allocation level were used. To determine learning
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attributes, 44 applications from the full data set were chosen so that they

would be as different as possible, based on their allocation and object age

distribution. Difference between applications was derived from visual eval-

uation of plotted distribution of live generations of allocations over time.

From previous analysis it was known, that 11 of these 44 selected applica-

tions were given incorrect diagnosis by the statistical approach.

Two human experts were employed, who were able to verify whether

the leakage status of the class is leaking or not leaking and correlate their

decision with the decision of the default approach. Human troubleshooting

experts were using professionally similar memory leak detection approach

based on the genCount value, however, they also used ’gut feeling’ which

was based on yet unidentified attributes. The main goal at this stage was

to determine which additional attributes they were using without formal

specification. To give their resolutions, experts were allowed to use only the

data available in the collected snapshots (also in visualized form). During

reevaluation of these 44 applications, the decision process of experts was

tracked by letting them document their decision process to identify such

’gut feeling’ attributes.

Evaluation process was done in 2 iterations. During the first iteration

experts worked independently. After the first iteration of determination,

approximately 10% of expert resolutions were conflicting. In the second

iteration experts worked together with the goal to resolve conflicts. After

the second iteration the final common determination of each allocation was

achieved. The result of the final determination concluded that 20 applica-

tions from 44 contained allocations with the leakage status leaking. The

total number of allocations in all applications was approximately 130 000

and 0.3% of them were leaking based on expert resolution.

When making their decisions and resolving conflicts, experts were cre-

ating a log, which was further analyzed and additional features were deter-

mined. Some of these features were usable for human experts, but currently
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not measurable. One example of such feature is a warm up period of an

application. During the warm up period the first initialization process is

taking place, a lot of classes are loaded and instantiated and no class can

be considered leaking until warm up is finished. As it is not yet possible to

detect automatically when warm up period of the application is over, such

attribute is omitted. Analysis of the decision logs discovered six attributes

to consider.

1. Gap between two neighbour genCount values of allocations after sort-

ing the allocations by their difGen value. The same attribute used

in the baseline classifier, as described in Listing 4.1.

2. genCount – major indicator, as described in section 4.

3. Overall uptime of an application – as outlined in section 4.3.5, ignor-

ing the uptime of an application was causing false positive results for

the baseline detection approach. For the attribute value uptime is

measured in minutes.

4. Uniformity of genCount distribution – analysis in section 4.3.3 has

shown that distribution uniformity is affecting leak detection quality.

To mitigate the problem, the uniformity of genCount distribution is

defined as a standard deviation of distances between neighbor non-

zero elements in G(c, gcn) vector. The intuition behind the definition

tells that if leaking objects are created regularly, then the distances

between generations of live objects are more equal, than distances

between alive generations of allocations which are created in bursts

over the lifetime of the application. For illustration of the concept

see Figure 4.6 in section 4.3.3. So, the standard deviation of the dis-

tances between non-zero elements in G(c, gcj) vector should indicate

the uniformity in our case – the smaller the deviation, the more equal

are distances between elements, the more uniformly are distributed
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the live generations in time. To normalize the feature across different

applications the value of uniformity is divided by the length of the

G(c, gcn) vector.

5. Ratio between live objects of an allocation and its genCount indicates

how many live objects are there in application per one live generation

on average. This ratio can give insight to how many instances of an

allocation may leak at a time. If the ratio is small then it means

that there is a small amount of instances per live generation, which

in combination with high genCount, which is uniformly distributed,

may indicate that there are some instances of an allocation which are

created regularly over time, small number of them is surviving, which

looks like a memory leak.

6. Ratio between number of an allocations with the same genCount gap

and number of all classes (leakingAllocationRatio) can give insight

to how large part of all allocations within the application is exhibiting

similar liveness pattern.

Ratios, instead of absolute values, are used to normalize input data and

improve feature comparison for classes from different applications.

The log of expert’s decision process was using discrete qualifiers as low

and high or small and big for all of the attributes. After the features were

extracted from the data set two experiments were conducted. One used raw

features for the learning. For the second experiment continuous values of

all attributes were manually discretized using thresholds, which were based

on experts ’gut feeling’, into three groups: small, medium and large.

Such manual discretization resulted in a training set which contained

many allocations with the same feature values. After removing allocations

with duplicate features there were only 235 allocations with unique com-

bination of features left, which makes only 0.8% of all allocations in the

selected 134 applications. Because such drastic difference could skew the
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result of training, chosen classification algorithms were trained and tested

twice with discretized training data set. First time algorithms were trained

with all allocations from discretized training data set. For the second train-

ing duplicates were removed from the training data set. Testing data set

was not filtered in both cases to make the results comparable.

To sum up, six attributes were defined and training data set was used in

three configurations: continuous values, discrete values and discrete values

with duplicates filtered out.

5.3 Experimental results and analysis

Three classification algorithms were used for experiments: C4.5 [Quin 93],

PART [Fran 98], and Random Forest [Brei 01].

These algorithms were chosen because they are known to perform well

over a wide range of learning tasks, thus being general enough. On the

other hand, C4.5 produces a decision tree, PART produces the a rule list,

and Random Forest produces an ensemble of trees, thus using different

approaches. For all three algorithms implementations from Weka toolkit

[Hall 09] were used (C4.5 is called J48 in Weka).

On the continuous training set C4.5 used 5 attributes (all, except leaking

AllocationRatio) and generated a tree of size 121 with the number of leaves

of 61. On the discrete training set C4.5 used 5 attributes (all, except

leakingAllocationRatio) and generated a tree of size 35 with 18 leaves.

On the discrete training set without duplicates C4.5 used only two at-

tributes (genCount and genCount uniformity) and generated the tree of

size 5 with 3 leaves. The confusion table with calculated metrics can be see

in the summary table 5.2.

On the continuous training set PART used 5 attributes and produced 36

rules. On the discrete training set PART used 5 attributes and produced

16 rules. On the discrete training set without duplicates PART used 3
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attributes, with 5 rules. The confusion table with calculated metrics can

be see in the summary table 5.2.

Random Forest was tried with different number of trees (10, 30, 50) and

different number of features (from 1 to 6). Results shown in the summary

table 5.2 are obtained with the combination of 30 trees and 6 features,

which gave the best F1 score.

In all cases classification algorithms were evaluated using allocations

from the testing group. Baseline results, evaluated with the testing group,

are also shown in the summary table 5.2.

Algorithm Group TP FP FN TN Prec Rec F1 AUC

Baseline 511 367 577 157582 0.582 0.469 0.519 0.789
C4.5 cont. 540 338 113 158046 0.827 0.615 0.705 0.996
C4.5 disc. 745 133 252 157907 0.747 0.849 0.795 0.996
C4.5 no dups. 788 90 454 157705 0.634 0.897 0.743 0.962
PART cont. 529 349 793 157366 0.400 0.603 0.481 0.648
PART disc. 745 133 247 157912 0.751 0.849 0.797 0.996
PART no dups. 509 369 81 158078 0.863 0.580 0.693 0.958
RandomForest cont. 762 116 354 157805 0.683 0.868 0.764 0.948
RandomForest disc. 745 133 253 157906 0.746 0.849 0.794 0.958
RandomForest no dups. 620 258 3811 154348 0.140 0.706 0.234 0.957

Table 5.2: Summary of machine learning experiments (group cont means
training data set with continuous values, disc means manually discretized
training data set, no dups. means manually discretized training data set with
allocations containing only unique features)

As training was performed on an unbalanced dataset (0.5% positives

and 99.5% negatives), there was the risk that classifier can be tempted to

score all samples as negative as this will yield a high score. However, from

confusion matrix it can be seen that such risk has not realized. Moreover,

trained algorithms show smaller number of false negatives than the baseline.

Notably, training on manually discretized data performed best consid-

ering F1 score. And almost equally so for all three classifiers. With such

training data set C4.5 and RandomForest performed identically – difference

is in 1 false negative, which is negligible. PART managed to produce 5 false

negatives less and thus becomes a winner with a F1 score of 0.797.

It can be seen that using only genCount attribute alone, as in baseline

statistical approach, is enough to predict leaks with a score of 0.51, which
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means that this is the most dominant attribute. Adding 5 more parameters

resulted in 27% better leak prediction performance. However, from the

confusion table it can be seen that the overall improvement came from the

decreasing number of false positives, produced by simple threshold method.

5.4 Summary

In this section it was described how the machine learning was used to

improve the detection quality of the statistical approach for memory leak

detection in Java applications. In order to achieve improvements, five addi-

tional learning features were identified based on the analysis of the baseline

method. Three machine learning algorithms, C4.5, PART and Random

Forest were used on the dataset obtained from real applications which were

using Plumbr – the implementation of the statistical approach for memory

leak detection.

Before applying machine learning the baseline performance metrics, like

F1-score and ROC AUC were measured. Same metrics for the machine

learning approach showed 27% increase in F1-score, at the expense of re-

duced number of false positives and false negatives.
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Chapter 6

Case Studies

As Plumbr uses run time information to generate the leak report, it is

crucial that the leak is detected, analyzed and the report generated before

the application runs out of memory. How long it will take detect the leak (in

case there is a leak in the application) depends on the threshold in algorithm

4.1. We conducted several case studies to investigate the behavior of the

systems containing a memory leak.

For these experiments, we had to find known memory leak bugs to see if

our tool could find the right reason for the leak. For that, we searched the

issue tracker of the Apache Software Foundation [Apac 11a] for memory

leak bugs in Java-based projects. Among these, we searched for ones that

had the test case attached as a unit test, to be able to reproduce bugs. In

addition to these open source projects, we also looked for known bugs in

business web applications with closed source code.

Current work does not include any false positive case studies, instead,

sections 4.3.2, 4.3.3, 4.3.4, 4.3.5 and 4.3.6 analyze the reasons for possible

false positive results. The reason for such handling is that in the case of

actual memory leaks, the amount of free heap is degrading, thus affecting

the performance of the application. Therefore, if performance is degrading

and at some point the JVM crashes it would be interesting to see whether
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Plumbr would be able to generate the report before the crash, and what

kind of overhead would be given by Plumbr. In the case of false positives,

the only impact is that wrong leaks are reported, but as the application

does not have a leak, there is no risk of failure or memory pressure even

if the report is generated and it does contain wrongly identified leaks. In

terms of the execution overhead in non-leaking applications, refer to section

4.4 for the performance analysis.

Every case study followed the same process:

1. Collect a baseline against which to evaluate our agents’ efficiency and

overhead. For this purpose, every application under the study was

run without Plumbr agents. The following baseline numbers were

marked:

(a) Time to crash with OutOfMemoryError

(b) Memory usage (both heap and native) during the course of the

run

2. Run the application until the crash, with troubleshooting agents at-

tached. In addition to the baseline metrics, we were interested in the

following information:

(a) Whether the agent will find the leak

(b) Whether there will be any false positive alerts

(c) How fast will the agent be able to spot the leak and produce a

report

(d) Whether the agent will influence the time to the crash (compared

to the baseline metric)

(e) How large a memory overhead is caused by the agent (compared

to the baseline metric)
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Experiments were conducted in Amazon EC2 cloud [Amaz 14], using

Standard Large instance running 64bit Ubuntu Linux and Oracle Java

HotSpot 1.6.0 24 64-Bit Server VM (build 19.1-b02, mixed mode). At

the time of conducting experiments, the standard large instance had the

following characteristics: 7.5 GB memory, 4 EC2 Compute Units (2 virtual

cores with 2 EC2 Compute Units each), 850 GB instance storage, 64-bit

platform.

To log memory consumption a small Java agent was used which mea-

sured memory usage every second using the standard java.lang.Runtime.

totalMemory() and java.lang.Runtime.freeMemory() methods and log-

ged the values to the file.

In total, 6 different experiments were conducted with bug reports from

4 different projects from Apache Software Foundation (Velocity, Xalan,

Derby and ActiveMQ), among which ActiveMQ [Acti 11] was chosen for

the presentation in this thesis. ActiveMQ was chosen as it is a popular

message broker which can be used as a standalone application in a cloud

environment, in contrast to other projects which are either utility frame-

works (Velocity and Xalan) or are not widely used (Derby). In addition to

the above, case studies with HtmlUnit from SourceForge [Memo 11] and the

closed source eHealth web-application are also presented in the following

subsections.

ActiveMQ and the eHealth application case studies were also described

in [vSor 11b], the HtmlUnit case study was added specifically for this pub-

lication.

6.1 Case study: Apache ActiveMQ

Apache ActiveMQ [Apac 14] is an open source message broker which fully

implements the Java Message Service 1.1 (JMS) specification. It provides

many features such as clustering, multiple message stores, and the ability

11329



to use any database as a JMS persistence provider, besides the VM, cache,

and journal persistence required by large enterprise installations.

The subject of this case study was a bug reported to Apache ActiveMQ

project’s issue tracker [Acti 11]. It was reported before we conducted case

studies and we reused the test case attached to the ticket. A modified

version of the description from the bug report follows.

Two parties, a server (called a broker) and a client participate in com-

munications using the ActiveMQ infrastructure. The broker’s job is to

listen for incoming connections, accept them and respond to events occur-

ring during this connection lifetime, as per protocol. The client opens a

connection to the broker, and then, in violation of ActiveMQ protocol, just

drops it. This can take place either due to buggy client code or due to

network problems. The result of such a dropped connection is that the

instance of object, representing the client who has initiated this connec-

tion, remains in the broker’s memory. If many clients repeatedly create

new connections to the same broker and at some point in the future just

drop this connection without closing it, as required by ActiveMQ proto-

col, it can result in many objects accumulating on the broker’s side. As

the broker cannot distinguish between a dropped client and the client who

merely is inactive for some time, these objects are held by the broker until

the broker’s memory is depleted, which results in OutOfMemoryError and

the broker’s crash.

In order to reproduce the reported bug in our environment, a sample

client for ActiveMQ was written. This client spawned a number of threads,

each opening a new connection to the broker and then abruptly closing this

connection. This process was run repeatedly, simulating network problems

over time. ActiveMQ broker was run with default settings, as provided

in default start-up scripts with the distribution. As a result, in both cases

(with and without an agent), the broker was run with Java heap size fixed to

64MB. It must be noted that our sample client was specifically targeted for
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this bug and was therefore only exploiting the leak. To bring this scenario

closer to a real-world situation a pause of 2 seconds was introduced between

requests.

 0

 10

 20

 30

 40

 50

 60

 70

00:00 10:00 20:00 30:00 40:00 50:00 00:00 10:00 20:00

M
B

Time (min:sec)

Clean

Total Heap
Used Heap

 0

 10

 20

 30

 40

 50

 60

 70

00:00 10:00 20:00 30:00 40:00 50:00 00:00 10:00 20:00

M
B

Time (min:sec)

Plumbr

Total heap
Used heap

Time of leak detection

Figure 6.1: Case study: Apache ActiveMQ memory usage

Apache ActiveMQ memory usage without (Clean) and with Plumbr

Following the description in section 6, the baseline was recorded in the

first step:

(a) The broker runs for 1 hour and 17 minutes before the crash

(b) Memory usage is depicted in Figure 6.1 (Clean).

After that, Plumbr was attached to the broker and the same sample

client was run. The results were as follows:

(a) The agent was able to successfully find the correct source of leaking

objects.

(b) No false positives were reported.

(c) The leak was detected 36 minutes after the start of the application.

(d) The broker ran for 1 hour and 15 minutes before crashing.

(e) Memory usage is depicted in Figure 6.1 (Plumbr).
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A comparison of memory usage graphs (Figure 6.1) shows that trou-

bleshooting agents created no significant memory overhead. However, a

slight increase in the frequency of full garbage collector runs can be seen

(large drops in heap usage indicate full garbage collection).

In conclusion, it should be mentioned, that such a leak can easily occur

in distributed environments, especially in such dynamic ones as a cloud.

In a distributed environment, network outages, lags, congestion as well as

client machine crashes are all very likely scenarios. In addition, such a

memory leak can be easily exploited against a service provider who uses

ActiveMQ to create Denial of Service (DoS) type attack (to cause service

outages simply by opening connections and then dropping them). In the

context of an elastic cloud computing environment with dynamic resource

allocation, the provider could be attacked, causing them to allocate new

instances to serve more and more non-existing clients, in turn causing fi-

nancial damage by forcing them to pay for allocated resources.

6.2 Case study: eHealth web application

This case study focuses on a large enterprise application (≈ 1 million lines

of code) with a web front-end – the eHealth web portal, including pa-

tient record handling and many other healthcare related functions. The

application is actively developed and supported by a dedicated team of

developers. At one point in time, the team started receiving reports that

the application crashes in the production environment every few days with

java.lang.OutOfMemoryError. As the team was unable to fix the leak

within a reasonable period of time, it was estimated that allocating in-

creased development resources to the problem is more expensive than sim-

ply having the client’s operations team restart the application servers every

other night in order to prevent a crash. It must be noted that such a so-

lution is not uncommon in other similar projects, as regularly restarting
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Java servers is often a lot cheaper and simpler, than finding the leak with

existing tools and expertise.

As the case study was conducted when Plumbr was still in a very early

research phase, we were unable to attach the agents to the production

servers due to the client’s concerns about the agents’ stability. However,

we were allowed to use a test environment to verify that Plumbr would be

able to find the leak. As the exact sequence of actions leading to the leak

was unknown, the leak first had to be found manually. Manual heap dump

analysis was used to do that. After the leak was identified manually, a test

case was generated to simulate the needed activities in the test environment

using Apache JMeter [Apac 11b] script.

The next step in this case study was to attach our agent to the appli-

cation server in the test environment, run the recorded JMeter stress-test,

and determine whether our agent is able to find the problem.

In both cases, with and without the agent, the application was run with

a Java heap size of 512MB.

When memory usage was first recorded, it was noted that without

Plumbr, memory consumption over time grows even faster than with Plumbr

(Figure 6.2). Apparently, memory consumption is closely related to the

amount of requests performed by the application. So to get the full pic-

ture, the number of performed requests is also added to Figure 6.2 (to fit

both memory consumption and the number of requests on one scale, the

number of requests must be multiplied by 100).

Following the description in section 6, the baseline was recorded as a

first step:

(a) The application ran for approximately 2 hours and 30 minutes before

crashing

(b) Memory usage as well as the number of requests sent is depicted in

Figure 6.2 (Clean)

11730



 0

 100

 200

 300

 400

 500

 600

00:00 01:00 02:00 03:00 04:00 05:00 06:00

Time (hr:min)

Clean

Total heap

Used heap in MBytes

Total number of requests x100

 0

 100

 200

 300

 400

 500

 600

00:00 01:00 02:00 03:00 04:00 05:00 06:00

Time (hr:min)

Plumbr

Total heap

Used heap in MBytes

Total number of requests x100

Time of leak detection

Figure 6.2: Case study: eHealth web application memory usage

eHealth web application memory usage without (Clean) and with Plumbr

After that, the agent was attached to the application server and the

same stress-test was run. Results were as follows:

(a) The agent was able to successfully find two sources of leaking ob-

jects (the application actually had two leaks, one of which was not

discovered by manual analysis)

(b) No false positives were reported

(c) The leak was spotted after 2h 30min after the application’s start

(d) The application ran for approximately 6h before crashing

(e) Memory usage and the number of requests are depicted in Figure 6.2

(Plumbr).

We can draw very interesting results from these figures.

First of all, let us look at the number of requests the application was able

to serve and how this number changed over time. With both of these, figures

we see a rapid degradation of the application’s performance approximately

30 minutes into the stress test. This degradation can be easily explained

by taking the amount of the free memory available to the application into

account. As it decreases, the garbage collector starts to run more and more

often and takes more and more time. Which, in turn, leaves less opportunity
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for the application to serve incoming requests. Hence, we see performance

degradation and, as a result, a slower increase in memory used. So, in the

case of a memory leak situation, not only does the overall performance of

the application decrease, but the speed of the leak decreases significantly

over time as well. This also explains the fact that the application crashes

much later compared to the start of the slowdown.

Second, comparing the first 30 minutes of running the stress test with

and without the agent, we can estimate the overhead of running an applica-

tion with our agent to be approximately 35%, which is almost in sync with

the 41% average overhead observed in DaCapo benchmarks (see section

4.4).

Third, we have one counter-intuitive result of the application running

for 6 hours with the agents, vs. 2 hours and 30 minutes without them. This

can be attributed to the fact that due to agents’ performance overhead,

fewer requests were served during this time, and, as a result, memory leaks

were consuming memory at a much slower pace, so the application managed

to stay alive for a much longer time, although most of the time was occupied

by garbage collection, not real work.

From Figure 6.2 we also can see a very interesting thing about memory

leaks in Java applications – when the amount of free heap reaches its limit,

application will continue to run and the garbage collector will attempt

to free memory, but the performance of the application is dramatically

decreased. For example, in this case, clients would be experiencing long

response times and timeout errors for 2 hours before the application actually

crashes.

6.3 Case study: HtmlUnit

HtmlUnit is an open source project hosted on SourceForge [Html 11]. It

is a “GUI-Less browser for Java programs”. Most often it is used as an
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embedded browser in unit testing frameworks, to automatically navigate on

web pages without user intervention. As the cloud is increasingly used for

automated and distributed load and functional testing of web-applications,

HtmlUnit is used to perform navigation and browsing for such applications.

The memory leak we studied is discussed on the HtmlUnit user’s mailing

list [Memo 11]. This leak was found, solved and reported by us while we

were testing Plumbr.

The essence of the leak is as follows. It happens only when an HTML

page has a special condition – it must have a JavaScript job, which is exe-

cuting periodically without reloading the whole page. When the HtmlUnit

opens such an HTML file, the embedded browser creates Java objects rep-

resenting such periodic jobs each time this job must be executed. Then this

Java object, representing this JavaScript job in the HtmlUnit run time envi-

ronment, is stored in some internal storage. Due to a bug in the JavaScript

engine in HtmlUnit this object is not released from storage even after the

corresponding JavaScript job has completed its execution. As a result, if

the HTML page remains open long enough, an OutOfMemory condition can

occur and HtmlUnit crashes.

In order to reproduce this problem, we created a sample HTML page

with a JavaScript code which updates the page with some random text. The

Java representation of this page is held in HtmlUnit’s WebPage object, which

in turn is held in HtmlUnit’s WebClient object, which is the originator of

HTTP call for the page. The leak itself happens in JavaScriptJobManager-

Impl, which is held inside WebClient. Figure 4.2 in section 4.2.2 displays

the final report for the HtmlUnit case study.

Following the description in section 6, the baseline was recorded as a

first step:

(a) It took 28 minutes for the crash to happen;
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Figure 6.3: Case study: HtmlUnit memory usage

HtmlUnit memory usage without (Clean) and with Plumbr

(b) Memory usage without the agents is depicted in Figure 6.3 (Clean)

(note that after 25 minutes of run time memory usage was constantly

near total available heap and we cut the graph on minute 25 for the

sake of readability of the figure).

After that, troubleshooting agents were attached to the HtmlUnit test

case and the same HTML page was opened in a loop. The results were as

follows:

(a) Agent was able to successfully find the correct source of leaking ob-

jects

(b) No false positives were reported

(c) The leak was spotted 20 seconds after the start of the application

(d) The page was held active for 26 minutes before the crash

(e) Memory usage is depicted in Figure 6.3 (Plumbr).

In this case, thanks to rapid leak detection, the agent was able to per-

form the required analysis very quickly and disable its monitoring part

early in the test run. Thus, no overhead can be discovered from the graph.

The reason for such rapid detection is that this test case is synthetic in the
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sense that it is exploiting one particular leak in a highly focused way, and

it is not doing anything else.

However, during some runs of this test case with agents, albeit with

different memory settings, the expected memory leak was spotted and re-

ported; however, the full analysis, which is needed to pinpoint the path

from garbage collection roots to leaking objects, was unable to finish due

to the limited memory settings. This is an example of the situation de-

scribed in section 4.2.2 when leaks, having their roots in local variables,

can require considerably more time to be analyzed. In such situations the

ability to perform the full analysis offline, using metadata collected and

saved by agents during the first collection phase, right after the memory

leak was detected, becomes valuable.

6.4 Comparison with the LeakChaser

To compare leak detection quality with competitive solutions a special case

study was conducted. First, the competitors had to be chosen. As the

statistical approach for memory leak detection is a general purpose online

approach, according to the classification in chapter 3, a comparison to an-

other general purpose online or hybrid approach would make sense. When

choosing a hybrid approach, it should use also online analysis. As all online

general purpose leak detection approaches were at least five years old at

the moment of the comparison and Java virtual machines have made a lot

of progress, the LeakChaser [Xu 11] was selected for comparison. As the

publication contains comparison to the Sleigh [Bond 06], transitive conclu-

sions may be drawn. Moreover, Sleigh and its bit-encoding (Bell) is used

in other leak detection tools as well, so comparing to the LeakChaser is a

reasonable choice. While it considers leaks based on the allocation sites, it

makes the LeakChecker more similar to the statistical approach.
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When comparing memory leak detection approaches by their intrusive-

ness, approaches requiring changes in the virtual machine were classified as

highly intrusive. Such classification becomes apparent when one shall try

to apply such an approach outside of laboratory environment. LeakChaser

was implemented in a Jikes RVM 3.1.0 and is available as a patch to the

Jikes RVM source code. As the patch can be applied only to a correct

version of the source, such correct version has to be obtained and built or

it has to be re-implemented and adapted to the more modern version of

the virtual machine. Both approaches are very time and labour consum-

ing. Once the seemingly easier approach of building the old version of the

JVM is chosen, one must consider that modern environments have also de-

veloped and some tool chains needed to build the JVM are also changed.

But once the changes are applied and all issues resolved (which may take

several days), the implementation of the approach can be used. It must be

noted, though, that described challenges are engineering problems, and not

the problems with the scientific part of the approach.

Listing 6.1: Leaking class

1 public stat ic class Garbage {
2 int [ ] x = new int [ 1 0 0 0 ] ;

3 S t r ing y ;

4 Date [ ] d = new Date [ 2 ] ;

5

6 public Garbage ( int i ) {
7 x [ 0 ] = i ;

8 y = new St r ing ( St r ing . valueOf ( x [ 0 ] ) ) ;

9 }
10 }

As reported by the manuals of Jikes RVM, it does not fully support

default class libraries. So, for example a tradesoap benchmark from the

suite of DaCapo benchmarks does not work with Jikes RVM 3.0.1. For this

reason, before trying real leaks, one simple synthetic test was tried first.
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The test leaks instances of the class Garbage, which in turn contains three

fields, see listing 6.1.

Passing in an argument which is actually not used and evaluating inter-

nal values are needed to fool the optimizing JIT (Just In Time) compiler

not to apply optimizations and lose leaking allocations altogether.

Listing 6.2: Leaking code

11 public class GarbageProducer {
12 stat ic List<Garbage> randomLeakingGarbage =

13 new LinkedList<Garbage >() ;

14 stat ic List<Garbage> anotherRandomLeakingGarbage =

15 new ArrayList<Garbage >() ;

16 void doSomeWork( Garbage o ) {
17 randomLeakingGarbage . add ( o ) ;

18 }
19 void doMoreWork( Garbage o ) {
20 anotherRandomLeakingGarbage . add ( o ) ;

21 }
22 public GarbageProducer ( int i t e r a t i o n s , Random r ) {
23 Transact ion workTransaction =

24 LeakChaser . c r ea t eTransac t i on (

25 Transact ion .MODE INFERRING, 9 0 ) ;

26 LeakChaser . r e g i s t e r T r a n s a c t i o n O b j e c t (

27 workTransaction , this ) ;

28 LeakChaser . s t a r tTransac t i on ( workTransaction ) ;

29

30 for ( int i = 0 ; i < i t e r a t i o n s ; i++) {
31 Garbage o = new Garbage ( i ) ;

32 Garbage o2 = new Garbage ( i ) ;

33 St r ing s = o . getY ( ) ;

34 i f ( i \% ( r . next Int ( i t e r a t i o n s ) + 1) == 0

35 | | s . l ength ( ) == i ) {
36 doSomeWork( o ) ;

37 doMoreWork( o2 ) ;

38 } }
39 LeakChaser . endTransact ion ( workTransaction ) ;

40 } }
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Listing 6.2 shows the class GarbageProducer, which creates instances of

Garbage and randomly leaks them via static fields randomLeakingGarbage

(line 12) and anotherRandomLeakingGarbage (line 14). Instances of Gar-

bage are leaked randomly and most of the instances do not survive. This is

required to create some work for the garbage collector and model the situa-

tion where only a fraction of all created objects is leaking and also guarantee

that this synthetic test case will not run out of memory after several first

garbage collections. From the formal point of view, when one instance of

Garbage class is leaked, four objects are leaked in total – Garbage itself

and its three fields: int[] x, String y, and Date[] d. When all alloca-

tion points in the current example are distinguished, then there are five

leaking allocations: in listing 6.1 lines 2,3,4 and in listing 6.2 lines 31, 32.

Code on lines 23. . . 28 and 39 is required for the LeakChaser to specify

transactions during the Tier H analysis (see section 3.3 for the description

of the LeakChaser algorithm), when precise source of the leak is not known

and the code is being explored for the first time. The paper claims that

to mark the coarse-grained transaction boundaries on the high level of the

approach no knowledge is required about the system. However, marking

such transaction boundaries across the large application is highly unfeasi-

ble because of the amount of work. So, to find the leak using LeakChaser

in a large multi-module application, at least an indication of the module

responsible for the leak is required, meaning that at least some knowledge

about the source of the problem is required. In contrast, proposed statis-

tical approach implies no prerequisite knowledge about the source of leak,

as the whole application is monitored for potential violators of the weak

generational hypothesis.

After running the synthetic test application with LeakChaser, it pro-

duced the report containing all five leaking allocations. Part of the full

report is show in listing 6.3 with line numbers fixed to match the source
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code in listings 6.1 and 6.2. Part of the report in the listing shows the leak

details for instances of the Garbage class created at the line 32.

Listing 6.3: Part of the LeakChaser output, line numbers adjusted

1 Transaction specified at:

2 Class: leakchaser.GarbageProducer

3 Method: <init >( ILjava/util/Random ;)V

4 Line Num: 31

5 Violating objects created at:

6 Class: leakchaser.GarbageProducer

7 Method: <init >( ILjava/util/Random ;)V

8 Line Num: 32

9 Violation type:

10 objects shared among transactions are stale

11 Frequency: 13

12 #Object reference paths: 1

13 Path 1, frequency 13, root obj referenced in method: No info

14 --> Object type:Ljava/util/ArrayList ;; Creation site: 14 @leakchaser.GarbageProducer: <clinit

>()V

15 --> Object type:[ Ljava/lang/Object ;;

While the report is correct, the depth of the path, displayed on lines 14

and 15, is by default limited to 5 elements. In case of field anotherLeaking

Garbage which is an instance of LinkedList, whole chain of references

constists of references between LinkedList$Entry elements. Another issue

to note is how the holding reference is identified on line 14. While in this

simple synthetic test the container is initialized and assigned to a field on

the same line, in more complex applications initialization of the holding

container may occur in a site unrelated the class containing the field the

leaking container is held in.

In addition to this simple test case, mostly used to verify that Jikes

RVM of the correct version is compiled and LeakChaser works, one real-

world case study was also conducted. One of the tests used to analyze

performance of Plumbr was used with LeakChaser – HtmlUnit. As was

described in section 6.3, the memory leak of HtmlUnit was buried inside

of the frameworks’ code. To keep the test case close to the real life, the

transaction boundaries for the LeakChaser were specified only in the user

code which was calling the HtmlUnit framework.

For this use case Plumbr reported just one allocation requiring atten-

tion, as shown in image 4.2. As a result of a test execution, 47 leaking
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allocations were reported by LeakChaser, and none of the reported alloca-

tions were in fact relevant to the real memory leak. Based on its output it

would be very hard to narrow down the scope for further diagnosis of the

memory leak.

As a conclusion it must be noted that while targeted for developers,

LeakChaser may be a good tool to diagnose a memory leak, given an insight

where to narrow the focus.

6.5 Summary

This chapter described the case studies that were performed to evaluate

detection performance along with runtime overhead of the Plumbr, imple-

mentation of the statistical approach for memory leak detection. Three case

studies explained how existing leaks in ActiveMQ framework and one large

web-application were verified with Plumbr and one new leak in HtmlUnit

framework was detected during development and experimentation.

Last case study was conducted to compare proposed approach with an

existing state of the art solution for memory leak detection. Most novel

approach was selected among contenders – LeakChaser. Finding and fixing

the leak consists of two distinct phases: detection and diagnosis. While the

detection says what is leaking, diagnosis must find out how to fix it. As the

statistical approach showed, while the detection can be automated in such

a way that the developer is presented with the root cause of the problem,

the diagnosis of the problem still has to be performed by the developer.

It cannot be automatically prescribed what are the correct invariants for

the program and what are the correct lifetime boundaries for particular

objects. Approaches like LeakChaser can take over and help the developer

where Plumbr leaves.
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Chapter 7

Conclusions and Future

Research Directions

Memory leak detection has been studied for the past 18 years, ever since

Java was released. The solutions proposed range from low-overhead, low-

intrusive, manual offline methods to high-overhead, high-intrusive, high-

precision automatic online methods. Some of the proposed high-precision

automatic online approaches require modifications of the JVM to work. If

we look at the JVMs used in the industry – Oracle HotSpot/OpenJDK,

Oracle jRockit, IBM v9, Azul Zing – none of them include GC-modifying

approaches developed by scientists.

Solutions that rely on modification of the JVM probably will not ever

reach real production JVMs, as all detection mechanisms provide only a

certain probability that some objects are no longer used, and this function-

ality is inherently a tool’s responsibility rather than part of JVM.

While early JVM implementation lacked support for third-party tooling

to provide hooks into the JVM and garbage collection needed for online

memory leak detection, modern JVMs provide powerful APIs to support

monitoring and instrumentation combined with extremely easy installation

of the tools. Java agents and native agents using JVMTI API can be used
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to implement powerful low-level and low-intrusive tooling which can use

benefits promised by the online methods described in scientific publications.

The latest publications also show that usage of JVM agents is also being

adopted by the scientists instead of integrating tooling directly into the

JVM or garbage collectors.

It should also be noted that there is no common measurement method-

ology across different approaches, which makes the comparison of leak de-

tection quality complicated.

Author of the thesis believes that design goals such as general appli-

cability, low intrusiveness, and reasonable overhead are really important

for creating an algorithm which could be implemented in a standalone tool

that can be used without modifying the application, JVM, or environment

and yet produce readable reports for a programmer who is not a perfor-

mance tuning professional but a regular programmer who just encountered

an OutOfMemoryError in the production environment and just wants to get

it fixed and continue with development, rather than spend days debugging.

Current thesis proposes to use the statistical metric, expressing the

number of different generations of objects grouped by allocation sites, called

genCount, which in combination with weak generational hypothesis allows

to abstract such expensive metric as object staleness – an important at-

tribute indicating a memory leak. The initial hypothesis stated that the

unbounded growth of the genCount metric of an allocation site indicates

the source of the memory leak. Once the leak candidates are identified, ad-

ditional analysis is performed to identify a chain of references holding onto

leaked objects and merge reference chains for the leaking object subtree.

To validate the hypothesis, the approach was implemented in a tool called

Plumbr, which was made available for public use. The tool was also used

to collect usage and feedback data. Although the analysis of false posi-

tives revealed several scenarios where a detection algorithm could benefit

from enhancements, the genCount parameter alone correctly identified the
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leak in 70% of the applications with an F1-score of 0.71. However, on the

allocation site level performance of the approach had an F1-score of 0.39.

Further analysis identified the reasons for false positive detection re-

sults, as no clear separation of the leaking genCount, uniformity of genCount

distribution, limited allocation context, impact of application load and up-

time. Machine learning was used to further enhance the approach. Five

additional metrics were specified and C4.5, PART and RandomForest classi-

fiers were used to analyze the data set acquired from Plumbr users, consist-

ing of carefully selected 200 different applications. Application of classifiers

to identified new metrics resulted in an F1-score of 0.797 on an allocation

site level.

Apart from these, analysis of the use cases revealed several interesting

observations about the behavior of the application itself when a memory

leak is in progress. When the amount of Java heap used by the application

begins approaching the limit set for the JVM, most of the time is spent in

garbage collection, as can be concluded from garbage collection logs. Be-

cause of that, the performance of the application is reduced dramatically.

As was shown in section 6.2, such performance degradation starts long be-

fore the application crashes with OutOfMemoryError or the GC overhead

limit set by JVM ergonomics is reached [Java]. Which means that “Time

to crash” cannot really be used as a reliable measure of application per-

formance and that of performance tuning results. Only direct measures of

request service time or, in the case of cloud applications and/or applica-

tions with a more distributed request-serving pipeline, time spent in GC as

a ratio of total CPU time, will be an adequate assessment of an application

performance.

Following section summarizes contributions of the thesis and outlines

future research directions.
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7.1 Future research

Modern complex and distributed applications require new approaches for

performance management and monitoring. Monitoring data must not only

be gathered and visualized, but rather interpreted. Current thesis showed

that modern tools for data analysis like machine learning can be successfully

applied to make sense of the data acquired from application monitoring. It

allows to build application-aware monitoring tools which account for ap-

plication specific behaviour automatically, with little specification required

from a human. Such approach makes it possible to perform complex trou-

bleshooting tasks without heavy-weight debugging and profiling tools, but

rather measuring right metrics and making correct conclusions out of such

data, possibly giving instructions for solving the problem.

Future research include, but is not limited to, discovering new types of

performance problems, which may be analyzed in a similar way by applying

machine learning for the detection and diagnosis. Statistical data about ob-

ject lifetimes and allocation behaviors, gathered from Plumbr users, allows

conducting further research to investigate lifetime patterns of long-lived

objects.

In the scope of memory leak detection, still unaddressed is the problem

of factory methods and lack of context which produces most of the false

positives. Efficient methods for collection and encoding of stack traces are

required to solve the problem. Engineering research topics also include per-

formance optimizations for the current implementation which would further

reduce the runtime overhead, that can be very noticeable in applications

exhibiting high object allocation rates.

Feasibility of the application of the approach on other platforms, like

Android or .NET must also be studied. In addition, interpretation of the

leak detection results in the context of other dynamic programming lan-

guages executing on the JVM, like Groovy, Scala, Clojure, etc. is yet to be

analyzed.
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Acronyms

ACM Association for Computer Machinery
AOP Aspect Oriented Programming
API Application Programming Interface
AUC Area Under the Curve
CMS Concurrent Mark and Sweep
CPU Central Processing Unit
FN False Negative
FP False Positive
GB Gigabyte
GC Garbage Collection
GPL General Public License
GUI Graphical User Interface
HPROF Heap Profiler
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
IBM International Business Machines
IDE Integrated Development Environment
JDK Java Development Kit
JIT Just In Time Compiler
JMS Java Messaging Service
JNI Java Native Interface
JVM Java Virtual Machine
JVMPI Java Virtual Machine Profiling Interface
JVMTI Java Virtual Machine Tooling Interface
LVB Loaded Value Barrier
MAT Memory Analyzer Tool
RAM Random Access Memory
ROC Receiver Operating Characteristic
RVM Research Virtual Machine
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SOT Swap Out Table
SSD Solid State Drive
TN True Negative
TP True Positive
VM Virtual Machine
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[vSor 11a] Vladimir Šor and Satish Narayana Srirama. A Statistical

Approach For Identifying Memory Leaks In Cloud Applica-

tions. In: CLOSER 2011 - Proceedings of the 1st International Con-

ference on Cloud Computing and Services Science, Noordwijkerhout,

Netherlands, 7-9 May, 2011, pp. 623–628, SciTePress, 2011. 20, 49,

62, 64, 66, 71, 134
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[vSor 12] Vladimir Šor and Satish Narayana Srirama. Evaluation of

embeddable graph manipulation libraries in memory con-

strained environments. In: Research in Applied Computation Sym-

posium, RACS ’12, San Antonio, TX, USA, October 23-26, 2012,

pp. 269–275, ACM, New York, NY, USA, 2012. http://doi.acm.

org/10.1145/2401603.2401663. 87, 134
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Statistiline lähenemine

mälulekete tuvastamiseks

Java rakendustes

Kokkuvõte

Kaasaegsed hallatud käitusaja keskkonnad (ingl. managed runtime envi-

ronment) ja programmeerimiskeeled lihtsustavad rakenduste loomist ning

haldamist. Klassikaliste programmeerimiskeeltega võrreldes on hallatud

käitlusaja keskkondades programmeerijal vaja vähem tegeleda madalatase-

melisteste probleemidega. Käitusaja keskkond jooksutab koodi eraldi tur-

vatud keskkonnas (ingl. sandbox ) ning võimaldab käivitada üks kord kom-

pileeritud programmi erinevatel platvormidel ja operatsioonisüsteemidel.

Kõige levinumaks näiteks säärase keele ja keskkonna kohta on Java.

Klassikalistes programmeerimiskeeltes peab programmeerija ise hoolit-

sema operatsioonisüsteemilt tarvilikku mälu koguse küsimise (e. allokee-

rimise) ning hilisema vabastamise (e. deallokeerimise) eest. Mälu allo-

keerimise päringu tulemusena antakse rakendusele tagasi viide allokeeri-

tud mälule. Allokeerimise/deallokeerimise operatsioonide väärkasutamine

on suure hulga programmeerimisvigade põhjustajateks. Üheks sellise vea

14537



näiteks on mäluleke ehk olukord, kus rakendus küll allokeerib mälu, kuid ei

deallokeeri seda pärast kasutamist. Mälulekkel on kaks erinevat tekkepõh-

just: tarbetu mälu hoidmine ja kaotatud viide:

• Tarbetu mälu hoidmise puhul on viide allokeeritud mälule lihtsalt

unustatud konkreetsesse muutujasse. Selle viite unustamise tõttu on

mälu rakendusele kättesaamatu, kuigi reaalselt antud mälu enam ei

kasutata.

• Kaotatud viite puhul kirjutatakse viidet hoidev muutuja üle enne

mälu deallokeerimist. Selles olukorras on eraldatud mälu kadunud

kuni rakenduse tööaja lõpuni, mil operatsiooni süsteem vabastab kogu

rakenduse poolt allokeeritud mälu. Kui sellisel moel lekib mälu piisa-

valt palju, võib kogu olemasolev mälu otsa saada. Mälu otsasaamisel

võib seiskuda nii rakendus kui halvimal juhul ka operatsioonisüsteem.

Üheks tähtsaks hallatud käitusaja keskkonna ülesandeks on automaatne

mäluhaldus. Automaatne mäluhaldus hoolitseb mälu allokeerimise ja de-

allokeerimise eest. Kui mälu allokeerimiseks on piisav, kui programmis

luuakse uus objekt, siis deallokeerimise eest hoolitseb eraldi moodul –

prügikoristaja (ingl. garbage collector). Prügikoristaja kustutab mälust

kõik objektid millele ei viita ükski teine objekt. Seega elimineeritakse üks

eelmainitud mälulekke põhjustest – kaduma läinud viide.

Teine võimalik mälulekke allikas (tarbetu mälu hoidmine) on endiselt

relevantne. Probleemi teeb eriti oluliseks fakt, et Javale antav mälu on

rangelt piiratud, mistõttu mäluleke on üks väheseid programmeerimisvigu,

mis võib hävitada kogu Java käitusaja keskkonna protsessi koos kõikide seal

töötavate programmidega. Mäluleke on selles aspektis eriline – tänapäeva-

ste raamistike kõrge tõrkekindlus tagab muude tekkida võivate erindite osas

Java käitlusaja keskkonna töö jätkamise. Siit järeldub, et probleem on eriti

kriitiline rakendustes, mis peaksid ööpäevaringselt tõrgeteta toimima.
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Vaatamata sellele, et mälulekete probleemi on uuritud Java keele ning

selle käitluskeskkonna tekkimise algusaegadest saadik, pole sellele siiani

pakutud lihtsat tuvastus- ning diagnostikalahendust. Käesolev väitekiri

uurib mälulekete problemaatikat Javas ning pakub välja mälulekkeid tuvas-

tava ning diagnoosiva algoritmi. Lahenduse loomisel on olulise aspektina

silmas peetud jõudluse ülekulu – pakutud lähenemist peab saama kasutada

ka toodangukeskkondades (ingl. production environments).

Kuna sisseehitatud prügikoristajaga Javas tähendab mäluleke tarbetut

mälu hoidmist, siis heaks indikaatoriks otsustamaks, kas objekt on kasu-

tuses või mitte, on objekti viimane kasutusaeg. Objekti viimase kasutuse

aega mõõdavad ning kasutavad indikaatorina mitmed teised uurimistööd.

Selle meetrika põhiliseks puudujäägiks on selle hind jõudluse mõttes – sel-

leks et teada, millal objekti on viimati kasutatud, peab iga kasutuskorra

(nii kirjutamise kui ka lugemise) puhul uuendama seda kasutust jälgivaid

lippe või muutujaid. Nii toimides kaasneb iga lugemisoperatsiooniga ka ühe

mäluaadressi kirjutamine, mis ainult tarkvaraliste vahenditega on jõudluse

mõttes liiga kallis. Jõudlusprobleemid on ka põhjuseks, miks sääraste mee-

todite rakendatavus on piiratud arenduskeskkondadega ja tehisnäidetega.

Käesolev väitekiri pakub alternatiivset lähenemisviisi objektide mitte-

kasutuse hindamiseks. Töö põhimõte baseerub ühel kaasaegsete prügikori-

stajate optimiseerimiste alustalaks oleval tähelepanekul. Nimelt elab ena-

mus objekte prügikoristusega käitusaja keskkonnas väga lühikest aega. Väi-

tekirja põhihüpoteesiks on idee, et lekkivaid objekte saab statistiliste mee-

toditega eristada mittelekkivatest, kui vaadelda objektide populatsiooni

eluiga erinevate gruppide lõikes. Selliseks vaatluseks piisab, kui salves-

tada objektide loomise aeg, grupeerida objektid klassi ning loomise koha

järgi ning pärast prügikoristust vaadelda, kuidas jagunevad elus olevate

objektide vanused.

Pakutud lähenemine on oluliselt odavama hinnaga jõudluse mõttes –

põhieeliseks on, et objekti kohta on vaja salvestada infot ainult selle loomise

147



hetkel. Hilisema kasutuse jooksul on episoodiliselt tarvis analüüsida eral-

diseisvat andmestruktuuri, muutmata rakendust ennast. Väitekirja uurim-

istöö tulemusi on rakendatud mälulekete tuvastamise tööriista Plumbr aren-

damisel.

Pärast sissejuhatavaid peatükke 1 ja 2 on käesoleva väitekirja 3. pea-

tükis vaadeldud siiani pakutud lahendusi ning on pakutud välja ka mälu-

lekete tuvastamise meetodite klassifikatsioon. 4. peatükis on kirjeldatud

statistiline meetod mälulekete tuvastamiseks ning põhimõõdik, mille abil on

võimalik eristada lekkivaid objekte mittelekkivatest. Lisaks on analüüsi-

tud ka kirjeldatud põhimõõdiku puudujääke. 5. peatükis on kirjeldatud

kuidas masinõppe abil said defineeritud lisamõõdikud, mis aitasid pakutud

mälulekete tuvastamise meetodit täpsemaks teha. Testandmeid masinõppe

tarbeks on kogutud Plumbri abil päris rakendustest ning toodangkeskkon-

dadest. 6. peatükk kirjeldab juhtumianalüüse, mille abil on hinnatud

lahenduse mõju vaadledavate rakenduste jõudlusele. Lisaks on teostatud

ka võrdlev juhtumianalüüs ühe olemasoleva mälulekete tuvastamise lahen-

dusega.
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