Consideration of non-adiabaticity of the Pseudo-Jahn-Teller effect: contribution of phonons
TAAVI VAIKJÄRV

Consideration of non-adiabaticity of the Pseudo-Jahn-Teller effect: contribution of phonons
This study was carried out at the University of Tartu.

The dissertation was admitted on 11.11.2014 in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Physics, and was allowed for defence by the Council of the Institute of Physics, University of Tartu.

Supervisors: DSc Vladimir Hizhnyakov, University of Tartu, Estonia

Opponents: Prof. Ernst Sigmund, Technical University of Brandenburg, Cottbus, Germany

PhD Mihhail Klopov, Tallinn University of Technology, Tallinn, Estonia

Defence: January 16, 2015, at the University of Tartu

The research presented in this thesis is supported by the Estonian Science Foundation projects no. ETF7741 and IUT2-27.
LIST OF ORIGINAL PUBLICATIONS

This thesis is based on the following publications (full texts included at the end of the thesis), which are referred to in the text by their Roman numerals. The papers are reprinted with the kind permission from the publishers.

Author’s contribution
The articles were elaborated in collaboration with all the researchers involved. The author of this thesis was responsible for the development of the numerical methods for the calculations concerning the pseudo-Jahn-Teller effect and provided the figures and the interpretation of the results based on the results of the calculations. The task of verifying the derivation of the theoretical model was also necessary in the process. In the last article he also had the leading role of writing the main body of the text.
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>JT</td>
<td>Jahn-Teller</td>
</tr>
<tr>
<td>JTE</td>
<td>Jahn-Teller effect</td>
</tr>
<tr>
<td>PJTE</td>
<td>pseudo Jahn-Teller effect</td>
</tr>
<tr>
<td>PEC</td>
<td>Potential energy curve</td>
</tr>
<tr>
<td>REP</td>
<td>Raman excitation profile</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

1.1 Overview of the Jahn-Teller effect

In 1937 Hermann Jahn and Edward Teller published a paper [1] where they analyzed all symmetry groups corresponding to degenerate electronic states in polyatomic molecules. They found that all groups except the ones corresponding to linear molecules contained a nontotally symmetric representation. This meant that there existed a direction, where the movement of nuclei removes the degeneracy, thus reducing the energy of the system. They finally concluded that „stability and degeneracy are not possible simultaneously unless the molecule is a linear one“. This became known as the Jahn-Teller (JT) theorem and the phenomenon of molecule distortions explained by this theorem as JT effect (JTE). A similar effect was also discussed to occur in linear molecules, called the Renner-Teller effect [2], and in the molecules with quasi-degenerate electronic states, called pseudo JTE (PJTE). The PJTE was considered by Öpik and Pryce in 1957 [3] as a small perturbation from the original JTE. The PJTE, however, is in itself a valuable tool in understanding molecular dynamics. “The PJTE is the only source of instability and distortions of high-symmetry configurations of polyatomic systems in non-degenerate states, and it contributes essentially to the instability of degenerate states” [4]. The two effects, however, are closely related, as they are a result of the same nuclear-electron coupling effect. For the JTE to occur a degenerate electronic state coupled by vibrations is required. In the PJTE case no degeneracy is needed. The only requirement is the existence of vibronically coupled electronic states. For the effect to be significant the states should be close in energy, as the coupling is reduced inversely to the separation in energy. However, electronic states as far as 10 eV [5] or 14 eV [4] apart can be coupled by the PJTE. It is worth noting that the two effects are not necessarily coexistent or simultaneously exclusive. In fact their strengths, if present in a system, are in no way correlated. Bersuker has suggested [6] that the whole JT theorem should be reformulated to include all the effects mentioned: „The necessary and sufficient condition of instability of the high-symmetry configuration of any polyatomic system is the presence of two or more electronic states that are either degenerate in this configuration, or non-degenerate but sufficiently strongly interacting under nuclear displacements in the direction of instability, the twofold spin degeneracy being an exception.”

Jahn and Teller started off a field of research into coupling effects between electronic and vibrational (vibronic) motions. The implications of this effect reach far beyond the simple understanding of molecular distortions. The most profound impact of the JTE has probably been on quantum chemistry, as the JT distortions influence the molecular dynamics. This has allowed to gain an insight into complex molecular processes, for example in photochemistry. High-temperature superconductivity is another example of a field influenced by the JTE. This time the electron-phonon mechanism for the formulation of Cooper
pairs can also be viewed as a JTE. The JTE also proves its value in describing
the influence of the surrounding crystal on single molecular magnets and in
spectroscopy of transition metal complexes. For a more detailed description of
the field, its background, formalism and its applications, the books for example
by Englman [7], Bersuker [8], Köppel et al. [9], should be consulted.

1.2 Purpose of the thesis

One of the most important goals for describing any quantum mechanical system
is to write down its Hamiltonian and to find its eigenvalues. The adiabatic
approximation is widely used [10] in discussing JTE and PJTE problems. It uses
the inequality of nuclear and electron masses to solve the Hamiltonian of the
system in two parts. Firstly, the electronic part is solved with the nuclear
configuration taken as a parameter of the equation. In other words, the nuclear
motion is taken to be much slower than the electronic motion. Secondly, the
nuclear motion is found in the mean field of electrons. The adiabatic approxi-
mation works well if the electronic levels are well separated as compared to the
quanta of vibrations. However, if important electronic levels are situated closely
or if they are degenerate, the approximation fails. The aim of this thesis is to
avoid the adiabatic approximation and to solve the problem in a way that non-
adiabaticity be considered as well.

This thesis is only concerned with the PJTE and only from a theoretical point
of view. For simplicity reasons further consideration is restricted to one of the
simplest PJTE systems, namely the case of a dimer. Fulton and Gouterman [11]
have shown that the dimeric Hamiltonian can be transformed in the same
manner as a molecular one. The dimer is a better test system than a molecule,
since it consists of two structurally similar subunits in interaction with each
other. This guarantees that there exist two energy levels that have a similar
potential energy curve (PEC) and that are similar in energy. The interaction
between the subunits is necessary for a vibrational mode to mix the energy
levels and for the PJTE to appear. The idea in this thesis is to also take into
account all the other modes up to the full phonon continuum. This could
represent a dimer embedded in a crystal medium. The interaction between the
subunits of the dimer means that the interaction of one bath mode has been
enhanced. In other words, there exist two energy levels mixed by an interaction
with one vibrational mode and influenced by a continuum of weaker modes.

The energy diagram pictured in Figure 1 gives an overview of the processes
involved.
Figure 1: The qualitative shape of the potential energy curves for a transition from a non-degenerate to a vibronically coupled quasi-degenerate excited state. The red and green lines represent the vibronic levels associated with the upper and lower curve, respectively.

The effect of non-totally symmetric vibrations on the electronic transition from a non-degenerated to the two-fold quasi-degenerated electronic state of an impurity centre in solids is of interest. The considerations are restricted to the zero temperature case, as the theory is more transparent and the results can be highlighted better. An electron in an initial electronic ground state is excited to one of the two electronic states that are in interaction with each other. The vibrational mode is represented by a configurational coordinate Q (same idea was used in [12]). This coordinate is considered to be a linear combination of the normal coordinate of the local mode and normal coordinates of phonons. The local mode describes mainly the dimer and the phonon coordinates describe the interaction with the surrounding medium (bulk crystal). The contribution of bulk phonon coordinates to Q is supposed to be small compared to the contribution of the local mode, but not negligible. The theory holds also in the
case when the main motion of the dimer is described by a long-living pseudolocal mode [13]. The vibrationally coupled electronic energy levels form two PECs in the Q-space: the upper energy curve steeper than the initial energy level (the force constant has stiffened due to interaction) and the lower energy curve with two minima and an unstable maximum (flatter curve with reduced force constants). The vibronic energy levels arising from the interaction with the main mode are in close proximity and get mixed due to the phonons in the medium. This can be seen in the optical spectra, as is explained in section three. This mixing is also responsible for the non-radiative relaxation of the electron to the lower vibronic states, as is explained in section four. The non-radiative emission of the dimer’s energy is possible by creating propagating phonons in the bulk.

The thesis is divided into three larger parts. The second section gives a theoretical framework of a novel way of considering the vibronic coupling. A strong interaction with one main mode of phonons that couples the two electronic states is required, however, the weak interaction with the whole phonon continuum is also taken into account. The main idea is to rewrite the Hamiltonian so that the vibronic interaction is transferred into the main mode in the ground electronic state. The eigenvalue problem for the ground state can easily be solved numerically. The influence of phonons on the main mode is taken into account by using the second cumulant expansion. In the third section, the obtained results are applied in the calculations of the optical spectra of dimers. The absorption spectrum and first- and second-order Raman excitation profiles (REP) are found. As the theory incorporates several hundreds of modes of the bulk and is applicable in a weak interaction limit, some novel results are presented. In the fourth section the aforementioned approach is used for calculating the lifetimes of the vibronic excited states that are influenced by bulk phonons. From this information the time dependence of the density matrix can be calculated. The density matrix can be used to find the time evolution of any observable quantity in the excited system, for example the wave function of the configurational coordinate.
2. THEORY OF VIBRONIC COUPLING

We will start with writing down the Hamiltonian of the system.

\[H_g = \frac{1}{2} \sum_j \left(-\frac{\partial^2}{\partial x_j^2} + \omega_j^2 x_j^2 \right) \]

(1)

is the vibrational Hamiltonian of the initial electronic state in the harmonic approximation (all the powers of displacement larger than 2 are neglected), \(x_j \) are the corresponding normal coordinates, \(\omega_j \) are their frequencies (in the units where \(\hbar=1 \)).

\[H_e = H_g \cdot I + V \]

(2)

is the vibronic Hamiltonian of the excited (quasi-degenerate) electronic state, \(I \) is a 2x2 unit matrix and \(V \) is the vibronic coupling matrix that mixes the two states. The vibronic coupling is taken in the linear approximation [14]:

\[V = \begin{pmatrix} \varepsilon & k \lambda \\ k \lambda & -\varepsilon \end{pmatrix}, \]

(3)

where \(Q \) is the odd configurational coordinate of the dimer in the Fulton and Gouterman terminology, \(2\varepsilon \) is the energy splitting between the quasi-degenerate states. The constant \(k \) shows the strength of the coupling between the quasi-degenerate states and can be calculated as the overlap of the electronic wave functions with respect to nuclear displacements. We are considering the case where the coordinate \(Q \) is the linear combination of a number of normal coordinates \(x_j \), but the main contribution to \(Q \) is given by one normal coordinate \(x_0 \). In this case \(Q \) can be presented in the form

\[Q = \left(1 + \lambda^2\right)^{-1/2} \left(x_0 + \lambda \sum_{j=1} e_{ij} x_j \right), \]

(4)

where \(\lambda \) is a small dimensionless parameter, \(e_{ij} \) are the normalized polarization vectors showing the contribution of the \(j \)-th phonon mode into the amplitude and direction along which the atom 1 oscillates. The number of contributing phonons is considered to be arbitrary.

The most interesting effects described by the model of the dimer are related with the case corresponding to a strong interaction with the main mode and to a comparable electronic interaction. No analytical solution of the problem is possible in this case, even if \(\lambda = 0 \) (no phonons are involved in the vibronic
interaction). However, in the latter case the eigenstates and eigenvalues (energies) of the vibronic Hamiltonian in Eq. (2) can be successfully found numerically [15]. One can expect that this numerical solution could be used as the zero'th approximation also in the case of phonons, supposing that their contribution to vibronic coupling is reasonably small. To this end one would need to use this solution as a basis for the consideration of the effect caused by the phonon vibronic Hamiltonian:

$$V_{ph} = \frac{k\lambda}{\sqrt{1 + \lambda^2}} \begin{pmatrix} 0 & \sum_j e_j x_j \\ \sum_j e_j x_j & 0 \end{pmatrix}.$$ \hspace{1cm} (5)

Unfortunately, it is a rather difficult task to rewrite V_{ph} in the basis diagonalizing H_e, which is not explicitly solved until today. However, the problem can be solved differently: one can replace the linear vibronic coupling V_{ph} by the quadratic coupling of the main PJTE active mode x_0 with phonons. The effect of the latter Hamiltonian can be considered straightforwardly, while all the required matrix elements of x_0 in the numerically found basis diagonalizing H_e are known.

2.1 Transformation of vibronic interaction with phonons

The required transformation of V_{ph} to the quadratic phonon Hamiltonian was first done in [I] and more generally in [IV] (for full derivation see Appendix A.1):

$$H_e \approx H_0 + H_{ph} + H',$$ \hspace{1cm} (6)

where $H_0 = \omega_0 a_0^+ a_0$ and $H_{ph} = \sum_{j \geq 1} \omega_j a_j^+ a_j$ are the Hamiltonians of the main mode and phonons, respectively,

$$H' = \lambda \sum_{j \geq 1} \nu_j \left(a_0^+ + a_0 \right) \left(a_j + a_j^+ \right)$$ \hspace{1cm} (7)

is the interaction of the main mode with phonons, a^+ and a are the creation and destruction operators,

$$\nu_j = e_{ij} \left(\omega_0^2 - \omega_j^2 \right) / 2 \sqrt{\omega_0 \omega_j}.$$ \hspace{1cm} (8)

In the notation of the ladder operators the vibronic interaction gets the following form:
\[V = \begin{pmatrix} G & \sqrt{D} (a_0 + a_0^*) \\ \sqrt{D} (a_0 + a_0^*) & -G \end{pmatrix}, \]

(9)

where \(D = k^2 / 2 \omega_0 \) is the vibronic interaction parameter. The units of \(\omega_0 \) for the energy are used: \(G = \varepsilon / \omega_0 \). Consequently, as a result of the transformation, the linear vibronic interaction with non-totally symmetric phonons is replaced by the quadratic interaction \(H' \) of the main (JT-active) mode with phonons.

2.2 Vibronic basis

The eigenstates \(|v^\pm \rangle \) of the vibronic Hamiltonian \(H_0 \cdot I + V \) will be used as the basis for the further treatment. The eigenstates satisfy the equation

\[(H_0 \cdot I + V) \begin{pmatrix} |v^+ \rangle \\ |v^- \rangle \end{pmatrix} = E_v \begin{pmatrix} |v^+ \rangle \\ |v^- \rangle \end{pmatrix}. \]

(10)

If one were to expand the eigenstates \(|v^\pm \rangle \) over the eigenstates \(|n \rangle \) of the Hamiltonian \(H_g \):

\[|v^\pm \rangle = \sum_n C_{nv}^\pm |n \rangle, \]

(11)

and after some manipulation (see Appendix A.2) Eq. (10) obtains a three-diagonal form

\[
\begin{pmatrix}
G & \sqrt{D} & 0 & 0 & \cdots \\
\sqrt{D} & 1-G & \sqrt{2D} & 0 & \cdots \\
0 & \sqrt{2D} & 2+G & \sqrt{3D} & \cdots \\
0 & 0 & \sqrt{3D} & 3-G & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{pmatrix}
\begin{pmatrix}
C_{0v}^+ \\
C_{1v}^+ \\
C_{2v}^+ \\
C_{3v}^+ \\
\vdots
\end{pmatrix} = \begin{pmatrix}
C_{0v}^* \\
C_{1v}^* \\
C_{2v}^* \\
C_{3v}^* \\
\vdots
\end{pmatrix}.
\]

(12)
These equations can be solved by standard methods, supposing that one can restrict himself with a finite number of the states of the pseudolocal mode.

2.3 Contribution of phonons

In order to take into account the phonon effects we rewrite the Hamiltonian $H_g + V \approx H_0 + H_{ph} + H' + V = H_z + H'$ and then use the Dyson equation [16] for the evolution operator $e^{\mu (H_g + V)}$. An average of the evolution operator over zero-point states would give a Fourier transform of the absorption (discussed later). The case of strong vibronic coupling with the main mode and weak coupling with phonons is of interest. If the phonon coupling is sufficiently small, then one can take the interaction H' into account approximately by using the cumulant expansion. In this approximation we get (for details see Appendix A.3)

$$\langle 0 | e^{\mu (H_g + V)} | 0 \rangle \approx \sum_{\nu} | C_\nu^\pm \|^2 \exp \left[i E_\nu^\pm t + g^\pm_{\nu}(t) \right] .$$ (13)

$$g^\pm_{\nu}(t) = -\int_{0}^{t} d\tau' \int_{0}^{t} d\tau \langle 0 \left| H'(\tau) H'(\tau') \right| 0 \rangle \langle \nu | 0 \rangle .$$ (14)

is the cumulant generating function up to the second-order cumulants. This function can be calculated by using the results from solving Eqs. (12)

$$g^\pm_{\nu}(t) = \lambda^2 \sum_{j} \nu_j^2 \sum_{\nu'} S_{\nu\nu'}^\pm \left(\frac{-it}{E_\nu^\pm - E_{\nu'}^\pm - \omega_j} + \frac{e^{i(E_\nu^\pm - E_{\nu'}^\pm - \omega_j)}}{(E_\nu^\pm - E_{\nu'}^\pm - \omega_j)^2} - 1 \right),$$ (15)

$$S_{\nu\nu'}^\pm = S_{\nu\nu'}^+ + S_{\nu\nu'}^-; \quad S_{\nu\nu'}^\pm = \sum_n C_{2n+1,\nu'}^\pm \left(\sqrt{2n+1} C_{2n,\nu'}^\pm + \sqrt{2n+2} C_{2n+2,\nu'}^\pm \right).$$ (16)

2.4 Change of frequency

Let us consider the transition from a ground state to an excited state with different frequencies of the harmonic oscillators of the corresponding Hamiltonians H_g and H_e. This will change the vibronic states. This was first done by Pae [17] by making use of the results on generating functions from Kubo ja Toyozawa [18]. An expansion of the ground initial state through the eigenstates of the excited state would be

$$| 0 \rangle_g = \sum_n s_{2n}^g | 2n \rangle_e .$$ (17)
the coefficients s_{2n} being (for derivation see Appendix A.4)

$$s_{2n} = \sqrt{\frac{2(2n-1)!!}{2^n n!}} \sqrt{\frac{\omega_i \omega_f}{\omega_i + \omega_f}} \left(\frac{\omega_i - \omega_f}{\omega_i + \omega_f} \right)^n.$$ (18)

The frequency change is described by the quadratic term in the vibrational Hamiltonian with respect to the vibrational coordinate. Therefore, only even states give a contribution to new even vibrational states.

2.5 Model of phonons

In the following discussion the Debye-Van Hove model of phonons is used. This model accurately describes the acoustic phonons in the region of high and low frequencies. In Eq. (15) the ν_f^2 function is taken as (see Appendix A.5)

$$\nu_f^2(\omega) = c^2(\omega) \left(\frac{\omega_0^2 - \omega^2}{4\omega_0 \omega} \right)^2 = \frac{8\omega^3}{\pi \omega_0 \omega_0^6} \left(\omega_0^2 - \omega^2 \right)^2 \sqrt{\omega_0^2 - \omega^2},$$ (19)

where ω_M is the maximum frequency of phonons. The phonon distribution can be seen in Figure 2.

![Figure 2. Transformed phonon density of states, where the main mode has been excluded](image)
The main implication from the phonon distribution for the further treatment is that in Eq. (15) the summation over ν' can be reduced to summation over $\nu' = \nu \pm 1$. The idea is that the energy of phonons is not sufficient to be responsible for larger transitions. The energy difference between the vibronic lines ν and $\nu + 1$ is in the order of ω_0. The value of maximum phonon frequency has been taken $\omega_{\nu} = 1.3 \omega_0$, being smaller than the difference between the second neighbour energy levels.
3. OPTICAL SPECTRA

One of the simplest methods for obtaining experimental data about PJTE systems is the optical probing. The current theory can be applied to predict the optical spectra of these systems. Here absorption spectra as well as first- and second-order Raman excitation profiles (REPs) are considered. REP - the relationship between excitation frequency and integral Raman scattering energy - is of special interest. It gives complementary information to absorption, since the vibronic coupling effects can be seen easily. This is very important in multimode systems, since different modes can be distinguished. Also, many similar features in absorption spectra can be of different origin. However, their Raman spectra are different and thus they can be distinguished. Raman spectroscopy has one more advantage over absorption. The resonant Raman spectroscopy methods could yield spectra with very fine details even from the samples with very low concentration. Thus, we will proceed with the emphasis on finding REPs.

It was first suggested by Lax [19] that absorption is easily described in the time domain. The spectrum is determined by

\[F_i(t) = \langle i | \mu_a e^{i\omega t} \mu_a e^{-i\omega t} | i \rangle, \]

(20)

where \(F \) is the Fourier transform of the absorption spectrum, \(\mu_a \) are the electric dipole moment operators, \(x, y \) denote the two axes of polarization. \(|i\rangle \) is the initial vibrational state in the ground electronic state. Hizhnyakov and Tehver [20] have analogously expanded this idea to the case of resonant Raman scattering from an initial ground state to a final ground state \(|f\rangle \).

\[A_{\alpha\beta,if}(t) = \Theta(t) \langle f | \mu_x e^{i\omega t} \mu_y e^{-i\omega t} | i \rangle, \]

(21)

where \(A_{\alpha\beta,if} \) is the Fourier transform of the resonance Raman scattering amplitudes. \(\Theta(t) \) is the Heaviside step function that takes into account the causality in the equation (scattering follows excitation). If we consider the zero temperature, then the system is initially in the ground electronic and vibrational state \(|i\rangle = |0\rangle |0\rangle \). The final state is then \(|f\rangle = |k\rangle |0\rangle \), where \(k = 0 \) in the case of absorption and \(k = 1, 2 \) in the first- and second-order Raman scattering, respectively. In the proposed model non-totally symmetric vibrations are under consideration. This means that the phonons involved will change the polarization of the system. Since first- order Raman scattering is a one-phonon process and second-order Raman scattering is a two-phonon process, it follows from symmetry considerations that \(A_{\alpha\beta,f0} \) is non-zero for all even orders of \(f \) when \(\alpha = \beta \). Likewise, the odd orders of \(f \) are only non-zero if \(\alpha \neq \beta \). This reduces the first-order Raman scattering into \(A_1 = A_{xy,01} \) and the second-order one into \(A_2 = A_{xx,02} \).
\[A_k(t) = \Theta(t) \langle k | 0 | \mu_i e^{i\mu_j H_t} \mu_j e^{-i\mu_i H_t} | 0 \rangle | 0 \rangle, \quad (22) \]

Here the results of Eq. (13) can be used, the exception being that the state \(|k \rangle \)
will be expanded as \(|k \rangle = \sum \mu_k C^{\pm} \nu^\pm \). Also, the relations
\[\langle g | \mu_i | +_v \rangle = \langle g | \mu_i | -_v \rangle = M \]
have to be taken into account, where \(M \) is a constant. This results in Eq. (22) becoming
\[A_k(t) \approx \Theta(t) M^2 \sum \mu_k C^{\pm} C_{0_v} \exp[iE_v t + g_v(t)]. \quad (23) \]

The Fourier transform of the absorption spectrum is
\[F(t) \approx \sum \mu_v \left| C_{0_v} \right|^2 \exp[iE_v t + g_v(t)]. \quad (24) \]

These equations can be interpreted in the following way. The Fourier transform of the \(\exp(iE_v t) \) term to the frequency domain results in \(E_v \) determining the frequencies of the vibronic lines. The constants \(C_{k_v} C_{0_v} \) determine the relative intensities of these narrow lines (analogous results were obtained in [21]). It follows from Eq. (23) and Eq. (24) that the effects of phonons are described by the factors \(\exp \left(g_v(t) \right) \). The imaginary part of the function \(g_v(t) \) gives a (small) correction to the position of the vibronic line. The real part changes the line shape. Every vibronic line is replaced by a phonon-assisted band whose shape is determined by the Fourier transform of \(\exp \left(g_v(t) \right) \).

3.1 Expected strength of vibronic effects

Before proceeding with the calculations of the spectra it would be useful to analyze in more detail the strength of phonon effects, as was also discussed in [IV]. The value of the function \(g_v(t) \) determines the interaction of phonons with each vibronic level. For example, this value shows the lifetime of each vibronic line and the strength of phonon wings in the spectra. It is interesting to have some idea about the relative magnitude of the influences on each vibronic line. The value of the function \(g_v(t) \) can vary greatly, as this depends reciprocally on the energy difference between vibronic levels (Eq. (15)). In Figure 3 (see also Figure 1) the energy difference between the nearest and second nearest vibronic energy levels is plotted.
There is a periodic pattern of spacing between the vibronic levels corresponding to different PEC. This leads to great variations in energy differences among vibronic lines, as can be seen from Figure 3. For a continuous spectrum of phonons there are phonons that make practically every vibronic transition possible. The maximum phonon frequency of $\omega_0 = 1.3\omega_0$ is sufficient for the nearest and next nearest vibronic energy level transitions. The transitions between the energy levels of the same PEC are not possible by non-totally symmetric phonons, however, the energy difference between the nearest neighbour vibronic levels belonging to the same PEC are shown for comparison. From these considerations it can be expected that the relative strength of the interaction with phonons varies greatly among different vibronic lines and that the phonon effects will be expressed accordingly. At first sight one would assume that the lowest energy phonons give the largest contribution due to the reciprocal dependence. Although important, the number of phonons responsible for each such transition also plays a role. As the number of low-energy phonons is small (see Figure 2), the actual contribution is small as well. This can mathematically be understood, as in Eq. (15) the value of the function $g_v(t)$ depends on the energy difference between vibronic levels but also on the function ν^2.
3.2 Manifestations of phonons in spectra

In Figure 4 the calculated spectra of absorption and REPs for first- and second-order Raman scattering are presented (for the code of the calculations, see Appendix B.1).

![Absorption spectra and first- and second-order Raman excitation profiles for a) upper PEC b) lower PEC. Red lines (corresponding to \(\nu = 5 \), \(\nu = 8 \) and \(\nu = 13 \)) highlight some vibronic lines and their phonon wings in the absorption spectra (\(G = 3 \), \(D = 10 \)).](image_url)

Figure 4. Absorption spectra and first- and second-order Raman excitation profiles for a) upper PEC b) lower PEC. Red lines (corresponding to \(\nu = 5 \), \(\nu = 8 \) and \(\nu = 13 \)) highlight some vibronic lines and their phonon wings in the absorption spectra (\(G = 3 \), \(D = 10 \)).
From these results the following observations can be made. Firstly, the distance between the vibronic lines is not equidistant. Although the starting point was the harmonic oscillator with its equidistant energy levels, the interaction with the main mode leads to a different system. Further more, different interaction strengths with phonons induce different shifts in the position of the lines. The spectrum can be divided into two parts: the + and – part, associated with the upper and the lower PEC, respectively (for the scale of the most intensive lines see the full spectrum in Figure 8). The transitions to both states have a distinct region. Due to the Franck-Condon principle the region lies near the point of quasi-degeneracy. The greatest overlap of wave functions with the upper energy curve in that region is with lower vibronic levels. There is a tendency that the first line is the most intensive and the intensity of other lines drops as one moves away from the point of quasi-degeneracy – a result similar to the transitions between two harmonic oscillators. This result is more observable in a strong interaction in Figure 5. The vibronic energy levels associated with a steep energy curve in harmonic approximation would be distantly spaced. The intensive lines of the upper PEC exhibit such behaviour. However, due to the interaction between the two PECs, there are also less intensive intermediate vibronic states. This result is an analogy of the Slonczewski resonances [22] observed in JT systems. For the PJTE this result had been obtained by Loorits [15]. The so-called Loorits resonances can also be seen from Figure 3. The energy difference between the next-neighbouring levels shows a periodic pattern coinciding with the positions of resonant vibronic lines. The reason for this is the correction to the position of the energy levels by vibronic interaction. Periodicity is the result of the repulsion of the energy levels of the lower PEC by the energy levels of the upper PEC.

Figure 5. Absorption spectrum in the case of a strong vibronic interaction without the phonon contribution. The intensive lines for the upper potential form closely-packed groups and are the result of Loorits resonances ($G = 10, D = 300$).
For the lower energy curve the greatest overlap is with some intermediate states. The result is a broad region of continuously varying lines in the spectrum. Due to the mixing of the states the previous statements are a bit ambiguous, since there are excitations outside the main region of each PEC brought about by the interacting vibrational mode. Even the failure of the PEC interpretation becomes apparent, as there are excitations into the energy region below the concavity of the upper potential where one would not expect energy levels to be present. However, this is only the limit of using the present treatment for explaining complex quantum mechanical effects.

The novel results of this work are the finite (although small) widths of vibronic lines and the phonon wings accompanied with every vibronic line. It is worth emphasizing that each wing is unique, since the interaction strength of vibronic lines with the phonon bulk varies. It can be seen that some lines have hardly any phonon wings (sharp lines in 4b) when some lines have disappeared and their energy has been completely transferred to the phonon wing (broad bands in 4a).

The REPs provide additional information about phonon effects. The Raman active frequencies in the excitation profiles are associated with different active vibrational modes. However, the Raman spectra have their own peculiarities. Due to quantum-mechanical interference effects some lines may be absent from the spectra or have essentially diminished values.

3.3 Special case of soft dynamics

A special case of soft dynamics was discussed in papers [II], [III]. In the soft dynamics case the lower energy curve is flat (Figure 6) and the theory can be tested against other predictions. The most important addition to the theory was the inclusion of the frequency change into calculations. If one would look at a transition from a ground state with a frequency larger than that of the excited state, then the PEC of the excited state would be flatter as compared to the PEC of the ground state. The inclusion of the PJTE makes the curve practically constant over the entire region of configurational coordinates where one would expect excitations to occur (Figure 6).

![Figure 6. Qualitative shape of the potential energy curves of the excited state in the case of soft dynamics ($G = 20, D = 3$)](image)
The zero-point energy of the lower PEC is very small and the vibronic levels are very close together in the region where the ground PEC has a significant overlap with the lower branch of the excited state. The first conclusion is that the absorption lines corresponding to the transitions to different vibronic levels almost coincide. This means that the vibronic states of the excited states are almost with the same energy. The second one is that the kinetic energy of the initial ground state has a large contribution to the spectrum of the absorption band. Namely, the transitions corresponding to the different values of the configurational coordinate have different kinetic energy values and, due to the conservation of energy and the coincidence of the excited energy levels, the kinetic energy will be deduced from the energy required for the transition. The independent prediction discussed in [II] is that the shape of the absorption band in the excitation to the lowest levels of the lower PEC is lambda-shaped. The line width should be in the order of the quanta of the ground state. The calculations of the current theory support this prediction as can be seen from the envelope of the lines in Figure 7. The frequency of the ground state was taken to be $4\omega_0$, so the entire spectrum is within two quanta of the ground state vibrations.

Figure 7. Lambda shape of the convolution of the low energy part of the lower potential energy curve in the case of soft dynamics ($G = 20, D = 3$).
The effects of the frequency change can also be seen in the spectra for other PJTE cases. In these cases the shape of the ground state determines the probability of the exciting vibronic states of the upper or lower PEC. In other words, the overlap of the wave functions changes especially in the case when the frequency of the ground state is large, the corresponding PEC is steep and the probability of the exciting vibronic states of the lower PEC of the excited state becomes smaller. This can be seen if one will compare the spectra in Figure 8. All the other parameters of the calculations were kept the same, but the changes in the intensity of the lines can be seen. As expected, the lines at larger values of the configurational coordinate lose intensity, while the ones near the origin gain intensity (become more probable).

Figure 8. Absorption spectrum in the case of frequency change during the excitation. The spectrum without frequency change (red) and the spectrum in the case when initial frequency is four times larger than in the final state (green) \((G = 3, D = 10)\).
4. RELAXATION

To calculate the relaxation of any quantity in the excited state the formalism of the density operator of the vibronic subsystem $\hat{\rho}$ is applied. This operator is defined as follows:

$$\hat{\rho}^\pm = \sum_{v'v} \langle 0_{ph} | e^{-iHt} | v_\pm \rangle \langle v'_\pm | e^{iHt} | 0_{ph} \rangle. \quad (25)$$

This definition assumes the zero temperature limit. The time dependence of the quantity A of the subsystem can be presented as $A(t) = Tr \left(\hat{A} \hat{\rho}^+(t) \right)$. Below the superscripts are omitted. The calculations of $\hat{\rho}^+$ and $\hat{\rho}^-$ can be made analogously. The time derivative for the matrix elements of Eq. (25) can be presented as (see Appendix A.6)

$$\dot{\rho}_{uv'}(t) = -i\omega_{uv'} \rho_{uv'}(t) + \sum_{\nu',v''} d\tau \sum_{v,v''} C_{v''v} C_{v'v''} \rho_{v''v'}(t-\tau) e^{i\omega_{v''v'}(t-\tau)+iH\tau}, \quad (26)$$

where $\omega_{uv'} = E^+_{v'} - E^-_{v'}$ is the energy difference of the states $|v_+\rangle$ and $|v'_-\rangle$,

$$A_{uv'} = \langle v_+ | a^+ | v'_- \rangle = \sum_n \sqrt{n+1} C^+_{vn} C^-_{v'n+1} \quad (27)$$

and the correlation function $G(\tau) = \sum_{ij} \langle 0_{ph} | a_i(t) a_j(t) | 0_{ph} \rangle = \sum_j \nu_j e^{-i\nu_j \tau}$ describes the phonon excitations.

Eq. (26) must be solved by using the initial condition. Note that in the large time limit one can take $\rho(t) \approx \rho(0)$. In this approximation Eq. (26) reduces to the master equation in the Lindblad form [23].

In the case of a strong vibronic coupling with the main mode and weak coupling with phonons then the time dependence of the diagonal and non-diagonal elements of the density matrix is different. The non-diagonal elements change very fast in time with the characteristic reciprocal time $1/D\omega_0$, where $D \gg 1$. The time-dependence of the diagonal elements, however, is determined only by the interaction with phonons, which in our case is considered to be weak; the corresponding characteristic reciprocal time is at least λ^2 times smaller than $\sqrt{D} \omega_0$.
4.1 Diagonal elements of the density matrix

The density matrix gives two types of information. The non-diagonal elements describe the dephasing of the initial wave packet and are of no interest at the moment, since this process is very fast and the energy of the system remains the same (also, this has been previously studied [24]). The diagonal elements \(\rho_{vv} \), however, describe the population of the vibronic levels and are of special interest, since the electron transfer from one vibronic level to another has to be accompanied by an energy transfer. As the energy difference of the vibronic lines is small, this cannot be done by radiation. The way for the system to lose energy is by creating vibrations in the crystal or through less probable second-order processes.

Neglecting the fast oscillating terms under the integral in Eq. (26) and taking into account that \(\rho(t - \tau) \approx \rho(t) \), one gets

\[
\dot{\rho}_{vv} \approx -\gamma_v \rho_{vv} + \lambda^2 \sum_{v'v} A_{vv'}^2 \int_{-t}^{t} d\tau G(\tau) \rho_{vv'}(t - \tau)e^{i\omega_{vv'}t}. \quad (28)
\]

The phonon correlation function \(G(\tau) \) differs from zero essentially only for \(\tau \leq t_0 \), where \(t_0^{-1} \) is the characteristic width of the phonon spectrum. Therefore, for \(t \gg t_0 \) Eq. (28) is reduced to the standard kinetic equation

\[
\dot{\rho}_{vv} \approx -\gamma_v \rho_{vv} + \sum_{v'v} \gamma_{vv'} \rho_{v'v'}, \quad (29)
\]

where

\[
\gamma_v = \sum_{v'} \gamma_{vv'}, \quad (30)
\]

\[
\gamma_{vv'} = \lambda^2 A_{vv'}^2 \int_{-t}^{t} d\tau G(\tau)e^{i\omega_{vv'}t}. \quad (31)
\]

The first term in the right-hand side of Eq. (29) describes the rate of the decay of the level \(v \) due to the phonon-assisted transitions from this level to the other levels, the second term describes the transitions from all other levels to the level \(v \).

4.2 Dynamics of the configurational coordinate

Depending on experimental conditions, namely with a linearly polarized white laser pulse, two states, described respectively by \(\rho^+_{vv} \) and \(\rho^-_{vv} \), may be excited with the initial value

\[
\rho_{vv}^\pm(0) = C_{0v}^\pm C_{0v'}^\mp. \quad (32)
\]
The distribution function of the state + at time \(t \) is given by the equation

\[
P^{\#}(Q, t) = \sum_{\nu', \nu} \Psi^{\#}_{\nu}(Q) \Psi^{\#}_{\nu'}(Q) \rho^{\#}_{\nu', \nu}(t), \tag{33}
\]

where

\[
\Psi^{\#}_{\nu}(Q) = \sum_n C_{2n+2}^{\nu} \psi_{2n}(Q) \tag{34}
\]
is the wave function of the state \(\nu \) in a coordinate representation (the distribution function \(P^{\#}(Q, t) \) can be found analogously). In the case of PJTE \(\psi_{\nu}(Q) \) are the eigenfunctions of the harmonic oscillator:

\[
\psi_{\nu}(Q) = \frac{1}{\sqrt{2^n n!}} \left(\frac{\alpha_h}{\pi} \right)^{1/4} e^{-\alpha_h Q^2/2} H_n \left(\sqrt{\alpha_h} Q \right), \tag{35}
\]

where \(H_n(x) \) is the Hermite polynomial. In the slow energy relaxation stage \(\rho^{\#}_{\nu, \nu'}(t) \approx \rho^{\#}_{\nu, \nu'}(t) \delta_{\nu, \nu'} \) and

\[
P^{\#}(Q, t) \approx \sum_{\nu} \rho^{\#}_{\nu, \nu}(t) \psi^{\#}_{\nu}(Q). \tag{36}
\]

The function \(P^{\#}(Q, t) \) can be calculated by solving the kinetic equation Eq. (29) by using the initial condition of Eq. (32). The results of these calculations are presented below (for the code of the calculations see Appendix B.2).

Since the short-time relaxation is not in the scope of this discussion, the initial allocation of the distribution function is taken to be already dephased. Without dephasing the distribution function should be (at least in the beginning of the process) a Gaussian of the ground state of a harmonic oscillator. Figure 9 b,d exhibits a clear delocalization. The maximum centred at the origin is the result of an excitation from the ground state to the upper potential. The regions away from the origin are related to the lower energy curve. As expected, the interaction strength determines the shape of the PECs and influences the probability of exciting the states of the upper or lower PEC. The actual relaxation can also play a role. A stronger vibronic coupling results in a stronger mixing of the two excited states. This implies a higher rate of the energy transfer from the central region associated with the upper energy curve to the lower energy curve, although the wave function overlap can still be significant.
Figure 9. Relaxation of the configurational coordinate in the case of a) $G = 3$, $D = 5$
 b) $G = 3$, $D = 10$
 c) $G = 9$, $D = 6$
 and d) $G = 9$, $D = 9$

One can see that the results are reasonable. The system relaxes to the two minima of the lower PEC. The increase of the parameter G (splitting of the states) separates the final states better and the increase in the vibronic coupling strength D produces more structure. In Figure 9 b,c there is an additional hint to the shape of the lower PEC. The system gradually loses intensity in the larger values of the configurational coordinate and the probability shifts towards the origin, which can be interpreted as the system’s relaxation on the edges of the parabolic PEC. Figure 9 a and d do not show such clear tendency, which implies that the relaxation goes quickly from higher states through the intermediate states into the two minima. In Figure 9 c,d the non uniform decay of each vibronic line can be seen, as the incline of the two final maxima is not constant. To generalize, the relaxation seems to be faster in lower vibronic
levels and slower in higher levels near and above the quasi-degeneracy. In other words, the high-amplitude vibrations of the lower potential (wings at larger values of Q) do not initially decay before an additional energy is transferred from the upper potential (associated with the central maximum), however, at the end they disappear suddenly.

A different initial condition, the one where only one vibronic state is populated, corresponding to a theoretical case of spectrally selective quasi-monochromatic short light pulse, reinforces the conclusions made (in Figure 10).

![Figure 10. Relaxation of a configurational coordinate in the case of a quasi-monochromatic short light pulse. Here $G = 3, D = 10$ but the initial excited level differs: a) $\nu = 10$ b) $\nu = 30$](image)

This time the initial probability distribution is determined by the wave function of the excited vibronic state. The wave function structure can be seen better and thus the excited vibronic lines can be distinguished (the appearance and disappearance of small “hills”).
5. DISCUSSION

This thesis gives a rigorous quantum-mechanical description of quasi-degenerate electronic states in a strong vibronic interaction with one vibrational mode and in a weaker interaction with all other bath modes. Bath modes play an important role in optical spectra as well as in the relaxation process.

The results of the study of the optical spectra of a PJTE system add an interesting feature to the discussion – the phonon wings in the absorption. The phonon wings can be used to determine the strength of the phonon interaction, keeping in mind that phonon wings are very different for different vibronic lines. This effect can also explain the absence of some lines in the spectra. The Raman spectra give a complementary and additional information about vibronic effects, namely the Raman active modes and their intensities.

The calculations of the non-radiative relaxation of energy, mediated by phonons in a strongly-excited quasi-degenerate electronic state of a dimer, has provided an insight into the complex processes involved. In this study it was done for a symmetric initial state. However, this approach can be straightforwardly extended for describing the relaxation of other initial states, including the ones corresponding to a system initially localized near an arbitrary point of the excited potential surface. The solution of such a problem would be important for a fully quantum-mechanical description of photochemical and other reactions of molecules in liquid solutions and in solids.

5.1 Limits and further research

In the course of developing the presented results some simplifications and assumptions were made that set a limit to the applicability of the theory. The first assumption was that the vibronic coupling in Eq. (3) can be treated in linear approximation. Many systems are described very well by linear approximation and the current theory has its applications. It is also possible to expand the current theory to include the quadratic coupling term, the difference being that the simple three diagonal matrices in Eq. (12) will be replaced by more complex ones.

In Eq. (4) an assumption was made that there existed one main mode through which the electronic states are coupled and the rest of the modes give only a small contribution. This was represented by the small dimensionless parameter λ. If this assumption does not hold, then the approximation in Eq. (6), where the λ^2 parameters were neglected, does not hold very well. The theory can be modified by taking into account more than one main mode. Again, the matrices in Eq. (12) are modified in the process. Strongly interacting modes should be excluded from the phonon spectrum up to the point where the contribution of the bulk is by the order of a magnitude smaller.

In the course of the development of the theory the zero temperature was assumed (Eq. (22) and Eq. (25)). The two main reasons for using such limit
were the ease of the development of the theory and the more clearer manifestation of phonon effects. This is not a major restriction, as the near-zero temperatures are experimentally achievable and the theory can be modified to take into account the finite temperatures. In the latter case the initial vibrational states should be expanded as
\[|i\rangle = \frac{1}{kT} \sum_n |n\rangle e^{\frac{E_n}{kT}}, \]
where \(kT \) is the average thermal energy. However, a number of small effects may be lost due to the thermal broadening of lines.

The results of this model depend greatly on the model of the phonon density of states. The Debye-Van Hove model was used in this work, as this has a simple analytical form and it represents well the acoustic phonons. However, no restrictions apply to the choice of the model. For practical applications the phonon spectrum has to be calculated, for example, from the density functional theory.
SUMMARY

The theoretical model under observation was a quasi-degenerate electronic state in interaction via a nuclear displacement. This kind of vibronic interaction leads to a spontaneous symmetry breaking in the system and the phenomenon is called the pseudo Jahn-Teller effect. This thesis aims at giving a rigorous quantum-mechanical description of quasi-degenerate electronic states in a strong vibronic interaction with one vibrational mode and in a weaker interaction with all other bath modes. This system is characterized by large non-adiabaticity, which was taken into account. The model in question could describe a molecule or an impurity centre in solid. So far there has been no satisfactory description of such systems. The emphasis has been on the methods that take into account the single modes which describe molecules in a gaseous environment or a large number of phonons has been taken into account only approximately.

The optical spectra of the systems mentioned were among the results achieved in the course of the work. The theory was also expanded to include the calculation of relaxation. The main idea was to rewrite the Hamiltonian of the system in the coordinates where an additional quadratic potential energy term of vibrations describes the interaction of the main mode and the rest of phonons. The latter interaction was taken into account approximately by using the methods from the field theory. After representing these relations on a suitable basis, it was possible to solve the eigenvalue problem numerically. These numeric results were used to describe the rest of the system. To such parameters belonged the lifetimes of vibronic states that were used to find the relaxation of the system. To that effect the density matrix was used. The time evolution of the density matrix can be found by solving the corresponding master equation. The time-dependent density matrix can then be used to describe the evolution of any quantum mechanical quantity.

The results obtained are unique, since they give an insight into the process involved near the region of quasi-degeneracy. The phonon wings can clearly be seen in the optical spectra and their intensity is greatly dependent on the interaction strength between the vibronic state and the phonon continuum. The same reason – the varying strength of the vibronic interaction – influences also the relaxation process. It is important to emphasize that the relaxation is non-radiative and the only way to transfer energy from the system to phonons is via vibronic interaction. The inclusion of the whole phonon spectrum was a novel result and this is the first accurate description of the relaxation of pseudo Jahn-Teller systems.
SUMMARY IN ESTONIAN

Mitteadiabaatilisuse arvestamine pseudo-Jahni-Telleri efektis: foononite mõju

Appendix A: Derivations of some equations

A.1 Transformation of the Hamiltonian of the system into a new basis

The following definitions are used:

\[Q = \left(1 + \lambda^2\right)^{-1/2} \left(x_0 + \lambda q_i\right), \]
\[Q_i = \left(1 + \lambda^2\right)^{-1/2} \left(q_i - \lambda x_0\right), \]

where \(q_i = \sum_{j \geq 1} e_{ij} x_j, \sum_j e_{ij}^2 = 1. \)

The back transformation is

\[x_0 = \left(1 + \lambda^2\right)^{-1/2} \left(Q - \lambda Q_i\right), \]
\[q_i = \left(1 + \lambda^2\right)^{-1/2} \left(Q_i + \lambda Q\right). \]

Since all the definitions are mutually orthogonal, they do not change the shape of the kinetic part of the Hamiltonian \(H_x = \frac{1}{2} \sum_j \left(-\frac{\partial^2}{\partial x_j^2} + \omega_j^2 x_j^2\right). \) After separating the main contributing mode the potential part can be transformed by using the definitions.

\[\omega_j^2 x_j^2 = \omega_j^2 x_0^2 + \sum_{j \geq 1} \omega_j^2 x_j^2 = \omega_j^2 x_0^2 + \sum_{j \geq 1} \sum_{l \geq 1} \sum_{m \geq 1} D_{jlm} q_l q_m = \]
\[\left(1 + \lambda^2\right)^{-1} \left(\omega_j^2 Q^2 - 2\lambda Q Q_i + \lambda^2 Q_i^2\right) + \left(\sum_{l \geq 1} \sum_{m \geq 1} D_{jlm} Q_l Q_m + 2\lambda Q \sum_{l \geq 1} \sum_{m \geq 1} D_{jlm} Q_l + \lambda^2 Q_i^2\right) = \]
\[\left(1 + \lambda^2\right)^{-1} \left(\omega_j^2 Q^2 + \sum_{l \geq 1} \sum_{m \geq 1} D_{jlm} Q_l Q_m - 2\lambda Q \left(\omega_j^2 Q_i - \sum_{l \geq 1} D_{jlm} Q_l\right) + \left(\lambda^2 \omega_j^2 Q_i^2 + \lambda^2 \omega_j^2 Q_i^2\right)\right). \]

If one retains all the terms with powers of \(\lambda \) less than 2, takes \(\left(1 + \lambda^2\right)^{-1} \approx 1 \) and considers that in the last term \(Q_i \approx \sum_{j \geq 1} e_{ij} x_j \) (other contributions are also in the order of \(\lambda^2 \)), the potential energy becomes
\[a_0 Q^2 + \sum_{\text{int}} D_{ij} Q_i Q_j - 2 \lambda \left(a_0 Q - \sum_{\text{int}} D_{ij} \right) = a_0 Q^2 + \sum_{\text{int}} D_{ij} Q_i Q_j - 2 \lambda \left(a_0 \sum_{\text{int}} e_j x_j - \sum_{\text{int}} D_{ij} e_j x_j \right) = a_0 Q^2 + \sum_{\text{int}} D_{ij} Q_i Q_j - 2 \lambda \sum_{\text{int}} e_j Q \left(a_0 - a_0' \right) x_j. \]

The relation \(\sum_{i \geq 1} D_{ij} e_{ij} = \omega_i^2 e_{ij} \) was used in the last part. Considering the obtained result in writing the Hamiltonian of the system and by using the ladder operators (up to a constant), one gets

\[H_s = \frac{1}{2} \sum_j \left(-\frac{\partial^2}{\partial x_j^2} + \omega_j^2 x_j^2 \right) + \frac{1}{2} \left[-\frac{\partial^2}{\partial Q^2} + \omega_0^2 Q^2 \right] + \left(-\sum_{i=1} \frac{\partial^2}{\partial x_i^2} + \sum_{i=1} \omega_i^2 x_i^2 \right) - 2 \lambda \sum_{i,j} e_j Q \left(a_0 - a_0' \right) x_j = \]

\[\approx \omega_0 a_0^2 a_0 + \sum_i \omega_i a_i^2 a_i + \lambda \sum_{i,j} e_j \left(a_0 - a_0' \right) \frac{\left(a_i + a_i' \right) \left(a_i + a_i' \right)}{\sqrt{2} \omega_0} = H_0 + H_{sk} + H'. \]

A.2 Derivation of three diagonal forms of the vibronic Hamiltonian

Starting with the vibronic Hamiltonian

\[(H_0 \cdot I + V) \begin{pmatrix} \nu_+ \\ \nu_- \end{pmatrix} = E_v \begin{pmatrix} \nu_+ \\ \nu_- \end{pmatrix}. \]

Substituting \(H_0 = \omega_0 a_0^2 a_0 \), \(V = \begin{pmatrix} G & \sqrt{D} \left(a_0 + a_0' \right) \\ \sqrt{D} \left(a_0 + a_0' \right) & -G \end{pmatrix} \) and

\[E_v = \omega_0 v \ (\hbar = 1) \]

and taking it in the units of \(\omega_0 \) one gets

\[\begin{pmatrix} a_0^2 a_0 + G & \sqrt{D} \left(a_0 + a_0' \right) \\ \sqrt{D} \left(a_0 + a_0' \right) & a_0^2 a_0 - G \end{pmatrix} \begin{pmatrix} \nu_+ \\ \nu_- \end{pmatrix} = \nu \begin{pmatrix} \nu_+ \\ \nu_- \end{pmatrix}. \]

Expanding \(|\nu_\pm \rangle = \sum_n C_{n\nu}^\pm |n\rangle \), the equation gets the form

\[\sum_n \left[\left(G + n - \nu \right) C_{n\nu}^+ |n\rangle + \left(\sqrt{D} (n+1) |n+1\rangle + \sqrt{D} n |n-1\rangle \right) C_{n\nu}^- \right] = 0, \]

\[\sum_n \left[\left(-G + n - \nu \right) C_{n\nu}^- |n\rangle + \left(\sqrt{D} (n+1) |n+1\rangle + \sqrt{D} n |n-1\rangle \right) C_{n\nu}^+ \right] = 0. \]

36
The effect of ladder operators on these eigenstates has been taken into account
\[a^+ a |n\rangle = n |n\rangle, \quad a^+ |n\rangle = \sqrt{n+1} |n+1\rangle \quad \text{and} \quad a |n\rangle = \sqrt{n} |n-1\rangle. \]

Multiplying the equations by the bra-vector \(\langle k | \) and taking into account the orthonormality of the set of eigenstates \(\langle k | n \rangle = \delta_{kn} \), the equations become
\[
(G + k) C^+_{kv} + \sqrt{D} (k-1) C^-_{(k-1)v} + \sqrt{D} k C^+_{(k+1)v} = \nu^+ C^+_{kv},
\]
\[
(-G + k) C^-_{kv} + \sqrt{D} (k-1) C^+_{(k-1)v} + \sqrt{D} k C^+_{(k+1)v} = \nu^- C^-_{kv}.
\]

These equations can be presented in the matrix form
\[
\begin{pmatrix}
G & \sqrt{D} & 0 & 0 & \ldots \\
\sqrt{D} & 1-G & \sqrt{2D} & 0 & \ldots \\
0 & \sqrt{2D} & 2+G & \sqrt{3D} & \ldots \\
0 & 0 & \sqrt{3D} & 3-G & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{pmatrix}
\begin{pmatrix}
C^+_{0v} \\
C^+_{1v} \\
C^-_{2v} \\
C^+_{3v} \\
\ldots
\end{pmatrix}
= \nu
\begin{pmatrix}
C^+_{0v} \\
C^+_{1v} \\
C^-_{2v} \\
C^+_{3v} \\
\ldots
\end{pmatrix},
\]
\[
\begin{pmatrix}
-G & \sqrt{D} & 0 & 0 & \ldots \\
\sqrt{D} & 1+G & \sqrt{2D} & 0 & \ldots \\
0 & \sqrt{2D} & 2-G & \sqrt{3D} & \ldots \\
0 & 0 & \sqrt{3D} & 3+G & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{pmatrix}
\begin{pmatrix}
C^-_{0v} \\
C^-_{1v} \\
C^-_{2v} \\
C^-_{3v} \\
\ldots
\end{pmatrix}
= \nu
\begin{pmatrix}
C^-_{0v} \\
C^-_{1v} \\
C^-_{2v} \\
C^-_{3v} \\
\ldots
\end{pmatrix}.
\]

From here the eigenvalues can be found and the vibronic wave function takes the form
\[
|\nu_{2v}\rangle = \sum_n C_{2n,v}^z |2n\rangle e_1\rangle + C_{2n+1,v}^z |2n+1\rangle e_2\rangle.
\]
A.3 Derivation of the formula for the cumulant-generating function

The vibronic Hamiltonian can be rewritten as $H_e + V \approx H_0 + H_{ph} + H' + V = H_2 + H'$.

Using the Dyson equation for the evolution operator averaged over zero-point states $\langle 0 \exp \left(it \left(H_e + V \right) \right) | 0 \rangle \approx \langle 0 \exp \left(it \left(H_2 + H' \right) \right) | 0 \rangle = \langle 0 | \hat{T} \exp \left[\int_0^t d\tau H'(\tau) \right] e^{itH} | 0 \rangle$.

\hat{T} is the time-ordering operator used, since the Dyson equation is only applicable to ordered exponents, $H'(\tau) = \exp (i\tau H_2) H' \exp (-i\tau H_2)$. Taking the wave function to be the product of the electronic and phonon wave functions and using the basis of the vibronic Hamiltonian for the electronic wave function, one obtains (for + states, - states can be found by interchanging the subscripts)

$$\langle 0 | \hat{T} \exp \left[\int_0^t d\tau H'(\tau) \right] e^{itH} | 0 \rangle = \langle 0 | \left(\langle 0_{ph} | \hat{T} \exp \left[\int_0^t d\tau H'(\tau) \right] e^{itH} | 0_{ph} \rangle \right) | 0 \rangle = \sum_{\nu} \sum_{\nu'} C_{\nu}^{\nu'} C_{\nu'}^{\ast} \langle \nu_{ph} | \hat{T} \exp \left[\int_0^t d\tau H'(\tau) \right] e^{itH} | 0_{ph} \rangle | \nu_{ph} \rangle = \sum_{\nu} \sum_{\nu'} C_{\nu}^{\nu'} C_{\nu'}^{\ast} e^{itH} \langle \nu_{ph} | \hat{T} \exp \left[\int_0^t d\tau H'(\tau) \right] | 0_{ph} \rangle | \nu_{ph} \rangle | \nu_{ph} \rangle.$$

Using the cumulant expansion for the term $\langle \nu_{ph} | \hat{T} \exp \left[\int_0^t d\tau H'(\tau) \right] | 0_{ph} \rangle | \nu_{ph} \rangle$ and taking only the first two cumulants into account, one gets for the moment generating function

$$g_{\nu} (t) \approx \int_0^t d\tau \langle \nu_{ph} | H'(\tau) | 0_{ph} \rangle | \nu_{ph} \rangle - \int_0^t d\tau \int_0^\tau d\tau' \langle \nu_{ph} | H'(\tau) H'(\tau') | 0_{ph} \rangle | \nu_{ph} \rangle.$$

The first term represents the expectation value of the Hamiltonian H' and is zero in our case.
\[g'(t) = -\int_0^t d\tau' \int_0^t d\tau \langle \nu, |0]\langle 0 | H'(\tau) \sum_{\nu'} |\nu'\rangle \langle \nu' | H'(\tau') |0\rangle |\nu'\rangle = \]

\[= -\int_0^t d\tau' \int_0^t d\tau' \langle \nu, |0 | e^{iH\tau} H' e^{-iH\tau} \sum_{\nu'} |\nu'\rangle \langle \nu' | e^{iH\tau} H' e^{-iH\tau} |0\rangle |\nu'\rangle = \]

\[= -\int_0^t d\tau' e^{iH\tau} e^{-iH\tau} e^{iH\tau'} e^{-iH\tau'} \langle \nu, |0 | \sum_{\nu'} \langle \nu' | H' \rangle |0\rangle |\nu'\rangle \int_0^t d\tau' e^{i(E_\nu' - E_\nu + \omega)\tau'} = \]

\[= -\sum_{\nu'} \langle \nu, |0 | H' \rangle \langle \nu' | \langle \nu' | H' \rangle |0\rangle |\nu'\rangle \int_0^t d\tau' e^{i(E_\nu' - E_\nu + \omega)\tau'} = \]

Here

\[\langle \nu' | H' |0\rangle |\nu'\rangle = \langle \nu' | \lambda \sum_{j=1}^n \nu_j (a_j^+ + a_j) (a_j + a_j^+) |0\rangle |\nu'\rangle = \]

\[= \lambda \sum_{j=1}^n \nu_j (a_j^+ + a_j) (a_j + a_j^+) |0\rangle |\nu'\rangle = \lambda \sum_{j=1}^n \nu_j S_{\nu j} a_j^+ a_j |0\rangle |\nu'\rangle , \]

where

\[S_{\nu j} = \langle \nu' | (a_j^+ + a_j) |\nu'\rangle = \left(\sum_{k=0}^{2n} \langle \nu' | C_{\nu j} (2n) |\nu'\rangle + C_{\nu j} (2n+1) |\nu'\rangle \right) (a_j^+ + a_j) = \]

\[= \sum_{k=0}^{2n} C_{\nu j} (2n) |\nu'\rangle (a_j^+ + a_j) |\nu'\rangle + C_{\nu j} (2n+1) |\nu'\rangle (a_j^+ + a_j) |\nu'\rangle = \]

The identities \[\langle e_1 | e_2 \rangle = \langle e_2 | e_1 \rangle = 0 \] and

\[\langle 2n | (a_j^+ + a_j) |2n\rangle = \langle 2n | 2n+1 \rangle \sqrt{2n+1} + \langle 2n+1 | 2n \rangle \sqrt{2n} = \delta_{2n,2n+1} \sqrt{2n+1} + \delta_{2n,2n-1} \sqrt{2n} \]

have been used. Analogously

\[\langle \nu, |0 | H' |\nu'\rangle = \lambda \sum_{j=1}^n \nu_j S_{\nu j}^+ |0\rangle |a_j\rangle . \]

This leads to
\[g^+_\nu(t) = \sum_{\nu'} \lambda^2 \sum_{j=1}^2 \nu_j^2 |S^+_{\nu j}|^2 \langle 0_{\rho k} | a_{\nu j}^+ | 0_{\rho k} \rangle \left(-i t \frac{1}{E^+_\nu - E^-_\nu + \omega_j} + e^{i(E^+_\nu - E^-_\nu + \omega_j) t} - 1 \right) = \lambda^2 \sum_{\nu'} \sum_{j=1}^2 \nu_j^2 |S^+_{\nu j}|^2 \left(-i t \frac{1}{E^+_\nu - E^-_\nu + \omega_j} + e^{i(E^+_\nu - E^-_\nu + \omega_j) t} - 1 \right). \]

The derivation for \(g^-_\nu(t) \) is analogous, with the exception that all the subscripts + and – are interchanged.

A.4 Derivation of the frequency change

The derivation follows that of Pae in her bachelor thesis. The transition from an initial ground state with the eigenstates corresponding to \(H_i |m\rangle_i = \omega_i \left(m + \frac{1}{2} \right) |m\rangle_i \) to final states with the eigenstates \(H_f |n\rangle_f = \omega_f \left(n + \frac{1}{2} \right) |n\rangle_f \) is kept in mind. The eigenstates of the final state will be used to expand the ground state of the Hamiltonian \(H_i \) over the eigenstates of the Hamiltonian \(H_f \),

\[|0\rangle_i = \sum_n s_{2n} |2n\rangle_e. \]

Looking at the generating function

\[f(t) = \langle 0 | \exp \left(it \left(H_f - \frac{\omega_f}{2} \right) \right) |0\rangle_i = \sum_n \langle 0 | \exp \left(it \left(H_f - \frac{\omega_f}{2} \right) \right) |2n\rangle_f \langle 2n | 0\rangle_i = \sum_n \langle 0 | 2n\rangle_f \langle 2n | 0\rangle_i e^{2i\omega_f t} = \sum_n s_{2n}^2 e^{2i\omega_f t}. \]

According to Kubo ja Toyozawa the generating function is

\[f(t) = \frac{2\sqrt{\omega_i \omega_f}}{\omega_i + \omega_f} \sqrt{1 - \left(\frac{\omega_i - \omega_f}{\omega_i + \omega_f} \right)^2 e^{2i\omega_f t}}. \]
After expanding it into a power series by using
\[
\frac{1}{\sqrt{1-x}} = \sum_{n=0}^{\infty} \frac{(2n-1)!!}{2^n n!} x^n,
\]
\[
f(t) = \sum_n \frac{2\sqrt{\omega_0 \omega_f} (2n-1)!!}{\omega_i + \omega_f} \left(\frac{\omega_i - \omega_f}{\omega_i + \omega_f} \right)^{2n} e^{2\pi i \delta_{mt}}.
\]
If one would compare the two generating functions, then
\[
s_{2n} = \sqrt{\frac{2(2n-1)!!\sqrt{\omega_0 \omega_f}}{2^n n!(\omega_i + \omega_f)} \left(\frac{\omega_i - \omega_f}{\omega_i + \omega_f} \right)^n}.
\]

A.5 Calculation of \(\nu_j^2 \)

The starting point is the definition of the function in Eq. (8)
\[
\nu_j^2 = e_j^2 \left(\omega_0^2 - \omega_j^2 \right)^2 / 4 \omega_0 \omega_j.
\]
The normalized functions
\[
\nu^2(\omega) = \sum_j \nu_j^2 \delta(\omega - \omega_j)
\]
and
\[
e^2(\omega) = \sum_j e_j^2 \delta(\omega - \omega_j)
\]
can be introduced. In the low frequency limit \(e_j^2 \ll \omega_j^2 \) (long-wave acoustic vibration does not remarkably change the symmetric distances \(Q \) between the nearest atoms in the centre). Therefore,
\[
e^2(\omega) = \frac{2}{\omega_M^2} \omega^2 \rho(\omega) = \frac{32 \omega^4}{\pi \omega_M^6} \sqrt{\omega_M^2 - \omega^2},
\]
\[
\rho(\omega) = \frac{16}{\pi \omega_M^4} \omega^2 \sqrt{\omega_M^2 - \omega^2}
\]
is the density of states of the acoustic phonons in the Debye-Van Hove model. \(\omega_M \) is the maximum frequency of phonons. It follows that

\[
\nu^2(\omega) = e^2(\omega) \left(\frac{\omega_0^2 - \omega^2}{4\omega_0 \omega} \right)^2 = \frac{8\omega_0^3}{\pi \omega_0 \omega_M^3} \left(\omega_0^2 - \omega^2 \right)^2 \sqrt{\omega^2 - \omega_M^2}.
\]

A.6 Calculation of the density matrix elements

If one considers the time derivative, then \(\dot{\rho} = -i \langle \rho_M \left[\hat{H}', \rho \right] \rangle_0 \). Up to the second order with respect to the interaction parameter \(\lambda \) it is given by the equation

\[
\dot{\rho}(t) = -\lambda^2 \int_0^t dt' \langle 0_p_h \left[\hat{H}'(t'), \left[\hat{H}'(t'), \rho(t') \right] \right] \rangle_0 \).
\]

Here the Hamiltonian \(H' = \lambda \sum_{j=1}^j \left(a_j^+ + a_j \right) (a_j + a_j^+) \) is used in the rotating wave approximation and the \(a_j^+ a_j \) and \(a_j a_j^+ \) terms in the definition are neglected. The justification for such action is that the long-time relaxation conserves the energy of the system and the simultaneous creation or annihilation of the main mode and the phonons cannot have any large contribution. For further treatment one more observation has to be made. The operators \(a_j(t) \) and \(a_j^+(t) \) commute with \(a_0(t), a_0^+(t) \) and \(\dot{\rho}(t) \). Now if one considers the commutator

\[
\left[\hat{H}'(t), \left[\hat{H}'(t'), \rho(t') \right] \right] = \hat{H}(t)\hat{H}'(t')\rho(t') - \hat{H}'(t)\hat{H}(t')\rho(t') - \hat{H}'(t)\rho(t')\hat{H}(t') + \rho(t')\hat{H}'(t')\hat{H}(t),
\]

then it is apparent that all the terms contain the product of the structure

\[
\hat{A} \hat{H}'(t) \hat{B} \hat{H}'(t') \hat{C} = \hat{A} \left(a_0^+ (t) a_j (t) + a_0 (t) a_j^+ (t) \right) \hat{B} \left(a_0^+ (t') a_j (t') + a_0 (t') a_j^+ (t') \right) \hat{C} =
\]

\[
= \hat{A} a_0^+ (t) \hat{B} a_0^+ (t') \hat{C} a_0 (t) a_0 (t') + \hat{A} a_0 (t) \hat{B} a_0^+ (t') \hat{C} a_j^+ (t) a_j (t') + \hat{A} a_0^+ (t) \hat{B} a_0 (t') \hat{C} a_j^+ (t') a_j (t') + \hat{A} a_0 (t) \hat{B} a_0 (t') \hat{C} a_j (t) a_j^+ (t').
\]

Since

\[
\langle 0_p_h \left[a_j (t) a_j^+ (t') \right] \rangle_0 = \langle 0_p_h \left[a_j^+ (t) a_j (t') \right] \rangle_0 = \langle 0_p_h \left[a_j^+ (t) a_j^+ (t') \right] \rangle_0 = 0,
\]

only one term remains after the averaging.

\[
\langle 0_p_h \left[\hat{H}'(t), \left[\hat{H}'(t'), \rho(t') \right] \right] \rangle_0 =
\]

\[
= \lambda^2 \sum_{j=1}^j \langle 0_p_h \left[\rho(t') a_j (t) \right] \rangle_0 \langle a_0^+ (t) a_0 (t') \rangle - \langle a_0 (t) a_0^+ (t') \rangle - \langle a_0^+ (t) a_0 (t') \rangle + \langle a_0 (t) a_0^+ (t') \rangle + \langle a_0^+ (t) a_0^+ (t') \rangle =
\]

\[
= \lambda^2 G(t-t') \left[a_0^+ (t) a_0^+ (t') - \rho(t') a_0 (t') - a_0^+ (t) a_0^+ (t') + \rho(t') a_0 (t') + a_0^+ (t) a_0 (t') \right].
\]

Here

\[
G(t-t') = \sum_{j=1}^j \nu_j^2 \langle 0_p_h \left[a_j (t) a_j^+ (t') \right] \rangle_0 = \sum_j \nu_j^2 e^{-i \omega_j (t-t')}.
\]

42
The transformation to the Heisenberg representation is as follows:

\[\dot{\rho}(t) = i[H_2, \rho(t)] + e^{iH_2 t} \tilde{\rho}(t') e^{-iH_2 t'} . \]

\[\dot{\rho}_{v'}(t) = \langle v', \dot{\rho}(t) | v' \rangle = \langle v', [H_2, \rho(t)] | v' \rangle + \langle v', e^{iH_2 t} \tilde{\rho}(t') e^{-iH_2 t'} | v' \rangle = \]
\[= i(E_v^+ \rho_{v'}(t) - E_v^- \rho_{v'}(t)) + \frac{\lambda^2}{2} \int_0^t dt'G(t-t'). \]

\[\sum_{v'v} \left(\rho_{v'v}(t') A_{v'v} - A_{v'v}(t') \rho_{v'v}(t') \right) e^{i\omega_{v'v}(t-t')} + \left(\rho_{v'v}(t') A_{v'v} - A_{v'v}(t') \rho_{v'v}(t') \right) A_{v'v} e^{i\omega_{v'v}(t-t')} . \]

Here \(\sum_{v_1} |v_{1-} \rangle \langle v_{1-}| \) and \(\sum_{v_1} |v'_{1-} \rangle \langle v'_{1-}| \) were inserted to get the terms

\[A_{v'v} = \langle v_{1-} | a^+ | v'_{1-} \rangle = \sum_n \sqrt{n+1} C_{v'n} C_{v'n+1} \cdot \omega_{v'v} = E_v^+ - E_v^- \] is the energy difference of the states \(|v_{1-} \rangle \) and \(|v_{1+} \rangle \).
Appendix B: MAPLE code for the calculations

B.1 Code for calculating optical spectra

> # MAPLE packages used by the program
with(LinearAlgebra):
with(DiscreteTransforms):

Parameters of the calculation
Split: := 3; # Half splitting between
quasidegenerate states
Vibr:=10; # Vibrational coupling
strength
n := 1000; # Number of vibrational
levels to be calculated
N:= 2000; # Number of points that
determine the spectra
T:= 200; # Length of the spectrum
in time domain
g0:=0.02; # Parameter that
determines the line width from other effects
lambda := 0.03; # Constant that determines
the strength of phonon coupling
Om := 1.3; # Maximum frequency of
phonons
On := 1; # Frequency of the main
vibrational mode
Oi := 1; # Initial frequency
Of := 1; # Final frequency
Ips:=10**(-6); # Small constant for
avoiding singularities
nrstates := 25; # Number of vibrational
levels to be taken into account (higher levels will not be exited
and do not give any contribution)

Variables of the calculation
A := Matrix(1..n,1..n, shape=symmetric): # Matrix of the
vibronic coupling
B := Matrix(1..n,1..n, shape=symmetric):
rsu0 := Array(1..N,'datatype'='complex'[8]): # Fourier transform
of the spectra
rsu1 := Array(1..N,'datatype'='complex'[8]):
rsu2 := Array(1..N,'datatype'='complex'[8]):
rs10 := Array(1..N,'datatype'='complex'[8]):
rs11 := Array(1..N,'datatype'='complex'[8]):
rs12 := Array(1..N,'datatype'='complex'[8]):
rsu := Matrix(1..nrstates,1..N):
rsl := Matrix(1..nrstates,1..N):

Solving of the vibronic Hamiltonian
for i from 1 to n do
 # Initial setup of the elements on the main diagonal
 A[i,i] := (i-1) + ((-1)**(i-1))*Split :
 B[i,i] := (i-1) + ((-1)**(i))*Split :
end do:

for s from 1 by 1 to (n-1) do
 # Initial setup of the off-diagonal elements
 A[s+1,s] := evalf(sqrt(s*Vibr)) :
 B[s+1,s] := evalf(sqrt(s*Vibr)) :
end do:

(Es,cs) := Eigenvectors(A):
 # Solving the eigenvalue problem
(Bt,ct) := Eigenvectors(B):

for i from 1 by 2 to n-1 do
 # Sorting of the eigenvalues and eigenvectors associated with the upper and lower potential
 Eu[i] := Es[i]:
 Eu[i+1] := Et[i+1]:
 El[i] :=Et[i]:
 El[i+1] :=Es[i+1]:

 for j from 1 to n do
 cu[i,j] := cs[i,j]:
 cu[i+1,j] := ct[i+1,j]:
 cl[i,j] := ct[i,j]:
 cl[i+1,j] := cs[i+1,j]:
 end do:
end do:

Frequency change
for i from 0 by 1 to (n/2-1) do
 # Calculation of coefficients for the change of frequency
 s2n[i+1] :=
 sqrt(2*sqrt(Oi*Of)/(Oi+Of))*sqrt(doublefactorial(2*i-1)/(2**i*factorial(i)))*((Oi-Of)/(Oi+Of))**i:
end do:

for i from 1 to n do
 # Calculation of the frequency-corrected eigenvectors of the vibronic coupling matrix
 Cu[i] := evalf(add(cu[2*k-1,i]*s2n[k], k = 1..n/2)) :
 Cl[i] := evalf(add(cl[2*k-1,i]*s2n[k], k = 1..n/2)) :
end do:
for i from 0 to 2 do # Calculation of the
vibronic correlation function
 for j from 1 to nrstates+1 do # Since the maximum
 frequency of phonons is fixed, only one vibrational level higher
 and one lower are taken into account
 S[j,i+1]:=evalf(add(cu[2*k,j]*(sqrt(2*k-1)*cl[2*k-1,j+i]+sqrt(2*k)*cl[2*k+1,j+i]) +
 cl[2*k,j]*(sqrt(2*k-1)*cu[2*k-1,j+i]+sqrt(2*k)*cu[2*k+1,j+i]) ,
 k = 1..n/2-1));
 S2[j,i+1]:=evalf(add(cl[2*k,j]*(sqrt(2*k-1)*cu[2*k-1,j+i]+sqrt(2*k)*cu[2*k+1,j+i]) +
 cu[2*k,j]*(sqrt(2*k-1)*cl[2*k-1,j+i]+sqrt(2*k)*cl[2*k+1,j+i]) ,
 k = 1..n/2-1));
 end do:
 end do:
for k from 1 by 1 to N do # Points in time domain
 where the spectrum is calculated
 times[k] := evalf((2*k-1-N)*T/(N-1));
end do:

Calculation of the cumulant-generating function
First level outside of the main loop
for k from 1 to N do
 gma[1,1,k]:=0;
 gma2[1,1,k]:=0;
end do:
for i from 2 to 3 do
 for k from 1 to N do
 del:= Eu[1] - El[1+i-2]; # Energy
difference between vibronic states
 gma[i,1,k]:=simplify(evalf(S[1,i]*S[1,i]*
lambda*
 Int(8*x**3*sqrt(Om**2-x**2)*
 (On**2-x**2)**2/
 (Pi*On*Om**6)*
 (exp(I*(del-x)*times[k])-1-I*times[k]*(del-x))/
 ((del-x)**2+ Ips),
 x=0..Om)));
 gma2[i,1,k]:=simplify(evalf(S2[1,i]*S2[1,i]*
lambda*
 Int(8*x**3*sqrt(Om**2-x**2)*
 (On**2-x**2)**2/
 (Pi*On*Om**6)*
 (exp(I*(-del-x)*times[k])-1-I*times[k]*(-del-x))/
 ((-del-x)**2+ Ips),
 x=0..Om)));
end do:
end do:

Main loop
for i from 1 to 3 do
 for j from 2 to nrstates do
 for k from 1 to N do
 del:= Eu[j] - El[j+i-2]; # Energy difference between vibronic states
gma[i,j,k]:=simplify(evalf(S[j,i]*S[j,i]*
 lambda*
 Int(8*x**3*sqrt(Om**2-x**2)*
 (On**2-x**2)**2/
 (Pi*On*Om**6)*
 (exp(I*(del-x)*times[k])-1-I*times[k]*(del-x))/
 ((del-x)**2+ Ips)
 ,x=0..Om)));
 end do:
 end do:
end do:

for j from 1 to nrstates do
 for k from 1 to N do
 G[j,k] := evalf (add (gma[i,j,k], i=1..3)); # Summation of cumulant-generating function over all vibronic levels
 G2[j,k] := evalf (add (gma2[i,j,k], i=1..3));
 end do:
end do:

Calculation of the Fourier transform of the spectra
for k from 1 to N do
 zw1[k]:=evalf((k-1)*Pi/T-(N-1)*Pi/(2*T)): # Points in the frequency domain where the spectrum is calculated
 rsu0[k] := evalf(add(Cu[j]*Cu[j]*exp(I*Eu[j]*times[k])*exp(G[j,k] - g0*abs(times[k]))*(-1)**k, j=1..nrstates));
 rsu1[k] := evalf(add(cl2[j]*cu[1,j]*exp(I*Eu[j]*times[k])*exp(G[j,k] - g0*abs(times[k]))*(-1)**k, j=1..nrstates));
end do:
\[
rsu2[k] := \text{evalf}(\text{add}(\text{cu}[3,j]*\text{cu}[1,j]*\exp(I*\text{Bu}[j]*\text{times}[k])*\exp(G[j,k] - g0*\text{abs}(-\text{times}[k]))*(-1)^{**k}, j=1..\text{nrstates}));
\]

Function of the spectrum in the time domain for the lower potential
\[
rs10[k] := \text{evalf}(\text{add}(\text{Cl}[j]*\text{Cl}[j]*\exp(I*\text{El}[j]*\text{times}[k])*\exp(G2[j,k] - g0*\text{abs}(-\text{times}[k]))*(-1)^{**k}, j=1..\text{nrstates}));
\]

\[
rsl1[k] := \text{evalf}(\text{add}(\text{cl}[3,j]*\text{cl}[1,j]*\exp(I*\text{El}[j]*\text{times}[k])*\exp(G2[j,k] - g0*\text{abs}(-\text{times}[k]))*(-1)^{**k}, j=1..\text{nrstates}));
\]

\[
rsl2[k] := \text{evalf}(\text{add}(\text{cl}[3,j]*\text{cl}[1,j]*\exp(I*\text{El}[j]*\text{times}[k])*\exp(G2[j,k] - g0*\text{abs}(-\text{times}[k]))*(-1)^{**k}, j=1..\text{nrstates}));
\]

end do:

for j from 1 to \text{nrstates} do
for k from 1 to \text{N} do

Function of the spectrum in the time domain for the upper potential for each vibronic line
\[
rsu[j,k] := \text{evalf}(\text{Cu}[j]*\text{Cu}[j]*\exp(I*\text{Bu}[j]*\text{times}[k])*\exp(G[j,k] - g0*\text{abs}(-\text{times}[k]))*(-1)^{**k});
\]

Function of the spectrum in the time domain for the lower potential for each vibronic line
\[
rsl[j,k] := \text{evalf}(\text{Cl}[j]*\text{Cl}[j]*\exp(I*\text{El}[j]*\text{times}[k])*\exp(G2[j,k] - g0*\text{abs}(-\text{times}[k]))*(-1)^{**k});
\]

end do:
end do:

RSU0fr := \text{FourierTransform}(rsu0,\text{N});
RSU1fr := \text{FourierTransform}(rsu1,\text{N});
RSU2fr := \text{FourierTransform}(rsu2,\text{N});
RS10fr := \text{FourierTransform}(rsl0,\text{N});
RS11fr := \text{FourierTransform}(rsl1,\text{N});
RS12fr := \text{FourierTransform}(rsl2,\text{N});
RSUfr := \text{FourierTransform}(rsu,2);
RSLfr := \text{FourierTransform}(rsl,2);

for k from 1 by 1 to \text{N} do

Separating the spectrum from the Fourier transform
\[
RSU0[k] := \text{Re}(\text{RSU0fr}[k])*(-1)^{**k};
\]

\[
RS0[k] := \text{Re}(\text{RSL0fr}[k])*(-1)^{**k};
\]

\[
RSU1[k] := \text{Re}(\text{RSU1fr}[k] * \text{conjugate}(\text{RSU1fr}[k]));
\]

\[
RSU2[k] := \text{Re}(\text{RSU2fr}[k] * \text{conjugate}(\text{RSU2fr}[k]));
\]

\[
RSL1[k] := \text{Re}(\text{RSL1fr}[k] * \text{conjugate}(\text{RSL1fr}[k]));
\]

\[
RSL2[k] := \text{Re}(\text{RSL2fr}[k] * \text{conjugate}(\text{RSL2fr}[k]));
\]

for j from 1 to \text{nrstates} do

\[
\text{RSU}[j,k] := \text{Re}(\text{RSUfr}[j,k])*(-1)^{**k};
\]

\[
\text{RSL}[j,k] := \text{Re}(\text{RSLfr}[j,k])*(-1)^{**k};
\]

end do:
end do:
B.2 Code for calculating the relaxation

> # MAPLE packages used by the program
with(LinearAlgebra):
with(DiscreteTransforms):
with(orthopoly):

Parameters of the calculation
Split:= 3; # Half splitting
between quasidegenerate states
Vibr:=10; # Vibrational coupling
 strength
n := 100; # Number of vibrational
levels to be calculated
N:= 10; # Maximum level number
to be taken into account
go:=0.02; # Parameter that
determines the line lifetime from other effects
lambda := 0.03; # Constant that
determines the strength of the phonon coupling
Om := 1.3; # Maximum frequency of
phonons
On := 1; # Frequency of the main
vibrational mode
nrtimesteps:=100; # Number of points in
time domain where relaxation is to be calculated
T:= 100; # Length of the time
domain of the relaxation process
distance:= 12; # Number of points in
configurational coordinate domain where relaxation is to be
calculated
nrdissteps:= 200; # Length of the
configurational coordinate domain of the relaxation process

Variables of the calculation
A := Matrix(1..n,1..n, shape=symmetric): # Matrix of the
vibronic coupling
B := Matrix(1..n,1..n, shape=symmetric):
#gma := Matrix(1..N,1..N);

Solving of the vibronic Hamiltonian
for i from 1 to n do # Initial setup of the
elements on the main diagonal
A[i,i] := (i-1) + ((-1)**(i-1))*Split :

49
\[B[i,i] := (i-1) + ((-1)^{(i)}) \times \text{Split} : \]
end do:

for \(s \) from 1 by 1 to \((n-1)\) do
\(\# \) Initial setup of the off-diagonal elements
\(A[s+1,s] := \text{evalf}(\sqrt{s \times \text{Vibr}}) : \)
\(B[s+1,s] := \text{evalf}(\sqrt{s \times \text{Vibr}}) : \)
end do:

\((\text{Es}, \text{cs}) := \text{Eigenvectors}(A) : \)
\(\# \) Solving the eigenvalue problem
\((\text{Et}, \text{ct}) := \text{Eigenvectors}(B) : \)

for \(i \) from 1 by 2 to \((n-1)\) do
\(\# \) Sorting the eigenvalues and eigenvectors associated with the upper and lower potential
\(\text{Eu}[i] := \text{Es}[i] : \)
\(\text{Eu}[i+1] := \text{Et}[i+1] : \)
\(\text{El}[i] := \text{Et}[i] : \)
\(\text{El}[i+1] := \text{Es}[i+1] : \)

for \(j \) from 1 to \(n \) do
\(\text{cu}[i,j] := \text{cs}[i,j] : \)
\(\text{cu}[i+1,j] := \text{ct}[i+1,j] : \)
\(\text{cl}[i,j] := \text{ct}[i,j] : \)
\(\text{cl}[i+1,j] := \text{cs}[i+1,j] : \)
end do:
end do:

\# Calculation of the cumulant-generating function
for \(i \) from 1 to \(N \) do
for \(j \) from 1 to \(N \) do
\(\text{del} := \text{Eu}[i] - \text{El}[j] ; \)
\(\text{gma}[i,j] := \text{Re}(\text{evalf}(\lambda \times \text{add(}} \)
\(\text{cu}[2k,j] \times (\sqrt{2k-1} \times \text{cl}[2k-1,j] + \)
\(\sqrt{2k} \times \text{cl}[2k+1,j]) + \text{cl}[2k,j] \times (\sqrt{2k-1} \times \text{cu}[2k-1,j] + \)
\(\sqrt{2k} \times \text{cu}[2k+1,j]) \), \(k = 1..n/2-1 \))**2) \times 8 \times \text{del}**3 \times \text{sqrt}(\text{Om}**2-\text{del}**2) \times ((\text{On}**2-\text{del}**2)**2+0.1)/(\pi*\text{On})*\text{Om}**6) \)) :
\(\text{gma2}[i,j] := \text{Re}(\text{evalf}(\lambda \times \text{add(}} \)
\(\text{cl}[2k,j] \times (\sqrt{2k-1} \times \text{cu}[2k-1,j] + \)
\(\sqrt{2k} \times \text{cu}[2k+1,j]) + \text{cu}[2k,j] \times (\sqrt{2k-1} \times \text{cl}[2k-1,j] + \)
\(\sqrt{2k} \times \text{cl}[2k+1,j]) \))
\[k = 1..n/2-1 \] \(B(k)*8*del**3*sqrt(Om**2-del**2)*((On**2-del**2)**2+0.1)/(Pi*On*Om**6)) \]

end do:
eend do:

Creation of the time-dependent functions used in differential equations
for i to N do rhop[i] := (cat(xp, i))(t) end do:
for i to N do rhom[i] := (cat(xm, i))(t) end do:

Creation of the differential equations to be solved
eq[1] := diff(rhop[1],t) = -
(Heaviside(gma[1,1])*((g0+gma[1,1])*t*rhop[1]+Heaviside(-
gma2[1,1])*(-g0+gma[1,1])*t * rhom[1] + (-g0+gma2[1,2])*t *
rhom[2])):
eq[N+1] := diff(rhom[1],t) = Heaviside(-gma2[1,1])*(-
g0+gma[1,1])*t*rhom[1] +
Heaviside(gma[1,1])*(g0+gma[1,1])*t * rhop[1] + (g0+
gma2[1,2])*t * rhop[2]:
for i from 2 to N-1 do
 eq[i] := diff(rhop[i],t) = -
 ((Heaviside(gma[i,i])*gma[i,i]+g0+gma[i,i-1])*t*rhop[i] +
 Heaviside(-gma2[i,i])*gma2[i,i]*t * rhom[i] + (-
g0+gma2[i,i+1])*t * rhom[i+1]) ;
 eq[N+i] := diff(rhom[i],t) = (Heaviside(-
gma2[i,i])*gma2[i,i]-g0+gma2[i-1,i])*t*rhom[i] +
 Heaviside(gma[i,i])*gma[i,i]*t * rhop[i] +
 (g0+gma[i+1,i])*t * rhop[i+1] ;
end do:
eq[N] := diff(rhop[N],t) = -
((Heaviside(gma[N,N])*gma[N,N]+g0+gma[N,N-1]
)*t*rhop[N]+Heaviside(-gma2[N,N])*gma2[N,N]*t * rhom[N]):
eq[2*N] := diff(rhom[N],t) = (Heaviside(-
gma2[N,N])*gma2[N,N]-g0+gma2[N-1,N]
)*t*rhom[N]+Heaviside(gma[N,N])*gma[N,N]*t * rhop[N]:

Initial conditions
for i from 1 to N do
 IC[i] := cat(xp,i)(0) = cu[i]**2 ;
 IC[N+i] := cat(xm,i)(0) = cl[i]**2 ;
end do:
Calculation of the time points used
for j from 0 to nrtimesteps do
 tt[j] := evalf(j*T/nrtimesteps);
end do:

Solving the differential equation numerically in specified
time points
dsol := dsolve({seq(eq[j], j=1..2*N), seq(IC[j], j=1..N), seq(rhop[j], j=1..N), seq(rhom[j], j=1..N)}, numeric, [seq(rhop[j], j=1..N), seq(rhom[j], j=1..N)], output=Array([seq(tt[j], j=0..nrtimesteps)])):

Calculation of the coordinate points used
for Q from 0 to nrdissteps do
 qq[Q] := evalf(Q*distance/nrdissteps);
end do:

Calculation of the normalized wave functions
for k from 0 to n/2-1 do
 normalize := 0;
 for Q from 0 to nrdissteps do
 Wave[k+1,Q] := evalf(sqrt(1/(2**(2*k)*factorial(2*k))*(On/Pi)**(0.25)*exp(-sqrt(On)/2*qq[Q]**2)*H(2*k,sqrt(On)*qq[Q])));
 normalize := normalize + Wave[k+1,Q]**2;
 end do:
 for Q from 0 to nrdissteps do
 Wave[k+1,Q] := Wave[k+1,Q]/sqrt(normalize);
 end do:
end do:

Calculation of the probability function
for t from 0 to nrtimesteps do
 for Q from 0 to nrdissteps do
 PP[Q,t] := evalf(add(dsol[2,1][t+1,nu+1]*add((cu[2*k+1,nu]*Wave[k+1,Q], k=0..n/2-1))**2, nu=1..N));
 PM[Q,t] := evalf(add(dsol[2,1][t+1,nu+N+1]*add((cl[2*k+1,nu]*Wave[k+1,Q], k=0..n/2-1))**2, nu=1..N));
 end do:
end do:
REFERENCES

CURRICULUM VITAE

Name: Taavi Vaikjärv
Date of birth: October 6, 1985, Tallinn, Estonia
Citizenship: Estonian
E-mail: taavi.vaikjärv@ut.ee

Education:
2009–2014 University of Tartu, PhD studies
2007–2009 University of Tartu, MSc (teacher of physics)
2004–2007 University of Tartu, BSc (physics)
1992–2001 Tallinn German Secondary School of Kadriorg

Languages:
Estonian (mother-tongue), English, German

Professional employment:
2013–2014 University of Tartu, specialist
2011–2013 University of Tartu, curriculum manager
2009–2013 University of Tartu, engineer

Scientific and research activity:
Natural Sciences and Engineering – Physics and Technical Physics (condensed matter)

Other Activities:
2009–2013 Board of the Faculty of Science and Technology, University of Tartu, member

Publications:
ELULLOOKIRJELDUS

Nimi: Taavi Vaikjärv
Sünniaeg: 06. oktoober, 1985, Tallinn, Eesti
Kodakondsus: Eesti
E-mail: taavi.vaikjarv@ut.ee

Haridustee:
2009–2014 Tartu Ülikool, doktorant
2007–2009 Tartu Ülikool, MSc (füüsikaõpetaja)
2004–2007 Tartu Ülikool, BSc (füüsika)
2001–2004 Tallinna Reaalkool
1992–2001 Tallinna Kadrioru Saksa Gümnaasium

Keeleoskus:
Eesti (emakeel), inglise, saksa

Teenistuskäik:
2013–2014 Tartu Ülikool, spetsialist
2011–2013 Tartu Ülikool, programmjuht
2009–2013 Tartu Ülikool, insener

Teadus- ja arendustegevus:
Loodusteadused ja tehnika – füüsika (kondentsaine teooria)

Muu tegevus:
2009–2013 Tartu Ülikooli loodus- ja tehnoloogiateaduskonna nõukogu liige

Publikatsioonid:
22. Ирина Кудрявцева. Создание и стабилизация дефектов в кристаллах KBr, KCl, RbCl при облучении ВУФ-радиацией. Тарту, 1997.
46. **Eduard Gerškevitš.** Dose to bone marrow and leukaemia risk in external beam radiotherapy of prostate cancer. Tartu, 2005.

47. **Sergey Shchemelyov.** Sum-frequency generation and multiphoton ionization in xenon under excitation by conical laser beams. Tartu, 2006.

54. **Küllike Rägo.** Superconducting properties of MgB$_2$ in a scenario with intra- and interband pairing channels. Tartu, 2008.

64. **Mait Müntel.** Detection of doubly charged higgs boson in the CMS detector. Tartu, 2008.

67. **Sven Lange.** Spectroscopic and phase-stabilisation properties of pure and rare-earth ions activated ZrO$_2$ and HfO$_2$. Tartu, 2010.

70. **Artjom Vargunin.** Stochastic and deterministic features of ordering in the systems with a phase transition. Tartu, 2010.

71. **Hannes Liivat.** Probing new physics in e+e− annihilations into heavy particles via spin orientation effects. Tartu, 2010.

73. **Aleksandr Lisovski.** Pulsed high-pressure discharge in argon: spectroscopic diagnostics, modeling and development. Tartu, 2010.

74. **Aile Tamm.** Atomic layer deposition of high-permittivity insulators from cyclopentadienyl-based precursors. Tartu, 2010.

76. **Svetlana Ganina.** Hajusandmetega ülesanded kui üks võimalus füüsilise õppe efektiivsuse tõstmiseks. Tartu, 2011

79. **Сергей Наконечный.** Исследование электронно-дырочных и интерстициал-вакансионных процессов в монокристаллах MgO и LiF методами термоактивационной спектроскопии. Тарту, 2011.

80. **Niina Voropajeva.** Elementary excitations near the boundary of a strongly correlated crystal. Tartu, 2011.

82. **Merle Lust.** Assessment of dose components to Estonian population. Tartu, 2012, 84 p.

84. **Liis Rebane.** Measurement of the $W \rightarrow \tau \nu$ cross section and a search for a doubly charged Higgs boson decaying to τ-leptons with the CMS detector. Tartu, 2012, 156 p.

85. **Jevgeni Šablonin.** Processes of structural defect creation in pure and doped MgO and NaCl single crystals under condition of low or super high density of electronic excitations. Tartu, 2013, 145 p.

