ТРУДЫ ПО МЕДИЦИНЕ
XXI

TARTU 1970
ТРУДЫ ПО МЕДИЦИНЕ

XXI

Нейро-гормональная регуляция и
ишемическая болезнь сердца

Сообщения из кафедры пропедевтики
внутренних болезней

Neuro-hormonal regulation and
ischemic heart disease

Reports from the Chair of
Propedeutics of internal Medicine

TARTU 1970
Редакционная коллегия

Л. Керес, Г. Кингисепп, К. Кырге, А. Ленцнер, А. Линкберг, К. Пыльдвере, Л. Пяй, Э. Раудам, Ю. Саарма (председатель), Л. Тяхепыльд, Х. Вахтер.
In the regulation of the different functions of the organism the sympatho-adrenal system (SAS) occupies a central place. This manifests itself as an adaptational and trophic effect (Orbeli 1923; Govyrin 1967) as well as a trigger mechanism of alarm reactions (Cannon 1914, 1915; Selye 1950). On the basis of these considerations one must suppose that SAS is one of the basic mediators of the adaptation processes of the organism. Shifts in the functioning of SAS are reflected in both local and general syndromes. It is the goal-directed influencing of SAS that has made possible the prevention and treatment of a great number of morbid processes (Braeucker 1958). Such notions as "sympathico-surgery" (Leriche 1958), "functional" and "chemical" sympathectomy have become established in the medical literature (Holtz 1966) and help to denote the structural or functional influencing of SAS.

An increasing number of facts are piling up on the pathogenetic role of SAS in the formation of various morbid processes as well as in the inhibition of their rise.

All this makes it necessary to study SAS and to evaluate its functional state. However, taking into account the anatomical and functional heterogeneity of SAS, its comprehensive study is a complicated problem which has not yet found a final solution.

An essential achievement in the evaluation of the activity of SAS is the development of direct methods of determination of the sympathetic hormones and their metabolites in different biological materials such as urine, blood and tissues. From the practical point of view, noradrenaline (NA) as a hor-
mone of the adrenal system and a mediator of the sympathetic nervous system, adrenaline (A) as a hormone of the adrenal medulla, and vanillyl-mandelic acid as an end-product of the metabolism of both these catecholamines (CA) are of the greatest significance (Euler 1956; Petrashek et al. 1966).

It is generally agreed today that the fluorimetric method of determination is a chemical procedure having adequate sensitivity and specificity for the estimation of minute amounts of CA (Weil-Malherbe 1961; Udenfriend 1962). The fluorimetric method is based on the fact that in an alkaline medium HA and A begin to fluoresce under the action of ultraviolet radiation. Loewi (1918) was the first to observe the fluorescence of A in an alkaline medium. This observation was later confirmed by Paget (1930). Relying on the aforementioned fact, Gaddum and Schild (1934) developed the fluorimetric method of determination of A, which was improved by Hueber (1940). This method, however, proved to be very unreliable since the fluorescence of A in an alkaline medium disappears rapidly and is not intense enough to determine minute amounts of A. The determination of HA in this way practically proved to be impossible since under identical conditions HA produces only 1 to 2% of A fluorescence (Gaddum and Schild 1934). The procedure suggested by Lehmann and Michaelis (1942) was much more reliable. They determined A-like substances in plasma directly, i.e. without previously separating them from plasma. The same principle of determining A was used by Annersten et al. (1949) and Grönwall (1950).

A significant stage in the study of catecholamines was an observation by Shaw (1938) that aluminium hydroxide absorbs CA in an alkaline medium (at pH 8 to 8.5) but does not do it in an acidic medium. Thus it proved to be possible to separate CA from biological substances and determine them quantitatively with sufficient accuracy.

At the present time two basic chemical procedures are used to perform quantitative determination of CA converted to fluorescent compounds. They are:

a) the trihydroxyindole method (Lund 1949), and
b) the procedure of condensation with ethylene-diamine (Weil-Malherbe and Bone 1952).
The trihydroxyindole method has found a more universal application owing to the somewhat greater adequacy of the result obtained. The chemistry of the reaction arising in the application of the trihydroxyindole procedure has not been entirely clarified yet. In general outline it may, according to Iversen (1967), be supposed to be as follows:

\[
\text{NA} \xrightarrow{\text{oxidation}} \text{Noradrenochrome} \xrightarrow{\text{alkaline}} \text{Noradrenolutine (in enole form)}
\]

In the more recent period several modifications of the trihydroxyindole method have been developed which are more rational and accurate than the original one (Ossinskaya 1957; Kaliman 1960; Euler and Lishajko 1961; Matlina 1961; Anton and Sayre 1962; Häggendal 1963; Fiorica 1965; Robinson and Watts 1965, etc.).

Of the substrates, urine is the one most frequently used. The amount of CA excreted with urine enables one to evaluate the SAS activity with sufficient adequacy (Luft and Euler 1953; Menshikov 1961; Frankenhaeuser and Post 1961; Euler 1964; Levi 1967, etc.).

A drawback of the determination of CA excretion is the fact that this method does not make it possible to estimate in detail the short-term changes in SAS activity. Likewise, in the case of changes in the activity of the enzymes inactivating CA as well as in disorders of the kidney function, the CA amounts excreted with urine need not correspond to the actual SAS state (Peart 1966; Petrashek et al. 1966). In these cases the excretion of CA and their metabolites may differ from the amounts of the sympathetic substances produced and functioning in the organism. Neither can one
leave out of consideration the sympatho-adrenergic reactivity of individual organs and organ systems, particularly in the case of structural and functional changes in the sympathetic system. Thus, in conditions of sympathetic denervation, the reactivity of the corresponding organ to sympathetic stimulation and sympathico-mimetic amines increases (Burn and Rand 1958; Fleming and Trendelenburg 1961; Trendelenburg 1966).

From the point of view of the evaluation of SAS activity and of its changes, the blood is of the greatest informative value. Owing to the low concentration of free CA circulating in the blood (under physiological conditions the level of free CA in plasma does not exceed 1 μg/1 plasma), their determination is a labour-consuming procedure often involving a large error (Lund 1949; Weil-Malherbe and Bone 1952; Vendsalu 1960). This method requires a relatively large amount of the blood to be studied, which makes frequent collection of samples at short intervals impossible in clinical practice. Because of this, the CA content of the blood is studied on the contemporary level only at a few large research and clinical institutions.

When analyzing the major stages in the study of CA, the authors of the present investigation came to the conclusion that so far the causes of the fluorescence arising in an alkaline medium of plasma proteins have not been adequately studied. Likewise, the reasons why the principle of determining A suggested by Lehmann and Michaelis (1942) was discarded and not developed further methodically, are in our opinion not entirely justified.

Proceeding from the above considerations, we set ourselves the task to clear up the question of the extent to which the fluorescence arising in an alkaline medium of plasma proteins is specific to CA and whether this phenomenon can be made use of with sufficient reliability in determining SAS activity in clinical medicine.

The solving of this task proved to be possible thanks to a very sensitive semiautomatic fluorimeter designed by a research team of Tartu State University (Reeben, Kliiman, Jagsosild and Loog 1964). This device makes it possible to graphically record the fluorescence of minute amounts of plasma
Relying on the previous studies carried out in this field (Lehmann and Michaelis 1942; Annersten et al. 1949; Grönwall 1950; Senkevich 1953), Kliiman and Reeben (1964) advanced the following hypothesis. If one uses an excitation radiation specific to CA (360 to 405 nm) and differentiates the resulting fluorescence in the range of 515 to 550 nm, then this fluorescence of minute amounts of plasma is chiefly due to the CA present in plasma, i.e. to A and NA.

Since Kliiman and Reeben used a 10 % NaOH medium in their experiments, we have here also a trihydroxyindole reaction (Lund 1949; Bullock and Mason 1951).

Much attention has been paid by us to the clarification of the possibilities of differentiating A and NA since in clinical substrates they usually occur side by side. One possibility of differentiation lies in their oxidation in differently reacting media. Namely, NA is considerably less sensitive to an alkaline medium than A and is oxidised somewhat more slowly. The procedure of distinguishing NA from A at different pH values is sensitive, but requires meticulous care as to technical operating conditions (Lund 1949; Ossinskaya 1957; Euler and Lishajko 1961).

An alternative differential assay method is based on different properties of fluorescence. Thus, NA is excited at smaller wave-lengths of radiation (about 380 nm) than A and has its peak fluorescence approximately at 510 nm. The respective values of A are considerably higher. Thus it is possible to use a fluorimeter with an adjustable system of filters for the differentiation of CA, as has been done by Price and Price (1957), Cohen and Goldenberg (1957), Kliiman and Reeben (1964), etc. The advantages of differentiating NA and A by means of filters are greater simplicity of the method of determination and the circumstance that both CA can be determined on the basis of a single sample. From the point of view of differentiation, it is possible to make use of another difference between NA and A. Cohen and Goldenberg (1957) observed that A complexes are oxidised at a somewhat greater rate than NA complexes. According to Holtz and Kroneberg (1950), in an alkaline medium
A is oxidised approximately ten times more rapidly than HA. When following the procedure suggested by Klüiman and Reuben, one tries to differentiate HA and A by using different secondary filters as well as by evaluating different oxidation characteristics.

When using the original method of Klüiman and Reuben (1964), one obtains the following recordable phenomena. Upon strong alkalinisation of the material under study (0.1 ml of the material studied is added to 3 ml of 10% NaOH solution) there arises an immediate fluorescence whose decrease becomes stable after 3 to 10 minutes. If additionally one oxidises the sample with 30% H₂O₂, there arises a new increase in fluorescence whose intensity decreases slowly, often stabilising itself on a definite level only after 1 to 2 hours (Figure 1).

The authors of the method treat the first oxidation curve as the fluorescence of A-like compounds, the second as fluorescence specific to HA and products of its oxidation. Our later studies have confirmed this hypothesis concerning CA with certain reservations.

Further proof of the specificity of the fluorescence recorded with the help of the method used by us was furnished by plasma fractionation on a Sephadex G-100 column and by the determination of the fluorescence of the fractions obtained. It appeared that plasma fluorescence is chiefly due to albumin-bound CA (Klijiman, Lind and Lind 1965). This is in agreement with the research data reported by Antoniades and his coworkers (1958).

When A and HA are added to blood plasma and the sample is incubated, the fluorescence of albumins increases considerably, sometimes 2 to 3 times. This fact shows that albumins in vitro are capable of binding CA additionally. Under conditions of oversaturation with CA, the globulin fraction, too, binds them to a small extent (Figure 2.).

The amount of CA bound to plasma proteins depends on the pH of the medium and, to some extent, on temperature. The amount of protein-bound CA decreases with a fall in the pH (Klijiman et al. 1965; Lind et al. 1967). When the pH of the medium shifts in the direction of acidity concurrently
Figure 1. Fluorescence curves of plasma in a strongly alkaline medium.
Curve 1 without addition of H_2O_2.
Curve 11 with addition of H_2O_2.
Figure 2. Spontaneous fluorescence of plasma fractions and its increase when adrenaline is added. — fractions of protein —— spontaneous fluorescence —— fluorescence when adrenaline is added
with a decrease in the capacity of albumins to bind CA, the binding capacity of globulins decreases to zero (Lind et al. 1967). The capacity of human plasma to bind exogenous CA varies from individual to individual. The plasma of hypertensive patients has the highest binding capacity (Kliiman, Lind and Maddison 1968). The amount of protein-bound CA many times exceeds the amount of CA circulating freely in the plasma. Still, owing to methodological difficulties, question of the quantitative relationship between protein-bound and free CA in plasma have not yet been finally clarified.

Relying on binding characteristics, one may infer that CA are chemically bound to albumins by both ionic and probably hydrophobic links.

When using absorption techniques for the determination of CA, it is not possible to essentially involve protein-bound CA since in a routine alkaline medium CA are strongly bound to albumins and are not released. In an acid medium in which CA might be released from albumins, no absorption of CA takes place by aluminium hydroxide (Shaw 1938).

There exist two possibilities of determining protein-bound CA: (1) recording of total plasma fluorescence, and (2) unbinding of CA from albumins and subsequent determination of their amount by ordinary techniques. Undoubtedly the latter procedure would be accurate and specific because one always has to consider the possibility of the presence of other fluorescent chemical compounds in the blood. Unfortunately, so far we have not succeeded in completely unbinding from plasma proteins and thus we have had to use former technique. Dopa and dopamine do not essentially effect the intensity of NA and A fluorescence since the fluorescence of these substances is not very strong. The intensity of the fluorescence of dopamine is about 2%, that of dopa - 12% of the intensity of NA fluorescence (Wegman et al. 1963).

In conditions under which we have had to carry out the determination of CA, these ratios are still smaller; consequently dopa and dopamine cannot be regarded as sources of fluorescence.
Data are still lacking on the probable physiological significance of the binding of CA to plasma proteins. On the one hand, this is an obvious case of the transport function of plasma proteins, on the other hand, it is difficult to explain the functional inertness of the rather large amounts of protein-bound CA, which is in sharp disagreement with minute free, but functionally active, CA amounts in plasma acting on the adrenergic receptors. One is led to infer that plasma albumines play the role of a supplementary physiological pool of CA and being about their supplementary functional inactivation. This is highly probable in the case of A, since this hormone is capable of being stored in tissues in a quantity which is many times smaller than that of NA (Axelrod et al. 1961). This is associated with the peculiarities of the chemical structure of the N-containing side-chain of A.

Under physiological conditions the amount of protein-bound NA exceeds the quantity of the A protein complex, which is also evident from Fig. 1, where, according to our procedure of determination, oxydation curve 2 is higher than curve 1. At the same time it is known that the fluorescence of NA is considerably weaker than that of A (Gaddum and Schild 1934; Euler 1956).

We were first of all interested in the problem of whether the protein-bound catecholamines have a medical significance. For instance, if SAS activity can be evaluated through the excretion of CA and of their metabolites (Luft and Euler 1953; Euler 1964; Levi 1967, etc.), on the basis of the CA content in the blood (Vendsalu 1960; Weil-Malherbe 1961), then the same should be possible through protein-bound CA. One can refer to some pertinent data which, although they have been obtained on a weaker methodological basis (Lehmann and Michaelis 1942; Annersten et al. 1949; Senkevich 1953), still confirm the fact that SAS activity can be characterised in this way.

The data collected by various investigators show that a single determination of CA in the blood has only a limited informative value since already under physiological conditions the CA content in plasma may vary within rather
wide limits. This has also been shown by the diurnal variation of CA excretion (Euler et al. 1955; Elmadjian et al. 1958). As a rule, CA excretion during the daytime manyfold exceeds that during the night.

Within the framework of our investigation we studied the levels of protein-bound CA in the blood of 11 subjects during 24 hours (Figure 3).

It appeared that NA and A levels in plasma were highest in the daytime. Further, the NA and A levels were dependent on the work and sleep regimen of the subject studied: the higher the physical and mental activity of the subject, the higher the CA content in his blood.

Another possibility of determining SAS activity is a repeated determination of CA in plasma in connection with the course of the disease or the effect of treatment. A further possibility of evaluating SAS activity may be by exercising an immediate effect on the subject under study by the stimulation or inhibition of SAS. In the present study we shall consider only the results of acute effects, the results of so-called load-tests. The loads used by us were of different types: physiological, physical and pharmacological.

Under conditions of a single acute load we were able to establish first that the concentration of CA in plasma could change very rapidly even in the course of a few minutes. Secondly, when exercising an effect on the plasma CA, their concentration could either rise or fall. The mechanisms of the respective dynamics had to be interpreted separately in each case.

Of the physiological tests which could be used for the evaluation of SAS activity, we employed changing the posture of the subject's body (orthostatic test), emotional stress, and dosed physical work loads. We used cold and heat as physical stimulators.

Pharmacological tests provide great possibilities of characterising SAS. Of the pharmacological tests approved by us, we shall review only some of the more promising ones. To them belong tests with reserpine, tyramine and insulin. The results obtained by us did not differ in principle from those obtained by other investigators who had studied the excretion of CA and their metabolites or the concentration of CA in
Figure 3. Diurnal variation of the levels of protein-bound catecholamines in plasma.
plasma using the same drugs. The choice of a load test depends on the aim of the study. Thus, to establish disorders of vasoregulation, it is most expedient to determine CA in plasma in combination with an orthostatic test. To evaluate SAS activity and antiadrenergic counter-regulation, it is most expedient to carry out tests with physical exercises and insulin-induced hypoglycemia. The tyramine test is very promising for the determination of the reserves of the CA and the vasoreactivity.

Under conditions of psychic stress (examination) the protein-bound CA level was studied in 35 medical students. Blood samples were collected (1) immediately before an examination, (2) one hour after an examination, and (3) in a period of no psychic stress (Figure 4.).

Compared with a rest period, the majority of the subjects studied showed increased level of CA (both of A and of *4) before an examination. After taking an examination, the plasma levels of sympathetic substances did fall in 11 subjects, namely in psychically labile students, in students who were dissatisfied with the results of the examination, as well as in students who had used drugs stimulating the central nervous system. Thus the plasma levels of protein-bound CA rise in a state of psychic stress. A rise in SAS activity in a state of psychic stress has also been observed by Euler and Lundberg (1959), Pekkarinen et al. (1961), Frankenhaeuser and Post (1962), Tüma et al. (1965), Levi (1966), etc. One can draw the conclusion that increased plasma levels of protein-bound CA in a state of psychic stress reflect a rise in SAS activity.

In normal vasoregulation the plasma concentration of free CA, particularly of NA, rises moderately in the erect position (Hickler et al. 1959; Vendsalu 1960). In some disorders of vasoregulation (in particular in the vasoregulatory insufficiency of the arterial type) and in an orthostatic collapse, the plasma level of CA decreases. In this connection there is also a decrease in the amount of NA excreted with urine (Luft and Euler 1953; Sundin 1956). Depending on the state of the vasoregulatory mechanisms in an orthostatic test, protein-bound CA, particularly NA, undergo corresponding changes. Below we shall present two pertinent examples (Figure 5.).
Figure 4. Levels of protein-bound catecholamines in combination with psychic stress (examination).
Figure 5. Plasma level of protein-bound noradrenaline in an active orthostatic test.
A. Vasoregulatory disorder of the venous type-plasma level of NA increases.
B. Vasoregulatory disorder of the arterial type-plasma level of NA decreases.

--- --- NA
--- --- pulse
When treating blood plasma according to our procedure, fluorescence curve 1 (corresponding to oxidation of protein-bound A in plasma) combined with the erect position of the subject did not show any regular shifts. The plasma level of protein-bound NA (fluorescence 11) changed according to the nature of the vasoregulatory disorder. This is understandable since the function of NA is to regulate vascular tone (Euler 1956; Holtz 1956/57).

In the case of some physical exertion the plasma level of CA in the blood rises and the excretion of these substances with urine increases accordingly (Holtz et al. 1947; Euler and Hellner 1952; Kärki 1956; Vendsalu 1960). In connection with some physical work load there is an increase in the activity of the sympathetic as well as of the adrenal part of SAS, i.e. the plasma concentration of both A and NA rises. Due to this fact a physical exercise is one of the universal and best tests of the evaluation of SAS activity.

We worked out a standard test of the physical work load based on a single Master step-test. Blood samples were collected before the application of the load and 10 min and 20 min after the cessation of the exercise. All the blood samples were taken with the subject in the supine position. Depending on the aim of the study, considerably greater work loads were applied than usual, particularly in sports medicine. But in connection with the above-mentioned relatively modest physical load, the plasma level of protein-bound CA rose, reaching the initial level within 15 to 30 min after the cessation of the load. Changes in the plasma level of CA application of some physical exertion depended primarily on the functional state of the vegetative nervous system. When SAS predominated, the level of CA in plasma did not fall within the control time, i.e. within 20 minutes, often rising still further. In case there existed a well-functioning anti-adrenergic counter-regulation, the level of CA fell to the initial level or even below it. The stronger the anti-adrenergic counter-regulation, the faster the decrease in the level of CA in the blood after the cessation of the work load (Riiv 1968, 1969). Such a reaction was particularly striking in subjects who had systematically engaged in endurance
training (Riiv and Paju 1969) (Figure 6).

Anti-adrenergic counter-regulation can be reversed by atropinization. In this case no decrease of the CA content in plasma takes place or the decrease is rather small within the control time. In such anti-adrenergic counter-regulation the parasympathetic system evidently plays a leading role.

Of the various types of physical load we used cold and heat in its various forms of application. Both these loads were accompanied by a larger or smaller increase in the concentration of plasma CA. In raising heat one must also consider the person's subjective feeling of discomfort, in some cases even the sensation of pain. Accordingly we obtained a rise in the oxidation curve of A. When thermal effects were used, similar results were obtained by Leduc (1961) and Maynert and Levi (1964).

As to pharmacological tests, we conducted the majority of tests with reserpine, tyramine and insulin. In this case our aim was to study changes in the protein-bound CA concentration in plasma. We used drugs whose pharmacological effect has already been established.

Reserpine reduces the concentration of NA in the sympathetically innervated organs (Bertler et al. 1956; Burn and Rand 1957; Muscholl and Vogt 1958). At the same time reserpine inhibits the uptake of NA by the tissues. One molecule of reserpine may effectively inhibit the absorption of hundreds of molecules of NA into the tissues (Stjärne 1964).

When parenterally administering large doses of reserpine (1 mg of Rausedy), the subject usually exhibited an initial increase in the level of CA in plasma, which subsequently was replaced by a steady decrease in the plasma level of CA, particularly when the administration of reserpine was continued (Figure 7).

Initial increase of the CA concentration in plasma observed in the administration of reserpine is logical since the pharmacological effect of reserpine is the release of catecholamines from endogenic storage sites. This initial sympatho-mimetic effect of reserpine has been described by several investigators (Krayer and Fuentes 1956; Krayer and Paa-sonen 1957).

Tyramine is a sympathomimetic drug with an indirect
Figure 6. Levels of protein-bound catecholamines in plasma in combination with a moderate physical load.
1. Normal response
2. Response in case of increased SAS activity
Figure 7. Effect of reserpine on the level of protein-bound catecholamines in plasma.
effect. Under its action the NA concentration in the organ
decreases owing to the release of the mediator from the ter-
minals of the sympathetic nerves (Lindmar and Muscholl 1961;
Chidsey et al. 1962). The sympathomimetic effect of tyramine
is stronger and more acute than that of reserpine since NA
released under the action of tyramine directly affects the
receptors (Lindmar and Muscholl 1961; Stjärne 1961). For the
same reasons tyramine may be used as a diagnostic test of
phaeochromocytoma (Engelman and Sjoerdema 1964).

In a standard tyramine test we intravenously adminis-
tered 10 mg of tyramine chloride in 5 minutes, keeping a con-
tinuous check on the blood pressure. In hypertensive patients
our test dose of tyramine produced a markedly larger increase
in the arterial blood pressure than in normotones while an
increase in the plasma level of CA above normal values was
not always observed. In hypertensive patients we evidently
have to do with a rise in the sensitivity of the arterial
walls to NA. A more detailed elaboration of this test should
be promising for the diagnosis of the hypertensive disease,
not to speak of the differentiation of phaeochromocytoma (Fig. 8).

A long time before NA was generally accepted as a
bodyspecific amine and a hormone of the adrenal medulla, Abe
(1924) experimenting with rabbits and Cannon together with
his associates experimenting with cats observed that insulin-
induced hypoglycemia elicited counter-regulation through in-
creased secretion of the hormones of the adrenal medulla.
After the injection of insulin Houssay and co-workers (1924)
obtained an increase in the A concentration in the blood of
v. suprarenalis. Similar results were obtained by Holzbauer
and Vogt (1954) in dogs whose adrenal medulla, like that of
cats, contains about 40% of NA and 60% of A. In man, like-
wise, insulin produces a rise in the A concentration in the
blood (Millar 1956) without measurably changing the NA con-
centration. Insulin may raise the excretion of A with urine
approximately tenfold (Euler and Luft 1952). The excretion
of NA does not rise considerably.

An insulin test was carried out with 70 patients dif-
ferently diagnosed (according to data obtained by the co-
author Lööper). To induce hypoglycemia, the patients under
study were subcutaneously administered 10 units of insulin.
Figure 8. Effect of tyramine chloride on the level of protein-bound catecholamines in plasma.
The CA content in the blood was studied at short intervals during 3 to 4 hours. Parallel to that the excretion of CA with urine was determined by means of a modification of the Ossinskaya (1957) method. Of the hemodynamic indicators, the arterial blood pressure and the heart rate were recorded. On the basis of the variation in the level of CA in plasma (attended by shifts in the intensity of the A and NA fluorescence), it was possible to distinguish at least 4 reaction types. Under the action of insulin-induced hypoglycemia the CA level in plasma could rise or fall. The intensity of the A and NA level in plasma was reflected in the increased amounts of A and NA excreted with urine (Figure 9 and Figure 10).

In clinically healthy subjects also, the insulin test could produce a rise or a fall in the CA level in plasma. The upward trend of the plasma CA level was observed in early forms of a number of somatic diseases (such as hypertensive disease, duodenal ulceration, bronchial asthma, etc.). An increase in the plasma CA was generally observed in subjects in whom the sympathetic system predominated in the vegetative regulation. Decrease in the level of CA in plasma in connection with insulin administration was observed in patients suffering from chronic forms of duodenal ulceration and bronchial asthma. In our view, such a response should indicate strong anti-adrenergic counter-regulation. This viewpoint is confirmed by the studies conducted by Geht and associates (1964). According to Kassil (1964), the insulin test together with the plasma CA determination is one of the most useful tests for establishing the function of the vegetative nervous system, in particular its phasic reaction types. Patients of diencephalic pathology make up a contingent of subjects which is of special interest in this respect.

Subcutaneous administration of A (0.5 to 1.0 ml 0.1% adrenaline solution) produced results similar to those obtained by means of the insulin test. This test is also recommended for the establishment of disorders of diencephalic regulation (Grashchenkov et al. 1962).

When evaluating SAS activity on the basis of the protein-bound CA in plasma, one must consider several factors,
Figure 9. Effect of insulin-induced hypoglycemia on the level of protein-bound catecholamines in plasma.
Increase in the CA level in plasma.
Figure 10. Effect of insulin-induced hypoglycemia on the level of protein-bound catecholamines in plasma.

Decrease in the CA level in plasma.
first of all the mechanisms of the uptake, storage and release of CA, the sensitivity of adrenergic receptors to CA, and the ability of plasma proteins to bind CA.

According to our data, plasma proteins primarily bind endogenic CA. Exogenic CA are bound to proteins in measurable amounts only under special conditions, such as in diencephalic dysfunction and hypertensive disease (Kliiman et al. 1968).

It is interesting to compare our data on the property of the blood plasma of hypertensive patients to bind exogenic CA with the observations of Gaisinskaya (1964), who found that the blood plasma of neurogenic hypertensive patients contains a factor which inhibits the oxidation of A. Are these facts not reducible to one and the same principle?

The first advantage of our method for the determination of the protein-bound CA in plasma, as compared with the determination of the free CA in the blood, is its simplicity, since plasma is used for CA determination without any pretreatment, i.e. in its natural form. The second advantage of our procedure is the speed of determination: it takes only 10 to 15 minutes from the moment of the withdrawal of blood to obtain an answer which is recorded graphically. The third advantage of the method is the minute amount of material necessary to carry out a determination: 0.1 ml of blood plasma will suffice. Proceeding from these considerations, we also worked out a method of determining CA in capillary blood (Lind and Kliiman 1967). By this method, it is possible to avoid venous punctures and psychic reactions that can accompany them (Sominski 1968).

The first disadvantage of our method in its present version is its inadequate specificity in the differentiation of A and NA. Secondly, owing to the different physicochemical structure of CA aqueous solutions and plasma complexes, ordinary methods of calibration cannot be used. On account of this the numerical data which we have presented so far are relative and through them it is primarily possible to evaluate the quantitative values of the changes in the concentration of CA, likewise the level of CA in blood plasma, by comparing them with the corresponding normal values. As in
all fluorimetric studies, this becomes practically impossible in the administration of some drugs such as antibiotics of the tetracycline series, persantin, and other fluorescent drugs. Because of this circumstance, the method presented here does not entirely meet the requirements of experimental medicine. However, for clinical examinations where the aim is to study the SAS function, the method described above is fully appropriate. The chief aim of the present investigation has been the new principle — of the determination of protein-bound CA, which has so far not been used in the study of SAS activity at such an improved methodical level.

References

Гайсинская М.Ю. Исследование стабилизации адреналина сыворотки крови как один из тестов, характеризующих функциональное состояние симпато-адреналовой системы. В кн.: Адреналин и норадреналин, Москва, 1964, 142-146.

Гехт Б.М., Матлина Э.Ш., Соловьева А.Д., Уголева С.В. Адреналиноподобные вещества и сахар крови при введении небольших количеств инсулина в норме и при некоторых формах поражения диэнцефальной области. В кн.: Адреналин и норадреналин, Москва, 1964, 159-164.

Говырин В.А. Трофическая функция симпатических нервов сердца и скелетных мышц, Ленинград, 1967.
Гращенков Н.И., Кассиль Г.Н., Матлина З.Ш. Катехоламины при поражениях диэнцефальной области головного мозга. В кн.: Адреналин и норадреналин, Москва, 1964, 148-159.

Калиман П.А. Количественное определение адреналина и норадреналина в моче флюоресцентным методом. Вопр. мед. химии, 1960, 6, 6, 635-640.

Кассиль Г.Н. Адренергические медиаторы и их значение при оценке состояния вегетативной нервной системы. В кн.: Адреналин и норадреналин, Москва, 1964, 28-37.

Клийман А., Линд М., Линд А. О связывании катехоламинов с белками плазмы крови. Ученые записки Тартуского Гос. ун-та, 1965, 178, 244-250.

Клийман А.Г., Линд М.М., Линд А.Я., Мадисон А.К., Рийв Я.Я. Об измерении флюоресценции катехоламинов, связанных с белками плазмы крови, и кинетике их связывания. Биохимия животных и человека. Тезисы конференции, Москва, 1967. 145-146.

Клийман А.Г., Линд М.М., Мадисон А.Р. О связывании катехоламинов белками плазмы крови больных гипертонической болезнью. Биохимия животных и человека. Тезисы конференции, Минск, 1968, 431-432.

Клийман А.Г., Реэбен В.А. Раздельное определение адреналинового и норадреналинового ряда флюоресцирующих веществ в плазме и моче. Ученые записки Тартуского Гос. ун-та, 1964; 163, 356-362.

Линд М. и Клийман А. Микрометод определения содержания катехоламинов в плазме капиллярной крови. Ученые записки Тартуского Гос. ун-та, 1965, 178, 251-254.

Линд М., Клийман А., Рийв Я., Линд А. О связывании адреналина белками плазмы крови в зависимости от рН. Ученые записки Тартуского Гос. ун-та, 1967, 210, 192-199.

Матлина З.Ш. Флюорометрический метод определения адреналина и норадреналина в моче человека (модификация метода Эйлера и Лишайко). Пробл. эндокриниологии, 1961, 7, 3, 55-60.
Меньшиков Б.В. Выделение катехоламинов из мочи при симптоматических гипертониях. Кардиология, 1961, 2, 18-29.

Орбели Л.А. Теория адаптационно-трофического влияния нервной системы. Избр. труды, 2 изд. АН СССР, М.-Л. 1948.

Осинская В.О. Исследование обмена адреналина и норадреналина в тканях животного организма. Биохимия, 1957, 3, 22, 537-545.

Осинская В.О. Катехоламины и вещества со свойствами продуктов их окисления в животном организме. В кн.: Адреналин и норадреналин, Москва, 1964, II8-II3.

Резбен В.А., Клийман А.Г., Лоог П-Т.К., Яагосильд А.Д. Флюорометр для раздельного определения адреналинового и норадреналинового ряда флюоресцирующих веществ плазмы крови и мочи. Ученые записки Тартуского Гос. Унив., 1964, I63, 363-368.

Рийв Я.Я. Систематическая физическая тренировка как метод профилактики и лечения сердечно-сосудистых заболеваний. В кн.: Проблемы физического воспитания и физического развития молодежи в связи с состоянием здоровья населения. Тарту, 1968, I05-I08.

Рийв Я., Пао А. Значение исследования симпато-адреналовой системы в спортивной медицине. В кн.: Эндокринные механизмы регуляции приспособления к мышечной деятельности, Кяэрику-Тарту, 1969, 272-279.

Сенкевич С.В. Определение адреналина крови и симпатина тканей методом люминесцентного анализа. Автореф. дисс., Казань, 1953.

Соминский В.Н. Купремия и катехоламинурия в условиях эмоционально-болевого воздействия. Изв.АН Латв. ССР, 1968, 6, I33-I38.

Saddum J. H., Schild H. A sensitive physical test for adrenaline. J. Physiol. (Lond.), 1934, 80, 9-10.

Levi L. Life stress and urinary excretion of adrenaline and noradrenaline.

Levi L. Sympathoadrenomedullary responses to emotional stimuli: methodologic, physiologic and pathologic considerations.

Оценка активности симпато-адреналовой системы путем определения катехоламинов, связанных с белками плазмы крови

Я. Рийв, М. Линд и М. Лёэпер

Резюме

Целью настоящей работы является ознакомление с возможностью оценки активности симпато-адреналовой системы (САС) путем определения катехоламинов (КА), связанных с белками плазмы крови. При помощи специального оригинально сконструированного флюориметра наши исследования выяснили, что в сильно щелочной среде флюоресценция плазмы в основном обусловлена КА и в первую очередь соединениями ряда адреналина (АД) и норадреналина (НАД). Допамин, допа и некоторые другие аминокислоты с фотохимической активностью в обычных концентрациях, наблюдающихся в физиологических условиях организма, в условиях нашего определения усиливают флюоресценцию плазмы минимальной мере. Дополнительные подтверждения в отношении специфичности флюоресценции КА, зарегистрированной использованным нами методом, дало фракционирование плазмы на колонке Sephadex G-100, совместно с определением флюоресценции полученных фракций. Выяснилось, что флюоресценция плазмы обусловливается КА, связанными с альбуминами. Если в плазму крови прибавить АД или НАД, флюоресценция альбуминов значительно увеличивается, иногда в 2-3 раза. Таким образом альбумины способны в vitro дополнительно связывать прибавленные КА. В условиях перенасыщения катехоламинами фракция глобулинов также в некоторой степени связывает их. Количество КА, связанные с белками плазмы, зависит от рН среды и от температуры. При понижении рН количество КА, связанных с белками плазмы, уменьшается. Способность связывания КА плазмы человека различается по индивидам. Самой большой является эта способность в плазмах людей с гипертонической болезнью. Количество связанных с белками КА во много раз превышает количество КА свободно циркулирующих в плазме. Основываясь на
характеристиках связывания, можем вывести заключение, что КА химически связаны с альбуминами как ионными, так очевидно и гидрофобными связями. Дифференциация АД и НАД в условиях нашего опыта происходит с помощью скорости их окисления и системы фильтров.

Связывание КА с белками плазмы имеет с одной стороны транспортную функцию, с другой стороны еще функцию дополнительного депо и функцию инактивации КА. С целью выяснения медицинского значения связанных с белками КА был проведен ряд дополнительных исследований. В связи с этим была прослежена динамика содержания связанных с белками плазмы КА в течение суток (у II исследуемых). Самым высоким оказалось содержание АД и НАД в плазме в дневные часы соответственно работе и режиму сна исследуемого. В условиях акутной нагрузки содержание связанных с белками плазмы КА могут очень быстро изменяться, даже в течение нескольких минут. Следовательно, одной функцией белков плазмы является также дополнительное связывание даже эндогенных КА.

В качестве психического стресса на студентов медицинского факультета (35 человек) был использован курсовой экзамен, при котором было отмечено значительное повышение содержания АД и НАД в плазме во время экзамена. Содержание КА наблюдалось еще в различных условиях: физические, физиологические и медикаментозные нагрузки, как, например, ортостатическая проба, дозированная физическая нагрузка, применение холодна и тепла, действие тирамина, резерпина, инсулина и других медикаментов. Результаты наших исследований в основном согласуются с данными авторов, которые определили в тех же условиях опыта концентрацию свободных КА в плазме крови и выделение КА и их метаболитов мочей. Одним более целесообразным нагрузочным пробой является физическая нагрузка, при которой предоставляется возможность оценить как аднрепергическую реактивность, так и силу антиадрепергической противореакции исследуемого. То же действительно и в отношении инсулиногипогликемического теста. Тест с тирамином (10 мг тирамин хлорида внутривенно в течение 5 минут) допускает оценить как вазореактивность организма, так и величину депо НАД в организме.
Посредством определения связанных с белками плазмы КА, в частности в связи с воздействием нагрузкой, предоставляется возможность оценить активность САС. При этом следует учесть некоторые факторы, как, например, механизмы восприятия, депонирования и освобождения КА тканями, также способность белков плазмы связывать КА, которые все вместе могут влиять на уровень содержания КА в плазме. Не исключена возможность, что связанные с белками плазмы КА не дают объективной картины о состоянии САС, в частности, когда имеется дело с изменением чувствительности адренергических рецепторов.

Преимуществами использованного нами метода определения КА плазмы являются, во-первых, его простота, т.к. опускается необходимость предварительной абсорбции КА, во-вторых, быстрота определения. С момента взятия крови до получения ответа требуется всего 10-15 минут. Третьим преимуществом нашего метода надо считать небольшое количество исследуемого материала (0,1 мл плазмы). Однако надо учесть и то, что на результаты исследования в некоторой степени могут повлиять введенные исследуемому антибиотики тетрациклинного ряда, перзантин и другие флуоресцирующие медикаменты.
О вибро кардиографических изменениях при ишемической болезни сердца

К. Валгме

Деятельность сердца обусловливает вибрацию грудной клетки. William Harvey в 1628 г. первым обратил внимание на это явление, а James Hope в 1839 г. доказал наличие вибраций грудной клетки экспериментально. Колебания грудной клетки вызывают как открытие и закрытие клапанов сердца, так и перемещение его в грудной клетке и изменение конфигураций, изменение внутрисердечного давления и тонуса сердечной мышцы (C. M. Agrees и др., 1964; K. Mashio 1967; K. Ряго 1963).

Регистрацию прекордиальных колебаний грудной клетки, вызванных деятельностью сердца, начал в 1878 г. Marey, а продолжили в 1894 Einthoven и Gluck, а также в 1940, Kountz, Gilson и Smith. Целью таких исследований являлись поиски возможностей оценки функционального состояния сердца косвенным путем на основании прекордиальных колебаний грудной клетки. Так как частота колебаний грудной клетки, вызванных сокращениями сердца, бывает весьма различной - от 1 до 1000 циклов в секунду, то зарегистрировать весь спектр вибраций невозможно, и это удаётся лишь в пределах определённых частот колебаний.

За последние два десятилетия особое внимание было обращено на низкочастотные - до 30 циклов в секунду - колебания передней стенки грудной клетки, вызванные деятельностью сердца. В течение 90 лет был выработан целый ряд методов, из которых наиболее распространенными являются апекскардиография (E. J. Marey и Potain, 1885), виброскардиография (W. B. Kountz, A. S. Gilson и J. R. Smith, 1940), акселерография (I. M. Rosa, J. P. Constantino и R. Reich, 1961) и кинетокардиография (E. E. Eddleman, K. Willis, T. J. Reeves и T. R. Harrison 1953). Перечисленные методы отличаются друг от друга техническим разрешением вопроса - датчиками и формой полученой кривой. Применяются динамические микрофоны, объемные микрофоны, различные виды акселерометров и
т.п., причем полученные кривые являются кривыми смещения, скорости или ускорения или их комбинациями. Несмотря на отличия все эти методы выражают одно и то же явление — кардиокинетику — сокращение и расслабление сердечной мышцы.

Все вышепомянутые авторы считают, что механокардиографические исследования играют важную роль при изучении объективных симптомов ишемической болезни сердца.

Целью настоящей работы было изучение кардиокинетики больных с явлениями стенокардии при помощи сконструированного К. Г. Ряго (1960, 1963) стернокостального виброкардиографа. Стернокостальный виброкардиограф состоит из оригинального электромагнитного датчика, весом в 400 гр., принимающего колебания с поверхности 80 см², стержнеобразного постоянного магнита и интегрирующей ячейки электрического фильтра. Он дает возможность регистрировать вибрации грудной клетки частотой 0-200 гц. Для регистрации стернокостальных колебаний на середину нижней части грудины исследуемого, находящегося в лежачем положении на спине, помещается датчик с индукционной обмоткой, причем мечевидный отросток остается свободным. Постоянный магнит, установленный на стене или штативе, помещается на отверстие посередине индукционной обмотки, причем расстояние магнита от обмотки во время регистрации не должно превышать 0,5 см. Сигнал, вызванный колебаниями грудной клетки попадает в электрический фильтр и усиливается в регистрирующем аппарате, который может быть электрокардиограф любого типа. Регистрация происходит при выходе. Полученная кривая является кривой смещения с компонентом скорости в отношении высокочастотных колебаний (выше 100 гц).
Виброкардиограф настроен так, что при движении грудины вверх, то есть, при расширении грудной клетки, происходит смещение кривой вверх и, наоборот, при опускании грудины — смещение кривой вниз. В течение многолетней работы автор установил, что стернокостальная виброкардиограмма является результатом так называемых силовых вибраций, которые возникают при сокращении и расслаблении сердечной мышцы и зависящих от этого изменений конфигурации сердца и смещений его в течение сердечного цикла (К.Ряго и Р.В.Ридала 1967, К.Ряго, 1963). Стернокостальные кривые, получаемые при виброкардиографии, являются сравнительно стабильными и одннаково репродуцируемыми. Таким образом, стернокостальная виброкардиограмма имеет преимущество перед другими подобными методами исследования, например, перед кинетокардиограммой. По данным литературы виброкардиограмма дает более богатую информацию, чем большинство других применяющихся до сих пор механокардиограмм. Наряду с кардиогенными колебаниями грудной клетки стернокостальная виброкардиограмма детально выявляет и фазовую структуру сердечного цикла.

Нормальная стернокостальная виброкардиограмма изображена на рисунке I. Рисунок показывает, что стернокостальная виброкардиограмма состоит из имеющих определенную форму и чередующихся через определенные интервалы экспансий и ретракций кривой, которые соответствуют отдельным фазам кинетического цикла сердца. По интенсивности и форме экспансий и ретракций можно судить о деятельности сердца и различать нормальную кинетику сердца от патологической.

Представленные далее данные получены нами при изучении 137 здоровых и 278 больных грудной жабой при помощи метода стернокостальной виброкардиографии.

По возрасту и полу всех обследованных можно распределить следующим образом: здоровых было всего 137, из них 94 мужчины и 43 женщины; их возраст был в пределах от 20 до 72 лет; 100 здоровых были в возрасте от 20 до 39 лет, а 37 в возрасте от 40 до 72 лет. Больных стенокардией было 278, мужчин 231, женщин 47; возраст их был в пределах от 30 до 75 лет; 26 больных были в возрасте до 39 лет, 72 — от 40 до 49 лет, 119 от 50 до 59 и 61 — выше 60 лет. У всех этих больных наблюдалась стенокардия при напряжении
Пс.П. Нормальная стернокостальная виброкардиограмма

gGhHa - сокращение предсердий
aA - асинхронное сокращение
Ab - изометрическое сокращение желудочков
bBcC - быстрое изгнание крови из желудочков
DeE - протодиастола
CdD - замедленное изгнание
Ef - изометрическое расслабление желудочков
fF - быстрое заполнение желудочков
или в покое (на основании данных клинической картины или ЭКГ) в течение I–20 лет, а у 88 больных была при этом еще и сердечно-сосудистая недостаточность I или IIа степени. Большинство исследованных находилось на лечении в отделении внутренних болезней Тартуской республиканской клинической больницы за период от 1964 до 1968 г. В группу исследованных для сравнения вошли студенты, больные с другими, не сердечными заболеваниями и прочие волонтеры. Регистрация стернокостальной виброкардиограммы проводилась на электрокардиографе типа ЭККП–2 параллельно с регистрацией среднечастотной фонокардиограммы и электрокардиограммы во II отведении. В некоторых случаях кроме указанных исследований делали также и каротид-сфигмограмму. Анализ виброкардиограмм происходил согласно разъяснениям, приведенным в работах К.Ряго (1963, 1967), причем основное внимание было удалено количественным данным об отношении амплитуд экспансии и ретракции к максимальной амплитуде вибраций.

Результаты были обработаны в вычислительном центре ТУ Э.Лауметс и сотрудниками на электронно–вычислительной машине "Урал–4".

Результаты исследований приведены в таблицах I и 2.

Стернокостальная виброкардиограмма больного с коронарной недостаточностью изображена на рисунке 2.

В таблице I приведены средние значения отношений амплитуд экспансии и ретракций к максимальной амплитуде вибраций. Таблица I показывает, что у больных с синдромом стенокардии пресистолические вибрацииин иНа являются более интенсивными. Существенно отличается амплитуда экспансии Вв, соответствующая началу периода изгнания крови из левого желудочка и отмечающая, по мнению К.Ряго, расширение в области путей оттока из левого желудочка. Телесистолическая ретракция Cd оказывается у больных более глубокой, а протодиастолическая экспансия более высокой (соответствует периоду замедленного изгнания) — чем у здоровых. Значения амплитуды экспансии ВР , соответствующей быстрому наполнению, и следующей за ней ретракции Рg меньше, чем средние значения этих амплитуд в контрольной группе.

45
Рис. 2. Стернокостальная виброкардиограмма у больных со стенокардией.
Средние величины амплитуд вибраций на стернокостальной виброкардиограмме у здоровых и больных грудной жабой

<table>
<thead>
<tr>
<th>Число иссл.</th>
<th>Статист. показатели</th>
<th>С</th>
<th>Г</th>
<th>Б</th>
<th>A</th>
<th>a</th>
<th>Ab</th>
<th>B</th>
<th>c</th>
<th>С</th>
<th>d</th>
<th>Br</th>
<th>FF</th>
<th>Fg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Здоровые</td>
<td>137</td>
<td>x</td>
<td>0,06</td>
<td>0,06</td>
<td>0,09</td>
<td>0,16</td>
<td>0,48</td>
<td>0,26</td>
<td>0,48</td>
<td>0,60</td>
<td>0,21</td>
<td>0,55</td>
<td>0,36</td>
<td>0,25</td>
</tr>
<tr>
<td></td>
<td>m</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
<td>0,01</td>
<td></td>
</tr>
<tr>
<td>Больные</td>
<td>278</td>
<td>x</td>
<td>0,06</td>
<td>0,08</td>
<td>0,14</td>
<td>0,25</td>
<td>0,24</td>
<td>0,49</td>
<td>0,37</td>
<td>0,48</td>
<td>0,65</td>
<td>0,33</td>
<td>0,60</td>
<td>0,42</td>
</tr>
<tr>
<td></td>
<td>m</td>
<td>0,002</td>
<td>0,003</td>
<td>0,005</td>
<td>0,01</td>
<td>0,01</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
<td>0,01</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td><0,05</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Примечание. 1) Средние величины амплитуд вибраций выражены в виде отношения их к максимальной амплитуде виброкардиограммы

2) P отмечен только в статистически достоверных случаях.
Число отклонений от нормы (в %) амплитуд отдельных вибраций на стернокостальной виброкардиограмме у здоровых и больных грудной жабой

<table>
<thead>
<tr>
<th></th>
<th>гG</th>
<th>гh</th>
<th>бH</th>
<th>Ha</th>
<th>aA</th>
<th>Ab</th>
<th>bB</th>
<th>Bс</th>
<th>cC</th>
<th>Cd</th>
<th>dE</th>
<th>Er</th>
<th>ff</th>
<th>Fg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Здоровые</td>
<td>16</td>
<td>22</td>
<td>26</td>
<td>33</td>
<td>37</td>
<td>40</td>
<td>35</td>
<td>34</td>
<td>42</td>
<td>29</td>
<td>45</td>
<td>41</td>
<td>46</td>
<td>43</td>
</tr>
<tr>
<td>Больные стенокардией</td>
<td>20</td>
<td>50</td>
<td>60</td>
<td>86</td>
<td>48</td>
<td>48</td>
<td>60</td>
<td>39</td>
<td>47</td>
<td>66</td>
<td>61</td>
<td>45</td>
<td>51</td>
<td>50</td>
</tr>
</tbody>
</table>

Примечание. Разница числа отклонений от нормы в контрольной группе и у больных с коронарной недостаточностью определена с помощью χ² теста.
В таблице 2 отмечен процент отклонения от нормы экс- пансий и ретракций стернокостальной виброкардиограммы у здоровых и больных с явлениями стенокардии. С помощью теста \(\chi^2 \) была найдена достоверная разница в отношении пресистолических \(G_h \), \(hH \), \(Ha \), протосистолического \(BB \), телесистолического \(Cd \) и протодиастолического \(dDE \). Так- ким образом, значения, полученные в отдельных случаях, совпадают со средними значениями, за исключением атриаль- ной \(G_h \) и экспансии \(FP \), соответствующей мезодиастоличе- скому расширению желудочков.

Как и при других методах, регистрирующих кинетику сердца, интерпретация изменений, установленных на стерно- костальной виброкардиограмме, является достаточно трудной задачей. Опираясь на положения автора данного метода и работы других авторов по кинетике сердца и на определен- ную аналогию с механокардиограммами, полученными с по- мощью других методов, можно все же сделать некоторые за- ключения о причинах описанных выше изменений кривой. Уве- личение амплитуды пресистолических экспансий и ретракций у больных с коронарной недостаточностью зависит от повы- шенной активности предсердий. Усиление сокращения пред- сердий при ишемической болезни описывают М. Е. Tavel и сотрудники (1965), J. G. Rieo и R.A. Massumi (1965) и др. в своих работах по апекскардиографии и связывают это с происходящим в конце диастолы увеличением давления в ле- вом желудочке и функциональными и органическими особеннос- тями стенки левого желудочка. Увеличение протосистоличе- ской экспансии \(BB \) у больных с коронарной недостаточностью очевидно зависит от наиболее обширного изменения формы левого желудочка в начале систолы и обусловленного этим движенiem грудной клетки вперед. Как известно, в начале систолы овоявная форма сердца становится более шаровидной, чему сопутствует увеличение дорзовентрального разреза и укорочение продольной оси (K. Heckmann, 1959, E. Tafur и сотрудники, 1967; M. P. Tumanovский и Ю. Д. Сафонов, 1964).

Исчерпывающее объяснение причин углубления ретракции \(Cd \), соответствующей началу медленного изгнания крови из левого желудочка, отсутствует. Результаты добавочных иссле-
дования показали, что Cd углубляется при увеличении венозного притока в сердце, при стимуляции симпато-адреналовой системы, повышении периферического кровяного давления и при сердечно-сосудистой недостаточности I - III степени. Телесистолическая ретракция находится в прямой корреляции с амплитудами hN, Na, Ab, ъB и Вc /r = 0,21 - 0,35/ и в обратной корреляции с длительностью периода медленного изгнания /r = 0,28/. Можно считать, что данный отрезок виброкардиограммы связан с изменениями интенсивности сокращений сердца, вернее левого желудочка, и ударного объема сердца.

По данным К.Ряго и Р.Ридала (1967) протодиастолическая экспансия сDeE связана с максимальным расширением предсердий и расслаблением спиральных мышц сердца, а также перегородки между желудочками. Очевидно, при ишемической болезни сердца происходит более сильное расширение предсердий и более интенсивное расслабление мышц сердца. Стимуляция симпато-адреналовой системы уменьшает, а блокирование увеличивает сDeE экспансию. сDeE находится в незначительной обратной корреляции с Cd и в прямой с DEf и fF.

ной по силе стимуляции симпато-адреналовой системы.

Резюмируя можно сказать, что стернокостальная виброкардиография является ценным методом при установлении объективных признаков ишемической болезни сердца. Связь между изменениями виброкардиограммы и патомеханизмом кинетики сердца при ишемической болезни сердца (стенокардии) еще не совсем выяснена, однако, это не мешает применять стернокостальную виброкардиографию, как простой и перспективный метод как при проведении научно-исследовательской работы, так и в повседневной врачебной практике.

Литература

2. Бабский Е.Б. Исследование механических проявлений сердечной деятельности человека. Биофизика, 2, 2, 27, 1957.
4. Кузнецов Г.П. О верхушечной кардиограмме здоровых людей и больных митральным пороком сердца. Кардиология, 1968, 8, 4, 64.
5. Оранский И.Е. Изменения кинетокардиограммы при митральном стенозе. Кардиология, 1966, 6, 2, 69.

10. Ряго К.Г., Ридала Р.В. Изменения динамики сердечной деятельности у больных митральным стенозом при гипертонии в малом круге кровообращения. Гипертония большого и малого круга кровообращения. Тезисы докладов I Всесоюзного съезда кардиологов. М., 1966, 172.

On Vibrocardiographic Changes in Ischemic Heart Disease

K. Valgma

Summary

The kinetic function of the heart was studied in 137 healthy subjects and 278 angina pectoris patients by means of the sternocostal vibrocardiograph recording low frequency precordial movements of the chest wall. In angina pectoris patients the vibrations corresponding to atrial contraction, the outward movement corresponding to ventricular protosystolic formation, and the vibrations corresponding to reduced ejection and protodiastole were more pronounced, and the outward movement corresponding to ventricular rapid filling slighter than in healthy subjects. These changes are probably caused by myocardial lesion and an increase in left ventricular end-diastolic pressure in ischemic heart disease.
О кинетике сердца в условиях стимуляции и блокирования симпато-адреналовой системы

К. Валгма, Я. Рийв

При ослаблении симпато-адреналового воздействия, в особенности при блокировании адренергических β-рецепторов, были получены противоположные результаты: замедление сокращений сердца, уменьшение систолического и минутного объема (J. Hamer, E. Sowton, 1965; M. Ulrich и др., 1968), уменьшение систолического давления в левом желудочке (E.M. Dwyer и др., 1968), удлинение изометрического периода (F. Dienstl и др., 1966), увеличение периода повышения давления (F. Dienstl и др., 1966), уменьшение коронарного

При вышеупомянутых болезнях найдено увеличение количества адреналина и уменьшение содержания норадреналина в сердечной мышце (W. Raab, W. Gigee, 1955; Ch. A. Chidsey и др., 1964; J. F. Spann и др.), а также увеличение количества катехоламинов в крови и моче (Э. Ш. Матлина, В. В. Меньшиков, 1967).

Активное участие симпато-адреналовой системы в регуляции деятельности сердца как в норме, так и в патологических условиях побудило исследователей искать возможности для распознавания кардиокинетических изменений, возникших под влиянием симпато-адренальных воздействий. Моделирование симпато-адренальных воздействий на деятельность сердца имеет неоценимое значение для дифференциации нормы и патологии, при проведении предохранительных мер и оценке их эффективности. Несмотря на актуальность проблемы, кинетика сердца в условиях симпато-адренального воздействия еще мало изучена, особенно с помощью косвенных, необходимых для клинициста методов исследования. Чаще всего применялся предложенный H. Schultz (1937) и дополненный и обоснованный K. Blumberger (1940) поликардиографический метод, который дает возможность оценивать деятельность сердца на основании фазовой структуры сердечного цикла. W. Raab и др. 1960, W. S. Harris и др., 1966; R. Gmeiner, F. Dienstl, 1966 и др. применяя упомянутую методику и активируя симпато-адреналовую систему путем введения адреналина, изопро-теренола, норадреналина, курения сигареты и эмоционального стресса, нашли, что одним из проявлений симпато-адренало-
вой стимуляции является укорочение асинхронной и изометрической фаз сокращения, фазы нарастания напряжения, периода изгнания, систолы и сердечного цикла. При блокировании адренергических β-ретепторов с помощью пропранолола продолжительность всех перечисленных фаз нормализовалась (W.S.Harris и др. 1966; R.Gmeiner, P.Dienstl, 1966). Сдвиги в фазовой структуре систолы и в настоящее время являются почти единственно ин однометной моделью при изучении деятельности сердца в условиях симпато-адренальных воздействий с помощью носенных методов.

В настоящей работе кинетика сердца в условиях стимуляции и блокирования симпато-адренальной системы изучалась у 123 здоровых и 17 больных стенокардией в возрасте от 20 до 39 лет, из них мужчин было 94, женщин 29. Для изучения деятельности сердца применялся сконструированный К.Г.Рятго (1960, 1963) стернокостальный виброкардиограф, который дает возможность с помощью оригинального электромагнитического датчика регистрировать низкочастотные кардиогенные колебания грудной клетки. Полученная кривая является кривой смещения с компонентом скорости в отношении высокочастотных колебаний. Стернокостальная виброкардиограмма является стабильной и дает богатую информацию. Путем изучения кардиогенных колебаний грудной клетки она дает возможность и для детального выяснения фазовой структуры сердечного цикла (рисунок 1).

Стернокостальная виброкардиограмма регистрировалась на электрокардиографе ЭКГ-2 параллельно среднечастотной фонокардиограммой и электрокардиограммой во II отведении. В некоторых случаях кроме указанных исследований делали еще и каротиссфигмограмму. Для стимуляции симпато-адренальной системы применялось курение сигареты, введение адреналина или изопреналина. Для блокирования симпато-адренальной системы использовали пропранолол (индерал), руседил, блокаду gangl.stellatum с помощью новокаина.

Сигаретный тест был проведен у 22 здоровых. Стернокостальную виброкардиограмму параллельно с ЭКГ и ФКГ делали до и сразу же после выкуривания одной сигареты в течение 5 минут.
Интервал gbbHa — сокращение предсердий
" аA — асинхронное сокращение
" Ab — изометрическое сокращение
" bBcC — быстрое изгнание
" CdD — медленное изгнание
" DeE — протодиастола
" Ef — изометрическое расслабление
" fF — быстрее наполнение
" Pg — медленное наполнение

Рис. 1. Схема нормальной стернокостальной виброакардиограммы
24 исследованным вводили подкожно 0,5 мл 0,1% раствора адреналина и проводили кардиографические исследования до и 15-30 минут спустя после введения адреналина.

У 24 человек были сделаны аналогичные исследования, причем исследуемым вводили 0,05 мг изопреналина. 15 исследованным до и через час после внутримышечного введения 1 мл (мг) рауседила проводили виброкардиографическое исследование.

У 17 больных со стенокардией виброкардиографическое исследование было проведено до и 30 минут спустя после блокирования gangl. stellatum с помощью 10-20 мл 1% раствора но-вокаина.

После проведения курса лечения (не менее 10 блокад) исследовались 11 больных.

У 8 здоровых кинетика сердца изучалась при комбинированном введении адреналина и индерала. При полном покое исследуемого проводилась регистрация ЭКГ, ФКГ и СВКГ, затем делались подкожная инъекция 0,5 мл 1% адреналина, а через 15 минут внутривенное вливание 5 мг индерала и сразу же после этого снова подкожная инъекция 0,5 мл адреналина.

14 исследованным было сделано то же самое, но с изопреналином в следующем порядке: подкожно 0,05 мг изопреналина, через 5 минут 5 мг индерала внутривенно, и сразу же после индерала снова подкожно 0,05 мг изопреналина.

У 16 исследованных была зарегистрирована ЭКГ, ФКГ и СВКГ до и через 5 минут после внутривенного введения 5 мг индерала.

Виброкардиограммы были проанализированы по указаниям, приведенным в работах К.Ряго (1963, 1967). Амплитуды вибраций измерялись в миллиметрах и затем вычислялось отношение их значений к показателю максимальной амплитуды. Значения амплитуд стернокостальных вибраций даны, таким образом, в корреляциях. Кроме того, измеряли продолжительность фаз цикла сердца в секундах. Результаты измерений были обработаны в вычислительном центре ТГУ на электронно-вычислительной машине "Урал-4".

Стимуляция симпато-адреналовой системы обусловливала изменения в стернокостальной виброкардиограмме в одном направлении. Эти изменения заключались в уменьшении длины отрезков bB, dE и Ef и увеличении отрезка cC (таблицы 1,
2, 3, 7, 8). При блокировании симпато-адренальных воздействий выявились противоположные изменения: длина отрезков ВВ, deE и Еf уменьшилась, а отрезок sc увеличился (таблицы 4, 5, 6, 7, 8). Влияние на продолжительность фаз сердечного цикла: выкуривание сигареты, введение адреналина или изопреналина вызвало увеличение всех фаз цикла, за исключением протодиастолы, которая существенным образом не изменялась, и периода быстрого наполнения; последний укорачивался после курения сигареты и удлинялся после введения адреналина (таблицы 9, 10, 11, 15, 16).

При уменьшении симпато-адренальных воздействий изменения продолжительности фаз сердечного цикла при всех трех видах влияния на симпато-адренальную систему (индерал, рашпирал, новокаинизацию gangl. stellatum и др.) были сходными и противоположными по отношению к изменениям, возникающим при стимуляции симпато-адренальной системы (таблицы 12, 13, 14, 15, 16). У всех фаз наблюдалась тенденция к удлинению, за исключением протодиастолы, - продолжительность ее изменялась в разных направлениях, а период быстрого наполнения, на продолжительность которого дестимуляция симпато-адренальной системы оказывала нормализующее действие. Толкование изменений конфигурации стернокостальной виброкардиограммы, возникших в условиях активирования и блокирования симпато-адренальной системы с точки зрения кинетики сердца может базироваться лишь на данных литературы и быть гипотетическим. Можно сказать, что уменьшение протосистолической амплитуды вВ, отражающей растяжение путей оттока, преимущественно левого желудочка, в условиях активирования симпато-адренальной системы обусловлено увеличением тонуса миокарда и его сократительной способности, а также уменьшением систолических измерений сердца (K. Cyvin и др., 1955; J. Anzola и др., 1956; A.M. Weissler и др., 1959; J.N. Cohn, 1965; S. Fish, 1966). Увеличение мезосистолической экспансии сС, соответствующей наполнению кровью артериальных компрессионных камер и предсердий, по-видимому, связано с увеличением систолического объема и активности
Средние величины амплитуд вибраций на стернокостальной виброкардиграмме у здоровых до и после курения сигарет

<table>
<thead>
<tr>
<th>Число исследований</th>
<th>До курения сигареты</th>
<th>После курения сигареты</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,08 0,08 0,09 0,13 0,21 0,40 0,18 0,18 0,69 0,30 0,57 0,48 0,37 0,27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>m</td>
<td>0,01 0,01 0,02 0,02 0,04 0,04 0,05 0,04 0,03 0,03 0,02 0,03 0,02</td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>0,06 0,05 0,09 0,12 0,17 0,36 0,15 0,51 0,76 0,25 0,51 0,39 0,40 0,26</td>
</tr>
<tr>
<td></td>
<td>m</td>
<td>0,01 0,01 0,01 0,01 0,02 0,03 0,04 0,04 0,04 0,03 0,05 0,04 0,02 0,02</td>
</tr>
</tbody>
</table>

Примечание. Как в данной, так и во всех последующих таблицах амплитуды отдельных колебаний выражены в виде отношения их к максимальной амплитуде виброкардиограммы.
Таблица 2
Средние величины амплитуд вибраций на стернокостальной виброкардиограмме у здоровых до и после введения адреналина

<table>
<thead>
<tr>
<th>Число исследований</th>
<th>gG</th>
<th>Gh</th>
<th>hH</th>
<th>Ha</th>
<th>aA</th>
<th>Ab</th>
<th>bB</th>
<th>Bc</th>
<th>cC</th>
<th>Cd</th>
<th>dDE</th>
<th>DHE</th>
<th>fF</th>
<th>Fg</th>
</tr>
</thead>
<tbody>
<tr>
<td>До введения адреналина</td>
<td>24</td>
<td>x 0,05</td>
<td>0,07</td>
<td>0,10</td>
<td>0,13</td>
<td>0,21</td>
<td>0,45</td>
<td>0,19</td>
<td>0,47</td>
<td>0,56</td>
<td>0,16</td>
<td>0,52</td>
<td>0,42</td>
<td>0,41</td>
</tr>
<tr>
<td></td>
<td>m 0,005</td>
<td>0,008</td>
<td>0,021</td>
<td>0,012</td>
<td>0,021</td>
<td>0,047</td>
<td>0,033</td>
<td>0,047</td>
<td>0,036</td>
<td>0,026</td>
<td>0,033</td>
<td>0,030</td>
<td>0,039</td>
<td>0,023</td>
</tr>
<tr>
<td>После введения адреналина</td>
<td>24</td>
<td>x 0,04</td>
<td>0,08</td>
<td>0,10</td>
<td>0,15</td>
<td>0,22</td>
<td>0,53</td>
<td>0,09</td>
<td>0,38</td>
<td>0,71</td>
<td>0,19</td>
<td>0,40</td>
<td>0,39</td>
<td>0,48</td>
</tr>
<tr>
<td></td>
<td>m 0,003</td>
<td>0,014</td>
<td>0,013</td>
<td>0,022</td>
<td>0,019</td>
<td>0,046</td>
<td>0,022</td>
<td>0,040</td>
<td>0,030</td>
<td>0,027</td>
<td>0,36</td>
<td>0,031</td>
<td>0,043</td>
<td>0,027</td>
</tr>
<tr>
<td>P</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
<td></td>
</tr>
<tr>
<td>Число исследований</td>
<td>gG</td>
<td>Gh</td>
<td>hH</td>
<td>Ha</td>
<td>aA</td>
<td>Ab</td>
<td>bB</td>
<td>Bc</td>
<td>cC</td>
<td>Od</td>
<td>dB</td>
<td>Ft</td>
<td>fP</td>
<td>fg</td>
</tr>
<tr>
<td>-------------------</td>
<td>----</td>
</tr>
<tr>
<td>До введения изопреналина</td>
<td>24</td>
<td>x 0.05</td>
<td>0.04</td>
<td>0.08</td>
<td>0.19</td>
<td>0.24</td>
<td>0.53</td>
<td>0.40</td>
<td>0.57</td>
<td>0.63</td>
<td>0.24</td>
<td>0.59</td>
<td>0.45</td>
<td>0.30</td>
</tr>
<tr>
<td>m 0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.05</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>После введения изопреналина</td>
<td>24</td>
<td>x 0.06</td>
<td>0.05</td>
<td>0.09</td>
<td>0.23</td>
<td>0.21</td>
<td>0.52</td>
<td>0.15</td>
<td>0.43</td>
<td>0.87</td>
<td>0.29</td>
<td>0.39</td>
<td>0.34</td>
<td>0.31</td>
</tr>
<tr>
<td>m 0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.03</td>
<td>0.03</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Средние величины амплитуд вибраций на стерно-костальной виброкардиограмме до и после введения пропранолола (индераля)

<table>
<thead>
<tr>
<th>Число исследований</th>
<th>gG</th>
<th>Gh</th>
<th>hH</th>
<th>Ha</th>
<th>aA</th>
<th>Ab</th>
<th>bB</th>
<th>Bo</th>
<th>oC</th>
<th>Od</th>
<th>oE</th>
<th>fF</th>
<th>fG</th>
</tr>
</thead>
<tbody>
<tr>
<td>До введения индераля</td>
<td>16</td>
<td>0,04</td>
<td>0,04</td>
<td>0,09</td>
<td>0,10</td>
<td>0,19</td>
<td>0,46</td>
<td>0,39</td>
<td>0,44</td>
<td>0,64</td>
<td>0,36</td>
<td>0,38</td>
<td>0,39</td>
</tr>
<tr>
<td>После введения индераля</td>
<td>16</td>
<td>0,03</td>
<td>0,03</td>
<td>0,08</td>
<td>0,10</td>
<td>0,18</td>
<td>0,44</td>
<td>0,43</td>
<td>0,42</td>
<td>0,61</td>
<td>0,42</td>
<td>0,45</td>
<td>0,47</td>
</tr>
<tr>
<td>P</td>
<td><0,05<0,05</td>
<td></td>
</tr>
</tbody>
</table>
Средние величины амплитуд вибраций на стернокостальной вибро-кардиограмме до и после введения рауседила

<table>
<thead>
<tr>
<th>Число исследований</th>
<th>gG</th>
<th>Gb</th>
<th>hH</th>
<th>Ha</th>
<th>aA</th>
<th>Ab</th>
<th>bB</th>
<th>bC</th>
<th>cC</th>
<th>Cd</th>
<th>dE</th>
<th>rF</th>
<th>rG</th>
</tr>
</thead>
<tbody>
<tr>
<td>До введения рауседила</td>
<td>15</td>
<td>\bar x</td>
<td>0,05</td>
<td>0,07</td>
<td>0,06</td>
<td>0,14</td>
<td>0,27</td>
<td>0,44</td>
<td>0,16</td>
<td>0,48</td>
<td>0,55</td>
<td>0,23</td>
<td>0,61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>\text{m}</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,02</td>
<td>0,02</td>
<td>0,04</td>
<td>0,05</td>
<td>0,06</td>
<td>0,06</td>
<td>0,06</td>
<td>0,05</td>
</tr>
<tr>
<td>После введения рауседила</td>
<td>15</td>
<td>\bar x</td>
<td>0,03</td>
<td>0,03</td>
<td>0,07</td>
<td>0,15</td>
<td>0,27</td>
<td>0,49</td>
<td>0,19</td>
<td>0,50</td>
<td>0,60</td>
<td>0,25</td>
<td>0,67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>\text{m}</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,03</td>
<td>0,03</td>
<td>0,04</td>
<td>0,03</td>
<td>0,05</td>
<td>0,05</td>
<td>0,04</td>
<td>0,06</td>
</tr>
</tbody>
</table>
Таблица 6
Средние величины амплитуд вибраций стернокостальной виброкардиограммы до и после блокад звездчатого узла

<table>
<thead>
<tr>
<th></th>
<th>Число исследований</th>
<th>gG</th>
<th>Gb</th>
<th>hH</th>
<th>Ha</th>
<th>aA</th>
<th>Ab</th>
<th>bB</th>
<th>Be</th>
<th>cC</th>
<th>Cd</th>
<th>dE</th>
<th>dF</th>
<th>fF</th>
<th>Fg</th>
</tr>
</thead>
<tbody>
<tr>
<td>До блокады звездчатого узла</td>
<td>17</td>
<td>0,07</td>
<td>0,08</td>
<td>0,16</td>
<td>0,27</td>
<td>0,23</td>
<td>0,51</td>
<td>0,26</td>
<td>0,61</td>
<td>0,43</td>
<td>0,28</td>
<td>0,19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,01</td>
<td>0,01</td>
<td>0,02</td>
<td>0,02</td>
<td>0,03</td>
<td>0,04</td>
<td>0,03</td>
<td>0,03</td>
<td>0,03</td>
<td>0,03</td>
<td>0,02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>После первой блокады</td>
<td>17</td>
<td>0,08</td>
<td>0,06</td>
<td>0,15</td>
<td>0,28</td>
<td>0,24</td>
<td>0,56</td>
<td>0,45</td>
<td>0,58</td>
<td>0,71</td>
<td>0,33</td>
<td>0,61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,01</td>
<td>0,02</td>
<td>0,01</td>
<td>0,03</td>
<td>0,02</td>
<td>0,05</td>
<td>0,05</td>
<td>0,07</td>
<td>0,05</td>
<td>0,03</td>
<td>0,02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>После серии блокад</td>
<td>11</td>
<td>0,05</td>
<td>0,05</td>
<td>0,14</td>
<td>0,23</td>
<td>0,24</td>
<td>0,60</td>
<td>0,52</td>
<td>0,77</td>
<td>0,30</td>
<td>0,65</td>
<td>0,38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,02</td>
<td>0,03</td>
<td>0,03</td>
<td>0,03</td>
<td>0,03</td>
<td>0,03</td>
<td>0,02</td>
<td>0,03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
<td><0,05</td>
</tr>
</tbody>
</table>
Таблица 7
Средние величины амплитуд вибраций на стернокостальной виброкардиограмме у здоровых при введении адреналина, затем индера и снова адреналина

<table>
<thead>
<tr>
<th></th>
<th>гG</th>
<th>гh</th>
<th>hH</th>
<th>Ha</th>
<th>aA</th>
<th>Ab</th>
<th>bB</th>
<th>Bc</th>
<th>cC</th>
<th>Od</th>
<th>dDE</th>
<th>DFR</th>
<th>fF</th>
<th>Fg</th>
</tr>
</thead>
<tbody>
<tr>
<td>До введения адреналина</td>
<td>8</td>
<td>x</td>
<td>0,06 0,06 0,25 0,30 0,35 0,55 0,55 0,52 0,04 0,41 0,42 0,40 0,27</td>
<td>m</td>
<td>0,01 0,02 0,02 0,03 0,04 0,04 0,05 0,05 0,05 0,02 0,04 0,03 0,03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>После введения адреналина</td>
<td>8</td>
<td>x</td>
<td>0,05 0,05 0,18 0,19 0,17 0,27 0,65 0,17 0,44 0,76 0,08 0,30 0,28 0,39 0,21</td>
<td></td>
</tr>
<tr>
<td>После введения индера</td>
<td>8</td>
<td>x</td>
<td>0,03 0,03 0,11 0,15 0,29 0,30 0,35 0,33 0,56 0,63 0,13 0,50 0,53 0,47 0,47</td>
<td></td>
</tr>
<tr>
<td>После второго введения адреналина</td>
<td>8</td>
<td>x</td>
<td>0,06 0,06 0,11 0,10 0,23 0,44 0,30 0,50 0,65 0,21 0,50 0,63 0,60 0,51</td>
<td></td>
</tr>
</tbody>
</table>

P <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05
Средние величины амплитуд вибраций на стернокостальной виброкардиограмме у здоровых при введении изопреналина, затем индерала и снова изопреналина.

<table>
<thead>
<tr>
<th>Число исследований</th>
<th>gG</th>
<th>Gн</th>
<th>hH</th>
<th>Ha</th>
<th>aA</th>
<th>Ab</th>
<th>bB</th>
<th>Bc</th>
<th>cG</th>
<th>cd</th>
<th>dH</th>
<th>dK</th>
<th>fF</th>
<th>fG</th>
</tr>
</thead>
<tbody>
<tr>
<td>До введения изопреналина I4</td>
<td>x</td>
<td>0,05</td>
<td>0,06</td>
<td>0,08</td>
<td>0,16</td>
<td>0,24</td>
<td>0,54</td>
<td>0,36</td>
<td>0,51</td>
<td>0,45</td>
<td>0,12</td>
<td>0,67</td>
<td>0,39</td>
<td>0,31</td>
</tr>
<tr>
<td></td>
<td>m</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,02</td>
<td>0,03</td>
<td>0,05</td>
<td>0,05</td>
<td>0,05</td>
<td>0,06</td>
<td>0,04</td>
<td>0,04</td>
<td>0,03</td>
<td>0,04</td>
</tr>
<tr>
<td>После введения изопреналина I4</td>
<td>x</td>
<td>0,06</td>
<td>0,06</td>
<td>0,02</td>
<td>0,13</td>
<td>0,17</td>
<td>0,62</td>
<td>0,17</td>
<td>0,31</td>
<td>0,65</td>
<td>0,22</td>
<td>0,45</td>
<td>0,31</td>
<td>0,26</td>
</tr>
<tr>
<td></td>
<td>m</td>
<td>0,01</td>
<td>0,02</td>
<td>0,02</td>
<td>0,01</td>
<td>0,05</td>
<td>0,05</td>
<td>0,05</td>
<td>0,05</td>
<td>0,04</td>
<td>0,04</td>
<td>0,03</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td><0,05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>После введения индерала I4</td>
<td>x</td>
<td>0,04</td>
<td>0,05</td>
<td>0,05</td>
<td>0,12</td>
<td>0,24</td>
<td>0,56</td>
<td>0,25</td>
<td>0,57</td>
<td>0,67</td>
<td>0,55</td>
<td>0,41</td>
<td>0,41</td>
<td>0,30</td>
</tr>
<tr>
<td></td>
<td>m</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,02</td>
<td>0,03</td>
<td>0,06</td>
<td>0,05</td>
<td>0,05</td>
<td>0,04</td>
<td>0,03</td>
<td>0,03</td>
<td>0,02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P</td>
<td><0,05</td>
</tr>
<tr>
<td>После второго введения изопреналина I4</td>
<td>x</td>
<td>0,04</td>
<td>0,04</td>
<td>0,05</td>
<td>0,12</td>
<td>0,32</td>
<td>0,56</td>
<td>0,16</td>
<td>0,67</td>
<td>0,49</td>
<td>0,07</td>
<td>0,67</td>
<td>0,39</td>
<td>0,51</td>
</tr>
<tr>
<td></td>
<td>m</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,03</td>
<td>0,04</td>
<td>0,04</td>
<td>0,05</td>
<td>0,05</td>
<td>0,03</td>
<td>0,03</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td><0,05</td>
</tr>
</tbody>
</table>
Таблица 9
Фазовая структура сердечного цикла / в сек. / у здоровых до и после курения сигареты

<table>
<thead>
<tr>
<th>Число исследований</th>
<th>Асинхронное оскакивание</th>
<th>Изометрическое сокращение</th>
<th>Фаза напряжения</th>
<th>Быстрое изгибаение</th>
<th>Замедленное изгибаение</th>
<th>Вся фаза изгибаения</th>
<th>Механическая сила</th>
<th>Протяжность</th>
<th>Изометрическое расслабление</th>
<th>Быстрое наполнение</th>
<th>Диастола</th>
<th>Сердеч. цикл</th>
<th>Коэффициент Витерра</th>
<th>Внутрисистолический коэффициент</th>
</tr>
</thead>
<tbody>
<tr>
<td>До</td>
<td>X 0.067 0.037 0.105 0.164 0.132 0.296 0.332 0.048 0.062 0.081 0.582 0.982 2.82 0.882</td>
<td>m 0.001 0.002 0.004 0.005 0.007 0.005 0.010 0.001 0.004 0.003 0.020 0.021 0.09 0.005</td>
<td></td>
</tr>
<tr>
<td>После</td>
<td>X 0.065 0.035 0.100 0.166 0.113 0.279 0.314 0.056 0.059 0.078 0.471 0.850 2.68 0.875</td>
<td>m 0.001 0.001 0.002 0.003 0.004 0.005 0.004 0.002 0.003 0.002 0.015 0.020 0.07 0.005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P < 0.05</td>
<td>< 0.05 < 0.05</td>
<td></td>
</tr>
</tbody>
</table>
Таблица 10

Фазовая структура сердечного цикла в сек. у здоровых до и после введения адреналина

| | Число исследований | Ахиллово сокращение | Изометрическое сокращение | Фаза напряжения | Быстрое изгнание | Замедленное изгнание | Вся фаза изгнания | Механическая систола | Протоизометрическое расслабление | Быстрое наполнение | Диастола | Сердечный цикл | Коэффициент \(p \) | Участковый | Коеффициент \(p \) |
|---------------|--------------------|----------------------|----------------------------|------------------|------------------|----------------------|------------------|---------------------|----------------------------------|------------------|----------|----------------|----------------|---------------|----------------|---------------|
| **До** | 24 | \(\bar{x} \) 0,064 0,044 0,109 0,163 0,121 0,285 0,329 0,051 0,100 0,008 2,64 0,865 | \(m \) 0,001 0,002 0,002 0,004 0,006 0,005 0,006 0,001 0,029 0,004 0,029 0,033 0,08 0,005 | \(\bar{x} \) 0,062 0,041 0,103 0,148 0,120 0,268 0,310 0,050 0,053 0,097 0,454 0,826 2,57 0,865 | \(m \) 0,001 0,001 0,002 0,004 0,005 0,006 0,006 0,001 0,002 0,006 0,024 0,028 0,09 0,004 | \(p \) < 0,05 < 0,05 < 0,05 |
Таблица II
Фазовая структура сердечного цикла / в сек. / у здоровых до и после введения изопреналина

<table>
<thead>
<tr>
<th></th>
<th>Число исследований</th>
<th>Асинхронное сокращение</th>
<th>Изометрическое сокращение</th>
<th>Фаза напряжения</th>
<th>Быстрое изгнание</th>
<th>Замедленное изгнание</th>
<th>Вся фаза изгнания</th>
<th>Механическая систола</th>
<th>Проводимость</th>
<th>Изометрическое расслабление</th>
<th>Быстрое наполнение</th>
<th>Диастола</th>
<th>Сердечный цикл</th>
<th>Коэффициент Жанкера</th>
<th>Внутридиастолический коэффициент</th>
</tr>
</thead>
<tbody>
<tr>
<td>До введения изопреналина</td>
<td>24</td>
<td>x</td>
<td>0,067</td>
<td>0,041</td>
<td>0,108</td>
<td>0,158</td>
<td>0,129</td>
<td>0,288</td>
<td>0,329</td>
<td>0,49</td>
<td>0,078</td>
<td>0,076</td>
<td>0,533</td>
<td>0,929</td>
<td>2,67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>m</td>
<td>0,001</td>
<td>0,001</td>
<td>0,002</td>
<td>0,004</td>
<td>0,004</td>
<td>0,005</td>
<td>0,005</td>
<td>0,005</td>
<td>0,003</td>
<td>0,022</td>
<td>0,024</td>
<td>0,06</td>
<td>0,004</td>
</tr>
<tr>
<td>После введения изопреналина</td>
<td>24</td>
<td>x</td>
<td>0,059</td>
<td>0,041</td>
<td>0,100</td>
<td>0,128</td>
<td>0,082</td>
<td>0,210</td>
<td>0,251</td>
<td>0,046</td>
<td>0,061</td>
<td>0,068</td>
<td>0,390</td>
<td>0,701</td>
<td>2,11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>m</td>
<td>0,002</td>
<td>0,001</td>
<td>0,002</td>
<td>0,004</td>
<td>0,005</td>
<td>0,005</td>
<td>0,005</td>
<td>0,003</td>
<td>0,003</td>
<td>0,015</td>
<td>0,020</td>
<td>0,06</td>
<td>0,006</td>
</tr>
<tr>
<td>P < 0,05</td>
<td>< 0,05</td>
</tr>
</tbody>
</table>
Фазовая структура сердечного цикла / в сек. /
do и после введения индерала

<table>
<thead>
<tr>
<th></th>
<th>Число исследований</th>
<th>Асинхронное сокращение</th>
<th>Изометрическое сокращение</th>
<th>Фаза</th>
<th>Быст рое изнанние</th>
<th>Замедленное изнанние</th>
<th>Вол фаза изнанние</th>
<th>Механическая систола</th>
<th>Протодиастола</th>
<th>Изометрическое расслабление</th>
<th>Быст рое наполнение</th>
<th>Диастола</th>
<th>Сердечный цикл</th>
<th>Коэффициент Бембера</th>
<th>Внутристолометрический коэффициент</th>
</tr>
</thead>
<tbody>
<tr>
<td>До</td>
<td>16</td>
<td>x 0,063 0,037 0,100 0,153 0,303 0,340 0,046 0,057 0,083 0,611</td>
<td>1,010</td>
<td>3,13 0,891</td>
<td>m 0,001 0,001 0,002 0,004 0,005 0,004 0,006 0,001 0,019 0,007</td>
<td>0,032 0,035 0,07 0,004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>После</td>
<td>16</td>
<td>x 0,066 0,038 0,104 0,161 0,153 0,314 0,352 0,046 0,061 0,086</td>
<td>0,727 1,150 3,09 0,893</td>
<td>m 0,001 0,002 0,002 0,005 0,005 0,004 0,001 0,015 0,010 0,035</td>
<td>0,028 0,06 0,005</td>
<td>P <0,05 <0,05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Фазовая структура сердечного цикла / в сек. /
до и после введения рауседила

<table>
<thead>
<tr>
<th>Число исследований</th>
<th>Асинхронное сокращение</th>
<th>Изометрическое сокращение</th>
<th>Фаза напряжения</th>
<th>Быстрое изгнание</th>
<th>Замедленное изгнание</th>
<th>Всей фазе изгнания</th>
<th>Механическая систола</th>
<th>Протодиастола</th>
<th>Быстрое наполнение</th>
<th>Диастола</th>
<th>Сердечный диаметр</th>
<th>Коэффициент Бильтмера</th>
<th>Внутрисистолический коэффициент</th>
</tr>
</thead>
<tbody>
<tr>
<td>До</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>x 0,065 0,039 0,104 0,153 0,143 0,296 0,335 0,048 0,058 0,091 0,516 0,916 2,84 0,883</td>
<td>m 0,001 0,001 0,003 0,004 0,005 0,004 0,005 0,003 0,003 0,024 0,030 0,07 0,005</td>
<td></td>
</tr>
<tr>
<td>После</td>
<td>x 0,065 0,036 0,101 0,163 0,143 0,306 0,342 0,046 0,060 0,083 0,528 0,935 3,09 0,893</td>
<td>m 0,002 0,001 0,002 0,005 0,005 0,004 0,006 0,002 0,003 0,016 0,018 0,06 0,006</td>
<td></td>
</tr>
</tbody>
</table>
Фазовая структура сердечного цикла / в сек. / у больных стенокардией до и после блокад звёздчатого узла

Таблица 14

<table>
<thead>
<tr>
<th></th>
<th>№</th>
<th>I</th>
<th>И</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Число</td>
<td></td>
</tr>
<tr>
<td>исследований</td>
<td></td>
</tr>
<tr>
<td>до звёздчаг</td>
<td></td>
</tr>
<tr>
<td>блокады узла</td>
<td>I</td>
<td>0,065</td>
<td>0,045</td>
<td>0,110</td>
<td>0,230</td>
<td>0,833</td>
<td>0,046</td>
<td>0,090</td>
<td>0,074</td>
<td>0,497</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>0,001</td>
<td>0,001</td>
<td>0,002</td>
<td>0,004</td>
<td>0,004</td>
<td>0,005</td>
<td>0,002</td>
<td>0,005</td>
<td>0,002</td>
</tr>
<tr>
<td>после звёздчаг</td>
<td>I</td>
<td>0,065</td>
<td>0,045</td>
<td>0,113</td>
<td>0,289</td>
<td>0,344</td>
<td>0,096</td>
<td>0,072</td>
<td>0,505</td>
<td>0,914</td>
</tr>
<tr>
<td>блокады узла</td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>0,001</td>
<td>0,001</td>
<td>0,002</td>
<td>0,003</td>
<td>0,005</td>
<td>0,004</td>
<td>0,002</td>
<td>0,003</td>
<td>0,002</td>
</tr>
<tr>
<td>после се-</td>
<td></td>
</tr>
<tr>
<td>рии блок-</td>
<td></td>
</tr>
<tr>
<td>кад</td>
<td>II</td>
<td>0,067</td>
<td>0,046</td>
<td>0,134</td>
<td>0,305</td>
<td>0,351</td>
<td>0,046</td>
<td>0,030</td>
<td>0,537</td>
<td>0,955</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>0,002</td>
<td>0,002</td>
<td>0,004</td>
<td>0,005</td>
<td>0,007</td>
<td>0,005</td>
<td>0,002</td>
<td>0,020</td>
<td>0,024</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
</tr>
</tbody>
</table>
Таблица 15

Фазовая структура сердечного цикла / в сек. / у здоровых при введении адреналина, затем индерала и снова адреналина

<table>
<thead>
<tr>
<th>Число исследований</th>
<th>Асинхронное сокращение</th>
<th>Ионаческое сокращение</th>
<th>Фаза напряжения</th>
<th>Быстрое изгнание</th>
<th>Замедленное изгнание</th>
<th>Вся фаза изгнания</th>
<th>Механическая систола</th>
<th>Протоцистола</th>
<th>Быстрое наполнение</th>
<th>Диастола</th>
<th>Сердечный цикл</th>
<th>Коэффициент Бузлера</th>
<th>Внутристеностический коэффициент</th>
</tr>
</thead>
<tbody>
<tr>
<td>До введения адреналина</td>
<td>\bar{x} 0,068 0,042 0,110 0,172 0,120 0,292 0,334 0,050 0,085 0,090 0,598 1,000 2,65 0,875</td>
<td>m 0,001 0,001 0,001 0,002 0,003 0,003 0,001 0,002 0,002 0,015 0,017 0,04 0,003</td>
<td></td>
</tr>
<tr>
<td>После введения адреналина</td>
<td>\bar{x} 0,062 0,042 0,104 0,160 0,177 0,277 0,319 0,050 0,052 0,130 0,536 0,917 2,67 0,868</td>
<td>m 0,001 0,001 0,002 0,004 0,004 0,003 0,001 0,002 0,003 0,018 0,020 0,04 0,004</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>После введения индерала</td>
<td>\bar{x} 0,067 0,040 0,107 0,197 0,102 0,299 0,339 0,045 0,065 0,127 0,745 1,152 2,77 0,877</td>
<td>m 0,001 0,002 0,002 0,005 0,005 0,005 0,001 0,002 0,002 0,020 0,028 0,09 0,007</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>После второго введения адреналина</td>
<td>\bar{x} 0,072 0,040 0,112 0,177 0,155 0,332 0,372 0,042 0,070 0,125 0,961 1,405 2,95 0,890</td>
<td>m 0,001 0,001 0,001 0,004 0,004 0,003 0,001 0,001 0,002 0,027 0,031 0,11 0,009</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Таблица 16
Фазовая структура сердечного цикла / в сек. / у здоровых при введении изопреналина, затем индера и снова изопреналина

<table>
<thead>
<tr>
<th></th>
<th>Число исследований</th>
<th>Асинхронное сокращение</th>
<th>Изометрическое сокращение</th>
<th>Фаза напряжения</th>
<th>Быстрое изгнание</th>
<th>Замедленное изгнание</th>
<th>Вся фаза изгнания</th>
<th>Метафаза</th>
<th>Проградиастола</th>
<th>Изометрическое расслабление</th>
<th>Быстрое наполнение</th>
<th>Диастола</th>
<th>Сердечный цикл</th>
<th>Коэффициент брадиостоле.</th>
<th>КК коэффициент</th>
</tr>
</thead>
<tbody>
<tr>
<td>До введения изопреналина</td>
<td>14</td>
<td>x 0,070 0,040 0,110 0,172 0,322 0,322 0,050 0,082 0,078 0,530 0,920 2,62 0,875</td>
<td>m 0,002 0,001 0,001 0,001 0,002 0,002 0,003 0,001 0,002 0,003 0,016 0,020 0,04 0,003</td>
<td></td>
</tr>
<tr>
<td>После введения изопреналина</td>
<td>14</td>
<td>x 0,057 0,042 0,099 0,132 0,090 0,222 0,053 0,065 0,068 0,439 0,760 2,25 0,837</td>
<td>m 0,001 0,001 0,001 0,002 0,003 0,003 0,004 0,001 0,002 0,002 0,017 0,018 0,06 0,004</td>
<td></td>
</tr>
<tr>
<td>После введения индера</td>
<td>14</td>
<td>x 0,062 0,045 0,107 0,152 0,132 0,284 0,330 0,047 0,067 0,100 0,558 0,950 2,65 0,862</td>
<td>m 0,001 0,002 0,002 0,002 0,002 0,004 0,003 0,001 0,002 0,003 0,024 0,029 0,10 0,007</td>
<td>p <0,05 <0,05</td>
<td></td>
</tr>
<tr>
<td>После второго введения изопреналина</td>
<td>14</td>
<td>x 0,055 0,040 0,105 0,158 0,130 0,288 0,328 0,042 0,060 0,100 0,755 1,148 2,84 0,878</td>
<td>m 0,001 0,001 0,002 0,005 0,005 0,006 0,001 0,003 0,003 0,025 0,027 0,09 0,007</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p <0,05 <0,05</td>
<td></td>
</tr>
</tbody>
</table>
изгнания крови из желудочков. Укорочение телесистолической амплитуды dE можно объяснить положительным ино- и кронотропизмом и вытекающими из этого изменениями наполнения предсердий и расслабления желудочков. Укорочение амплитуды в соответствующем изометрическому расслаблению, очевидно, зависит от ускорения расслабления желудочков. Ускоряющее действие катехоламинов на изометрическое расслабление описано C.J.Wiggers (1926); D.G. Opdyke (1952) и др.

Восстановление изменений в стернокостальных вибрациях и фазовой структуре сердечного цикла на кинетику сердца показывает с большой достоверностью, что стимуляция симпато-адренальной системы вызывает усиление и ускорение сокращений миокарда, увеличение тонуса и систолического объема, уменьшение размеров сердца, ускорение изометрического расслабления, увеличение частоты сокращений сердца, ускорение периода изгнания и быстрого наполнения желудочков.

В заключение можно сказать, что стернокостальная вибро-кардиография дает возможность изучать и оценивать воздействия симпато-адренальной системы на кинетику сердца. При стимуляции и блокировании симпато-адренальной системы возникли определенные направленные изменения кардиогенных колебаний грудной клетки и продолжительности фаз сердечного цикла. Изменения стернокостальной виbroкардиограммы можно использовать в качестве модели симпато-адренальной стимуляции и дестимуляции как в эксперименте, так и в клинической практике.
Литература

1. Матлина Э.Ш., Меньшиков В.В. Клиническая биохимия катехоламинов. М., 1967.
2. Мясников А.Л. Гипертоническая болезнь и атеросклероз. М., 1965.
4. Ряго К.Г. Кардиокинетическая функция и новый метод для исследования этого. Тезисы докладов респ. научно-практ. конференции терапевтов Эст. ССР. Таллин, 1960, 12.
5. Ряго К.Г., Ридала Р. О физиологическом значении фаз стернокостальной виброскардиограммы. Уч. записки Тартуского гос. университета, 1963, 134, 80-88.
7. Шхвацабая И.К. Значение нервного фактора в происхождении инфаркта миокарда у человека и экспериментальных некрозов сердечной мышцы. Дисс. докт. мед. наук. М., 1965.

Heart Kinetic Function in Conditions of Stimulated and Blocked Sympatho-Adrenergic System

K. Valgma, J. Riiv

Summary

To investigate sympatho-adrenergic influence on heart kinetic function sternocostal vibrocardiography was used, which made it possible to record low frequency precordial movements of the chest wall. Recordings of sternocostal vibrocardiogram and those of electrocardiogram and phonocardiogram were simultaneously made before and after the stimulation of the sympatho-adrenergic system by smoking a cigarette and the administration of adrenaline and isoproterenol, and also before and after the blocking by the administration of propranolol and rausedyl and the novocainization of the stellate ganglion. The above-mentioned influences caused clearly outlined alterations in sternocostal vibrations and in the duration of phases of the cardiac cycle, which can be used as a model for examining the sympatho-adrenergic influence on cardiac function.
О факторах, способствующих ишемической болезни сердца

К. Валгма, Я. Рийв

лудочки воздуха, некроз миокарда.

По наблюдениям R.H.Straube, M.Laftenz (1966), у больных мужчин со стенокардией вес выше нормы отмечался в 34% случаев, а у женщин в - 24% случаев. G.C.Griffith (1966) считает, что повышение веса на 10-20% в 2 раза увеличивает возможность заболевания.

Очень важным фактором риска считается гипертония большого круга кровообращения. По G.C.Griffith (1966), гипертония, начиная с 150/90 мм/Нг увеличивает возможность коронарной недостаточности в 6 раз. По данным J.Stamler и сотрудников (1966), диастолическое давление выше 95 мм увеличивает возможность заболевания в 8 раз.

По мнению большинства авторов, возможность ишемической болезни сердца у заядлых курильщиков увеличивается. По w.Kutscha (1966), инфаркт миокарда бывает у курильщиков в 2 раза, по W. Creceilus (1966) в 5 раз чаще, чем у некурящих. Найденный на вскрытии коронарный склероз был у куривших вдвое обширнее, чем у некуривших (S. Oran, 1968).

Вероятность заболевания увеличивается при сочетании описанных факторов риска. R.H.Straube (1966) считает, что наиболее неблагоприятным сочетанием таких факторов является: гиперхолестеринемия, повышенное систолическое давление и курение. Одновременное наличие всех этих факторов риска
увеличивает опасность заболевания в 10 раз. По наблюдениям G.C.Griffith (1966), одновременное наличие гиперхолестеринемии, гипертонии и ожирения повышает количество случаев коронарной недостаточности до 482 случаев из 1000.

В настоящей работе было изучено 214 больных с явлениями стенокардии - 171 мужчина и 43 женщины; возраст от 29 до 74 лет. Продолжительность болезни - от нескольких месяцев до 30 лет. У 76 больных со стенокардией был в анамнезе инфаркт миокарда. Все больные со стенокардией были изучены в отношении следующих факторов риска:

1) Особенности нервной деятельности, характера и поведения больного,
2) продолжительного психо-эмоционального напряжения, а также частых и сильных отрицательных эмоций,
3) недостаточной физической активности,
4) употребления пищи, богатой животными жирами,
5) ожирения,
6) гиперхолестеринемии,
7) курения,
8) наличия у членов семьи сердечно-сосудистых заболеваний и нарушений обмена веществ,
9) гипертонии,
10) сопутствующих заболеваний.

Часть факторов риска распределяли по активности их действия, как это видно на таблице 2.
Кроме встречаемости отдельных факторов риска, было определено также и их действие в сочетании, с учетом частоты различных комбинаций у изученных нами больных.

В-третьих, определялась корреляция между отдельными факторами риска, а также связь между факторами риска и полом, характером работы, особенностями заболевания и возрастом, в котором возникли явления стенокардии или инфаркт.

Вычисления проводились в вычислительном центре ТГУ с помощью электронно-вычислительной машины "Урал-4", причем применялись матрицы анкетных данных и корреляций.

Данные, характеризующие контингент исследованных, собраны в таблице 1. Показатели частоты наличия факторов, способствующих развитию ишемической болезни, приведены в таблице 2. Из последней вытекает, что у изученных нами больных со стенокардией наиболее часто встречающимися факторами риска являются гиперхолестеринемия (73%), психическое перенапряжение и отрицательные эмоции (72%), курение (68%), жирная пища и особенности нервной системы. Значение других факторов значительно меньше.

Из комбинаций факторов риска наиболее частыми были следующие:

1) Длительное психоэмоциональное напряжение. Пища, богатая животными жирами. Курение - 21,0% исследованных.

2) Особенности нервной системы, способствующие развитию коронарной недостаточности. Продолжительное психоэмоциональное напряжение. Гиперхолестеринемия - у 19,2% исследованных.

3) Особенности нервной системы, способствующие развитию коронарной недостаточности. Длительное психоэмоциональное напряжение. Пища, богатая животными жирами - у 19,1% исследованных.

4) Особенности нервной системы, способствующие развитию коронарной недостаточности. Длительное психоэмоциональное напряжение. Гипертония - у 18,7% исследованных.

5) Длительное психоэмоциональное напряжение. Пища, богатая животными жирами. Гиперхолестеринемия - у 18,7% исследованных.

При выяснении корреляции факторов, способствующих развитию ишемической болезни сердца, выявились ряд слабых, но
Таблица 1

Характеристика больных стенокардией

<table>
<thead>
<tr>
<th>Число исследований</th>
<th>Род</th>
<th>Характер работы</th>
<th>Возраст при заболевании</th>
<th>Особенности заболевания</th>
<th>Возраст при возникновении инфаркта</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>М</td>
<td>Им.</td>
<td>Физическая</td>
<td>Умственная</td>
<td>М</td>
</tr>
<tr>
<td>214</td>
<td>171</td>
<td>43</td>
<td>125</td>
<td>89</td>
<td>50,2</td>
</tr>
</tbody>
</table>

Таблица 2

Частота факторов риска у больных стенокардией

<table>
<thead>
<tr>
<th>Особенности нервной системы</th>
<th>Напряжение нервной системы</th>
<th>Тяжелая активность</th>
<th>Нервная пища</th>
<th>Вес</th>
<th>Холестерин</th>
<th>Курение</th>
<th>Наследственность</th>
<th>Гипертония</th>
<th>Сопутствующие заболевания</th>
</tr>
</thead>
<tbody>
<tr>
<td>Нет</td>
<td>Нет</td>
<td>Нет</td>
<td>Нет</td>
<td>81</td>
<td>22</td>
<td>131</td>
<td>Нет</td>
<td>Нет</td>
<td>Нет</td>
</tr>
<tr>
<td>Сильно</td>
<td>Сильно</td>
<td>Сильно</td>
<td>Сильно</td>
<td>60</td>
<td>33</td>
<td>121</td>
<td>Сильно</td>
<td>Сильно</td>
<td>Сильно</td>
</tr>
<tr>
<td>Умеренно</td>
<td>Умеренно</td>
<td>Умеренно</td>
<td>Умеренно</td>
<td>65</td>
<td>72</td>
<td>77</td>
<td>Умеренно</td>
<td>Умеренно</td>
<td>Умеренно</td>
</tr>
<tr>
<td>74</td>
<td>52</td>
<td>88</td>
<td>146</td>
<td>68</td>
<td>58</td>
<td>156</td>
<td>92</td>
<td>44</td>
<td>103</td>
</tr>
</tbody>
</table>

| 62% | 72% | 31% | 65% | 32% | 73% | 69% | 25% | 37% | 20% |
Таблица 3

Аккуратные взаимные корреляции между полом, возрастом при заболевании, профессией,
особенностью течения болезни и отдельными факторами риска ишемической болезни сердца у больных грудной жабой

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-0.05</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-0.09</td>
<td>-0.19</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-0.15</td>
<td>-0.06</td>
<td>-0.05</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-0.03</td>
<td>-0.25</td>
<td>0.18</td>
<td>-0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-0.06</td>
<td>-0.13</td>
<td>0.31</td>
<td>-0.01</td>
<td>-0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-0.14</td>
<td>0.27</td>
<td>0.60</td>
<td>0.09</td>
<td>-0.25</td>
<td>-0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-0.02</td>
<td>0.15</td>
<td>-0.23</td>
<td>0.14</td>
<td>-0.21</td>
<td>-0.04</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.15</td>
<td>-0.15</td>
<td>0.12</td>
<td>-0.04</td>
<td>0.05</td>
<td>-0.01</td>
<td>-0.13</td>
<td>-0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.17</td>
<td>-0.06</td>
<td>0.21</td>
<td>-0.04</td>
<td>-0.06</td>
<td>-0.07</td>
<td>-0.24</td>
<td>-0.08</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>-0.46</td>
<td>-0.02</td>
<td>-0.01</td>
<td>0.22</td>
<td>-0.11</td>
<td>-0.02</td>
<td>0.11</td>
<td>0.18</td>
<td>-0.13</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>-0.10</td>
<td>0.15</td>
<td>-0.05</td>
<td>0.15</td>
<td>-0.09</td>
<td>-0.00</td>
<td>-0.08</td>
<td>-0.02</td>
<td>-0.01</td>
<td>-0.13</td>
<td>-0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>-0.02</td>
<td>-0.17</td>
<td>-0.11</td>
<td>-0.03</td>
<td>-0.09</td>
<td>-0.03</td>
<td>-0.00</td>
<td>-0.02</td>
<td>-0.19</td>
<td>-0.11</td>
<td>0.12</td>
<td>-0.03</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>-0.17</td>
<td>-0.06</td>
<td>0.05</td>
<td>0.13</td>
<td>-0.14</td>
<td>0.18</td>
<td>-0.03</td>
<td>0.10</td>
<td>-0.09</td>
<td>-0.02</td>
<td>-0.01</td>
<td>-0.05</td>
<td>0.09</td>
</tr>
<tr>
<td>15</td>
<td>0.10</td>
<td>-0.07</td>
<td>-0.13</td>
<td>0.06</td>
<td>-0.21</td>
<td>-0.03</td>
<td>0.21</td>
<td>0.12</td>
<td>-0.11</td>
<td>-0.01</td>
<td>-0.23</td>
<td>-0.12</td>
<td>-0.01</td>
</tr>
</tbody>
</table>

Примечание. 1) Корреляция достоверна, если \(r > 0.13 \)
2) 1 - пол (мужчины - 1, женщины - 2),
3) возраст при заболевании,
4) профессия: физическая (1) или умственная работа (2),
5) течение болезни: без инфаркта (1) или инфаркт в анамнезе (2),
6) особенности нервной системы и поведения,
7) психоэмоциональное напряжение и стресс,
8) физическая активность,
9) жирная пища,
10) курение,
11) наследственно (1 - да, 2 - нет),
12) гипертония (1 - да, 2 - нет),
13) сопутствующие заболевания (1 - да, 2 - нет),
14) возраст при заболевании инфарктом миокарда.
все же достоверных связей (таблица 3). Наиболее интересными из корреляций являются следующие: отрицательная между физической активностью и содержанием холестерина в сыворотке крови \(r = -0.24 \), положительная между весом и содержанием холестерина в сыворотке крови \(r = 0.27 \), а также между содержанием холестерина в сыворотке крови и курением \(r = 0.15 \).

Выяснение и изучение вышеупомянутых факторов необходимо как для принятия превентивных мер, так и для определения объективных признаков ишемической болезни. В атипичных случаях стенокардии наличие факторов риска значительно увеличивает достоверность диагноза.

Литература

1. Баубинене А. Значение некоторых факторов и их корреляций на возникновение инфаркта миокарда. Научная конференция кардиологов Лит. ССР. Тезисы докладов. Каунас, 1964, 3-4.
3. Живодеров В. М., Кузнецова Э. К. Инфаркт миокарда в возрасте до 40 лет. Тер. арх., 1968, 40, 8, 109-112.
4. Забела П. Некоторые факторы, способствующие развитию стенокардии. Научная конференция кардиологов Лит. ССР. Тезисы докладов. Каунас, 1964, 41-42.
5. Косицкий Г.И., Орешук Ф.А., Прыткова Л.Н. О профилактике нарушений коронарного кровообращения. Кардиология, 1967, 7, 8, 58-63.

12. Шхвацабая И.К. Значение нервного фактора в происхождении инфаркта миокарда у человека и экспериментальных некрозов сердечной мышцы. Дисс. докт. мед. наук. М., 1965.

Factors conducive to ischemic heart disease (the so-called coronary risk factors) were studied in 214 angina pectoris patients. The most frequent risk factors were the peculiarities of the nervous system conducive to coronary disease (A-pattern according to Friedman), continuous psycho-emotional overstrain, food rich in animal fat, raised serum cholesterol level, smoking and hypertension. The most frequent combination of risk factors was continuous psycho-emotional overstrain, food rich in animal fat and smoking.
О влиянии физической нагрузки на содержание симпатических катехоламинов в плазме крови и кинетическую функцию сердца у здоровых и больных ишемической болезнью сердца

Я. Рийв, К. Валгма

Симпатические катехоламины (КА) адреналин (А) и норадреналин (НА) можно определять в моче, учитывая интенсив-
ность их выделения в течение определенного отрезка времени, например, минуты или суток. По мнению Luft и Euler (1953), Euler (1964) и Levi (1967), на основании выделения с мочой КА можно с достаточной адекватностью судить об активности САС, а также и об активности всей высшей нервной деятельности. Petrásek с сотрудниками (1966) и Peart (1966) не столь оптимистично смотрят на этот вопрос. Эти авторы подчеркивают, что выделение КА через почки очень незначительно и зависит от многих факторов, что в конечном счете может привести к ошибочным заключениям. Было предложено также и определение свободных КА в крови; это дало бы возможность определять количественные изменения их содержания через короткие промежутки времени. Концентрация КА в крови в физиологических условиях не превышает 1 мг/л, а количество А - на границе обнаружения (Price и Price , 1957; Cohen и Goldenberg, 1957; Vendsalu, 1960; Häggendal, 1963 и др.). Поэтому определение свободных КА в крови технически затруднено. Кроме того, следует принимать во внимание также и достаточно существенные погрешности определения. Как показывают многочисленные исследования, концентрация КА в крови и выделение их с мочой и в норме могут колебаться в весьма широких пределах (Euler и Hellner, 1951; Euler, 1956; Vendsalu, 1960 и др.). Все это затрудняет интерпретацию полученных результатов, особенно при однократном исследовании. Исходя из этого для определения активности САС стали применять различные нагрузочные тесты, используя физиологические, физические и фармакологические воздействия на САС.

В настоящей работе для выяснения активности САС применялся оригинальный флюорометрический метод определения количества КА, связанного с белками плазмы крови. Уже давно известно, что белки плазмы крови, в особенности альбумины, способны связывать большие количества эндогенных и экзогенных КА (Antoniades с сотрудниками, 1958), но достаточного внимания этому не уделяли. После того, как в ТТУ Рэбен с сотрудниками сконструировали (1964) чувствительный, полуавтоматически работающий флюорометр, стало возможным детальное изучение фракции КА, связанной с белками. Клейман с сотрудниками (1965, 1967) доказали, что КА, находящиеся в
плазме крови, в основном связаны с альбуминами. Связь эта носит химический характер, являясь как ионной, так и гидрофобной. В щелочной среде способность плазмы крови связывать экзогенные КА является максимальной и резко уменьшается при понижении pH (Линд и сотрудники, 1967). Исходя из того, что флюоресценция плазмы крови при определенном излучении возбуждения (360-440 нм) и при применении дифференцирующих фильтров 510-550 нм в основном зависит от находящихся в плазме крови в связанном состоянии КА, была разработана методика их определения (Клийман и Рээбен, 1964). Для определения КА, связанных с белками крови, необходима гепаринизированная плазма в количестве 0,1 мл; кровь для этого берут из вены, а в случае надобности из артерии или капилляров. Последний способ накопления крови из капилляров хотя и не оказывает на больного такого психического воздействия как, например, пункция вены, но вследствие часто возникающего гемолиза является сложнее. Уже минимальный гемолиз приводит к недостоверным результатам исследования. Полученную нативную плазму флюориметрируют в сильно щелочной среде достигаемой с помощью 3 мл 10% NaOH. Моментально появившаяся в щелочной среде сильная флюоресценция КА регистрируется с помощью самописчего устройства на ленту в виде круто поникающейся кривой, которая выравнивается через 5-10 минут. При добавлении к плазме двух капель 30% перекиси водорода возникает новая интенсификация флюоресценции, которая регистрируется в виде вторичного подъема кривой, выравнивающейся и стабилизирующейся, по сравнению с первой, значительно медленнее. В ходе дальнейшей регистрации на ленте самописчего устройства отмечается кривая на установившемся уровне, отражающем самоизлучение самой плазмы. В процессе обычного исследования мы приравнивали уровень кривой, отмечающей самоизлучение плазмы, к нулю. Как показывают исследования Клиймана и сотрудников (1964) и Рийва и сотрудников (1964), первоначальный подъем кривой флюоресценции соответствует фотохимическому эффекту, связанных с белками плазмы А и продуктами окисления А, тогда как вторичный подъем кривой флюоресценции отражает в основном НА и продукты его окисления. Учитывая функциональный характер нашего настоящего исследования,
при количественном определении А и НА мы ограничивались так называемыми единицами флюориметра. При анализе содержания связанных с белками плазмы КА мы принимали за основу три показателя: I - инициальный показатель флюориметра, который соответствует в основном А; II - показатель флюориметра, соответствующий НА; III - I + II - сумму двух подъемов кривой флюориметра, отражающую флюоресценцию всех КА плазмы.

Проба с физической нагрузкой проводилась у 80 человек, в том числе 17 клинически здоровых и 63 больных ишемической болезнью сердца, у большинства последних наблюдался обширный коронарный склероз со стенокардией при напряжениях. Для оценки активности САС была выбрана однократная, а при повторных исследованиях двукратная стандартизированная лестничная проба по Мастеру. Первую пробу крови брали до нагрузки в условиях полного психического покоя после получасового лежания. Вторую пробу брали через 10 минут, а третью через 20 минут после окончания нагрузки.

Увеличение экскреции симпатических веществ с мочой в связи с физической нагрузкой первыми отметили Holtz и сотрудники (1947). Выяснилось, что активирование САС является типичной реакцией на физическую нагрузку (Euler и Hellner, 1952; Kärki, 1956; Elmadjian с сотрудниками 1957; Goodall и Berman, 1960 и др.). Реакция симпатической системы в виде секреции НА значительно сильнее, чем адреномедуллярная реакция. Ос разнообразных содержания КА плазмы крови в связи с физической нагрузкой имеется мало данных. При этом содержание КА также повышается (Vendsalu, 1960), что очевидно предшествует увеличению экскреции КА через почки. Вторым путем элиминации КА из плазмы является скопление их в тканях с симпатической иннервацией, особенно в сердечной мышце (Burn, 1932; Raab и Humphreys, 1947; Raab и Gigee 1953, 1955; Nickerson с сотрудниками 1950; Райскина, 1962 и др.). Прямое подтверждение депонирования циркулирующих КА в сердечной мышце дал эксперимент с радиоактивным А и НА (Axelrod и сотрудники, 1959; Muscholl 1960; Strömblad и Nickerson, 1961 и др.).
увеличение содержания КА в крови и тканях вызывает, наряду с повышением артериального давления, также и положительное ино- и хронотропное действие на сердце (Abel и Crawford, 1897; Gottlieb, 1897). У человека (Goldberg и сотрудники, 1960), а также на изолированном сердце тепло-кровных А и НА оказывают сильное хроно- и инотропное действие (Krop 1944; Krayer и Maanen, 1949; Garb 1950; Goldberg с сотрудниками 1953; Gotten и Pincus, 1955; Rushmer и West 1957 и др.).

Симптомы симпато-адреналовой системы в результате курения сигареты, введения адреналина, изопротеренола, эмоционального стресса и пр. обусловливают укорочение фаз асинхронного и изометрического сокращения, укорочение фаз нарастания напряжения и изгнания, систолы и сердечного цикла (Raab 1960; Harris с сотрудниками 1966; Gmeiner и Dienstl 1966 и др.).

Для выявления особенностей электрической и механической функции сердца в связи с физической нагрузкой была проведена параллельная регистрация ЭКГ во II отведении, ФКГ и стернокостальной виброкардиограммы (СКВГ). СКВГ представляет собой запись с помощью оригинального датчика (Ряго 1963 а, 1963 в; Ряго и Ридала 1963 а, 1963 в) кардиогенных низкочастотных колебаний грудной клетки. По данным авторов метода СКВГ дает возможность анализировать фазовую структуру циклов сердца и особенности вибраций грудной клетки, вызванных деятельностью сердца. ЭКГ, ФКГ и СКВГ отмечались до и после однократной или двукратной стандартизированной физической нагрузки по Мастеру. Однократная проба по Мастеру была проведена у 26 клинически здоровых и у 43 лиц с явлениями стенокардии. Двукратный тест по Мастеру был проведен у 16 здоровых и у 23 лиц с коронарной недостаточностью. Здоровые обследованные были в возрасте от 20 до 52 лет, а больные стенокардией от 29 до 64 лет. Как значения КА, связанных с белками плазмы, так и показатели, отражающие механическую функцию сердца, подвергались вариационно-статистической обработке и корреляционному анализу с помощью электронно-вычислительной машины "Урал-4". У больных грудной жабой было проведено выяснение корреляции между КА крови и продолжительностью...
болезни, интенсивностью физической работы, психическим напряжением, полом и возрастом.

Следует заметить, что очень существенным при анализе КА плазмы в связи с физической работой является индивидуальная оценка типов кривой. Уже после сравнительно небольшой физической нагрузки, какой является однократный тест Мастера, у большинства исследованных, как клинически, так и больных, повышается содержание связанных с белками плазмы КА. При проведении двукратного теста это еще более заметно. Тенденция к повышению имеет как I кривая флюоресценции (A), так II кривая флюоресценции (HA). Тенденция к повышению отражается особенно на сумме показателей интенсивности флюоресценции I и II. При сложении двух показателей подъемов кривой флюоресценции мы получаем условные значения всей флюоресценции, которая отражает общее количество КА. Как показывает весьма положительная корреляция (0,94), в общее количество КА в основном входят HA плазмы, тогда как фракция А остается по количеству на заднем плане, несмотря на то, что она дает значительно более сильную флюоресценцию. Мы считаем, что на основании повышения интенсивности КА плазмы после нагрузки можно сделать заключение об адренергической активности исследуемого. Чем выше этот подъем, по сравнению с исходными значениями и чем дольше он продолжается, тем выше соответственно и адренергическая активность. При этом следует учитывать закон Вилдера об исходных значениях (1931, 1936), по которому состояние возбуждения органа, имеющего вегетативную иннервацию, или его функциональный тонус обратно пропорционален его возбудимости. Таким образом, чем выше функциональный тонус, тем ниже возбудимость, и наоборот. Следовательно, высокий тонус САС выражается в повышении содержания КА в плазме. При добавочной стимуляции, например, при физической нагрузке уровень КА плазмы не должен существенно повыситься. Кроме того, на динамику изменений содержания КА плазмы при стимуляции оказывает действие так же и включающий противорегуляционный механизм. По Raab и сотрудникам (1960), этот механизм стали называть антиадренергической противорегуляцией. Поскольку
антиадренергическую противорегуляцию можно путем атропинизации изменить, то здесь очевидно принимает участие холинергический и таким образом парасимпатический механизм. Особенно ясно антиадренергическая противорегуляция проявляется через 20 минут после нагрузки. У некоторых из исследованных содержание КА плазмы значительно понижается, часто даже ниже донаруженного уровня. Из клинически здоровых (17) подобным образом реагировали 12, тогда как у 5 исследованных содержание КА плазмы и к 20-й посленагрузочной минуте оставалось на высоком уровне или было по сравнению с предыдущей пробой еще выше. Из больных ишемической болезнью сердца (63) 44 реагировали поздним повышением содержания КА, а понижением только 19 больных. Отличие характера реакции здоровых и больных со стенокардией здесь явно (χ² = 9,2; Р < 0,05). Таким образом, при ишемической болезни сердца мы имеем дело с ослаблением антиадренергической противорегуляции. Данные о характере адренергической реакции при нагрузочной пробе приведены в таблице I.

Что касается реакции САС у больных ишемической болезнью сердца, то на основании корреляционного анализа первоначальный уровень КА плазмы был у больных, занимающихся физической работой, ниже, чем физически инактивных больных. Между интенсивностью физической работы и антиадренергической противорегуляцией корреляция отсутствовала. Это было обусловлено тем, что при селекции исходных данных больные не были разделены на имеющих недостаточную противорегуляцию и
Изменение содержания связанных с белками плазмы крови катехоламинов при физической нагрузке по Мастеру

<table>
<thead>
<tr>
<th>Число исследований</th>
<th>Статистический показатель</th>
<th>До нагрузки</th>
<th>10 мин. после теста по Мастеру</th>
<th>20 мин. после теста по Мастеру</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
<td>I+II</td>
</tr>
<tr>
<td>Здоровые</td>
<td>17</td>
<td>7,91</td>
<td>15,80</td>
<td>23,73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,06</td>
<td>0,10</td>
<td>0,15</td>
</tr>
<tr>
<td>Больные с коронарной недостаточностью</td>
<td>63</td>
<td>7,73</td>
<td>13,34</td>
<td>20,83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,33</td>
<td>0,66</td>
<td>0,35</td>
</tr>
</tbody>
</table>

Примечание. 1) Значения катехоламинов даны в единицах флуорометра
2) I - первая флуоресценция (адреналин)
 II - вторая флуоресценция (норадреналин)
 I+II - суммарная флуоресценция катехоламинов
обладающих сильной противореугляцией. Чем дольше продолжалась ишемическая болезнь сердца, тем сильнее была адренергическая реакция. У больных старшего возраста, адренергическая реакция была сильнее, чем у молодых. У женщин адренергическая реакция была слабее, чем у мужчин.

Резюмируя, можно сказать, что в связи с физической нагрузкой у больных ишемической болезнью сердца чаще наблюдался сильная и продолжительная адренергическая реакция, что должно отражаться и на деятельности сердца.

Однократная физическая нагрузка по Мастеру вызывала у здоровых достоверное укорочение замедленной и всей фазы наполнения. У больных грудной жабой достоверных изменений при такой нагрузке в фазовой структуре цикла не возникало.

После двукратной нагрузки по Мастеру у здоровых наступало укорочение фазы нарастания напряжения, периодов изгнания и наполнения, а также и диастолы. У больных стенокардией статистически достоверно уменьшились фазы повышения давления, нарастания напряжения, быстрая, замедленная и вся фаза изгнания, фаза изометрического расслабления, фазы быстрого и вся фаза наполнения, диастола, цикл сердца, а также и коэффициент Блумбергера.

Однократный тест Мастера не вызывал существенных изменений в кардиотропных прекордиальных вибрациях у лиц контрольной группы. У больных стенокардией после нагрузки наступало укорочение ретракции E_f, соответствующей изометрическому расслаблению. Вслед за двукратным тестом Мастера у здоровых следовали понижение экспансии E_f, отмечающей протосистолическое формирование желудочков, значительное увеличение экспансии C, отмечающей наполнение кровью компрессионных камер, также уменьшение протодиастолической экспансии dE_f, соответствующей началу расслабления желудочков и наполнению предсердий.

У лиц с явлениями стенокардии статистически достоверных сдвигов не отмечалось.

Деформации СКВГ после нагрузки указывали на усиление контрактильности сердца. Изменения СКВГ при физической нагрузке, найденные в данной работе сходны с теми, кото-
рые были отмечены и в прежних наших работах о стимуляции САС путем введения адреналина, курения сигареты и т.д. Это дает основание предполагать, что отклонения в механической деятельности сердца при физической нагрузке в большой мере являются параметрами активности САС.

Различия в фазовом спектре сердечного цикла и вибрациях у здоровых и больных ишемической болезнью сердца при физической нагрузке можно использовать для моделирования и распознавания ишемической болезни сердца.

В заключение можно сказать, что параллельное изучение КА плазмы крови и кинетики сердца в условиях физической нагрузки дает ценную информацию о характере реакций симпато-адренергической системы, что имеет важное значение как при теоретических исследованиях, так и с точки зрения повседневной клинической практики.

Литература

1. Валгма К.А. О механокардиографических изменениях при физической нагрузке у больных с коронарной недостаточностью. Ученые записки Тартуского гос. университета (в печати).

2. Валгма К.А., Конт М. О действии пропранолола (индерала) на сократительную функцию сердца. Кардиология, 1969, 5, 108-III.

4. Давыдова Л.И. Некоторые стороны обмена катехоламинов и ферментативная активность сыворотки крови при атеросклерозе в клинике и в эксперименте. В кн.: Гипертоническая болезнь, атеросклероз и коронарная недостаточность. Киев, 1967, 92-97.

5. Кассиль Г.Н. Катехоламины и их роль в регуляции функций организма. И. невропатолог. и психиатрии им. С.С. Корсакова. 1963, 63, 8, 1255-1258.

7. Клийман А., Линд М., Линд А. О связывании катехоламинов с белками крови. Ученые записки Тартуского гос.унив. 1965, 178, 244-250.

9. Клийман А.Г., Резэбен В.А. Раздельное определение адреналинового и норадреналинового рядов флюоресцирующих веществ в плазме и моче. Ученые записки Тартуского гос.унив., 1964, 163, 356-362.

11. Линд М., Клийман А., Рийв Я.Я., Линд А. О связывании адреналина с белками плазмы крови в зависимости от рН. Ученые записи Тартуского гос.унив., 1967, 210, 192-199.

12. Раба Б. Адренергическая-холинергическая регуляция обмена веществ и функций сердца. В кн.: Достижения кардиологии, Москва, 1959, 67-152.

14. Резэбен В.А., Клийман А.Г., Лоог Л.-Т.К., Нагосильд А.Д. Флюорометрия для раздельного определения адреналинового и норадреналинового рядов флюоресцирующих веществ плазмы крови и мочи. Ученые записки Тартуского гос.унив., 1964, 163, 263-368.

15. Рийв Я.Я., Клийман А.Г., Лезпер М.А., Кярстна Х.А. Влияние изменений положения тела на содержание катехоламинов в плазме крови при различных ва-
зорегуляторных нарушениях. Ученые записки Тартуского гос.унив., 1964, 163, 71-77.

17. Ряго К. Применение вибрографии к исследованию кардиокинетических явлений. Ученые записки Тартуского гос.унив., 1963а, 141, 192-208.

20. Ряго К., Ридала Р. О возможностях диагностического применения стернокостальной виброкардиографии. Ученые записки Тартуского гос.унив., 1963, 143, 9-16.

23. Сотскова Т.В. О содержании катехоламинов в моче у больных в остром периоде инфаркта миокарда. В кн.: Адреналин и норадреналин. Москва, 1964, 220-223.

109
Influence of Exercise on Blood Plasma Sympathetic Catecholamine Content and on Cardiac Kinetic Function in Healthy Subjects and Ischemic Heart Disease Patients

J. Riiv, K. Valgma

Summary

The plasma protein-bound catecholamine content was determined fluorimetrically in healthy subjects and angina pectoris patients, and low frequency precordial movements of the chest wall were recorded by sternocostal vibrocardiography before and after Master's two-step exercise test. After 10 minutes the plasma catecholamine concentration increased equally in the healthy subjects and the patients, after 20 minutes the catecholamine content in the healthy subjects showed a tendency to decrease, whereas it continued to increase in the patients. The difference in plasma catecholamine dynamics after the exercise test is probably due to insufficient antiadrenergic response reaction in case of angina pectoris.

The sternocostal vibrocardiograms of the healthy subjects and the angina pectoris patients recorded different changes after the exercise test. The changes are similar to those which appeared after smoking a cigarette or the administration of catecholamines (adrenaline and isoproterenol) and they are due to the activation of the sympatho-adrenergic system.

The parallel examination of the plasma catecholamine content and the cardiac kinetic function yields valuable information about the nature of the reaction of the sympatho-adrenergic system.
О действии некоторых нейротропных и антиангиозных средств на содержание катехоламинов, связанных с белками плазмы

Я. Рийв, К. Валгма, М. Лёэпер

В настоящей работе дается сводка данных о действии примененных нами некоторых нейротропных и антиангозных фармаконов на содержание катехоламинов, связанных с белками плазмы. Катехоламины, связанные с белками плазмы определяли флюориметрически, применяя метод, рекомендуемый Клийманом и Резеном (1964).
Нитроглицерин. Нитроглицерин вводили 12 больным, страдавшим ишемической болезнью сердца, из расчета по 2 таблетки под язык (0,001). Контрольное исследование для определения содержания катехоламинов плазмы проводилось по прошествии 8 минут, одновременно проводилось также и исследование кинетической функции сердца.

Содержание адреналиноподобных веществ уменьшалось у 10 исследуемых на 7,1-44,5%. В остальных случаях содержание катехоламинов плазмы или не изменялось, или возникало незначительное повышение (см.рис.1).

Как систолическое, так и диастолическое кровяное давление понижались, частота сердечных сокращений повысилась.

Эуфиллин. Эуфиллин вводили 13 больным с различным диагнозом по 0,1 г парентерально или по 0,2 г через рот.

После парентерального введения препарата исследования проводили по прошествии 30 и 60 минут, при введении через рот — по прошествии 60 и 120 минут. У 9 больных получено повышение содержания катехоламинов плазмы, у 4 — умеренное понижение. Тенденция падения проявлялась главным образом у больных с преобладанием парасимпатической нервной системы. Следовательно, эффект действия эуфиллина на динамику катехоламинов зависит от исходного состояния вегетативной нервной системы исследуемого лица.

Папаверин. Гидрохлорид папаверина вводили 8 больным ишемической болезнью сердца по 0,04 г внутривенно или по 0,05 г подкожно. Контрольные исследования для наблюдения за динамикой содержания катехоламинов плазмы проводились через 30 и 120 минут после введения препарата.

Повышение содержания катехоламинов наблюдалось у 6, падение — у 2 исследуемых. Из больных с тенденцией повышения содержания катехоламинов у 2 после введения папаверина возникло сердцебиение, чувство слабости, а у одного больного синдром стенокардии.

Персантин (дипиридамол). Персантину не присваивают симпатолитического действия. Мы применяли персантин у 18 больных ишемической болезнью сердца. У всех
Рис. I.
Действие нитроглицерина на содержание КА в плазме крови
Действие ипразид на содержание КА в плазме крови.

Проба с физической нагрузкой.
Б-ая с ишемической болезнью.
этих больных мы проверяли действие 10 мг внутривенно вве­
dенного персантина на содержание катехоламинов плазмы.
Первоначальные результаты вводили в заблуждение, так как
по прошествии 30 минут после введения препарата наблюдалось сильное усиление флюоресценции плазмы крови. Но ока­залось, что это было обусловлено самим препаратом. При
более продолжительном же применении персантина было дос­тигнуто постепенное уменьшение содержания катехоламинов
плазмы (см.рис.2).
Следовательно, персантин обладает свойством понижать
при продолжительном введении активность симпато-адренало-
вой системы.
К о р о н т и н (сегонтин). Коронтин в дозе 90 мг в
день ни у одного из 8 находившихся под наблюдением боль­
ных не понижал уровня катехоламинов плазмы, хотя его ре­
зерпиноподобное действие, освобождающее норадреналин из
симпатических нервных окончаний, является общезвестным.
Следует учитывать возможность, что коронтин в незначитель­
ных концентрациях не освобождает норадреналин из симпати­
ческих нервных окончаний, но даже тормозит этот процесс
(Buleт a. Lishajko 1968).
И п р а з и д. Ипразид, известный как ингибитор МАО,
применяется при лечении как гипертонической болезни, так
и ишемической болезни сердца. Результаты же лечения часто
являются противоречивыми. После введения ипразида (75 мг
в день) возникало заметное повышение содержания катехола­
минов плазмы, особенно же в связи с физической нагрузкой
(см.рис.3).
Следовательно, под действием ипразида происходит на­
kопление катехоламинов в организме, что без сомнения не
может не повлиять на активность симпато-адреналовой сис­
темы в целом.
Резкое повышение содержания катехоламинов, связанных
с белками плазмы, может быть обусловлено: более интенсив­
ным освобождением норадреналина из симпатических нервных
окончаний, повышенным освобождением катехоламинов из моз­
гового вещества надпочечников, заторможенным захватом
норадреналина в нервные окончания, замедленной метаболи­
Рис. 2. Действие персантина на содержание КА в плазме крови.
I флуоресценция — адреналин
II флуоресценция — норадреналин.
ческой деградацией катехоламинов и увеличившейся способности белков плазмы связывать катехоламины. Содержание катехоламинов, связанных с белками плазмы, может понизиться: в результате заторможения освобождения катехоламинов из нервных окончаний и мозгового вещества надпочечников, увеличения захвата катехоламинов в ткани, ускорившегося метаболизма и уменьшившейся способности плазмы связывать катехоламины.

Изучение вопроса, каким образом вышеперечисленные фармаконы влияют на содержание катехоламинов плазмы, могло бы быть предметом более детального самостоятельного исследования. При помощи механизмокардиографического исследования можно было под воздействием нитроглицерина установить заметное уменьшение гипокинетической функции сердца. Это уменьшение проявлялось

а) в уменьшении амплитуд сокращения сердца,
б) в удлинении диастолы сердца, причем сокращается и период быстрого наполнения. Следовательно, нитроглицерин обусловливает возникновение гипокинетической функции сердца, подобно действию блокирования симпатических проводящих путей и пропранолола. Можно сделать вывод, что под влиянием нитроглицерина уменьшается потребность миокарда в кислороде. Уменьшение содержания катехоламинов плазмы под воздействием нитроглицерина явно связано с центральным торможением симпато-адреналовой системы. Повышающий содержание катехоламинов плазмы эффект эуфиллина объясняется центральной стимуляцией симпато-адреналовой системы.

Причина повышения содержания катехоламинов плазмы при введении папаверина не ясна. Возможно, что здесь мы имеем дело с более интенсивным освобождением катехоламинов из симпатических нервных окончаний. То же самое можно предполагать и о действии персантина.

Под действием эпразида в симпатических нервных окончаниях увеличивается количество катехоламинов, которые могут оттуда освободиться, особенно в условиях нагрузки.

До сих пор мало изучались условия изменения связывающей способности катехоламинов плазмы. В части экзогенных катехоламинов увеличенная связывающая способность

Опираясь на литературные данные и на проведенные нами работы, мы придерживаемся мнения, что большей антиангинальной активностью обладают медикаменты и процедуры, уменьшающие у больного активность симпато-адреналовой системы. При увеличивающейся активности симпато-адреналовой системы повышается потребность миокарда в кислороде, и это может у больных ишемической болезнью сердца вызвать ухудшение положения.

Думаем, что здесь уместно сделать некоторые замечания о действиях курения и употребления алкоголя на содержание катехоламинов плазмы.

Острым эффектом курения является повышение содержания катехоламинов плазмы, которое особенно ярко проявляется у некурящих и у вегетативно лабильных лиц.

Курение сигареты оказывает стимулирующее влияние и на кинетику сердца, сходное с действием изопреналина и адреналина. У здоровых лиц под воздействием курения сократились периоды напряжения, изгнания и наполнения сердца. Диастола в целом также сократилась. Удлинилась амплитуда сокращений сердца.

Действие алкоголя (25-30 мл 96% алкоголя) изучалось у 6 мужчин, больных гипертонической болезнью или синдромом коронарного склероза по прошествии 30 и 60 минут после введения. У 5 исследуемых на 30 минуте наблюдалось повышение содержания катехоламинов плазмы и лишь у одного исследуемого падение. Через час после употребления алкоголя содержание катехоламинов плазмы пало у 3 исследуемых. Изменение содержания катехоламинов плазмы было сопоставимо с состоянием высшей нервной деятельности исследуемых лиц. С возникновением эйфории, обусловленной алкоголем, всегда было связано и увеличение содержания катехоламинов плазмы, с торможением же нервной деятельности — паде-
жие содержания катехоламинов плазмы. На кинетику сердца алкоголь оказывал стимулирующее влияние. Следовательно, польза алкоголя при ишемической болезни сердца является спорной.

Литература

1. Клийман А.Г., Линд М.М., Линд А.Я., Мадисон А.К., Рийв Я.Я. Об измерении флюоресценции катехоламинов, связанных с белками плазмы крови, и кинетике их связывания. Биогенные амины. Материалы конференции. Москва, 1967, 145-146.

2. Клийман А.Г., Линд М.М., Мадисон А.К. О связывании катехоламинов белками плазмы крови больных гипертонической болезнью. Биохимия животных и человека. Тезисы конференции, Минск, 1968, 431-432.

3. Клийман А.Г., Реэбе В.А. Раздельное определение адреналинового и норадреналинового ряда флюоресцирующих веществ в плазме и моче. Ученые записки Тартуского гос.унив., 1964, 163, 356-362.

4. Линд М., Клийман А., Рийв Я., Линд А. О связывании адреналина белками плазмы крови в зависимости от рН. Ученые записки Тартуского гос.унив., 1967, 210, 192-199.

5. Паю А. Об изменениях содержания катехоламинов в плазме крови у спортсменов и больных сердечно-сосудистой системы при физической нагрузке. В кн.: Эндокринные механизмы регуляции приспособления организма к мышечной деятельности. Тарту, 1969, 280-286.

Summary

So far data are lacking on the effect of drugs on protein-bound catecholamines. Certain physiological and physical factors produce specific changes in the content of the catecholamines which are bound to plasma protein. Similar changes arise under the application of the corresponding factors in the plasma-free catecholamine content and in catecholamine excretion with urine. The present paper deals with the study of the protein-bound catecholamine content in patients after the administration of nitroglycerine, aminophylline, papaverine, dipyridamol, segontin, MAO-inhibitor iprazid as well as after cigarette smoking and alcohol consumption. The protein-bound catecholamines in plasma were determined chemically by an original fluorimetric method. Nitroglycerine produced a decrease in the protein-bound plasma catecholamines, which was accompanied by a noticable reduction in the cardiac kinetics. This was
evident from the reduction of the heart contraction range and the lengthening of the heart diastole, while the period of the rapid filling of the heart became shorter. Thus nitroglycerine produced hypokinesia of cardiac activity which is similar to the blocking of the sympathetic pathways and to the effect to propranolol. The authors are of the opinion that the effect of nitroglycerine on the sympatho-adrenal system is centrally inhibitory.

Aminophylline can both raise the plasma protein-bound catecholamine content or reduce it, depending on the initial state of the patient's vegetative nervous system. When parasympathetic mechanisms predominated, the plasma catecholamine content decrease. Like nitroglycerine aminophylline affected the sympatho-adrenal system predominantly centrally. Papaverine induced an increase in the plasma catecholamine content. The mechanisms of its action remained debatable. Continuous administration of dipyridamol produced a decrease in the plasma catecholamine content. The acute effect of dipyridamol could not be estimated on account of the fluorescence of the preparation itself. Segontin in doses of 90 mg per day did not exert any significant effect on the protein-bound catecholamine content in plasma. Iprazid produced a rise in the plasma catecholamine content, particularly under conditions of a physical work load.

As a result of cigarette smoking, the plasma catecholamine level rose, particularly in non-smokers and in vegetatively labile subjects. The kinetic function of the heart was intensified, similarly to the action of adrenaline and isoprenaline. Under the influence of alcohol, the plasma catecholamine level rose in the first 30 minute after the consumption of alcohol. In later periods of observations the plasma catecholamine content was not constant, it could even decrease. The dynamics of the plasma catecholamine content under the action of alcohol corresponded to the activity of the central nervous system of the person under study.

It can be concluded that those antianginous drugs and procedures which also reduce the activity of the sympatho-adrenal system are more efficacious.
О роли симпато-адреналовой системы в патогенезе ишемической болезни сердца

Рийв Я., Линд М., Лёэпер М., Мокс М.

Ишемическая болезнь сердца (ИБС) является по своему существу мультифакториальным патологическим процессом, вызванным расстройствами многих регуляторных механизмов организма. Поэтому ИБС надо считать болезнью регуляции (Янушкявичус, 1966; Biörck 1968 и др.). В возникновении болезни в основном принимают участие три патогенетических механизма: возникновение атеросклероза, нарушение коронарного кровообращения и нарушение метаболизма миокарда. Каждый названный фактор отдельно взятый может привести к дегенеративным изменениям в миокарде. Так, атерогенез, изменения в коронарном кровообращении и состояние обмена веществ миокарда подлежат воздействию со стороны центральной нервной системы. На этот факт указывали уже знаменитые клиницисты своего времени Боткин (1887) и Osler (1897).

Далее, в более позднее время уже накопилось много фактического материала, подтверждающего участие нервной системы в формировании патологических процессов в кардиоваскулярной системе. Представители многих медицинских дисциплин пришли к убеждению, что органические повреждения, а также функциональные расстройства центральной нервной системы, вызывают изменения в стенках кровеносных сосудов и в миокарде. На нейрогенный механизм возникновения мелкоочаговых некрозов миокарда в нашей медицинской литературе было впервые указано Вайлем (1939, 1954). Вихерт (1952, 1956) установил при опухолях мозга как функциональные расстройства центральной нервной системы, так и некрозы миокарда. Такие же результаты были получены при введении воздуха в желудочек мозга и при прямом повреждении мозговой ткани (Шхвацабая 1961; Покк и Ханссон 1967). Кроме повреждений мозга, причиной возникновения некрозов миокарда могут быть весьма различные стрессовые ситуации (Селье 1950; Данилова 1963, и др.). Все эти наблюдения в области экспериментальной медицины и патологической анатомии подтверждают участие централь-
ных нейрогенных и гуморальных факторов в формировании различных патологических процессов в кардиоваскулярной системе. Наряду с непосредственными структурными изменениями в центральной нервной системе и экспериментально вызванными резкими нейро-гормональными сдвигами, могут острее или хронического характера расстройства в деятельности центральной нервной системы также вызвать патологические процессы в сосудах и миокарде (Незлин 1951; Смольянников и Наддачина 1963; Янушкевичус 1954, 1956; Волф 1950; Спринг 1958; Рустек и Зохман 1958; Рустек (1962) подчеркивают роль эмоционального состояния и психического напряжения при возникновении ИБС. В патогенезе ИБС несомненно существенную роль играет своеобразие высшей нервной деятельности данного лица (Янушкевичус 1954, 1956; Коенко и Дарамонова 1967; Friedmann и Rozenman 1959). Самым важным патогенетическим промежуточным звеном для различных воздействий, полученных через центральную нервную систему, является симпато-адреналовая система (САС) (Selye 1950; Raab 1953; Мясников соавт.1963 и др.). Нет ни одного проявления функции кардиоваскулярной системы, которое не поддавалось бы воздействию САС как с физиологической, так и с патологической точки зрения.

Симпато-адреналовая система и атерогенез

Многочисленными исследованиями, начиная с Юсею (1904) Широкогорова (1907) и экспериментами других авторов, пока- зано, что путем повторного введения адреналина можно у подопытных животных вызвать склеротические изменения в кровеносных сосудах. Механизм возникновения катехоламинового склероза сосудов еще до сих пор не ясен. В обычных условиях повторному введению адреналина следует понимание

Вторым существенным фактором атерогенеза является гиперлипемия, индуцированная стрессом (Wolf et al. 1962; Шатерникова 1965 и др.), в которой существенную роль играет способность КА мобилизовать из жировых депо жирные кислоты (Havel a. Goldfien 1959; Havel 1964). У больных "коронарной" психикой наблюдается значительное повышение среднего содержания липидов в сыворотке по сравнению с
нормой, в то же время у них отмечается интенсивное развитие атеросклероза (Friedman et al. 1968).

Симпато-адреналовая система и коронарный кровоток

Коронарогенная ишемия миокарда может быть обусловлена тотальной или частичной недостаточностью коронарного кровотока, причем последнее часто имеет хронический характер. Детальный механизм расстройств коронарного протока остается до сегодняшнего дня объектом многих дискуссий.

В отношении нейральной регуляции коронарных артерий долгое время придерживались мнения, по которому раздражение н. vagus действует констрикторно, влияние же симпатика обратное – дилататорное (Morawitz u. Zahn 1912; Anrep a. Segall 1926; Anrep 1926; Rein 1931/32). Такое мнение хорошо согласовывалось с представлением того времени о регуляции функции, по которой вегетативные функции просто управлялись посредством антагонистического влияния симпатических и парасимпатических нервов.

Таким образом казалось логичным, что при симпатическом раздражении тот же нервный фактор, стимулирующий сердечную деятельность, расширяет коронарные артерии. При возбуждении н. vagus должны были возникнуть изменения обратного характера.

В пятидесяти годы главным образом авторы США нашли, что вазодилататорное действие адреналина всегда сопровождается повышенным обменом веществ миокарда. Отсюда вывели заключение, что каждая реакция коронарных артерий зависит от изменений обмена веществ миокарда, и является таким образом секундарным явлением (Shipley a. Gregg 1945; Eckenhoff et al. 1947; Gregg 1950 и др.). Такая односторонняя трактовка не соответствует действительности. Brodie и Cullis (1911) утверждали, что небольшие дозы адреналина уменьшали коронарный кровоток, за которым позднее следовала метаболическая вазодилатация. Следовательно, непосредственный и примарный эффект адреналина – коронарная констрикция. Эта точка зрения согласуется и с многими дру-

Весьма существенное значение в коронарной вазомоторике имеет адренергические рецепторы. По мнению Doutheil et al. (1964) и Takenaka (1966), в коронарных артериях размещены как α-рецепторы (констрикторные), так и β-рецепто-

В заключение можем сказать, что главным направляющим фактором коронарного кровоснабжения является САС.

Роль симпато-адреналовой системы в регуляции потребности кислорода в миокарде и возникновении экспериментальных некрозов.

Как показывают результаты исследований Швакабая (1961); Мясникова соавт.(1963); Raab (1964); Raab соавт. (1961, 1968) и др., нейрогенные некрозы миокарда возникают через посредство симпатической нервной системы. Еще
более простой путь получения некрозов миокарда это экзогенное введение KA (Аничков 1912; Немсадзе 1940; Саркисов и Исаков 1952; Бишневская 1954, 1956; Данилова 1961; обзор Горизонтова 1961; Raab 1941 и др.).

В общем создается мнение, что экзогенные, а также эндогенно освобожденные KA могут вызвать некрозы миокарда.

Активность симпато-адреналовой системы у больных инфарктом миокарда и при хронической недостаточности коронарных артерий.

Из вышеприведенного обзора следует, что САС представляет собой довольно существенное промежуточное звено при возникновении ИБС (обзоры Raab 1953; Richardseon 1963; Софиева 1962). Однако, в то же время нет ясности в том, всегда ли в различных стадиях ИБС имеет место с повышенной активностью САС, как это можно предполагать.

В острой стадии инфаркта миокарда отмечается повышенная экскреция KA и их метаболитов (Forsman et al. 1952; Forsman 1954; Сотскова 1964, 1966; Малая и Давыдова 1964; Малая соавт. 1964; Большакова 1964 а, б; Софиева 1965 и др.), а также повышение концентрации KA в крови (Gazez et al. 1959; Richardseon et al. 1960; Richardseon 1963, 1964; Софиева 1964; Вилейшите 1966 и др.). Однако, этот факт сам по себе не является доказательством постоянного повышения активности САС у таких больных. Именно, каждая стрессовая ситуация, а возникновение инфаркта миокарда без сомнения является таковой, может вызвать временную стимуляцию САС (Aleksandrow et al. 1967). Главным источником постинфарктной катехоламинемии являются постганглионарные симпатические нервные оконча-
ния, так как при экспериментальном инфаркте содержание КА плазмы повышается и после билатеральной адреналэктомии, но может быть заблокирована симпатическими фармаконами (Richardson 1966).

В условиях экспериментального инфаркта установлено и повышение парасимпатического тонуса, что в свою очередь может повлиять на метаболизм КА (Лебединский и Маслова 1964; Куль и Линд 1967). Общее количество КА в инфарцированной сердечной мышце значительно уменьшается на некоторое время, затем резекс увеличивается вследствие циркули-
рующих в крови КА. Далее в еще более поздней стадии экспе-
риментального некроза КА в сердце и надпочечниках снова
понижаются, что истолковывается как выражение истощеннос-
tи САС (Малая соавт.1964).
Учитывая повышение активности САС в связи с весьма
различными воздействиями также у вполне здоровых людей,
можно прийти к убеждению, что заметное повышение концент-
рации КА в плазме и увеличение выделения их с мочой в
острой стадии инфаркта миокарда имеют вторичный характер.
С другой стороны чрезмерное повышение активности САС мо-
жет повлиять на ход инфаркта миокарда и ухудшить прогноз
(углубление гипоксии, увеличение мионекроза, возникнове-
ние расстройств ритма, увеличение свертываемости крови и
пр.). В связи с инфарктом миокарда, по всей вероятности,
ввиду чрезмерной стимуляции САС, может возникнуть состоя-
ние истощенности этой системы, что выражается главным об-
разом в виде васкулярного коллапса.
Изменения активности САС имеют существенное значение
в патогенезе коронарной недостаточности. Основываясь на
известные данные, можно прийти к заключению, что больные
ИБС имеют дело с повышением активности САС, что является
основным патогенетическим фактором как при возникновении
болезни, так и при ее развитии до катастрофы в виде ин-
фаркта миокарда.
Целью настоящей работы, используя новые методы оцен-
ки активности САС, было представить дополнительные матери-
алы о патогенетических соотношениях САС и ИБС.

**Экскреция КА у больных ишемической болезнью
сердца, оцененное по йодному тесту мочи.**

Как показывают довольно обширные исследования Med-
gyesi и Katona 1962; Nagy и Katona 1962 и др., для
ориентировочного определения интенсивности экскреции КА
мочой можно использовать йодную пробу. Таким методом на-
ми были исследованы 1597 больных с различными диагнозами,
в том числе 70 больных инфарктом миокарда в острой стадии
и 181 больной хронической недостаточностью коронарных ар-
терий (Рийв соавт., 1965). Благонадежность йодной пробы была проверена флюориметрическим методом и была получена тесная корреляция между обоими методами определения. Для исследований всегда была использована утренняя моча. При различных стимуляциях САС йодная проба всегда становилась более активной. Острая стадия инфаркта миокарда давала положительную йодную реакцию у 80% случаев, причем у 50% больных реакция была сильно положительной. У больных хронической коронарной недостаточностью соответствующие показатели были 84% и 50%. В группе клинически здоровых исследуемых сильно положительная реакция была менее чем у 10% исследуемых; у больных же тиреотоксикозом - 69%. Исходя из этих ориентировочных данных, при ИБС у 80% случаев могло быть повышение активности САС, причем у половины случаев особенно сильное повышение.

Содержание КА, связанных с белками плазмы, у больных ишемической болезнью сердца в связи с физической нагрузкой

В условиях физической нагрузки было дополнительно исследовано содержание КА, связанных с белками плазмы, у 63 больных ишемической болезнью сердца и у 28 клинически здоровых лиц.

В своих ранних исследованиях мы установили, что основная часть циркулирующих в крови КА являются связанными с альбуминами плазмы (Клийман соавт., 1965). В дальнейших исследованиях мы получили подтверждающий материал о том, что путем определения КА, связанными с белками плазмы, можно оценить активность САС (Рийв соавт., 1964, 1967). Используя рекомендованную Клийманом и Рэбен (1964) методику, удалось определить общее количество связанных с белками КА и в надлежащей мере дифференцировать для клинических исследований адреналин и норадреналин. Для дальнейшего анализа результатов исследования были взяты показатели интенсивности флюоресценции соединений рядов адреналина и норадреналина, содержащихся в плазме, выраженных в единицах интенсивности флюоресценции флюориметра, также
тотальная флюоресценция КА плазмы в виде суммы флюоресценции соединений рядов адреналина и норадреналина.

Для физической нагрузки был использован однократный стандартизированный тест Мастера. Пробы венозной крови для определения КА были взяты как до физической нагрузки, так и спустя 10 и 20 минут.

Даже при такой скромной физической нагрузке, как это представляет собой однократный тест Мастера, у большинства исследуемых, даже у клинически здоровых, повышается содержание связанных с белками плазмы КА. Такое повышение содержания КА плазмы, по нашему мнению, характеризует адренергическую реактивность исследуемого. Чем больше повышение содержания КА плазмы непосредственно после нагрузки, тем больше адренергической реактивностью обладает исследуемый. Только при сильном колинергическом перевесе нагрузка, используемая для стимуляции САС, не всегда выражается в виде повышения содержания КА в плазме. Из 28 исследованных нами клинически здоровых лиц непосредственно после нагрузки повысилось содержание КА, связанных с белками плазмы у 24 исследуемых, понизилось у 4. Из последних у трех был значительный парасимпатический перевес на фоне вегетативной дистонии. 20 минут после снятия нагрузки у 21 исследуемого (75%) содержание КА плазмы показало тенденцию к понижению. У 7 исследуемых продолжалось повышение содержания КА плазмы еще на 20-й минуте после снятия нагрузки. Эти исследуемые вегетологически характеризовались повышенной возбудимостью с перевесом реакции симпатического характера. Согласно психологическому анализу, по меньшей мере у 5 представителей соответствующего типа реакции был отмечен т.н. синдром "внутреннего волнения", что соответствует типу поведения А по Фридману и Розенману (1959). По данным названных авторов, у лиц такового психического своеобразия ИБС встречается в 7 раз чаще, чем у людей с обычной психикой. Из наших исследуемых, у которых на 20-й посленагрузочную минуту содержание КА плазмы уже снизилось по сравнению с предыдущей пробой, только 3 случая из 21 были типа поведения А. Основываясь на аналогии с другими нагрузочными пробами (адреналин, фенамин, гипогликемия индуцированная инсулином, инверсия
таблица снижения содержания КА плазмы под действием атропина), мы пришли к выводу, что посленагрузочной нормализацией содержания КА плазмы управляет холинергическая система. Чем активнее холинергическая система, тем быстрее восстанавливается исходный уровень повышенного содержания КА плазмы, вызванного стимуляцией САС. Поскольку описанный феномен может иметь еще некоторые дополнительные компоненты, кроме повышенной холинергической активности, как, например, ускорение восприятия и утилизации КА тканями, ускорение энзимальной утилизации КА и пр., то кажется целесообразней называть его антиадренергической противорегуляцией. Холинергические механизмы очевидно играют при этом ведущую роль. Как показывает наши данные, подавляющее большинство клинически здоровых лиц (21 из 28) обладает достаточно сильной антиадренергической противорегуляцией.

Представители разных типов реакции были установлены нами и при изучении содержания КА плазмы под нагрузкой у больных бронхиальной астмой, гипертонической болезнью, язвой двенадцатиперстной кишки и др. (72 исследуемого). Недостаточность антиадренергической противорегуляции была типична для гипертонической болезни в начальной стадии, то же наблюдалось и при тиреотоксикозе и при некоторых случаях вегетативной дистонии с симпато-адренергическим перевесом. Сильная холинергическая противорегуляция часто была установлена у больных с хроническим течением язвенной болезни двенадцатиперстной кишки и при бронхиальной астме.

На рис. 1 приведены примеры относительно изменений содержания связанных с белками плазмы КА у больных язвенной болезнью двенадцатиперстной кишки и бронхиальной астмой в связи с пробой нагрузки и атропинизацией. У обоих больных была установлена сильная антиадренергическая противорегуляция, которую удалось инвертировать атропином.

Однократный тест Мастера был проведен на 63 больных ИВС в возрасте от 37 до 75 лет. Среди исследуемых были 56 мужчин и 7 женщин. Из сопровождающих болезней 7 боль-
Рис. I. Проба с физической нагрузкой перед и после атропинизации.

А. Б-ой язвенной болезнью.
Б. Б-ая бронхиальной астмой.
ных имели гипертоническую болезнь и 2 — язвенную болезнь двенадцатиперстной кишки. Диагноз ишемической болезни сердца был подтвержден всесторонним клиническим исследованием, используя в отдельных случаях коронароангиографию. Во всех случаях превалирующей причиной ишемии миокарда был атеросклероз коронарных артерий. Чисто нейрогенно-метаболические и симптоматические формы ИБС были исключены из анализируемой группы. 17 больных перенесли инфаркт миокарда.

В условиях нагрузочной пробы 44 (70%) больных ИБС реагировали более затянутым повышением содержания КА плазмы, 19 (30%) реагировали нормально, то есть с понижением КА через 20 минут после нагрузки. Таким образом, у большинства больных ИБС наблюдается ослабление антиадренергической противорегуляции, что, согласно с статистической достоверностью, отличается от реакции клинически здоровых лиц в ответ на физическую нагрузку.

Раз мы уже поставили гипотезу об облигаторной патогенетической роли САС при ИБС, то возникает вопрос, почему не у всех больных превалирует симпатический тонус. Здесь очевидно имеется несколько причин. Во всяком случае надо учесть возможность, что не во всех случаях ишемической болезни сердца САС играет ведущую роль. Коронарный склероз может развиться на основании генуинной гиперхолестеринемии, сахарного диабета, нефроза, симптоматической гипертонии и, несомненно, даже в некоторых случаях алиментарной гиперхолестеринемии. Другой, по нашему мнению, более существенной причиной является изменение активности САС в ходе болезни. Так же как содержание холестерина в сыворотке в ремиссионной стадии атеросклероза может продолжительное время нормализоваться, так и активность САС может периодически изменяться. Сопутствующая болезнь может также нарушить вегетативное равновесие больного ИБС.

Обратимся снова к случаю болезни, показанном на рис.1а. У этого пациента после продолжительного клинического наблюдения основным диагнозом выявлена язвенная болезнь двенадцатиперстной кишки. Однако характер болей заставил подумать и о недостаточности коронарных артерий, хотя электрокардио-
графическое исследование даже в условиях нагрузки этого не допускала. Только после коронарно-ангиографического исследования выяснилось заметное сужение нисходящей ветви левой коронарной артерии. Позднее пациент перенес инфаркт миокарда небольшого размера. Вегетативный статус поддается и медикаментозному воздействию (атропин, морфин, экстроглициerin, симпатолитики, симпатомиметики и др.). Ещё надо учитывать изменение вегетативного статуса в результате целесообразного лечения. Особенно действительно это в отношении систематической физической тренировки. В связи с этим мы добились усилении антиадренергической противорегуляции у нескольких больных. В то же время у этих же больных заметно увеличилась толерантность к физической нагрузке.

Приведем некоторые примеры.

На рис.2 приведен случай с больным ишемической болезнью сердца, основными факторами риска которого были курение и гипертоническая болезнь. Пациент занимался раньше тяжёлым физическим трудом, который за последние 3-4 месяца, ввиду усиливающейся стенокардии, уже был не в состоянии продолжать. Посредством нагрузочной пробы было установлено увеличение активности САС совместно с недостаточностью антиадренергической противорегуляции. В связи с лечением, в котором на первом месте были антигипертензивные средства (резерпин), систематическая физическая деятельность и прекращение курения, была достигнута тенденция к усилению антиадренергической противорегуляции. В течение двух месяцев до последней пробы пациент не принимал резерпин. Вторым примером служит приведенный случай с больным ишемической болезнью сердца (рис.3), в котором превалирующим фактором риска являлся психическая перегрузка вместе с "коронарной" психологической, физически малоактивной. Во время первого исследования была очевидна слабость антиадренергической противорегуляции. Вследствие систематической тренировки в виде ходьбы на лыжах, было достигнуто изменение вегетативного статуса в желаемом направлении. По мере уменьшения физической нагрузки и с увеличением психического напряжения,
Рис. 2. Нагрузочная проба.
Б-ой Ю.П. 58 л.
Ишемическая болезнь сердца.
Рис. 3.
Нагрузочная проба.
Б-ой Я.Р. 48 л.
Ишемическая болезнь сердца.
связанное с профессиональной деятельностью, восстановилось прежнее состояние.

Лица, систематически занимающиеся физической тренировкой или работой, обладают обычно сильной антиадренергической противорегуляцией. До известной степени это наблюдается и у больных ишемической болезнью сердца. Как показывают данные корреляционного анализа, проведенного на электронно-вычислительной машине, касающего наших больных, у лиц, занимавшихся ранее физическим трудом, исходный уровень содержания КА плазмы находится в обратной корреляции, т.е. ниже, чем у физически инактивных больных.

В отношениях прежней физической активности и антиадренергической противорегуляции корреляция отсутствовала. Результатом анализа, не совсем соответствующим ожиданию, была положительная корреляция между длительностью болезни и повышенным адRENергическиX типом реакции. Больные постарше также обладают более сильной корреляцией по отношению к адренергической реакции. Это частично объясняется тем обстоятельством, что в более зрелом возрасте часто имеем дело с кардиоваскулярной недостаточностью. У таких больных возникает в условиях физической нагрузки более сильное и продолжительное гипоксическое состояние, чем это было бы возможно при отсутствии кардиоваскулярной недостаточности. Гипоксическое же состояние в свою очередь является сильным стимулятором САС. У отдельных больных с затянувшимся течением болезни возникало в связи с нагрузкой ощущение боли, что также может быть причиной повышения КА плазмы.

По данным анализа факторов риска у 68% наших больных ИБС имели "коронарную" психику по Фридману и Розенману (1959). Из 44 больных хронической коронарной недостаточностью, у которых наблюдалась недостаточная антиадренергическая противорегуляция, 33 относились к типу "коронарной" психики. В группе больных (19 чел.) с недостаточной антиадренергической противорегуляцией половина (10 чел.) имели такое психическое своеобразие. Итак, даже с этого аспекта следует, что среди больных, психическое своеобразие которых способствует развитию ИБС, преобладают лица с пре- валирующим симпатическим тонусом.
Об изменении содержания связанных с белками плазмы КА у больных ишемической болезнью сердца в период стационарного лечения.

Содержание КА, связанных с белками плазмы, динамически изучалось у 27 больных с инфарктом миокарда и 46 больных хронической коронарной недостаточностью за время их пребывания в больнице. У больных инфарктом миокарда в острой стадии болезни было содержание веществ адреналинового ряда плазмы 6,0 ± 2,8 единиц интенсивности флюоресценции (ФЕ), веществ норадреналинового ряда 10,5 ± 4,35 ФЕ, причем у мужчин несколько выше, чем у женщин. Первое исследование обычно проводилось на второй день после госпитализации больного, следующие исследования были 3-5, 6-10, 11-20, 21-30 день, в некоторых случаях еще позднее. На основании изменений содержания КА в плазме крови больные инфарктом миокарда распределялись по меньшей мере на 3 группы. У 9 больных за все время пребывания в больнице содержание КА плазмы имело постоянную тенденцию к понижению. Содержание КА плазмы у одной части больных (8 чел.) повышалось, в то время как в 10 случаях после промежуточного периода повышения наблюдалась новая тенденция приближения содержания КА плазмы к исходному уровню или еще ниже.

У больных хронической коронарной недостаточностью содержания веществ плазмы адреналинового ряда составляли 5,3 ± 2,6 ФЕ и норадреналинового ряда 9,6 ± 3,15 ФЕ. По сравнению с больными инфарктом миокарда это содержание ниже, но различие статистически недостоверно.

В пробах больных с инфарктом миокарда, взятых на 3-5 и 6-10 день, содержание КА статистически достоверно превышает содержание КА плазмы в пробах больных стенокардией, взятых в период между приступами. Из 46 неоднократно исследованных больных хронической коронарной недостаточностью у 18 больных в бесприступный период содержание КА плазмы понижалось по сравнению с исходным показателем. У остальных больных в этом отношении никакой тенденциозной динамики не наблюдалось. У больных хронической коронарной недостаточностью без применения нагрузочных проб не
Рис. 4.
Примеры изменений содержания КА плазмы у больных инфарктом миокарда.
представлялось возможности установить в свободный от бо­лее период существенного различия в отношении активности САС по сравнению с клинически здоровыми лицами.

Инициально низкие показатели содержания КА плазмы, отмеченные у многих больных инфарктом миокарда (18), мож­но объяснить несколькими различными механизмами. Основной причиной, по нашему мнению, было действие наркотических средств (морфин, промедол), назначенных всем этим больным при госпитализации. В двух случаях причиной инициального низкого состояния содержания КА плазмы мог быть довольно тяжелый, но контролируемый васкулярный коллапс. У трех больных мог быть причиной резерпин, использованный в пред­варительном лечении артериальной гипертонии. На рис. 4 при­ведем примеры изменений содержания КА плазмы у больных ин­фарктом миокарда.

Таким образом в острой стадии инфаркта миокарда возни­кает повышение концентрации КА плазмы. При гемодинамиче­ских расстройствах этот феномен имеет явно компенсаторную функцию. Чрезмерное повышение активности САС может в свою очередь обратиться в вредящий фактор, увеличивая уже имею­щуюся гипоксию миокарда и следующие за ней дегенеративные изменения. Если еще принять во внимание явление индуциро­ванных активностью САС, как тенденцию гиперкоагуляции, не­желательные сдвиги электролитов и часто ставшие фатальны­ми расстройства ритма сердца, то становится ясной необхо­димость уменьшения у таких больных чрезмерной активности САС.

Резюме

В рамках настоящей работы изучали активность САС раз­личными методами у 387 больных ишемической болезнью серд­ца. Среди исследуемых были 97 больных с инфарктом миокар­да в острой стадии болезни. Согласно йодному тесту у 80% больных ишемической болезнью сердца имели дело с повыше­ной активностью САС. Пользуясь тестом физической нагрузки совместно с определением связанных с белком плазмы КА ус­тановили, что у 70% больных хронической коронарной недос-
таточностью наблюдается повышение активности САС и недоста-
точность антиадренергической противорегуляции в то время
как у клинически здоровых людей такое состояние наблюдает-
ся только у 25% исследуемых. Следовательно, почти у 3/4
клинически здоровых лиц со средней физической активностью
отмечалась достаточно сильная антиадренергическая противо-
регуляция. Систематической физической тренировкой можно
dобиться усиления антиадренергической противорегуляции.

В острой стадии инфаркта миокарда отмечается повышение
активности САС, за исключением случаев, когда в условиях
васкулярного коллапса симпато-адрено-медуллярная система
находится в состоянии функциональной истощенности. Повыше-
ние активности САС при инфаркте миокарда следует счи-
tать вторичным явлением, что может иметь компенсаторную функцию
в отношении кардиоваскулярной системы.

У большинства больных хронической коронарной недоста-
tочностью содержание связанных с белками плазмы КА находит-
ся в пределах нормы, повышаясь чрезмерно лишь в условиях
ангиозного состояния или какого-либо другого стресса.

В комплексе лечения ишемической болезни сердца надо
учитывать состояние САС и воздействовать на него в желае-
mом направлении. Как показывают исследования, в том числе
и наши, большинство антиангиозных фармаконов обладает од-
новременно и антиадренергическим действием. В острой ста-
dии инфаркта в свою очередь может возникнуть необходимость
поддержать декомпенсированную симпатическую систему путем
dополнительного парентерального введения норадреналина,
таким образом, в прямом смысле слова, применить субститу-
ционное лечение. Все это требует быстрой и адекватной
оценки состояния САС, для чего метод определения КА, свя-
занных с белками плазмы, является вполне подходящим.

Литература

I. Амиреджиби Р.О. Об участии катехоламинов в развитии
экспериментального атеросклероза. Сообщ.АН Груз.
ССР, 1968, 51, 2, 395-400.

143
2. Андрианова А.Г. Содержание адреналина и норадреналина в крови и ткани при экспериментальном атеросклерозе у кроликов. В кн.: Молекулярные основы болезней. Тезисы докладов, Москва, 1965, 4-5.
3. Аничков Н.Н. О воспалительных изменениях миокарда (к изучению об экспериментальном миокардите). Дисс. СПб., 1912.
4. Анохин П.К. Эмоциональное напряжение, как предпосылка к развитию неврогенных заболеваний сердечнососудистой системы. Вестник АМН СССР, 1965, 6, 10-18.
5. Благосклонная Я.В. О роли некоторых эндокринных и гипоталамических факторов в патогенезе атеросклероза. Тер.арх., 1968, 40, I,12-20.
6. Богданович Н.К., Ганнушина И.В., Шафранова В.Л., О реакции гипоталамо-гипофизарной нейросекреторной системы (ГГНС) собак с экспериментальным атеросклерозом и на введение адреналина. Арх.пат. 1968, 30, 12, 8-14.
8. Боткин С.П. Клинические лекции, 1887, СПб.
9. Вайль С.С. Об изменениях сердца при гипертонической болезни. Клин.мед., 1939, 17, 1, 3-7.
12. Визир А.Д. Некоторые вопросы обмена катехоламинов в начальных стадиях атеросклероза. В кн.: Доклады I итоговой научной конфер. проблемной лаборатории, Харьков, 1964, 55-56.

15. Вихерт Т.М. Острые расстройства кровообращения при опухолях головного мозга. В кн.: Нарушения кровообращения при поражениях головного мозга, Москва, 1956, 132-146.

19. Гефтер А.И. Коронарная недостаточность, Горький, 1957.

20. Горизонтов П.Д. Новые аспекты патогенеза и этиологии инфарктов или некрозов миокарда. Арх.пат., 1961, 8, 3-18.

32. Карева Г.Ф. Роль симпатико-адреналовой системы в развитии экспериментальных спазмов коронарных сосудов. Фармакол. и токсикол. 1966, 4, 430-433.

33. Клийман А., Линд М., Линд А. О связывании катехоламинов с белками плазмы крови. Учен. записки Тартуского гос. университет, 1965, 178, 244-250.

34. Клийман А.Г., Резбен В.А. Раздельное определение адреналинового и норадреналинового ряда флюоресцирующих веществ в плазме и моче. Учен. записки Тартуского гос. университет, 1964, 163, 356-362.
35. Козлова М.А. Содержание катехоламинов в крови и моче у больных хронической коронарной недостаточностью. Кардиология, 1966, I, 39-42.

36. Косенко З.В., Парамонова Э.Г. Психика и коронарная болезнь, Москва, 1967.

37. Кубли С.Х. Влияние сероводородных ванн на содержание катехоламинов в тканях и эндокринных железах при экспериментальном атеросклерозе. Вопр.шурортол., 1966, I, 28-32.

39. Лант Г.Ф. Болезни системы кровообращения, Ленинград, 1938.

41. Лебединский А.В., Медведев В.И., Пеймер И.А., Значение спазма венечных артерий в патогенезе коронарной недостаточности, Ленинград, 1953.

43. Магакян Г.О. К патогенезу гипертонии, коронарной недостаточности и инфаркта миокарда по данным эксперимента на обезьянах. В сб.: Мед. приматология. Тбилиси, 1967, 190-200.

44. Магакян Г.О., Миминошвили Д.И., Коняя Г.Я. Экспериментальное изучение патогенеза гипертонии и коронарной недостаточности. Клин. мед., 1956, 7, 30-39.

45. Малая Л.Т., Давыдова Л.И. Нарушение обмена катехоламинов при различных стадиях атеросклероза. В кн.: Адреналин и норадреналин, Москва, 1964, 223-227.
46. Малая Л.Т., Утевский А.М., Давыдова Л.И., Верещакова Э.П. Исследование катехоламинов при атеросклерозе и инфаркте миокарда в эксперименте и клинике. Гипертоническая болезнь, атеросклероз и коронарная недостаточность. Доклады I итоговой научной конференции проблемной кардиологической лаборатории, Харьков, 1964, 51-55.

48. Микушкин М.К. Влияние срыва высшей нервной деятельности на развитие атеросклероза у колестериноустойчивых кроликов. Кардиология, 1968, 8, 7, 84-88.

51. Незлин В.Е. Коронарная болезнь, Москва, 1951.

52. Немсадзе В.А. Действие коразола и кордиамина на сердечнососудистую систему при экспериментальном миокардите. Дисс. докт. мед. наук, Москва, 1940.

53. Певзнер И.Я. О влиянии симпатомиметических аминов на обмен кислорода в миокарде в норме и при острой коронарной недостаточности. Кардиология, 1966, 1, 26-29.

54. Покк Л.Р. О влиянии нарушения деятельности центральной нервной системы на развитие экспериментальных инфарктов сердца (экспериментальное исследование) Кардиология, 1965, 1, 8-13.
55. Покк Л., Хансон Э. О влиянии повреждения гиппогампа на развитие адреналиновых и ортостатических по­ражений сердца. Учен. записки Тартуского гос. унiv., 1967, 210, 245-251.

56. Рааб В. Адренергическо-холинергическая регуляция обме­на веществ и функций сердца. В кн.: Достижения кардиологии, Москва, 1959, 67-152.

57. Райкина М.Е. Биохимия нервной регуляции сердца, Медгиз, 1962.

58. Райкина М.Е. О действии катехоламинов на обмен ве­ществ миокарда. В кн.: Адреналин и норадреналин, Москва, 1964, 192-196.

60. Рахлин Л.М. Некоторые особенности клиники инфаркта мио­карда в молодом возрасте. В кн.: Коронарная не­достаточность, 1959, Горький, 14-16.

65. Смольянников А.В. О функциональном нарушении венечного кровообращения как о причине острой коронарной недостаточности и инфаркта миокарда. Тр.XIV Всес.съезда терапевтов, Москва, 1958, 305-310.

68. Сотскова Т.В. О содержании катехоламинов в моче у больных в остром периоде инфаркта миокарда. В кн.: Адреналин и норадреналин, Москва, 1964, 220-223.

69. Сотскова Т.В. Выделение катехоламинов с мочной у больных инфарктом миокарда и стенокардии. Тер.арх. 1966, 4, 71-78.

71. Софиева И.Э. Значение катехоламинов в патогенезе коронарной недостаточности. Тер.арх., 1962, 7, 3-11.

72. Софиева И.Э. Содержание адреналиноподобных веществ в крови у больных инфарктом миокарда. В кн.: Адреналин и норадреналин, Москва, 1964, 217-220.

75. Теплов С.И. Нервная и гормональная регуляция коронарного кровообращения, Ленинград, 1962.

76. Туманский М.Н. Коронарная недостаточность (грудная жаба и инфаркт миокарда), Москва, 1959.

78. Шатерникова И.С. Влияние стрессорного воздействия на некоторые стороны липидного обмена у крыс. Молекулярные основы болезней. Тезисы докладов, М., 1965, 81-83.

79. Шестаков С.В. Значение учения И.П.Павлова для правильного понимания этиологии и патогенеза коронарной болезни. Тер.арх., 1953, 1, 14-19.

80. Цирокогоров И.И. Адреналиновый склероз артерий.Диссерт. Юрьев, 1907.

81. Шхвацабая И.К. Опыт экспериментального воспроизведения поражений сердца путем воздействия на нервную систему. Кардиология, 1961, 3, 18-29.

82. Янушкевичус З.И. Характеристика особенностей высшей нервной деятельности у больных с коронарной недостаточностью. Докт.дисс., М., 1954.

83. Янушкевичус З.И. Некоторые особенности высшей нервной деятельности у больных с коронарной недостаточностью. Тер.арх., 1956, 28, 2, 22-23.

84. Янушкевичус З.И. К вопросу о некоторых аспектах патогенеза и клиники коронарной недостаточности. Кардиология, Тр.И научной конференции кардиологов Литовской ССР. Каунас, 1964, 9-14. Вильнюс 1966.

155

On the Role of the Sympatho-adrenal System in the Pathogenesis of Ischemic Heart Disease

J. Riiv, M. Lind, M. Lööper and M. Moks

Summary

In the pathogenesis of ischemic heart disease one has to consider at least three essential components: atherosclerosis, insufficiency of the coronary flow, and excessive elevation of myocardial metabolism. All these processes can essentially be influenced by the sympatho-adrenal system. This circumstance permits one to conclude that the sympatho-adrenal system plays a certain, maybe a leading role in the genesis of ischemic heart disease.

Within the framework of the present investigation the state of the sympatho-adrenal system was studied by various methods in 387 patients with ischemic heart disease. 97 patients of them were found to be in the acute stage of myocardial infarction. To estimate the approximate urinary excretion of catecholamines, the Medgyesi urinary iodine test was performed in 251 patients while the specificity of the test used was checked by the fluorimetric determination of the amounts of catecholamines excreted with urine. In the acute stage of myocardial infarction a positive iodine reaction was established in 80% of patients, in 50% of them in a very strong form. In chronic coronary insufficiency these figures were 84% and 50% respectively. In the control group of healthy subjects a strongly positive reaction was found in fewer than 10%.

A very expedient technique in the study of the action of the sympatho-adrenal system is the procedure of determining protein-bound catecholamines, which has been devised and introduced by us into clinical practice. The level of
protein-bound catecholamines was determined in combination with some physical exertion in 63 patients with ischemic heart disease and in 28 healthy subjects. The standardised Master two-step exercise test as a physical work load was used. The majority of the healthy subjects tested showed an increase in the amount of protein-bound catecholamines in plasma after the work load; 20 minutes after the cessation of the exercise the amount of catecholamines in the blood reached its initial values. In our opinion, such a rise in the level of catecholamines characterises the reactivity of the sympatho-adrenal system under study while a later decrease in the catecholamine level is characteristic of the intensity of the anti-adrenergic counter-regulation of the subject. 75% clinically healthy subjects experienced a rather strong anti-adrenergic counter-regulation.

Among the patients with chronic coronary insufficiency an adequate anti-adrenergic counter-regulation occurred only in 30% of the patients. The remainder of the patients showed sympatho-adrenergic preponderance. Thus one part of the chronic coronary patients showed no sympatho-adrenergic preponderance, at least not at the time of the examination. The reasons for this phenomenon are discussed in the paper. In particular one has to consider the spontaneous and drug-induced changes in the vegetative tonicity of the organism. Manifestations of the anti-adrenergic counter-regulation may be inverted, for instance by means of atropin. Systematical physical training strengthens the anti-adrenergic counter-regulation. According to the data analysed by an electronic computer, the initial level of the catecholamines in plasma was in patients who had been physically active lower than in patients who had been physically inactive. No correlation was found between the physical activities before the onset of the disease and the intensity of the anti-adrenergic counter-regulation. However, a positive correlation was established between the increases of the sympatho-adrenal reactivity, the duration of the disease and the patient’s age. According to their psychic peculiarity, the majority of patients with an increased sympatho-adrenal reactivity belonged to pattern A (Friedman and Rosenman 1959).
The level of protein-bound catecholamines in plasma during hospital treatment was repeatedly studied in another set of 73 patients with ischemic heart disease (27 cases with myocardial infarction and 46 cases with angina pectoris). In patients with myocardial infarction three kinds of changes in the level of plasma catecholamines were observed: (a) a tendency for the catecholamines to decline (9 cases), (b) a fresh decline after an intermediate period of an increase (10 cases), and (c) a steady tendency for the catecholamines to rise (8 cases). If one were to take into account factors depressing the level of plasma catecholamines (narcotics and soporifics), then in the acute stage of nearly all the cases of myocardial infarction one could observe a rise in the activity of the sympatho-adrenal system, which, however, must be regarded as a secondary phenomenon. In the patients with chronic coronary insufficiency the level of plasma catecholamines on the 3rd to 5th and on the 6th to 10th day of hospital treatment was significantly lower than in the patients with myocardial infarction on the corresponding days. In the course of hospital treatment the level of plasma catecholamines declined in 18 patients with angina pectoris, in the remainder of the patients no significant changes were observed. In the period free from pain no differences in the level of the plasma catecholamines could be detected between the patients with chronic coronary insufficiency and the healthy control subjects without resorting to tests involving physical exertion.

In the complex of the treatment of ischemic heart disease one has to consider the sympatho-adrenal system and to influence in the necessary direction. In the acute stage of myocardial infarction there may arise the need to support the exhausted sympathetic system by the administration of sympathomimetic amines. For a great number of patients with ischemic heart disease it is expedient to suppress the increased activity of the sympatho-adrenal system. All that makes it necessary to evaluate the state of the sympatho-adrenal system quickly and adequately. For this purpose the determination of protein-bound catecholamines in plasma is the most suitable method.
Активность симпато-адреналовой системы, свертываемость крови и содержание электролитов крови у больных ишемической болезнью сердца в различных стадиях болезни

Я. Рийв, П. Маллене, Р. Каскметс, М. Линд.

Ишемическую болезнь сердца следует рассматривать как болезнь регуляции. Патогенез ишемии миокарда и различного типа некрозов весьма сложен и обусловлен расстройствами многих функций и механизмов регуляции. В патогенезе ишемической болезни сердца наряду с расстройствами метаболизма липидов в качестве существенных факторов следует учитывать еще изменения в свертывании крови и в концентрации электролитов крови. С повышенной тенденцией свертывания крови может быть связано возникновение коронарного тромбоза, что, по мнению различных авторов, является причиной инфаркта миокарда в пределах 25-85% всех случаев (Шумаковская 1951; Мoiseев 1956; Аничков 1958; Давыдовский 1958; Смоленский 1959; Вихерт соавт. 1964). Однако, детальными исследованиями установлено, что коронарный тромбоз в качестве причины возникновения инфаркта миокарда может быть учтен лишь у 25% всех случаев (Вихерт и Матова 1967). Таким образом, подавляющее большинство из всех случаев инфаркта миокарда обусловлено другими причинами как коронарогенными, так и некоронарогенными. В первом случае имеем дело в основном с функциональными изменениями коронарных артерий, во втором же случае некроз миокарда может быть обусловлен изменениями метаболизма, в первую очередь в части электролитов (Selye 1961). Многочисленными исследованиями установлено, что в большинстве случаев больные ишемической болезнью сердца имеют дело с повышенной активностью симпато-адреналовой системы (SAC) (Raab 1953; Gazes et al. 1959; Richardson 1963; Starch 1966; Софиева и Зелякова 1965; Вилейшите 1966; Софисова 1966). В острой стадии инфаркта миокарда повышение активности SAC надо считать обычным явлением, что выражается как в увеличении экскреции катехоламинов (КА) (Forsman et al. 1952; Klein et al. 1968; Малая и Давыдова 1964; Софисова 1964 и др.), так и в по-
вышении их содержания в плазме крови (Gazes et al. 1959; Richardson et al. 1960; Софьева 1964 и др.). Лишь при васкулярном коллапсе, сопутствующем инфаркту миокарда, выделение норадреналина может быть пониженным (Софьева 1965; Сотскова 1966; Сметнев и Софьева 1967). Также известно, что в условиях кардиоваскулярной недостаточности активность САС увеличивается (Chidsey et al. 1962; Chidsey et al. 1965; Valori et al. 1968).

Несмотря на то, что активность САС у больных ишемической болезнью сердца за последние два десятилетия весьма тщательно изучалась, все проблемы, связанные с этим, еще исчерпывающе не разрешены. Так весьма возможно, что повышение активности САС в острой стадии инфаркта миокарда обусловлено сопровождающей стрессовой ситуацией (Aleksandrow et al. 1967), причем не известно, в каком состоянии была эта система до возникновения инфаркта миокарда. Мало получено дополнительных данных и от исследования экскреции КА у больных грудной жабой, так как в безболезненном безнагруженном состоянии нет существенного различия между ними и здоровыми лицами (Сотскова 1966; Фуркало 1967; Starcich 1966 и др.).

Нас интересовал прежде всего вопрос, повышается ли активность САС у больных ишемической болезнью сердца до такой степени, что может повлиять на прогрессирование болезни, в частности в виде тромбоэмболических компликаций и электролитных некрозов миокарда. В общей сложности нами были исследованы 421 больной ишемической болезнью сердца, из них 97 в острой стадии инфаркта миокарда, у остальных 324 больных имели недостаточность коронарных артерий в основном склеротического типа.

Активность САС исследовалась комплексно, используя для этого различные методы исследования (исследование вегетативных рефлексов, определение чувствительности адренергических рецепторов сердца, определение симпатических нейроргормонов). Как показали наши ранние исследования, большая часть циркулирующих в крови КА связаны с альбуминами крови (Клийман с соавт. 1965). Связанные с белками плазмы КА можно определить количественно и они являются
в то же время адекватным критерием активности САС (Рийв с соавт. 1964; Рийв с соавт. 1967).

На основании проведенных исследований можем утверждать, что у 70–80% больных хронической коронарной недостаточностью отмечается повышение симпато-адреналовой реактивности и одновременное ослабление антиадренергической противорегуляции. У клинически здоровых лиц такое состояние наблюдалось только у 25% исследуемых и находилось в прямой связи со степенью тренированности исследуемого. У лиц систематически занимающихся тренировкой на выносливость адренергическая реактивность была сравнительно скромной, судя по повышению содержания катехоламинов плазмы, связанной с физической нагрузкой (Рийв и Па 1969).

У больных в острой стадии инфаркта миокарда (97) была многократно в ходе лечения определена активность САС по содержанию катехоламинов плазмы крови и по показателям йодного теста урина. В зависимости от различных методов исследования мы нашли в острой стадии инфаркта миокарда у 80–100% всех случаев тенденцию к повышению активности САС. Более детально были исследованы 27 больных с инфарктом миокарда, у которых неоднократно определяли содержание КА плазмы в связи с ходом болезни и медикаментозным воздействием. Так, у 18 больных в острой стадии инфаркта миокарда наблюдался более низкий уровень КА, чем в более поздний период, когда этот уровень превышал средние показатели нормы. У части больных (10 лиц) содержание КА плазмы было самым высоким между 3–им и 10–м днем болезни. Причиной такого инициального низкого уровня КА плазмы может быть действие наркотиков и снотворных веществ. Учитывать надо также влияние васкулярного коллапса, который в контролируемой форме встречался у трех больных.

Одним из существенных стимуляторов активности САС является боль. Вследствие ангиозного состояния активность САС увеличивается и у больных ишемической болезнью сердца (Сотскова 1966; Фуркало 1967; Starcich 1966). Из наших больных инфаркт миокарда по меньшей мере у 4–х боль, несмотря на назначение наркотиков, вызвала инициальное повышение содержания КА, что в более поздний период

164
Рис. I Уменьшение содержания катехоламинов, связанных с белками плазмы крови у больных с кардиоваскулярной недостаточностью в связи с положительным эффектом лечения.
болезни нормализовалось. Известно, также, что и в условиях кардиоваскулярной недостаточности активность САС повышается (Chidsey et al. 1962; Chidsey et al. 1965). Для примера приведем 3 больных с кардиоваскулярной недостаточностью, у которых содержание КА плазмы по мере восстановления функции кардиоваскулярной системы уменьшается (рис. I).

Из проанализированных больных инфарктом миокарда у 8 уровень КА плазмы постоянно повышался за все время наблюдения, что по меньшей мере у 3-х больных мы могли объяснить все углубляющейся кардиоваскулярной инсуфициентией.

Итак, у больных ишемической болезнью сердца активность САС существенно изменена. В большинстве случаев активность этой системы повышена, особенно у больных инфарктом миокарда в острой стадии болезни. Может даже возникнуть функциональная истощенность САС. Возможно, что изменение активности САС может повлиять на другие системы регуляции организма, в том числе и на свертываемость крови и на метаболизм электролитов.

Имеется много данных о том, что при психическом возбуждении и стимуляции центральной нервной системы совместно с повышением активности САС, увеличивается и свертываемость крови (Macht 1952; Зубаиров 1958 и др.). Поскольку процесс свертывания зависит от взаимоотношения двух противоположных систем - систем свертывания и противосвертывания (Кудряшов 1961; Кудряшов с соавт. 1961), то при продолжении стрессовой ситуации активируются антикоагуляторные факторы, вследствие чего свертывание крови снова нормализуется или даже опускается ниже нормы (Чазов 1966). При очень сильном и продолжительном возбуждении может создаться истощенное состояние антикоагуляторной системы вместо ускорения свертывания (Чазов 1966; Николаева 1967). При атеросклерозе наблюдается торможение антисвертывающей системы, вследствие чего повышенному свертыванию, индуцированному стрессом, не следует обычной антикоагуляторной реакции и так создается возможность для образования тромбов (Кудряшов 1965; Чазов 1966; Николаева 1967). Болевые ощущения также могут быть причиной противоположных изменений в свертывании крови. Обычной реакцией на боль яв-

Возможно, что стимулирующее действие САС на свертывание крови находится в связи с мобилизацией неэстерифицированных жирных кислот из жировых депо и общим усилением метаболизма липидов (Лейтес и Чжоу-Су 1963; Липовецкий 1964; Липовецкий и Черниговская 1966).

Чтобы выяснить возможное влияние САС на свертывание крови у больных ишемической болезнью сердца, была в ходе лечения повторно исследована активность основных коагуляторных и антикоагуляторных факторов у 128 больных инфарктом миокарда в острой стадии болезни и у 160 больных грудной жабой. Анализу были подвержены в основном такие показатели свертывания, изменения которых оказались самыми
Таблица 1

Динамика изменений показателей свертывания крови у больных синдромом стенокардии

<table>
<thead>
<tr>
<th>Исследуемый показатель</th>
<th>Статистический показатель</th>
<th>Контрольная группа</th>
<th>Время исследования</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>до лечения</td>
<td>на 3 - 4 день лечения</td>
</tr>
<tr>
<td>Протромбиновый показатель (%)</td>
<td>N=20</td>
<td>150</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>x ±</td>
<td>96,4±1,5</td>
<td>101,4±2,7</td>
</tr>
<tr>
<td></td>
<td>δ</td>
<td>6,0</td>
<td>8,5</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>< 0,05</td>
<td>> 0,05</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>< 0,05</td>
<td>> 0,05</td>
</tr>
<tr>
<td>Время рекальцификации плазмы (сек)</td>
<td>N=20</td>
<td>94</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>x ±</td>
<td>104,8±3,0</td>
<td>98,1±2,6</td>
</tr>
<tr>
<td></td>
<td>δ</td>
<td>21,1</td>
<td>22,8</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>< 0,05</td>
<td>< 0,05</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>< 0,05</td>
<td>< 0,05</td>
</tr>
<tr>
<td>Толерантность плазмы к гепарину (сек)</td>
<td>N=20</td>
<td>94</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>x ±</td>
<td>102,2±5,6</td>
<td>92,7±3,2</td>
</tr>
<tr>
<td></td>
<td>δ</td>
<td>21,5</td>
<td>21,2</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>< 0,05</td>
<td>> 0,05</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>< 0,05</td>
<td>> 0,05</td>
</tr>
<tr>
<td>Содержание фибриногена (г%)</td>
<td>N=20</td>
<td>160</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>x ±</td>
<td>0,32±0,008</td>
<td>0,43±0,023</td>
</tr>
<tr>
<td></td>
<td>δ</td>
<td>0,057</td>
<td>0,052</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>< 0,05</td>
<td>< 0,05</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>< 0,05</td>
<td>> 0,05</td>
</tr>
<tr>
<td>Фибринолитическая активность</td>
<td>N=20</td>
<td>94</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>x ±</td>
<td>15,6±1,0</td>
<td>11,0±0,7</td>
</tr>
<tr>
<td></td>
<td>δ</td>
<td>3,8</td>
<td>6,5</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>< 0,05</td>
<td>< 0,05</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>> 0,05</td>
<td>> 0,05</td>
</tr>
</tbody>
</table>

Примечание. 1) P - в отношении контрольной группы
2) P1 - в отношении исходных значений
Динамика показателей свертывания крови у больных ишемической
болезней сердца в связи с лечением никотиновой кислотой

<table>
<thead>
<tr>
<th>Исследуемый показатель</th>
<th>Статистический показатель</th>
<th>Контрольная группа</th>
<th>Время исследования</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>До лечения</td>
<td>на 6-9 ми день</td>
</tr>
<tr>
<td></td>
<td></td>
<td>инфаркт</td>
<td>стено-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>миокарда</td>
<td>кардия</td>
</tr>
<tr>
<td>Протромбиновый показатель</td>
<td>N 20</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>x ± 96,4 ± 1,5</td>
<td>101,2 ± 2,4</td>
<td>102,0 ± 2,0</td>
</tr>
<tr>
<td></td>
<td>A 6,0</td>
<td>5,4</td>
<td>5,9</td>
</tr>
<tr>
<td></td>
<td>p < 0,05</td>
<td>< 0,05</td>
<td>> 0,05</td>
</tr>
<tr>
<td></td>
<td>p 1 > 0,05</td>
<td>< 0,05</td>
<td>-</td>
</tr>
<tr>
<td>Время рекальцификации плазмы (сек)</td>
<td>x ± 104,8 ± 3,0</td>
<td>99,9 ± 4,3</td>
<td>99,7 ± 7,8</td>
</tr>
<tr>
<td></td>
<td>A 21,1</td>
<td>11,9</td>
<td>22,1</td>
</tr>
<tr>
<td></td>
<td>p < 0,05</td>
<td>> 0,05</td>
<td>> 0,05</td>
</tr>
<tr>
<td></td>
<td>p 1 > 0,05</td>
<td>> 0,05</td>
<td>> 0,05</td>
</tr>
<tr>
<td>Толерантность плазмы к гепарину (мг/л)</td>
<td>x ± 102,2 ± 5,6</td>
<td>103,5 ± 17,1</td>
<td>86,8 ± 9,8</td>
</tr>
<tr>
<td></td>
<td>A 21,5</td>
<td>50,2</td>
<td>23,0</td>
</tr>
<tr>
<td></td>
<td>p > 0,05</td>
<td>< 0,05</td>
<td>> 0,05</td>
</tr>
<tr>
<td></td>
<td>p 1 > 0,05</td>
<td>> 0,05</td>
<td>> 0,05</td>
</tr>
<tr>
<td>Содержание фиброгена (мг/л)</td>
<td>x ± 0,32 ± 0,006</td>
<td>0,52 ± 0,03</td>
<td>0,42 ± 0,013</td>
</tr>
<tr>
<td></td>
<td>A 0,057</td>
<td>0,103</td>
<td>0,067</td>
</tr>
<tr>
<td></td>
<td>p < 0,05</td>
<td>< 0,05</td>
<td>< 0,05</td>
</tr>
<tr>
<td></td>
<td>p 1 > 0,05</td>
<td>> 0,05</td>
<td>> 0,05</td>
</tr>
<tr>
<td>Фибринолитическая активность (к)</td>
<td>x ± 15,6 ± 1,0</td>
<td>9,7 ± 1,6</td>
<td>9,7 ± 1,8</td>
</tr>
<tr>
<td></td>
<td>A 3,8</td>
<td>3,4</td>
<td>5,2</td>
</tr>
<tr>
<td></td>
<td>p < 0,05</td>
<td>< 0,05</td>
<td>> 0,05</td>
</tr>
<tr>
<td></td>
<td>p 1 > 0,05</td>
<td>> 0,05</td>
<td>> 0,05</td>
</tr>
</tbody>
</table>

Примечания.
1) p — в отношении контрольной группы
2) p 1 — в отношении исходных значений
демонстративными, как например, протромбиновый индекс, содержание фибриногена плазмы, время рекальцификации, толерантность плазмы к гепарину и фибринолитическая активность. Вышеназванная коагулограмма была у одной части больных дополнена тромбоэластографическим исследованием. Изменения свертывания крови у больных, возникшие в ходе лечения, были сопоставлены с изменениями активности САС у тех же больных.

Как это показано на табл.1 у больных с синдромом стенокардии была до начала лечения повышенная коагуляторная активность по сравнению с показателями нормы.

Используя различные методы лечения, у этих больных была достигнута нормализация показателей свертывания крови, за исключением содержания фибриногена плазмы, которое устанавливалось на уровне выше нормы. Далее исследовали изменения свертывания крови у больных с синдромом стенокардии в связи с каким-либо конкретным методом лечения.

Ингибитор МАО - ипрэзд в терапевтических дозах в течение 10-14 дней никаких существенных изменений в свертывании крови не вызвал (II больных). Характерная для этой группы больных низкая фибринолитическая активность оставалась неизмененной за все время лечения. То же можно сказать относительно действия нитропентона (18 больных) и эйфиллина (8 больных). Однако при блокировании шейных вегетативных нервных сплетений током Бернера было получено заметное повышение фибринолитической активности (9,6 ± 1,1% - 14,6 ± 2,6%; р, <0,05). Никотиновая кислота, несмотря на использованные нами скромные дозы (0,05 г 3 раза в день), оказывает существенное влияние на свертывание крови. Численные данные о действии никотиновой кислоты на отдельные компоненты коагулограммы у больных синдромом стенокардии и инфарктом миокарда приведены на табл.2.

Оказывается, что у больных ишемической болезнью сердца никотиновая кислота уменьшает прокоагуляторную активность и увеличивает фибринолитическую. В общей сложности способность свертывания крови уменьшается.

Сводные данные по показателям свертывания крови в ост рой стадии инфаркта миокарда приведены в табл.3.
Динамика изменений показателей свертывания крови у больных инфарктом миокарда

<table>
<thead>
<tr>
<th>Исследуемый показатель</th>
<th>Статистический показатель</th>
<th>Контрольная группа</th>
<th>Время исследования считая с возникновения инфаркта миокарда</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>24-48 час</td>
</tr>
<tr>
<td>Протромбиновый показатель (%)</td>
<td>⎯</td>
<td>20</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>96,4±1,5</td>
<td>101,2±1,2</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>6,0</td>
<td>8,0</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td><0,05</td>
<td>>0,05</td>
</tr>
<tr>
<td></td>
<td>p₁</td>
<td><0,05</td>
<td><0,05</td>
</tr>
<tr>
<td>Время рекомбинации (сек)</td>
<td>⎯</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>104,8±3,0</td>
<td>93,5±5,3</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>21,7</td>
<td>23,8</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td><0,05</td>
<td>>0,05</td>
</tr>
<tr>
<td></td>
<td>p₁</td>
<td><0,05</td>
<td><0,05</td>
</tr>
<tr>
<td>Толерантность плазмы к гепарину (сек)</td>
<td>⎯</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>102,2±5,5</td>
<td>90,1±11,2</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>21,5</td>
<td>30,1</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td><0,05</td>
<td>>0,05</td>
</tr>
<tr>
<td></td>
<td>p₁</td>
<td><0,05</td>
<td><0,05</td>
</tr>
<tr>
<td>Содержание фибрина (г/л)</td>
<td>⎯</td>
<td>20</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>0,324±0,008</td>
<td>0,515±0,025</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>0,057</td>
<td>0,167</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td><0,05</td>
<td><0,05</td>
</tr>
<tr>
<td></td>
<td>p₁</td>
<td><0,05</td>
<td><0,05</td>
</tr>
<tr>
<td>Фибринолитическая активность (%)</td>
<td>⎯</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>15,6±1,0</td>
<td>14,7±1,8</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>3,8</td>
<td>7,8</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>>0,05</td>
<td><0,05</td>
</tr>
<tr>
<td></td>
<td>p₁</td>
<td>>0,05</td>
<td><0,05</td>
</tr>
</tbody>
</table>

Примечание. 1) p — в отношении контрольной группы
2) p₁ — в отношении исходных значений
Таблица 4

Изменения свертывания крови в связи с сильным и продолжительным синдромом смерти
у больных инфарктом миокарда

<table>
<thead>
<tr>
<th>Исследуемый показатель</th>
<th>Статистический показатель</th>
<th>Контрольная группа</th>
<th>Время исследования, считая с возникновения инфаркта миокарда</th>
<th>24-26 часов</th>
<th>I боль --</th>
<th>II боль +</th>
<th>I боль --</th>
<th>II боль +</th>
</tr>
</thead>
<tbody>
<tr>
<td>Протромбиновый показатель (%)</td>
<td>Y ±</td>
<td>96,4 ± 1,5</td>
<td>100,7 ± 2,1</td>
<td>101,4 ± 1,8</td>
<td>99,5 ± 1,1</td>
<td>98,0 ± 3,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\Delta)</td>
<td>6,0</td>
<td>6,2</td>
<td>9,3</td>
<td>5,4</td>
<td>10,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(p)</td>
<td>< 0,05</td>
<td>< 0,05</td>
<td>> 0,05</td>
<td>> 0,05</td>
<td>> 0,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(p_1)</td>
<td>> 0,05</td>
<td>> 0,05</td>
<td>> 0,05</td>
<td>> 0,05</td>
<td>> 0,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Время рекапилляра- tации плазмы (сек)</td>
<td>Y ±</td>
<td>104,8 ± 3,0</td>
<td>79,7 ± 0,3</td>
<td>96,8 ± 7,1</td>
<td>94,3 ± 5,7</td>
<td>90,6 ± 8,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\Delta)</td>
<td>21,1</td>
<td>26,5</td>
<td>7,3</td>
<td>23,3</td>
<td>21,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(p)</td>
<td>< 0,05</td>
<td>> 0,05</td>
<td>< 0,05</td>
<td>< 0,05</td>
<td>> 0,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(p_1)</td>
<td>< 0,05</td>
<td>> 0,05</td>
<td>> 0,05</td>
<td>> 0,05</td>
<td>> 0,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Толерантность плазмы к гепар- ину (сек)</td>
<td>Y ±</td>
<td>102,2 ± 5,5</td>
<td>86,8 ± 10,2</td>
<td>102,5 ± 15,5</td>
<td>96,1 ± 6,4</td>
<td>74,1 ± 14,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\Delta)</td>
<td>21,5</td>
<td>58,2</td>
<td>26,4</td>
<td>25,6</td>
<td>25,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(p)</td>
<td>< 0,05</td>
<td>> 0,05</td>
<td>> 0,05</td>
<td>> 0,05</td>
<td>> 0,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(p_1)</td>
<td>< 0,05</td>
<td>> 0,05</td>
<td>> 0,05</td>
<td>> 0,05</td>
<td>> 0,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Содержание фибриногена (%)</td>
<td>Y ±</td>
<td>0,324 ± 0,008</td>
<td>0,476 ± 0,067</td>
<td>0,554 ± 0,046</td>
<td>0,499 ± 0,042</td>
<td>0,560 ± 0,057</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\Delta)</td>
<td>0,097</td>
<td>0,139</td>
<td>0,120</td>
<td>0,174</td>
<td>0,174</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(p)</td>
<td>< 0,05</td>
<td>< 0,05</td>
<td>< 0,05</td>
<td>< 0,05</td>
<td>> 0,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(p_1)</td>
<td>< 0,05</td>
<td>< 0,05</td>
<td>< 0,05</td>
<td>< 0,05</td>
<td>> 0,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Фибринолитическая акти- вность (%)</td>
<td>Y ±</td>
<td>15,6 ± 1,0</td>
<td>6,92 ± 1,1</td>
<td>17,6 ± 1,9</td>
<td>5,9 ± 1,3</td>
<td>16,2 ± 1,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\Delta)</td>
<td>3,8</td>
<td>3,8</td>
<td>7,0</td>
<td>1,2</td>
<td>4,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(p)</td>
<td>< 0,05</td>
<td>> 0,05</td>
<td>< 0,05</td>
<td>< 0,05</td>
<td>> 0,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(p_1)</td>
<td>< 0,05</td>
<td>< 0,05</td>
<td>< 0,05</td>
<td>< 0,05</td>
<td>> 0,05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Примечание. 1) \(p \) - в отношении контрольной группы
2) \(p_1 \) - в отношении I группы
В течение первых двух суток после возникновения инфаркта миокарда коагуляторная активность крови повышена. Тенденция к гиперкоагуляции показывает как протромбиновый индекс, время рекальцификации плазмы, толерантность плазмы к гепарину, так и содержание фибрина, а также тромботест (последний не включен в таблицу). Фибринолитическая активность при этом удерживается в пределах нормы, что явно уравновешивает увеличение коагуляторной активности. В дальнейшем ходе болезни фибринолитическая активность, правда, снижается, но это в свою очередь уравновешивается уменьшением активности факторов, способствующих свертыванию. При наличии сильной и продолжительной боли свертываемость крови замедляется главным образом вследствие увеличения фибринолитической активности. При менее сильной и менее продолжительной боли, наоборот, отмечается явное повышение коагуляторной активности. Приведем соответствующие численные данные в табл.4.

Дополнительно можно сказать, что как при микро-, так и при микроинфарктах в течение первых 3 недель болезненаблюдается сильная прямая корреляция между синдромом боли и фибринолитической активностью (т = 0,880).

В случае васкулярного коллапса, сопровождающего инфаркт миокарда, свертывание крови ускорено. Высокое содержание фибриногена и низкая фибринолитическая активность сохраняются у таких больных до их выхода из больницы (содержание фибриногена 0,44 ± 0,38%; р < 0,05; фибринолитическая активность 6,2 ± 1,3%, р < 0,05).

У больных с кардиоваскулярной декомпенсацией содержание прокоагулянтов крови повышена. Такое положение уравновешивается через сильно повышенную фибринолитическую активность.

Сопоставляя показатели изменений в свертывании крови у больных ишемической болезнью сердца с изменениями активности симпато-адреналовой системы, можно вывести некоторые заключения. А именно, выявляется параллелизм между ускорением свертывания крови и усилением активности симпато-адреналовой системы. У больных синдромом стенокардии наблюдается повышенная симпато-адреналовая активность и тенденция к гиперкоагуляции. То же можно сказать относи-
телью острой стадии инфаркта миокарда.

Противосвертывающая система играет существенную роль в свертывании крови. Больные коронарным склерозом имеют тенденцию к уменьшению активности одного из компонентов противосвертывающей системы, а именно, к уменьшению фибринолитической активности. Сильные стимуляции, как боль и связанная с кардиоваскулярной недостаточностью гипоксия, повышают фибринолитическую активность. При очень сильной и продолжительной боли фибринолитическая активность увеличивается до такой степени, что удлиняет свертывание крови. Тут надо подчеркнуть то обстоятельство, что вместе с повышением активности симпато-адреналовой системы у больных с хронической кардиоваскулярной недостаточностью, у них повышено также и содержание прокоагулянтов плазмы.

Дополнительного изучения требуют состояния с васкулярным коллапсом. В зависимости от тяжести коллапса симпато-адреналовая система может различно реагировать: фазе повышенной активности может последовать фаза истощенности этой системы. Поскольку исследуемые нами больные имели контролируемый, следовательно не особенно тяжёлый васкулярный коллапс, то у них, по меньшей мере у большинства случаев, появлялось повышение активности симпато-адреналовой системы. Показатели, характеризующие свертывание крови у больных с васкулярным коллапсом, указывают на состояние гиперкоагуляции. Трудно найти удовлетворяющее объяснение причинам низкой фибринолитической активности, встречающейся у этой группы больных. Кажется, что только особенно сильное повышение активности симпато-адrenalовой системы непосредственно повышает фибринолитическую активность.

По мнению Кометиани соавт. (1944), через посредство ацетилхолина осуществляется переход внутриклеточного калия в свободную ионизированную форму, которая легко диффундируется через клеточную мембрану.

Роль катехоламинов в движении электролитов еще не вполне ясна. Есть данные, говорящие о том, что достаточно большие дозы адреналина и норадреналина увеличивают проходимость клеточных мембран и в мышечных волокнах сердца уменьшается содержание внутриклеточного калия и увеличивается содержание внутриклеточного натрия (Robertson а. Reysig 1951; Melville et al. 1955). N.vagus через посредство ацетилхолина действует на перемещение интразеллюлярного калия и гиперполяризует клеточные мембраны. Норадреналин в свою очередь повышает скорость деполяризации клетки (обзор Woodbury 1962). Если взять за основу суммарное содержание калия в миокарде, то катехоламины являются причиной такой повышенной аккумуляции этого электролита в миокарде. Это происходит при участии адренергических β-рецепторов (Cingolani et al. 1968).

Таким образом накапливается все больше новых данных для подтверждения гипотезы Нахманзона (1948) о нервно-гуморальном механизме передачи нервных импульсов: выделившийся медиатор изменяет проходимость клеточных мембран, что в свою очередь вызывает сдвиги электролитов и повышение возбудимости клетки.

На основании своих экспериментов Селье (1961) показал, что в условиях стресса дефицит калия и излишки некоторых солей натрия могут вызвать в миокарде мелкоочаговые некрозы. Причиной этому является повышенная чувствительность миокарда к катехоламинам, обусловленная дефицитом калия и излишком натрия (Горизонтов и Мороз 1962). Отсюда следует, что и электролиты играют существенную роль в патогенезе ишемической болезни сердца.

В плазме и эритроцитах больных ишемической болезнью сердца в безболевой период не наблюдается содержания электролитов существенно не отличающееся от нормы (Брикер 1962). После припадка грудинной жабы концентрация калия в плазме может повыситься, а концентрация натрия снизиться.

При сдвигах содержания электролитов у больных инфарктом миокарда надо еще учитывать общую гипоксию организма, влияние васкулярного коллапса и хронической кардиоваскулярной недостаточности. При хронической кардиоваскулярной недостаточности в организме накапливаются натрий и вода, выделяется калий (Birkenfeld et al. 1958). Это действительно в частности в отношении внутриклеточного калия. Так, снижение содержания калия в условиях хронической кардиоваскулярной инсуффициентности наблюдается как в тканих, так и в эритроцитах (Iseri et al. 1952; Ricker u. Bubnoff 1958; Mey 1960; Elster et al. 1960).

С целью установления действия различных стрессовых ситуаций на содержание натрия и калия крови были в ходе лечения неоднократно исследованы 157 больных ишемической болезнью сердца. Дополнительно было определено содержание электролитов крови у клинически здоровых (17 исследуемых) в связи с ингаляцией отрицательно заряженных электроаэрозолей и интрамускулярного введения адреналина (4 случая). В таблице 5 представлены сводные данные о содержании натрия и калия в крови у больных стенокардией. Отдельно проанализированы больные синусовой тахикардией, брадикардией и больные с частыми болевыми приступами. Как показано в таблице, средний уровень натрия плазмы у больных хронической коронарной недостаточностью статистически был выше нормы, особенно в случае частых болей. Содержание натрия в эритроцитах заметно различно у больных тахикардий и брадикардий, причем в первом случае оно значительно выше.
Таблица 5

Содержание натрия и калия крови у больных стенокардией

(в мэкв/л)

<table>
<thead>
<tr>
<th>Исследуемый показатель</th>
<th>Статистический показатель</th>
<th>Показатели нормы</th>
<th>Сводные данные</th>
<th>Синусовая тахикардия</th>
<th>Синусовая брадикардия</th>
<th>Частые болевые припадки</th>
</tr>
</thead>
<tbody>
<tr>
<td>Гематокрит (%)</td>
<td>(\bar{x} \pm m_t)</td>
<td>54</td>
<td>398</td>
<td>8</td>
<td>26</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45,48±0,82</td>
<td>48,3±0,46</td>
<td>51,88±1,70</td>
<td>46,42±1,95</td>
<td>48,50±1,29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,99</td>
<td>4,58</td>
<td>2,03</td>
<td>4,82</td>
<td>5,33</td>
</tr>
<tr>
<td>Na⁺ ПП</td>
<td>(\bar{x} \pm m_t)</td>
<td>398</td>
<td>8</td>
<td>8</td>
<td>26</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>142,04±1,04</td>
<td>144,87±0,42</td>
<td>143,40±3,55</td>
<td>I44,02±2,27</td>
<td>I44,40±1,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,84</td>
<td>4,20</td>
<td>4,25</td>
<td>5,62</td>
<td>4,14</td>
</tr>
<tr>
<td>Na⁺ ЭР</td>
<td>(\bar{x} \pm m_t)</td>
<td>366</td>
<td>8</td>
<td>8</td>
<td>22</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22,36±2,10</td>
<td>21,51±0,88</td>
<td>25,81±6,44</td>
<td>I6,81±3,42</td>
<td>20,62±1,94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7,12</td>
<td>8,51</td>
<td>7,70</td>
<td>7,71</td>
<td>7,82</td>
</tr>
<tr>
<td>K⁺ ПП</td>
<td>(\bar{x} \pm m_t)</td>
<td>398</td>
<td>8</td>
<td>8</td>
<td>22</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4,44±0,09</td>
<td>4,74±0,05</td>
<td>4,18±0,31</td>
<td>4,55±0,14</td>
<td>4,78±0,14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,61</td>
<td>0,51</td>
<td>0,37</td>
<td>0,36</td>
<td>0,54</td>
</tr>
<tr>
<td>K⁺ ЭР</td>
<td>(\bar{x} \pm m_t)</td>
<td>366</td>
<td>8</td>
<td>8</td>
<td>22</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72,73±2,76</td>
<td>71,97±0,85</td>
<td>64,76±10,78</td>
<td>77,25±3,57</td>
<td>71,80±1,42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8,99</td>
<td>8,49</td>
<td>13,13</td>
<td>8,83</td>
<td>5,86</td>
</tr>
<tr>
<td>Исследуемый показатель</td>
<td>Статистический показатель</td>
<td>Показатели нормы</td>
<td>Сводные данные</td>
<td>Время от начала заболевания</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3-4-й день</td>
<td>5-6-й день</td>
<td>26-35-й день</td>
</tr>
<tr>
<td>Гематокрит (%)</td>
<td>x ±</td>
<td>45,48±0,82</td>
<td>215</td>
<td>26</td>
<td>32</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>x ±</td>
<td>47,34±0,63</td>
<td></td>
<td>6,11</td>
<td>4,98</td>
<td>2,05</td>
</tr>
<tr>
<td>Нa⁺ Pi</td>
<td>x ±</td>
<td>142,04±1,04</td>
<td>195</td>
<td>23</td>
<td>30</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>x ±</td>
<td>144,37±0,69</td>
<td></td>
<td>5,62</td>
<td>5,86</td>
<td>5,53</td>
</tr>
<tr>
<td>Na⁺ Эр</td>
<td>x ±</td>
<td>22,36±2,10</td>
<td>199</td>
<td>25</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>x ±</td>
<td>20,81±1,07</td>
<td></td>
<td>6,92</td>
<td>6,31</td>
<td>6,28</td>
</tr>
<tr>
<td>K⁺ Pi</td>
<td>x ±</td>
<td>4,44±0,09</td>
<td>199</td>
<td>25</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>x ±</td>
<td>4,89±0,07</td>
<td></td>
<td>0,54</td>
<td>0,64</td>
<td>0,65</td>
</tr>
<tr>
<td>K⁺ Эр</td>
<td>x ±</td>
<td>72,73±2,76</td>
<td>199</td>
<td>25</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>x ±</td>
<td>75,59±1,16</td>
<td></td>
<td>6,97</td>
<td>6,71</td>
<td>6,23</td>
</tr>
</tbody>
</table>
Содержание калия плазмы у больных хронической коронарной недостаточностью также выше уровня нормы, особенно при учащении болевых ощущений. Содержание калия в эритроцитах у этой группы больных обратное содержанию натрия, т.е. снижено при тахикардии и повышено при брадикардии. Сводные данные о сдвигах электролитов, наблюдающихся при инфаркте миокарда, приведены в таблице 6. Данные отражают исследования на 59 больных.

У больных инфарктом миокарда содержание натрия плазмы также на уровне выше нормы, в частности при углублении кардиоваскулярной недостаточности (I45,90 ± 3,03 мэкв/л, ρ > 0,05). Содержание натрия в эритроцитах в острой стадии инфаркта миокарда по сравнению с нормой понижено со статистической достоверностью (I6,93±2,99 мэкв/л, ρ < 0,05).

Содержание калия плазмы у больных инфарктом миокарда повышено во всех стадиях болезни и различных условиях, особенно в случаях, когда приходилось назначать наркотики (бол?), и при ишемической болезни сердца.

Содержание калия в эритроцитах имеет поникающую тенденцию при макроинфарктах в острой стадии. В остальных случаях наблюдается незначительное повышение содержания калия в эритроцитах, однако вне пределов статистической достоверности. Таким образом, верным признаком при ишемической болезни сердца является повышение содержания калия в плазме. У больных инфарктом миокарда содержание натрия в эритроцитах понижается, изменения же содержания калия в эритроцитах статистически недостоверны. Содержания электролитов крови и симпатических катехоламинов плазмы были нами одновременно исследованы еще на 17 клинически здоровых лицах в связи с ингаляцией отрицательно заряженных электроаэрозолей. В качестве генератора электроаэрозолей был использован оригинальный ионизатор АКИ-2, созданный физиками и конструкторами ТГУ. В течение шести минут экспозиции через этот генератор в исследуемого поступило 300-500 миллиардов элементарных зарядов с надлежащим знаком.

Под действием электроаэрозолей отрицательного заряда у большинства клинически здоровых исследуемых (у 13 из 17) повысилось содержание связанных с белками плазмы катехола-
минов в среднем на 13%. В то же время наблюдалось усиление активного транспорта натрия через клеточный мембран (натрий выступал из эритроцита против градиента). В отношении калия усиливался его пассивный транспорт через клеточную мембрану (снижение содержания калия эритроцитов). В течение 30-минутного наблюдения уменьшилось и содержание натрия в плазме. Такие же изменения катехоламинов плазмы и электролитов крови были получены у 3 клинически здоровых лиц из 4, которым внутримышечно было введено 0,6-0,8 мл стандартного раствора адреналина. У одного исследуемого после введения адреналина было установлено 47%-ое снижение содержания адреналина плазмы. В то же время у исследуемого выявились общие признаки превалирования парасимпатического тонуса. У этого исследуемого содержание калия в эритроцитах не понизилось.

В заключение можно сказать, что симпато-адреналовая система играет как-бы роль промежуточного звена в нейрогуморальной регуляции электролитов. Через симпато-адреналовую систему влияют на пермеабельность клеточных мембран. В таких условиях повышается содержание калия, а при хронической симпатической стимуляции повышается и содержание натрия плазмы. В эритроцитах же наоборот, выявляется тенденция к снижению содержания интрацеллюлярных натрия и калия. У больных ишемической болезнью сердца приведенные изменения не выражались так рельефно, как в эксперименте с клинически здоровыми лицами. Всегда надо учитывать исходный фон вегетативной нервной системы исследуемого. Если превалирует парасимпатический тонус, то в условиях стресса можно вызвать изменения в механизмах регуляции организма, связанных с функцией этой системы.

Из вышеприведенного следует, что симпато-адреналовая система играет существенную роль в регуляции как свертывания крови, так и метаболизма электролитов. Симпато-адреналовая стимуляция способствует ускорению свертывания крови и внутриклеточному истощению электролитов (натрий и калий), что несомненно надо учитывать в клинической практике.
Аничков Н.Н. Основные положения и неразрешенные вопросы современного учения об атеросклерозе. Тр.ХIУ Всесоюзного съезда терапевтов, Москва, 1958, 19-27.

Бакулов А.Н., Степанян Е.П., Муратова Х.Н. О некоторых биохимических сдвигах у больных с хронической недостаточностью и инфарктом миокарда до и после двухсторонней перевязки внутренних грудных артерий. Хирургия, 1960, 10, 8-15.

Бриккер В.Н. Исследование функционального состояния миокарда при атеросклерозе коронарных артерий, ревматизме и некоторых миокардиодистрофиях, связанных с нарушением электролитного баланса. Автореферат дисс, Ленинград, 1962.

Вихерт А.М., Гудим В.Н., Богуславский В.Б. Взаимоотношение тромбоза коронарных артерий и инфаркт миокарда. В кн.: Атеросклероз и тромбоз, Москва, 1964, 101-III.

Герчикова Т.Н. Об изменениях содержания натрия и калия в плазме и эритроцитах у больных инфарктом миокарда. Тер.арх., 1962, 12, 38-44.
Глухенький Г.Г. Показатели свертываемости крови и состояние гипофизарно-надпочечниковой системы у больных инфарктом миокарда. Врач. дело, 1966, 10, 31-34.

Горизонтов П.Д., Мороз Б.Б. К вопросу о действии ионизирующей радиации на сердце. Кардиология, 1962, 4, 3-9.

Давыдовский И.Б. Патологическая анатомия и патогенез болезней, Москва, 1958, 2, 59.

Дерягина Г.П., Комарова И.Н. Гидрокортизон, неэстерифицированные жиросоединения и система свертывания крови при остром инфаркте миокарда. Кардиология, 1969, 1, 31-36.

Джаводян Н.С. К вопросу о гемостатическом эффекте болевого раздражения и адреналина. Арх. пат. 1954, 16, 1, 22-23.

Зубаиров Д.М. К вопросу о роли центральной нервной системы в регуляции свертываемости крови. Казан. мед. журнал, 1958, 1, 21-25.

Клийман А., Линд М., Линд А. О связи катехоламинов с белками плазмы крови. Учен. записки Тартуского гос. ун-та, 1965, 178, 244-250.

Кометиани П.А., Долидзе Ш.В., Клейн Е.Э. Изменения распределения калия в мышечной ткани под влиянием ацетилхолина. Биохимия, 1944, 5, 218-228.

Кудряшов Б.А. Внутрисосудистое тромбообразование в физиологическом и биохимическом аспекте. Кардиология, 1961, 5, 5-17.

Кудряшов Б.А. Противосвертывающая система крови и ее роль в предупреждении тромбозов. Тезисы докладов к научной сессии по фибринолизу, Ленинград, 1965, 3-5.
Кудряков Б.А., Андреенко Г.В., Базазян Г.Г., Калитевская Т.М., Пасторова В.Б., Сытина Н.П., Улитина Л.Д.

Куликова Н.Н. Особенности крови при болевом раздражении в раннем онтогенезе и роль ретикулярной формации при этом. В кн.: Материалы конференции по проблемам физиологии и биохимии свертывания крови и тромбообразования. Тарту, 1961, 50-51.

Лейтес С.М., Чжоу-Су. Роль надпочечников и симпатической нервной системы в мобилизации жира при состоянии стресса. Пробл. андрохринол., 1963, 5, 30-35.

Липовецкий Б.М., Черниговская С.В. О влиянии липомобилизующего фактора, выделенного из крови человека на систему свертывания крови животных. В кн.: Система свертывания крови. Москва-Ленинград, 1966, 78-84.

Николаева Л.Ф. Изучение тромбообразующих свойств крови при повторном проведении стресса у кроликов. Кардиология, 1967, 1, 21-24.

Райкина М.А. Нервные влияния на скорость свертывания крови при экспериментальном атеросклерозе. Патофизиол. и эксперим.терапия, 1961, Ленинград, 40-46.

Рийв Я.Я., Клийман А.Г., Лезпер М.А., Кярстна Х.А. Влияние изменения положения тела на содержание катехоламинов в плазме крови при различных вазорегуляторных нарушениях. Учен.записки Тартуского гос. университета, 1964, 163, 71-77.

Рийв Я., Паю А. Значение исследования симпато-адреналовой системы в спортивной медицине. В кн.: Эндокринные механизмы регуляции приспособления организма к мышечной деятельности. Кяэрику-Тарту., 1969, 272-279.

Самойленко И.И. О механизме повышения свертываемости у собак при внутривенном введении адреналина. Бюлл. эксп.биол.и мед., 1962, 12, 29-31.

Смolenский В.С. Тромбоэзы и эмболии у больных атеросклерозом и гипертонической болезнью, страдающих сердечной недостаточностью. В кн.: Атеросклероз и инфаркт миокарда, Москва, 1959, 289-303.
Сотскова Т.В. О содержании катехоламинов в моче у больных в остром периоде инфаркта миокарда. В кн.: Адреналин и норадреналин, Москва, 1964, 220-223.

Сотскова Т.В. Выделение катехоламинов с моющей у больных инфарктом миокарда и стенокардии. Тер.арх., 1966, 4, 71-78.

Софиева И.Э. Содержание адреналиноподобных веществ в крови у больных инфарктом миокарда. В кн.: Адреналин и норадреналин, Москва, 1964, 217-220.

Цобкалло Г.К. Адаптационно-трофическая функция симпатической нервной системы и свёртывание крови. Физиол. Ж.СССР, 1947, 33, 5, 651-655.

Чазов Е.И. Тромбозы и эмболии в клинике внутренних болезней, Москва, 1966.

Шумяковская Н.Г. О тромбозе венечных артерий сердца при инфарктах миокарда. В кн.: Тромбозы и эмболии. Москва, 1951, 253-258.

Melville K., Marzurkievicz J., Karol B. Potassium disequilibrium as a factor production of cardiac irregularities following epinephrine and nor-epinephrine. Fed.Proc., 1955, 14, 1, 369-374

Raab W. Hormonal and neurogenic cardiovascular disorders, Endocrine and neuro-endocrine factors in pathogenesis and treatment, Baltimore, 1953.

Robertson W., Peyser P. Changes in water and electrolytes of cardiac muscle following epinephrine. Amer.J. Physiol., 1951, 166, 2, 277-283.

Activity of the Sympatho-adrenal System, Blood Coagulability and Blood Electrolyte Content in Various Stages of Ischemic Heart Disease

J. Riiv, P. Mallene, R. Kasmets and M. Lind

Summary

The chief aim of the present investigation was to study the effect of the sympatho-adrenal system (SAS) on blood coagulation and on the sodium and potassium content in the blood of patients suffering from ischemic heart disease. SAS activity was studied altogether in 421 patients with ischemic heart disease. Of them 97 were in an acute stage of myocardial infarction, the remaining 324 were suffering from chronic coronary artery insufficiency of a predominantly sclerotic type. Different methods, including the determination of protein-bound catecholamines in plasma were used to assess SAS activity. An elevation of SAS activity was established in 80% of the patients with angina pectoris. Of those in an acute stage of myocardial infarction almost 100% were affected by increased SAS activity, revealing itself in two-thirds of the cases on the 3rd to 10th day of disease. The initial inhibition of SAS activity may have been dependent on an acute and lasting pain, the administration of narcotics, and a vascu-
lar collapse. In connection with an aggravation of chronic cardio-vascular insufficiency the catecholamine content in plasma increased, thus indicating an activation of SAS in these patients.

Different factors of blood coagulation were studied in 128 patients with myocardial infarction and in 160 patients with angina pectoris. Before the beginning of the treatment the patients with angina pectoris showed an elevated coagulatory activity which became normal in the course of the treatment. Fibrinolytic activity was particularly heightened by the blocking of cervical ganglia with Bernard current and by the administration of nicotine amide. Within the first 48 hours after the onset of myocardial infarction the coagulatory activity of blood had increased, which was equilibrated through normal fibrinolytic activity. In the later course of the disease the activity of the factors promoting blood coagulation as well as fibrinolytic activity decreased. When there occurred a severe and lasting cardiac pain, the coagulation of blood was retarded, in particular on account of increased fibrinolytic activity. However, in the case of a moderate pain of a shorter duration one could detect an apparent acceleration of blood coagulation. The SAS activity in these patients was also higher. In conditions of a vascular collapse the coagulation of blood proceeded more rapidly, which resulted in a lower fibrinolytic activity. Patients with cardiovascular decompensation showed an increased content of procoagulants, which was equilibrated through an elevated fibrinolytic activity. In summary, one could observe a close relationship between the acceleration of SAS activity and blood coagulability. A very strong stimulation of SAS activity could intensify fibrinolytic activity.

The sodium and potassium content in the blood was studied in 157 patients with ischemic heart disease, in 17 intact subjects by inhalation of negatively charged electrolytes, and in 4 healthy subjects by intramuscular administration of adrenaline.

In patients with chronic coronary insufficiency, particularly in those with frequent pains, the average level of sodium and potassium content in plasma exceeded the values for healthy subjects. In tachycardic patients the sodium con-
tent in the erythrocytes considerably exceeded that in bradycardiac cases. In similar circumstances the potassium content in the erythrocytes had changed in the reverse direction compared with sodium. Likewise patients with myocardial infarction showed higher plasma sodium values than usual, particularly in conditions of aggravated cardiovascular insufficiency. In the acute stage of myocardial infarction the decrease of the sodium content of erythrocytes was statistically significant as compared with the control group. The plasma potassium content in patients with myocardial infarction showed increased values in all stages of the disease. In macroinfarctions the potassium content of erythrocytes showed a tendency to decline in the acute stage of infarction. On the whole, changes in the potassium content of erythrocytes in patients with ischemic heart disease were not statistically significant.

Negatively charged electroaerosols raised the level of the protein-bound catecholamines. Simultaneously with an increase in the level of the catecholamines we observed intensification of the active transport of sodium through the cellular membrane. As to potassium, its passive transport through the cellular membrane was intensified, hence the sodium and potassium content of erythrocytes declined. The plasma potassium content increased whereas the sodium content decreased. Changes of the plasma catecholamines and the blood electrolytes under the action of adrenaline proceeded in the same direction in 3 out of 4 healthy subjects. It appears that the permeability of the cellular membrane is affected by SAS.

Thus SAS has an essential role to play in the regulation of blood coagulation as well as of electrolyte metabolism. An increase in SAS activity results in the acceleration of blood coagulation and intracellular deficiency of electrolytes (sodium and potassium). All this has to be taken into consideration in clinical practice.
Активность симпато-адреналовой системы и содержание липидов крови в условиях эмоционального стресса

Я. Рийв, А. Куус, М. Мокс

Своими более ранними исследованиями мы установили, что основная часть катехоламинов плазмы (КА) находится в связанном с альбуминами состоянии (Линд с соавт. 1967). Дополнительно мы выяснили, что при помощи определения КА, связанных с белками плазмы, является возможным оценить активность симпато-адреналовой системы (САС) (Рийв с соавт. 1967; Рийв 1969). Задачей настоящей работы было изучение состояния САС и изменений липидов крови в связи с состоянием эмоционального напряжения. Исследуемыми были добровольцы — студенты-медики. Видом эмоционального стресса были избраны курсовые экзамены. Влияние экзаменов на активность САС изучали всего у 35 студентов. Связанные с плазмой КА определяли флюориметрически, методом, предложенным Клийманом и Реэбеном (1964). В принципе вышеназванная процедура определения не отличается от т.н. тригидрооксииндолового метода. И при этом методе находящиеся в плазме катехоламины, помещенные в сильную щелочную среду, превращают в сложные соединения, дающие люминесцирующее свечение. Интенсивность возникшей флюоресценции можно измерить на основании показаний флюориметра в соответствующих флюориметрических единицах или представить переведенными в единицы массы по калибровочным кривым, полученным при помощи водных растворов адреналина и норадреналина. В настоящей работе мы применяли последний модус. Вследствие различий в фотохимическом эффекте плазмы и водных растворов цифровые данные, полученные таким образом, являются лишь относительными.

Кровь для определения КА брали из локтевой вены непосредственно перед входением в помещение, где проводились экзамены, и через час после сдачи экзамена. Измеряли артериальное давление, частоту сердечных сокращений и оценивали более детально особенности нервной деятельности исследуемого.
Как известно из исследований Elmadjian'a с соавт. (1958); Frankenhaeuser'a Post'a (1962); Levi (1966, 1967 и др.), в связи с эмоциональным напряжением увеличивается и выделение КА с мочой. Увеличение экскреции КА отражает повышение активности САС. Такое же состояние может возникнуть у студентов в условиях экзамена (Pekkari-nen et al. 1961; Tüma et al. 1965). Полученные нами данные подтверждают результаты вышеприведенных авторов и еще больше подчеркивают применимость определения КА, связанных с белками плазмы при оценке активности САС.

В связи с экзаменом содержание КА плазмы крови изменилось следующим образом:

<table>
<thead>
<tr>
<th>Соединения адреналинового ряда (мкг/мл)</th>
<th>Соединения норадреналинового ряда (мкг/мл)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Непосредственно перед экзаменом</td>
<td></td>
</tr>
<tr>
<td>1,27 ± 0,004</td>
<td>12,82 ± 0,84</td>
</tr>
<tr>
<td>Через час после экзамена</td>
<td></td>
</tr>
<tr>
<td>1,25 ± 0,11</td>
<td>11,86 ± 0,95</td>
</tr>
<tr>
<td>В свободный от напряжения период</td>
<td></td>
</tr>
<tr>
<td>1,12 ± 0,07</td>
<td>10,14 ± 0,40</td>
</tr>
</tbody>
</table>

Бросается в глаза большое колебание средних величин содержания КА плазмы и после экзамена. Так, у 18 исследуемых содержание соединений адреналинового ряда в плазме пало (в сравнении с предэкзаменационным периодом в среднем на 11,2%). У 17 исследуемых концентрация названных веществ и по прошествии одного часа после экзамена удерживалась на высоком уровне или даже еще повысилась. В части соединений норадреналинового ряда постэкзаменационное падение наблюдалось у 19 исследуемых (в среднем на 27,5%). Из остальных у 5 исследуемых оно удерживалось на прежнем уровне, у 11 повысилось еще. Изменения частоты пульса и артериального давления были в прямой корреляции с изменениями содержания веществ норадреналинового ряда плазмы.
Падение содержания катехоламинов в плазме после экзамена происходило у тех студентов, которые остались довольны результатами экзамена или обладали уравновешенными нервными процессами. Постэкзаменационного падения КА плазмы не наблюдалось у студентов, которые были недовольны результатами экзамена, обладали лабильными нервными процессами или употребляли перед экзаменом стимулирующие центральную нервную систему вещества (2 исследуемых).

Средние величины содержания КА плазмы, полученные при исследованиях, проведенных в периодах между сессиями экзаменов, были со статистической достоверностью ниже постэкзаменационных, соответствуя величинам здоровых, свободных от стресса лиц.

Резюмируя вышеприведенное, можно сказать, что состояние эмоционального напряжения, вызванное экзаменом, обусловливает повышение активности САС, которое является тем более устойчивым и интенсивным, чем сильнее было психическое переживание у исследуемого и чем лабильнее была его нервная деятельность.

Особый интерес представляет изучение влияния центральной нервной системы на липидный обмен как в здоровом, так и заболевшем организме. Фоном такого интереса является неясность в вопросах этиологии и патогенеза атеросклероза. Главным является вопрос, в какой мере изменения функционального состояния центральной нервной системы могут влиять на состав липидов крови.

Уже в 1870 году Toldt удалось установить, что жировая ткань подчиняется не только гормональным воздействиям, но находится и под нервным контролем. Позднее удалось показать (Hausberger 1934; Beznáč e. Hasch 1937), что симпатическая денервация препятствует мобилизации нейтрального жира и благоприятствует этим его депонированию. Впрыскивание адреналина уменьшает жировые депо (Clément 1951), причем содержание свободных жирных кислот в периферической крови повышается (Dole 1956; Gordon e. Cherkes 1956; Wadström 1957).

Мобилизующий свободные жирные кислоты эффект норадреналина подобен адреналину (Schotz e. Page 1959), но сильнее его (Wenke et al. 1964; Stock e. Westermann 1965).

Мобилизующее влияние симпатической стимуляции действи­тельно и в отношении других липидов, кроме свободных жир­ных кислот. При перенапряжении нервной системы, вызванном весьма различными причинами, в крови повышается и содержа­ние холестерина (Glaser 1927). По наблюдениям Халатова (1946), содержание холестерина в крови было у студентов во время экзаменов выше, чем в последующем периоде. И иные эмоциональные стрессы, как например, ответственное выступ­ление у артистов, являются причиной повышения уровня холе­стерина (Чалисов с соавт. 1932). После приятного сна или более продолжительного отдыха содержание холестерина в кро­ви снова падает (Dobreff et al. 1936). У больных неврозом и у собак с экспериментальным неврозом получили повышение содержания липидов крови (Ганелина с соавт. 1958). У боль­ных с депрессивным психозом содержание холестерина в крови является, в сравнении с нормой, выше, и у больных наблю­дается более быстрое развитие атеросклероза (Дукина 1941).

Достойным внимания являются и серия исследований, при которых оказалось возможным при помощи стимулирующих цент­ральную нервную систему медикаментов (фенамин, кофеин) уве­личить содержание липидов крови, причем при помощи тормо­зящих веществ (люминал, амитал-натрий, хлоралгидрат) можно добиться существенного и продолжительного снижения содержа­ния холестерина (Цибекмахер 1955; Мишников 1956). Делая сводку существующих достижений в области метаболизма липи­дов, пришли к заключению, что нервной системе принадлежит руководящая роль в этом отрезке (Ильинский 1960; Ганели­на с соавт. 1965).
Таблица I

Изменение липидов крови в связи с постоянным эмоциональным напряжением

<table>
<thead>
<tr>
<th>Исследуемый показатель</th>
<th>Статистический показатель</th>
<th>Контрольная группа</th>
<th>В периоде между сессиями экзаменов</th>
<th>Непосредственно перед экзаменом</th>
</tr>
</thead>
<tbody>
<tr>
<td>Холестерин (Мг %)</td>
<td>$\bar{x} \pm m_t$</td>
<td>179 ± 25,5</td>
<td>192,7 ± 8,08</td>
<td>210 ± 8,8</td>
</tr>
<tr>
<td></td>
<td>β</td>
<td>36,4</td>
<td>31,3</td>
<td>34,3</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td></td>
<td></td>
<td>< 0,05</td>
</tr>
<tr>
<td>Фосфолипиды (Мг %)</td>
<td>$\bar{x} \pm m_t$</td>
<td>192,2 ± 14,6</td>
<td>205 ± 11,6</td>
<td>226 ± 2,6</td>
</tr>
<tr>
<td></td>
<td>β</td>
<td>29,4</td>
<td>44,8</td>
<td>29,4</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td></td>
<td></td>
<td>< 0,05</td>
</tr>
<tr>
<td>Бета-липопротеиды (ФЕ)</td>
<td>$\bar{x} \pm m_t$</td>
<td>0,27 ± 0,05</td>
<td>0,34 ± 0,02</td>
<td>0,40 ± 0,03</td>
</tr>
<tr>
<td></td>
<td>β</td>
<td>0,11</td>
<td>0,08</td>
<td>0,10</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td></td>
<td></td>
<td>< 0,05</td>
</tr>
<tr>
<td>Нестерифицированные жирные кислоты (мэкв/л)</td>
<td>$\bar{x} \pm m_t$</td>
<td>0,51 ± 0,04</td>
<td>0,49 ± 0,04</td>
<td>0,38 ± 0,03</td>
</tr>
<tr>
<td></td>
<td>β</td>
<td>0,09</td>
<td>0,15</td>
<td>0,12</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td></td>
<td></td>
<td>< 0,05</td>
</tr>
</tbody>
</table>
Мало имеется данных о влиянии центральной нервной системы на обмен липидов в целом. Учитывая это обстоятельство, мы изучали влияние состояния подострого психического перенапряжения на содержание холестерина, фосфолипидов, бета-липопротеидов и незестерифицированных жирных кислот в крови у здоровых лиц. Исследуемыми были 61 студент-медик. В качестве эмоционального стресса применяли экзамены. Были проведены два ряда исследований: а) в свободный от напряжения период и б) непосредственно перед экзаменом. Контрольной группой служили 18 здоровых лиц того же возраста, не занимающихся умственной работой. Определение содержания липидов крови совершалось по следующим методам: холестерин - по Mreko-Tovarek (цит.Тодоров 1963); фосфолипиды — по Fiske-Subbarow и Мартинсон и Виляко (1961); бета-липопротеиды — по Лобягиной и Баньковской (1965); незестерифицированные жирные кислоты — по Dole и Meinertz (1960).

Результаты приведены в таблице № I.

Для контроля статистической достоверности групповых различий находили 95% границы достоверности групповых арифметических средних ().

Стресс экзамена обусловливал статистически достоверное повышение содержания холестерина, фосфолипидов и бета-липопротеидов крови. В части незестерифицированных жирных кислот в связи с экзаменом наблюдали существенное падение их содержания. Особенно явным было повышение содержания бета-липопротеидов, которое у студентов даже в промежутке между сессиями экзаменов было выше, чем у здоровых лиц того же возраста, но не занимающихся умственной работой. Предметом спора при наших исследованиях является падение содержания незестерифицированных жирных кислот. В условиях острого психического стресса почти все исследователи получили увеличение содержания свободных жирных кислот. В наших условиях мы, по-видимому, имели дело с умственным перенапряжением, продолжавшимся длительное время, в условиях которого потребление жирных кислот могло превысить интенсивность их освобождения из депо.

В серии проводимых новых опытов мы проверяем влияние продолжающегося один час психического стресса на липиды
крови у больных ишемической болезнью сердца. В качестве психического стресса мы применяем детальный опрос больного о его биографии, медицинские процедуры (пункция вены), психологические пробы за время реакции, тремор и способность дифференциации. И такое не особенно интенсивное и продолжительное психическое напряжение оказывает влияние на метаболизм липидов. В качестве примера мы приводим больного мужчину 50-ти лет, работающего на умственном поприще, страдавшего ишемической болезнью сердца 10 лет. Состояние больного в течение последних лет улучшилось в связи с систематической физической тренировкой и сознательным режимом питания.

<table>
<thead>
<tr>
<th>До психической нагрузки</th>
<th>После продолжавшейся 1 час психической нагрузки</th>
</tr>
</thead>
<tbody>
<tr>
<td>Холестерин (мг %)</td>
<td>179</td>
</tr>
<tr>
<td>Фосфолипиды (мг %)</td>
<td>143</td>
</tr>
<tr>
<td>Бета-липопротеиды (ФЕ)</td>
<td>0,33</td>
</tr>
<tr>
<td>НЭЖК-ы мэкв/л</td>
<td>0,405</td>
</tr>
<tr>
<td>Соединения адреналинового ряда, связанные с белками плазмы (флюорим. ед)</td>
<td>4,1</td>
</tr>
<tr>
<td>Соединения норадреналинового ряда, связанные с белками плазмы (флюорим. ед.)</td>
<td>6,2</td>
</tr>
</tbody>
</table>

Таким образом острый стресс обусловил повышение содержания жирных кислот, фосфолипидов и бета-липопротеидов плазмы. Без изменений осталось содержание в крови холестерина, который явно является более инертной фракцией липидов, чем другие. Активность САС увеличилась. Если перед пробой ввести исследуемому индерал (20 мг), то существенных сдвигов в содержании липидов плазмы не произошло, хотя активность САС и увеличилась. На основании наших наблюдений мы можем утверждать, что под воздействием постоянно го введения транквилизаторов падает повысившееся содержание холестерина крови.

Резюме. В условиях эмоционального стресса увеличивается активность САС, интенсивность и продолжительность
которой зависит от тяжести стресса и особенностей нервной деятельности лица. Как эмоциональный стресс, так и связанное с ним повышение активности САС обусловливают существенные сдвиги в метаболизме липидов: повышается содержание холестерина, фосфолипидов и бета-липопротеидов в плазме крови. Кратковременный острый стресс вызывает повышение и содержания неэстерифицированных жирных кислот в плазме. На основании вышеприведенного мы поддерживаем мнения, которые подчеркивают руководящую роль САС в метаболизме липидов.

Литература

Ганелина И.Е., Дзидзигури Т.Д., Алийская М.А., Ланг-Белоногова Н.С. О роли нарушений высшей нервной деятельности в обмене липидов. Тер.арх., 1958, 30, 6, 72-81.

Ганелина И.Е., Комарова И.Н., Криворученко И.В., Липовецкий Б.М. Обмен липидов и атеросклероз, Москва-Ленинград, 1965.

Ильинский Б.В. Атеросклероз (вопросы этиологии и патогенеза и приложение их к клинике), Ленинград, 1960.

Клийман А.Г., Резебен В.А. Раздельное определение адреналинового и норадреналинового ряда флюоресцирующих веществ в плазме и моче. Ученые записки Тартуского гос.унив., 1964, 163, 356-362.

Линд М., Клийман А., Рийв Я., Линд А. О связывании адреналина белками плазмы крови в зависимости от рН. Ученые записки Тартуского гос.унив., 1967, 210, 192-199.

Лобягина Т.Н., Баньковская Э.Б. О содержании β-липопротеидов в сыворотке крови и в стенке аорты в экспериментальном атеросклерозе. Вопр.мед.химии, 1965, 5, 17-22.

Лукина А.М. Изменения холестеринового обмена при депрессивных состояниях. Канд.дисс., Ленинград, 1941.

Мясников Л.А. Влияние некоторых нейротропных средств на холестеринемию у больных атеросклерозом. Клин. мед., 1950, 34, 6, 65-69.

Тодоров И. Клинические лабораторные исследования в педиатрии, София, 1963, 654.

Халатов С.С. Холестериновая болезнь в ее патофизиологическом и клиническом значении, Москва, 1946.

Цибекмахер Т.Д. Влияние фенамина и ляминала на содержание в крови холестерина и его эфиров. Тер. арх., 1955, 1, 48-55.

Чалисов М.А., Вольфсон Н.М., Арутюнов Д.Н. О биохимических изменениях крови при эмоциях. Сообщ. I Невропатол. и псих., 1937, 6, 5, 3-10.

Hausberger F.X. Über die Innervation des Fettorgans. Z.mikr.-anat. Forsch., 1934, 36, 231-266.

Havel R.J. Catecholamines.

Levi L. Life stress and urinary excretion of adrenaline and noradrenaline.

Levi L. Sympatho-adrenomedullary responses to emotional stimuli: methodologic, physiologic and pathologic considerations.

Steinberg D. Fatty acid mobilization—mechanisms of regulation and metabolic consequences.
Activity of the Sympatho-adrenal System and the Blood Lipid Content in Conditions of Emotional Stress

J. Riiv, A. Kuus and M. Moks

Summary

The present papers deals with the investigation of the effect of emotional stress on the activity of the sympatho-adrenal system (SAS) and, in this connection, on the metabolism of lipids. Our earlier studies conducted in this direction were supplemented by a more complex study of lipid metabolism (cholesterol, phospholipids, β-lipoproteins and free fatty acids). SAS activity was evaluated by the fluorimetric determination of protein-bound catecholamines in plasma. As our previous studies have shown, the protein-bound catecholamine content in plasma quite adequately re-
fects the functional state of the sympatho-adrenal system, in particular in the case of tests conducted at different work loads. Examinations were used to represent emotional stress. The sympatho-adrenal system was evaluated in 35 medical students, the metabolism of lipids was determined in 61 medical students, who had all voluntarily agreed to submit themselves to such tests. To ascertain the emotional stress caused by examinations, the protein-bound catecholamine content in plasma was determined in the period between the examination session, directly before entering the examination room, and one hour after taking an examination. The tests showed that the activity of the sympatho-adrenal system was intensified in connection with an examination, which revealed itself in a statistically significant increase in the protein-bound adrenaline and noradrenaline content. It was further observed that after the examination the average values of the plasma catecholamine content dropped, although insignificantly. This was probably due to the fact that after the examination SAS activity decreased only in one part of the students. Thus the plasma content of adrenaline and its derivatives fell in 18 subjects on an average by 11.2% compared with the pre-examination level. The post-examination content of the noradrenaline compounds dropped in 19 subjects on an average by 27.5%. In the remaining students the plasma catecholamine content after the examination remained on the pre-examination level or even rose still further. The changes in pulse rate and arterial blood pressure showed a corresponding correlation with the changes in the plasma content of the noradrenaline compounds. After the examination the plasma catecholamine level rose in the students who were either not satisfied with the examination results or possessed a labile nervous system or had used stimulants of the central nervous system before the examination.

The plasma lipid content changed under the activation of examinational stress as follows: cholesterol (mg %) 192.7 ± 8.08 to 210 ± 8.8 (control group 179 ± 25.5); phospholipids (mg %) 205 ± 11.6 to 226 ± 7.6 (control group 192.2 ± 14.6); β-lipoproteins (FU) 0.34 ± 0.02 to 0.40 ± 0.03 (control group 0.27 ± 0.05); FFA (mEq/L) 0.49 ± 0.04 to 0.38 ± 0.03 (control group 0.51 ± 0.04). To check the statistical signi-
Significance of the differences between the groups, 95 per cent significance levels of arithmetic means (\(\bar{x} \pm m_{1.95} \)) were calculated. Hence examinational stress produced a statistically significant increase in the plasma content of cholesterol, phospholipids and \(\beta \)-lipoproteins. However, there was a significant decrease in FFA. This was apparently due to the prolonged mental overstrain under our experimental conditions. The effect of mental overstress evidently differs from that of acute mental stress. An acute mental stress of an hour's duration could produce a significant increase in the content of plasma cholesterol, phospholipids, \(\beta \)-lipoproteins and FFA. Administration of propranolol before the onset of stress blocked the increase of all kinds of lipid fractions. The above-mentioned data corroborate the opinion of those who stress the leading role of the sympato-adrenal system in lipid metabolism.
О свертываемости крови у больных инфарктом миокарда

Каскметс Р.В.

В свете современных представлений свертываемость крови зависит от взаимоотношения коагулирующих и антикоагулирующих факторов крови. Нарушение динамики их равновесия способствует повышению гиперкоагулирующих тенденций и обусловливает развитие протромбического состояния (1,2,3,4,5 и др.). При атеросклерозе, в том числе и коронаросклерозе, свертываемость крови повышена в основном за счет угнетения противовосвертывающей системы крови, проявляющееся в частности депрессией фибринолитической активности (3,4,5, 6,7 и др.). При инфаркте миокарда отмечено повышение активности свертывающих факторов и понижение антисвертывающих свойств крови (8,9). Но некоторые авторы указывают и на возможную активацию защитных противовосвертывающих реакций в острой стадии инфаркта миокарда у части больных; вследствие этих реакций наступает повышение фибринолитической активности (1,7,9,10,11).

В настоящей работе представлены результаты обследования III больных инфарктом миокарда в возрасте 40-84 года; из них мужчин было 75, женщин 36. Исследования проводились повторно (до 8 раз в течение 6 недель). Контрольную группу составляли 20 здоровых лиц в возрасте свыше 40 лет, из них мужчин было 13, женщин 7. Для оценки функционального состояния системы свертывания крови у 74 больных определялась коагулограмма, включающая 7 показателей. У остальных больных изучались только протромбиновый показатель, фибриноген, тромботест. Коагулограмму определяли по следующей методике: 1) протромбиновый индекс по методу Quick'a (цит.12); 2) фибриноген биуретовым методом (цит.13); 3) тромботест по методу Hita в модификации Котовщиковой /14/; 4) время свертывания по методу Burker'a (цит.14); 5) время рекальцификации по методу Bergerhof-Roka (цит.13); 6) толерантность плазмы к гепарину по Marbet-Winterstein'a (цит.15); 7) фибринолитическая ак-
Динамика средних величин показателей коагулограмы у больных инфарктом миокарда

<table>
<thead>
<tr>
<th>Показатель коагулограмы</th>
<th>Статистический показатель</th>
<th>Контрольная группа</th>
<th>Дни болезни</th>
<th>Дни болезни</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1-2</td>
<td>3-5</td>
</tr>
<tr>
<td>Протромбин-</td>
<td>N</td>
<td>20</td>
<td>45</td>
<td>85</td>
</tr>
<tr>
<td>нокозный ин-</td>
<td>m ± m</td>
<td>96,4±1,5</td>
<td>101,2±1,2</td>
<td>96,2±1,2</td>
</tr>
<tr>
<td>декс (в%)</td>
<td>p</td>
<td><0,05</td>
<td>>0,05</td>
<td>>0,05</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
</tr>
<tr>
<td>Фибриноген</td>
<td>m ± m</td>
<td>0,32±0,008</td>
<td>0,51±0,025</td>
<td>0,56±0,018</td>
</tr>
<tr>
<td>(в мг/л)</td>
<td>p</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>>0,05</td>
<td>>0,05</td>
<td>>0,05</td>
</tr>
<tr>
<td>Тромбо-</td>
<td>m ± m</td>
<td>5,8±0,10</td>
<td>6,0±0,13</td>
<td>5,7±0,07</td>
</tr>
<tr>
<td>тометест (в мг/л)</td>
<td>p</td>
<td>=0,05</td>
<td>>0,05</td>
<td>>0,05</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>>0,05</td>
<td>>0,05</td>
<td>>0,05</td>
</tr>
<tr>
<td>Время ре-</td>
<td>m ± m</td>
<td>104,5±3,0</td>
<td>93,5±3,5</td>
<td>103,2±3,7</td>
</tr>
<tr>
<td>калкация</td>
<td>p</td>
<td><0,05</td>
<td>>0,05</td>
<td>>0,05</td>
</tr>
<tr>
<td>(в сек.)</td>
<td>P1</td>
<td>>0,05</td>
<td>>0,05</td>
<td>>0,05</td>
</tr>
<tr>
<td>Толерант-</td>
<td>m ± m</td>
<td>102,8±5,6</td>
<td>90,1±11,2</td>
<td>97,1±4,4</td>
</tr>
<tr>
<td>ность плазмы к гепарину</td>
<td>p</td>
<td><0,05</td>
<td>>0,05</td>
<td>>0,05</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>>0,05</td>
<td>>0,05</td>
<td>>0,05</td>
</tr>
<tr>
<td>Фибрин-</td>
<td>m ± m</td>
<td>15,6±1,0</td>
<td>14,7±1,8</td>
<td>11,3±1,4</td>
</tr>
<tr>
<td>антикоагуляция</td>
<td>p</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
</tr>
<tr>
<td>(в %)</td>
<td>P1</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
</tr>
<tr>
<td>Время овар-</td>
<td>m ± m</td>
<td>6,6±0,12</td>
<td>6,4±0,24</td>
<td>6,7±0,21</td>
</tr>
<tr>
<td>ты (в мин.)</td>
<td>p</td>
<td>>0,05</td>
<td>>0,05</td>
<td>>0,05</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>>0,05</td>
<td>>0,05</td>
<td>>0,05</td>
</tr>
</tbody>
</table>

Примечание: 1) P - достоверность различий по сравнению с данными контрольной группы
2) P1 - достоверность различий по сравнению с начальными данными
тивность (ФА) по методу Котовщиковой и Кузника /14/.

Результаты исследований представлены в таблице 1.

Судя по средним данным (табл.1), у больных инфарктом миокарда наблюдается некоторая тенденция к гиперкоагуляции крови в первые 48 часов после возникновения инфаркта: повышение протромбинового показателя, степени тромботеза, уровня фибриногена и толерантности к гепарину, укорочение времени рекальцификации. В дальнейшем эти показатели нормализуются, кроме фибриногена, достигающего максимума на 2-й неделе; высокие цифры его сохраняются до конца периода наблюдения. Протромбиновый показатель, наоборот, к концу несколько уменьшается и время свертывания удлиняется. Фибринолитическая активность в первые двое суток в пределах нормы, но затем наступает значительная и стойкая депрессия ее.

Из анализа по типам индивидуальной реакции отдельных компонентов свертывающей системы крови выясняется, что тенденция к гиперсвертываемости крови в первые 48 часов при инфаркте миокарда проявляется далеко не у всех больных (таблица 2). Повышенный протромбиновый показатель отмечается у 46,5% больных, высокий тромботест - у 35,1%, повышенная толерантность к гепарину у 40%, высокий уровень фибриногена у 64,4%, укороченное время рекальцификации у 50% и ускоренное время свертывания у 45% больных. Потом число больных с нормальными показателями (кроме фибриногена) увеличивается: приблизительно у 1/4 больных наблюдается даже удлинение времени рекальцификации и понижение протромбинового показателя, указывающие на наклонность к понижению свертываемости. К концу периода наблюдения толерантность к гепарину остается повышенной у 37,5% больных, но время свертывания достигает предела нормы у 84,2% больных. Фибринолитическая активность, оставаясь в первые дни нормальной у 55% больных, пониженной у 40% и повышенной только у 5% больных; уже с 3-го дня у большинства больных (до 81,5%) начинает понижаться. Угнетение фибринолитической активности продолжается до конца периода наблюдения, у 57% больных она падает ниже 7% (Табл.2.)
Таблица 2

Изменение свертываемости крови у больных инфарктом миокарда во время лечения

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Дни болезни</th>
<th>Общее количество больных</th>
<th>Свертываемость</th>
<th>повышенная</th>
<th>нормальная</th>
<th>пониженная</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>К-во больных</td>
<td>В %</td>
<td>К-во больных</td>
<td>В %</td>
</tr>
<tr>
<td>Протромбиновый показатель</td>
<td>1-2</td>
<td>45</td>
<td>20</td>
<td>46,5</td>
<td>23</td>
<td>51,1</td>
</tr>
<tr>
<td></td>
<td>3-5</td>
<td>85</td>
<td>21</td>
<td>24,7</td>
<td>58</td>
<td>68,3</td>
</tr>
<tr>
<td></td>
<td>12-14</td>
<td>111</td>
<td>18</td>
<td>16,2</td>
<td>75</td>
<td>65,8</td>
</tr>
<tr>
<td></td>
<td>27-28</td>
<td>87</td>
<td>12</td>
<td>13,6</td>
<td>57</td>
<td>65,5</td>
</tr>
<tr>
<td></td>
<td>41-42</td>
<td>45</td>
<td>7</td>
<td>15,5</td>
<td>29</td>
<td>64,5</td>
</tr>
<tr>
<td>Фибриноген</td>
<td>1-2</td>
<td>45</td>
<td>29</td>
<td>64,4</td>
<td>16</td>
<td>35,6</td>
</tr>
<tr>
<td></td>
<td>3-5</td>
<td>85</td>
<td>71</td>
<td>83,5</td>
<td>14</td>
<td>16,5</td>
</tr>
<tr>
<td></td>
<td>12-14</td>
<td>111</td>
<td>89</td>
<td>80,2</td>
<td>22</td>
<td>19,8</td>
</tr>
<tr>
<td></td>
<td>27-28</td>
<td>87</td>
<td>60</td>
<td>70,0</td>
<td>27</td>
<td>38,0</td>
</tr>
<tr>
<td></td>
<td>41-42</td>
<td>45</td>
<td>30</td>
<td>66,6</td>
<td>15</td>
<td>33,4</td>
</tr>
<tr>
<td>Тромботест</td>
<td>1-2</td>
<td>45</td>
<td>14</td>
<td>31,1</td>
<td>29</td>
<td>64,4</td>
</tr>
<tr>
<td></td>
<td>3-5</td>
<td>85</td>
<td>12</td>
<td>14,2</td>
<td>20</td>
<td>82,3</td>
</tr>
<tr>
<td></td>
<td>12-14</td>
<td>111</td>
<td>23</td>
<td>20,8</td>
<td>80</td>
<td>72,0</td>
</tr>
<tr>
<td></td>
<td>27-28</td>
<td>87</td>
<td>11</td>
<td>12,6</td>
<td>67</td>
<td>77,0</td>
</tr>
<tr>
<td></td>
<td>41-42</td>
<td>45</td>
<td>4</td>
<td>9,2</td>
<td>34</td>
<td>75,5</td>
</tr>
<tr>
<td>Время рекап-</td>
<td>1-2</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>цификации</td>
<td>3-5</td>
<td>51</td>
<td>15</td>
<td>29,4</td>
<td>23</td>
<td>45,1</td>
</tr>
<tr>
<td></td>
<td>12-14</td>
<td>74</td>
<td>16</td>
<td>21,6</td>
<td>41</td>
<td>55,4</td>
</tr>
<tr>
<td></td>
<td>27-28</td>
<td>65</td>
<td>15</td>
<td>23,0</td>
<td>32</td>
<td>49,3</td>
</tr>
<tr>
<td></td>
<td>41-42</td>
<td>40</td>
<td>11</td>
<td>27,5</td>
<td>21</td>
<td>52,5</td>
</tr>
<tr>
<td>Толерантност</td>
<td>1-2</td>
<td>20</td>
<td>8</td>
<td>40</td>
<td>11</td>
<td>55,0</td>
</tr>
<tr>
<td>плазмы к гепа-</td>
<td>3-5</td>
<td>51</td>
<td>20</td>
<td>39,1</td>
<td>28</td>
<td>55,0</td>
</tr>
<tr>
<td>рину</td>
<td>12-14</td>
<td>74</td>
<td>18</td>
<td>24,3</td>
<td>52</td>
<td>70,3</td>
</tr>
<tr>
<td></td>
<td>27-28</td>
<td>65</td>
<td>21</td>
<td>32,3</td>
<td>34</td>
<td>52,3</td>
</tr>
<tr>
<td></td>
<td>41-42</td>
<td>40</td>
<td>15</td>
<td>37,5</td>
<td>20</td>
<td>50,0</td>
</tr>
<tr>
<td>Фибринолити-</td>
<td>1-2</td>
<td>20</td>
<td>8</td>
<td>40</td>
<td>11</td>
<td>55,0</td>
</tr>
<tr>
<td>ческая ак-</td>
<td>3-5</td>
<td>51</td>
<td>38</td>
<td>74,5</td>
<td>10</td>
<td>19,6</td>
</tr>
<tr>
<td>тивность</td>
<td>12-14</td>
<td>74</td>
<td>37</td>
<td>77,0</td>
<td>12</td>
<td>16,2</td>
</tr>
<tr>
<td></td>
<td>27-28</td>
<td>65</td>
<td>46</td>
<td>70,8</td>
<td>18</td>
<td>27,7</td>
</tr>
<tr>
<td></td>
<td>41-42</td>
<td>40</td>
<td>28</td>
<td>70,0</td>
<td>11</td>
<td>27,5</td>
</tr>
<tr>
<td>Время свер-</td>
<td>1-2</td>
<td>20</td>
<td>9</td>
<td>45</td>
<td>9</td>
<td>45</td>
</tr>
<tr>
<td>тываемия</td>
<td>3-5</td>
<td>51</td>
<td>7</td>
<td>13,8</td>
<td>40</td>
<td>78,4</td>
</tr>
<tr>
<td></td>
<td>12-14</td>
<td>73</td>
<td>8</td>
<td>11,0</td>
<td>56</td>
<td>76,7</td>
</tr>
<tr>
<td></td>
<td>27-28</td>
<td>65</td>
<td>2</td>
<td>61,0</td>
<td>51</td>
<td>78,4</td>
</tr>
<tr>
<td></td>
<td>41-42</td>
<td>38</td>
<td>2</td>
<td>5,3</td>
<td>32</td>
<td>84,2</td>
</tr>
</tbody>
</table>
Начальные нормальные цифры ФА можно трактовать как компенсаторную защитную реакцию антисвертывающей системы в связи с возникновением инфаркта миокарда, как своеобразного стресса (4,II). При недостаточной мобилизации антисвертывающих механизмов эта реакция отсутствует или выражена в незначительной степени.

Выводы

1. В первые 48 часов после возникновения инфаркта миокарда коагуляционная активность крови умеренно повышена приблизительно у половины больных. Наиболее высокой является концентрация фибриногена, достигающая максимума на 2-ой неделе и сохраняющаяся выше нормы до конца периода наблюдения.

2. Фибринолитическая активность в первые 48 часов после возникновения инфаркта миокарда держится на нормальном уровне у 55% больных. С 3-го дня начальная защитная реакция антисвертывающей системы крови у подавляющего большинства больных заменяется стойкой депрессией. При лечении больных инфарктом миокарда целесообразно применять лекарства, стимулирующие фибринолиз.

Литература

1. Кудряшов Б.А. Внутрисосудистое тромбообразование в физиологическом и биохимическом аспекте. Кардиология, 1961, 5, 7-17.
3. Панченко В.М. Свертывающая и противосвертывающая система в патогенезе и лечении внутрисосудистых тромбозов, М., 1967.
4. Чазов Е.М. Тромбоизы и эмболии в клинике внутренних болезней, М., 1966.
5. Балуда В.П. О механизмах нарушения свертываемости крови в клинике и эксперименте. Проблемы гематологии и переливания крови. 1962, 1, 10-16.

7. Живодеров В.М., Пинькович Н.М., Мяхов Н.Т., Краменко С.В. Изменение тромбоэластограммы и ее соотношение с фибринолитической активностью при коронарной недостаточности. Кардиология, 1967, 4, 56-60.

9. Коняев Б.В., Руднева П.А., Буянина О.П., Нехлюдова В.К., Сычева Л.К. О некоторых показателях свертывающей и анти-свертывающей системы крови у больных инфарктом миокарда и коронарной недостаточностью. Кардиология, 1964, 1, 16-22.

13. Балуда В.П., Маляровский В.Н., Ойвин И.А. Лабораторные методы исследования свертывающей системы крови, М., 1962.

Über die Blutgerinnung beim Herzinfarkt

R. Kasknets

Zusammenfassung

ИЗМЕНЕНИЯ СВЕРТЫВАЕМОСТИ КРОВИ ПРИ ИШЕМИЧЕСКОЙ БОЛЕЗНИ СЕРДЦА В СВЯЗИ С ЛЕЧЕНИЕМ НИКОТИНОВОЙ КИСЛОТОЙ

Каскметс Р.В.

При ишемической болезни сердца отмечена повышенная свертываемость крови как за счет активации коагулирующих факторов, так и за счет угнетения противосвертывающей системы крови, особенно фибринолитической активности (1,2,3,4,5 и др.). Из обычных, применяемых при лечении коронарной недостаточности, медикаментов (антикоагулянты, спазмолитические средства и т.д.) представляет интерес никотиновая кислота. Имеются данные о способности никотиновой кислоты повышать фибринолитическую активность крови (6,7,8,9,10,11,12,13). Одни авторы отмечают подобное действие только при внутривенном применении больших доз никотиновой кислоты (7,8,10,14), другие описывают положительные результаты и при назначении никотиновой кислоты в умеренных дозах перорально (6,9,13,15,16,17). Даже очень большие дозы никотиновой кислоты (3-10 г в день), по Ахрем-Ахремовичу (18), не вызывали никаких побочных явлений.

Кроме активации фибринолиза крови во время лечения никотиновой кислотой, установлены и желательные сдвиги других показателей свертываемости крови: понижение протромбинового показателя (6,13,19) и толерантности плазмы к гепарину (6,7,9), удлинение времени рекальцификации (8,20). Ценной является никотиновая кислота также из-за спазмолитических (2) и нормализующих обмен свойств (19-22,23,24).

Учитывая вышеуказанные особенности действия никотиновой кислоты, мы применяли ее у 22 больных (в возрасте 41-68 лет) ишемической болезнью сердца; 12 из них были с инфарктом миокарда, 10 - с хронической коронарной недостаточностью. Никотиновую кислоту назначали в дозах 0,05-3 раза в день перорально. Повторно определялась коагулограмма, включающая 7 показателей: 1) протромбиновый показатель по методу Quick'a (цит.25), 2) фибриноген биуретовым методом (цит.26), 3) тромботест по методу Hita в модифика-
ции Котовщиковой (27, 4), время свертывания по методу Bürker'а (цит.27), 5) время рекальцификации по методу Bergerhof-Roka (цит.26), 6) толерантность плазмы к гепарину по методу Marbet'a и Winterstein'a (цит.28), 7) фибринолитическую активность по методу Котовщиковой и Кузькина (27).

Больных хронической коронарной недостаточностью обследовали до лечения, на 3-4 и 6-9 дни лечения, а больных инфарктом миокарда – еще на 12-14, 20-21 и 27-28 дни. Контрольная группа включала 20 здоровых лиц (в возрасте более 40 лет).

Результаты (рис.1).

Под влиянием лечения никотиновой кислотой у больных инфарктом миокарда повышенный протромбиновый показатель снизился несколько ниже нормы, уровень фибриногена и толерантности к гепарину также имели тенденцию к понижению, но эти изменения были статистически недостоверны. Время рекальцификации нормализовалось, время свертываемости удлинилось, тромботест не изменялся.

При хронической коронарной недостаточности протромбиновый индекс, тромботест и толерантность к гепарину приходили в норму, время рекальцификации увеличивалось, но при этом \(p > 0,05 \). Время свертывания оставалось в пределах нормы. Повышенное содержание фибриногена сохранялось.

При обеих формах ишемической болезни сердца наиболее выраженным было повышение фибринолитической активности до нормы уже с первых дней лечения. Достигаемый уровень фибринолитической активности сохранялся до конца курса лечения.

В итоге можно сказать, что применение никотиновой кислоты при лечении больных коронарной недостаточностью мы считаем оправданным. Никотиновая кислота активизирует фибринолиз и вызывает положительные сдвиги с остальных звеньях свертывающей системы крови.
ИЗМЕНЕНИЯ ПОКАЗАТЕЛЕЙ СВЕРТЫВАЕМОСТИ КРОВИ (СРЕДНЮЕ ДАННЫЕ) ПРИ ЛЕЧЕНИИ НИКОТИНОВОЙ КИСЛОТОЙ
Литература

I. Чазов Е.И. В кн.: Тромбозы и эмболии в клинике внутренних болезней, М., 1966.

2. Панченко В.М. Свертывающая и противосвертывающая системы в патогенезе и лечении внутрисосудистых тромбозов. Материалы конференции по проблемам свертывания крови, Баку, 1966, 222-224.

3. Панченко В.М. В кн.: Свертывающая и противосвертывающая система в патогенезе и лечении внутрисосудистых тромбозов, М., 1967.

4. Урбанюк К.Г. О претромботических состояниях при гипертонической болезни. Тер.арх., 1962, I, 39-44.

10. Балуда В.П., Черная В.В. Патогенез, клиника и принципы лечения внутрисосудистых тромбообразований. Акушерство и гинекология, 1961, 2, 48-55.

13. Дерягина Г.П. Влияние медикаментов, широко применяемых при атеросклерозе, на систему свертывания крови. Казанский мед. журнал, 1964, 6, 26-28.

14. Шершевский М.Г. Влияние никотиновой кислоты на фибринолитическую активность крови при атеросклерозе. Кардиология, 1963, 1, 64-68.

17. Ганелина И.Е., Дерягина Г.П., Криворученко И.В. и Липовецкий Б.М. Липиды крови и некоторые показатели состояния системы свертывания. Тер. арх., 1963, 7, 13-22.

18. Ахрем-Ахремович Р.М. К клинике и лечению облитерирующего атеросклероза. Акт. проблемы сердечно-сосудистой патологии, 1967, 228-238.

20. Герасимова И.Л. Влияние никотиновой кислоты на свертывание крови, содержание в ней гепарина и фактор просветления у больных атеросклерозом. Кардиология, 1963, 1, 61-64.

27. Филатов А.Н., Котовщикова М.А. Свертывающая система крови в клинической практике, М., 1963.

Über die Veränderung der Blutgerinnung unter Behandlung der Koronarkranken mit Nicotinsäure.

R. Kaskmets

Zusammenfassung

Es wurden 32 Koronarkranken (22 mit Herzinfarkt, 10 mit chronischer Koronarinsuffizienz) mit Nicotinsäure in Dosen 0,05 g x 3 behandelt. Man betrachtete günstige Verschiebungen im Koagulogramm, insbesondere hat sich die fibrinolytische Aktivität erhöht.
Тромбоэластографическое исследование свертываемости крови при ишемической болезни сердца

Каскметс Р.В.

Тромбоэластография является одним из современных методов исследования свертываемости крови. Она позволяет графически регистрировать ход процесса свертывания и объективно отражает отдельные его фазы.

Изучению свертываемости крови при атеросклерозе и при ишемической болезни сердца посвящено немало работ. Большинство авторов, применяющих тромбоэластографию, установило при ишемической болезни признаки повышенной свертываемости (1,2,3,4,5,6,7,8). В.М. Панченко (1) различает при этом 2 степени: 1) тромбофилическое состояние — укорочение Р и К, увеличение MA; 2) латентная тромбофилия — Р и К в норме, MA увеличен. Однако в некоторых сообщениях отмечена нормальная или в остром периоде инфаркта миокарда даже сниженная свертываемость крови, которая в дальнейшем нормализуется или повышается (1,9,10,11,12,13).

Мнения о свертываемости крови в различных стадиях и при отдельных формах ишемической болезни сердца, а также о связи свертываемости с возрастом и проведением лекарственной терапии расходятся. Отсутствуют также единицы, обобщенные данные о корреляциях показателей тромбоэластограмм и других биохимических исследований.

Мы проводили тромбоэластографические исследования у 46 больных в возрасте 41-76 лет, из них 30 были с хронической коронарной недостаточностью, 16 с инфарктом миокарда. У части больных тромбоэластограммы (ТЭ) и коагулограммы проводились повторно. Всего изучено 96 ТЭ и 60 коагулограмм. Контрольную группу составили 25 здоровых лиц, из которых 15 были в возрасте до 40 лет, 10 — свыше 40 лет. Учитывался возраст обследованных больных, контролем служили данные старшей группы, в которой зарегистрированы большие величины констант ТЭ (MA, E, e, si), чем в младшей группе.
Рис. 1.

СХЕМА ТРОМБОЭЛАСТОГРАММЫ

100 МА
100-МА

\[E = \frac{100 \times MA}{100-MA} \]

\[j = \tan \times x \times 100 \]

\[c = \frac{MA}{P+K_1} \]
Методика. Исследования проводились на цельной крови при помощи тромбоэластографа типа ИСК-2, со скоростью движения бумажной ленты 3 мм/сек. Для удобства оценки мы пользовались измерениями в миллиметрах. Вывели следующие тромбоэластографические величины: $P, K_I, P+K_I, K_2(C), MA, t, T, \alpha, c_1$ (рис.1). Одновременно изучали и коагулограмму по 7 показателям: 1) протромбиновый индекс по методу Quick'a, 2) содержание фибриногена, определяемое биуретовым методом, 3) тромботест по методу Hita в модификации Котовщиков, 4) время свертывания крови по методу Bürker'a, 5) время рекапсуляции по методу Bergerhof-Roka, 6) толерантность плазмы к гепарину по методу Marbet-winterstein'a, 7) фибринолитическая активность по М.А.Котовщицкой и Б.И.Кузишик.

Больных инфарктом миокарда обследовали на 2-4, 14-16 и 25-28 дни болезни; исследования больных хронической коронарной недостаточностью проводились до начала лечения и на 8-10 дни лечения. Полученные результаты подвергались статистической обработке.

Результаты: У больных инфарктом миокарда на 2-4 дни болезни в среднем наблюдались признаки гиперкоагуляции почти во всех сегментах ТЭ - укорочение $P, K_I, P+K_I, K_2, t, T$; увеличение индексов α и c_1. Склонность к повышению свертываемости крови свидетельствовала и сдвиги коагулограмм - высокая концентрация фибриногена, укороченное время рекапсуляции, повышение толерантности плазмы к гепарину и понижение фибринолитической активности крови. Протромбиновый показатель, тромботест и время свертывания мало отклонялись от нормы.

Все вышеуказанные изменения ТЭ наблюдались только у 50% больных. В то же время данные коагулограммы у большинства больных указывали на гиперкоагуляцию, при этом фибринолитическая активность была понижена исключительно у всех больных. Увеличение протромбинового показателя, степени тромботеста и времени свертывания крови мы отмечали только у единичных больных.

При хронической коронарной недостаточности средние величины ТЭ практически не отклонялись от нормы, MA, α и c_1
оказались даже несколько сниженными. У 17 из 30 больных K_I все-таки был несколько укорочен. Однако показатели коагулограммы у этих больных указывали на явное повышение свертываемости крови. У большинства больных наблюдалось укорочение времени рекальцификации, повышение толерантности к гепарину, понижение фибринолитической активности. Следует отметить, что уровень фибринолитической активности у больных хронической коронарной недостаточностью все же выше, чем при инфаркте миокарда.

Таким образом, при нормальной ТЭ показатели коагулограммы могут указывать на повышенную коагуляцию крови.

Некоторые исследователи (1,14,15) указывают, что при наличии болевого синдрома в острой стадии инфаркта миокарда возникают защитные реакции организма, направленные на предупреждение внутрисосудистого тромбообразования и вследствие этих реакций наступает повышение фибринолитической активности.

Наши наблюдения за больными инфарктом миокарда с наличием болевого синдрома указывают на некоторое замедление при этом свертываемости крови - на тромбоэластограмме удлинение P_1, $P+K_I$, T, уменьшение констант α и c_1. Но по другим показателям ТЭ (K_2, t) свертываемость крови осталась все же повышенной. Коагулограмма у этих больных не отличалась от нормы или наблюдалась только некоторая тенденция к повышению фибринолитической активности ($p < 0,1$).

Таким образом, ТЭ при сопровождающем инфаркт миокарда болевом синдроме представляет более чувствительным комплексом исследования, чем коагулограмма.

Во время лечения антикоагулянтами наиболее существенные показатели тромбоэластограммы - P, $P+K_I$, K_2, t, T - увеличиваются, а угловой констант α и индекс гиперкоагуляции c_1 уменьшаются. В то же время в коагулограмме отмечаются небольшие сдвиги.

По сравнению с больными, не подвергнутыми лечению антикоагулянтами, при лечении противосвертывающими средствами отмечается снижение толерантности плазмы к гепарину и повышение фибринолитической активности крови, но эти изменения не всегда статистически достоверны. Повышенная готов-
нность к тромбообразованию сохраняется, что, по-видимому, может быть обусловлено недостаточной дозировкой антикоагулянтов.

При лечении без антикоагулянтов на тромбоэластограмме также наблюдаются сдвиги к улучшению – удлиняются Р, K₂, t, Т – но эти изменения менее выражены, чем при лечении антикоагулянтами. Коагулограмма при этом остается без существенных изменений и только уровень фибриногена снижается.

Сопоставление результатов биохимических и тромбоэластографических исследований показывает, что ТЭ является одним из наиболее чувствительных методов исследования свертываемости крови. Показатели коагулограммы более инертны.

Корреляционные связи константов ТЭ и коагулограммы изучены многими авторами. Одни указывают на полную связь между протромбиновым показателем и Р тромбоэластограммы (7,16,17). По мнению других, устойчивые корреляции между этими показателями отсутствуют (8,9,18,19,20,21,22). Панченко (I), Киселева (22), Wohlliebe и Wenzel (23) считают, что лишь протромбиновый показатель 5% и ниже оказывается на тромбоэластограмме. Взаимосвязь между MA тромбоэластограммы и фибриногеном коагулограммы отсутствует или наблюдается только у части больных (1,12,24). По данным В.М. Панченко (I), существует некоторый параллелизм между R толерантностью плазмы к гепарину. По Живодерову (6) MA уменьшается при высоком фибринолизе.

В результате сопоставления данных нашего материала были установлены следующие достоверные корреляции между показателями тромбоэластограмм и коагулограмм (по коэффициенту корреляции т). Таблица 1.

При хронической коронарной недостаточности наблюдается отрицательная корреляция между протромбиновым показателем и Р, P+K₁, t, T тромбоэластограммы, время рекальцификации коррелирует с первыми сегментами ТЭ и зависящими от них константами. Существуют еще следующие взаимосвязи: показатель тромботест - K₁, толерантность к гепарину – MA время свертывания – P, K₁, MA, E. Устойчивой оказалась корреляции MA, E – фибриноген, как при хронической коро-
Достоверные корреляции между показателями тромбоэластограммы и коагулограммы

<table>
<thead>
<tr>
<th>Исследованные показатели</th>
<th>Коэффициент корреляции</th>
<th>Показатели коагулограммы</th>
<th>Тромбоэластограммы</th>
</tr>
</thead>
</table>
| Протромбиновый показатель | | П | -0,792
| | | P + K | -0,836
| | | K | 0,606
| | | MA | 0,738
| | | T | 0,618
| Фибриноген | | K | -0,448
| | | K | 0,507
| | | MA | 0,574
| | | 0,680
| Тромбостест | | K | -0,404
| | | P | 0,477
| | | P + K | 0,477
| | | K | 0,554
| | | MA | 0,628
| | | 0,551
| Толерантность плазмы к гепарину | | MA | 0,470
| | | 0,594
| Фибринолитическая активность | | MA | 0,715
| | | P | 0,856
| | | K | 0,902
| | | MA | -0,820

Таблица I
нарной недостаточности, так и при инфаркте миокарда, причем фибринолитическая активность обратно пропорциональна коррелирует с MA, E.

Выводы

1. В острой стадии инфаркта миокарда у около 50% больных на тромбоэластограммах выявляются признаки гиперкоагуляции крови. При хронической коронарной недостаточности важнейшие константы тромбоэластограмм в большинстве случаев находятся в пределах нормы.

2. Сдвиги в сторону повышенной свертываемости крови при инфаркте миокарда больше отражаются на коагулограмме. По сравнению с коагулограммой, тромбоэластограмма меньше отражает повышение свертываемости крови.

3. Для наблюдения за наступающими во время лечения сдвигами свертываемости крови, показатели тромбоэластограмм являются более чувствительными, чем показатели относительно инертных коагулограмм.

4. При ишемической болезни сердца наблюдается достоверная прямая связь между протромбиновым показателем, временем рекальцификации, величиной первых сегментов тромбоэластограммы ($P, P+K_1, K_2$) и зависящими от них константами ($\alpha, C1$). Весьма устойчивой при этой болезни является также корреляция уровня фибриногена крови с величиной MA и E тромбоэластограммы.

5. Для адекватной и более полной характеристики состояния системы свертывания крови при ишемической болезни сердца необходимо, кроме тромбоэластограммы, определять и коагулограмму, в частности и основные показатели ее — толерантность плазмы к гепарину и фибринолитическую активность.

Литература

1. Панченко В.М. Свертывающая и противосвертывающая система в патогенезе и лечении внутрисосудистых тромбозов, М., 1967.
2. Панченко В.М. Характеристика свертывающей системы крови по данным тромбоэластограммы у больных с нарушением венечного кровообращения. Тер.арх., 1964, 4, 64-71.

5. Мizin И.И. Свертываемость крови при ишемической болезни сердца и антикоагулянтная терапия. Тер.арх., 1967, 10, 43-47.

6. Живодеров В.М., Пинькевич И.М., Ляхов Н.Т., Крамченко С.В. Изменение тромбоэластограммы и ее соотношение с фибринолитической активностью при коронарной недостаточности. Кардиология, 1967, 4, 56-60.

10. Коняев Б.В., Руднева П.К., Вьюшина О.П., Неклюдова В.К., Сычева Л.К. О некоторых показателях свертывающей и антисвертывающей системы крови у больных инфарктом миокарда и коронарной недостаточностью. Кардиология, 1964, I, 16-22.
13. Жданов Ю.Е. Тромбоэластограмма при инфаркте миокарда и тромбозах периферических сосудов, ее изменения при лечении гепарином и фибринолизином. В сб.: Вопр. кардиологии, Горький, 1966, 70-76.
14. Чазов Е.И. Тромбы и эмболии в клинике внутренних болезней, М., 1966.
15. Чазов Е.И. В кн.: Атеросклероз и тромбоз. М., 1964, 154-166.
19. Романов В.П. Сравнительные данные тромбоэластографических и биохимических показателей у больных инфарктом миокарда и стенокардией при антикоагулянтной терапии. Тер. арх. 1964, 6, 11-17.

Über die thromboelastographische Untersuchungsmethode bei der Koronarkrankheit.

R. Kaskmets

Zusammenfassung

Im Artikel werden die Resultate der thromboelastographischen und koagulographischen Untersuchungen an 46 Patienten mit der Koronarkrankheit dargestellt. Im Koagulogramm hat sich die Tendenz zur Hyperkoagulabilität mehr gekennzeichnet als im Thromboelastogramm, besonders beim Myokardinfarkt. Das Thromboelastogramm aber hat sich als eine empfindliche Untersuchungsmethode zur Beurteilung der Blutgerinnung unter der Behandlung mit verschiedenen Medikamenten, insbesondere mit Antikoagulatien bewiesen. Es wird betont, daß neben dem Thromboelastogramm auch die wichtigsten Teste des Koagulogrammes - Heparintoleranz und fibrinolytische Aktivität - diagnostisch wertvoll sind.
ИЗУЧЕНИЕ ЖИРОВОГО ОБМЕНА СТУДЕНТОВ

М.Э. Саава

Данных, характеризующих жировой обмен населения Эстонской ССР, мало. В литературе имеются некоторые указания на то, что уровень холестеринемии у населения Эстонской ССР выше уровня холестеринемии некоторых других местностей Советского Союза (Душанбе, Рязань, Архангельск, Ташкент, Белорусская ССР) (1,2,3). В работах Э.Вагане и М.Саава (4,5,6) показано, что рабочих, служащих и колхозников Эстонской ССР гиперхолестеринемия встречается довольно часто (у 55–75% обследованных). Однако данные о жировом обмене для более молодых групп населения ЭССР, в том числе и для студентов, отсутствуют.

Из литературных данных известно, что у работников умственного труда отмечается выраженная тенденция к расстройствам жирового обмена (к гиперхолестеринемии и снижению отношения фосфолипидов к холестерину) (7,8,9,10,11).

Целью данной работы явилось изучение жирового обмена у студентов как представителей напряженного умственного труда. Обследовалось всего 63 практически здоровых студента Таллинского Политехнического Института, из них 33 мужчины и 30 женщин в ноябре 1967 года и в мае 1968 года. Оба периода были самыми напряженными для студентов и различались по характеру питания. Все обследованные находились в приблизительно одинаковых материально-бытовых условиях в общежитиях. Среди обследованных не было регулярно занимающихся спортом. Средний возраст студентов был 21 год.

При получении приводимых ниже данных жирового обмена пользовались следующими показателями и методикой: в сыворотке крови, взятой утром натощак из вены, определяли содержание общего холестерина по спиртовому методу Блюронейшле (цит.12), отдельные фракции холестерина дигитониновым методом по С.Д. Балаховскому (цит.13), содержание фосфолипидов по Блюру (цит.13) при помощи цветной реакции на неорганический фосфор по Фиске и Суббороу (14), фрак-
ции липопротеидов по Л.К. Бауману методом электрофореза на бумаге с предварительной окраской судан черным (цит. И3). Вычисляли коэффициент этерификации холестерина, т.е. отношение этерифицированного холестерина к общему холестерину, и отношение фосфолипидов к общему холестерину.

Для оценки результатов исследований нормами жирового обмена брали по А.А. Покровскому (1964) (цит. И3): общий холестерин 130-200 мг%, свободный холестерин 40-70 мг%, этерифицированный холестерин 90-110 мг%, фосфолипиды 150-250 мг%, альфа-липопротеиды 25-30% и бета-липопротеиды 65-70%.

Результаты исследований подвергли статистической обработке. Достоверность различий определяли по t-критерию (15). Достоверными приняли различия р < 0,05.

Полученные данные холестеринового обмена представлены в таблице I.

Исследования показали, что среднее содержание общего и свободного холестерина в сыворотке крови у студентов были выше нормы как осенью, так и весной. Гиперхолестеринемия была отмечена осенью у 63% и весной у 76% всех обследованных (рисунок I).

У всей группы студентов среднее содержание общего и свободного холестерина в сыворотке крови осенью не отличалось от соответствующей средней величины весной. Отмечалось повышение общего холестерина в сыворотке крови у женщин весной за счет повышения у них содержания свободного холестерина в сыворотке (р < 0,02). У мужчин не отмечалось изменений в среднем содержании общего и свободного холестерина сыворотки крови в зависимости от сезона. У женщин среднее содержание общего и свободного холестерина в сыворотке крови весной выше, чем у мужчин (р < 0,02), но осенью такого различия не отмечалось.

Количество этерифицированного холестерина в сыворотке крови было в пределах нормы как у всей группы студентов, так и у мужчин и женщин отдельно, и этот показатель не претерпевал изменений в зависимости от пола и сезона исследований.

Соответственно высокому содержанию общего и свободного холестерина к нормальному уровню этерифицированного холестерина.
Среднее содержание холестерина и холестериновых фракций и коэффициент этерификации холестерина в сыворотке крови студентов в зависимости от полу и сезона года

<table>
<thead>
<tr>
<th>Группа</th>
<th>Холестерин в мг% $M \pm m$</th>
<th>Коэффициент этерификации холестерина</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Общий</td>
<td>Свободный</td>
</tr>
<tr>
<td>осень</td>
<td>весной</td>
<td>осенью</td>
</tr>
<tr>
<td>Мужчины</td>
<td>207</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td>$\pm 10,2$</td>
<td>$\pm 5,9$</td>
</tr>
<tr>
<td>Женщины</td>
<td>218</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>$\pm 9,4$</td>
<td>$\pm 6,5$</td>
</tr>
<tr>
<td>Вся группа</td>
<td>213</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>$\pm 6,9$</td>
<td>$\pm 4,7$</td>
</tr>
</tbody>
</table>
Рис. 1. Процент ооследованных с гиперхолестеринемией.

А - среди всей группы студентов,
Б - среди мужчин,
В - среди женщин;
Столбцы без штриховки - осенние данные,
Столбцы со штриховкой - весенние данные.
стерина в сыворотке крови у студентов коэффициент этерификации холестерина не достигал нормального уровня (норма 0,6 - 0,8 по Е.И.Фодорову (цит.12). Коэффициент этерификации холестерина у всей группы студентов устойчив и не изменялся в исследованные периоды. У женщин же коэффициент этерификации холестерина весной был ниже чем осенью ($p < 0,05$).

Среднее содержание фосфолипидов в сыворотке крови у всей группы студентов оказалось повышенным: осенью $301 \pm 17,1$ мг% и весной $275 \pm 16,5$ мг%. Процент обследованных с содержанием фосфолипидов в сыворотке крови выше нормы осенью был 67%, а весной 52%. Не удалось доказать разницу в содержании фосфолипидов в сыворотке крови в зависимости от пола и от сезона исследований.

Отношение фосфолипидов к общему холестерину было у студентов выше единицы и имело тенденцию к снижению в весенний период. Если у всей группы студентов это отношение осенью было $1,46 \pm 0,071$, то весной оно понизилось $1,27 \pm 0,076$. Однако это различие оказалось статистически недостоверным ($0,1 > p > 0,05$). Также не удалось выявить статистически достоверной разницы отношения фосфолипидов к общему холестерину между мужчинами и женщинами в отдельные сезонные периоды.

У студентов часто отмечалось повышение бета-липопротеидов сыворотки крови. Бета-гиперлипопротеинемия была выявлена осенью у 33% и весной у 67% всех обследованных студентов. При этом процентное содержание отдельных фракций липопротеидов в сыворотке крови подвержено значительным изменениям в зависимости от пола студентов и от сезона года (таблица 2).

Оказалось, что процентное содержание бета-липопротеидов у мужчин выше, чем у женщин как осенью, так и весной, в то же время процентное содержание альфа-липопротеидов больше у женщин в оба периода исследований. Процентное содержание бета-липопротеидов в сыворотке крови как у всей группы студентов, так и у мужчин и женщин отдельно было выше весной, чем осенью, а процентное содержание альфа-липопротеидов, наоборот, у всех групп было больше осенью по сравнению с весенними данными. Приведенные половые и сезон-
<table>
<thead>
<tr>
<th>Группа</th>
<th>Альфа-липопротеиды в% (M \pm m)</th>
<th>Бета-липопротеиды в% (M \pm m)</th>
<th>(P_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>осенью</td>
<td>весной</td>
<td>осенью</td>
</tr>
<tr>
<td>Мужчины</td>
<td>30,0</td>
<td>24,2</td>
<td>70,0</td>
</tr>
<tr>
<td></td>
<td>±1,04</td>
<td>±0,83</td>
<td>+1,04</td>
</tr>
<tr>
<td>Женщины</td>
<td>36,8</td>
<td>29,1</td>
<td>63,2</td>
</tr>
<tr>
<td></td>
<td>±1,31</td>
<td>±0,97</td>
<td>±1,31</td>
</tr>
<tr>
<td>(P_1)</td>
<td><0,002</td>
<td><0,001</td>
<td><0,002</td>
</tr>
<tr>
<td>Вся группа</td>
<td>34,0</td>
<td>27,2</td>
<td>66,0</td>
</tr>
<tr>
<td></td>
<td>±1,29</td>
<td>±0,64</td>
<td>±1,29</td>
</tr>
</tbody>
</table>

Примечание. 1) \(P_1 \) — для сравнения показателей у мужчин и женщин.
2) \(P_2 \) — для сравнения осенних и весенних данных.
ные различия в содержании липопротеидных фракций в сыворотке крови у студентов были статистически достоверными.

Различия в жировом обмене в зависимости от пола и сезона совпадают с некоторыми литературными данными (16,17, 18,19). Также известно, что у работников умственного труда встречается атеросклероз и его осложнения раньше и в несколько раз чаще, чем у людей занятых физическим трудом (20,21, 22, 23, 24, 25).

Поэтому выясненные у студентов особенности жирового обмена в направлении гиперхолестеринемии, гиперфосфолипемии и бета-гиперлипопротеинемии могут быть предпосылкой для дальнейшего раннего развития у них атеросклеротического процесса. Очень важны раннее выявление расстройств жирового обмена у лиц умственного труда и своевременное применение профилактических мероприятий для их нормализации при помощи сбалансированного питания и повышения физической активности.

Литература

1. Глазунов И.С. Кардиология, 1961, 3, 30-35.
3. Аширматов А.Э. К вопросу жиро-липоидного обмена и лечения атеросклероза. Автореф., Ташкент, 1968.
5. Вагане Э. и Саава М. Материалы I кардиологической научно-практической конференции ЭССР, посвящ. 50-летию советской власти, Таллин, 1967, 214-216.
7. Глазер Г.А. и Мясников Л.А. Кардиология, 1961, 3, 35-38.
15. Кудрин А.Н. и Пономарева Г.Т. Применение математики в экспериментальной и клинической медицине, М., 1967.
16. Kornerup, V. Arch. of Internal Medicine, 1951, 85, 3, 398-415.
18. Устиловский В.Д. Материалы XI научной сессии ГГМИ и Всесоюзного симп. по тиамину, Минск, 1966, 374.
Studies on Lipid Metabolism in Students

M. Saava

Summary

The level of lipids (total and free cholesterol, cholesterol esters, phospholipids and lipoproteids) in the blood serum was determined in a group of 63 students of the Tallinn Polytechnical Institute during autumn and spring months as the periods of the most active mental activity. The average age of group was 21.

All the lipid levels were analysed according to the sex of the subjects and to the season.

Values exceeding the norm levels were noted at total and free cholesterol and in the case of phospholipids and beta-lipoproteids. A difference in total and free cholesterol between sexes occurred most often in spring, and alfa- and beta-lipoproteids both in spring and in autumn.

In spring free and total cholesterol levels were higher in females than in males. The beta-lipoproteid level was higher in males than in females both in spring and autumn, and the alfa-lipoproteid level was higher in females than in males in both seasons. A considerable rise of beta-lipoproteids was observed in both sexes by spring. In spring a higher level of total cholesterol was found in females at the expense of a rise in free cholesterol.

The phospholipid cholesterol index was higher than 1 in the whole group and declined by spring.

No seasonal and sex differences were noted in cholesterol esters and phospholipids.
1. J. Riiv, M. Lind, M. Lööper
 Evaluation of the activity of the sympatho-adrenal system by the determination of protein-bound catecholamines in blood

2. K. Valgma
 О виброкардиографических изменениях при ишемической болезни сердца

3. K. Valgma, J. Riiv
 О кинетике сердца в условиях стимуляции и блокирования симпато-адренальной системы...

4. K. Valgma, J. Riiv
 On factors conducive to ischemic heart disease. Summary

5. Я. Рийв, К. Валгма
 О влиянии физической нагрузки на содержание симпатических катехоламинов в плазме крови и кинетическую функцию сердца у здоровых и больных ишемической болезнью сердца
J. Riiv, K. Valgma
Influence of exercise on blood plasma sym-
mathetic catecholamine content and on
cardiac kinetic function in healthy sub-
jects and ischemic heart disease patients.
Summary ...

6. Я. Рийв, К. Валгма, М. Лёёпер.
О действии некоторых нейротропных и антиан-
гинозных средств на содержание катехолами-
нов, связанных с белками плазмы

J. Riiv, K. Valgma, M. Lööper
On the effect of some neurotropic and anti-
anginous drugs on the protein-bound catechol-
amine content in plasma. Summary

7. Я. Рийв, М. Линд, М. Лёёпер, М. Мокс
О роли симпато-адренальной системы в патоге-
незе ишемической болезни сердца.............

J. Riiv, M. Lind, M. Lööper, M. Mokes
On the role of the sympatho-adrenal system
in the pathogenesis of ischemic heart disease.
Summary ...

8. Я. Рийв, П. Маллене, Р. Каскметс, М. Линд.
Активность симпато-адренальной системы, свер-
тываемость крови и содержание электролитов
крови у больных ишемической болезнью сердца
в различных стадиях болезни

J. Riiv, P. Mallene, R. Kaskmets, M. Lind
Activity of the sympatho-adrenal system, blood
coagulability and blood electrolyte content in
various stages of ischemic heart disease.
Summary ...

9. Я. Рийв, А. Куус, М. Мокс.
Активность симпато-адренальной системы и со-
держание липидов крови в условиях эмоциональ-
ного стресса
J.Riiv, A.Kuus, M.Moks
Activity of the sympato-adrenal system and the blood lipid content in conditions of emotional stress. Summary

10. Р.Каскметс
О свертываемости крови у больных инфарктом миокарда
R.Kaskmets
Über die Blutgerinnung beim Herzinfarkt.
Zusammenfassung

II. Р.Каскметс
Изменения свертываемости крови при ишемической болезни сердца связи с лечением никотиновой кислотой
R.Kaskmets
Über die Veränderung der Blutgerinnung unter Behandlung der Koronarkranken mit Nicotinsäure. Zusammenfassung

12. Р.Каскметс
Тромбоэластографические исследования свертываемости крови при ишемической болезни сердца ..
R.Kaskmets
Über die thrombo-elastographische Untersuchungsmethode bei der Koronarkrankheit.
Zusammenfassung

13. М.Саава
Изучение жирового обмена студентов
M.Saava
Studies on lipid metabolism in students.
Summary
Hind 1 rbl.