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ABSTRACT 

Every organisation can be conceived as a system where value is created by 
means of business processes. In large organizations, it is common for business 
processes to be represented by means of process models, which are used for a 
range of purposes such as internal communication, training, process improve-
ment and information systems development. Given their multifunctional cha-
racter, process models need to be captured in a way that facilitates understand-
ing and maintenance by a variety of stakeholders. 

To achieve this goal, it is generally accepted that a complex business process 
should not be captured as a single large model but rather as a collection of 
smaller and simpler models following a divide-and-conquer approach. This ad-
vice applies particularly in the case of business processes that have multiple 
variants, such as an order-to-cash process that varies depending on the geo-
graphic region, customer type or product type. 

For the purpose of modeling, a business process can be divided in two ways. 
On the one hand, a process may be split into subprocesses, such that their con-
catenation captures the entire process. On the other hand, a process may be split 
into variants, such that each variant captures end-to-end, a subset of the possible 
executions of the process. In other words, the process is the union of its 
variants. 

The benefits of divide-and-conquer approaches to process modeling are 
widely acknowledged. Accordingly, a range of subprocess decompositon cri-
teria and heuristics as well as process variant modeling approaches have been 
proposed. However, proposals in this field have largely been made in isolation 
of one another, leading to a lack of an integrated divide-and-conquer approach 
to modeling business processes with variants. 

This thesis addresses this gap by proposing an integrated decomposition-
driven method for modelling business processes with variants. The core idea of 
the method is to incrementally construct a decomposition of a business process 
and its variants into subprocesses. At each level of the decomposition and for 
each subprocess, we determine if this subprocess should be modelled in a con-
solidated manner (one subprocess model for all variants or for multiple variants) 
or in a fragmented manner (one subprocess model per variant). This decision is 
taken based on two parameters: (i) the business drivers for the existence of the 
variants; and (ii) the degree of difference in the way the variants produce their 
outcomes. 

The method is validated via two real-life case studies: one concerning the 
consolidation of existing process models, and another dealing with green-field 
process discovery. In both cases, the method produced fewer models with res-
pect to the baseline and reduced duplicity by up to 50%, without significant 
impact on the complexity of the resulting process models.  
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1 INTRODUCTION 

Organizations, be it non-profit, governmental or private, operate in an increas-
ingly competitive and changing landscape. In order to gain or maintain their 
competitive edge, they constantly seek to improve their efficiency. It is essential 
for organizations to constantly evaluate how they create value and identify op-
portunities for improvement, if they are to reach higher levels of efficiencies. A 
means to this end is by focusing on the value producing processes of an organi-
zation. Such approaches and methods fall within the Business Process Manage-
ment (BPM) field.  

BPM is “the art and science of overseeing how work is performed in an or-
ganization to ensure consistent outcomes and to take advantage of improvement 
opportunities” [54]. When embarking on a BPM journey, organizations need to 
ask what processes they currently have (process identification) [54]. A business 
process can be defined as a set of activities that together, produce a desired 
outcome or a business goal [190]. For instance, most organizations, such as an 
insurance company, have an order-to-cash process that covers the process from 
which an order is received until the ordered product or service is delivered.  

Within BPM, the aim is to manage the business processes that add or pro-
duce value for the organization and its customers. As such, there is limited 
value to working with all business processes at the same time. Rather it is better 
to focus on a few processes, preferably those that are at the core to the organi-
zation and where improvements result in the greatest benefits for the organiza-
tion and its customers. Therefore, the next step is to understand the selected 
business processes in more detail. For instance, the order-to-cash process of an 
insurance company will most likely include steps such as registration, issuing 
an insurance, creating an invoice and register premium payments. Each of these 
steps can be further detailed until such a level where further detailing of the 
steps do not add any further value. The work that is performed to graphically 
capture business processes as models, is called process discovery [54].  

Once these business processes are describes as business process models de-
picting the current situation (also called as-is process models), they are analyzed 
(process analysis) and inefficiencies, waste and opportunities for improvements 
can be identified. For instance, the insurance company mentioned above, might 
notice that many customers contact the company to get insurance but do not 
complete the process (i.e. do not become customers). Further analysis might 
reveal that the customers provide the required data but it takes two days before 
their requests are approved. While waiting, the customers find other insurance 
companies that offer them insurance faster. More detailed analysis might further 
reveal that the delay is because one department receives the requests and an-
other department processes them.  

After the process analysis, the as-is process models are modified or re-
designed to depict the desired state (also called the to-be process models). For 
instance, the insurance company might decide to have the same department 
process all insurance requests. These changes can then be implemented in the 



15 
 

business processes of the organization. Finally, the performance of the business 
process is monitored and further improvements or adjustments can be made as 
they are identified.  

As such, process models play a vital part in BPM. In fact, the process models 
will be the main artifact for discovery, analysis and conceptual modifications or 
re-design of business processes. However, organizations will oftentimes find 
that their processes (such as order-to-cash in the example above) do not exist as 
singular entities but rather as a family of variants that need to be collectively 
managed [52, 168]. For instance, the insurance company might have a set of 
processes for managing claims (claim-to-resolution). During process discovery, 
when the process is modeled, one can observe that the insurance company typi-
cally performs the process for handling a claim differently depending on 
whether it concerns a personal, vehicle or property claim [150]. Each of these 
processes for handling a claim, is a variant of one generic claims handling pro-
cess [72]. As such, there are variants of business processes that increase the 
complexity and needs to be managed in a structured manner.  

 
 

1.1 Problem statement 

When it comes to modeling a family of process variants, one extreme approach 
is to model each variant separately. These process models are very simple as 
they show the activities in a straight sequence and are therefore easy to under-
stand. However, such a fragmented-model approach [52] or a “multi-model 
approach” [72] creates several problems. Commonly such models exhibit high 
level of redundancy as many models have fragments that are similar or even 
identical. In addition, models in such collections are loosely connected with 
each other and it is not always clear which variants are parts of one family. 
Another aspect to consider is maintenance and changes to the models. Given 
their large number and possible redundancy, it might prove to be both time con-
suming and error prone to keep the models up to date. Furthermore, it is pos-
sible that the models are optimized independently over time and therefore do 
not benefit from synergic effects [72]. However, it should be noted that in some 
cases, such a fragmented approach might be better (for example when a set of 
process models have few variants that are largely different and independent 
from each other) [72]. 

On the other hand, modeling multiple variants together in a consolidated-
model approach [52] or “single-model approach” [72] has its disadvantages as 
well. This approach will result in one single process model that is relatively 
large, as it includes all variants. Such models rely on annotating variations with 
meta-data and thus facilitate management of the process variations from differ-
ent perspectives. However, large process models with many variants baked into 
one model are very difficult to understand and to work with. Furthermore, these 
models capture and give the same importance to both frequently used process 
paths (variants) as to less frequently executed variants. This increases the com-
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plexity of the models and further limits its usability in the daily work of 
business analysts. Such consolidated process models may therefore, prove diffi-
cult to analyze, evolve and maintain [116].  

Striking a trade-off between modeling each process variant separately versus 
collectively in a consolidated manner is still an open research question.  

Most of the annotation-based approaches, manage variability in process 
models based on the degree of similarity between the variants (measured by 
means of string-edit and graph-edit distance [45, 53]). In addition, annotation 
based approaches require that (i) the models of the separate variants are avail-
able; and (ii) that they have been modeled using the same notation, at the same 
level of granularity and using the same modeling conventions and vocabulary. 
These assumptions might not hold in many practical scenarios where models of 
each variant might not be available to start with, and even if they were avail-
able, they would typically have been modeled by different teams and using 
different conventions. Therefore, there is a need of a systematic approach to 
manage process variability in consolidated business process models. 

In this context, the main research questions is “How can a family of process 
variants be modeled when consolidating or discovering business process 
models?”  

 
 

1.2 Scope and Limitations 

The standard business process life cycle consists of four main stages and varia-
bility needs to be managed at each of these stages. The first stage is design of 
the business process where families of business processes are designed [71]. At 
this level, the process models capture all variants of a family of business pro-
cesses. Decisions at this stage of the life cycle have significant impact on the 
business processes. The second stage is often termed configuration or customi-
zation phase [71]. At this stage, a customized process model is created, describ-
ing one single variant of the family of process model. The third stage is when a 
customized process model is being deployed or instantiated in its run-time envi-
ronment [71]. Execution alternatives at this level are not pre-determined (as 
opposed to design time) but dependent upon requirements at run-time [30]. The 
fourth stage concern monitoring and optimizing the business processes i.e. 
managing feedback and improvement of the business processes [71]. At this 
stage, the variability of business processes is more related to measurements.  

The scope of this thesis is delimited to design-time variability i.e. when con-
figurable or customizable process models are created. There are approaches, 
methods and principles for or related to managing process models that deal with 
variability. These approaches, methods and principles such as process model 
queries, refactoring, abstraction and cognitive aspects of process modeling, 
while offering valuable insights to the body of knowledge on managing process 
models, are not designed for managing variability but consider variability, as it 
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is an integral part of business processes. They are therefore excluded from the 
scope of the thesis. 

 
 

1.3 Contribution 

The first contribution of this thesis stems from a review of the state of the art on 
approaches to manage variability in process models. In this phase, it was ob-
served that many approaches have been proposed for manage variability in 
business processes. However, there is no categorization of the approaches that 
will guide the users in choosing the most appropriate approach or to easily get 
an overview of how the approaches are positioned against each other. As such, 
the first contribution of this thesis is: 

 A systematic review (state of the art) of current approaches to manage 
variability in process models and a framework to classify such ap-
proaches (chapter 2).  

 
The systematic review highlighted the need to manage variability as a means to 
reduce complexity. Furthermore, it was clear that variations are mostly man-
aged based on their degree of similarity and as such, emphasis is not given to 
the underlying business reason for the occurrence of variability.  

Variability increases the complexity of business processes, in particular 
when the number of processes and process variants grow. This complexity is 
augmented when trying to represent them in process models. A common ap-
proach to manage such complexity is to decompose process models into more 
manageable parts. Although a variety of approaches exist on how to decompose 
a process, it is not clear on what basis such vertical and horizontal decomposi-
tion should be made. It is necessary to identify decomposition methods that can 
be applied on a set of process models in order to manage the complexity arising 
from variations. As such, the second contribution of this paper is: 

 A review, classification and analysis of decomposition approaches and 
introduction of a variant-driven vertical decomposition of process 
model (chapter 3). 

 
When decomposition of process models are based on similarity-based parame-
ters, as the systematic review revealed, the root causes of variations are not 
considered and there is a higher risk of creating a distance between the models 
and the business reality they aim at representing. The underlying business rea-
sons for variations, as complimentary to similarity-based parameters, needs to 
be considered when decomposing process models. Failing to do so will increase 
the risk of alienating the model from the reality it aims to represent. In order to 
incorporate business reasons when deciding how to decompose processes, we 
need to identify and categorize these business reasons. The third contribution of 
this thesis is therefore: 
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 A definition of variable variants, business drivers and an orthogonal clas-
sification of root causes of variability in business processes (chapter 4). 

 
However, most of the methods for managing variability when consolidating or 
discovering process models are only applicable if and only if certain prerequisites 
are met. In addition to not considering the business drivers, inconsistency of 
modeling convention and differences in granularity of detail, pose a challenge when 
managing process variability. In order to manage variability that is “closer” to the 
business reality by considering their business drivers when certain required inputs 
are not available, there is a need for a method to model families of process variants. 
As such, the forth and the main contribution of this thesis is: 

 A decomposition driven method for managing family of process vari-
ants (chapter 5).  

 
The core idea is to incrementally construct a decomposition of the family of 
process variants into sub-processes. At each level of the process model decom-
position and for each sub-process, it is determined if a sub-process should be 
modeled in a consolidated manner (one sub-process model for all variants or for 
multiple variants) or in a fragmented manner (one sub-process model per vari-
ant). This decision is taken based on two parameters: (i) the business drivers for 
the existence of a variation in the business process; and (ii) the degree of differ-
ence in the way the variants produce their outcomes (syntactic drivers). 

The applicability of the method was verified with two in-depth case studies 
from different industrial settings with the main research question of “how can a 
family of process variants be modeled? The case study method was chosen, as it 
is a suitable method of evaluation used within software and system engineering 
domain. In addition, case study method is particularly useful when the case 
requires frequent, intensive and prolonged interaction with domain experts. The 
modeled family of process variants should aim at minimizing the total size and 
duplicity while not causing overly complex process models. Furthermore, the 
process models should be aligned with the underlying business processes. In 
light of this, the final contribution of this thesis is: 

 Validation of the method on two distinctly different case studies where 
the results verify the purpose and objective of the method (chapter 6).  

 
The State of the Art (chapter 2) is an adapted extension of La Rosa, Marcello; 
Aalst Wil van der; Dumas, Marlon; and Milani, Fredrik. “Business process vari-
ability modeling: A survey.” Technical Report, BPMCenter.org, (2013). In this 
paper, I conducted the systematic literature survey and participated in classify-
ing and examining various approaches.  

The section of foundations of process decomposition (chapter 3) is an 
adapted extension of Milani, Fredrik; Dumas, Marlon and Matulevičius, 
Raimundas; Ahmed, Naved. “Criteria and Heuristics for Business Process 
Model Decomposition: Review and Comparative Evaluation.” Submitted to 
BISE March 2015. I am the main author of this paper. 
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The section of foundations of process variants (chapter 4) is an adapted ex-
tension of Milani, F; Dumas, M and Matulevičius, R. “Identifying and 
Classifying Variations in Business Processes.”  Enterprise, Business-Process 
and Information Systems Modeling, Lecture Notes in Business Information 
Processing Volume 113, Springer Berlin Heidelberg, 2012. 136–150. I am the 
main author of this paper. 

The method proposed in the thesis and the case studies (chapter 5 and 6) are 
based on extended versions of the following two papers: 

 
Milani, F; Dumas, M and Matulevičius, R. “Decomposition driven consolida-
tion of process models.” Advanced Information Systems Engineering, Lecture 
Notes in Computer Science Volume 7908, Springer Berlin Heidelberg, 2013. 
193–207. I am the main author of this paper. 

 
Milani, Fredrik; Dumas, Marlon and Matulevičius, Raimundas; Ahmed, Naved. 
“Modeling Families of Business Process Variants: A Decomposition Driven 
Method.” arXiv preprint arXiv:1311.1322 (2014) – submitted to Information 
Systems 2014. I am the main author of this paper. 

 
 

1.4 Structure of the thesis 

This thesis is structured as follows. In chapter 2, a comprehensive literature re-
view of approaches to manage process model variations is presented to position 
the contribution of this thesis against the state of the art. The approaches are 
organized in accordance with a proposed classification framework. Further-
more, the advantages and disadvantages of each category of approaches are 
discussed. 

Chapter 3 presents the foundations of process decomposition where the ideas 
on how to decompose business processes (decomposition heuristics) are exami-
ned and categorized.  

Chapter 4 presents the foundations of process variation. Here, the concept of 
a “viable variants” of a business process is defined, followed by elaboration of 
different drivers for variations in business processes.  

Chapter 5 operationalizes the foundations presented in chapter 3 and 4 into a 
decomposition driven method for managing families of process variants.   

Chapter 6 presents the application of the decomposition driven method to 
model families of process variants on two case studies, one for process model 
consolidation and one for process model discovery. In addition, the findings 
from the case study are presented and analyzed and finally the threats to validity 
are discussed. 

Chapter 7 concludes this thesis by summarizing the work presented, dis-
cussing the contribution of the thesis and pointing out the direction of future 
work and possible alternatives for extensions. 
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2 STATE OF THE ART 

The purpose of this chapter is to (1) review current relevant approaches to 
manage design-time variability in business processes and process models, (2) to 
propose a framework for classifying these approaches and finally (3) position 
the research of this thesis in relation to the reviewed approaches. 

 
 

2.1   Categorization of Approaches to  
Manage Business Variability 

2.1.1 Search process 

The literature search process was conducted based on the principles of syste-
matic literature review according to Kitchenham [88]. The process started by 
submitting queries to a well-known research literature database (Google 
Scholar) covering the main keywords associated with the scope of the survey. 
The search, conducted in March 2013, included the terms  

 “Customization” associated with “variation” and “configuration”. 
 “Business process” with “customization”, “variation”, “configuration”, 

“customizability”, “variability”, “configurability”, “customizable” and 
“configurable”.  

 “Flexibility”, “flexible” and “flexibility” associated with customiz-
ability. 

 “Business process variant”, “configurable reference model”, “reference 
model adaptability”, “reference model flexibility” and “configurable 
EPC” 

 “Software Product Line Engineering” (SPLE), software product line”, 
“feature model” and “UML activity diagram” 

 “Workflow” combined with above listed keywords. 
 “Business Process” and “Process Model” in combination with “stan-

dardization”, “method”, “consolidation”, and “framework”. 
 

For each query, the first 50 hits in Google Scholar where considered for the first 
filtering based on the title in order to eliminate papers that were clearly not 
related to the topic. Following this, a second filtering was performed to remove 
duplicates, papers with no citations, as well as short papers (less than 5 pages) 
as they would not contain enough information for an evaluation. During the 
next step of filtering, the abstracts of the papers were inspected. Papers that did 
not cover design-time variability (such as run-time variability and exception 
handling) were excluded. The filtering process resulted in a total of 95 relevant 
papers that cover approaches presented in this chapter.’ 
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2.1.2 Excluded Approaches 

There are many approaches that deal, either directly or indirectly with business 
processes and process models. As variability is an integral part of business pro-
cesses, these approaches need to consider variability. As such, these approaches 
are not designed or created for managing variability but manage them with a 
different objective in mind. This literature review, therefore excludes app-
roaches of such kind. Approaches that have been excluded from this literature 
are listed below. 

Querying in repositories of process models focus on methods for identifying 
process models or fragments of process models. The purposes of querying vary. 
For instance, it could be for the purpose of retrieving models that have specific 
attributes or for analyzing if process models comply to certain standards [48]. A 
set of related approaches are similarity searches in repositories of process 
models. However, while querying returns exact matches, similarity search will 
return approximate matches [48]. Both search and return a set of process models 
from an input of process model. For whatever purpose, these approaches focus 
on finding a fragment of a process model (identical or similar) and are there-
fore, excluded. 

Process Model Refactoring is an application of refactoring from software 
engineering domain where code or databases are re-structured without changing 
their behavior. In this light, approaches that apply the same principle on the 
domain of process models have been developed [48].  Refactoring does not 
manage variability explicitly as these approaches focus on identifying and re-
structuring fragments of a process model in order to improve for example main-
tainability. For this reason, refactoring approaches have been excluded.  

Approaches that manage abstraction of process models, focus on represent-
ing business processes at different levels of granularity. This is mainly moti-
vated by different interests in level of detail that various stakeholders have. For 
example, top level management are perhaps not as interested in detailed process 
models as those who work with the processes on a daily basis. Abstraction 
methods aim at managing different levels of abstractions of business processes 
by managing hierarchical model structuring that permits organizing process 
details at different levels of detail [128, 130]. Although abstraction approaches 
include variability, they do not explicitly manage variability and are therefore 
excluded from this review. 

Model synchronization refers to approaches that seek to consolidate different 
versions of process models based on identifying and resolving the differences 
between them [63, 64]. These approaches are excluded as they take two differ-
ent versions of the same business process as input and not two design-time vari-
ants of a business process. 

A number of approaches such as [2, 80] deal with managing evolving work-
flows. These approaches are focused on how to manage cases where the busi-
ness process is evolving rather than variability in the business processes. Due to 
this reason, they are also excluded from this review. 
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A number of business related approaches such as six sigma [25] and TQM 
(total quality management) [79] are also out of the scope of this review. These 
methods do not seek to manage variability but rather focuses on incrementally 
improving processes in order to make them increasingly efficient. 

Finally, papers focused on improving understandability of process models 
such as modularization [197] or work based on cognitive understanding of pro-
cess models [174, 175] are also excluded. These papers deal with understanda-
bility of given process models and not managing variability to increase under-
standability.  

 
 

2.1.3 Necessity for classification 

The systematic literature review described above resulted in a list of various 
approaches where variability in process models is managed. However, the list of 
approaches is long and does not lend itself to be easily understood or analyzed 
for the purpose for examining the relations between different approaches or for 
positioning the method proposed in this thesis. To remedy this, a framework for 
classification of approaches managing variability is proposed in this thesis. The 
parameters used for the classification are, (1) if they propose consolidating or 
fragmenting the process models and (2) if they serve the purpose of re-organize 
the process models or if they aim at effecting a change in the business pro-
cesses. The classification was born from analyzing the many approaches to 
manage variability.  

When reviewing the approaches, it became clear that a set of approaches 
adopt the philosophy of separating variants by modeling as separate process 
models while others, started with the notion of modeling all variants in one or 
few process models. Following this initial standpoint, the approaches propose 
managing variability by either moving to fewer process models or by dividing 
larger process models into several process models. As such, a set of approaches 
move from fragmented to consolidated process models while other approaches 
move in the opposite direction. This observation caused the definition of the 
first axis of the classification namely – consolidating or fragmenting process 
models.  

Furthermore, commonalities were distinguished among the approaches in re-
gards to their purpose or objective. Some approaches focused on affecting a 
change in the actual business processes by modifying, improving or creating 
new business processes. Although this objective is achieved by means of pro-
cess models, the main artifact is the actual business process. On the other hand, 
a set of approaches focus only on managing the process models that were avail-
able for the purpose of improving understandability and maintainability of the 
process models. This observation caused the identification of the second axis of 
the classification – re-organize process models or change business processes. 
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2.1.4 Fragmenting versus Consolidating 

The first classification parameter is related to how the approaches manage vari-
ants of a process. At one extreme, each process variants can be seen as a distinct 
process and therefore, they are modeled and managed separately. As mentioned 
in the introduction, such collection of process models creates redundancy, as 
several variants of the same process, will have the same activities or even sets 
of activities. Furthermore, when changes are made to a process model, it can 
create inconsistencies if the changes are not applied in all other process models. 
Ensuring consistency requires effort and as such, the maintenance of frag-
mented-model approach is both time-consuming and error-prone. 

On the other hand, multiple variants can be managed collectively in a con-
solidated manner where they are all modeled as one large process model. In 
such cases, the variants are all captured in one process model. Variants are rep-
resented through gateways such as XOR and OR splits. Such an approach will 
usually result in large and complex process models, which will cause under-
standability and maintainability issues. Furthermore, one should bear in mind 
that, with all variants are integrated in one model, it will become increasingly 
difficult to distinguish the main flow from exceptions [72].  

All reviewed approaches, assume a starting point on this continuum and propose 
a set of changes that will either make the collection of process models more 
“fragmented” or more “consolidated”. Variability is therefore managed by a set of 
operations that either reduces (restricts) or creates more (extends) the number of 
models. If the approach proposes a reduction, i.e. starts from a fragmented and 
moves towards the consolidated end, it is termed “standardization”. Standardization 
entail that several process model variants are merged into one process model. 
However, if the approach takes the opposite stand, i.e. manages variability by 
extracting a variant from a consolidated model and thereby extending the number of 
models, it is termed “customization”. Customization entail that a consolidated 
model is customized to extract or create a specific process model variant.  

 
 

2.1.5 Business Process versus Process Model 

The second classification parameter, used to classify approaches, is related to 
which reality it proposes to change, the business processes or the process mod-
els. Some approaches are designed and have the purpose to create or modify 
business processes whereas other approaches focus on improving existing pro-
cess models for improvement purposes. 

For instance, the previously mentioned insurance company might have two 
different variants for managing its “issue-to-resolve” process, one for corporate 
clients and one for private clients. Let us assume that they have identified bene-
fits in terms of lowered costs if they treat these variants in the same way. They, 
therefore, wish to replace these two variants with one process. The approach 
employed, will aim at improving their business process, i.e. the end result will 
be an alternation or change in the actual business processes of the insurance 
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company. These approaches, therefore, aim at creating one business process to 
replace two or more existing business processes, often for the purpose of 
achieve better efficiency and as such, cause a change in the business processes. 

On the other end of this dimension, are approaches that re-arrange and re-
structure existing process models for the purpose of making them more com-
prehensible and manageable. The operations of these approaches are limited to 
process model. These approaches seek to improve the representation of business 
processes by improving the quality of process models. As such, they cause an 
alteration or change in the process models but not the business processes these 
models represent. 

 
 

2.1.6 Classification of Approaches 

The two classification parameters defined under the previous headings, when 
juxtaposed with each other, creates four quadrants (cf. Fig. 1). All the reviewed 
approaches in this thesis are classified in one out of four quadrants.  

The first quadrant, “business process standardization” encompasses ap-
proaches that will result in changes to the business processes by moving from 
multiple (fragmented) processes towards fewer (consolidation) through re-
design, merger or replacement.  

The second quadrant, “business process customization” covers approaches 
that will result in changes to the business process (update or creation) by ex-
tracting new variants or modifying variants from consolidated processes. 

Conversely, the third quadrant, “process model standardization”, refers to 
approaches that will cause a change the process models by reducing the number 
of variants (moving from the fragmented towards the consolidated end). 

Finally, “process model customization” embraces approaches that will only 
affect the process models by extracting existing variants from consolidated pro-
cess models.  
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Figure 1: Classification Framework for Approaches Managing Variability. 
 
 

It should be noted that an approach, classified in one of the quadrant, could be 
used for another purpose. For instance, a configurable process model is cate-
gorized as “business process customization”. However, it is possible to create a 
configurable process model from existing variants and use it for “process model 
customization”. This would mean that it is used to manage process models 
rather than creating new business processes. However, the approaches are 
developed as a response to an identified problem or challenge. Therefore, the 
classification has been made based on the primary use of the approach. 

 
 

2.2 Business Process Standardization 

Business process standardization, in this context, refers to reducing the number of 
variants of a certain business process. In order to reduce the number of variants, it is 
many times necessary to understand the existing variants by modeling them. The 
modeling of business processes is commonly referred to as “process discovery” 
[54]. It is worth noting that all approaches in the other quadrants, assume that there 
are process models to being with. This is not necessarily true with this quadrant. As 
such, a brief overview of process discovery methods follows. 

 
 

2.2.1 Process Discovery 

Methods for process model discovery can broadly be classified into automated 
or manual. Automated methods exploit existing data to generate a process 
model. In this category, one sub-category of approaches is concerned with the 



26 
 

discovery of process models from execution logs, also called “process mining” 
[1] or “workflow mining” [9, 11]. Some of these approaches use trace clustering 
to uncover potential variants of a process, arguing that variants would manifest 
themselves as clusters of similar traces in the logs.  

Another sub-category of approaches for automated process discovery is 
based on textual documentation. For instance, Ghose et al [65] propose a frame-
work for Rapid Business Process Discovery (R-BPD). Their framework is based 
on querying text artifacts, such as corporate documentation, to create initial 
process models that are subsequently edited by domain experts.  

Non-automated process model discovery methods are concerned with col-
lecting, organizing and analyzing data from various stakeholders as source of 
information for producing process models. The method suggested by Sharp and 
McDermott [167] is an exemplar of a method in this field. Another similar 
method is presented in [121]. These methods employ a set of guidelines that are 
used when eliciting the business process together with domain experts, most 
commonly in workshop settings. These approaches recommend modeling vari-
ants separately in a “fragmented” manner.  

The method for process identification defined in Dumas et al [54] is also an 
example of non-automated method. This method begins with the identification 
of cases (variants) and functions that should be included in the process archi-
tecture. Next, a case/function matrix is created and by applying a set of 8 
guidelines, processes are identified from this matrix. Two steps in this method 
explicitly deal with variations. In the first of these steps, variants of a business 
process (called cases) are listed. Later, in a second relevant step, if a process 
model for one case is found to be syntactically very different from the model of 
another variant, the two variants are explicitly separated.  

 
 

2.2.2 Standardization 

Many organizations have several processes that produce similar outputs. Con-
sider, for example, a multi-national corporation that has a procurement process 
for each of the markets it is operating in. Managing and maintaining several 
variants of the same process, is considered as costly [176] that can be expressed 
indirectly (customer dissatisfaction, inefficiencies, ineffectiveness) or directly 
(IT development and support) [176] in the cost structure of a company. The 
foundational base of approaches seeking to standardize is that “one process 
version is better than many” [75]. By standardizing business processes, several 
business processes (variants) are reduced and replaced with one single business 
process [142, 176]. 
 

 
2.2.3 Selecting Processes for Standardization 

One of the challenges within the context of business process standardization is 
selecting processes to standardize. Hall & Johnson [70] assert that all processes 
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are not optimal for standardization. They introduce a matrix that helps managers 
in the elicitation of candidate processes for change and those best left alone. In 
their matrix, they consider process environment being either of low variability 
or high variability. They also consider if variants have a positive or negative 
value for the customer. If a process has high variability and the customer posi-
tively values variations in output, the process is seen as an “artistic processes”. 
Such processes, (e.g. customer service on first class flights), should not be 
standardized. Conversely, processes with low variability were variation in out-
put is perceived by the customer as negative, are termed “mass processes”. 
These processes, such as consumer financial services, on the other hand should 
be highly standardized. 

Schafermeyer et al [160–162] present a conceptual model depicting the rela-
tionship between process complexity, standardization effort and process stand-
ardization. They show that there is a negative relation between standardization 
effort and process standardization, meaning that by simply putting more effort 
to standardize, does not necessarily give more standardized processes. They 
also show, in line with Hall & Johnson [70] that highly complex processes are 
not necessarily possible to standardize. Schafermeyer et al [161] adapt and 
introduce new measures for assessing process complexity, standardization effort 
and process standardization. In total, there are 19 measurements. The measure-
ments are formed as statements that BPM experts will agree or disagree with for 
a given business process. Depending on the level of agreement, a business pro-
cess can be measured for complexity, standardization effort and level of stand-
ardization.  For example, one of the statements regarding process standardiza-
tion is, “during the execution of the business process we follow a well-regulated 
process cycle”. 

Rosenkranz et al [154] also question the value of standardizing complex pro-
cesses. In their case studies, they found that some processes have fragments that 
are routine while others are complex. In line with other authors [70, 161], they 
state that it is not desirable to standardize complex parts of the business process. 
However, those sections that are well structured can be standardized in order to 
release time, allowing the actors to focus more on the creative parts of the busi-
ness process. They conclude that an analyst need to understand if a business 
process can be standardized as a whole or if some sub-processes (fragments) are 
more suitable for standardization. Furthermore, they also conclude that the ana-
lyst must consider the purpose of the standardization initiative in order to assess 
what aspects of a process should be standardized. 

Other researchers have proposes a variety of factors and contexts that deter-
mine if and when variants of a business process can and should be standardized. 
Ang and Massingham [13] suggest considering the national culture that 
multinational corporations operate within in order to determine if it is 
appropriate or inappropriate to standardize.  Girod and Bellin [66] investigated 
the context of emerging-market multinationals and their challenge of standard-
izing their operations (global integration) or keeping local variations (local 
responsiveness). They propose considering how the companies’ organizational 
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capabilities have evolved when considering when to globally integrate and 
when to have local variations. 

 
 

2.2.4 Merging Process Models 

Hammer and Champy [74, 76] together with Davenport [37, 38] introduced and 
developed the concept of Business Process Reengineering (BPR). The main 
idea of business process reengineering is to consider the whole process and 
radically change to create dramatic improvements in efficiency, cost reduction, 
time to delivery and customer satisfaction. BPR grew in popularity in the be-
ginning of 1990-ties which caused a myriad of consultancy firms to offer BPR 
services. BPR does not offer a method on how to identify and radically change 
business processes but rather guidelines and general principles. As such, this 
has lead to a proliferation of methods and techniques [85].  The most common 
denominator [85] of all BPR approaches are (1) Envision – establish manage-
ment commitment and vision, (2) Initiate –  informing stakeholders, (3) Diag-
nose – document existing processes (process discovery as described previ-
ously), (4) Redesign – define and analyze new processes (such as reducing the 
number of variants), (5) Reconstruct – reorganize and implementation and 
finally (6) Evaluate – evaluation of process performance. Most BPR approaches 
include most of these steps but vary in the techniques proposed for conducting 
each step. However, these approaches all are classified as “business process 
standardization” because they seek to improve existing business processes 
(variants) by replacing them with one standard business process and as such, 
they work with improving business processes by reducing their number. 

Ludwig et al [104] proposes dealing with variability in the context of busi-
ness process standardization in four steps. The first step, “scoping”, refers to 
determining which business processes to include in the project. The second step, 
“variant identification” concerns not only identifying the variants but also un-
derstanding why they exist. The third step is “variant adjudication” refers to the 
evaluation and determination if a variant is to be included in a standardization 
effort or not. Finally, in the fourth step, “change implementation”, the stand-
ardization is implemented. Ludwig et al [104] do not provide much detail about 
each step. They implement a Work Practice Design (WPD) method to elicit 
variants and thus focusing more on their second step (variant identification). 
WPD, in similarity with other user-centered based approaches, use a range of 
data collection methods (such as various forms of interviews and observational 
studies) for the purpose of uncovering how people work with resources in order 
to achieve the business goals.  

Ungan [181] propose a framework for standardization based on process 
documentation. He targets mainly processes that are largely dependent on the 
tacit knowledge of the employers. In his framework, the first step is to identify 
the processes to be standardized. He recognized that not all processes can be 
standardized and state that those processes that share identical inputs and out-
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puts can be standardized. The next step is to identify those individuals who 
master the process i.e. who have knowledge about how to perform the tasks of 
the process. Then the processes to be standardized, are detailed in terms of pur-
pose, boundaries, list of customers, suppliers and so on. When this is completed, 
the next step is to acquire knowledge for each step. During this step, the tacit 
knowledge of the employees are externalized and documented with the aid of 
knowledge management methods. At this stage, the standardized process is 
worked out.  Following this, the knowledge about each step is documented, 
clarified, verified and agreed upon. Effort is made to ensure consistency of the 
terms used and that each term is understood the same way by all participants. 
As a final step, all these process documents for each step are combined to pro-
duce single standardized process documentation. 

Manrodt & Vitasek [108] examined the logistic process of a global company 
and introduced a framework for standardizing such processes. In their frame-
work, the two initial steps are “articulate strategy” and “process view of logis-
tics”. As a first step, it is necessary to have an articulated strategy to standard-
ize, accepted by both management and employees. Given this strategy, it is 
necessary to adopt a process view of logistics, meaning that involved persons 
should start thinking in terms of processes and move away from thinking in 
functional silos. With these two steps in place, the third step “identify segments, 
processes and process attributes” concerns identifying what processes are to be 
standardized. Following this, the “customer impact” of the identified processes 
is determined. This will enable finding, for example, areas that can give the best 
return for the efforts made. The next step, “select key segments for improve-
ment” refers to actual selection of those processes or segments of processes that 
are to be standardized and implemented. The final step, “identify and train 
global segment owner” is about deployment of the standardized processes by 
training those in charge at each unit of the company. 

Tregear [176] propose a framework for standardizing processes that con-
siders local variations. He acknowledges that although organizations wish to 
implement standardized processes, there are circumstances (for example geo-
graphical and cultural) that make a strong case for having local variations. In 
order to resolve this dilemma, Tregear [176] introduce a three-level standardiza-
tion trajectory from the current state, a target state and finally a global standard. 
The current state depicts the current situation with variations and when these 
processes have been improved to reach the global step, they cease to exist, as 
they are identical with the global standard. Target state represents improve-
ments of the current state but falling short of a global standard. Although the 
target state should ideally reach the global standard, it might not reach such a 
state if local variations have been accepted as valid. In such cases, the current 
state and the target state would be coincidental.  

 
 



30 
 

2.2.5 Process Harmonization 

Business process standardization seeks to reduce variants by replacing them 
with one business process. Business process harmonization, on the other hand, 
recognizes that it might be more optimal if the variants are reduced to fewer 
business processes rather than to one business process [47, 110, 142]. 

Romero et al [110] propose a harmonization framework that allows for find-
ing a better level of harmonization. The level of harmonization is influenced by 
the variability of the processes and the factors causing variability (the reason for 
the existence of variants). The variability of a certain process is measured using 
a set of metrics. The first metric is to determine the number of variants. Two 
processes are considered to be variants if they differ in at least one element such 
as activity or resource. The second measure is, on average, how often a certain 
element occurs in a variant. The third way of measuring the level of harmoniza-
tion is by computing how often each activity is connected or associated with the 
same element. These measures are applied on activities, control flows, applica-
tions and resources and they aim at assessing the level of similarity between 
variants. It is also necessary to identify (through interactions with domain ex-
perts) what contextual factors drive these variants. By this is meant, identifying 
the causes of the variants. When the factors of variability and the metrics as-
sessing the variability are identified, these are used as basis for analysis to de-
termine the level of harmonization. This analysis will allow practitioners to 
identify what factors affect the level of harmonization and what processes have 
potential for improvement by being harmonized. 

 
 

2.3 Business Process Customization 

The second quadrant is “business process customization” and refers to 
approaches that assist in creating or changing business processes by using con-
solidated business processes. These approaches share the commonality that they 
start with a consolidated process model, from which new variants are extracted. 
In other words, they manage variability by extending the number of process 
models. The consolidated process models of these approaches do not neces-
sarily include exiting process models but rather “reference models” or models 
depicting all possible variants. They act as an aid for the business analyst to 
design new business process (variants) by working with creation of process 
models. 

 
2.3.1 Configurable Reference Models 

The common denominator for configurable reference models is that they repre-
sent business processes that can be applicable in several different cases. The 
starting point is a model that covers all the variants. A specific variant or pro-
cess for a specific scenario can then be created by fading out those elements that 
are not relevant [20]. For example, process based software packages may pro-
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vide a reference model that can be used as a template for designing processes 
for a specific implementation of the product. The assumption is therefore, that 
reference models contain information that can be used for multiple application 
scenarios (such as the SAP R3 models). The work of customizing a reference 
model, involves fading out elements that are not relevant. Having done this, 
semantic correctness can be ensured by applying algorithms such as the one 
developed by Delfman et al [41]. This algorithm remove faded elements and 
ensure correct connections for the remaining elements. However, it is very dif-
ficult to anticipate all possible configuration requirements when developing a 
reference model and therefore there is a need for adaptations that are not cov-
ered in the reference model. Addressing this challenge, Becker et al [21] pro-
pose an approach with generic adaptations in addition to configurative adapta-
tions. These are aggregation (adding new model fragments), instantiation 
(inserting values into the provided placeholders), specialization (adding, re-
moving or changing elements) and conclusion by analogy (possible reuse of 
model structures as seen by users).   

In Aalst et al [4] the need for being able to configure reference models is de-
scribed. For instance, SAP reference model, the modeling notation of Event 
Process Chain (EPC) is used but the notation language cannot capture configu-
ration aspects satisfactory. They show that reference models have an inherent 
problem of keeping the configurator in the dark as to what options are available, 
even possible or the relation between two or more choices.  The reference 
model includes all functions, and as such there are probably several functions 
that are mutually exclusive but not possible to represent with EPC. This limita-
tion of EPC is addressed with the proposition [4, 153] of extending EPC. The 
extension of EPC is called Configurable EPC (C-EPC). With the C-EPC, a ref-
erence model captures all the variations and serves as inspiration and support 
for the work of configuring actionable processes. Each gateway, called configu-
rable nodes, is assigned a set of configurable alternatives (XOR, AND or OR). 
Each alternative refers to at least one process variant. Within a reference model 
captured in C-EPC, there are constraints called configurable requirements that 
are captured by tags that can be restrictive or a guideline. The configuration is 
done by assigning each node, with one alternative and thus restricting the be-
havior of the process. The configurator has both the restrictive and guiding tags 
as aid in this work. Individualization, that is extraction of a process from the 
reference model (refereed to as customization in this thesis), is made and all 
alternatives that are no longer valid are removed. The analyst need not worry 
about correcting the individualized process model, as mutually exclusive paths 
are already restricted.  

C-EPC as described above, extends EPC with the concepts of configurable 
nodes and configurable functions. In traditional process modeling, configurable 
nodes correspond to the control-flow and activity perspectives. However, a pro-
cess model also includes data perspective that depicts the data objects and the 
resource perspective that captures the organizational perspective of a process. 
These perspectives are not covered in C-EPC and in order to address this limi-
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tation, La Rosa et al [148, 149] introduce C-iEPC. In C-iEPC, objects are 
shown to the right of the function and can capture information or physical ob-
ject as input and output of the function. To the left of the function, the resources 
are captured and they can be manual (performed by a human), automated (per-
formed by non-humans) or semi-automated (performed by both). The data and 
resource artifacts can also have connectors. For example, a function might need 
a certain input but can produce either one or another output. These alternatives 
are for instance depicted with and XOR node in the output data artifacts. C-
iEPC therefore extends the C-EPC by applying configurable nodes, in addition 
to functions, to both roles and objects. They also provide an individualization 
algorithm that ensures the syntactic correctness of the individualized C-iEPC:s. 

Another approach that can be said to be subsumed by C-EPC is presented by 
Korherr & List [91], which extend UML activity diagrams to capture varia-
bility. In their approach, variability can be defined at the level of an atomic task, 
a group of tasks (called an activity partition) or a gateway (a fork node in UML) 
in an activity diagram. A task or activity partition can be defined as being man-
datory (the task or partition must be retained during customization) or optional 
(the task or partition can be excluded during customization). A gateway can be 
defined as being an alternative 0..1 choice (one or multiple outgoing flows can 
be selected during customization) or alternative 1..* choice (only one outgoing 
flow is selected). This method allows stating that the selection of an element 
(task, partition or flow) during configuration requires the selection of another 
element elsewhere (called a “requires” dependency), or that the selection of an 
element excludes the selection of another one elsewhere in the model (called an 
“excludes” dependency). 

An approach similar to C-EPC is presented by Moon et al [117] by the name 
of Business Process Family Model (BFPM). They propose a two-level approach 
to capture customizable business processes. The first level manages activities. 
At this level, an activity (can also be applied to a sub-process) can be defined as 
common (mandatory) or optional (can be omitted during customization). The 
second level manages gateways. A customizable gateway can either be boolean 
(exactly one variant should be selected), selection (at least one variant should be 
selected) or flow (defines how different variants are to be executed sequentially, 
in parallel or as decision). It is also possible to define dependencies between 
variants. If for example, a variant is chosen for a given variation point, it can 
restrict the choice of variants for another variation point. Dependencies can be 
between variation points, between variants or between variation points and 
variants. Besides these features that are also supported by C-EPC, a gateway 
can be classified as either open or closed. A closed type restricts the choice of 
variants to those already identified whereas an open type allows the introduction 
of new variants during customization.  

Nguyen et al [120] present an approach along similar lines but in the context 
of BPMN. In the approach of Nguyen et al, both activities and data objects can 
be made customizable, as well as message flows that connects activities in dif-
ferent pools of a BPMN model. 
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2.3.2 Configurable Workflows 

Gottschalk et al [67] introduce hiding and blocking of activities as another ap-
proach to manage customization of configurable process models. C-EPC only 
provides a partial solution as it is only applicable to EPC notation language but 
Gottschalk et al [67] look at the same issue from a notation language inde-
pendent perspective. Their approach is based on inheritance i.e. restricting a 
configurable model rather than adding functions to a process model. This is 
achieved by two restriction techniques, hiding and blocking. When a function is 
blocked, the execution of that activity is disabled but when a function is hidden, 
it disables that function while the execution of the path is still possible. 

 
 

2.3.3 Application Based Domain Modeling (ADOM) 

Reinhartz-Berger et al [23] argue that organizations with many different units 
need to have some degree of standardization in order to function as a single 
business unit. At the same time, each unit has its specific needs and conditions 
and therefore, their processes cannot be the same as for another unit with differ-
ent needs. In order to address these conflicting objectives, they propose an “or-
ganizational reference model” that is generic and can provide business logic to 
be applied across all units at the same time as it can be customized for local 
needs.  For this purpose, the authors present Application-based Domain Mod-
eling (ADOM) as a platform for creating organizational reference models. 
ADOM is a three-level architecture solution to customize process models. The 
first level (language), hosts the meta-models that can be used to describe busi-
ness process models, e.g. in EPCs. The second level (domain), hosts the cus-
tomizable “reference” process models, which serve as templates for a particular 
domain, e.g. logistics. Finally, the last level (application), hosts the customized 
process models for specific companies, which can be directly derived from the 
reference process models at the domain level. 

Variability is expressed with annotations. The attribute of type <min,max> is 
used to denote the elements. The min and max states the number of times the 
element can occur in individualization. If an element is tagged with <0,1>, the 
element is optional and can therefore be excluded. If, however, an element is 
tagged with <1,n>, it is mandatory and can be instantiated n number of times. 
Likewise, if a tag states <1,1>, then the element is mandatory and can occur 
only once. The default tag is <0,n>, which represents no constraints. This means 
that common elements (commonalities) are mandatory and allowed variants 
(optional) can be instantiated n number of times. In the customized models, it is 
possible to trace back to the reference model as they have reference model clas-
sifier (annotations). It is possible to add application-specific elements in the 
customized process models to meet specific needs. However, these additions are 
not reflected in the reference model. This approach has been applied with UML 
models [141], EPC [140] and BPMN [23] notation languages. 
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2.4 Process Model Standardization 

Process Model Standardization encapsulates approaches that seek to improve a 
collection of process models (as opposed to business processes) by operations 
that reduce the number of process models. As such, these approaches do not 
affect the actual business processes but aim at improving the process models 
representing a set of business processes. Their objective is to reduce duplicity, 
improve comprehensibility and reduce maintenance efforts. These approaches 
manage variability by reducing the number of process models.  

 
 

2.4.1 Similarity Based Approaches to Manage Variations 

Uba et al [180] seek to address the problem of many duplicates in large 
repositories of process models. As organizations become more mature from a 
business process management perspective, or if for example mergers take place, 
the repositories of process models grow. It is common that the number dupli-
cates grow in these repositories as new process models are extended or created. 
These duplicates, referred to as clones by the authors, impair maintainability. 
The authors present an indexing structure that supports fast detection of clones 
in large repositories of process models for the purpose of refactoring into sepa-
rate sub-processes. Their method is based on Refined Process Structure Tree 
(RPST) and code-based graph indexing. The process models are taken as input 
and are representing as a tree of hierarchy of single entry single exit (SESE) 
fragments.  Then the process models are indexed and duplicate SESE fragments 
(clones) are identified. The identified clones can be refactored into sub-pro-
cesses and thereby increasing the maintainability of the repository of process 
models by reducing the duplicates. Based on this, Ekanayake et al [58] identify 
approximate clones as opposed to an exact clone. An approximate clone is a 
pair of similar fragments. Their method is based on the same assumptions as 
clone detection (SESE fragments) but measures the distance between two frag-
ments. If this value is below a certain threshold, they are considered as candi-
dates for approximate clones. However, such a results are of limited use if it 
fails to identify opportunities for standardizing or refactoring with a limited 
amount of change operations. Therefore, for refining the identification of 
approximate clones, a given medoid is used, as reference (for the cluster of 
fragments), to identify approximate clones. 

Jung and Bae [83] also propose a similarity based method for variability 
management. Theirs is a two-step approach. The first step is clustering pro-
cesses based on their similarity. This clustering of models is based on activity 
similarity measures. If a set of process models shares common activities, they 
are considered to belong to similar domains and are therefore clustered together. 
Then, as the next step, the models of a domain (a cluster) are re-classified into 
sub-clusters based on structural patterns. In the first step, activity based process 
similarity measures are used and in the second step, transition similarity 
measures are used.  
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Qiao et al [133] propose a two-level business process clustering and retrieval 
that is more adapted for real-life business process repositories. Their approach 
is based on assessing both the textual (such as functional descriptions) as well 
as the structural (such as control and data flows) information of process models. 
In the first level of clustering, they apply a topic language modeling. They begin 
by extracting the text (such as activity labels and process documentation) and 
then, they convert it into a collection of documents in accordance with their text 
features (represented by a text feature vector for each process). For instance, all 
processes that have the same topic, such as “order”, will be clustered together. 
Then, through probability analyses, the topic mixture for each process is deter-
mined and the topic with highest probability is chosen for that process. In the 
second level of clustering, each defined cluster (from the first level) is analyzed 
using graph partition approach. If the structural similarity between two nodes 
(representing business processes) is above a predefined level, they are con-
nected with an edge. The connected nodes within one cluster (from the first 
level clustering) form the second level clustering. For retrieval, a function will, 
based on similarity, return the most relevant (in descending order) process 
models. 

 
 

2.4.2 Merger of Process Models 

Another set of approaches focuses on merging process models as a way of man-
aging them. By merging process models, a reduction in overall size is achieved 
and as such, improves the maintainability of the collection of process models as 
a whole [48].  

Li et al [102] have developed a method that merge variants into one refer-
ence model. If given a set of process variants that are similar (i.e., variants), 
their method will create a reference (generic) process model. This process 
model will be constructed in such way that the change distance (for example 
insert, delete or move actions) are minimal between the reference model and the 
similar process models it has “merged”. By defining a reference model with 
minimal change operations needed to “become” one of the variants it subsumes, 
one will find the most efficient reference model (i.e. requiring less effort to 
configure). 

The method of Li et al [102] cannot provide the analyst with the behavior of 
the input process models. Gottschalk et al [68] address this limitation. In their 
method, one can see the behavior of the input process models and also addi-
tional possible behaviors of the process. Their method, which is based on EPC, 
works in three phases. In the first phase, the input EPC process models are re-
duced to their active behavior (reduction of an EPC by removing the gateway 
nodes and adding them on the arcs connecting functions) and represented as 
functional graphs. The resulting functional graphs are then merged into a new 
function graph that shows the combined behavior of the input EPC models. 
Finally, the merged functional graph is converted back to EPC. 
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Reijers et al [137] recognize the occurrence of similar process model frag-
ments in a repository of process models and suggest managing them by repre-
senting them as few times as feasibly possible. In order to achieve this, they 
propose an extension to EPC called aggregate EPC (aEPC). aEPC seek reduce 
the number of process models an analyst has to work with by merging two pro-
cess models through combining their commonalities. In this way, identical parts 
of two process models, are only represented once in the repository. For instance, 
two similar process models for handling of a loan application (one for private 
and one for corporate clients), will be merged into one process model where the 
common parts are included only once. Reijers et al [137] also propose an algo-
rithm that allows the stakeholders to easily extract the model (for example the 
process model for corporate clients) on demand.  

La Rosa et al [150] propose a process model merging method allowing 
extraction of the input process models from the merged model. This enables the 
analyst to trace a certain activity to its process model and at the same time, 
having the behavior of the input process models subsumed by the merged pro-
cess model. The algorithm first extracts the common parts of the input process 
models and creates a copy. Once this is done, the algorithm manages the differ-
ences by creating configurable connectors. Finally the algorithm will “clean” 
the process model from e.g. redundant elements.   

Schunselaar et al [166] conducted a case study of Dutch Municipalities that 
offer the same services (such as registration of birth) but with similar business 
processes. They identified benefits of merging existing variants into configu-
rable process models for the municipalities. However, the configurable process 
models must produce sound process models when being instantiated. Further-
more, they must be fully reversible, i.e., the input process variants should be 
instantiations of the configurable process model.  They propose fulfilling the 
above stated requirements by introducing CoSeNet process models. CoSeNets 
is a tree-like block structured process models that capture the business pro-
cesses. The CoSeNet process models are read from left to right with each leaf 
representing a task and each parent node representing an operator (sequence, 
logical connectors OR, AND, data-driven XOR and event-driven XOR). The 
parent connectors are linked through VOID nodes (linked with edges to the 
parent nodes). The configuration of CoSeNet process models is achieved by 
blocking and/or hiding VOID nodes. 

Mendling and Simon [115] propose a method for merging two process mod-
els (EPC) that represent the same business process but from different views. 
Different views could be two EPC describing the process of receiving customer 
inquiry. One of the processes is from the Project Management branch and the 
other from Sales and Distribution branch.  These two EPC represent similar 
processes and share common parts. The method proposed [115] consist of three 
steps. The first step is to identify the semantic relationship of the two input EPC 
process models. The process designer identifies the equivalence and the sequen-
tial order of functions and events in the two EPC models. Then, as a second 
step, an integrated EPC is created from the two input EPCs. This is achieved by 
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first creating an integrated EPC where all the elements of the two input EPCs 
are included. Then, nodes that capture the same thing in the process are merged 
into one node and the ingoing and outgoing arcs are managed with split and join 
connectors. The third and final step is applying a set of restructuring rules that 
cleans the integrated EPC model from unnecessary structures by removing redun-
dant arcs and eliminating connectors with only one input and one output arc. 

 
 

2.5 Process Model Customization 

The fourth and final quadrant in this classification, envelopes approaches that 
seek to manage variability by extraction from consolidated process models. 
These approaches work with process models and rely heavily on annotations in 
order to extract one or more variants.  

Process Model Customization approaches can be further divided into two 
sub-categories, behavioral and structural based approaches. Behavioral-based 
encompass approaches that base their method on selecting and hiding opera-
tions, i.e. selecting elements that are included in the variant being extracted and 
hiding elements not included. As such, there is no actual structural change to the 
process. This sub category includes most approaches within “process model 
customization” classification. In contrast to behavioral based approaches are 
structural-based approaches. These rely on change operations (such as insertion 
and deletion) for extracting variants from a consolidated process model, causing 
a structural change in the process models. 

 
 

2.5.1 Extensions of Feature Models 

Within the domain of Software product line engineering (SPLE), product varia-
bility is managed with the use of feature models. In this setting, it is important 
to define the commonalities and the variations of the product line being sup-
ported by an information system. The commonalities are those features that are 
shared by all products and variations show what features differ for different 
product lines. In order to manage the features of a product line, it is essential to 
explicitly document the variations [127].  

Feature models were first introduced by Kang et al [33] as part of the Fea-
ture Oriented Domain Analysis (FODA). Since then, different feature modeling 
languages have been proposed such as [18, 32, 57, 107].  In general, a feature 
model consists of one or more feature diagrams that are represented as a tree-
structure. At the top of the tree, high level features are depicted. Then they are 
decomposed into sub-features. Within a feature diagram, the features can be 
either mandatory or optional. Constraints among sub-features are graphically 
represented in a diagram. The foundational relations in a feature diagram are 
AND (all the sub-features must be selected), XOR (only one feature can be 
selected) and OR (one or several of the sub-features can be selected). An OR 
relationship can be specified in more detail using a n:m cardinality. In this case, 
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n stands for the minimum and m for the maximum number of allowed sub-fea-
tures that can be chosen at a given OR relationship.   

The initial aim of feature models were to aid with configuration of software 
product families. As such, it can only give a static view of the different features 
(variants) whereas a process model can capture the control and data flows be-
tween different activities. Both will represent the same case but a feature model 
will only capture the variability and give a structural view of the business case 
whereas a process model will capture the behavioral view as well [91]. How-
ever, feature models have been extended and used to provide abstraction for 
customization of process models in various approaches. In these approaches 
(see below), one can customize a process model by selecting/deselecting fea-
tures from a feature model. In order to do so, one has to first establish a map-
ping between features on the one hand, and variants of variation points in the 
process model on the other hand. Once a feature configuration has been com-
pleted, an algorithm exploits this mapping to select the right variant(s) for each 
variation point of the process model. Then an individualization algorithm, if 
available, is triggered to individualize the customized process model.  

 
 

2.5.1.1 PESOA 

Puhlmann et al [132, 164] developed, within the frame of the PESOA (Process 
Family Engineering in Service-Oriented Applications) project, a method for 
improving the configuration of process-oriented software systems and manag-
ing variability in processes. The core of their approach for managing variability 
is to annotate process models (applied both on UML AD and BPMN models) 
with so called stereotypes. The activities of an UML AD or the tasks of a 
BPMN model are marked with <<VarPoint>> if variability can occur. An ac-
tivity or task marked as variation point is abstract and has to be realized with an 
actual activity or task, which is, denoted <<Variant>>. It is possible to denote 
the default variant with <<Default>> and the other options as <<Variant>>. 
However, if the alternatives at a variation point are exclusive (corresponding to 
an XOR split in BPMN), the activity or task is denoted with the stereotype 
<<Abstract>> instead of <<VarPoint>>. As a shortcut, it is possible to denote 
the default variant of an exclusive variation point with <<Alternative>>.  If an 
activity or task is denoted <<Null>>, it is an optional variation point and in such 
cases, it can only be associated with only one variant that is either chosen or 
not. As a shortcut, one can use <<Optional>> instead of using <<Null>> and its 
associated variant.  

Razavian and Khosravi [134] propose additional stereotypes focusing on op-
tional and alternative variation points. They propose denoting control-flows 
with <<opt_vp>> (optional variation point) and <<alt_vp>> (alternative varia-
tion point>>. Furthermore, actions can be either denoted <<optional>> or 
<<vp_al>>. If it is denoted <<optional>>, there is an option to choose at most 
one variant but if it is denoted <<vp_al>>, one variant must be chosen.   
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An similar approach is put forward by Kulkarni & Barat [94]. In this ap-
proach, a generic activity (called abstract activity) can be replaced by a single 
(atomic) concrete activity or by an entire sub process (called composite activ-
ity). Kulkani and Barat also suggest that feature diagrams can be used to guide 
the customization process, but they do not specify any concrete mechanism for 
linking a process model with a feature diagram.  

 
 

2.5.1.2 Superimposed Variants 

Czarnecki and Antkiewicz [57] propose a method (superimposed variants) for 
connecting a feature diagram with UML AD for managing variability. They 
state that a feature diagram is restricted to representing commonalities and vari-
ability as merely symbols. However, if features are mapped to other models that 
capture behavior (such as UML AD), they will be more than just symbols (they 
will get semantics). They propose annotating the control-flows of an UML AD 
with presence conditions (PCs) and meta-expressions (MEs). A PC will let you 
know if the element it is connected to, should be present or to be removed. MEs 
are used to compute attributes of model elements relevant to the UML notation 
(such as the name of an activity). Both PCs and MEs are captured in Boolean 
form over the features and its attributes of a feature diagram, and are evaluated 
against a feature configuration. These formulae can be represented in disjunc-
tive normal form or as XPath expressions. UML stereotypes are used to create 
annotations for these formulas to be assigned to model elements. The assign-
ment of stereotypes to modeling elements is done through rendering mecha-
nisms such as labels, color schemes or icons. Process configuration is achieved 
by evaluating PCs and MEs against a feature configuration. Those model frag-
ments where PCs evaluate to false are removed from the model, while those 
model attributes that are affected by MEs are changed accordingly (e.g. an ac-
tivity name is changed). 

Another approach that follows the same idea is that of Ripon et al [143] 
where activities in a UML activity diagram can be marked with a stereotype 
“variant”. An activity tagged with a “variant” stereotype is linked to an entry in 
a variant model and a decision table. By selecting/de-selecting features, a pro-
cess modeler can determine which variant of an activity will be picked during 
configuration time. 

 
 

2.5.1.3 Feature Model Composition 

In Acher et al [10], a process (called workflow in the paper) is defined as a 
collection of services, where each service corresponds to an activity. Activities 
are implicitly related via data dependencies. Specifically, each service has a 
number of data ports. A data port corresponds either to an input data object or to 
an output data object. When an input data port of a service refers to the same 
object as an output data port of another service, there exists an implicit data-
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flow dependency between these services. In order to capture variability, a ser-
vice is allowed to have any number of variation points (called concerns). A 
concern is akin to the notion of configurable function in C-EPCs, with the 
caveat that in the approach of Acher et al [10] a service may have multiple con-
cerns, meaning that it can vary along multiple dimensions. Each concern is 
modeled as a separate feature model, which captures which data ports are ena-
bled or disabled for each of the alternatives in the concern. A concern of one 
service may be incompatible with a concern of a second service and therefore, a 
consistency check is needed when customizing a workflow. Analyzing the input 
and output data ports of services, based on dependency rules, performs the con-
sistency check. Specifically, the feature models of the relevant concerns are 
checked for mutual consistency and then a merged intersecting feature model is 
created. In this way, the consistency of two connected services is ensured. 
When producing a customized workflow, it is necessary to add the control-flow 
dependencies based on the implicit data-flow dependencies. Acher et al [10] 
recognize three types of control flow dependencies: sequential, concurrent and 
conditional. The dependency rules for consistency checks between two services 
are not sufficient when there is a sequential, concurrent or conditional ordering 
of more than two services. This is addressed by Acher et al [10] via a modified 
set of dependency rules that ensure the consistency of services in a customized 
workflow. 

Ciuskys and Caplinskas [32] present another approach that is subsumed by 
Feature Model Composition. In this approach, the only process model elements 
that can be made customizable are activities. A configurable activity is called a 
generic activity. During configuration, a generic activity can be replaced by one 
of several possible concrete (non-generic) activities, each of which is linked to a 
feature. Alternatively, an activity may be skipped (removed) during configura-
tion if it is marked as optional. The space of customization options is specified 
using a feature diagram, where each feature corresponds to an (generic or non-
generic) activity. As is usual in feature diagrams, features are related hierarchi-
cally via XOR, AND, optional or mandatory dependencies. Also, a pair of 
features may be related via a “requires” relationships signifying that inclusion 
of one feature requires inclusion of the other feature. The features that are inner 
nodes in the feature diagram represent generic activities, while the leaf features 
correspond to non-generic activities. A process modeler configures a process 
model by selecting features in the feature diagram. These features then deter-
mine how the generic activities in the process model are configured, i.e. which 
concrete activity is selected for a given generic activity or which generic activi-
ties are removed during configuration. For the purpose of reasoning about the 
consistency of a given subset of features of a feature diagram, the feature dia-
gram is translated into a theory in description logic (DL) and a “DL reasoner” is 
used for consistency checking. 
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2.5.1.4 Kobra 

Atkinson et al [16] developed Kobra (Component-Based Application Develop-
ment) method for UML 1.x and extended their method for UML 2.x [15] for 
producing component-based software systems. Although the main purpose of 
Kobra does not deal with variability, the method supports customization of pro-
cess models. The Kobra method is based on considering models and modules as 
individual components. A product is, for example, a certain set of components 
where each component has its own description. A process variant can be ex-
tracted with the aid of decision models (called decision libraries that contain 
decisions). Each decision is associated with a certain set of possible possibilities 
(called resolutions). The resolutions are then linked to the variation points of a 
process model (in this case a UML AD) where they are marked as special splits 
(marked with black background) with its outgoing branches representing the 
paths that can be taken for a decision. It should be noted that the method does 
have functionality to “stop” wrong configurations or secure correctness in the 
configured models. 

 
 

2.5.2 Questionnaire Model 

The approaches presented so far (within the process model customization quad-
rant) require the domain experts to have familiarity with the notation language 
used to represent the business processes (such as UML AD or BPMN). How-
ever, if the users do not master the notation language used to annotate the mod-
els, they are of little use. La Rosa et al [147, 152] address this issue by introduc-
ing a questionnaire driven configuration of process models. This is achieved by 
capturing the variability of a process model with Boolean domain facts at each 
configurable node. A questionnaire model is built that is connected with the 
facts and the nodes. The user will answer questions by choosing from alterna-
tive responses. These responses are in turn connected with facts and nodes. De-
pending on the answers (Boolean in their character), the configuration is 
triggered by configuring the respective node with the selected alternatives and 
removing irrelevant paths.  

Pascalau and Rath [15] propose a similar method to the questionnaire model. 
Their approach is an ontology-based approach to manage variations in business 
process models by connecting the reason for which a variation exists to its vari-
ants. It is a method of managing variations that allows the annotation of busi-
ness facts (annotations on the outgoing branches of a gateway, also referred to 
as the reason for which a variation exists) in the process models.  

 
 

2.5.3 Provop 

Hallerbach et al [71, 72] introduce Provop (PROcess Variant by OPtions) to 
manage business process with large number variants. The Provop method is 
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based on deriving a variant of a process model by implementing a set of change 
operations on a base model. The base model is annotated (adjustment points) in 
such a way as to allow configuration. The authors propose choosing a base 
model based on one of five policies. It could be the standard or reference pro-
cess, the most frequently used process, a process model that is the minimal 
average distance between itself and all its variants [102], merger of all variants 
in one large consolidated process model (superset of all process variants), or 
intersection of all process variants (the base process comprises only of elements 
common to all process variants. In order to extract a variant, the base process is 
subjected to one or several of the following adaptation patterns: Insert, delete, 
move or modify.  Provop supports the following relations: Dependency (such as 
A depends on B), mutual exclusion (if A then not B) and hierarchy (managing 
inheritance such as if A belongs to parent B and is changed, then the parent B 
will also be changed accordingly). With these relations defined, Provop secures 
consistency.  

 
 

2.5.4 Templates and Rules 

Kumar and Yao [95, 96] propose capturing variability by processing a set of 
business rules associated with a process template. The process template is a 
simple, block-structured process model, which should be chosen in order to 
have the shortest structural distance to all process variants of a family. The rules 
can be used to configure the template by restricting or extending its behavior via 
change operations. Change operations affect the control-flow perspective (by 
deleting, inserting, replacing or moving a single task or a process fragment), the 
resource perspective (by assigning a role to a task), and the data perspective (by 
assigning a value to a data attribute or changing the value of a role’s property or 
of a task’s input or output data). It is also possible to change the status of a pro-
cess among four predefined values (normal, expedite, urgent and OFF). Rules 
associate change operations with a Boolean condition over so-called case data, 
so that if the condition is satisfied, the corresponding change operation is 
applied onto the process template. Depending on the type of operation, the ap-
proach differentiates between control-flow rules, data rules, resource rules and 
hybrid rules (the latter incorporating multiple process perspectives).  

 
 

2.6 Summary and Discussion 

2.6.1 Brief Summary 

This chapter began with an overview of approaches to manage variability in 
business processes and process models. It did so, with the aid of a framework 
for classifying the approaches according to two classification parameters. The 
first parameter concerned if the approach proposes an extension or reduction of 
the number of business processes or process models. The second criteria evalu-
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ated if the variability was managed as part of creating or modifying actual busi-
ness processes or process models representing business processes. By combin-
ing these two classification criteria, a framework for classifying approaches, 
consisting of four categories or quadrants, was created. The quadrants are 
“business process standardization”, “business process customization”, “process 
model standardization” and “process model customization”. The identified rele-
vant approaches were classified and briefly described. 

The classification encompassed a total of 35 different approaches. Most of 
them are classified as “process model customization” (12 approaches), “process 
model standardization” (9 approaches), “Business Process Customization”  
(8 approaches) and finally, “business process standardization” (5 approaches). 

 
 

2.6.2 Observations 

The review revealed some commonalities and differences between the quad-
rants of approaches. These observations concern input consistency, output cor-
rectness, flexibility in implementation and root causes of variability.  

 
 

2.6.2.1 Input Consistency 

Input consistency considers how consistent the input has to be for the approach 
to function.  The input consistency considers the required consistency of the 
notational language the input models are represented with. For instance, an au-
tomated approach that applies an algorithm on a set of process models will re-
quire a high degree of notational consistency for it to be successful. Such an 
approach would yield very limited results if the set of input process models 
would include different notational languages (such as some in EPC and others 
in BPMN), have inconsistency in its annotations of elements (not complete as in 
lacking in some parts), or have inconsistent labels on its elements (such as same 
task having two different labels).  

In addition, input consistency, also relates to the consistency in the hierarchy 
of the input process models, requiring they need to be of equivalent level of 
decomposition. For instance, if an approach can be applied on a set of process 
models that are not on the same level of granularity (such as some processes are 
only modeled as a sub-process whereas other are decomposed to the lowest 
level of granularity), it does not require hierarchal consistency. 

If an approach requires consistency in terms of notation and decomposition 
of the input process models, the input consistency is “high”. Conversely, “low” 
input consistency means that the approach will work even if the input models 
are not consistent in regards to notation language or level of granularity. 
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2.6.2.2 Meaningful Variant Output 

Meaningful variant output considers if the approach ensures that the variants 
produced, are meaningful, i.e. the degree to which the models reflect the busi-
ness reality and is considered by domain experts to be a meaningful representa-
tion of the variants. As such, this does not refer to syntactic (correct structure of 
the process model such as avoiding disconnected nodes [50]) or semantic (cor-
rect behavior of the process model such as ensuring that there are no deadlocks 
[50]) correctness. For instance, process model customization includes existing 
variants of a process and, assuming correct annotation, the output of these ap-
proaches will result in variants that make sense to the domain experts. However, 
approaches that are classified as process model standardization could, for in-
stance merge two process models that are not considered as variants of each 
other (based on e.g. similarity). Such approaches would require domain experts’ 
assessment or approval. If an approach requires assessment from domain ex-
perts, the output models can be considered to be “low” as compared to if is not 
required (“high”). 

 
 

2.6.2.3 Flexibility in Implementation 

Flexibility in Implementation evaluates the degree of flexibility when imple-
menting approaches. The relevancy of this observation is due to the varying 
contexts of each project. Each context requires different degrees of flexibility 
when implementing an approach.  For instance, during “business process stand-
ardization” when new processes are being designed, higher degree of flexibility 
is needed. Conversely, if the project is more geared towards understanding ex-
isting variants (process model customization), it is more important to retrieve 
correct results within an acceptable timeframe. As such, the degree of flexibility 
is not as relevant as when creating new business processes. If the implementa-
tion of an approach requires adhering strictly to given instructions, it is consid-
ered to have “low” flexibility. However, if the instructions are generic, allowing 
for changes and adaptations during its implementation, the flexibility is “high”.  

 
 

2.6.2.4 Root Causes of Variability 

All variations in business processes, and therefore in also in the process models 
representing the business processes have a root cause of variability. This obser-
vation concerns if the root cause of variability is considered or captured in the 
approach. In other words, if an approach uses the cause of variability as a pa-
rameter in its process modeling efforts, it is considered to include the root cause 
of variability. As such, approaches that disregard, implicitly or marginally con-
siders the business reason for variation, have “low” connection between the 
model and the business logic behind the variability. On the other hand, ap-
proaches that consider the root cause of variability and use it as an important 
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input, have “high” connection between the model and the business logic behind 
the variability 

 
 

2.6.2.5 Summary of Observations Made 

The observations made are summarized in the Table 1. The first column lists the 
quadrant of approaches. Each of the following columns shows the observations 
as described above. 
 
 
Table 1: Summary of Observations 

Quadrant 
Input 

Consistency

Meaningful 
Variant 
Output 

Flexibility in 
Implementation

Root Cause 
of 

Variability 

Business 
Process 
Standardization 

Low High High Low 

Business 
Process 
Customization 

High High High Low 

Process Model 
Standardization 

High Low Low Low 

Process Model 
Customization 

High High Low Low 

 
 

All quadrant with the exception of business process standardization, require 
high degree of input consistency. Such approaches require that the models use 
the same notation, at the same level of granularity and using the same modeling 
conventions and vocabulary. If these prerequisites are not fulfilled, the input 
models need to be “translated” into required notation language. This requires 
considerable effort on part of the process modelers. However, it should be borne 
in mind that even approaches that do not require consistent input, such as busi-
ness process standardization approaches, still require considerable effort. 

The required effort to validate the output process models is high for all quad-
rants with the exception of process model standardization. These approaches 
apply automated methods on a set of process models and produce an outcome as 
according o a set of rules predefined in the algorithms. As such, there is no in-
surance that they are “meaningful”. As such, the resulting models from process 
model standardization need to be reviewed by domain experts in order to ascer-
tain their meaningfulness. This could prove to be a time consuming activity. For 
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the other quadrants, the models created as output, have been reviewed concur-
rently (business process standardization and customization) or prior to the mod-
eling work (process model customization).  

When working with improving or creating new business processes (via the 
aid of process models), flexibility in implementation is given at the cost of cor-
rectness. However, once the business processes have been captured and they 
need to be improved (as models), consistency and correctness is valued higher. 
As such, approaches dealing with business processes have high flexibility in 
implementation whereas approaches working with models have low flexibility 
in implementation.  

The main (in majority of cases, the only) parameter for managing variability, 
is syntactic similarity across process models. Consider for example the algo-
rithm for merger of process models [150]. This algorithm considers the syntacti-
cal differences between two input process models and will create a merged 
model that subsumes the input process models. As these approaches do not do 
not take into account business reasons for variability, there is a risk of creating 
overly large and complex process models where variants are merged when it 
does not make sense to do so from a business perspective. When the business 
reasons for variations are not actively considered, it can result in a discrepancy 
between process models and the reality they are representing. The greater this 
discrepancy becomes, the more unfamiliar will they become in the eyes of the 
domain experts. Furthermore, the models will have limited value for instance as 
a tool for business improvements. As such, all quadrates have “low” considera-
tion for the business logic of variations when modeling.  

In conclusion, despite the existence of many approaches to manage variabil-
ity in business process models, they have the shortcomings of (1) operating on 
the assumption of consistency and (2) disregarding the reason for variability in 
determining how to structure the process models. The assumptions of con-
sistency are unrealistic in many practical scenarios where models of each vari-
ant might not be available to start with, and even if they were available, they 
would typically have been modeled by different teams and using different con-
ventions. The models are probably also not modeled consistently at the same 
level of granularity, i.e., some models are at a detailed level whereas others at a 
higher level of granularity and only represented as a sub-process.  

The next chapter presents the foundations of process decomposition, which 
constitutes as one of the two pillars of the systematic method of this thesis for 
managing variability that address the shortcomings observed above.  
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3 FOUNDATIONS OF PROCESS 
DECOMPOSITION 

Business process models [155, 190] are used for a wide range of purposes, rang-
ing from internal communication and knowledge management, to process im-
provement and information systems requirements engineering [19]. Given this 
multifunctional character, process models need to be captured in a way that 
facilitates understanding and maintenance by a variety of stakeholders. In this 
respect, it is generally accepted that large process models should be decom-
posed into smaller sub-processes. 

Decomposition methods rely on the principle that a larger complex phenom-
enon is more easily understood and grasped if it is broken down into smaller 
parts. This concept has been used in other domains within the field of computer 
science such as systems theory or conceptual modeling. Within system theory, 
for instance, decomposition is defined as “breaking down a complex system 
into smaller, relatively independent units” [123]. Within the context of business 
process modeling, decomposition (a.k.a. modularization [138]) is referred to 
when a section of a process model is clustered together as a sub-process.  

A process model can be decomposed along two lines, vertical and horizontal. 
A vertical decomposition improves understandability and maintainability by 
obtaining process architecture (hierarchy of processes and sub-processes with-
out their details). Horizontal decomposition, on the other hand, improves under-
standability and maintainability of a business process by structuring the models 
in manageable chunks, the output of which is a set of process models, related by 
means of “parent-child” relations. As such, the horizontal decomposition en-
hances the vertical one by adding the control-flow relations linking sub-pro-
cesses at a given level of hierarchy and adds the details to each process in the 
hierarchy. 

This chapter is structured as follows. Section 3.1 discusses vertical decom-
position and 3.2 focuses on horizontal decomposition of process models by 
reviewing existing literature on decomposition heuristics and metrics. In Sec-
tion 3.3, the effect of applying decomposition heuristics on a flat process model 
is examined with a case study. Section 3.4 examines the same effect but with an 
experiment and finally, Section 3.5 summarizes the chapter. 

 
 
3.1 Vertical Decomposition of Process Models 

A number of methods for vertical process decomposition exist within the field 
of process modeling. Although these methods differ in terms of the nomencla-
ture, specific definitions (for instance about various levels of the process de-
composition), and how they approach the task of decomposing business pro-
cesses, they rely on a common set of core concepts that are summarized below.  

At the highest level of process decomposition, the business process map, de-
fined as a “conceptual model that shows the processes of a company and makes 
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their relationships explicit” [54] , is represented (cf. Fig. 2). These processes 
can be categorized in different ways. Rummler and Brache [155] suggest a divi-
sion of the processes in either core processes, support processes or management 
processes [155]. Sharp and McDermott [167] and Porter [131] suggest only two 
categories, core processes and support processes. Regardless of how they are 
categorized, all make a distinct difference between those processes that serve 
external customers and are very closely aligned to why the business exists. 
These processes are called core processes such as marketing & sales or opera-
tions. All other processes are considered to be support processes such as pro-
curement or human resource management. These support processes all share the 
commonality of serving an internal customer. 

These processes (core and support), such as procurement, have a main pro-
cess (cf. Fig. 2). A main process is a process that does not belong to any larger 
process (but might very well be categorized as for instance a core process). The 
main process is decomposed into a number of sub-processes or “diced” [58] 
where each sub-process represent a high-level activity needed to fulfill the main 
process. For instance, in Fig. 2, the main process for procurement is “diced” 
into four separate sub-processes, namely, prepare purchase order, order materi-
als, receive goods and pay invoices. Sub-processes are processes on their own 
and it can be further decomposed into sub-processes until such a level where a 
sub-process consists exclusively of atomic activities (called tasks) that do not 
warrant further decomposition (cf. Fig. 2). 
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Figure 2:  Illustration of Process Architecture 

 
 

All of the levels describe above, make the business process architecture which 
is defined as “a hierarchical structure of process description levels and directly 
related views covering the whole organization from a business process point of 
view” [40]. As can be seen from Fig. 2, a process architecture starts with a high 
level process map and continues down to a detailed process model describing 
specific tasks, roles, IT systems and so on. A process architecture should consist 
of four [40] or five [155] levels but can have more levels when necessary. In 
this thesis, high level of decomposition refer to level 2 and 3 (level 1 refer to the 
process map) of the process architecture proposed by Rummler and Brache 
[155]. Using the same process architecture, low levels of decomposition refer to 
levels 4 and 5 (where 5 is the lowest levels of decomposition). 

Note that the above discussion refers to business processes, regardless of 
how they are represented. When modeling a business process, however, it is 
only natural to model each of its sub-processes separately. Accordingly, the 
hierarchy of processes derived via process decomposition is reflected in a corre-
sponding hierarchy of process models representing the sub-processes in this 
decomposition. It is noteworthy that literature on vertical decomposition does 
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not consider (by providing guidelines or instructions) variability. As such, verti-
cal decomposition is “merely” representing the sub-process with higher level of 
detail by “dicing” or “chunking” the sub-process into smaller pieces. Therefore, 
vertical decomposition is in essence the same as horizontal decomposition. The 
sub-processes are therefore only “diced” but not “sliced” when decomposed.  

 
 

3.2 Horizontal Decomposition of Process Models 

The benefits of horizontal process decomposition are acknowledged [81] but 
there is far less consensus as to how a given process model should be decom-
posed [138]. Several guidelines and goodness criteria for process decomposition 
co-exist. There is also a lack of evidential comparison of their relative merits. 
For instance, some authors propose that goodness of a decomposition should be 
assessed based on size [114, 194], while others suggest transposing modulariza-
tion criteria from information systems [81, 139]. Some propose to decompose 
processes based on data [78] while others propose role-based decomposition 
[86]. Despite the plethora of available approaches, some maintain that 
decomposition is more an art than it is a science [27]. 

In this setting, this section of the thesis addresses two research questions: (1) 
“How can process models be decomposed?” and (2) “How do different decom-
position approaches affect a process model in terms of metrics associated with 
maintainability and understandability?” The first question is addressed via a 
literature review and classification of process model decomposition approaches. 
The second is addressed via an empirical case-based evaluation and an experi-
ment. Specifically, two representative decomposition heuristics are applied on a 
real-life process model that was originally modeled flat from start to end. Then 
the resulting models are compared using a range of maintainability and under-
standability metrics. 

 
 

3.2.1 Literature Review 

The literature search process was based on the principles given in [88]. Queries 
were submitted to Google Scholar (which encompasses relevant databases such 
as ACM DL and IEEE Xplore). Three different advanced searches were ap-
plied. The following keywords were used in these three queries; “modulariza-
tion” OR “decomposition” OR “sub-process” OR “fragment” OR “abstraction” 
OR “refactoring” in separate combinations with (AND) the keywords “process 
model”, “process modeling” and “workflow”, and gathered the first 400 hits of 
each of the three queries (1200 hits in total). The search was conducted in Octo-
ber 2014.  

In the first round of filtering, based on title only, duplicates were eliminated 
and papers that were clearly off-topic were eliminated as well. After this itera-
tion, the list shortened to 177 candidate papers. The following step was an in-
spection of the abstract and the introduction of each paper so as to eliminate 
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papers that did not deal with process modeling. For instance, many papers deal 
with decomposition or modularization of information systems or software code 
but had no significant relation to process models. Papers that did not propose a 
specific approaches to process decomposition, but instead dealt with another 
topic and referred to process decomposition as a separate issue, were also ex-
cluded. At the end, the list contained 67 relevant publications. 

An initial analysis of these 67 publications revealed two distinct categories. 
On the one hand, one subset of publications (50) provided prescriptive methods 
or guidelines for decomposing a given process model into sub-process. The 
other subset of the publications (17) proposed criteria and associated metrics to 
assess the “goodness” of a given decomposition without prescribing how a pro-
cess model should be decomposed in order to achieve a suitable level of good-
ness. Herein, the term decomposition heuristics is used to refer to approaches in 
the first category and decomposition criteria to refer to the second category. 
Below we discuss each category in turn. 

 
 

3.2.2 Decomposition Heuristics 

The 50 publications dealing with decomposition heuristics proposed, as ex-
pected “manual” methods or guidelines for process model decomposition. 
However there were papers with decomposition heuristics being employed in 
the context of process model abstraction, refactoring, architecture and auto-
mated model fragment extraction. These are summarized and presented below. 

A process model can be decomposed based on “milestones” in the process. 
For instance, when decomposing existing EPC models, Davis [39] proposes to 
look for those parts in the process where there are (1) limited connection to 
other parts of the process, (2) connected events, (3) limited use of loops and (4) 
a common distinct theme (such as order fulfillment). Sharp and McDermott 
[167] adopt a similar approach where they seek to decompose a process at those 
points in which significant milestones in the overall process is achieved and 
usually are points of interest in terms of process measurement. 

If the activities of a process model are annotated with data objects, the pro-
cess model can be decomposed based on the relation between the activities and 
the data objects. For instance, Ivanovic et al [78] propose fragmenting a work-
flow, based on the data objects, by looking at what and how many data inputs 
an activity has and which other activities share the same data objects. They 
postulate that if many activities use the same data objects, they are related and 
thus belong in one process fragment. 

Decomposition based on stakeholders, i.e. who or which resource is per-
forming the activities, is another broad decomposition approach. For instance, 
for business process outsourcing, it has been proposed in [86] that fragments 
where the activities, which a given stakeholder or partner is responsible for or is 
the object of outsourcing, are modeled together as one sub-process. Another 
example is when several stakeholders are engaged in modeling a larger process 



52 
 

model. For such purposes, it has been proposed [87] to have each stakeholder 
model their partial models (sub-processes) which are then used as sub-processes 
of a complete process model. A similar approach [56] considers that knowledge 
is fragmented at the local level and therefore, these fragments can be the build-
ing blocks for a larger process model. As such, each modeler with local exper-
tise, models their fragment (sub-process) that is subsequently put together with 
other fragments. Subject-oriented BPM (S-BPM) sets the subject of the process 
in focus where decomposition (subprocess) captures the activities performed by 
a specific role [178]. 

Another approach when modeling processes is based on its goals and sub-
goals of a process. Goal modeling has its roots in requirement engineering and 
is used to define the objectives that a system should achieve [126]. In the con-
text of business process modeling, goal-based approaches, such as [14, 93], 
determine the decomposition of a business process based on its goals and sub-
goals. Specifically, elements in the process (e.g. activities) are clustered based 
on the goals/sub-goals they intend to achieve, and the resulting clusters are 
mapped to separate sub-processes. 

Product development processes are those that transform a technical solution 
to a product that can be delivered to customers [191]. A set of modeling ap-
proaches proposed for this type of processes relies on design structure matrices 
as input for decomposition of the model. For instance, some studies [59, 97, 
145] propose decomposing the activities (that are assumed to have an out-
put/input relationship) based on their iterative characteristics. In such ap-
proaches, the design structure matrix helps identify those sets of activities that 
are sequential, parallel or cyclical and these characteristics are used as basis for 
the decomposition. Other heuristics of decomposition in product development 
processes are based on subjective assessment of the strength of the interactions 
between tasks. 

Abstraction: Business Process Model Abstraction recognizes that different 
stakeholders are interested in seeing different levels of process model detail. 
Abstraction methods cater to this need by applying techniques on detailed pro-
cess models, resulting in a generalized version of the same process model [130]. 
As such, abstraction techniques collect and cluster a certain set of atomic activ-
ities or sub-processes and represent them with one aggregated sub-process. A 
common denominator of abstraction techniques is to first determine the selec-
tion criteria for significant activities, such as roles (resources), activity fre-
quency or activity completion time [101, 128, 170], structural aspects of a pro-
cess model [129] and semantic aspects [158, 169]. Once the perspective is 
chosen, the process models are transformed accordingly. 

Refactoring of business process models aims at improving understandability 
and maintainability without changing their execution semantics [46]. A process 
model can be refactored (i.e. changing existing sub-processes or introducing 
new ones) and as such, refactoring is related to decomposition. For instance, if 
two sub-processes or sets of activities have the same, partially the same or sim-
ilar activities and flow, they can be replaced with a shared sub-process [46]. As 
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such, the criterion of fragment similarity is used to decompose. Weber et al 
[187] present eight process model smells and eleven refactoring techniques to 
address the smells. Of these eleven, four are related to decomposition of process 
models. The first one is related to redundancy in process models (repetition of 
the same fragments). In such cases, a process fragment is extracted and put as a 
sub-process. The second relevant technique deals with lazy process models 
(sub-processes containing few activities) that are consolidated to fewer sub-
processes. The final two refactoring techniques aim at addressing frequently 
occurring deviations from the main process. These can be managed by repre-
senting them with one or more “generalizing” sub-processes. 

Process model decomposition (also refereed as vertical decomposition in 
chapter 3) is also relevant within the field of process architecture, i.e. how the 
entire collection of an enterprise’s process models are organized [92]. In pro-
cess model architectures, decomposition is found either in the form of aggrega-
tion (“part-of relation”, meaning that a process is decomposed into fully con-
tained sub-processes) or generalization (“is-a relation”, meaning that a process 
is decomposed into variants representing alternative ways of performing the 
process) [118]. Process architecture provides, in regard to process model 
decomposition, guidelines that are open to interpretation. For instance, zur 
Muehlen [118] propose primarily milestone and role based decomposition of 
process models. Malinova et al [92] found that practitioners decompose their 
process models based on number of elements (size), complexity or stakeholders. 
Dijkman et al [49], when investigating the prevailing process architecture de-
signs, elicited a classification of five different structures, and thereby principles 
by which process models are decomposed. The main principles enlisted for 
decomposing process models are (1) goal-oriented, (2) function-based, (3) ref-
erence model-based (adapting an industry reference model), (4) object-based, 
and, finally, (5) based on business units. 

Vanhatalo et al [185] propose a method to “parse” a process model into a 
hierarchy of “single entry single exit” (SESE) fragments.  Since such fragments 
only have one entry and one exit, a change in one fragment is locally confined 
and thus the fragments are independent of each other. These properties entail 
that each fragment obtained via this method can be directly extracted as a sepa-
rate sub-process, thus providing a basis for automated process model decompo-
sition [138, 158, 169, 179, 180]. For instance, Reijers et al [138] builds on top 
of SESE extraction techniques and uses label similarity in order to determine 
which SESE fragments should be extracted as sub-processes. This automated 
decomposition method is based on the assumption that nodes with similar labels 
(excluding control nodes) are more likely to belong in the same sub-process 
than those with different labels (measured e.g. via string-edit distance).  
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3.2.2.1 Categorization of Decomposition Heuristics 

When examining the decomposition criteria used by the methods reviewed 
above, 6 classes of decomposition heuristics are distinguished: breakpoints, data 
objects, roles, repetition, sharing and structuredness (cf. Table 2). 

The common denominator of approaches subsumed by breakpoints is that 
the decomposition heuristics is based on milestones or natural breakpoints of 
the process. In these methods, decomposition is made at points representing 
natural phases of the process towards the fulfillment of its objective. For in-
stance, heuristics based on goal-decomposition [14, 93] cut the process at points 
where sub-goals are achieved. Similarly other authors [39, 118, 167] propose to 
decompose at points where two sub-processes have distinct themes and there-
fore are logical milestones or separate functions in the process. Logical break-
points are also used for decomposition in the context of reference process mod-
els, for example in the MIT process handbook [105]).  

 
 

Table 2: Heuristics for Process Model Decomposition 

Decomposition Heuristics References 

Breakpoints  [14, 39, 49, 93, 118, 167, 172] 

Data Objects  [34, 49, 78] 

Role  [49, 56, 86, 87, 92, 118, 125, 170] 

Shared Processes [59, 97, 145, 187] 

Repetition [46, 180, 187] 

Structuredness  [138, 158, 169] 

 
 

Object-based heuristics assume that activities sharing common objects belong 
together and thus should be in one sub-process. These approaches [34, 78] con-
sider the objects as primary driver for decomposition decisions. Empirical 
studies [49] have shown this principle being widely used in the industry. 

Role based heuristics ground their decomposition decisions on “who” is per-
forming the activities [118, 125, 170]. These approaches are applied in particu-
lar to collaborative process modeling where different organizations or business 
units contribute with their own fragments, as proposed by [56, 87], or when 
modeling for outsourcing purposes [86]. 

Refactoring heuristics, such as [46, 180, 187] seek to reduce redundancy 
stemming when a process fragment is called upon multiple times in different 
parts of a process, i.e. shared processes. These shared fragments are then mod-
eled as a sub-process. 
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Repetition-based heuristics look at occurrences of a certain fragment of a 
process. For instance, some authors [59, 97, 145] consider the frequency of sets 
of activities. Those sets of activities that are repeated more often (cyclical) are 
separated from those that are sequential or parallel. In refactoring, fragments 
that have frequently-occurring instance and variant changes are generalized and 
modeled as separate sub-processes [187]. The common denominator for these 
heuristics is that “occurrence frequency” is used to determine which fragments 
should be included in a sub-process.  

The final class of heuristics for decomposition is based on the structuredness 
of the process models. The common denominator of this class is using SESE 
fragments as a basis for identifying candidate sub-processes as in [138, 158, 
169, 179, 180].  

 
 

3.2.3 Decomposition Criteria 

In this section, a review and classification of those publications that propose 
decomposition criteria and associated metrics rather than specific heuristics, is 
presented. 

Size metrics: It has been shown that larger process models tend to hamper 
understandability [114, 194] and increase the probability of making errors 
[113]. On this basis, “good” sub-processes are neither to small (lazy process 
models [187]) or overly large. For instance, the IDEF0 method provides guid-
ance to limit the number of functions (activities) to 4 – 6 per model [118]. 
Others state that the number of activities should be between 5–15 [82], 5–7 
activities [167] or that the number of elements should not exceed 50 [113]. 
Other size-related metrics proposed [29], consider number of activities, number 
of activities and control-flow elements, or number of activities, joins, and splits 
in a process model. However they do not provide further guidelines as to what, 
in terms of values, constitute a “good” size of a sub-process. In summary, the 
following the following size-related metrics are identified: number of activities 
and number of nodes. 

Complexity Metrics: The underlying assumption for process model com-
plexity metrics is that overly complex process models reduce their understanda-
bility and increase the probability of errors [29]. Empirical studies indicate that 
the number of arcs in a process model influence their understandability [194]. 
For measuring complexity, the Control-Flow Complexity metrics (CFC) has 
been proposed [28]. The CFC adds the number of branches for all split con-
structs of a process model. Inspired by Halstead, the “Halstead-based Process 
Complexity” (HPC) is proposed in [29], which measures the length, volume and 
difficulty of a process model. Other complexity metric proposed are CNC (coef-
ficient of network complexity) [100] and CI (complexity index). CNC measures 
the number of arcs divided by the sum of all activities, joins and splits). The CI 
is defined as the number of node reductions that are required to reduce a process 
model to one node. In addition, the density of a process model is measured as an 
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approximation of its complexity. Density captures the relation between nodes 
and arcs and is defined as the total number of arcs divided by maximum possi-
ble number of arcs for the nodes of a sub-process. A high density value indi-
cates a more complex process model and is negatively related to understanda-
bility [184]. 

Coupling and Cohesion: Coupling and cohesion metrics for process models 
have been borrowed from the field of software engineering, where they have 
been proposed as proxies for maintainability of software designs. Several varia-
tions of coupling measurements have been proposed in the field of business 
process models, including “density metrics” [112], “cross-connectivity metric” 
[184], connectedness” [138], “weighted coupling metric” [182], “process cou-
pling” [139, 183] and adaptation of coupling metrics for eEPC models [24]. A 
common feature of these metrics is that they look at the connectedness of the 
control-flow elements of a sub-process As such, if a collection of nodes are 
connected to each other, they are more likely to be related to each other and thus 
should belong in the same sub-process.  

Closely related to the notion of coupling is that of cohesion. Cohesion refer 
to how much the sub-elements of a given module (in this case a “sub-process”), 
are internally connected. In seeking to evaluate “good” EPC models, Daneva et 
al [35] propose metrics for “functional cohesion” that measure the level of 
intensity of the control flows that a given function handles; “event cohesion” 
that measures how much events cause complex control structures in a model; 
and “cohesion of a logical connector” that quantifies the weighted sum of func-
tions, events and connectors. A cohesion metrics has also been developed based 
on the “steps” composing an activity and their associated data objects [136, 139, 
183]. In this latter case, “relation” and “information” cohesion of an activity is 
measured. Relation cohesion defines at how much the steps of one activity are 
connected between them, while information cohesion measures how many in-
formation elements are used more than once in relation to all information ele-
ments. While this metric focuses on one individual activity at a time and not on 
an entire sub-process, it is possible to lift this cohesion metric to sub-processes 
by calculating the average cohesion of activities in the sub-process. 

 
 

Table 3: Process Model Decomposition Metrics 

Decomposition Metrics References 

Size  [29, 82, 118, 167] 

Coupling and Cohesion [24, 35, 112, 136, 138, 139, 182–184] 

Complexity  [28, 29, 100] 
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3.2.4 Discussion 

The review show that some decomposition heuristics can be applied surgically, 
i.e., on sections of process models that exhibit specific patterns. The “repeti-
tion”, “shared processes” and “role based” heuristics are possible to implement 
on process fragments if and only if certain conditions are fulfilled. For instance 
“repetition” and “shared processes” heuristics are only applicable to process 
fragments that exhibit such patterns. Likewise, “role based” heuristics offer 
guidelines for cases with several stakeholders but cannot be applied when, for 
instance, the process of one stakeholder is large and needs further decomposi-
tion. As such, these heuristics do not provide enough support for being applied 
on a set of process models but rather function as complementary to other heu-
ristics. They can be surgically applied when prerequisite conditions are fulfilled. 
The “breakpoint”, “data object” and “structuredness” heuristics, on the other 
hand, can be applied generally on process models, as they are not dependent 
upon certain conditions being fulfilled.  

Furthermore, we note that the heuristics do not provide sufficient criteria for 
determining which fragment of the process model to include as a separate sub-
process. A heuristic might offer necessary criteria (statements on how to de-
compose) but not sufficient criteria (statements determining which process 
fragments to include in a sub-process). For instance, “structuredness” provides 
necessary criteria (SESE blocks) but does not provide sufficient criteria for 
which SESE fragment to use (usually there are many such fragments in a sub-
process). Furthermore, “structuredness” is particularly problematic as it only 
states that the sub-processes should be SESE fragments but no further parame-
ters to follow. As such, “structuredness” needs a value such as size or other 
criteria for “good decomposition” as discussed above. If such metrics are used, 
the process models will be decomposed using arithmetic that probably will not 
reflect the actual business processes. 

In similar manner, “breakpoint” and “data object” provide necessary criteria 
but sufficient criteria for determining which fragments represent a “milestone 
step” or share same set of data objects is not defined. In contrast to “structured-
ness”, these heuristics, while not offering sufficient criteria, can be applied by 
relying on the knowledge of the domain experts and should, intuitively, produce 
process models that better reflect the actual business processes. It should be 
noted that the data object heuristics requires that the data objects are modeled in 
a consistent way across the process models. If the data objects are not captured, 
this heuristics cannot be applied. Furthermore, if they are not captured consist-
ently, the data object heuristics will be insufficient for those fragments that lack 
proper modeling of data objects. Finally, it should also be noted that domain 
experts are most likely better acquainted with the flow of their processes rather 
than the objects used and produced. As such, domain experts would prefer to 
reason along breakpoints. Nevertheless, there are currently no heuristics that 
provide both necessary and sufficient criteria for process model decomposition. 
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It is worth mentioning that the heuristics for decomposition is highly in-
spired by research from conceptual modeling while metrics for assessing de-
compositions are direct transposition of metrics from programming and soft-
ware design to process models [29, 119]. For instance, coupling and cohesion 
metrics are inspired by Wand and Weber [81], size from lines of code (LOC) 
[29], modularity from information flow by Henry and Kafura [29] and 
complexity from McCabe’s cyclomatic complexity metrics [119]. As such, de-
composition heuristics and metrics have emerged quite independently of each 
other as separate streams of research. In the literature on process model metrics, 
there are no substantiated claims that a certain metric is more suited for use 
together with a certain decomposition heuristics. For instance, there are no 
claims stating that density metrics are better suited for process models decom-
posed based on structuredness or breakpoints. 

 
 

3.3 Case Study 

Case studies are often used for exploratory purposes, but they are also suitable 
for testing a hypothesis in a confirmatory study [60, 156] or to evaluate a 
method within the software and systems engineering domain [89]. These fea-
tures make the case study method applicable for the purpose of this thesis, as, it 
is not known a priori, how the different heuristics affect a decomposition of a 
process model from a measurable perspective (metrics). 

 
 

3.3.1 Design 

The case study starts from the research question: “How do different decomposi-
tion heuristics affect a process model in terms of metrics associated with main-
tainability (coupling and cohesion) and understandability (size and complex-
ity)?” Given that different heuristics should produce different decompositions, 
the hypothesis is that “different decomposition heuristics will result in different 
partitioning of model elements, coupling and cohesion, size and complexity for 
comparable sub-processes”. It is not expected, (null hypothesis) that “different 
decomposition heuristics do not result in different partitioning of model ele-
ments, coupling and cohesion, size and complexity for comparable sub-pro-
cesses.”  

The setting of the case study is the fixed income operations of a mid-sized 
European bank. Fixed income products are investments that give a regular and 
scheduled variable amount of money to investors. Examples of fixed income 
products are government bonds, T-bills and mortgage bonds. The original pro-
cess model used in this case study was modeled for documentation purposes by 
a team of consultants. This model is flat i.e. no decomposition was made and as 
such, it begins with a start event and continues until the end of the process (in-
cluding data objects and resources).  
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The case study consists of two main steps: (1) decompose the input process 
model using different heuristics; (2) compare the resulting decomposed process 
models. The first step is to decompose the flat process model using the break-
point-based and the data object-based heuristics. These heuristics were chosen 
generally applicable on a set of process models (see previous section). The cho-
sen heuristics were breakpoint and data object. Structuredness was not applied, 
as there is no guidance of how to define the size of a SESE block. The 
decomposition of the flat process model was conducted by two researchers, of 
which one is the author of this thesis. First, each author independently decom-
posed the flat process using each of the two heuristics. In order to reduce learn-
ing effects, the authors began the decomposition using different heuristics (one 
author started with breakpoint-based then data object-based and the other did 
the vice-versa). When both had concluded their decompositions, results were 
compared, discussed and harmonized, leading to one decomposed process 
model for each heuristic.  

In the second step of the case study, a set of process model metrics were ap-
plied to the two sets of decomposed process models. For this comparison, the 
calculations included size, coupling, cohesion, CNC, Density, Jaccard Index of 
comparable sub-processes, differences between sub-processes, and their hierar-
chy in terms of number of sub-processes at different levels of decomposition. 

 
 

3.3.2 Findings 

In this Section, the results of the metrics used to compare the two sets of pro-
cess models (breakpoint and data object-based decomposition) are presented 
and discussed. 

Structure and Hierarchy: The breakpoint-based heuristics resulted in a to-
tal number of 18 sub-processes whereas the data object-based has 15 sub-pro-
cesses. The two sets have 6 identical (in terms of activities inside the sub-pro-
cesses) and 7 equivalent (exist in both sets covering same “function” but differ 
in terms of activities) sub-processes. 

The hierarchy of the two sets has subtle but noticeable differences. For in-
stance, the number of sub-processes at the highest level (the value chain) is 5 
versus 6 for breakpoint and data object-based heuristics respectively. The data 
object-based set has an additional “settle trade payment” sub-process. Using a 
breakpoint heuristics, this sub-process is included in the “settle trade” sub-pro-
cess.  As such, there is a difference in the distribution of sub-processes at the 
second level of decomposition. Both sets have 8 sub-processes in total at the 
second level but in the data-based, two of them are encapsulated by “settle trade 
payment” whereas the same sub-processes are in “settle trade” in the break-
point-based set. As such, “settle trade” and “settle trade payment” in data ob-
ject-based have to sub-processes each. However the breakpoint-based set has 
the same 4 sub-processes in “settle trade” (cf. Fig. 3 and 4). 
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Figure 3: Process Hierarchy with Breakpoint Heuristics (readability not intended) 
 
 

Another difference is within the process called “match type A/B trade” (be-
longing to sub-process “match trade”). With a data object-based decomposition, 
this process is modeled as one sub-process as its activities use the same set of 
data objects. However, with a breakpoint-based decomposition, a nested sub-
process is introduced for managing unmatched trades. As such, there is another 
level of decomposition in the breakpoint-based set as compared to the data ob-
ject-based set. The same case occurs for “settle type A/B trade” (belonging to 
“settle trade”). These two examples illustrate one primary difference when ap-
plying breakpoint versus data object-based heuristics. For breakpoint-based 
decompositions, nested sub-processes are used whereas it is not used to the 
same extent for data object-based decomposition (as the nested sub-processes 
commonly use the same set of data objects). 
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Figure 4: Process Hierarchy with Data Object Heuristics (readability not intended) 

 
 

If only the sub-processes at the lowest level of granularity are considered, i.e. 
sub-processes that are not decomposed further, there are 15 (breakpoint-based) 
versus 11 (data object-based) sub-processes. Of these, 6 sub-processes were 
identical (Jaccard index of 1). Two of these, “enter trade order” and “confirm 
trade” were different. The similarity of “enter trade order” was 67% (according 
to Jaccard index). This is purely due to different decomposition heuristics. From 
a breakpoint perspective, entering a trade, and validating a trade are two distinct 
sets of activities or functions and are therefore separated and modeled as two 
sub-processes. However, from a data object perspective, the activities for en-
tering and validating a trade use the same data objects and as such, are modeled 
as one sub-process. The same applies to “confirm trade” that has a similarity of 
only 44% (using Jaccard Index). In “confirm trade”, there is an option to make a 
trade and allocate it between different sub-units. For instance, a counterpart 
might buy government bonds for 100 million EUR but then wish to distribute it 
to five of its sub-units, each worth 20 million EUR. As such, they will make a 
trade and then allocate the trade to the different sub-units. From a breakpoint 
perspective, the trade of 100 million is performed and under “confirm trade” it 
is allocated. As such, “confirm trade” include activities related to allocation of 
the trade. However, the data objects used for allocating the trades are not similar 
to those used for other activities for confirming a trade. As such, a data object-
based decomposition will separate the activities related to allocation and put 
them in a separate sub-process. 

Finally, the breakpoint-based decomposition set includes 5 sub-processes 
that are not in the data object-based set. Similarly, the data object-based set has 
one sub-process that does not exist in the breakpoint-based set. Of those sub-
processes that are in the breakpoint-based set but not in the other, 4 related to 
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nested sub-processes discussed above (managing mismatch or unsettled trades). 
The fifth one, “validate trade” is related to the aforementioned separation of 
“enter trade order” and “validate trade”. 

Size: Table 4 compares the two process hierarchies in terms of the size met-
rics introduced previously. Both decomposition methods produce sub-processes 
that exceed, in terms of activities, the suggested 4–6 or 5–7 activities (however 
not empirically validated). It is noteworthy that breakpoint-based decomposition 
resulted in larger number of lazy processes (4 sub-processes with fewer than 4 
activities) as compared to the data object-based heuristics (1 sub-process with 
fewer than 4 activities). If size is evaluated in terms of number of nodes, no sub-
process exceeds 50 nodes. The largest sub-process consists of 38 nodes and the 
average of all sub-processes in each set is well below 50 nodes (cf. Table 4). 

 
 

Table 4: Size Metrics 
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Breakpoint 2 12 6,4 5 23 12,5 

Data Object 3 19 8,4 5 38 17,1 

 
 

More recent research [146] indicates a lower threshold value of 31 nodes rather 
than 50. Given this threshold value, the breakpoint-based heuristic would be 
less probable of being error prone. On average, the size of the data object-based 
set results in 31 % more activities and 36% more nodes per subprocess. 
 
 
Table 5: Average Size of Process Models 

Lower 
Quartile 

Interquartile 
Range Upper Quartile 

Activities Breakpoint 2,5 6,14 10,75 

Data object 3,67 6,60 16,00 

Nodes Breakpoint 5,75 12,29 19,75 

Data object 6,00 12,60 31,67 
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The distribution of size in terms of average number of activities and nodes 
across quartiles (cf. Table 5) reveal that data object-based heuristics resulted in 
similar sizes for the lower and interquartile ranges. However, there is a 
difference in the upper quartile where data object based heuristics result in 
larger process models. 

 
Coupling and Cohesion: Previously, A number of coupling metrics that have 
been proposed in the literature on process decomposition were identified. These 
metrics do not directly consider the coupling of data objects between sub-pro-
cesses. However in this case study, the process models contain details of data 
objects used by the activities of the process. In order to take into account data 
objects when measuring the coupling, the idea that sub-processes are coupled 
when they share data objects [81] is followed. Specifically, for this setting, the 
notion of “coupling between objects” (CBO) metrics introduced by Chidamber 
and Kemerer [31] is adapted. As such, coupling is measured as the ratio of 
‘number of sub/processes that share common data objects of other sub-pro-
cesses’ and ‘total number of possible connections’ (N *(N-1) where N is total 
number of sub-processes in the set of process models). If a set of process mod-
els has a coupling close to 1, then most sub-processes share data objects with 
other sub-processes. Reversely, low coupling means that most sub-processes 
use their “own” data objects and are not connected to data objects of other sub-
processes. 

As such, the definition stating that a sub-process is strongly cohesive if it 
contains all the activities required to transform an input to an output [81], is 
adopted. Therefore, cohesion of a sub-process is measured in the same way as 
coupling but confined to one sub-process rather than between sub-processes. 
Cohesion is then the ratio between ‘number of links between activities and 
shared data objects within a sub-process’ and ‘total number of possible shared 
links (activities * data objects) of a sub-process’. A high cohesion value indi-
cates that most of the activities of a sub-process share data objects and therefore 
should be modeled together.  

The coupling for breakpoint-based set of process models is 10% whereas it 
is 5% for the data object-based set. As the coupling metric looks at the data 
objects, this result is as expected. If a data object-based heuristics is applied, the 
coupling is lower as compared to breakpoint-based heuristics. The cohesion was 
calculated for each sub-process and an average was calculated for the set of 
process models. The average cohesion of the two sets is very similar (26% for 
breakpoint-based and 27% for data object-based). One could expect higher co-
hesion when using data object-based heuristics but, in this case, the difference is 
marginal. However, when ordering the sub-processes according to cohesion 
value (from lowest to highest), and comparing them as shown in Fig. 5, the 
cohesion of the data object driven sub-processes are consistently higher than 
those of the breakpoint driven heuristics. Nevertheless, it should be noted that 
the difference is marginal.  
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Figure 5: Cohesion for sub-processes using Breakpoint and Data Object Heuristics 
 
 

Complexity: CNC and density metrics for evaluating the complexity of the two 
sets of process models were applied. The breakpoint-based set of process mod-
els had an average CNC of 1,02 and the data object-based set of process models 
had 1,0. As to density, the average density is 0,11 and 0,10 respectively. As 
such, the sub-processes of both sets have a very similar degree of complexity.  
 
 
Table 6: Summary of Coupling, Cohesion and Complexity Metric Values 
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Breakpoint 10% 11% 44% 26% 0,83 0,83 1,02 5% 20% 11% 

Data Object 5% 14% 44% 27% 1,21 1,21 1,0 3% 20% 10% 

 
 

3.3.3 Threats to Validity 

Case studies come with several inherent threats to validity, particularly 
regarding external validity and reliability [156]. The main threat to validity is 
external validity (extent to which results can be generalized). In this case, two 
heuristics were applied on a structured real-life flat process model and 
accordingly, the results are limited in the extent they can be generalized. The 
results could be dependent on the process models being decomposed and 
therefore, the results should be regarded as indicative rather than conclusive.  

Reliability concerns the level of dependency between the results and the 
researcher i.e. would the same results be produced if another researcher 
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conducted the study? This threat was tackled by having two of the authors 
decompose the flat process independently of each other and in different order.  

Another threat to validity comes from the use of complexity metrics as proxy 
for understandability. However, understandability of process models is not 
restricted do its metrics only. Therefore, exploring the effect of decomposition 
on cognitive understandability is a relevant and important direction for future 
work. 

 
 

3.4 Experiment 

3.4.1 Design 

In addition to the case study, the effects of two decomposition heuristics are 
tested in an experiment. In this section, the design of the experiment is 
described. 

The results of the case study showed that there are no significant differences 
in terms of partitioning of model elements and metrics used as proxy for under-
standability. Based on these results, the goal of the experiment is to investigate 
if the different decomposition heuristics (data object and breakpoint) cause any 
significant differences on size, cohesion, complexity and density metrics. 
Accordingly, the following hypotheses are formulated. 

Hypothesis: Different decomposition heuristics (data object and breakpoint) 
cause significant differences in size, cohesion, complexity and density metrics. 

Alternative hypothesis: Different decomposition heuristics (data object and 
breakpoint) do not cause significant differences in size, cohesion, complexity 
and density metrics. 

The subjects of the experiment were second year master students of the 
University of Tartu. The population consisted of 36 (voluntary) students who 
were in their third month of a course on business process management. As such, 
they had gained the required background and familiarity needed to read, 
understand and work with BPMN models. Each student was randomly assigned 
to one of two groups (decomposition based on data object or breakpoint 
heuristics). 

Both groups received the introduction to the experiment, decomposition of 
process models, the flat process model and practical instructions such as 
submission format. The only difference between the introductions between the 
groups was that they were introduced to the decomposition heuristics they were 
to use. As such, the group assigned to decompose the flat process model using 
breakpoint heuristics, was only introduced to the breakpoint heuristics. 

The object of the experiment was the same flat process model used in the 
case study as described above. The students were given 6 days to decompose 
the flat process model. In addition to the decomposition task, they also 
answered questions regarding the extent of their previous experience with 
process models and ratings of difficulty of the experiment. All documents were 
submitted as image files. 
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The submitted sets of sub-processes were analysed to ensure that they were 
complete. Submissions that required interpretation as to which sub-process one 
or more activities should belong, were discarded. At the end of the filtering, 25 
valid submissions remained. Of these, 14 applied data object heuristics and 11 
applied breakpoint heuristics for decomposing the flat process model. For each 
valid submission, number of sub-processes, size as number of activities and 
number of nodes per sub-process, cohesion, CNC and density for each sub-
process was calculated. The average of these values were calculated for the 
whole set of sub-processes of each submission and used as values for the set of 
decomposed process models. For instance, if a student had decomposed the flat 
process model into 10 different sub-processes, the values of each of the ten sub-
processes was first calculated. Then, an average of each metric for all the 10 
sub-processes was calculated and used in the data analysis presented below.  

The two groups were similar in terms of prior experience with process 
models and familiarity with BPMN. For instance, both groups had on average, 
created or edited about 8 (7,64 for breakpoint and 7,43 for data object) process 
models during the past year. The process models created or edited had on 
average of 18 activities (18,64 for breakpoint and 18,79 for data object). In 
response to questions regarding familiarity, confidence in understanding and 
using BPMN, both groups stated that they ‘somewhat agree’ on average (on a 7-
step scale of ‘strongly agree’, ‘agree’, ‘somewhat agree’, ‘neutral’, somewhat 
disagree’, ‘disagree’, and ‘strongly disagree’). Statistical test conducted to 
verify their statistical significance (t-test and Mann-Whitney test) showed that 
the averages of both groups were similar with 95 % confidence.  

 
 

3.4.2 Results 

The decomposed process models were analysed in terms of number of sub-
processes, size (as measured by number of activities and nodes), cohesion, CNC 
and density. For each set of decomposed process model, the average of the 
above metrics were calculated. The average values of these metrics are shown 
in Table 7 below. 

 
 

Table 7: Average Value of Metrics 

Heuristics 
No of 
Sub-

processes 

Size 
(Activities) 

Size 
(Nodes)

Cohesion CNC Density 

BreakPoint 16.73 6.48 12.46 0.26 1.01 0.15 

DataObject 15.14 5.34 10.08 0.38 0.96 0.15 
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In order to determine if the average values of both groups are similar (with 
statistical confidence), the two-sample t-test (for normal distributed samples) or 
Mann-Whitney test (for non-normal distributed samples) was conducted. In 
order to determine which of these tests should be applied, the Shapiro-Wilk test 
(results shown in Table 8) of normality was conducted. 
 
 
Table 8: Shapiro-Wilk test determining if the data is normally distributed. 

Heuristics 
No of 
Sub-

processes 

Size 
(Activities) 

Size 
(Nodes)

Cohesion CNC Density 

BreakPoint 0.990 0.000 0.000 0.953 0.124 0.859 

DataObject 0.454 0.001 0.008 0.323 0.004 0.006 

 
 

The Shapiro-Wilk test shows that the two-sample t-test can be applied on 
‘number of sub-processes’ and ‘cohesion’ as the p-value for both sets is above 
0.05. For the other metrics, which are not normally distributed, Mann-Whitney 
test is conducted to determine if there are significant differences in the averages 
of the two sets. 

The results show that there is not enough evidence to support the hypothesis 
that the values of the two sets, in regards to ‘average no of sub-processes’, 
‘average size (activities)’, ‘average size (nodes)’, ‘average CNC’, and ‘average 
density’ are significantly different as the p-value is above 0.05 (cf. Table 9). As 
such, it can be inferred that the average values of the two sets (BreakPoint and 
DataOjbect) are similar. However, as the p-value for ‘average cohesion’ is 
below 0.05 (cf. Table 9), it can be stated, with 95 % confidence, that their 
averages differ. This is expected as data object heuristics base decomposition on 
the cohesion of the activities. Any other results would have been surprising. 

 
 

Table 9: P-value of two-sample t-tests and Mann-Whitney tests. 

 Test P-Value 

Average No of Sub-processes Two-sample t-test 0.502 

Average Size (Activities) Mann-Whitney test 0.809 

Average Size (Nodes) Mann-Whitney test 0.687 

Average Cohesion Two-sample t-test 0.004 

Average CNC Mann-Whitney test 0.309 

Average Density Mann-Whitney test 0.689 
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The violin plot and boxplot of the metrics as shown in Fig. 6, visually expresses 
the same results. One interesting observation can be made from the results. The 
standard deviation for all metrics in breakpoint heuristics is noticeably higher 
than for data object heuristics. 
 
 
Table 10: Standard Deviation 

Heuristics 
No of 
Sub-

processes 

Size 
(Activities) 

Size 
(Nodes)

Cohesion CNC Density 

BreakPoint 6.92 4.16 7.63 0.08 0.12 0.06 

DataObject 3.65 1.94 3.53 0.10 0.06 0.04 

 
 

For instance, as can be seen from Table 10 above, the standard deviation of 
breakpoint set is often about twice as high as for data object heuristics (with the 
exception of cohesion). Furthermore, the heights of the boxplots in Fig. 6 
(encompassing 50 % of the data) for breakpoint heuristics are larger as 
compared to the data object heuristics. As such, it seems to indicate that by 
following data object heuristics, more consistency is achieved in regards to 
number of sub-processes, size, complexity and density. In other words, it seems 
that breakpoint heuristics allow for more interpretation as to where the logical 
breakpoints are in the flat process model when decomposing it.  
 
 

 

10

20

30

BreakPoint DataObject

N
oo

fS
ub

pr
oc

es
se

s

Distribution of 'No of Subprocesses'

5

10

15

BreakPoint DataObject

S
iz

e_
Av

gA
ct

Distribution of 'Size AvgAct'



69 
 

 
 

 
Figure 6: Violin Plot and Boxplot of the Metrics 

 
 

The questionnaire also included 4 questions regarding degree of difficulties on 
(Q1) understanding the flat process model, (Q2) difficulty in identifying logical 
breakpoints or common data objects, (Q3) difficulty in determining which 
activities should belong to one sub-process and (Q4) difficulty in applying the 
heuristics when decomposing the flat process model. The responses were given 
on a scale between 1 and 5 (‘very simple’, ‘simple’, ‘neutral’, ‘rather difficult’ 
and ‘very difficult’). In order to detect any dissimilarity between the responses 
given by those who applied breakpoint as compared to data object, Fisher’s 
Exact test was conducted (cf. Table 11).  
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Table 11: Fisher's Exact Test 

 Q1 Q2 Q3 Q4 

Fisher’s Exact Test (p-value) 0.5844 0.6006 0.1882 0.3661 

 
 

A closer look at the results for Q3 and Q4 (Table 12) show that there is a slight 
overweight of 4 (rather difficult) for both questions from those who got 
assigned the data object heuristics.  

 
 

Table 12: Distribution of Responses for Q3 and Q4. 

Scale 1 2 3 4 5 Total 

 

Q3 – How easy or hard was it to determine which activities should be in one 
sub-process model? 

Breakpoint 0.00 0.27 0.55 0.18 0.00 1.00 

DataObject 0.00 0.14 0.29 0.57 0.00 1.00 

       

Q4 – How easy or hard was it to apply the breakpoint/data object approach 
when decomposing the large flat process model? 

Breakpoint 0.00 0.27 0.46 0.27 0.00 1.00 

DataObject 0.00 0.29 0.21 0.57 0.50 1.00 

 
 

The Fisher’s Exact test indicate that for Q1 and Q2, the responses given by the 
two groups are similar (high p-value). However, for Q3 and Q4 (in particular 
for Q3) there seems to be indications that it was more difficult, when using data 
object heuristics, to determine which activities should belong to one sub-process 
(Q3) and applying heuristics when decomposing a flat process model (Q4). 

 
 

3.5 Summary 

The survey showed that three heuristics (repetition, shared processes and role 
based) are not enough for being applied generally on a set of process models. In 
other words, applying these heuristics would not produce enough candidates for 
subprocesses, as sections of process models that do not fulfill the required 
conditions would not be fragmented to subprocesses.  These heuristics are 
therefore useful as complementary to other heuristics. Three heuristics 
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(breakpoint, data object and structuredness) provide necessary but not sufficient 
criteria for decomposition. These heuristics can be applied on processes when 
decomposing but fall short in determining which process fragments to model as 
a subprocess. It is possible to set threshold values that determine the fragments 
to include in a subprocess such as in the case of structuredness (metrics such as 
size). It should be noted that there are no evidences or indications on what 
treshold values should be put for different metrics. Even with arbirtarily chosen 
values, such methods are not sufficiently refined yet and fall short when 
compared to human approaches [138]. As such, there are currently no heuristic 
that provide both necessary and sufficient criteria for decomposition. 

In this case study, the breakpoint and data object-based heuristics were 
applied on a real-life flat process model. The case study showed that applying 
different heuristics results in different structures. Using quantitative metrics as 
approximation of understandability, the case study showed that the two 
heuristics are similar in terms of understandability.  

The experiment confirmed the results of the case study. However, the 
experiment indicated that it might be more difficult to apply the data object 
heuristics. Furthermore, it seems that breakpoint heuristics allows for more 
loose interpretation as to where breakpoints are as compared to data objects. 
This might suggest the need for more guidance as how to find logical 
breakpoints. On the other hand, applying data object heuristics presuppose that 
all activities are connected to at least one data object. If the process model 
includes activities that use or produce data objects that are not captured in the 
process model, or has activities that simply do not use or produce data objects, 
it is not clear to which sub-process that activity should belong. As such, data 
object heuristics will not be able to offer clarity.  
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4 FOUNDATIONS OF PROCESS VARIATION 

This chapter discusses the foundations of process variation by introducing busi-
ness processes and their variations in Section 4.1. Following this, Section 4.2 
discusses where variants occur in a process model followed by definition of 
what constituted as a viable variant in Section 4.3. Section 4.4 presents a meta-
model of process variation and Section 4.5 validates the concepts of variations 
and viable variants. Then, in Section 4.6 and 4.7 business and syntactic drivers 
of variations are discussed respectively. Finally, this chapter is concluded by a 
summary in Section 4.8. 
 

 
4.1 Business Process 

Business processes have been the object of study for a while with its origins 
dating back as far back as to the 1950-ties [25]. At such early stage of research, 
any sequence of work activities was considered to be a business process.  How-
ever, during the beginning of the 1990-ties, a renewed interest was born for 
business processes when American corporations sought to re-engineer their 
processes in order to gain significant competitive advantages. That also resulted 
in more proper attempts to define business processes. Davenport [36] defined a 
business process as “a structured, measured set of activities designed to pro-
duce a specific output for a particular customer or market. … A process is thus 
a specific ordering of work activities across time and space, with a beginning 
and an end, and clearly defined inputs and outputs: a structure for action. ... 
Processes are the structure by which an organization does what is necessary to 
produce value for its customers. Hammer and Champy introduced the transfor-
mational aspect of a business process when defining it as “a collection of activ-
ities that takes one or more kinds of input and creates an output that is of value 
to the customer”. These definitions are more business oriented but the same 
elements can be found in more general definitions (including the IT perspec-
tive), such as “a collection of inter-related events, activities and decision points 
that involve a number of actors and objects, and that collectively lead to an 
outcome that is of value to at least one customer” [54] or “a set of activities that 
are performed in coordination in an organizational and technical environment. 
These activities jointly realize a business goal” [190]. In summary, all defini-
tions include the elements of coordinated performance of a set of activities that 
uses inputs and aim at fulfilling a certain predefined outcome or business goal 
for a receiver such as a customer. 

A business process model is a representation of a particular business process 
that expresses the relationships and restrictions of the activities of the process, 
using a set of notational techniques [190]. Within a collection of process mod-
els, it is not uncommon to find variations. For instance, as mentioned before, an 
insurance company would typically perform the process for managing claims 
differently depending on whether it concerns a personal, vehicle or property 
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claim [52]. Each of these different processes relating to managing claims, are 
variants of the process [71]. 

 
 

4.2 Variation Points and Decision Points 

Given a process model or a collection of process models capturing a family of 
process variants, there will necessarily be points at which a choice is made be-
tween multiple branches. For instance, when using the Business Process Model 
and Notation (BPMN), such choices may appear in the form of exclusive gate-
ways (a.k.a. XOR-splits), inclusive gateways (a.k.a. OR-splits) or other types of 
split gateways. Such points are hereby called explicit branching points. Another 
type of branching point (implicit) occurs when a choice is made between in-
stantiating one versus another process model, such as instantiating a process 
model for handling personal claims versus instantiating a process model for 
handling vehicle claims. 

Each branching point corresponds either to a potential variation point or a 
decision point. The term variation point is very familiar within the field of 
Software Product Line Engineering (SPLE) and Feature Diagrams (FD). Weiss 
and Lai [189] define variation in product family as “an assumption about how 
members of a family may differ from each other”. Based on this assumption 
within the domain of engineering, a variation point is a decision (branching) 
point together with its outgoing options. Each available option branching out 
from a variation point (functions or qualities in the context of SPLE), is then 
defined as a variant [73]. In other words, within the domain of FD, there is no 
relevant and significant distinction between a variation and a decision point. As 
such, a variation point within this field depicts or states the differences from a 
static point of view. 

However, in a business process management setting and in particular, the 
enactment of a process, there is a need for distinguishing a variation point from 
a decision point. The distinction between a variation point and a decision point 
is often referred to as build-time versus and run-time [153], or as design-time 
and run-time [6, 69]. In the context of this thesis, the distinction given in the 
definitions above [6, 69, 153] is chosen. The distinction is that if a variant stem-
ming out of a branching point, has to be executed (given the criteria are ful-
filled) in order for the process to be successful [30], it is identified as a potential 
variation point. However, if the choice at the branching point is dependent on 
the circumstances at run-time [30, 159], it is defined as a decision point. 

A variation driver is a parameter or criterion that is used at a variation point 
to distinguish between its branches. A variation option is a possible option that 
exists at a variation point. Concretely, a variation option is a value or range of 
values of the variation driver associated to a variation point. 
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Figure 7: Illustration of Definitions 
 
 

Fig. 7 depicts two models for the equity trading processes (domestic or foreign 
equity). The process models for domestic and foreign equity capture two vari-
ants of the equity trading process. The process model for domestic equity covers 
two variants: one for trades via a broker and another for trades made over-the-
counter (OTC).  

Seen collectively, these two process models contain three branching points. 
The first branching point (variation point 1) is the one where a choice is made 
between instantiating the “domestic equity” process model or the “foreign eq-
uity” model. This branching point is an example of an implicit variation point 
as its branches lead to different but similar outcomes (trading an equity). In Fig. 
7, this variation point is represented inside a dotted rectangle. Importantly, the 
XOR-split gateway inside this rectangle does not exist in the process models. It 
is added to the figure for the sake of making the branching point visible. In re-
ality, the branching point exists merely by virtue of a choice being made be-
tween instantiating two alternative process models. 

Within the process model for domestic equity trading, there is an explicit 
variation point (variation point 2) where a choice is made between using a bro-
ker or trade OTC. Within the process model for clearing a domestic equity, a 
third branching point can be found with two branches (“direct” vs. “market 
clearing”). This is a decision point as it is a decision taken based on the context 
of the run-time execution of the process. 

The variation driver at variation point 1 is “domestic vs. foreign”, and at 
variation point 2 it is “broker vs. OTC”. At variation point 1, “domestic” is a 
variation option and “foreign” is the second variation option. Similarly, at vari-
ation point 2, broker is the first variation option and OTC is the second.  
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4.3 Viable Variant 

Within the domain of goal modeling, a goal is the objective that a certain sys-
tem is to achieve [99] and extending this definition to business processes, an 
output is the business goal that the activities of a process realize [190]. Inputs 
are the preconditions needed for a certain business process, commonly repre-
sented as a start event in business process models (design time). A viable vari-
ant will start at an implicit or explicit variation point. Furthermore, two process 
models can only be variants of each other if they belong to the same domain or 
are somehow, from a business perspective, related to each other. As such, they 
should belong to the same “meta-process” [168].  

A viable variant is therefore defined as the outgoing path from a design-time 
variation point, when the different outgoing paths have similar inputs and/or lead to 
similar outputs as perceived by a domain expert. If a variation point results in two 
or more different variants, each leading to an output that a domain expert considers 
belonging to clearly different business processes; it is not considered to be a viable 
variant. The definition of a viable variant is therefore contextual.  

 
 

4.4 Meta-Model 

The meta-model of this framework as shown in Fig. 8, gives an overview of the 
presented definitions. The top-level concept in this meta-model is that of a pro-
cess. A process is a collection of logically related activities. It should not to be 
confused with a process instance, which is one specific execution of a process, 
nor should it be confused with a process model, which is a specific way of de-
scribing a process or part of a process. 
 
 

 

Figure 8: Meta-Model of Variability 
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A given process is represented by a collection of process models. Within a col-
lection of process models, there are variation points, each of which will have at 
least two variation options. The variation point has one variation driver. It may 
happen that one can identify multiple variation drivers in a variation point but if 
so, these variation points could be split into two or more consecutive variation 
points so that each of them will have only one variation driver. Therefore, the 
assumption is made that each variation point has a single variation driver. It 
should be noted that in the meta-model, the concept of variation drivers has 
several sub-classes (complete and disjointed) that will be elaborated upon later 
in this chapter. 

 
 

4.5 Validation 

As a preliminary validation, the definition of viable variants was applied on two 
collections of process models. The first collection of process models is from a 
full-service (retail and commercial) bank, operating mainly in selected Euro-
pean markets. The second collection is from a governmental agency providing 
an array of services related to land management (including maps and satellite 
images). By analyzing the processes related to the back-office processing of 
equities in the banking case, and by analyzing processes related to managing 
document processing in the second case, the applicability of the definition of 
viable variants is tested. In other words, the question being examined is: (1) can 
the definition of viable variants be applied for identifying variation points from 
a collection of process models? 

 
 

4.5.1 Background 

The first case is from a mid-sized European bank that covers the entire spectrum 
of banking products such as retail banking, life insurance, and investment 
banking with more than 700 branches. This case covers the processes involved 
in equity trading services in one of its subsidiaries. The collection of processes 
covers the back-office operations of domestic and foreign equity trading. The 
collection of processes consists of 8 top-level processes that are considered to 
be variants of one another. Each of the 8 top-level process models can be de-
composed into sub processes, leading to a total of 30 process and sub-process 
models. 

The second collection of process models is from a governmental agency 
dealing with various issues related to land ownership and survey information. 
This case concerns management of documentation processing. There are 9 top-
level process models and additional 15 sub process models. In total, this collec-
tion is comprised of 24 process models. These process models cover the busi-
ness processes of two geographical areas (differences of these two geographical 
areas have been captured in the process models using annotations). 
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These two cases, together, consist of 17 top-level process models and 37 sub 
process models making it a total of 54 process models. 

 
 

4.5.2 Identifying Viable Variants 

In analyzing the data, the first step was to identify the variation points in order 
to identify all the variants in the consolidated processes. Using the definition of 
variation points, all branching points were analyzed and designated either as a 
variation point or a decision point. This was achieved by identifying each varia-
tion point by assessing if the outgoing branches of that point belonged to differ-
ent but similar outcomes. If the different paths stemming out from a candidate 
of variation point are considered to belong to the same variant, it was classified 
as a decision point.  

For illustration (Fig. 9), lets consider a sub-process model for calculation of 
fees. The first step is to identify all XOR splits in the process model. The first 
one occurs just after the sub-process called “Get Product Details”. As the out-
going branches can be considered to be variants (both leading to similar out-
come but in different ways), it is defined as a variation point. The variation 
driver is “Counter or Online Customer” and the variation options are identified 
as “Counter” and “Online”. That is, at this variation point, the next step of the 
process model is dependent on it being counter or online customer. The second 
XOR split is defined as a decision point. At this point, the question of “priority 
or not”, determines the next step in the process model. However, both 
alternatives are within the same variant, as they lead to the same outcome. 
Therefore this point is classified as a decision point.  

 
 

 

Figure 9: Example of eliciting variation point and driver in a process model 
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4.5.3 Findings 

The implicit variation driver in the collection of processes for equities was 
along product, which was domestic versus foreign equity. No additional vari-
ants were identified from the collection of 8 top-level process models. However, 
the analysis identified an additional 6 implicit viable variants in the process 
models making it a total of 7 variable variants. The additional implicit viable 
variants identified, can be labeled as Counterpart type and Execution type 
(Table 13).  
 
 
Table 13: Analysis of Variation Drivers in the Bank Case 

Equity 
Type 

Counterpart Type Execution Type 

Domestic 
vs. Foreign 

Own vs. 
Custody 

Own vs. 
No 

Custody 

Custody 
vs. 

Without 

Exchang
e vs. 
OTC 

Exchang
e vs. 

Broker 

OTC vs. 
Broker 

2 3 1 1 2 1 1 

2 4 4 

 
 

By counterpart type is meant a variant determined by what kind of counterpart 
or customers the trades are being made against. The types identified are “Own” 
(when the bank is making a trade for itself), “Custody” (when the bank is 
making a trade on behalf of a client who has a custody service agreement) and 
“Without” (when the bank is making a trade for a client who does not have a 
custody service agreement). Execution type refers to how the trade is made. It 
could be “Exchange” (when the trade is made over the regulated domestic ex-
change stock market), “OTC” (when the trade is made as a bi-lateral agreement 
between two parties outside the exchange) or via a “Broker” (when an interme-
diary is used to make a trade). 

It is noteworthy that the set of input process models were organized accord-
ing to variants that had the fewest occurrences (domestic vs. foreign). Counting, 
the analysis showed that equity type was responsible for 2 occurrences of varia-
tions, whereas counterpart and execution type caused 4 variation points. This 
indicates that the definition of viable variants could be used for quantifying to 
what extent each variation driver is responsible for variants in a given collection 
of processes. 

In the second case, 8 additional variation points were identified. Of the addi-
tional identified variants, 3 are related to product and two are related to cus-
tomer. Within product type, the analysis revealed 3 distinct variants. The first 
one concerned type of transaction (NASF vs. non-NASF), the second was re-
lated to number of transactions (single vs. multiple package), and the third re-
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ferring to what kind of property deed is being processed. As to customer type, 
the first variation is related to how the customer has come in contact with the 
agency (online vs. over the counter) and the second refers to new versus exist-
ing customers.  

 
 

Table 14: Analysis of Variation Drivers in the Governmental Agency Case 

Area Type of Product Type of Customer 

South vs. 
North 

NASF vs. 
non-NASF 

Single vs. 
Multiple 
Package 

Type of 
Deed 

Type of 
Contact 

Type of 
Customer 

9 2 1 1 2 1 

9 4 3 

 
 

In addition, a candidate variation point related to managing refund of payments 
was identified, but not defined as a variation point. This is because it could be 
considered to be variants within the sub-process of payments and not of the 
overall process of management of documentation processing. However it could 
be defined as a variation point depending on the objective of the analyst and on 
what granularity level the analyst is working with, as discussed in previously.  

In summary, the analysis of two collections of process models consisting of 
a total of 54 process models indicates that the definition of viable variants can 
be applied for identifying variation points. 

 
 

4.6 Business Drivers of Variations 

Variations of business processes exist because of a reason. There can be many 
reasons why an organization chooses to design or maintain variants of a pro-
cess.  The root causes can range from externally dictated reasons such as na-
tional laws, specific internal choices such as cultural reasons or a mixture of 
them both [122]. By ordering the many root causes of process variations into 
classes of variation drivers, a reduction of complexity is achieved [17]. This 
enables working with a few classes of drivers that one has some information 
about, rather than with a multitude of unique root causes [171]. For this pur-
pose, there is a need for “special classification” where focus is on one attribute 
of interest (root cause of variations) as opposed to a “general classification” that 
attempts to group objects based on many attributes [111]. The developed frame-
work here is a product of deductive research and therefore a typology (and not a 
taxonomy) as defined by Bailey [17]. A typology has the limitation of being the 
product of a researchers understanding and may therefore not necessarily reflect 
reality. Typologies are therefore simple classifications aimed at being used for 
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specific purposes [98]. However, the great advantage of a typology is its ability 
to reduce complexity for specific purposes such as classifying root causes into 
few classes of variation drivers [17].  

 
 

4.6.1 Classification of Business Drivers 

The theoretical base of this framework is built on the business architecture layer 
of enterprise architecture presented by Rummler and Brache [155]. In their 
framework, organizations are viewed as systems, which operate within a larger 
“super-system”. This super system is the context within which an organization 
operates and the reality to which it must adopt itself to in order to survive. 
According to this framework, the environment, resources, stakeholders, mar-
kets, customers and competitors influence organizations. Operating under the 
influence of these external variables, all organizations create an output by pro-
curing resources in order to manufacture a product or produce a service. These 
products and/or services are then brought to a market place where the custom-
ers, those who need or wish to consume the manufactured outputs, can buy the 
products and/or services. 
 
 

 
Figure 10: Rummler and Brache framework adapted from [62] 

 
 

Rummler and Brache framework can also been viewed as a map of factors that 
an organization needs to relate to in conducting its business. An organization 
interprets its business environment and chooses to respond to it in ways that 
they perceive will ensure competitive advantage. Therefore, these factors have 
an impact on the business processes of organizations. As such, these factors, 
combined with how an organization decides to respond and manage them, are 
causes of variations in business processes. The premise of this framework is that 
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these decisions will manifest themselves in business processes as variation 
points.  

Rummler and Brache framework, on its own, does not include an explicit 
classification of variation drivers occurring in business processes. But by over-
laying the W-questions (how, what, where, who and when) on Rummler and 
Brache framework (Fig. 11), a system for assessing and classifying variation 
drivers is obtained. 

 
 

 

Figure 11: A framework for business variation drivers 
 
 

Behind each variation, there is an organizational specific reason that corre-
sponds to the w-question “why”. All these different root causes can be classified 
as follows. Organizations have a set of processes to procure resources and man-
ufacture (how) output (what) that they bring to a marketplace (where) for cus-
tomers (who) to buy. Finally, organizations sometimes (when) adapt their pro-
cesses to a specific external situation in order to remain efficient throughout the 
value chain.  

Rummler and Brache framework include “competitors” as a factor, but it is 
excluded it in this analysis since it affects the processes indirectly. Competition 
drives companies to increase their performances (such as to cut cost, improve 
quality or shorten product development cycles) in order to gain or maintain a 
competitive edge. As such, competitors affect an organization indirectly and 
organizations adapt or respond by improving their business processes for better 
value production. As such, the influence of competitors is expressed through the 
five categories already elicited. 

In summary, the key tenet of the adapted framework presented here, is that 
business drivers for variations in business processes, based on their causes, can 
be classified as operational (how), product (what), market (where), customer 
(who) and time (when) drivers. This classification and their corresponding 
questions can be used, as will be shown later, to systematically elicit business 
variation drivers. 
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4.6.2 Classes of drivers 

The above analysis leads us to recognize five orthogonal categories of variation 
drivers, namely: operational (how), product/service (what), market (where), 
customer (who) and time (when).   

 
 

4.6.2.1 Operational Variations 

Every organization has designed processes to manufacture what will bring value 
to its customers. Although traditionally manufacturing processes has been refer-
ring to the production of physical products, manufacturing process is considered 
to covering services as well in accordance with the broader definition proposed 
by Kakaomerlioglu & Carlsson [84]. 

The processes of Dutch municipalities has been investigated by Buijs et al. 
[26] who compared the processes for building permit and housing tax in four 
different municipalities. Gottschalk et al. [186], using the same data set, com-
pared the process of acknowledge an unborn child. Buijs et al. chose those mu-
nicipalities that had the same type of information system and yet, each of them 
had different processes for building permit and housing tax. Gottschalk et al. 
chose municipalities that varied from each other in regards to information sys-
tems used. In these cases [26, 186] the municipalities are offering the same ser-
vice but have chosen to manufacture them differently. These variations exist as 
the municipalities have a certain degree of autonomy and are free to choose how 
to design these processes and what system solutions to use. The variations in 
this example are manufacturing driven variations as in choosing between two 
variants, the answer to the w-question “how” provides guidance as to which 
variant to follow. 

 
 

4.6.2.2 Product/Service Variations  

The primary purpose of any given organization is to produce value in the form 
of products and/or services. As firms offering multiple products/services are 
ubiquitous, the field of multi-product competition and product differentiation 
strategies have been and is being studied extensively [106].  Offering several 
different products or a set of products with differing features is therefore a 
driver of variations in business process models. 

La Rosa et al. [152] presents an example from the film industry. In this 
example, there are two variants of the post-production process of a film. The 
first variant is for when shooting the film “on tape” and the second for when the 
film is shot “on film”. These two variants follow the same path until a certain 
point where the variation occurs. When the case of “on tape” is relevant, there 
occurs “online editing”, and when the film is “on film”, “negmatching” takes 
place. This variation point is driven by product/service as the product, in this 
case “what” kind of film (tape or film), determines which path the next step will 
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follow. Another example presented by La Rosa [151] refers to an insurance 
company and its processes for handling claims. In this example, an insurance 
company has similar processes for handling claims related to motor insurances 
and personal insurances. The process follows the same path but diverges at a 
certain point. The driver for the variation, that is, which variant the process fol-
low next, is determined by “what” kind of insurance is dealt with (motor or 
personal). Van der Aalst et al. [5] uses an example of travel requisition. This 
process covers two variants, one for international and one for domestic travel. If 
it concerns an international travel, the process involves requesting quote, pre-
paring travel requisition form, submitting for approval, approval or rejection of 
the request, possible modifications or updates of the request, and re-submission 
or cancellation. For domestic travels, the process includes asking for quote and 
reporting the request to the administration. This variation is driven by 
product/service as the question “what” kind of travel suggest which of the two 
variants is relevant. 

 
 

4.6.2.3 Market Variations 

The concept of segmenting the market that an organization targets with its 
products/services (market segmentation) has been studied extensively since it 
was introduced in the late 1950s [188]. Market segmentation can be defined 
[42] as dividing a heterogeneous market into relative homogenous segments. 
Organizations can and do segment their markets differently in accordance with 
their own needs and preferences [61]. The many different methods and the vari-
ous basis for market segmentation studied [188], illustrates the variety of 
organizational flexibility in market segmentation strategy implementation. As 
organizations can divide their markets into different segments and approach 
them differently, their business process models will have market driven varia-
tions. In these variation points, the w-question that is most relevant is “where”. 

Hallerbach et al. [72] describes the variations of a process for vehicle repair. 
One of the variations in this process depends on the country. If it is in country 1, 
the process is described as reception, diagnosis, repair and hand over. The same 
process in country 2, has a “final check” before the vehicle is handed over to the 
owner. This variation, as explained in the article, is due to a legal requirement in 
country 2 stating that the vehicle must be checked before handed over to the 
owner. This regulation does not exist in country 1 and therefore there is a varia-
tion. This is a market driven variation because at the variation point, the answer 
to the w-question “where” provides the answer as to which variant is relevant. 
Ebay [122] has processes related to customer management which differ from 
each other depending on which site it concerns. The processes for customer 
management in North America, Germany and United Kingdom all differ from 
each other in regards to phone system, CRM system and the workflow. These 
variations are market driven as the question “where” gives the best answer as to 
which variant to pursue.  
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4.6.2.4 Customer Variations  

Organizations produce products/services that bring value to customers but not 
all customers are the same. Customers can therefore be segmented, that is, di-
vided into various subgroups based on certain attributes and characteristics, and 
subsequently treated or managed differently [177]. An example of customer 
segmentation taken from the airline industry is that first class customers are 
treated differently (have different processes) compared to economy class cus-
tomers [173]. Organizations therefore, have different processes in offering the 
same product to different types of customers. Due to this, customer is a driver 
of variation in business processes.  

Van der Aalst [3] presents Salesforce, a company that offers solutions for the 
sales processes of other companies. This solution gives the companies access to 
a shared infrastructure while allowing for customer specific configuration (as 
each customer has its own specific needs, requirements and preferences) caus-
ing variations in the Salesforce processes. The customer therefore, drives the 
variation (“who”). Kleinj & Dekker [90] writes about the inventory of “rota-
bles” (aircraft part that can be repaired if broken) where a major airline has 
founded a company to service them with the inventory of such aircraft parts. 
This company also provides other customers (airlines) with the same service. 
There is however variation in the process depending on “who” the company is 
dealing with. If it is the major airline that founded the company, there is an 
agreement that parts are to be supplied within 24 hours in 95% of the times. 
Similar, but not identical procedure, exist with other airlines that has an agree-
ment with the company. Airlines that do not have an agreement can also ap-
proach the company for service. In such cases, the company can decide, de-
pending on which alternative provides the best return, to sell, loan or exchange 
the part. The variations in this process are caused by “who” the customer is and 
therefore it is a customer driven variation. 

 
 

4.6.2.5 Time Variations 

The above presented variation drivers share the commonality of being inde-
pendent of differing requirements that may occur in the environment of the pro-
cess. These process variations do not include the possibility of different execu-
tion paths depending on extrinsic events or requirements. If, at a variation point, 
the path of execution is determined by an external factor, it is defined as a time 
driven variation. At such variation points, the relevant w-question to determine 
the next step in the path of execution is “when”.  

An Australian insurance company [8] has call-centers to manage incoming 
claim calls that are then routed to the back-office that manages the claims. The 
call-centers have an even flow of calls coming except for during the Australian 
storm season. During the storm season, the number of calls increases from aver-
age 9 000 to as much as 20 000 calls per week causing significant burden on not 
only the call-centers but also on the back-office who has to evaluate and man-



85 
 

age the claims. In order to manage this increased burden, the insurance com-
pany has created an “event-based response system” [8], based on the severity of 
the storms. For each category of storm severity, there is a specific process. 
There are therefore variations in the process depending on if it is storm season 
and how severe the storm is (four categories). The variant to be executed is 
dependent on “when” (storm season or not) and also on “when” the storm is of 
what category, thus making it a time driven variation. 

 
 

4.7 Syntactic Drivers of Variations 

Two or more variants will most likely have syntactic differences, i.e. they pro-
duce their outcomes in different ways. The degree of similarity or differences in 
how two or more variants execute their processes is relevant for how these are 
modeled. In general, the more differences there are in how two or more variants 
produce their outcomes, the more convenient will it be to model these variants 
separately rather than together. This driver for modeling two variants together 
or separate, is referred to as syntactic drivers, i.e. the decision is driven by the 
degree of similarity or difference of the variants. 

Although there are different notational languages for modeling business pro-
cesses (such as BPMN [192], UML AD [193] or C-EPC [153]), most of them 
capture the same set of perspectives. These are functional, behavioral, organi-
zational and informational perspectives [103, 135]. The functional perspective 
is represented with the process elements activities or tasks. Activities are either 
atomic (elementary business function) or complex (aggregation of a set of re-
lated activities and usually modeled as a sub-process) [103, 135].  The behav-
ioral perspective captures the execution sequence of the process elements with 
for instance flow objects such as gateways [12, 103, 135]. The organizational 
perspective will show who, such as roles and organizational units, is perform-
ing an activity. Finally, the informational perspective captures the data objects 
that are used and produced in a process [103, 135]. 

Syntactic variability occurs when two or more variants are (1) executed in 
two or more visibly different ways (functional and behavioral perspectives), (2) 
differences in the data objects (informational perspective) used as input or pro-
duced as output [134, 165], and/or resources (organizational perspective) per-
forming the activities [110, 149]. 

 
 

4.7.1 Activity Based Similarities of Variants 

Sematic similarity compares the similarity of two labels of for instance a task or 
activity using string-edit distance [43, 51]. String-edit distance measures the 
number of “atomic string operations” needed (such as deleting, substituting or 
inserting a character) in order to get from one label to the other label (being 
compared with) [43]. The fewer operations needed to achieve this, the more 
similar the labels are.  
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Contextual similarity extends the similarity comparison of two elements to 
include the elements that precede (the input context) and succeed (the output 
context) the compared elements [43, 51]. As such, the context in which the ele-
ments exist within is taken into consideration.  

Structural similarities move to one level higher above the elements and 
measure the similarities of the structures of the process models. The basis of 
these similarity comparisons is that process models are in essence graphs and 
therefore, graph-matching methods can be used to assess the similarity of two 
process models [43, 53]. Graph-edit distance is similar to string-edit distance 
but instead of atomic string operations on labels, graph-edit operations apply the 
same logic on the graphs (deleting, inserting or substituting nodes and deleting 
or inserting edges). Similarly, the fewer graph-edit operations it is required to 
match one process model to another, the more similar they are. 

Behavioral similarity, on the other hand, compares the execution semantics 
of two process models where each complete execution is taken as a trace and 
used to compare against the set of completed traces of another process model 
[43, 44, 53]. 

 
 

4.7.2 Data Object Similarities of Variants  

Another aspect of similarity between two process models concerns the data 
objects used as input or produced as output of the activities of the process mod-
els. For instance, an activity (task) of a process model might use different data 
object inputs and depending on which input it uses, have different procedures 
(for that activity). As such, there is variability due to the data object used as 
input, or in other words, a data object driven variability.  

A data object can be tangible (physical objects such as products and docu-
ments) or intangible (such as data fields and logical concepts such as product 
types) [163]. If objects share the same or similar properties, they can be classi-
fied as belonging to the same object type. For instance, consider an order. A 
business process might have several different templates for orders, one being 
purchase order, another being customer order. The purchase order is an object 
and the customer order is another object. Each customer order will have its own 
order id, date, order items. All customer orders will have the same or similar set 
of properties. As such, all customer orders can be classified as object type 
“customer orders” and be represented by its attributes [190]. Data object 
variability is therefore defined as variability caused by using or producing dif-
ferent data objects in a sub-process or activity. Variability in an activity occurs 
when the activity has a procedure that is not modeled but is different depending 
on data object input or output. For instance, the activity “register new client” 
might require different “forms” depending on type of customer. For each form, 
there might be a different procedure for the same activity, namely “register new 
client”.  

 



87 
 

4.7.3 Resource Similarities of Variants 

A resource in a business process is an participating entity (human or non-hu-
man) that performs the work (activity) [54, 190]. Within a process, there can be 
participants of different types such as separate organizational units (such as 
customer), different business units within one organizational unit (such as sales 
or public relations), different sub-divisions of a business unit (such as back-
office support for corporate and private clients), and different roles within the 
same sub-division of a business unit (such as insurance agent managing simple 
claims and another managing advanced claims) [54, 135, 155, 190]. If two 
different resources perform a sub-process or activity, there is a variability in-
duced by the resources involved. Resource variability is therefore defined as 
variability due to different resources involved in performing the same sub-
process or activity. 

 
 

4.8 Summary 

This chapter on foundations of process variants has covered the concept of vari-
ations in process models, their drivers, and a definition of a variable variant as 
“the outgoing path from a design-time variation point, when the different out-
going paths have similar inputs and/or lead to similar outputs as perceived by a 
domain expert”. The chapter also examined different variation drivers, namely, 
business, syntactic, data object, and resource drivers. The occurrence of varia-
tions, when captured in process models, can impair understandability and 
maintainability of the process models. In order to reduce the complexity of pro-
cess models (caused by many variants), they are decomposed along two differ-
ent lines, vertical and horizontal. Vertical decomposition is mainly concerned 
with representing a sub-process at a higher level of detail. However, such 
decomposition does not consider the variants of the sub-process. By applying 
incremental decomposition on a family of process variants, the problem of 
determining whether a given process should be modeled in a fragmented or 
consolidated manner, is reduced to that of deciding whether each of its sub-pro-
cesses should be modeled in a fragmented or consolidated manner. To guide 
this decision, a decision framework, based on two classes of variation drivers, is 
proposed. On the one hand, there may be business reasons (business drivers) for 
two or more variants to be treated as separate processes (or as a single one) and 
ergo to model these variants separately (or together). On the other hand, there 
may be differences in the way two or more variants produce their outcomes 
(syntactic driver), which make it more convenient to model these variants sepa-
rately rather than together or conversely. As such, the sub-process can be seen 
as being “sliced” into its different viable variants (cf. Fig. 12). 

The business drivers, as introduced can be classified as operational (how), 
product (what), market (where), customer (who) and time (when) drivers. This 
classification and the corresponding questions can be used to systematically 
elicit business variation drivers. 
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The second family of drivers determining whether two variants should be 
modeled together or separately is syntactic drivers. If each variant were mod-
eled separately, differences in the way variants produce outcomes would natu-
rally be reflected as differences between the models of each process variant. If 
these models differ in significant ways, it is more convenient to keep them sepa-
rate, as consolidating them increases complexity and reduces comprehensibility. 
Indeed, La Rosa et al [150] show empirically that the complexity of a consoli-
dated model of two variants (measured by means of well-known complexity 
metrics such as size, density, structuredness and sequentiality) is inversely pro-
portional to the similarity between the corresponding fragmented models, where 
similarity is measured by means of graph-edit distance. Hence, if we had a sepa-
rate model of each variant, we could assess the complexity trade-off between 
merging them and keeping them separate, based on their graph-edit distance. 
However, this requires that (i) the models of the separate variants are available; 
and (ii) that they have been modeled using the same notation, at the same level 
of granularity and using the same modeling conventions and vocabulary. These 
assumptions are unrealistic in many practical scenarios where models of each 
variant might not be available to start with, and even if they were available, they 
would typically have been modeled by different teams and using different con-
ventions. 

When these assumptions do not hold, the proposition of this thesis is to 
assess the similarity between variants of a process (or sub-process) by means of 
subjective judgment of the expected differences between the separate models of 
these variants. In other words, given two variants, domain experts are asked the 
question: How similar or different are the separate the variants (models)?  

These two concepts are used in determining how to slice a sub-process. As 
the sub-processes are decomposed (vertically) further and the level of detail of 
the process models increase (capturing data objects and resources), decisions on 
modeling a sub-process or activity, is taken based on their induced variability 
due to data objects and/or resource drivers.  

The horizontal decomposition can be seen as “dicing” the sub-process  
(cf. Fig. 12). 

 
 

 
Figure 12: Slicing and Dicing of a sub-process 

 
 

The survey presented previously, showed that two heuristics have necessary and 
sufficient criteria for being complete (breakpoint and data object-based). The 
other heuristics, while valuable and useful as complimentary to each other, are 



89 
 

not generally applicable as independent heuristics for decomposing a process 
model. The results of the comparison of these two decomposition heuristics 
showed that applying different heuristics does indeed result in different struc-
tures but, based on size, cohesion and complexity of the sub-processes, they are 
rather similar. As these metrics are approximations for understandability of 
process models, it is observed that different heuristics do not affect the under-
standability of process models. 

In the following section of this thesis, these conceptual foundations and 
findings are operationalized in the form of a method for consolidated modeling 
of families of process variants. 
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5 DECOMPOSITION-DRIVEN METHOD 

It has been shown that current approaches for managing families of process 
variants when modeling them, are mainly based on process model similarities. 
As such, the root cause of variability is not taken into consideration when mod-
eling the families of process variants. In this chapter, a method that considers 
both the business reason and the degree of similarity of variants when modeling 
families of process variants is presented. 

This chapter is structured as follows. Section 5.1 discusses the contexts in 
which the decomposition driven method can be applied, followed by an over-
view of the method itself in Section 5.2. The main part of this chapter consists 
of Sections 5.3 to 5.10, which presents each step of the method in detail. 

 
 

5.1 Discovery, Consolidation and Standardization 

Families of process variants need to be managed when discovering process 
models or consolidating process models. The method described, can be used 
both for when consolidating existing process models and for process discovery, 
i.e. when no prior process models exist. There are slight differences in the 
implementation of the method depending on if it’s a matter of consolidation or 
discovery of process models. These differences are discussed together with the 
description.  

The method can also be applied for business process standardization pur-
poses. Such projects require efforts to identify candidate business processes that 
are to be standardized. As such, business process standardization will most 
likely, at some point, include either discovery or consolidation of business pro-
cesses. For instance, if a company wishes to standardize a set of their business 
processes, they need to discover the current processes (as-is models) in order to 
understand what and how to standardize. With the as-is models, the company 
might wish to design new process models based on consolidating (with modi-
fying) their process models. However, before processes can be standardized, it 
is necessary to identify which processes to standardize. With the process models 
discovered, factors such as complexity of process models under consideration 
for standardization can be assessed. More importantly, the method can be used 
to identify viable variants, that is, identifying processes that are variants and 
therefore, from a business perspective, meaningful to consider for standardiza-
tion. The application of the method is, nevertheless the same as for discovery or 
consolidation. 

 
 

5.2 Overview of the Method 

The proposed method for consolidated modeling of process variants follows the 
idea that decisions on whether to model two or more process variants together 
or separately, should not necessarily be taken at the level of the top-level pro-
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cess (main-process). Instead, such decisions should be postponed to each level 
of decomposition at the level of sub-processes. In other words, decisions on 
whether to model in a consolidated or fragmented manner should be interleaved 
with process decomposition steps. For instance, if two variants are extremely 
different, it is not optimal to start modeling them together as the number of 
branching points will limit the readability of the model and most likely result in 
modeling the variants as separate models. Conversely, if two similar variants 
are modeled separately, the amount of duplication will be very high. As such, 
there will be an optimal point in the process hierarchy where decisions to model 
sub-process together or separately are to be taken. Depending on the particular 
process, that decision might happen at a higher or at a lower level of process 
hierarchy.  Moreover, as the process is decomposed into sub-processes, a con-
solidated modeling approach for each sub-process should be the default option 
until it becomes clear that a fragmented approach is preferable from a business 
or syntactic perspective.  

These ideas are embodied in the following seven steps as summarized 
below. 

1. Model the main process – the purpose of this step is to elicit the main 
steps (sub-processes) of the business process in question. 

2. Identify variation (business) drivers – in this step, the business drivers 
of variations are elicited so it becomes clear what drives the business 
process to have variability in the way it produces its outcome. 

3. Assess the relative strength of the variation drivers – in this step, the 
business drivers are analyzed to determine which driver is the most im-
portant (strongest) driver of variations in the business process.  

4. Identify the variants of each sub-process – at this point the actual exist-
ing variants of each sub-process previously elicited (in step 1) are iden-
tified and listed. 

5. Perform similarity assessment of variants of each sub-process – at this 
stage of the method, the existing variants for each sub-process of the 
main process (or its corresponding sub-process at one level higher in 
the process hierarchy) is compared for the purpose of determining how 
similar or different they are from each other. 

6. Construct the variation map – from the previous steps, the business 
drivers are present in the business process, the existing variants and 
their degree of similarity or difference are known. In this step, this in-
formation is used to determine if the variants of each sub-process 
should be modeled together or separately. 

7. Assess Data Object and Resource Drivers – this optional step is only 
applicable if the process models are annotated with either data artifacts 
or resources or both. In case of process model discovery, this step 
would only apply if the scope of process modeling includes these ele-
ments. In this step, the data object and resource induced variability is 
examined. For each case where there are strong data object and/or re-
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source induced variability, decisions on modeling the variants together 
or separately are taken.  

 
The steps are performed concretely with business stakeholders who have in-
depth knowledge and understanding of the business process or parts of it. The 
roles that possess this knowledge may vary from one organization to another. In 
some organizations it is the business analyst, in others it might be subject matter 
experts or process owners. The actual list of participants (and roles) is naturally 
determined in discussion with those who have request the work.  
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Figure 13: Steps of the Decomposition-driven method 
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5.3 Model the main process (step 1) 

In this step, the main process is modeled. This is done together with the domain 
experts and other relevant business stakeholders. The aim is both to scope the 
business process in question and to identify the major (high level) milestones in 
the business process. The level of abstraction of the main process should be at 
such level as to depict the major 5±2 steps (sub-processes) of the business pro-
cess. One possible method for modeling the main process is introduced in [167] 
by Sharp and McDermott. In this method, the start and end events are first 
identified and then milestones are discovered. Alternative methods are, among 
others, introduced by Dumas et al [54], Harmon [77], and Rummler and Brache 
[155]. Although these methods vary slightly in how the main process is elicited, 
they all provide the concepts necessary for modeling the main process and their 
further decomposition. As have been shown previously, different decomposition 
heuristics will affect the process hierarchy but not, in a significant way, their 
understandability.  

One suggested way is applying the “breakpoint” decomposition heuristics is 
by following the steps described below; 

1. Identify what will initiate the main process, i.e. when does the main 
process start (for instance, when a customer order is received) 

2. Identify what will conclude the end process, i.e. when does the main 
process end (for instance, when the customer has paid the invoice) 

3. Determine what major steps are needed to go from the start of the main 
process to its conclusion. A main process usually have 5±2 major steps 
(sub-processes) [167]. 

4. Organize the sub-processes in the order they are executed from the start 
of the main process until the end.  

 
Note that the first and second step does not have to be conducted in this order, it 
is fully possible to do step 2 first and proceed with step 1. This should be 
decided depending on context. For instance, if the domain experts are familiar 
with process modeling or have already a main process modeled, then it is better 
to start with step 1. However, if the domain experts are unfamiliar with process 
modeling, it is better to start with step 2 so they get introduced to the concepts 
of processes and value creation. 

In Fig. 14, the main process of a governmental agency managing applica-
tions for constructions is shown. It starts with a plan being received and then it 
is registered, prepared, examined and finally approved. As such, the main pro-
cess represents the major milestones of the business process. The main process 
is needed for consolidating process models and discovery of process models. 
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Figure 14: Example of a Main Process 
 

 
5.4 Identify variation (business) drivers (step 2) 

5.4.1 Eliciting Business Drivers 

The second step is to elicit the variants (induced by business drivers) of the 
business process and classify them. For the elicitation of variation drivers, the 
adapted framework of Rummler and Brache (presented in the previous chapter 
of this thesis) is used (cf. Fig. 15). As previously clarified, this framework de-
picts an organization as a system operating within a larger system. As such, 
factors from the larger system affect the organization and therefore can cause 
variability in the business processes of an organization. 
 
 

 
Figure 15: Framework for Variation Drivers 

 
 

As the first step, the stakeholders of the organization are asking two rounds of 
questions in relation to the adapted framework depicted above. In the first 
round, questions are asked about the existence of drivers in each of the catego-
ries of the framework. The main questions for each of the w-questions are as 
follows; 

1. What products/services does the main process produce? 
2. Who are the customers/consumes (segments) of these products? 
3. Where are these products distributed? 
4. How are these products/services produced? 
5. Are there any external circumstances that require a different process for 

meeting the specific needs and if so, when (for more clear examples, 
see previous chapter under time variations)? 
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These questions serve as a starting point but naturally, there will be follow up 
questions for the purpose of elaborating and/or adapted to the specific context. 

In the second round, each of these categories of drivers are further clarified 
and refined (such as how many sub-segments of customers are served in this 
process). For instance, in the example shown in Fig. 17, the first round of ques-
tions identified the existence of product drivers (new construction request or 
change to an existing construction). In the second round, the discussions clari-
fied that new construction plans could be for either office or residential build-
ings. Concretely, this is achieved by means of a workshop or interview with 
business stakeholders. The output of this step is a list of all possible variation 
drivers for the business process and therefore, implicit branching points.  

 
 

5.4.2 Identifying and Classifying Viable Variants 

As previously described (in the previous chapter), an explicit or implicit 
branching point is either defined as a decision or as a variation point. If it is a 
variation point, the outgoing branches are seen as viable variants. As such, in 
order to identify viable variants, the variation points need to be identified first. 

The viable variant elicitation (as depicted in Fig. 16) begins with identifying 
all branching points of a given process model. In case of process model con-
solidation, both explicit and implicit branching points are investigated. In case 
of process model discovery where there are no process models, all branching 
points will be implicit. From the previous step, eliciting business drivers, the 
implicit branching points are identified (both for process model consolidation 
and discovery).  

Once a branching point has been identified, the outgoing alternatives are 
examined to assess if they lead to different but similar outcomes, that is, classi-
fication of the branching point as either decision or variation point.  

A viable variant is defined as “the outgoing path from a design-time varia-
tion point, when the different outgoing paths have similar inputs and/or lead to 
similar outputs as perceived by a domain expert”. In determining of a branching 
point is a variation point or a decision point, the following questions might be of 
assistance; 

 Does the variants have identical or similar starting events? 
 Does the variants produce identical or similar outcomes? 
 Is it a design-time variation, i.e. 

o Has the branching point been defined at design time and/or 
o Is the execution path of the process determined at the start of 

the process (as opposed to, is the execution path of the process 
determined just before the branching point)? 

 Are the variants closely related to each other, i.e. 
o If the two (or more) variants were to be represented at one level 

higher as a sub-process in the process model hierarchy, would it 
be reasonable to include these variants in one sub-process? 
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o Does these variants belong the same business driver category 
(product, customer, market, operational or time)? 

 
If the answers to the questions above are “yes”, then it is defined as a viable 
variant.  

Once a variation point has been identified, its variation options are identi-
fied, allowing identification of its variation driver. Continuing the analysis, 
identification of which W-question corresponds best to the variation driver is 
done and they are classified accordingly. The task beginning from classify 
branching points to classify variation driver, are repeated for each branching 
point in the collection of process models. It should be noted that in some cases, 
certain variants might be known before the analysis start, and in other cases the 
variants are discovered during the variation elicitation analysis. It might even be 
a combination of these two, that is, some variants are known at the start and 
some are discovered during the analysis. 

 
 

 
Figure 16: Driver elicitation method process 

 
 

When analyzing a collection of process models, different analysts might choose 
to focus on different aspects or levels of granularity and thus recognize different 
variants in the process (due to for instance the purpose of the analysis work). 
This method does not provide the analyst with a prescriptive definition of what 
constitutes a process variant but rather guidelines to assist in the elicitation of 
viable variants. It will be the choice of the analyst to determine what constitutes 
a viable process variant. For example, the analyzer will choose whether to treat 
the processes for handling personal, vehicle and property claims as three differ-
ent variants or a single process. 

 
 

5.5   Assess the relative strength of  
variation drivers (step 3) 

Having identified the viable variants and their business drivers in the business 
process under examination, a rating of importance (hereby called strength) is 



98 
 

assigned to each driver. The strength of a variation driver reflects the level of 
investments needed to merge or standardize the process variants induced by the 
driver, as well as the level of management such decisions would be made. Im-
portantly, the aim in this step is to rate the business importance of each variation 
driver, regardless of how much the variants differ from one another.  

Variants induced by a “very strong” driver are fundamental to the business. 
For instance, if a company provides a service in two different markets, each 
with different regulations, the market driver is considered as “very strong”. It 
would be very difficult (if even possible) to make changes in the variants across 
markets (such as standardizing the two variants). Similarly, a product driver 
would be rated as “very strong” if a decision to substantially change the way 
one of the products is delivered would be seen as a change in the business 
model and would require a decision at the highest level of management. In other 
words, a very strong driver is such that its induced variants must be managed 
separately. 

On the other hand, variants induced by a “strong” driver can in principle be 
merged or standardized to the point they can be managed together. However, 
their merging or standardization requires significant investments and decisions 
from mid-to-upper management layers. For example, consider a company that 
has two different IT systems to support the same service due to historical or 
organizational reasons. A decision to merge or replace these two IT systems 
would require significant investment but would not affect the business model. 
Changes in variants induced by “strong” drivers are confined to individual busi-
ness units and require decisions from the management of the business unit in 
question. 

Variants generated by drivers rated as “somewhat strong” are considered to 
differ only at the level of minor details from a business perspective. In other 
words, whether these variants are managed together or separately is irrelevant 
from an upper management perspective. Change decisions on variants induced 
by a “somewhat strong” driver are taken at a low or mid-management tier. 

Finally, a driver is rated as “not strong” if it is irrelevant to the business 
whether the variants are merged or kept separate, or in the latter case whether 
they are managed together or separately. For example, consider a company that 
provides the same service to two or more customer segments where differences 
in customer segments do not play a significant role in the way a service is sold 
and delivered. In this setting, the driver “customer segments” can be rated as 
“not strong”. 

The rating of drivers can be achieved via a workshop or interviews with 
domain experts, based on the questions outlined in Table 15. For a given driver, 
the first question to which the answer is positive determines driver’s strength 
rating. If the answer to every question is negative, the variation driver is rated 
“not strong”. 

Only the strongest driver is taken as primary. If multiple drivers have equal 
strength, the one with fewer sub-categories is ranked higher. For instance, if an 
insurance company considers its products (individual travel insurance and busi-
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ness travel insurance) to be of equal strength as its customer drivers (northern, 
eastern, southern and western market segment), the product driver is ranked 
higher. The product driver has only two sub-categories whereas the customer 
driver has 4 sub-categories. In such cases, the driver with fewest sub-categories 
is ranked higher so as to reduce duplicity in the variation matrix. 

In the running example, the primary variation driver was to be identified as 
the product driver with “new construction” and “change construction” plan. 
Having rated the relative strength of the variation drivers, this data is used to 
populate the first column of the variation matrix. The output of this step is a list 
of variation drivers for the process under examination together with their 
strength rating. 

 
 

Table 15: Questions to help Determine the Strenght of a Driver 

Rating Question 

Very Strong Would a merger of the variants due to this particular 
variation driver be possible? 
Would a merger of these variants affect the business 
model or structure in such a fundamental way that it 
would require a decision from the highest level of 
management? 

Strong Would a merger of the variants (if desirable) require 
considerable investment, including noticeable re-
organization, and require decision from high level of 
management? 

Somewhat Strong Would a merger of the variants (if desirable) require 
some investment, include some re-organization 
noticeable to the concerned business unit only, and 
require decision from mid-level management? 

Not Strong None of the above. 
 
 
5.6 Identify the variants of each sub-process (step 4)  

In the fourth step, existing variants for each sub-process (as identified in step 1) 
and for each variation driver are identified. This is concretely done by asking 
the business stakeholders for each sub-process, existing variants per business 
driver and adding them, one by one, to the variation matrix. The variants are 
therefore captured in a textual way by their name. The output is a variation 
matrix (cf. Fig. 17) wherein the rows correspond to business drivers (qualified 
by their relative strength) and the columns correspond to the sub-processes 
identified in step 1. A cell in this matrix lists the variants of a given sub-process 
(if any) induced by a given driver. For convenience the drivers are listed in de-
scending order of strength. For instance, in the running example, there are three 
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different variants for examining a plan (examine a new construction plan for 
office building, residential building and change to existing construction). 
 
 

 
Figure 17: Variation matrix 

 
 

5.7    Perform similarity assessment of variants of  
each sub-process (step 5)  

In this step, a similarity assessment for each subset of variants of each sub-pro-
cess identified before is performed. As discussed previously, for this similarity 
assessment it is not assumed that detailed models of each sub-process are avail-
able for comparison. Naturally, if such models exist, they can be used. Accord-
ingly, a 4-point scale for similarity judgments extensively used in the field of 
similarity assessment [196], is employed: (1) very similar, (2) similar, (3) some-
what similar, and (4) not similar. It should be noted that identical variants are 
marked as identical and not subjected to similarity assessments. 

This step can be implemented by interviewing the domain experts, asking 
them – given the identified variants of each sub-process – if the variants of the 
sub-process are likely to lead to models that are identical, very similar, similar, 
somewhat similar or not similar (cf. Table 16). The output of this step is an 
annotated variation matrix, where is set of variants of a sub-process is annotated 
with the result of their similarity assessment.  

For instance, in Fig. 17 there are two variants of register plan (register NCP 
and register CCP). The business stakeholders are asked about the similarity of 
these two variants. Color codes or any other method of choice can be used to 
distinguish the similarity of the sub-process variants. If more variants are avail-
able, such as in the case of “examine plan” in Fig. 17, the same procedure is 
repeated but beginning with variants within one variation driver first. For in-
stance, the similarity of “examine NCP Off” is compared with “examine NCP 
Res”. Then, they are assessed as compared to “examine CCP”.  
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Table 16: Guidelines for Subjective Assessment of Similarity 

Similarity Assessment Similarity of two variants 

Identical There is no perceivable difference. 

Very Similar 
Differences can be perceived but they are not 
significant. 

Similar 
There are clear similarities throughout the 
process. 

Somewhat Similar 
There are some isolated parts of the process that 
are perceivably similar.  

Not Similar There are in essence no perceivable similarities 

 
 

5.8 Construct the variation map (step 6)  

From the previous steps, the strength of the business drivers and the degree of 
similarity between the variants of each sub-process induced by a driver are 
known. This information is used to assess the trade-off of modeling the variants 
in a consolidated versus fragmented manner. In making a decision to consoli-
date or fragment, the analyst will use the decision matrix depicted in Fig. 18.  
 
 

 
Figure 18: Decision matrix for modeling variants separately or together 
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If the variants are very similar and there are no strong business drivers for vari-
ation (not strong or somewhat strong i.e. no significant business impact), then 
naturally the variants are modeled together. Conversely, if there are strong busi-
ness drivers (strong or very strong i.e. they have business impact) and the vari-
ants are syntactically different (somewhat similar or not similar) they are mod-
eled separately. If variants are similar and have strong business drivers, they are 
modeled together or separately depending on the current level in the process 
decomposition. By high level of decomposition, level 3 (level 1 and 2 refer to 
Business Model and the main process) of the value creation system hierarchy 
introduced by Rummler and Brache [155] is referred. Using the same process 
architecture, low levels of decomposition refer to levels 4 and 5 (lowest levels 
of decomposition). 

At levels close to the main process, sub-process variants falling in this quad-
rant are modeled separately because the business driver for separating the vari-
ants prevails. If the business driver is strong, it pre-supposes that the variants 
have different process owners and stakeholders and therefore the modeling 
effort has to be done separately for each variant. At lower levels of process de-
composition, the business driver for modeling two variants separately weakens 
down and the incentive for sharing the modeling effort for variants increases. 
Therefore for sub-processes at lower levels of decomposition, the syntactic 
driver prevails, i.e. if these processes are similar, they are modeled together as a 
consolidated sub-process. Conversely, in the lower right quadrant, variants of 
sub-processes at a high level of decomposition are modeled together, since 
these variants fall under the same ownership area and thus it makes sense to 
conduct a joint modeling effort for them. However, at the lower levels of 
decomposition, if two sub-process variants are not similar, the analysts can 
choose to model them separately.  

The output of this step is a variation map (cf. Fig. 19). A variation map is a 
process model where there are only tasks and XOR splits, representing the 
points where multiple variants will be separated.  In constructing the variation 
map, only the allowed combinations are modeled using gateways. As such, the 
variation map shows the variants of each sub-process that ought to be modeled 
separately. The variation map contains one decision gateway per subset of vari-
ants of a sub-process that need to be modeled separately. If a sub-process does 
not have variants, it is not preceded by a gateway.  

For instance, having performed the similarity assessment based on the varia-
tion matrix in Fig. 17, it has become known that variants “Examine NCP Off” 
and “examine NPC Res” are very similar to each other but different from “Ex-
amine CCP”. As such, as it concerns a high level of decomposition, the variants 
for NPC are modeled together and CCP is modeled separately from NCP as 
according to the decision matrix in Fig. 18. Furthermore, when constructing the 
variation map, constraints between variants of pre- and succeeding sub-pro-
cesses are considered. For instance, as depicted in Fig. 19, only “examine NCP” 
can follow “prepare NCP”, i.e. it is not possible to execute “examine CCP” after 
“prepare NCP”. 
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Having constructed the variation map for the first level of process decompo-
sition, each of the sub-process variants in the variation map, are considered in 
turn. Each sub-process variant is then decomposed into a lower-level process 
model and steps 2–4 are repeated at this lower level. 

 
 

 
Figure 19: Variation Map 

 
 

5.9 Modeling the Business Processes 

At this stage of the implementation of the method, the processes are to be either 
re-modeled (process model consolidation) or modeled from scratch (process 
model discovery). When process modeling is done for discovery purposes, there 
are two main approaches one can choose from, ‘bottom-up’ or ‘top-down’. The 
decomposition driven method presented here is compatible with both ap-
proaches but it is recommended to apply the bottom-up approach for process 
model consolidation and top-down approach for process model discovery.  

In case of process model consolidation, the variation map has already out-
lined which processes are to be modeled together and which are to be modeled 
separately. In such case, it is recommended to adopt a bottom-up approach (be-
ginning with the process models at the lowest level of hierarchy) and “dice” the 
process models in accordance with the variation map. As the fragmented mod-
els are available, it is feasible to take advantage of the work already done and 
re-arrange and re-model them in accordance with the outline given by the varia-
tion map. 

In case of process model discovery, the main process, the main variants of 
each sub-process of the main process and their sub-variants are already elicited. 
As such, it is feasible to continue the modeling work along the same path to the 
lowest level of granularity by modeling the activities of the sub-processes.  

The decomposition driven method does not depend on any particular re-
quirements as to the modeling techniques used. Therefore, the modeling itself 
that is done together with the domain experts, can be done in accordance with 
the guidelines provided by for instance Dumas et al, [54], Harmon [77] or Sharp 
and McDermott [167].  
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5.10   Data Objects and Resource Driven Variation 

A business process may also have variability induced by its data objects or re-
sources. This is only visible if the process model has been modeled at the lowest 
level of decomposition. The lowest level of decomposition is that level at which 
input and output data objects are modeled, as well as the performers of the 
activities (for instance by using pools and lanes in BPMN notation). Previous 
steps of the method introduced, have concerned modeling processes together or 
separately, but at this step, activities within a process model in focus.  

In other words, decisions on whether to model activities of a process model 
in a consolidated or fragmented manner, is determined for each task at the low-
est level of decomposition. Such decisions are taken on the basis of the 
“strength” of the data objects and/or resources, and the degree of similarity in 
the underlying procedures of that activity. Previous steps have been concerned 
with the “major variations” of a family of process models as they have been on 
the level of process models (variants). In this step, the “minor variations” are 
addressed as the focus is on the activities of a process model. 

This step can be applied on ‘process model consolidation’ and in ‘process 
model discovery’. As before, a consolidated modeling approach for each activ-
ity or task should be the default option until it becomes clear that a fragmented 
approach is preferable from a data object and/or resource perspective. These 
ideas are embodied in the following steps. 

 
 

5.10.1 Elicit Data Objects and Resources.  

The first step is to elicit the data objects and resources performing the tasks for 
each activity of a process model. This is achieved by, for each process model, 
listing the activities it is composed of. If the process model includes a sub-pro-
cess, then the same procedure is applied on the expanded sub-process. If a sub-
process does not merit the effort of being decomposed, the same steps are ap-
plied as for activities. However, the difference is that the steps elaborated be-
low, are applied on the sub-processes as opposed to on each activity of a sub-
process. This information is then entered in a template as illustrated in Fig 20. 
 
 

 
Figure 20: Template for Data Object and Resources 
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Once the list is completed, by means of workshops or interviews with domain 
experts, the data objects and resources that cause variability are highlighted. 
Note that only those activities that have variability in data objects (either input 
or output or both) and/or resources are of interest. In order to know this, the data 
objects and resources of each activity are noted, but one can choose to enter 
data for only those activities that have variability. 

A data object does not cause variability if it is always required or produced. 
However, if there is a data object used in a certain case and not in another, i.e. 
one data object exclude the use of another, there is a potential cause of variabil-
ity. Similarly, if an activity is performed by only one resource, there is no varia-
bility. However, if two or more resources perform the activity depending if a 
specific condition is fulfilled, it can be a cause of variability. At this stage, the 
template will have highlighted all sources of potential variability caused by data 
objects and/or resources.  

 
 

5.10.2 Design-Time and Run-Time Variations 

Next, a second filtering takes place. During this second filtering, all variations 
occurring at run-time [135], are excluded. The template will only include build-
time [135] (a.k.a design-time) variability caused by data objects and/or re-
sources (as defined in previous chapter). At this stage, all the data objects (input 
and output) associated with each sub-process and tasks, those that cause varia-
bility and specifically, those that cause build-time variability are known. Next, 
as described below, the strength of the drivers for variability are assessed.  

 
 

5.10.3 Assess Strength of Drivers for each Activity 

As input from the first step, a list of all data objects and resources that cause 
design-time variability is available. The next step is to assess the “strength” of 
the data object and resource driver for variability. This is achieved by assessing 
the data object driver followed by the resource driver. For both data objects and 
resources, a two-point scale consisting of “strong” or “not strong” is used. 

The importance or “strength” of a data object as driver for variability is de-
pendent on if the variability is on the “object”, “object type” or “attribute” level. 
Variability in “objects” and “object type” are stronger than “attribute”. For ex-
ample, if an activity uses different objects (purchase or customer order), the 
data object driver is considered as “strong”. Similarly, if an activity has as in-
put, different types of customer orders (such as corporate or private customer 
order), the variability driver of the data objects is considered to be “strong”. 
However, if an activity uses the same type of customer order but the attributes 
(such as which fields of the order is required to be filled in) are different, the 
data object driver is considered to be “not strong”. 

The strength of resource driver for variability is dependent on if the variabil-
ity occurs at the level of “business units”, “sub-divisions” of a business unit or 
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“roles” of a sub-division (see previous chapter). The resource-induced variabil-
ity is “strong” if an activity is performed by two different business units (if cer-
tain conditions hold) or two different sub-divisions (if certain conditions hold). 
Similarly, the resource driver is considered to be “not strong” if there is a varia-
bility in roles within a sub-division. 

The output of this step is a documented assessment of the relative strengths 
of the data object and resource drivers for variability for each activity of a 
process. 

 
 

5.10.4 Assess Similarity of Variants for each Activity 

In this step, a similarity assessment is performed for each activity that has vari-
ability caused by either data objects or resources. As discussed previously, for 
this similarity assessment, it is not necessarily to have detailed models of each 
sub-process. The scale for similarity judgment is subjective and follow the same 
structure as mentioned above and extensively used in the field of similarity 
assessment [196]: (1) very similar, (2) similar, (3) somewhat similar, and (4) not 
similar. (Identical variants are marked as identical and not subjected to similar-
ity assessments). 

This step can be implemented by interviewing the domain experts, asking 
them – given the identified variants of each sub-process – if the variants of the 
activities (and in some cases, sub-processes) are likely to lead to models that are 
identical, very similar, similar, somewhat similar or not similar (cf. Table 16). It 
should be noted that the procedures of the compared activities are assessed for 
similarity. The output of this step is an annotated template (introduced in step 
1), where each set of variants of a sub-process is annotated with their degrees of 
similarity. As before, color codes or any other method of choice can be used to 
distinguish the degree of similarity of the activity variants. 

 
 

5.10.5 Determine how to Model each Activity  
(consolidated or fragmented).  

From the previous steps, the strength of the data object and resource drivers and 
the degree of similarity between the variants of activities, are known. This in-
formation is used to assess the trade-off of modeling the activities in a consoli-
dated versus fragmented manner. In making a decision to consolidate or frag-
ment the variants of a particular activity, the decision matrix depicted in Fig. 21 
is used.  
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Figure 21: Decision matrix for modeling sub-processes and/or tasks separately or 
together 
 
 
If the variants are very similar and there are no strong drivers for variation (not 
strong), then naturally the variants are modeled together. Conversely, if there 
are strong drivers (strong) and the variants are syntactically different (somewhat 
similar or not similar) they are modeled separately. If variants are similar and 
have strong drivers, they are modeled together or separately depending on the 
level of process decomposition. If it is a sub-process at a higher level of decom-
position, it is modeled separately but if it is an atomic activity, i.e. no further 
decomposition is meaningful, it is modeled together. Sub-processes, as they are 
of higher order in the level of decomposition, are modeled separately as the 
driver for separating the variants prevails. If the data object and/or resource 
driver is strong, it pre-supposes a significant reason for variability, expressed 
for instance as using different objects, and therefore the modeling effort has to 
be done separately for each variant. At the lowest level of process decomposi-
tion, the drivers for modeling two variants separately weaken down and the 
incentive for sharing the modeling effort for variants increases. Therefore for 
activities at lower levels of decomposition, the syntactic driver prevails, i.e. if 
these processes are similar, they are modeled together as a consolidated sub-
processes or activities. Conversely, in the lower right quadrant, variants of sub-
processes are modeled together, since no significant business reason drive vari-
ability. As such, it makes sense to conduct a joint modeling effort for them. 
However, at the lower levels of decomposition, if two activities are not similar, 
the analysts can choose to model them separately. 
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If a sub-process or activity has data object and resource induced variability 
at the same level of strength (strong versus not strong), the similarity perspec-
tive will determine the modeling. Similarly, if they are in the same level of sim-
ilarity (very similar and similar versus somewhat similar and not similar), the 
strongest driver determines the modeling choice. However, if a sub-process or 
an activity, for instance, has data object variability that is strong with variants 
that are very similar or similar, and a resource variability that is not strong with 
variants that are somewhat similar or not similar, the variants will be modeled 
separately. At higher levels of decompositions (sub-processes), determinant will 
be the driver perspective and at lower levels of decomposition (activities), the 
syntactic perspective takes precedence.  

The variability induced by data objects can be captured even if sub-processes 
or activities are modeled together. One option is to capture the information in 
textual form separately from the process model, either at the attribute level 
(such as InputSets and OutSets of BPMN) [118] or in separate text documents. 
Such methods, however, do not allow visual expression of the data object varia-
bility. In addressing this issue, notation can be used to visualize the variability. 
For instance, La Rosa [149] propose notational extension of C-EPC to enable 
representing data objects involved in the performances of tasks (called C-iEPC). 
Although their contribution is used for configurable process models (C-EPC), it 
can be transposed to BPMN (only for data objects). Adopting the transposition 
of C-iEPC to BPMN to extend the use of control flow gateways to data objects, 
will allow for representing data object variability in process models. It would be 
sufficient to use exclusive (XOR), parallel (AND) and inclusive (OR) gateways 
to represent data object variability of sub-processes or tasks. 

 



109 
 

6 CASE STUDIES 

Previous chapter presented a method for striking a balanced trade-off between 
modeling each process variant separately versus collectively. The novelty of the 
method is in its core idea, namely to incrementally construct a decomposition of 
the family of process variants into sub-processes, determining if each sub-pro-
cess should be modeled in a consolidated manner (one sub-process model for all 
variants or for multiple variants) or in a fragmented manner (one sub-process 
model per variant). This decision, as described, is taken based on two parame-
ters: (i) the business drivers for the existence of a variation in the business pro-
cess; and (ii) the degree of difference in the way the variants produce their out-
comes (syntactic drivers including data objects and resources).  

The applicability of the method is tested on two separate cases that share the 
need of having their business process variations managed but differ in terms of, 
for instance business model, size, context and process maturity. For this pur-
pose, the case study method is applied.  

The rest of this chapter is structured as follows. The case study method is 
introduced in Section 6.1 and the rationale of the case study in Section 6.2. The 
research question of the study is presented and discussed in Section 6.3 fol-
lowed by presentation of the design of the study in Section 6.4. The execution is 
presented in Section 6.5 followed by the finings in Section 6.6. Finally, this 
chapter ends with discussion on threats to validity in Section 6.7.  

 
 

6.1 Method 

There are various definitions on what a case study is. Despite the many defini-
tions, most of them include the concepts of examining, inquiring or investigat-
ing a contemporary phenomenon in its natural setting or within its real-life 
context [22, 144, 195] in a systematic or structured manner. In short, a case 
study can be defined as an empirical method that serves the purpose of investi-
gating a certain reality within its real-life context [156], particularly when the 
boundaries between what is studied and its context are not clear [195]. 

Case studies are often used for exploratory purposes, but they are also suita-
ble for evaluation of a method within the software and systems engineering 
domain [89]. The case study method can also be used for testing a hypothesis 
in, for instance a confirmatory study [55, 60, 156]. For confirmatory purposes, a 
hypothesis derived from the research question is either confirmed or rejected. A 
confirmation shows empirical data that is analyzed and interpreted in order to 
accept or reject hypothesis [55]. These features make the case study method 
applicable as an instrument to validate the proposed method. 

A case study should include one or several explicitly stated research ques-
tions that is defined at the beginning of the case study [124, 157]. Furthermore, 
it is necessary to know what data to gather and plan for data collection in a con-
sistent manner [124]. Using the collected data, inferences are made from the 
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data in order to answer the research question (and also accept or reject the 
hypothesis defined). There is also a need to discuss the threats to validity and 
present measures taken to reduce these risks [124].  

 
 

6.2 Rationale 

6.2.1 Case 1: Mid-sized European Bank 

A mid-sized European bank offers trading services in foreign exchange (FX) 
and money market (MM). Foreign exchange is trading in currencies such as 
euros against dollars. For instance, an US based multinational company might 
receive orders from Europe with payment in euros. As the company wants to 
have its funds in dollars, it will approach a bank to sell the euros they have re-
ceived and buy dollars instead. As such, they trade euros in favor of dollars and 
have therefore performed a foreign exchange transaction. Money market is 
when banks or larger corporations trade in loans and deposits that range from 
one day to considerably longer periods. Consider the same US based company. 
They might have received a large payment in dollars, which they will need in 
the following week. Instead of keeping the funds in their own accounts for a 
marginal interest rate, they can deposit the sum (lend it out to someone who 
needs short term funds) for a higher interest rate. As such, they have made a 
money market transaction. Conversely, if they would need funds for a short 
term, such as two weeks, they can take a loan from someone who has excess 
funds during this time period. 

The bank in this case study (henceforth refereed to as the bank), offers these 
services of trading FX and MM transactions. For this purpose, the bank has a 
legacy system for its back office processing of FX and MM trades (families of 
process variants). The bank seeks to replace this system with an off-the-shelf 
system. Although the FX and MM market is one of the most mature financial 
markets, there are many developments made due to new regulatory require-
ments, customer demands, and adaptations to international standards. In order to 
continue providing FX and MM related services competitively, the bank needs 
to continuously develop enhancements in there IS system and structure. The 
legacy system of the bank has been caught in a “maintenance trap” (cost of nec-
essary maintenance is large compared to development of new functionalities). 
Furthermore, as it is an old system (some 20 years), it is complicated to de-
velop, it is difficult to find good developers who master the language in which it 
is written, and it takes a long time for a new resources to get enough aquatinted 
with the system before become productive developers. In addition, the bank is 
concerned about their competitiveness as the cost of maintenance is succes-
sively increasing.  

Due to these reasons, the bank wished to evaluate alternatives in the form of 
standard off-the-shelf systems. However, during the past 20 years, the system 
has been tailored to their specific needs, as it has been tightly integrated with 
supporting systems for other products. Furthermore, the business units have set 
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up their organizational structure in such a way that several different units use 
the same system but in various ways and for different purposes. While the cur-
rent processes have their advantages, the bank wants do avoid a “replication” of 
the current processes within the framework of a new system. In order to achieve 
this, the bank saw it necessary to elicit requirements for all variants, which pri-
marily come from the business processes rather than from the current IS and 
organizational structure.  

The business processes had, several years before this case study, been mod-
eled as separate process models (flowcharts) by a team of consultants. The 
existing models were flat (no decomposition had been made) and “sliced” in 
accordance with the organizational structure at that time. Three of these models 
were for the variants of the business process related to trading FX and MM with 
interbank counterparts and one for non-interbank clients (those who do not have 
an account with the bank). The bank aims at consolidating these process models 
prior to requirements elicitation. By doing so, the requirements needed for eval-
uating standard off-the-shelf system will be based on requirements needed for 
managing the products rather than reflective of current IS structure or organiza-
tional units. 

 
 

6.2.2 Case 2: DNA Core Facility Center 

A national bio-bank (repository of biological samples such as blood sample) of 
a country has collected more than 50 000 samples from the population for ge-
nome research purposes. This Genome Center also has a “core facility” where 
they perform genotyping and sequencing of DNA samples. Genotyping is when 
the differences of the genetic make-up of an individual are compared with an-
other individuals DNA or against a reference sequence (DNA). DNA sequenc-
ing, on the other hand, is the process by which the precise order of nucleotides 
within a DNA is determined and documented. This service is performed both 
for in-house purpose (own research) and as a service sold to other institutions 
and companies.  

This process is a heavily chemical one with many steps that require the full 
attention of the lab technicians performing the work. Furthermore, advanced 
machines are required for the sequencing. It is very important that they follow 
protocols when sequencing data. If protocols are neglected, it can pollute the 
data, which can be very costly.  

Currently, they use manual tracking with excel sheets as support. Although it 
is crucial to follow protocols, they do not have their business processes repre-
sented in any other form than text documents. These documents function as 
instruction manuals but cannot offer any tracking support for their genotyping 
and sequencing projects.  

The core facility division has initiated a collaboration with a software devel-
opment company to build a Laboratory Information Management System 
(LIMS) to address these shortcomings. In addition, they wish to analyze their 
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genotyping and sequencing processes in order to find improvement opportuni-
ties, gain understanding of costs at various steps of the process, enable scaling 
of projects (managing larger number of projects, samples), improve their plan-
ning and reduce lead time, and incorporate barcode tracking devices to follow 
the progress of their projects. In order to incorporate these functionalities, they 
need to capture their desired business processes and provide the software devel-
opers with requirements for their new LIMS system. 

As they currently do not have any business processes modeled, they cannot 
initiate this analysis and therefore, they cannot elicit the requirements for the 
new LIMS system. As such, they need to model their business processes. Their 
business processes have variations, i.e. the protocols are different depending on 
for example choice of method when sequencing the DNA. The way these busi-
ness process variations are represented will affect how the analysis is made and 
have bearing on how the tracking solution will be. However, it is not clear how 
to horizontally and vertically arrange and organize the business processes. Fur-
thermore, the requirements on their new LIMS system will be affected by how 
they choose to design their business processes. 

 
 

6.2.3 Case Study Settings 

The case studies differ in industry sector, transaction volumes, level of IS ma-
turity, level of modeling experience of the domain experts, and the purpose and 
context (cf. Table 17). 

With respect to industry sector, the banking industry is highly commercial-
ized and involves large number of customers with high degree of regulations to 
comply with. In the core facility case, it is predominantly a research institution 
and is dependent to large extent on funding.  

As to transaction volumes, the first case study involves large number of 
transactions. The foreign exchange market is the most liquid of the financial 
markets, and it is not uncommon to see transactions in the order of tens of thou-
sands per day. These transactions need to be entered, processed and sent off 
within minutes. Delays will result in interest rate compensations, which is 
costly. On the other hand, the core facility manages few projects at a time, tak-
ing anywhere form a couple of days to couple of weeks to initiate, process and 
deliver results.  
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Table 17: Differences of the Case Studies 

Attributes Bank Core Facility 

Industry Commercial  Research 

Volume High Low 

IS maturity High Low 

Process Modeling 
Experience 

High Low 

Purpose Process Model 
Consolidation for 
Evaluation of a System 

Process Model Discovery 
for Building a new System 

 
 

As to the level of IS maturity, the large number of transactions processed by the 
bank, required several highly integrated and automated IS. In the second case 
study, volumes are low and projects involve a high level of manual processing 
with almost no IS support. 

Regarding modeling experience, the experts of the banking case study had at 
least 5 years of experience with process models, a set of process models to 
begin with and a dedicated department for business development with dedicated 
business analysts. This is contrasted by the domain experts of the DNA case 
that had not worked with process models at all and had no process models prior 
to the implementation of the case study.  

Finally, as to purpose and context, the two case studies are very distinct. In 
the banking case, there was a set of process models that needed to be consoli-
dated (bottom-up approach), whereas in the DNA case, the process models were 
discovered (top-down approach). In both cases, the resulting process models 
were to be used as input for requirement elicitation, but in the banking case, for 
evaluation of standard packages and in the core facility case, for development of 
a new LIMS system. 

 
 

6.3 Research Question 

In both case studies presented above, there is a need of managing the variations 
of the business processes. It is for this very purpose, managing variations of 
business processes that the method described in this thesis has been developed 
for. The objective with these case studies is the application of the method de-
scribed for confirmatory [55, 62] purposes.  

The overarching research question and its two sub-questions of the case 
studies are: 

RQ: How can a family of process variants be modeled? 
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RQ 1: How can a family of process variants be consolidated in a manner that 
results in the usage of fewer activities and sub-process models? 

RQ 2: How can a family of process variants be discovered in a manner that 
results in the usage of fewer activities and sub-process models? 

In the context of the first case study, it matches RQ1 (consolidation of exist-
ing models of process variants) while the second case study matches RQ2 
(from-scratch modeling of a family of process variants). 

Yin [195] states that there is a need for developing a hypothesis. The pur-
pose of this method is to manage variants process models that have less redun-
dancy than a collection of fragmented models. Thus, the hypothesis is that: 

Hypothesis: “when this method is applied on a family of process variants, 
then the same set of business processes can be represented using fewer activities 
and sub-process models than if the same was done using a fragmented ap-
proach.”  

Null Hypothesis: “when applying this method, the size of the family of pro-
cess variants is the same or larger in terms of total number of activities and sub-
process models compared to a fragmented approach.”  

These research questions are relevant given that reducing the number of 
activities, in particular duplicates, and sub-processes, lead to better comprehen-
sibility of the process models [194], less duplicity and stronger linking of re-
lated sub-processes. This in turn, will reduce maintenance efforts and will also 
facilitate the analysis, comparison and implementation of process variants in a 
common IT system[72].  

 
 

6.4 Design 

6.4.1 The Cases and Units 

In the case of FX and MM operations, at the start of the case study (the context), the 
business processes had been modeled in a fragmented way, meaning that most 
variation had been modeled separately. From a quick review of the process models, 
it was apparent that they contained duplicates and could perhaps be consolidated. 
This case (unit of the case study), therefore, is confined for consolidating the 
operational business process models for FX and MM trades.  

The context of the core facility division of the Genome Centre, the sequenc-
ing division had no business process models (in diagram form). The only avail-
able information and knowledge about the business processes are in the minds 
of the staff and to some extent captured as text in protocols. From a quick re-
view and conversations with the head of the sequencing division, it was clear 
that these processes have variations. This case unit is confined to the discovery 
of the business processes of sequencing. 

Given the contexts and units described above, a holistic design is chosen. A 
holistic case study design is appropriate when (i) there are no logical subunits of 
a case and therefore, no obvious additional unites of analysis and (ii) the theo-
retical framework supporting the study is itself holistic in nature [157]. In this 
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case, there are two case studies with one unit in each, and therefore a multi-case 
study is conducted. 

 
 

6.4.2 Case Selection Strategy 

The following criteria were elicited for case study selection. 
1. Variation of Cases: As it is a confirmatory case study covering 

consolidation and discovery of business processes, variability of cases 
is necessary. Variability increases the validity of results as the method 
is applied on different settings and therefore, the assessment of its 
applicability is stronger. 

2. Variability in Business Processes: As the method manages family of 
process variants, the cases selected must have variability in its business 
processes. If lacking variability, the method cannot be applied. 

3. Variation in Industry: It is important for the cases to be from different 
industries – the method aim at being applicable in all business processes 
that have variations, regardless of the industry. In order to validate its 
applicability across industries, it is better to apply it to cases from dif-
ferent industries.  

4. Variation in Context: It is important that the contexts are different – the 
method is generic for managing variations in business processes regardless 
of context and as such, the context of the application should be different. 

5. Access to Domain Experts: It is important to have access to the do-
main experts as the method aim at discover or consolidate process mod-
els that are meaningful for the domain experts. Furthermore, the method 
relies on the input of the domain experts and easy access to them is 
therefore necessary. 

 
Given the above research question, case studies where families of process vari-
ants needed to be managed collectively were sought. Naturally, case studies 
where domain experts could be engaged were required, as this method heavily 
relies on their input. Finally, the case studies needed to allow for addressing 
both research sub-questions and that were representative of different modeling 
purposes, industry sectors, level of IS maturity and transaction volumes. Below 
the case study design is presented. 

 
 

6.4.3 Data Selection 

In the bank case, a list of ‘knowledge areas’ the resources needed to represent 
was prepared. In addition, the bank was asked to suggest additional persons 
they felt could contribute with relevant information. The business processes of 
the FX and MM case cover two organizational units. Two resources were se-
cured from one of the units (one being the production manager), one person 
from the other unit, a business analyst who works with development for these 
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two units, and finally, one of the managers. In addition, access to support staff 
from IT support and development was granted. Furthermore, access to resources 
from other units was granted. They were not required to be dedicated to the 
project but were available for questions and clarifications. These people com-
bined, covered all aspects of the FX and MM business processes.  

In the case of the core facility, there is only one unit working with these pro-
cesses. Three persons, all of whom were working with sequencing and geno-
typing, were secured for the case study. These resources covered all aspects of 
the business processes under consideration.  

 
 

6.4.4 Data Collection 

Data was collected through direct and independent methods. Direct methods, 
when the researcher is in direct contact with the interviewees and data is col-
lected in real time [157], were employed by using interviews. Interviews were 
conducted, both in workshops with several participants (focus groups) and indi-
vidually with key persons in both case studies.  

All the interviews were conducted in a semi-structured manner. In accord-
ance with semi-structured interviews, a set of prepared questions was used as 
basis for the interviews. The semi-structured interviews allowed further explo-
ration of additional issues that arose during the conversations. The objectives of 
the interviews were descriptive (of the business processes) and explanatory 
(why the business processes are as they are).  

Independent methods of data collection (independent analysis of available 
work artifacts) were also employed. In the FX and MM case study, the main 
artifacts were the available process models that were studies, analyzed and con-
solidated. In addition to these process models, work instructions, project docu-
ments and other documents available were included in the data collection. In the 
case of the core facility, independent data was collected from protocols (work 
descriptions).  

These results were studied in detail and cultivated. Some of the parts were 
deleted, others added, some re-formulated, re-arranged and re-categorized. This 
process was conducted iteratively with analysis of the data artifacts available. 
The results of these analyses were a set of consolidated process models (FX and 
MM study) and a set of process models (for the sequencing study). 

 
 

6.4.5 Data Analysis 

The data (collections of process models for FX & MM, DNA sequencing and 
genotyping respectively), was analyzed by using the following measures: 

 Number of process elements 
 Number of sub-processes 
 Duplication Rate 
 Complexity of process models 
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6.4.5.1 Number of elements 

Number of elements as defined in table 18 (also briefly discussed in Section 
3.2.3), is a common way of measuring the size of the process models. By ele-
ments are meant events, gateways and activities in a process model. The larger 
number of elements, the larger is the process model, i.e. the higher number of 
events, gateways and activities. The input process models will be compared 
with the consolidated/discovered process models where variants have been 
managed according to the method described in this thesis. 

 
 

Table 18: Number of Elements 

Name Number of Elements 

Description Total number of events, gateways and activities in a process 
model.   

Entity Process Models (Family of Process Variants) 

Attribute Size 

Unit Number (of elements) 

Range [0,1,2…n] 

 
 

6.4.5.2 Number of sub-processes 

Number of sub-processes also measures the size of the process models repre-
senting the family of process variants. It will be a simple comparison of the total 
number of sub-processes of the input models (in the case of FX and MM) com-
pared to the consolidated process models. The core facility case study does not 
have a set of input process models to compare with, as it is a process discovery. 
Therefore, these business processes will be modeled by following the method 
described in this thesis and then modeled again in accordance with a reference 
method (the method proposed by Sharpe & McDermott which is described in 
more detail below). Given these two sets of process models, a comparison of the 
size of the process models can be made based on the number of sub-processes. 

As Table 19 describe, the entity is the process models representing the fam-
ily of process variants and the attribute being measures is its size. 
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Table 19: Number of Sub-processes 

Name Number of Sub-processes 

Description Number of sub-process occurrences in the process models  

Entity Process Models (Family of Process Variants) 

Attribute Size 

Unit Number of sub-processes 

Range [0,1,2…n] 

 
 

6.4.5.3 Duplication rate 

The measures defined so far, measure the size of the process models. However, 
duplication rate measures the rate of which one activity occurs in several pro-
cess models. If one activity occurs in two process models, it is counted as 2. If it 
occurs in three separate process models, it is counted as 3 and so on. The dupli-
cation rate is then the sum of duplicate activities divided by the total number of 
activities in all process models. The higher the duplication rate is, the more 
often the same activity occurs in the process models. This in turn means that the 
process models are larger than they need to be. 
 
 
Table 20: Duplication Rate 

Name Duplication Rate 

Description Duplication of the same activities in process models.   

Entity Process Models (Family of Process Variants) 

Attribute Duplication 

Unit Ratio (duplicates per total number of activities) 

Range [0, ∞] 

 
 

6.4.5.4 Complexity measure 

Duplication rate measures duplicity but not the complexity of process models.  
For this purpose, Coefficient of Network Complexity (CNC) metric can be used 
(see Table 21). It measures the complexity of the process models. CNC is the 
ratio between the number of arcs and the number of nodes (elements). This 
simple metric has been put forward to be suitable for assessing the complexity 
of process models [2]. This CNC measure will be used both individually and 
collectively for the process models. The higher complexity a process model has, 
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the higher number of arcs (connectors) will there be to connect the elements. It 
is possible to create flat and thus very simple (non complex) process models but 
that would result in high duplicity of activities (as activities are duplicated and 
used in several process models). However, when consolidating or discovering 
process models, duplicity of activities is reduced at the expense of complexity.  
In order to represent the same process models, more arcs (connectors) are 
needed and as such, the ratio of arcs to elements increases. 
 
 
Table 21: Complexity Metric 

Name Complexity 

Description CNC measure i.e. ratio of number of arcs and nodes 
(events, gateways and activities)  

Entity Process Models (Family of Process Variants) 

Attribute Complexity 

Unit Ratio (arcs to nodes) 

Range [0, ∞] 

 
 

6.5 Execution 

The design of both case studies (cf. Fig. 22) consists of nine steps, out of which 
the first eight steps correspond to the steps in the method introduced in the pre-
vious chapter. The final step, the ninth that does not have a corresponding step 
in the method as described previously, consists of verifying (with/by the domain 
experts) the process models that have been produced. 
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Figure 22: Case Study Design 
 
 

There are two slight differences in the execution of the case studies. The cases, 
as previously explained, have differences that require slightly different imple-
mentations of the method. These are as follows. 

 (1) The business processes of the banking case study had already been mod-
eled whereas in the core facility case study, had no process models to begin 
with. In the bank case, the main process was modeled again but verified and 
compared to the existing one. In the core facility case, the main process was 
modeled from scratch. 

(2) The domain experts for the banking case study had at least 5 years of ex-
perience with process management and work with processes on a daily basis. 
However, the domain experts of the core facility case study did not have any 



121 
 

experience with process models. They had neither modeled nor worked with 
process models.  

In the banking case (the first difference) the first step was to model the main 
process and then identification of the variation drivers. However, with the core 
facility case, the variation drivers were first identified and then the main process 
was modeled. This was due to the lack of experience of the domain experts in 
the core facility case. As a gradual introduction to the concept of main process, 
it was more meaningful to start with identifying the variation drivers and then 
model the main process. 

Secondly, in order to examine the effectiveness of the method for the second 
case study (core facility), a baseline scenario or baseline process models (com-
parable to the input process models in the banking case study) was required for 
comparison. For this purpose, the business processes of the core facility were 
modeled according to the method presented in this thesis and according to 
guidelines presented by Sharp & McDermott [167]. This approach was chosen 
as baseline as it is widely used and recommended for practitioners [109]. 

 
 

6.5.1 Execution of FX & MM Case Study 

The banking case study was conducted as described above. The method was 
applied in a four-hour workshop with five domain experts, led by the author of 
this thesis. In addition, two stakeholders from IT support were available for 
questions and clarifications. The workshop resulted in a variation map of the 
business processes. The first five steps were conducted in one workshop and in 
total took 4 hours. The first step (modeling the main process) took less than an 
hour and the elicitation and classification of drivers also took less than one 
hour. The similarity assessment, with the aid of the variation matrix, took 
around two hours. Afterwards, the variation map was modeled, which together 
with its verification, took three hours. The actual consolidation of process mod-
els took roughly 80 man-hours to complete. Afterwards, the process models 
were updated according to the framework for data object and resource variabil-
ity. This effort took an estimated 16 man-hours to complete. Finally, the domain 
experts, in a series of 8 workshops, verified of the consolidated process models, 
each taking 1.5 hours on average to conduct. 
 
 

6.5.1.1 Step 1 – Model the main process of FX&MM trades.  

In the first step, the main process for managing FX&MM trades (cf. Fig. 23) 
was modeled. This was achieved by first asking what initiates the process and 
then, through a series of questions, modeling each step of the process until the 
end. The purpose of each sub-process was also clarified. In addition, the way 
and how each sub-process adds value to the process was summarized. This step 
resulted in a model of the main process for FX&MM products (Fig. 23).  
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Figure 23: Main process for managing FX & MM trades 

 
 

The main process is initiated once an order is received. The first task is to 
“Register Trade” meaning entering the trade in the IS. The next task is 
“Approve Trade”. This is done automatically in most cases. Only the trades that 
fail an automated validation will require manual intervention and approval. 
Then, “Confirm Trade” takes place when the bank sends a confirmation of the 
trade details to the counterpart. Once the counterpart “Match Trade”, i.e. agrees 
to the trade data, “Settle Trade” takes place (transfer of payment). The final task 
is “Book Trade” which is when the trade is booked in the accounting systems. 
 
 

6.5.1.2 Step 2 – Identify the variation drivers 

The second step was to identify variation drivers of the process. This was 
achieved by introducing the concept of variation drivers and the framework for 
classification. Following this, the introduction was made more concrete by 
showing some examples of variation drivers and asking the domain experts if 
their business processes have occurrences of such variation drivers.  

Two variation drivers, product and customer driven variations, were ob-
served to exist. The product driven variations (Fig. 24) were FX (foreign ex-
change), MM (money market) and NDF (non-deliverable forward i.e. trading in 
restricted currencies). The customer driven variations were identified as Bank 
(when the counterpart is another bank), Corporate (companies), Private (indi-
viduals) and Site (clients of various types that belong to one of the branches of 
the bank) clients. Furthermore, the corporate clients were of account (having an 
account agreement with the bank) or cash (do not have an account with the 
bank) client type. 

 
 
 
 
 
 



123 
 

 

 
Figure 24: Variation Drivers for the Banking Case 

 
 

6.5.1.3 Step 3 – Assess the relative strength of the variation drivers. 

As input from the previous step, i.e. having the variation drivers identified, the 
next step is to determine their relative strength. Through discussions, it became 
clear that the product drivers were the strongest. It also became clear that FX & 
MM were similar enough to be treated as one. However, NDF is separate and 
on its own. 
 
 

6.5.1.4 Step 4 – Identify the variants of each  
sub-process of the main process. 

With the input from the previous steps, the variation matrix was populated. 
First, the variation drivers and their relative strength were used to populate the 
first column of the variation matrix. Then, for each sub-process of the main 
process, such as “match trade”, the domain experts were asked about how this 
process is performed? For instance, for an FX trade done with another bank, the 
ways to match are either Intellimatch (matching structure based on matching the 
data of confirmations sent and received by a IS system) or CLS (a centralized 
intra-bank platform created by the banks to serve as a third party in settling the 
FX and MM trades). As a result of the questions and answers, these two vari-

Product Drivers

Foreign Exchange Money Market NDF Currencies

Custumer Drivers

Banks Corporate

Account

Cash

Private Site
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ants were entered in the matrix under sub-process “match trade” and for cus-
tomer type “bank” (cf. Fig. 25). Note that in this case, the same solution (such 
as CLS) is used in “match trade” and “settle trade”. As CLS is a centralized 
intra-bank platform, it has several functions and therefore used in two or more 
sub-processes. However, the use differs i.e. how CLS is used in  “match trade” 
differs from its use in “settle trade”. As such, in this case study, although the 
variants may bear the same name, they differ as they are situated under different 
sub-processes of the main process. 

 
 

6.5.1.5 Step 5 – Perform similarity assessment of variants for  
each sub-process of the main process.  

For the similarity assessment, each cell of the variation matrix was visited. In 
practical terms, this was achieved by asking the domain experts to  

(1) Identify identical variants (if there were any) and then 
(2) For non-identical variants, grade the level of similarity on a scale from 

1 (very similar) to 4 (not similar). 
 

For instance, the variation matrix shows that corporate and site clients have the 
same variants for matching a trade. By asking the questions stated above, the 
results showed that all SWIFT trades are very similar. The same applied to plat-
form, online and paper. Furthermore, the domain experts assessed that swift, 
platform, online and paper are similar to each other as the process is basically 
the same but the tool used to match the trades differs depending on customer 
type. For instance, the processes for swift and paper are similar but differ only 
in what medium is used (swift or paper). It was also observed that matching in 
bulk (when several trades are matched at once) is very different compared to 
matching by SWIFT, platform, online and paper. As mentioned before, these 
variants are only compared to other variants under the “match trade” sub-
process. 

Having established the degree of similarity among the corporate, private and 
site clients, the next step was to ask about similarities between CLS and 
Intellimatch for when the counterpart is a bank. These differed significantly 
compared to how trades are matched for non-bank counterparts. This step re-
sulted in identifying two main variants for matching when the counterpart is a 
bank (i.e. Intellimatch and CLS) and two main variants when trading with non-
bank counterparts (i.e. when the matching is done in bulk versus single-trade 
match). 

The same similarity assessment is performed for each cell of the variation 
matrix.  
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Figure 25: Populated Variation Matrix for FX and MM 

 
 

6.5.1.6 Step 6 – Construct the variation map. 

By now, the variants for each sub-process of the main process are known and 
can be mapped into a variation map (cf. Fig. 26). For instance, there are two 
variants of “Register Trade” (manual and automated). These sub-processes did 
not have a strong business driver and were similar. Referring to the decision 
framework (Fig. 21), they are modeled together. Conversely, there are two vari-
ants of “Settle Trade” for bank clients in the variation matrix in Fig. 25 (CLS 
and gross). These were assessed to have a strong variation driver and also, to be 
‘not similar’. As such, in accordance with the decision framework (Fig. 21), 
they are modeled separately. After having continued in the same manner for all 
sub-processes, the variation map for each sub-process was constructed as de-
picted in Fig 26. 

 

   Register Trade Approve Trade Confirm Trade Match Trade Settle Trade Book Trade 
FX & MM         
 1. Bank  Manual Manual Swift IntelliMatch CLS Gross 
   Automated Automated Online CLS Gross Net 
     Paper    
 2. Corporate        
  Account Manual Manual Swift Swift Account Gross 
   Automated  Online Platform   
     Paper Online   
      Bulk   
      Paper   
         
  Cash Manual Manual Swift Swift Gross Gross 
   Automated  Paper Platform Net  
     CLS Online   
      Bulk   
      Paper   
         
 3. Private  Manual Automated Paper Paper Account Gross 
         
         
 4. Site  Manual Manual Swift Swift Gross Gross 
   Automated  Online Platform Net  
     Paper Online   
      Bulk   
      Paper   
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6.5.1.7 Step 7a – Consolidation of Input Process Models.  

The original process models had been modeled as flat end-to-end process mod-
els. As a first step, these models were diced or divided into sub-processes. This 
resulted in four process models:  

(1) FX traded gross (traded and settled independently of other trades) 
(2) FX traded via CLS (traded and settled using CLS)  
(3) MM trades 
(4) FX and MM for corporate clients  

 
In addition to these four process models, there were two additional processes 
described as text, one for NDF and one for bulk matching, which was included 
in the models of this case study as part of the consolidation effort. 

For each sub-process of the main process, the process models were consoli-
dated in accordance with the variation map. For instance, the variation map 
states that there is to be one sub-process for “register trade”. Therefore, the 
corresponding process models in the input process models were consolidated 
and merged into one model. The same procedure was repeated for the other sub-
processes. Whenever clarification was needed, the domain experts and IT stake-
holders were available for consultation.  

It should be noted that the input process models had not been regularly up-
dated with changes in the business processes during the past 3 years and there-
fore, minor discrepancies were observed. The consolidated process models were 
updated accordingly. 

 
 

6.5.1.8 Step 8 – Model Data Object and Resource Variability 

After the process models had been modeled, the models were revisited for 
elicitation of data object and resource variability. As previously elaborated, 
each activity with variability in resource or data object input or output, is ex-
amined to determine if that activity should be modeled as one or separated in 
two or more activities. This was achieved by first determining if an activity can 
be performed by only one or several actors. If only one actor performs it, then 
there is no resource-induced variability. However, if different actors performed 
an activity, depending on some criteria, the activity became a candidate for revi-
sion. The same logic was applied to data objects (both for input and output). 

Following this, for each activity, depending on the degree of similarity of the 
detailed procedure of the activity and referring to the modeling framework 
introduced previously, each activity was either kept as it is or modeled as two or 
more activities. If the activity was kept as is, i.e. it was not modeled as two 
activities despite the presence of data object variability; the variability was 
captured through annotation. Activities with resource-induced variability were 
represented using pools and lanes. 
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6.5.1.9 Step 9 - Verify of Consolidated Process Models.  

Once the process models had been consolidated, domain experts verified them 
in two rounds. In the first round, the lead domain expert (the one who coordi-
nated all efforts) reviewed the process models and made adjustments. In the 
second round of validation, all the experts of their own particular area of the FX 
and MM processes verified the process models in a series of 8 workshops. The 
coordinating domain expert made adjustments to the consolidated models dur-
ing these workshops.  

After all workshops, the domain experts were asked about the usefulness of 
the models in terms of comprehensibility and if they would use the models for 
evaluating off-the-shelf systems. They stated that the consolidated models are 
easier to understand (compared to the input process models), and capturing 
more processes than the input process models. The consolidated process models 
were used as standard evaluation criteria for finding suitable replacement sys-
tems for supporting their FX/MM business processes. 

 
 

6.5.2 Execution of DNA Case Study using the  
Decomposition Driven Method 

For the core facility case study, three initial meetings were held with the head of 
the sequencing lab and two domain experts. During these meetings, information 
needed for constructing the variation map was gathered (steps 1-6). These steps 
took in total about 5 hours. Following this, the detailed discovery of the busi-
ness processes was conducted (step 7b). Afterwards (step 8), the data object and 
resource variability was considered and process models were updated accord-
ingly (requiring an estimated 40 man-hours to complete). Then, the domain 
experts verified the process models (step 9). The modeling effort itself (by the 
two researchers) amounted to circa 360 person-hours followed by 40 person-
hours of verification by the domain experts. 
 
 

6.5.2.1 Step 1 – Identify variation drivers.  

For the core facility case study, no process models existed prior to the start of 
the study. Furthermore, the domain experts had no experience with process 
modeling. As discussed previously, the first step in this case study was to con-
duct the identification of variation drivers. This was achieved by introducing the 
concept of variation drivers, their classification and several illustrative exam-
ples for clarification purposes. Following this, the “W” questions, as discussed 
in the previous chapter on foundations of process variation, were asked in order 
to identify both stakeholders and uncover the variation drivers. 

The analysis resulted in the elicitation of two variation drivers, product and 
operational drivers. The product driver is the co-existence of two distinct ser-
vices: DNA sequencing (determining the order of nucleotides of sample con-
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taining DNA) and array analysis (analyzing the genetic makeup of a DNA that 
determines specific traits). The operational driver relates to which machine is 
used for sequencing or analysis. 

 
 
6.5.2.2 Step 2 – Model the Main Process of the DNA Sequencing Process.  

The second step was to model the main process. By asking what triggers the 
process followed by which milestones the process goes through and what value 
each step produces, the main process was discovered. This led to the main pro-
cess depicted in Fig. 27. The process is triggered when there is an agreement 
with a customer to sequence some samples. Then, the project data are registered 
followed by the samples being prepared. Once the samples are prepared, they 
are processed, meaning that they are sequenced using the sequencing or geno-
typed. In the final step, data is extracted, collected and delivered to the 
customer.  

 
 

 

Figure 27: Main process for the core facility business. 
 
 
6.5.2.3 Step 3 – Determine the relative strength of the variation drivers.  

The questions in Table 15 were used to assess the strength of the variation driv-
ers. This resulted in identifying the product driver (sequencing versus array 
analysis) as the strongest followed by the operational driver (HiSeq, MiSeq or 
Array Machine). 
 
 

6.5.2.4 Step 4 – Identify variants of each sub-process. 

Step 4 was executed in the same manner as the banking case study was done. 
This resulted in identifying two variants, namely “Prepare TrueSeq Sample” 
and “Prepare Nextera Sample”, for sample preparation using HiSeq (cf. Fig. 
28). One can also see from the variation matrix, that the same variants exist for 
preparing a sample when using MiSeq machine for sequencing. Similarly, it 
was noted that there are three different variants for Array analysis, one for pro-
cessing DNA samples, one for RNA and one for Methylation. 
 



130 
 

 
Figure 28: Populated Variation Matrix for DNA Sequencing 

 
 

6.5.2.5 Step 5 – Perform similarity assessment of  
the variants for each sub-process. 

The execution of step 5 also followed the same steps as with the banking case 
study. During the workshop, different colors of whiteboard pens were used to 
annotate the variants of each sub-process that were very similar, similar and so 
forth. This resulted in an annotated variation matrix. 
 
 

6.5.2.6 Step 6 – Construct the variation map.  

With the input from the previous step, the variation map could be constructed. It 
was constructed by deciding which variants should be modeled together and 
which should be modeled separately, resulting in the variation map depicted in 
Fig 29. 
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6.5.2.7 Step 7b – Discovery of Process Models.  

In this case study, there were no process models to begin with. There were, 
however “protocols” that explain on a very detailed procedural level, the steps 
to be performed for each specific case (variant). The lab has a little over 40 
different “protocols” where the shortest is 20 pages and the longest is around 
200 pages (about 4000 pages in total). These “protocols” also include processes 
that the core facility does not employ. On the other hand, the protocols cover 
only two of the sub-processes in the main process (Prepare Sample and Process 
Sample). The other sub-processes had not been previously documented. 

For each sub-process of the main process, the process models were discov-
ered and modeled in detail following the structure of variation map. For this 
work, the protocols, and information gathered from the domain experts (via 
hour-long weekly meetings for a period of 6 weeks) were used as input. 

 
 

6.5.2.8 Step 8 – Model Data Object and Resource Variability 

With the process models at hand, they were revisited for elicitation of data 
object and resource variability on the activity level. The procedure for this step 
was identical with that of the FXMM case study. 
 
 

6.5.2.9 Step 9 – Verification of results by domain experts.  

Once all processes had been modeled, a hand-over meeting was organized with 
the domain experts. Following this meeting, the models were examined in detail 
by the domain experts. As not all domain experts work with the same processes 
or have the same responsibilities, they divided the sub-processes in accordance 
with their area of expertise and responsibility. Thereafter, weekly meetings 
were held with the domain experts for 6 weeks. At each meeting, a subset of 
process models that had been examined, were verified. After the verification 
had been completed, the weekly meetings continued for the purpose of eliciting 
requirements from the process models for their future LIMS. As such, the pro-
cess models were used as the primary source for eliciting requirements for their 
new information system. In fact, the first prototype of their information system 
was developed on the basis of the requirements elicited form the process models 
discovered using the decomposition driven method.  

 
 
6.5.3 Execution of DNA Case Study using the Baseline Method 

As mentioned previously, the same set of core facility business processes was 
modeled according to the approach outlined by Sharp and McDermott [167], so 
as to have a baseline for comparison. Sharp & McDermott’s method (henceforth 
S&M) consists of the following steps: 
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Step 1: Identify the start events (called triggers) and end events (results) of the 
process. 

Step 2: Identify major components based on milestones of the process (sub-
processes). 

Step 3: Identify the variants (cases) of the process. 
Step 4: Identify internal and external stakeholders (participating organizations 

in the process). 
Step 5: Identify for each participating organization, the individual actors their 

main responsibilities. 
Step 6: Identify systems and data objects (supporting mechanisms) of the 

process. 
Step 7: Conduct workshops where all tasks are listed and then sorted in order to 

create a flat process model.  
Step 8: Identify the logical breakpoints of the flat process model and cluster 

activities within these points together as a sub-process. 
 

The S&M method adopts a fragmented approach when modeling families of 
process variants. The method advocates for keeping variants in separate process 
models, arguing that design-time variation points should not be captured in a 
process model because these decisions have already been made prior to, and not 
during the execution of the process. However, if two variants are very similar, 
the method concedes that they can be modeled together, although this is not the 
preferred solution. Concretely, in case multiple variants have been identified, 
the method suggests to start by modeling one variant completely – for instance 
the most common one. This first variant is modeled flat. Next, the second vari-
ant (case) is taken and compared to the already modeled variant. If the variants 
are very similar, they can be modeled together. Note that the first five steps are 
conducted only once and step 7 and 8 are repeated for each additional variant. 
As such, for each additional variant that is different from the first process 
model, step 7 and 8 are repeated. 

In order to minimize learning effects, the S&M method was applied in par-
allel with the method proposed in this thesis. The first two steps of S&M con-
cern modeling the main process as part of the purpose of framing the project. 
Accordingly, while performing step 1 of the decomposition-driven method 
(modeling the main process), information needed for performing the first two 
steps of S&M was gathered. Similarly, step 2 (identify drivers) and step 4 
(identify variants) of the decomposition-driven method correspond to steps 3 to 
6 in S&M method, and thus these steps were done in parallel for both methods. 

Steps 7 and 8 of the S&M method are the steps were the models are pro-
duced. Two researchers (one being the author of this thesis) began by modeling 
the most common variant, first as a flat process model, followed by the identifi-
cation of logical breakpoints and extraction of sub-processes. Then, the next 
variant was taken and compared with the first already modeled variant. If they 
were very similar, they were modeled together. This procedure is repeated until 
all variants of the main process had been covered. Steps 7 and 8 of the S&M 
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method were performed in parallel with Step 7b of the decomposition-driven 
method (see above). 

It should be noted that the S&M do not provide guidance as how to manage 
sub-processes that are shared by several variants. In this case, refactoring was 
applied for this purpose, i.e. if several variants shared a sub-process, were mod-
eled only once. 

 
 

6.6  Findings 

6.6.1 Findings from the Banking Case Study  

As mentioned earlier, in the banking case study the original (input) process 
models had been modeled flat (no decomposition). In order to make them com-
parable with the models produced after consolidation, the flat process models 
were split into sub-processes following the same sub-process structure that re-
sulted from the consolidation. In this way, the input process models and the 
consolidated ones are comparable in terms of hierarchical structure, although 
they differ in amount of duplication. 

The input process models did not include NDF and bulk matching. These 
processes had only been partially documented in textual format prior to the con-
solidation. During the consolidation effort, these two processes were modeled 
as well. However, to make the input and the consolidated process models com-
parable, these were not taken into account in any of the statistics given below. 

The input process models contain 35 sub-process models and 210 activity 
nodes (not counting gateways and artifacts such as data objects or data stores). 
Out of these, 75 activity nodes were duplicate occurrences (an activity occur-
ring N times across all sub-process models counts as N duplicate occurrences). 
Thus, it can be said that the duplication rate in the input models is 36 %. Note 
that the 35 sub-process models in the input were distinct models, although some 
of them had strong similarities. 

The consolidated models contain 17 sub-process models and 149 activity 
nodes of which 22 are duplicate occurrences, corresponding to 15 % duplica-
tion. Thus the consolidated models contain 30% less activity nodes, half of the 
sub-process models and half of the duplication rate relative to the original 
model. These observations (summarized in Table 22) support the hypothesis of 
the case study. 

 
 
 
 
 
 
 



135 
 

Table 22: Size Metrics before and after Process Model Consolidation 

Variable Input Consolidated 

Main Process Models 4 1 

Sub-Process Models 35 17 

Activity Nodes 210 149 

Duplicate Activity Occurrences 75 22 

Duplication rate 36 % 15 % 

CNC 1,25 1,33 

 
 

One can expect that the complexity of the process models will increase during 
consolidation since additional gateways are introduced to capture differences 
between multiple variants of a sub-process model. The consolidation of process 
models naturally affected their complexity. For instance, there were four sepa-
rate sections of the flat process models corresponding to “register trade”.  The 
input process model for corporate clients (trading both FX and MM) was the 
least complex one with a CNC of 0.8. For interbank trading of FX (both gross 
and CLS), the corresponding CNC was 1.09. For the interbank trading of MM, 
it was 1.17. The combined complexity of the input “register” process models 
were 1.07. The consolidated sub-process (only one as the variants were similar 
and lacking strong variation driver), have a CNC of 1.11. This trade-off be-
tween reduction in duplication and increase in complexity has also been ob-
served in [150]. 

The input process models had four main processes, one for corporate clients 
trading both FX and MM, two for interbank trading of FX via gross or CLS and 
finally one for interbank trading of MM (both gross and CLS). Therefore, there 
was no distinct driver behind the segregation of the process models. In one case 
it was based on customer type (corporate versus interbank) regardless of prod-
uct.  In another case it was based on product (FX versus MM) and a third one 
was based on how the trades were settled (gross or CLS). In contrast to this, the 
consolidated models had one common main process, where the business drivers 
for variations are expressed at each sub-process of the main process. For in-
stance, for “confirm trade” the driver is based on product (FX/MM versus 
NDF), and for “match trade” it is based on customer (corporate versus inter-
bank). As such, the consolidated set of process models were also a restructuring 
of how the business process is captured. The structure of the main process 
changed from four flat input main processes to one that encompasses all four by 
expressing its variability as depicted in the variation map (cf. Fig. 26). Further-
more, the variability (as expressed in number of variants) and number of sub-
processes are as most intensive in the middle section of the main process as can 
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be seen in Table 23. For “approve”, “match”, and “settle”, there are three levels 
of decomposition. 

 
 

Table 23: Number of Variants and Sub-processes in the Main Process 

 
 
 

The results from data object and resource variability show that there are occur-
rences of such variability but their number is not of such magnitude as to make 
an impact on the process models. In the 17 sub-processes, a total of 8 process 
models had such variability on activity level. In total, 10 data object driven 
occurrences of variability were identified and one resource induced variability. 
However, only one of these resulted in modification of how the activity was 
modeled. As such, only one process model out of 17 were affected (a re-
modeling of an activity). 

 
 

6.6.2 Findings of the DNA Sequencing Case Study 

In the DNA case study, the same set of processes was modeled using the de-
composition-driven method and the S&M method as a baseline. The baseline 
method led to 110 process models, comprising 379 activity nodes (only count-
ing sub-processes and tasks). The duplicity count is 218 (as defined in Section 
6.1). Thus the process models in the baseline method had a duplication rate of 
41%. On the other hand, the process variants modeled according to the method 
of this thesis had 379 activity nodes with a duplicity count of 92 (i.e. 20 %). 
Compared to the baseline, this method resulted in a reduction of duplication of 
about 50%. Furthermore, this method led to 83 sub-process models whereas the 
baseline required 110, i.e. 33% more. These observations (summarized in Table 
24) support the hypothesis that by applying the decomposition-driven method, a 
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family of process variants can be represented using fewer activities and sub-
process models compared to a fragmented approach.  
 
 
Table 24: Size Metrics for Decomposition-Driven Method versus Baseline Scenario 

Variable S&M 
Decomposition-
driven method 

Process Models 110 83 

Sub-Processes 147 93 

Activity Nodes (Tasks) 379 371 

Duplicate Activity Occurrences 218 92 

Duplication rate 41% 20 % 

CNC 0,9 0,97 

 
 

Similar to the first case study, CNC metric was used to compare the output of 
the decomposition-drive method with the baseline. In the baseline scenario, 
each variant of for instance “prepare sample” was modeled separately. This 
resulted in a total of 7 sub-processes, one for each variant of “prepare trueseq 
sample”. These models have a CNC of between 0.88 and 0.91. However, as 
they were similar and lacked strong variation driver, they have been modeled 
together. As such, the complexity of this sub-process is higher as it encom-
passes a total of 7 variants and has a CNC of 1.24. It can be noted that, as in the 
previous case, a trade-off between number of process models and complexity. 
The baseline process models have a total of 739 arcs and 822 nodes (sub-pro-
cesses, tasks, gateways and events), which gives an average CNC of circa 0.9.1 
On the other hand, the set of process models obtained via the decomposition-
method have 753 arcs and 773 nodes, thus an average CNC of around 0.97. This 
marginally higher CNC value should be contrasted with the significant reduc-
tion in the number of process models (110 versus 83) and duplication rate (41% 
versus 20%). 

Similar to the FX and MM case, it can be seen that the variability in the pro-
cess occurs more towards the mid section of the main process. In this case, there 
are four sub-processes of the main process as can be seen in Fig. 29. The first 
sub-process, “register sample project” does not have any variability on the level 
of the variation map. However, at lower levels of decomposition, there is varia-
bility in terms of method used to measure the quality of the samples. In “prepare 
sample” there are five variants at the level of the variation map and in total, 

                                                                          
1  This relatively low CNC value stems from the fact that a majority of processes are derived from 

laboratory protocols that are highly sequential (i.e. relatively few branching points). 
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variants and finally, in “deliver sample data” there is only one variant. In total, 
the DNA case has 27 variants. This is also reflected in the number of sub-pro-
cesses under each main sub-process of the main process. In “register sample 
project” there are a total of 6 sub-processes. The numbers for “prepare sample”, 
“process sample” and “deliver sample” are 64, 22 and 1 respectively. The DNA 
case has more levels of decomposition (up to five levels) as compared to the 
baseline scenario (3 levels). As such, the baseline scenario has fewer levels of 
process model hierarchy (more flat) but is larger whereas the models discovered 
through decomposition-driven method, have more levels of hierarchy (more 
deep) but are overall smaller. 

The results from data object and resources induced variability in the process 
models show that out of the 83 process models, activities in 14 process models 
had variability due to data objects or resources. In total, 28 data object and one 
resource induced variability of activities were identified. Of these 29 nine cases, 
only 6 resulted in re-modeling. As such, about 8% of the activities had variabil-
ity induced by data objects or resources and of these, only 20% resulted in re-
modeling. In other words, less than 2% of all activities were re-modeled due to 
data object or resource induced variability. Clearly, data objects and resources, 
as a source of variability on activity level, have a very limited affect on the 
modeling of the processes. 

 
 

6.7 Threats to Validity 

When conducting case studies, there are threats to validity that ought to be con-
sidered, particularly regarding construct validity, external validity and reliability 
[156]. In order to reduce the general threats to validity, the following measures 
were taken. 

Triangulation [55, 157]: Data was collected from different sources to in-
crease the validity of the study. The main sources were interviews and artifacts, 
both describing the same business processes. Triangulation should improve 
construct validity, as several sources of data will identify potential discrepancies 
between what is studied, as perceived by the researcher, and what the inter-
viewed persons have understood to be the object of the study. Triangulation will 
also reduce the risk of internal validity because more sources of data represent-
ing the same business processes will show different aspects of the processes 
under study and therefore reduce the risk of the researcher being unaware of 
them. Furthermore, triangulation increases the reliability of the study, as with 
more data representing the same set of business processes, there is less “room” 
for biased interpretation.  

These case studies presented here seek to describe how work is being con-
ducted rather than understanding why the work is performed as it is. As such, 
interpretation of data is not imperative for the results.  

Peer debriefing [55, 157]: Another measure taken to reduce the threat to 
validity is peer debriefing. Two additional researchers reviewed the case study 
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designs. In addition, the results were continuously be presented to a group of 
researchers, all highly familiar with business process management, in order to 
reduce bias, identify potential improvements, review the results and ensure cor-
rectness in the research process. These measures were taken to improve con-
struct validity, help strengthen internal validity and increase reliability of the 
study. 

Member checking [55, 157]: The results of all interviews and workshops, as 
well as the final process models were checked and validated by the participants 
in the case studies. They reviewed the material in detail in order to ensure that 
the process models were correct. This improved the reliability of the study as it 
reduces the risk of faults in the “transcripts” (from meetings and workshops). 

 
 

6.7.1 External Validity 

External validity concerns the extent to which the findings can be generalized 
beyond the setting of the study. The decomposition driven method has been 
applied on two case studies, and in line with the inherent limitation of case 
study methods, the results are limited in the extent they can be generalized. The 
results are naturally dependent on the domain experts and the purpose of the 
study, and it can, therefore, limit the repetitiveness of the decomposition driven 
method. Hence the method is replicable but results may vary due to aforemen-
tioned reasons. In addition, the FXMM case was perhaps easier to manage due 
to relatively less number of process models and in the DNA case was not of 
high degree of complexity (in terms of having mostly sequential processes). As 
such, the application of the method has not been tried and must be seen as a 
limitation on the generalizing of the results for the time being. On the other 
hand, it should be underscored that the case studies have been conducted in two 
different industrial settings and contexts with active involvement of domain 
experts with very different backgrounds. 

 
 

6.7.2 Reliability 

Reliability refers to the level of dependency between the results and the re-
searcher, i.e. would the same results be produced if another researcher con-
ducted the study. This threat was to some extent tackled by having several se-
ries of verifications by the domain experts without the presence of the 
researcher (member checking as defined in [157]). Furthermore, as described 
above, peer debriefing [157] was applied to further ensure better reliability. In 
addition, by applying both data triangulation (using both protocols and domain 
experts) and observer triangulation (two authors of this paper involved), re-
duced the threat to validity [157]. 
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6.7.3 Construct Validity 

Construct validity refers to the extent to which the tools used, measure what the 
researcher has in mind and also what is being investigated. This risk was re-
duced as the results of the case studies, were de facto used. As mentioned be-
fore, the purpose of the consolidated process models for the bank case study 
was to use them in evaluating off-the-shelf products. The consolidated process 
models were used in a four-day workshop with a supplier of off-the-shelf solu-
tion to investigate the extent to which the solution could satisfy their needs. The 
consolidated process models were key to the whole evaluation process. The 
workshop structure, functionality covered, test cases and evaluation criteria 
were all based on the consolidated process models.  

The discovered process models for the core facility case study were used to 
understand their processes, to elicit requirements for a comprehensive LIMS 
system and used to develop a prototype LIMS system. 
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7 CONCLUSION 

When a business process needs to be modeled, be it for educational purposes or 
for eliciting requirements for the development of a new information system, it is 
not a trivial thing to determine how to model the processes. When the business 
process has variants, the complexity increases. An easy approach would be to 
model each variant separately as an independent process model. Such an ap-
proach would cause large number of process models with high degree of du-
plicity. This would counteract the purpose of the models, i.e., to be easily un-
derstandable when working with them and keeping them up-to-date. On the 
other hand, all variants could be modeled as one large process model but such 
an effort would also counteract the purpose of the models. 

In light of this, how can a family of process variants be modeled in a way 
that (1) reduces the number of process models and duplicity, (2) does not be-
come overly complex and (3) is aligned with the business processes it aims at 
representing. As such, the overall research question of this thesis is “how can a 
family of process variants be modeled when consolidating or discovering busi-
ness process models?”  

Variability in process models being consolidated or discovered can quickly 
become very complex. Such complexity is commonly managed by decomposi-
tion of process models into more manageable parts. As such, it is necessary to 
address the question of “how can process models be decomposed?”  

Decomposition is made vertically (slicing) and horizontally (dicing). As to 
vertical decomposition, this thesis proposes a variant-driven decomposition of 
process models based on the business driver (the root cause) and similarity of 
the process variants. As such, a sub-processes is “sliced” by considering the 
underlying business reason for the existance of variants and the degree to which 
the variants are similar to each other. 

In this thesis, it is shown that decomposition can be based on several heuris-
tics as presented in chapter 3. Some of these heuristics (such as repetition, 
shared processes and role based) are not generally applicable on process 
models, as they require certain conditions to be fulfilled. However heuristics 
based on breakpoint and data object provide necessary criteria for 
decomposition but the determination of which fragments represent a breakpoint 
in the process or share the same set of data objects is somewhat unclear and 
dependent on subjective assessment. In conclusion, breakpoint and data object 
(if data objects are available and modeled in a consistent manner in the process 
models) are the closest to being complete and therefore better suited to be used 
for dicing a process model. It should be noted that domain experts are most 
likely better acquainted with the flow of their processes rather than the objects 
and as such, they might prefer breakpoint heuristics. 

Based on these foundations, the question of “how can a family of process 
variants be modeled” is addressed by the development of a decomposition 
driven method for consolidating or discovering business process models. The 
method proposed address the research question with an integrated divide-and-
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conquer method for modeling business processes with variants. As such, the 
method proposes to begin with the highest level of the process (the main pro-
cess or the value chain) and then, gradually postponing which variants to model 
and which parts of variants to model in more detail.  

In this context, the following propositions were investigated: (1) Decisions 
to model multiple process variants separately should be taken at the lowest pos-
sible level of process decomposition rather than upfront. In other words, rather 
than deciding upfront to split multiple process variants into separate models, 
one should consider postponing this decision to the level of each sub-process, 
until there are strong reasons for modeling the variants separately. (2) Decisions 
on whether to model variants together or separately should be based on the 
business drivers for variation (the extent to which the separation between vari-
ants are integral to the business) and syntactic drivers (the degree of similarity 
between variants). 

The method is validated by applying it to two case studies: one aimed at 
consolidating an existing collection of models, and the other aimed at modeling 
a family of process variants from scratch. Although not fully generalizable, the 
case study findings show that the proposed method provides a structured 
approach to modeling families of process variants in a way that reduces dupli-
cation with relatively minor penalty on model complexity and is aligned with 
the business processes it represents. 

The method has been formulated in an intra-enterprise setting where all the 
stakeholders are able to agree on the primary drivers of variability in the busi-
ness processes. When applying the method in a cross-organizational process, 
additional issues might arise. For example, two business partners might have 
different viewpoints of the relative strengths of the drivers. This situation would 
require a compromise, which is not considered in this method. 

Furthermore, the method has been developed in the context of a procedural 
process modeling language (e.g. BPMN) where decision points are explicitly 
represented along the flow of activities. Recently, alternative process modeling 
paradigms based on declarative styles have been proposed [7]. In declarative 
process models, activity flows and decision points are neither exhaustively nor 
explicitly captured and hence the proposed method is not directly applicable. 
Extending the method to cater for cross-organizational processes and declara-
tive process modeling are avenues for future work. 
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KOKKUVÕTE (SUMMARY IN ESTONIAN) 

Alamprotsessidest, protsesside variatsioonidest ja 
nendevahelisest koosmõjust: Integreeritud  

“jaga ja valitse” meetod äriprotsesside ja nende  
variatsioonide modelleerimiseks 

 
Igat organisatsiooni võib vaadelda kui süsteemi, mis rakendab äriprotsesse väär-
tuste loomiseks. Suurtes organisatsioonides on tavapärane esitada äriprotsesse 
kasutades protsessimudeleid, mida kasutatakse erinevatel eesmärkidel nagu näi-
teks sisekommunikatsiooniks, koolitusteks, protsesside parendamiseks ja info-
süsteemide arendamiseks. Arvestades protsessimudelite multifunktsionaalset 
olemust tuleb protsessimudeleid koostada selliselt, et see võimaldab nendest 
arusaamist ning haldamist erinevate osapoolte poolt. 

Modelleerimise seisukohast võib äriprotsesse jagada kahel viisil. Ühest kül-
jest võib protsessi jagada alamprotsessideks selliselt, et nende kokkuliitmine 
annab tulemuseks terve protsessi. Teisest küljest võib protsessi jagada variat-
sioonideks selliselt, et iga variatsioon esitab alamosa võimalikest protsessi käi-
vitamistest. Sellist lähenemist kasutades moodustub terve protsessi kirjeldus 
tema variatsioonide ühendist. Mõlemal lähenemisel on omad eelised ning puu-
dused. Näiteks on suuri protsessimudeleid, mis kätkevad endas kõikvõimalikke 
variatsioone, raske hoomata ning neid töös kasutada. Samas modelleerides igat 
variatsiooni eraldi protsessimudelina on tulemuseks suur hulk eraldiseisvaid 
protsessimudeleid, mida on keerukas hallata ning milles on palju liiasust kuna 
ühe protsessi samad fragmendid on esindatud erinevates mudelites. 

Nimetatud eesmärgi saavutamiseks on laialdaselt aksepteeritud lähenemine, 
et keerukat äriprotsessi ei peaks koondama ühte suurde mudelisse, vaid pigem 
hulka väiksematesse mudelitesse jälgides “jaga ja valitse” põhimõtet. See 
soovitus kehtib eriti äriprotsessidele, millel on erinevaid variatsioone, nt order-
to-cash protsess, mis varieerub sõltuvalt geograafilisest regioonist, kliendi liigist 
või toote tüübist. 

Käesoleva töö positsioneerimiseks sai läbi viidud kirjanduse uuring variat-
sioonide haldamise kohta äriprotsessides ja protsessimudelites (peatükk 2). 
Erinevate lähenemiste analüüs tõi välja, et lähenemiste puhul võiks eristada 
laias laastus kahte dimensiooni. Esiteks pakkusid vaadeldud lähenemised välja 
mehhanismid kas protsessimudelite fragmenteerimiseks või konsolideerimiseks. 
Sellest johtub, et variatsioone hallatakse läbi operatsioonide, mis kas vähenda-
vad (kitsendavad või standardiseerivad) või suurendavad (laiendavad või 
kohendavad) mudelite arvu. Teiseks dimensiooniks on muudatuste subjekt – on 
see äriprotsess või protsessimudel. Mõned lähenemised on disanitud äriprot-
sesside loomiseks või muutmiseks samas kui teised on olemasolevate protses-
simudelite parendamiseks. 

Uuring tõi välja, et olgugi, et äriprotsesside mudelite variatsioonide halda-
miseks on palju lähenemisi, neil kõigil on omad puudused. Esiteks nad 
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eeldavad, et protsessimudelid on samas modelleerimiskeeles ja/või kasutavad 
sama notatsiooni ja teiseks ei hooli nad variatsioonide ajenditest protsessi-
mudelite struktureerimisel. Eeldus sama modelleerimiskeele ning notatsiooni 
kasutamise kohta ei ole paraku realistlik paljudes praktilistes stsenaariumites, 
kus erinevate variantide mudelid ei pruugi olla kas käepärast või on neid model-
leeritud eri tiimide poolt kasutades eri keeli ja/või notatsioone. Lisaks pole need 
mudelid arvatavasti modelleeritud läbivalt samal granulaarsuse tasemel. 

Käesolev doktoritöö käsitleb seda nishi pakkudes välja integreeritud de-
kompositsioonist ajendatud meetodi äriprotsesside modelleerimiseks koos 
nende variatsioonidega (peatükk 5). Meetodi kandvaks ideeks on järkjärguline 
äriprotsessi ja selle variatsioonide dekomponeerimine alamprotsessideks. Igal 
dekompositsiooni tasemel ning iga alamprotsessi jaoks määratletakse esmalt kas 
vastavat alamprotsessi tuleks modelleerida konsolideeritud moel (üks alam-
protsessi mudel kõikide või osade variatsioonide jaoks) või fragmenteeritud 
moel (üks alamprotsess ühe variatsiooni jaoks). Sel moel kasutades ülalt-alla 
lähenemist viilutatakse ja tükeldatakse äriprotsess väiksemateks osadeks. 

Protsessimudeleid dekomponeerides võib rakendada erinevaid heuristikaid 
(peatükk 3). Samas, praktikas rahuldavad vaid kaks heuristikat kriteeriumid 
tarvilikkuse ja piisavuse osas protsessimudelite dekomponeerimisel. Need heu-
ristikad baseeruvad loogilistel äriprotsesside murdepunktidel ning äriprotsesside 
tegevuste vahel jagatud andmeobjektidel. Nende heuristikate empiiriline hinda-
mine on näidanud, et konkreetse heuristika valik ei mõjuta protsessimudelite 
arusaadavust. 

Igal äriprotsessi variatsioonil on oma juurpõhjus, mis pärineb ärist endast ja 
põhjustab protsesside käivitamisel erisusi (peatükk 4). Need juurpõhjused jaga-
takse viide kategooriasse – ajendid kliendist, tootest, operatiivsetest põhjustest, 
turust ja ajast. Teine parameeter on erinevuste hulk viisides (tegevuste järje-
kord, tulemuste väärtused jms) kuidas variatsioonid oma väljundit toodavad. 

Variatsioonide modelleerimine sõltub lisaks veel äriprotsesside erinevustest, 
nagu näiteks tegevused, objektid ja ressursid. Kui äriprotsessid erinevad üks-
teisest oluliselt, on mugavam neid eraldi hoida. Samas, kui protsessid on väga 
sarnased, mudeldatakse neid koos, et vähendada duplitseerimist. 

Käesolevas töös esitatud meetod on valideeritud kahes praktilises juhtumi-
uuringus (peatükk 6). Kui esimeses juhtumiuuringus on põhirõhk olemasolevate 
protsessimudelite konsolideerimisel, siis teises protsessimudelite avastamisel. 
Sel moel rakendatakse meetodit kahes eri kontekstis kahele üksteisest eristatud 
juhtumile. Mõlemas juhtumiuuringus tootis meetod protsessimudelite hulgad, 
milles oli liiasust kuni 50% vähem võrreldes tavapäraste meetoditega jättes 
samas mudelite keerukuse nendega võrreldes enamvähem samale tasemele. 
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