
A
b

el A
r

m
A

s C
ervA

n
t

es

D
iagnosing Behavioral D

ifferences betw
een Business Process M

odels

Tartu 2015

ISSN 1024-4212
ISBN 978-9949-32-865-9

DISSERTATIONES
MATHEMATICAE

UNIVERSITATIS
TARTUENSIS

100

Abel ArmAs CervAntes

Diagnosing Behavioral Differences between
Business Process Models

DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS
100

DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS
100

ABEL ARMAS CERVANTES

Diagnosing Behavioral Differences between
Business Process Models

Institute of Computer Science, Faculty of Mathematics and Computer Sci-
ence, University of Tartu, Estonia.

Dissertation has been accepted for the commencement of the degree of Doc-
tor of Philosophy (Ph.D.) in informatics on June 15, 2015, by the Council of
the Institute of Computer Science, Faculty of Mathematics and Computer
Science, University of Tartu.

Supervisors:

Prof. PhD. Marlon Dumas
Institute of Computer Science
University of Tartu, Tartu, Estonia

Assoc. Prof. PhD. Luciano Garćıa Bañuelos
Institute of Computer Science
University of Tartu, Tartu, Estonia

Opponents:

Res. Assoc. PhD. Eric Badouel
INRIA Rennes, France

Assoc. Prof. PhD. Josep Carmona
Department of Computer Science
Universitat Politecnica de Catalunya (UPC),
Barcelona, Spain

Commencement will take place on August 28, 2015, at 13.15 in Liivi 2-403.

The publication of this dissertation was financed by Institute of Computer
Science, University of Tartu.

ISSN 1024-4212
ISBN 978-9949-32-865-9 (print)
ISBN 978-9949-32-866-6 (pdf)

www.tyk.ee

Copyright: Abel Armas Cervantes, 2015

UniversityiofiTartuiPress

Abstract

Companies operating in multiple markets or market segments often need to

manage multiple variants of the same business process. Such multiplicity

of variants may stem from distinct products, different types of customers,

different regulations across countries in which the company operates, or id-

iosyncratic choices made by multiple business units over time. During the

ongoing management of these processes, analysts need to compare models

of multiple process variants in order to identify opportunities for standard-

ization or to understand relative performance differences across variants.

Existing approaches to process model comparison can be broadly classi-

fied into those based on structural similarity and those based on behavioral

similarity. Approaches based on structural similarity can conveniently ex-

plain certain types of differences between pairs of process models, such as

insertion, deletion or substitution of tasks, or simple re-arrangements of

nodes (e.g. swapping of two tasks). However, two variants may be syntac-

tically different and still be behaviorally equivalent. Conversely, they may

be similar syntactically while very different behaviorally, as changes in a

few gateways or edges may entail significant behavioral differences.

In this context, this thesis addresses the problem of diagnosing behav-

ioral differences between pairs of business process models, based on a no-

tion of equivalence that takes into account concurrency. Given two process

models, the thesis proposes a method to determine if they are behaviorally

equivalent, and if not, to describe their differences in terms of behavioral

5

relations captured in one model but not in the other. The proposed so-

lution is based on a translation from process models to event structures,

specifically prime event structures, asymmetric event structures and flow

event structures. A näıve version of this translation suffers from two limita-

tions. First, this translation is not applicable to process models with cycles.

Second, it produces redundant difference diagnostic statements because an

event structure may contain unnecessary event duplication. To tackle the

first limitation, the thesis proposes a notion of unfolding that captures all

possible causes of each task, where the tasks that can occur more than

once in a computation are distinguished from those that cannot. From

this unfolding, an event structure is derived, thus enabling the diagnosis of

behavioral differences in terms of repetition and behavioral relations that

hold in one model but not in the other. For the second limitation, the

thesis puts forward a technique to reduce event duplication in an (asym-

metric and a flow) event structure while preserving canonicity by applying

a set of behavior-preserving event folding rules. The proposed method has

been implemented as a prototype that takes pairs of process models in the

standard Business Process Model and Notation (BPMN) and produces dif-

ference diagnostics both in the form of statements in natural language and

graphically overlaid on the process models.

6

Acknowledgements

This research was supported by the European Social Fund via the Doctoral

Studies and Internationalisation Programme (DoRa), which is carried out

by Foundation Archimedes, and by an institutional grant of the Estonian

Research Council.

I would like to thank my supervisors Marlon Dumas and Luciano

Garćıa-Bañuelos for their guidance, the fruitful discussions and continu-

ous encouragement throughout these years. I am grateful for the constant

opportunities for professional development they gave me. Special thanks

to Paolo Baldan from University of Padova who took the role of my third

supervisor during and after my research visit to University of Padova. His

mentoring, availability for discussions and collaboration has made this the-

sis possible. Last but not least, I would also like to extend my sincere

gratitude to the reviewers Eric Badouel and Josep Carmona for their in-

sightful comments.

7

Contents

List of Abbreviations 11

List of Symbols 12

List of Figures 13

List of Original Publications 17

1 Introduction 19

1.1 Problem Statement . 21

1.2 Contributions . 25

1.3 Outline . 26

2 State of the art 29

2.1 Process model comparison based on task labels 30

2.2 Process model comparison based on model structure 31

2.3 Process model comparison based on behavior 33

3 Background 36

3.1 Petri nets . 37

3.1.1 Petri net subclasses . 45

3.1.2 Branching process of a Petri net system 51

3.1.3 Configurations and families of pomsets 54

3.2 Event structures . 57

3.2.1 Prime event structures 58

8

3.2.2 Asymmetric event structures 59

3.2.3 Flow event structures 64

3.3 True concurrency semantic equivalences 68

3.3.1 Configuration equivalence 69

3.3.2 Completed visible-pomset equivalence 70

3.3.3 History preserving bisimilarity 71

4 Behavioral profiles for process model comparison 73

4.1 Behavioral profiles (BP) . 74

4.2 FES as BP . 77

4.3 An execution semantics for BP ∣w 80

4.4 Expressing differences using BP ∣w 85

4.5 BP and silent transitions . 87

4.6 Discussion . 90

5 Process model comparison based on event structures 92

5.1 Finite representation of cyclic process models 93

5.1.1 Multiplicity of activities 97

5.1.2 Multiplicity of activities in free-choice workflow nets 100

5.2 Comparison based on event structures 102

5.2.1 Partial synchronized product 106

5.2.2 Identifying differences 114

5.2.3 Verbalizing differences 117

5.3 Discussion . 121

6 Reduction of event structures 123

6.1 Foldings . 124

6.2 Reduction of AESs . 124

6.3 Reduction of FESs . 139

6.4 Deterministic foldings and canonicity 153

6.5 Discussion . 156

9

7 Implementation and validation 159

7.1 Evaluation . 161

8 Conclusions 169

8.1 Summary of contributions . 169

8.2 Future work . 172

References 175

Appendix A Basic notions and notations 183

A.1 Sets and numbers . 183

A.2 Sequences . 183

A.3 Relations . 184

A.4 Functions . 184

10

List of Abbreviations

Abbreviation Meaning Page
BPMN Business Process Model and Notation 19
EPC Event-driven Process Chain 19
UML Unified Modeling Language 19
FSM Finite State Machine 32
LTS Labeled Transition System 33
BP Behavioral Profiles 34

WF-net Workflow net 47
ES Event Structure 57

PES Prime Event Structure 58
AES Asymmetric Event Structure 59
FES Flow Event Structure 64

WF-flow net Workflow and flow net 76
CP Complete Prefix 93

11

List of Symbols

Symbol Description
A Asymmetric event structure.
F Flow event structure.
N Petri net system.
β Branching process.
P Prime event structure.
≈conf Configuration equivalence.
Λ Tasks labels.
N0 Natural numbers including 0.
∆ Executions of a net system.
ψ Strong postconditions.
P Family of pomsets.
≈cp Completed visible-pomset equivalence.
≈hp History preserving bisimulation equivalence.
η WF-flow nets.
R Behavioral relations.
N Class of nets.
≡iso Isomorphism.
ηλ Unlabeled WF-flow nets.
Θ Cutting context.
ΘMcMillan Cutting context defined in [McMi 95].
ΘERV Cutting context defined in [Espa 02].
ΘPred (new) Cutting context based on predecessors.
R Self-preceding transitions.
K Necessary transitions.
E Event structure, in Chapter 5 either A or F.

12

List of Figures

1.1 Subset of core BPMN elements 20

1.2 Equivalent variants of business process models 22

1.3 M3, process model variant of models in Figure 1.2 23

1.4 Mapping of tasks, events and gateways to Petri nets 24

1.5 Petri net of process model M3 (Fig. 1.3) 25

3.1 Messaging system modeled as a Petri net N 37

3.2 Petri net system N of N with a marking M0 39

3.3 Net systems exemplifying causal, conflict, and concurrent

relations between events . 40

3.4 Petri net system N with a terminal marking Mx 42

3.5 Example of causal nets . 43

3.6 Non-free choice Petri net . 46

3.7 Occurrence net N1 . 47

3.8 (sound) Workflow net system 48

3.9 Non-flow and flow net example 49

3.10 Flow net system and its configurations ordered by set inclusion 51

3.11 Branching process, inductive rules 52

3.12 Petri net system and its unfolding 53

3.13 Family of pomsets ordered by inclusion, i.e., pomsets of flow

net system in Fig. 3.10a. 56

3.14 Example of PES . 58

13

3.15 Example of AES . 60

3.16 Inheritance of conflict along causality in AESs. 62

3.17 Inheritance of ↗ . 63

3.18 AES A and its set of configurations ordered by extension . . 65

3.19 Example of FES . 65

3.20 A FES which is neither faithful nor full. 67

3.21 Example of configuration-equivalent families of pomsets. . . 69

3.22 Visible pomset equivalent flow net systems (a), (b) and their

visible pomsets ordered by inclusion (c). 70

3.23 History preserving bisimilar AESs 72

4.1 Net system and its behavioral profile BP ∣w 74

4.2 WF-flow nets . 75

4.3 Flow net system and its corresponding FES 77

4.4 BP ∣fes(N 6) . 79

4.5 Equivalent WF-flow nets without (4.5a) and with (4.5b) an

implicit place and their corresponding FESs aside. 80

4.6 Net system N 7 and its behavioral profiles BP ∣w and BP ∣fes 81

4.7 Net system N 8 and its behavioral profiles BP ∣w and BP ∣fes 83

4.8 Net system N 9 and its behavioral profile BP ∣w 86

4.9 Branching process of net system N 9 (Fig. 4.8a) 86

4.10 WF-flow net system and its BP ∣fes 88

4.11 Net systems with isomorphic sets of 4C relations over labels 89

4.12 Generalization of the net systems in Fig. 4.11 90

4.13 Net systems with isomorphic sets of 4C relations over labels

without concurrency . 90

5.1 Petri net system and its complete unfolding prefix 93

5.2 Complete unfolding prefix β2 94

5.3 Non-free choice “cyclic” net system and its unfolding 100

14

5.4 Non hp-bisimilar PESs, but completed visible-pomset equiv-

alent . 103

5.5 PES and its restriction to observable behavior 104

5.6 Example of graph-based PES comparison 106

5.7 Partial matching operations given a partial match (C1, ξ,C2) 108

5.8 PESs and a pair of partial matches between their configurations109

5.9 PESs and their partial synchronized product with the opti-

mal partial matches . 112

5.10 (a) Matrix representations for (a) partial match

({a1, b1, c1}, ξ,{a2, b2}) and (b) extended partial match

({a1, b1, c1}, ζ = ξ[c1 ↦ c2],{a2, b2}) 115

5.11 Synthetic matching operation 117

5.12 PESs and their partial synchronized product with the opti-

mal matches . 120

5.13 AES equivalent to P7 in Figure 5.12a 121

5.14 Three history preserving bisimilar event structures 122

6.1 AES A′ and a folding A′′. 125

6.2 AESs such that A0 ≡hp A1 but A0 ≢hp A2. 125

6.3 Configurations of the AESs in Figure 6.2, ordered by extension126

6.4 AES and its quotient . 129

6.5 Quotients with respect to a set X = {a0, a1} of non-similar

events . 133

6.6 The set p({c0, c1}) = {a, b}, includes a which is neither in

the history of c0 nor of c1 . 135

6.7 Foldings for the AES in Figure 6.2 138

6.8 FES F and a folding F′ . 139

6.9 Sample FESs . 140

6.10 Example of direct conflict in FES, a#δ d and ¬(d#δ a) . . . 141

6.11 Example FESs to illustrate Condition 5 in Definition 6.12 . 143

6.12 FES and two minimal non-isomorphic quotients 153

15

6.13 Equivalent AESs . 153

6.14 Canonical labeling and folding 155

6.15 A PES P and a possible folding P′ that cannot be obtained

by composing elementary foldings 157

6.16 Non-completeness of the quotient technique for FESs 158

7.1 Process model example M4 . 160

7.2 Representation of differences 161

7.3 Web interface of BP-Diff . 162

7.4 Snippet of the process models SA 3 and WA 3 166

7.5 Difference 1 (J2, P2) between SA 3 and WA 3 using PES . . 167

7.6 Difference 2 (J2, P2) between SA 3 and WA 3 using PES . . 167

7.7 Difference 3 (J2, P2) between SA 3 and WA 3 using PES . . 167

7.8 Difference 4 (J2, P2) between SA 3 and WA 3 using PES . . 168

7.9 Difference 1 (J2, P2) between SA 3 and WA 3 using AES . . 168

16

List of Original Publications

I Abel Armas-Cervantes, Luciano Garćıa-Bañuelos and Marlon Dumas.

Event Structures as a Foundation for Process Model Differencing, Part

1: Acyclic processes. In 9th International Workshop on Web Services

and Formal Methods 2012, Tallinn, Estonia, September 6-7, 2012. Lec-

ture Notes in Computer Science, vol. 7843, pages 69-86, Springer 2013.

• The author contributed the selection of the examples, literature

review and writing of some sections.

II Abel Armas-Cervantes, Paolo Baldan and Luciano Garćıa-Bañuelos.

Reduction of Event Structures under History Preserving Bisimulation.

Submitted to Journal of Logical and Algebraic Methods in Program-

ming, Special Issue: The 23rd Nordic Workshop on Programming The-

ory (NWPT 2013). 44 pages.

• The author contributed part of the idea, part of writing, part of

the formalizations and proofs and selection of examples.

III Abel Armas-Cervantes, Paolo Baldan, Marlon Dumas and Luciano

Garćıa-Bañuelos. Behavioral Comparison of Process Models Based on

Canonically Reduced Event Structures. In Proceedings of the 12th In-

ternational Conference on Business Process Management (BPM 2014),

Eindhoven, The Netherlands, September 10, 2014. Lecture Notes in

Computer Science, vol. 8659, pages 267-282, Springer 2014.

17

• Lead author. The author contributed part of the idea, formaliza-

tion, writing, proofs, selection of examples and implementation.

IV Abel Armas-Cervantes, Marlon Dumas, Luciano Garćıa-Bañuelos and

Artem Polyvyanyy. On the Suitability of Generalized Behavioral Pro-

files for Process Model Comparison. In 11th International Workshop

on Web Services and Formal Methods: Formal Aspects of Service-

Oriented and Cloud Computing 2014, Eindhoven, The Netherlands,

September 11-12, 2014. LNCS, 15 pages, Springer 2015, (in press).

• Lead author. The author contributed the idea, formalization, writ-

ing, proofs and selection of examples.

V Abel Armas-Cervantes, Paolo Baldan, Marlon Dumas and Luciano

Garćıa-Bañuelos. BP-Diff: A Tool for Behavioral Comparison of Busi-

ness Process Models. In Proceedings of the BPM Demo Sessions 2014

Co-located with the 12th International Conference on Business Process

Management (BPM) 2014, Eindhoven, The Netherlands, September

10, 2014. CEUR Workshop Proceedings, Vol. 1295, pp. 1-5.

• Lead author. The author contributed the idea, writing and imple-

mentation.

VI Abel Armas-Cervantes, Paolo Baldan, Marlon Dumas and Luciano

Garćıa-Bañuelos. Diagnosing Behavioral Differences Between Business

Process Models: An Approach Based on Event Structures. Submitted

to Journal of Information Systems, Special Issue of Business Process

Management (BPM) 2014. 51 Pages.

• Lead author. The author contributed the idea, implementation,

writing, part of proofs and selection of examples.

18

Chapter 1

Introduction
Process
models

Behavioral
comparison Diagnostics

Petri
nets

Event
structures

Behavioral
equivalences

Unlabeled
WF-flow

nets

Behavioral
profiles Comparison Diagnostics

Co
nf

ig
ur

at
io

n
eq

ui
va

le
nc

e

Behavioral
profiles Comparison Diagnostics

Configuration
equivalence WF-flow

nets

Unlabeled

Labeled

Process
models

Behavioral
comparison Diagnostics

Petri
nets

Event
structures

Behavioral
equivalences

Petri
nets

Prefix
unfolding

Prime
Event

Structures

Partial
Synchronized

Product

Vi
sib

le
 p

om
se

t
eq

ui
va

le
nc

e

Detection of
differences

Verbalization
of differences

Canonical

Petri
nets

Prefix
unfolding

Asymmetric
Event

Structures Partial
Synchronized

Product

Vi
sib

le
 p

om
se

t
eq

ui
va

le
nc

e

Detection of
differences

Folding of
event

structuresFlow
Event

Structures

Verbalization
of differences

Petri
nets

Event
structures

Behavioral
equivalences

Comparison

Process
models DiagnosticsComparison

Process
models DiagnosticsComparison

Structure Labels Behavior

Business processes are the arteries of modern organizations. They de-

termine how work is done in an organization. A business process is a

“collection of related events, activities and decisions, that involve a num-

ber of actors and resources, and that collectively lead to an outcome that

is of value to an organization or its customers.” [Duma 13].

There are several modeling languages for business process modeling;

BPMN, EPC and UML are cases in point. For the sake of exemplification,

Figure 1.1 shows a subset of the core elements of BPMN. The start and end

events represent the initiation and termination of an instance of a process,

respectively. The tasks denote units of work to be performed. The flow

represents the order among the events, gateways and tasks. Finally, gate-

ways are control flow elements and they can represent either the splitting

or merging of paths. In the case of exclusive gateways, a split has more

than one outgoing flow, but only one of them can be activated (according

19

to a defined condition); the counterpart, the join exclusive gateway, merges

the incoming alternative flows. Conversely, the fork parallel gateway de-

notes the parallel activation of all the outgoing paths; whereas, the merging

counterpart denotes the synchronization of the multiple incoming paths.

BPMN

Event

Activity

Gateway

Sequence
 flow

Parallel
gateway

Exclusive
gateway

Start End

Normal
 flow

Petri net

Start

End

Parallel
gateway

Exclusive
gateway Split Join

Fork Merge

Task

Task

Figure 1.1: Subset of core BPMN elements

Process models offer a suitable representation for many analysis tech-

niques, e.g., techniques to assess the performance of the overall process, and

can cope with ambiguities that may emerge from, for instance, a textual

description of processes. In business process management, process models

are a pervasive element, insofar as the life cycle of a single process can en-

compass multiple versions of the same model. The as-is model represents

an existing –or a new– process, from which the to-be model is constructed

after a stage of analysis and redesign, and finally, a new improved model is

created by correcting encountered issues, such as deviations or bottlenecks.

The importance of process models as key information assets in modern or-

ganizations motivates the creation of effective techniques for their efficient

management.

20

The comparison of process models is a basic operation when managing

collections of business process models [Dijk 11]. For example, an organi-

zation with mature business process practices can gather large amounts

of models. Oftentimes, they include multiple variants of the same pro-

cess. Variants may stem, not only from the as-is and to-be process models,

but from distinct products, different types of customers (e.g. corporate vs.

private customers), different legislations across countries in which a com-

pany operates, or idiosyncratic choices made by multiple business units

over time. In this setting, analysts need to compare models and accurately

understand the differences between multiple variants in order to determine

how to reconcile them.

This thesis deals with the problem of comparing pairs of business pro-

cess models, with an emphasis of comparing the behavior represented by

the process models as opposed to comparing the process models lexically or

syntactically. The specific process model comparison problem addressed in

this thesis is formulated and scoped in Section 1.1. Next the contributions

of the thesis are spelled out in Section 1.2. Finally, Section 1.3 provides

the outline of the thesis.

1.1 Problem Statement

Existing techniques for process model comparison can be roughly divided

into those based on structure and those based on behavior. In the former,

the differences are explained as graph edit operations, such as remove,

insert or replace tasks, that need to be applied in one model in order to

obtain the other; whereas in the latter, the differences are explained in

terms of the behavioral dependencies among tasks captured in one model

and not in the other. In some cases, a structural comparison is sufficient

to understand the differences between two variants. However, two variants

may be structurally different, yet behaviorally equivalent; or they may be

21

very similar structurally, but quite different behaviorally, as changes in a

few gateways or edges may entail significant behavioral differences.

Prepare
transp.
quote

Arrange
pickup
appt.

Produce
ship.
notice

Arrange
delivery

appt.

Prepare
transp.
quote

Arrange
pickup
appt.

Produce
ship.

notice

Arrange
delivery

appt.

Arrange
delivery

appt.

Arrange
pickup
appt.

Prepare
transp.
quote

Arrange
pickup
appt.

Arrange
delivery

appt.

Arrange
delivery

appt.

Arrange
pickup
appt.

Produce
ship.
notice

Produce
ship.

notice

Produce
ship.
notice

(a) M1

Prepare
transp.
quote

Arrange
pickup
appt.

Produce
ship.
notice

Arrange
delivery

appt.

Prepare
transp.
quote

Arrange
pickup
appt.

Produce
ship.

notice

Arrange
delivery

appt.

Arrange
delivery

appt.

Arrange
pickup
appt.

Prepare
transp.
quote

Arrange
pickup
appt.

Arrange
delivery

appt.

Arrange
delivery

appt.

Arrange
pickup
appt.

Produce
ship.
notice

Produce
ship.

notice

Produce
ship.
notice

(b) M2

Figure 1.2: Equivalent variants of business process models

Figure 1.2 shows two process models M1 and M2
1 represented using

BPMN. They are structurally dissimilar to the extent that their numbers

of tasks differ. Nevertheless, the executions of both process models are the

same, and so they can be considered as behaviorally equivalent.

This thesis approaches the problem of diagnosing behavioral differences

between pairs of business process models. Then given a pair of process

models, this thesis proposes a method to determine if they are behaviorally

equivalent – taking concurrency into account – and if not, the discrepancies

are explained using simple and intuitive statements, the last in order to

target the analysts as the end users of the technique.

The simplest way to explain the behavioral differences between a pair

of processes is, possibly, as behavioral relations between pairs of tasks (or

1Based on an order fulfillment process presented in [Rosa 10].

22

occurrences of tasks) that hold in one model and not in the other. We

specifically deal with three elementary types of behavioral relations that, to-

gether with repetition, have been postulated as basic control-flow workflow

patterns [Aals 03], namely causal precedence (corresponding to “sequence”

in a process model), conflict (exclusive branches in a process model), and

concurrency (parallel branches in a process model).

Concurrency is an important construct in nowadays process modeling

languages and analysis techniques. For instance, the cycle time of a process

with the concurrent execution of a set of tasks differs from the cycle time

of the same process with the arbitrary interleaved representation thereof.

Therefore, we consider that while comparing process models, it is necessary

to adopt an equivalence notion, together with behavioral abstractions, that

preserve the concurrency modeled by the analysts.

Prepare
transp.
quote

Arrange
pickup
appt.

Produce
ship.
notice

Arrange
delivery

appt.

Prepare
transp.
quote

Arrange
pickup
appt.

Produce
ship.
notice

Arrange
delivery

appt.

Arrange
delivery

appt.

Arrange
pickup
appt.

a b

c

d

a

b

c

d

b
c

Figure 1.3: M3, process model variant of models in Figure 1.2

As an example of the results that we aim at, consider the process model

M3 in Figure 1.3, which is a variant of the models in Figure 1.2. M3 is

structurally and behaviorally dissimilar to M1 and M2, then an intuitive

way to explain the behavioral differences between M3 and M1 (similarly,

between M3 and M2) to an analyst can be via statements of the form: “In

M3, there is a state after Prepare transportation quote where Arrange delivery

appointment can occur before Produce shipment notice or Arrange delivery

appointment can be skipped, whereas in the matching state in M1, Arrange

delivery appointment has to occur before Produce shipment notice”, and “In

M3 activity Arrange delivery appointment occurs 0,1 or more times, whereas

in M1 it occurs at most once”.

23

Petri nets [Petr 62] are a well-known modeling tool for concurrent pro-

cesses [van 98] that has been widely used in the context of analysis of busi-

ness processes. It has a formally defined semantics and there exist various

available analysis techniques for it. Throughout the thesis we assume that

the input process models are given as Petri nets. This design choice enables

the application of the presented techniques to any process modeling lan-

guage with a mapping to this formalism. For example, a transformation of a

large subset of BPMN to Petri nets can be found in [Dijk 08b], and a subset

of such mapping rules are shown in Figure 1.4.1 For instance, the Petri net

resulting from the application of the mapping rules to model M3 (Fig. 1.3)

is that of Figure 1.5. In addition to providing a language-neutral repre-

sentation, the use of Petri nets allows us to reuse a large body of existing

theoretical results, for example the theory of unfoldings [Enge 91, Niel 81].

BPMN

Event

Activity

Gateway

Sequence
 flow

Parallel
gateway

Exclusive
gateway

Start End

Normal
 flow

Petri net

Start

End

Parallel
gateway

Exclusive
gateway Split Join

Fork Merge

Task

Task

Figure 1.4: Mapping of tasks, events and gateways to Petri nets

1This transformation does not cover some BPMN constructs such as OR-joins, which
cannot be straightforwardly translated into Petri nets [Favr 15].

24

N

β

p1
Prepare
report p2

Send
report

Update
entry

p5
File

report p6

Create new
entry

p4

b1
Prepare
report b2

Send
report

Update
entry b5

File
report b6

Create new
entry

b4

b7 File
report

b8

p1
Prepare
report p2

Send
report

Update
entry

p5
File

report p6

Create new
entry

p4

Prepare
report

Send
report

Update
entry

File
report

Create new
entry

File
report

p1
Prepare
report p2

Send
report

Update
entry

p5
File

report p6

Create new
entry

p4

Prepare
transp. quote

Arrange
pickup appt.

Produce
ship. notice

Arrange
delivery appt.

a b

c

d

a b d

c

Figure 1.5: Petri net of process model M3 (Fig. 1.3)

1.2 Contributions

The contributions of the thesis are the following.

• Unfolding technique of process models with cycles

We propose an unfolding technique to compute a finite representation

of a process model with cycles. The unfolding guarantees to capture

all the causal dependencies between the tasks of a process model.

• Behavioral comparison of process models

We propose a comparison technique based on event structures. Specif-

ically, given a pair of process models, we compute their correspond-

ing event structures, which describe the behavior in terms of events

(occurrences of actions) and behavioral relations. Then another for-

malism, named as partial synchronized product, is used to determine

the optimal matching between the behavior of the compared pro-

cesses and, by the same token, to identify the behavioral differences.

The adopted notion of equivalence is completed visible-pomset equiv-

alence.

• Verbalization of differences as binary behavioral relations

We present a method to detect and express behavioral differences

as pairs of mismatching binary behavioral relations. The differences

are detected in the partial synchronized product resulting from the

comparison technique, whereas the verbalization uses the relations

25

in the underlying event structures. The verbalization of the differ-

ences produces natural language statements using a set of predefined

templates.

• (Deterministic) Reduction technique for asymmetric and flow event

structures

We propose behavior-preserving reduction techniques for asymmetric

and flow event structures. The adopted equivalence notion is his-

tory preserving bisimulation. The reduced representation of an event

structure can lead to more succinct diagnosis during the verbalization

of the differences. Although, in general, there is no minimal repre-

sentation of the behavior of a process using either asymmetric or flow

event structures. Therefore, we define a deterministic order on the

reduction operations to compute a canonical reduced representation.

• Implementation of the comparison technique, BP-Diff

The proposed comparison technique has been implemented in a tool

called BP-Diff. It is a web-based tool that takes pairs of process

models in BPMN format and outputs the textual explanation and

graphical representation of the differences.

1.3 Outline

State of the art techniques are discussed in Chapter 2. Specifically, we

review comparison techniques based on three aspects of process models:

tasks labels, structure and behavior.

The theoretical background of the thesis is presented in Chapter 3.

The first part presents Petri nets and their semantics. Next, three variants

of event structures are introduced: prime event structures, asymmetric

event structures and flow event structures. Finally, we present the three

behavioral equivalence notions used throughout the thesis.

26

Chapter 4 studies the expressive power of behavioral profiles, an existing

formalism proposed for the behavioral representation of business process

models. It is shown that while existing behavioral profiles can ensure a

notion of equivalence for a restricted family of Petri nets, the interpretation

of the relations can be vague and misleading in some scenarios. Finally,

we present a set of counter examples where the notion of equivalence stops

holding with existing behavioral profiles, i.e., when Petri nets contain silent

transitions. The results of this chapter were published in [Arma 14e].

In Chapter 5, we present a behavioral comparison technique based on

prime event structures. First, we propose an unfolding technique for process

models with cycles. The unfolding constructs a finite representation of the

behavior while capturing all possible causal dependencies between the tasks

in the model. Using such representation the tasks that can occur more

than once in a computation are distinguished from the ones that cannot.

Second, in order to compute the similar and divergent behavior of a pair of

processes, we introduce a, so called, partial synchronized product of (prime)

event structures. Finally, we present a verbalization technique to produce

natural language statements expressing encountered differences. However,

we note that using other types of event structures, such as asymmetric and

flow event structures, it is possible to provide smaller diagnosis. The results

of this chapter were published in [Arma 14a, Arma 14c].

Chapter 6 presents reduction rules for asymmetric and flow event struc-

tures. The presented reduction techniques ensure the preservation of the

behavior w.r.t. history preserving bisimulation. In general, there is not a

single (minimal) representation for the behavior of a process, neither using

asymmetric nor flow event structures. In the context of reduction of event

structures, the order on which the reduction operations are applied can lead

to non-isomorphic and non-reducible (equivalent) event structures with the

same number of events. Thus, at the end of Chapter 6, we suggest a way

to define a deterministic order on the reduction operations, such that the

27

reduced version of an event structure is always the same. The results of

this chapter were published in [Arma 14a, Arma 14d].

Chapter 7 provides an overview of BP-Diff, a prototype tool imple-

menting the proposed technique. Additionally, it presents an evaluation of

the tool using two libraries of real-life process models. The results of this

chapter were published in [Arma 14b, Arma 14c].

Finally, Chapter 8 concludes this thesis and presents some future lines

of research.

28

Chapter 2

State of the art

Process
models

Behavioral
comparison Diagnostics

Petri
nets

Event
structures

Behavioral
equivalences

Unlabeled
WF-flow

nets

Behavioral
profiles Comparison Diagnostics

Co
nf

ig
ur

at
io

n
eq

ui
va

le
nc

e

Behavioral
profiles Comparison Diagnostics

Configuration
equivalence WF-flow

nets

Unlabeled

Labeled

Process
models

Behavioral
comparison Diagnostics

Petri
nets

Event
structures

Behavioral
equivalences

Petri
nets

Prefix
unfolding

Prime
Event

Structures

Partial
Synchronized

Product

Vi
sib

le
 p

om
se

t
eq

ui
va

le
nc

e

Detection of
differences

Verbalization
of differences

Canonical

Petri
nets

Prefix
unfolding

Asymmetric
Event

Structures Partial
Synchronized

Product

Vi
sib

le
 p

om
se

t
eq

ui
va

le
nc

e

Detection of
differences

Folding of
event

structuresFlow
Event

Structures

Verbalization
of differences

Petri
nets

Event
structures

Behavioral
equivalences

Comparison

Process
models DiagnosticsComparison

Process
models DiagnosticsComparison

Structure Labels Behavior

Existing comparison techniques for process models are based on three

complementary aspects [Duma 09]: task labels, structure and behavior.

The comparison of labels seeks an alignment among the tasks of a pair

of process models. State-of-the-art techniques that approach this type of

comparison are reviewed in Section 2.1. Next, we review structure-based

comparison techniques in Section 2.2. Specifically, we review techniques

that consider process models as labeled graphs and describe the differences

as edit operations either over edges, nodes or both. Finally, Section 2.3

reviews behavior-based comparison techniques that focus at the comparison

of the execution semantics of the process models.

29

2.1 Process model comparison based on task la-

bels

The alignment between a pair of process models seeks for correspondences

among their tasks [Duma 09]. Roughly, a task corresponds to another if

both represent the same activity. An obvious way to define such alignment

is to look at the labels attached to the tasks, such that if a pair of tasks

have the same label then it is possible to define a 1:1 correspondence,

aka elementary match, between them. Task correspondences can also be

complex (non-elementary) 1:n matches where one task in one model can

correspond to a set of n tasks in the other.

Tasks representing the same activity can have different, yet similar,

labels attached, what makes more difficult the computation of a task align-

ment. In this regard, string similarity measures can mitigate the effect

of having various ways to describe and name a single task. They can be

defined with respect to the syntax or the semantics of a string. String

edit distance [Leve 66] is an example of a syntactic similarity measure, and

it counts the minimum string edit operations (delete, insert or substitute

characters) necessary to transform one string into another. Conversely, a

similarity measure based on semantics can be computed using a thesaurus,

e.g, WordNet, that determines the semantic similarity between the words

of a pair of strings. A thesaurus can help coping with the cases where a

pair of labels are syntactically different, but they have a close meaning,

e.g., “Send documents” and “Forward documents”.

In the context of process model similarity, the majority of existing works

have focused their attention on the computation of elementary matches

between the tasks of the models. Different authors have used similarity

measures between a pair of task labels based on syntax, semantics, or a

combination of both, that is the case of the techniques presented in [van 08,

30

Dijk 11, Duma 09, Ehri 07]; in such works the similarity of a pair of models

is given by the combination of the similarities of their tasks labels.

A work addressing the problem of complex 1:n matches is [Weid 10].

The authors propose a framework comprising four different components:

searchers, boosters, evaluators and selectors. In this framework, the simi-

larity metrics to define matches among the tasks can use other aspects than

string label similarity, e.g., they can also take into account the descriptions

of the matched tasks, and structural or behavioral relations between them.

The framework is then extended in [Leop 12, Klin 13] where probabilistic

optimizations are integrated for the computation of the matches.

The alignment between a pair of process models can be seen as a pre-

processing step for either a structural or behavioral comparison. In this

work we acknowledge the importance of such alignment, but we assume

that the correspondence between the tasks in the models is given. In the

remaining of the thesis,we consider only elementary matches and the cor-

respondence between tasks is denoted by the labels of the activities, i.e., if

a pair of tasks represents the same activity then they have necessarily the

same label.

2.2 Process model comparison based on model

structure

Process models are annotated graphs where the flow relations are edges and

the tasks, events, gateways, or any other element in the modeling language,

are nodes. Then a structural comparison can rely on standard graph edit

distance techniques to describe the differences between a pair of process

models as edit operations [Mess 95], such as insert, delete and substitute

nodes or edges. Such operations reflect the changes required in one graph

in order to obtain the other.

31

The authors in [Ait 09] present a structure-based comparison technique

for finite state machines (FSM). Roughly, given a pair of FSMs, the tech-

nique computes correspondences between their states and verify that the

operations on one FSM are available on the other at every pair of matched

states. Then the differences reflect the operations available in a FSM that

are not available in the other, and they are expressed as addition, deletion

and modification of operations (edges in the state machines).

Structural comparison techniques defined for business process graphs

are presented in [Dijk 11, Dijk 09b, Yan 12, Dijk 09a]. Different

from [Ait 09], these works define edit operations over both nodes and edges,

thus the differences are expressed in terms of deletion, insertion and substi-

tution of nodes, and deletion and insertion of edges. In [Dijk 09a, Yan 12],

the authors present different heuristics that can cope with the complex-

ity inherent to the graph edit distance technique (NP-complete [Mess 95]).

Other related works include [Madh 04], where the authors propose a struc-

tural metric between process models based on similarity flooding [Meln 02].

The body of research in the field of label-based and structure-based com-

parison of process models has reached a certain level of maturity. A process

model matching contest [Cayo 13] has been organized where a number of

methods for process model comparison, based on both task labels and struc-

ture, have been pitched together. While a number of challenges remain, the

current limitations of lexical and structural process model matching are un-

derstood.

As mentioned in Chapter 1, a fundamental limitation of structure-based

comparison techniques is that a pair of process models can be structurally

different, yet behaviorally equivalent. Conversely, a pair of process models

can be very similar structurally, but they can entail completely dissimilar

behavior. The next section reviews the techniques based on behavior.

32

2.3 Process model comparison based on behavior

A large amount of research has been devoted to the definition of equiva-

lence notions for concurrent systems [Glab 89, Glab 90, Glab 01], ranging

from trace equivalence to bisimulation equivalence, to finer equivalences in

the true-concurrency (aka partial-order) semantics where the concurrent

execution of tasks is taken into account. The adoption of one of those no-

tions in the context of the comparison of behavior is crucial since it would

establish the ground rules of the comparison. For example, the notions

based on interleaving semantics deem as equivalent the concurrent and in-

terleaved (sequential) execution of tasks; whereas, the notions based on

true concurrency semantics would deem such case as inequivalent.

Perhaps one of the earliest works on diagnosing concurrent system dif-

ferences is [Clea 91]. The author presents a technique to derive equations in

a process algebra characterizing the differences between two labeled tran-

sition systems (LTSs). On the one hand, the use of a process algebra

rather than a graphical language can make the feedback more difficult to

grasp for end users (process analysts, in our context). On the other hand,

the technique relies on interleaving bisimulation equivalence and does not

take into account the concurrent structure of the process (a process model

with concurrency and its interleaved version are equivalent). The authors

in [Soko 06] present a method for assessing the dissimilarity of LTSs in

terms of “edit” operations. This technique adopts a notion of equivalence

that does not differentiate between the concurrent and the interleaved ex-

ecution of tasks; whereas, the generated feedback does not tell the analyst

what behavioral relations exist in one model that do not exist in the other.

The same remarks apply to [Dijk 08a] that presents a method for diagnos-

ing differences between pairs of process models using standard automata

theory. In addition, this technique uses a fixed taxonomy of differences to

identify the discrepancies between a pair of processes. As pointed out by

the author, the taxonomy of differences is not guaranteed to be complete,

33

and thus the technique might not report differences between inequivalent

processes.

Behavioral profiles (BP) [Weid 11b] and causal behavioral pro-

files [Weid 11c] are two approaches that represent processes using binary

relations. They abstract a process using a n × n matrix, where n is the

number of tasks in the process. Each cell contains one out of three re-

lations: strict order, exclusive order or interleaving ; plus an additional

co-occurrence relation in the case of causal behavioral profiles. Both tech-

niques are incomplete as they mishandle several types of constructs, e.g.,

task skipping (silent transitions), duplicate tasks, and cycles. In this case,

two processes can have identical BPs despite not being behaviorally equiv-

alent in any standard sense (e.g., trace equivalent).

4C spectrum [Poly 14] is another family of binary relations that repre-

sents the behavior of a process in a n × n matrix. It offers a plethora of

different relations and each cell in the matrix can contain more than one

relation. However, 4C spectrum suffers from the same issues as the behav-

ioral profiles because it does not guarantee any of the well-known notions

of equivalence. Furthermore, the relations in this family can be difficult to

interpret and may result counter intuitive to the analysts. In Chapter 4 we

present a more extensive analysis, i.e., reach and limitations, of the behav-

ioral comparison of process models using the relations in 4C spectrum and

behavioral profiles.

Alpha relations [van 04] are another representation of processes us-

ing binary behavioral relations (direct causality, conflict and concurrency),

proposed in the context of process mining. Direct causality however is not

transitive (i.e., causality has a localized scope) and cannot capture so-called

“short loops” and silent behavior [Bado 12]. Relation sets [Weid 12] are a

generalization of alpha relations. Instead of one matrix, the authors use k

matrices (with a variable k). In each matrix, causality is computed with a

different look-ahead. It is shown that 1-look-ahead matrices induce trace

34

equivalence for a restricted family of Petri nets. The authors claim that

using k matrices improves accuracy. Nevertheless, it is unclear how human-

readable diagnosis could be extracted from two sets of k matrices and to

what notion of equivalence would this diagnostic correspond.

35

Chapter 3

Background

Process
models

Behavioral
comparison Diagnostics

Petri
nets

Event
structures

Behavioral
equivalences

Unlabeled
WF-flow

nets

Behavioral
profiles Comparison Diagnostics

Co
nf

ig
ur

at
io

n
eq

ui
va

le
nc

e

Behavioral
profiles Comparison Diagnostics

Configuration
equivalence WF-flow

nets

Unlabeled

Labeled

Process
models

Behavioral
comparison Diagnostics

Petri
nets

Event
structures

Behavioral
equivalences

Petri
nets

Prefix
unfolding

Prime
Event

Structures

Partial
Synchronized

Product

Vi
sib

le
 p

om
se

t
eq

ui
va

le
nc

e

Detection of
differences

Verbalization
of differences

Canonical

Petri
nets

Prefix
unfolding

Asymmetric
Event

Structures Partial
Synchronized

Product

Vi
sib

le
 p

om
se

t
eq

ui
va

le
nc

e

Detection of
differences

Folding of
event

structuresFlow
Event

Structures

Verbalization
of differences

Petri
nets

Event
structures

Behavioral
equivalences

Process
models

Behavioral
comparison Diagnostics

Petri
nets

Event
structures

Behavioral
equivalences

Unlabeled
WF-flow

nets

Behavioral
profiles Comparison Diagnostics

Co
nf

ig
ur

at
io

n
eq

ui
va

le
nc

e

Behavioral
profiles Comparison Diagnostics

Configuration
equivalence WF-flow

nets

Unlabeled

Labeled

Process
models

Behavioral
comparison Diagnostics

Petri
nets

Event
structures

Behavioral
equivalences

Petri
nets

Prefix
unfolding

Prime
Event

Structures

Partial
Synchronized

Product

Vi
sib

le
 p

om
se

t
eq

ui
va

le
nc

e

Detection of
differences

Verbalization
of differences

Canonical

Petri
nets

Prefix
unfolding

Asymmetric
Event

Structures Partial
Synchronized

Product

Vi
sib

le
 p

om
se

t
eq

ui
va

le
nc

e

Detection of
differences

Folding of
event

structuresFlow
Event

Structures

Verbalization
of differences

Petri
nets

Event
structures

Behavioral
equivalences

Process
models

Behavioral
comparison Diagnostics

Petri
nets

Event
structures

Behavioral
equivalences

Unlabeled
WF-flow

nets

Behavioral
profiles Comparison Diagnostics

Co
nf

ig
ur

at
io

n
eq

ui
va

le
nc

e

Behavioral
profiles Comparison Diagnostics

Configuration
equivalence WF-flow

nets

Unlabeled

Labeled

Process
models

Behavioral
comparison Diagnostics

Petri
nets

Event
structures

Behavioral
equivalences

Petri
nets

Prefix
unfolding

Prime
Event

Structures

Partial
Synchronized

Product

Vi
sib

le
 p

om
se

t
eq

ui
va

le
nc

e

Detection of
differences

Verbalization
of differences

Canonical

Petri
nets

Prefix
unfolding

Asymmetric
Event

Structures Partial
Synchronized

Product

Vi
sib

le
 p

om
se

t
eq

ui
va

le
nc

e

Detection of
differences

Folding of
event

structuresFlow
Event

Structures

Verbalization
of differences

Petri
nets

Event
structures

Behavioral
equivalences

i

a

b

o

c

d

i

a

b

o

c

d

i

a

b

o

c

d

≈conf

i

a b

d c

o

#

This chapter presents basic definitions and fixes the notation used in

the remaining of the thesis. As a complement, a compilation of standard

notions can be found in Appendix A.

Section 3.1 introduces fundamental notions on Petri nets, specifically,

syntax, execution semantics and behavioral properties. By the same to-

ken, families of pomsets are presented as a generic model of concurrency

applicable to different formalisms defining a notion of configuration. It

is used later to formulate generic definitions, e.g., behavioral equivalence

notions. Section 3.2 reviews basic definitions on event structures. We in-

troduce three types of event structures: prime, asymmetric and flow event

structures. Finally, different notions of equivalences in the true concurrency

spectrum are presented in Section 3.3.

36

3.1 Petri nets

Petri nets [Petr 62] are a formal model for concurrent systems. It offers an

intuitive graphical representation and a precise mathematical definition.

Furthermore, additional key features of this model include its formally de-

fined semantics and the availability of several analysis techniques. This

section recalls the basics of Petri nets: graphical representation, notation

and semantics.

Syntax of Petri nets

A Petri net is a directed graph with two types of nodes: transitions and

places, and every arc in the net (aka flow relation) cannot connect two

nodes of the same type. Intuitively, the transitions represent the tasks of a

process, the places represent the states of the process and the order among

the nodes is defined by means of flow relations. Typically, the transitions,

places and flow relations in a Petri net are graphically represented with

boxes, circles and directed arrows, respectively. For example, the Petri net

in Figure 3.1 represents a process to file reports. The annotated boxes

Prepare report, Send report, Update documents, Update entry and Create

new entry are transitions, the annotated circles p1 − p5 are places, and the

directed arrows are flow relations.

Online Create
message

Message
created

Send
message

Message
received

Read message Available

Logout Offline

Se
nd

er
Re

ce
iv

er

p1

Prepare
report

p2

Sen
report

p5

Logout

Online

Create
message

Message
created

Send
message

Available

Logout

Drop message

b1
Prepare
report b2

Send
report

Update
entry b5

File
report b6

Create new
entry

Online Create
message

Message
created

Send
message

Message
received

Read message Available

Logout Offline

Se
nd

er
Re

ce
iv

er

Drop message

Update
entry

Create new
entry

p5

File
report

Update
entry

Create new
entry

p5

Online

Create
message

Message
created

Send
message

Message
received

Read
message Available

Logout

Offline

Drop
message Offline

Logout

Available

Online

Create
message

Message
created

Send
message

Message
received

Read
message Available

Logout

Offline

Drop
message Offline

Logout

Available

b4

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Update
documents

p3

Create new
entry

p4

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Update
documents

p3

Create new
entry

p4

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Update
documents

p3

Create new
entry

p4

p1
Prepare
report p2

Send
report

Update
entry

p5
File

report p6

Create new
entry

p4

b7 File
report

b8

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Create new
entry

p4

p5 File
report

p6p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Create new
entry

p4

p5 File
report

p6File
report

Update
entry p5

File
report p6

Create new
entry

p4

p5 File
report

p6

p1
Prepare
report p2

Send
report p4

p1
Prepare
report p2

p5 File
report

p6

Figure 3.1: Messaging system modeled as a Petri net N

37

Formally, a Petri net is defined as follows.

Definition 3.1 (Petri net). A Petri net, or a net, is a tuple N = (P,T,F),

where P and T are disjoint sets of places and transitions, respectively, and

F ⊆ (P × T) ∪ (T × P) is the flow relation; each element of F is an arc of

the Petri net.

Throughout the thesis, we consider only finite Petri nets, i.e., nets with

a finite number of places and transitions. The transitions of a Petri net

can wear labels representing the activity that they represent. A transi-

tion wearing a label is called observable, otherwise silent. In the running

example, Figure 3.1, all the transitions in the net are observable. A net

with a labeling function from transitions to labels is called labeled. The for-

mal definition of a net is extended below to consider the labeling function.

Hereinafter, Λ stands for a fixed set of tasks labels.

Definition 3.2 (labeled Petri net). A labeled net is the tuple (P,T,F, λ)

where (P,T,F) is a net, and λ ∶ T → Λ ∪ {τ} is a function that maps

transitions to labels. Note that τ is a special label, τ /∈ Λ, and if λ(t) = τ ,

where t ∈ T , then t is said to be silent ; otherwise t is observable.

Oftentimes we will refer to the pre- (respectively, post-) set of a node.

A node y is in the preset (respectively, postset) of another node x if there

is a flow relation from y to x (respectively, from x to y). As an example,

in Figure 3.1, p4 is in the preset of Create new entry ; whereas, p3 and p4

are in the postset of Send report. This intuition is formally captured in the

next definition and extended to the pre- and postset of sets of nodes.

Definition 3.3 (pre- and postset of a (set of) node(s)). Let N = (P,T,F)

be a Petri net and y ∈ P ∪ T be a node in N . The preset of y is defined

as ●y = {x ∈ P ∪ T ∣ (x, y) ∈ F}; whereas the postset of y as y● = {z ∈

P ∪ T ∣ (y, z) ∈ F}.

Similarly, for a set of nodes X ⊆ P ∪ T , ●X = ⋃{●x ∣ x ∈ X} and X● =
⋃{x● ∣ x ∈X}.

38

The above concepts constitutes the syntax of the Petri nets. Different

classes of nets have been defined by imposing restrictions at the syntactic

level; further in this chapter we will present three classes of such nets, causal

nets, occurrence nets and free choice nets. Now we turn our attention to

the semantical aspect of Petri nets.

Semantics of Petri nets

Places are containers for tokens that stands for data, documents, messages

or anything else that moves along the system. The cornerstone to formulate

the behavior, or dynamics, of Petri nets is the firing rule, which establishes

the circumstances under which a transition can occur and how the tokens

are moved in the net. A token distribution of a net, aka marking, denotes a

state during the execution of the system. Formally, a marking is a function

from places to natural numbers including 0. E.g., the marking in Figure 3.2

associates p1 and p5 with 1, number of tokens (graphically represented as

black filled circles) in those places, and p2, p3, p4 and p6 with 0.

Online Create
message

Message
created

Send
message

Message
received

Read message Available

Logout Offline

Se
nd

er
Re

ce
iv

er

p1

Prepare
report

p2

Sen
report

p5

Logout

Online

Create
message

Message
created

Send
message

Available

Logout

Drop message

b1
Prepare
report b2

Send
report

Update
entry b5

File
report b6

Create new
entry

Online Create
message

Message
created

Send
message

Message
received

Read message Available

Logout Offline

Se
nd

er
Re

ce
iv

er

Drop message

Update
entry

Create new
entry

p5

File
report

Update
entry

Create new
entry

p5

Online

Create
message

Message
created

Send
message

Message
received

Read
message Available

Logout

Offline

Drop
message Offline

Logout

Available

Online

Create
message

Message
created

Send
message

Message
received

Read
message Available

Logout

Offline

Drop
message Offline

Logout

Available

b4

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Update
documents

p3

Create new
entry

p4

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Update
documents

p3

Create new
entry

p4

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Update
documents

p3

Create new
entry

p4

p1
Prepare
report p2

Send
report

Update
entry

p5
File

report p6

Create new
entry

p4

b7 File
report

b8

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Create new
entry

p4

p5 File
report

p6p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Create new
entry

p4

p5 File
report

p6File
report

Update
entry p5

File
report p6

Create new
entry

p4

p5 File
report

p6

p1
Prepare
report p2

Send
report p4

p1
Prepare
report p2

p5 File
report

p6

Figure 3.2: Petri net system N of N with a marking M0

A Petri net equipped with a marking is called a Petri net system, e.g.,

Figure 3.2, and it is formalized in the next definition.

Definition 3.4 (marking, (labeled) Petri net system). Given a Petri net

N = (P,T,F), a marking of N is a function M ∶ P → N0 that assigns a

39

non-negative number to every place p ∈ P . A Petri net system, or simply a

net system, N = (N,M) is the net N = (P,T,F) with a marking M . The

initial marking of a net is denoted as M0. Finally, a net system (N,M) is

labeled if N is labeled.

A transition is said to be enabled if every place in its preset has at least

one token. In simple words, if a transition is enabled then it means that

there exist the necessary resources to execute the corresponding activity,

and thus it can occur. The firing of an enabled transition removes one

token from every place in its preset, and sets one token to every place in

its postset. The firing of a transition produces an event (an occurrence of

an activity). In the running example, Figure 3.2, Prepare report and File

report are the only enabled transitions, and in order to enable, for instance,

Send report then it is necessary to fire Prepare report first.

Formally, a marking M of a net N = (P,T,F) enables a transition t ∈ T ,

denoted as M[t⟩, iff ∀p ∈ ●t ∶M(p) > 0. Moreover, the occurrence (firing) of

t leads to a new marking M ′, denoted as M
t
Ð→ M ′, computed according

to the following rules for every place p ∈ P :

M ′(p) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

M(p) − 1 if p ∈ ●t ∖ t●
M(p) + 1 if p ∈ t● ∖ ●t
M(p) otherwise

Online Create
message

Message
created

Send
message

Message
received

Read message Available

Logout Offline
Se

nd
er

Re
ce

iv
er

p1

Prepare
report

p2

Sen
report

p5

Logout

Online

Create
message

Message
created

Send
message

Available

Logout

Drop message

b1
Prepare
report b2

Send
report

Update
entry b5

File
report b6

Create new
entry

Online Create
message

Message
created

Send
message

Message
received

Read message Available

Logout Offline

Se
nd

er
Re

ce
iv

er

Drop message

Update
entry

Create new
entry

p5

File
report

Update
entry

Create new
entry

p5

Online

Create
message

Message
created

Send
message

Message
received

Read
message Available

Logout

Offline

Drop
message Offline

Logout

Available

Online

Create
message

Message
created

Send
message

Message
received

Read
message Available

Logout

Offline

Drop
message Offline

Logout

Available

b4

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Update
documents

p3

Create new
entry

p4

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Update
documents

p3

Create new
entry

p4

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Update
documents

p3

Create new
entry

p4

p1
Prepare
report p2

Send
report

Update
entry

p5
File

report p6

Create new
entry

p4

b7 File
report

b8

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Create new
entry

p4

p5 File
report

p6p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Create new
entry

p4

p5 File
report

p6File
report

Update
entry p5

File
report 1 p6

Create new
entry

p4

p7 File
report 2

p8

p1
Prepare
report p2

Send
report p4

p1
Prepare
report p2

p5 File
report

p6

(a) Causality

Online Create
message

Message
created

Send
message

Message
received

Read message Available

Logout Offline

Se
nd

er
Re

ce
iv

er

p1

Prepare
report

p2

Sen
report

p5

Logout

Online

Create
message

Message
created

Send
message

Available

Logout

Drop message

b1
Prepare
report b2

Send
report

Update
entry b5

File
report b6

Create new
entry

Online Create
message

Message
created

Send
message

Message
received

Read message Available

Logout Offline

Se
nd

er
Re

ce
iv

er

Drop message

Update
entry

Create new
entry

p5

File
report

Update
entry

Create new
entry

p5

Online

Create
message

Message
created

Send
message

Message
received

Read
message Available

Logout

Offline

Drop
message Offline

Logout

Available

Online

Create
message

Message
created

Send
message

Message
received

Read
message Available

Logout

Offline

Drop
message Offline

Logout

Available

b4

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Update
documents

p3

Create new
entry

p4

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Update
documents

p3

Create new
entry

p4

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Update
documents

p3

Create new
entry

p4

p1
Prepare
report p2

Send
report

Update
entry

p5
File

report p6

Create new
entry

p4

b7 File
report

b8

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Create new
entry

p4

p5 File
report

p6p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Create new
entry

p4

p5 File
report

p6File
report

Update
entry p5

File
report 1 p6

Create new
entry

p4

p7 File
report 2

p8

p1
Prepare
report p2

Send
report p4

p1
Prepare
report p2

p5 File
report

p6
(b) Conflict

Online Create
message

Message
created

Send
message

Message
received

Read message Available

Logout Offline

Se
nd

er
Re

ce
iv

er

p1

Prepare
report

p2

Sen
report

p5

Logout

Online

Create
message

Message
created

Send
message

Available

Logout

Drop message

b1
Prepare
report b2

Send
report

Update
entry b5

File
report b6

Create new
entry

Online Create
message

Message
created

Send
message

Message
received

Read message Available

Logout Offline

Se
nd

er
Re

ce
iv

er

Drop message

Update
entry

Create new
entry

p5

File
report

Update
entry

Create new
entry

p5

Online

Create
message

Message
created

Send
message

Message
received

Read
message Available

Logout

Offline

Drop
message Offline

Logout

Available

Online

Create
message

Message
created

Send
message

Message
received

Read
message Available

Logout

Offline

Drop
message Offline

Logout

Available

b4

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Update
documents

p3

Create new
entry

p4

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Update
documents

p3

Create new
entry

p4

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Update
documents

p3

Create new
entry

p4

p1
Prepare
report p2

Send
report

Update
entry

p5
File

report p6

Create new
entry

p4

b7 File
report

b8

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Create new
entry

p4

p5 File
report

p6p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Create new
entry

p4

p5 File
report

p6File
report

Update
entry p5

File
report 1 p6

Create new
entry

p4

p7 File
report 2

p8

p1
Prepare
report p2

Send
report p4

p1
Prepare
report p2

p5 File
report

p6

(c) Concurrency

Figure 3.3: Net systems exemplifying causal, conflict, and concurrent rela-
tions between events

Implicitly a Petri net system represents different dependency relations

between the events. For example, in Figure 3.3a, Send report can occur

40

only after Prepare report, in which case the produced events are said to

be in causal relation. In Figure 3.3b, Update entry and Create new entry

are both enabled and the occurrence of one disables the occurrence of the

other, thus the corresponding events are said to be in conflict. Finally,

Figure 3.3c shows the case when Prepare report and File report can occur

independently, i.e., the events are concurrent.

Using the firing rule of transition as a basis, we present techniques to

describe the behavior of the Petri net models, namely sequential semantics

and causal semantics.

Sequential semantics The sequential semantics describes the behavior

of a Petri net by means of transition sequences that can be executed by

the net. Such sequences are called firing sequences. A single transition can

appear multiple times in a firing sequence, e.g., when the net has cycles,

and thus several events corresponding to the same transition are produced.

Firing sequences produce totally ordered sets of events and the concurrent

execution of transitions is represented as arbitrary interleaving. The formal

definition of a firing sequences is as follows.

Definition 3.5 (firing sequence). Let N = (N,M0), N = (P,T,F), be a

Petri net system. A sequence of transitions σ = t1 . . . tn in T , where n ∈ N0,

is a firing sequence in N iff σ is empty or it holds that M0
t1
Ð→ M1

t2
Ð→

M2 . . .
tn
Ð→Mn. In the latter case, we say that σ leads from M0 to Mn and

denote by M0[σ⟩Mn.

A marking M where there is no enabled transition is called terminal.

Definition 3.6 (terminal marking). Let N = (N,M0), N = (P,T,F), be a

Petri net system. A marking M of N is terminal iff there exist no transition

enabled at M .

A firing sequence leading from an initial to a terminal marking is called

an execution. For example, consider the net system with initial marking M0

41

in Figure 3.2, and let σ be a firing sequence consisting of the transitions:

Prepare report, Send report, Create new entry and File report. Then σ leads

from M0 to Mx, marking displayed in Figure 3.4. It is easy to check that

Mx is terminal since there is no enabled transition, and therefore σ is an

execution. This intuition is captured by the next definition.

Definition 3.7 (execution). LetN = (N,M0), N = (P,T,F), be a Petri net

system. A firing sequence σ that leads from M0 to M , where M is terminal,

is called an execution. By ∆(N), we denote the set of all executions of N .

Online Create
message

Message
created

Send
message

Message
received

Read message Available

Logout Offline

Se
nd

er
Re

ce
iv

er

p1

Prepare
report

p2

Sen
report

p5

Logout

Online

Create
message

Message
created

Send
message

Available

Logout

Drop message

b1
Prepare
report b2

Send
report

Update
entry b5

File
report b6

Create new
entry

Online Create
message

Message
created

Send
message

Message
received

Read message Available

Logout Offline

Se
nd

er
Re

ce
iv

er

Drop message

Update
entry

Create new
entry

p5

File
report

Update
entry

Create new
entry

p5

Online

Create
message

Message
created

Send
message

Message
received

Read
message Available

Logout

Offline

Drop
message Offline

Logout

Available

Online

Create
message

Message
created

Send
message

Message
received

Read
message Available

Logout

Offline

Drop
message Offline

Logout

Available

b4

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Update
documents

p3

Create new
entry

p4

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Update
documents

p3

Create new
entry

p4

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Update
documents

p3

Create new
entry

p4

p1
Prepare
report p2

Send
report

Update
entry

p5
File

report p6

Create new
entry

p4

b7 File
report

b8

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Create new
entry

p4

p5 File
report

p6p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Create new
entry

p4

p5 File
report

p6File
report

Update
entry p5

File
report p6

Create new
entry

p4

p5 File
report

p6

p1
Prepare
report p2

Send
report p4

p1
Prepare
report p2

p5 File
report

p6

Figure 3.4: Petri net system N with a terminal marking Mx

Causal semantics Another technique to describe the behavior of a Petri

net, besides sequential semantics, is via causal nets; in the literature they

are also called process nets. This type of nets defines some syntactical

restrictions, i.e., in a causal net the transitive closure of the flow relation

is a partial order (there are no cycles) and the cardinality of the pre- and

postset of every place is at most one. Then the causal semantics of a

Petri net is composed by the causal nets representing the executions of the

system.

Causal nets describe the partial order semantics of a net system. A

causal net represents two relations between the nodes: causality and con-

42

currency. Let us define first the behavioral relations before proceeding with

the formal definition of causal nets.

Definition 3.8 (causality and concurrency relation). Let N = (P,T,F) be

a Petri net and x, y ∈ P ∪ T two nodes in N . Then

• x is a cause of y, denoted x <N y, if (x, y) ∈ F+. The inverse causal

relation is denoted >N . By ≤N we denote the reflexive causal relation.

• x and y are concurrent, written as x ∥N y, if ¬(x <N y) and ¬(y <N x).

Then the causal nets are formally defined as follows.

Definition 3.9 (causal net). A causal net is a Petri net N = (P,T,F)

where:

1. ∣●p∣ ≤ 1 for any p ∈ P ,

2. ∣p●∣ ≤ 1 for any p ∈ P , and

3. ≤N is a partial order.

Figure 3.5 shows three different causal nets representing three execu-

tions of the net system in Figure 3.2. Note that Prepare report <N
′

File

report in Figure 3.5a; whereas Prepare report ∥N
′′

File report in Figure 3.5b.

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Update
documents

p3

Create new
entry

p4

Prepare
report

Send
report

Update
entry

Update
documents

Prepare
report

File
report

Prepare
report

Send
report

Create new
entry

File
report

File
report

(a) N ′

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Update
documents

p3

Create new
entry

p4

Prepare
report

Send
report

Update
entry

Update
documents

Prepare
report

File
report

Prepare
report

Send
report

Create new
entry

File
report

File
report

(b) N ′′

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Update
documents

p3

Create new
entry

p4

Prepare
report

Send
report

Update
entry

Update
documents

Prepare
report

File
report

Prepare
report

Send
report

Create new
entry

File
report

File
report

(c) N ′′′

Figure 3.5: Example of causal nets

43

Behavioral properties of Petri net systems

Petri net systems have a number of behavioral properties. We review the

reachability and coverability of markings, and safeness, liveness, and bound-

edness of the net systems. A marking M is reachable if there is a firing

sequence that leads from the initial marking M0 to M .

Definition 3.10 (reachable marking). Let N = (N,M0), N = (P,T,F),

be a Petri net system. A marking M is reachable in N iff M = M0 or

there exist a firing sequence σ that leads from M0 to M . The notation

M ′ ∈ [N,M⟩ represents that M ′ is reachable in (N,M).

A marking M is coverable if there is another reachable making associ-

ating every place with a larger (w.r.t. M) number of tokens.

Definition 3.11 (coverable marking). Let N = (N,M0), N = (P,T,F),

be a Petri net system. A marking M ∈ [N,M0⟩ is coverable if there exist

another marking M ′ ∈ [N,M0⟩ such that M ′(p) ≥M(p) for every p ∈ P .

A desirable property for many analysis applications using Petri nets is

the finiteness of the state space of makings. Such property is met if a Petri

net can contain up to a fixed n ∈ N0 number of tokens at any reachable

marking, in such case the net is said to be n-bounded.

Definition 3.12 (boundedness). Let N = (N,M0), N = (P,T,F), be a

Petri net system. A marking M ∈ [N,M0⟩ is n-bounded iff every place

p ∈ P contains up to n ∈ N0 tokens at M , i.e., M(p) ≤ n. N is n-bounded

iff all reachable markings are n-bounded.

If a net system is 1-bounded then it is called safe.

Definition 3.13 (safeness). Let N = (N,M), N = (P,T,F), be a Petri net

system. A net system N is safe if it is 1-bounded.

Intuitively, a net system is live if every transition can always occur again

from any reachable marking M .

44

Definition 3.14 (liveness). Let N = (N,M0), N = (P,T,F), be a Petri

net system. N is live iff for every reachable marking M ∈ [N,M0⟩ and for

every transition t ∈ T there exist a marking M ′ ∈ [N,M⟩ such that M ′[t⟩.
Throughout the thesis, we restrict the discussions to safe net systems.

A safe marking M of a net (P,T,F) is identified as the set of places {p ∈

P ∣ M(p) = 1}.

3.1.1 Petri net subclasses

In the existing literature different classes of Petri nets have been put for-

ward defining structural and/or semantical restrictions. Throughout the

thesis we consider four different classes of Petri nets, namely Free-choice

and Occurrence nets – which impose structural restrictions–, and (sound)

Workflow and Flow nets – which impose semantical restrictions. Each of

the considered classes of Petri nets is presented next. Some of the results

presented in this thesis are formulated for specific classes of nets, neverthe-

less, if the class of nets is not specified, then it shall be assumed that the

only imposed restriction is safeness.

Structural restrictions

Free-choice nets Free-choice Petri nets [Best 87, Dese 95] are a family

of nets with specific structural restrictions. The characteristics of this kind

of nets allow efficient verification techniques for several properties, which

are hard to check for general Petri nets. In a free-choice net whenever two

places share a transition in their postsets, then they share all transitions

in their postsets. Thus, choices are free in this net, since they are not

influenced by the rest of the system. For instance, the classic case of a

non-free choice Petri net is depicted in Figure 3.6. In this example, one can

observe that Send report and File report are not in conflict (Send report is

not enabled), unless Prepare report is fired before File report.

Formally a free-choice Petri net is defined as follows.

45

Online Create
message

Message
created

Send
message

Message
received

Read message Available

Logout Offline

Se
nd

er
Re

ce
iv

er

p1

Prepare
report

p2

Send
report

p5

File
report

Online

Create
message

Message
created

Send
message

Available

Logout

Drop message

b1
Prepare
report b2

Send
report

Update
entry b5

File
report b6

Create new
entry

Online Create
message

Message
created

Send
message

Message
received

Read message Available

Logout Offline

Se
nd

er
Re

ce
iv

er

Drop message

Update
entry

Create new
entry

p5

File
report

Update
entry

Create new
entry

p5

Online

Create
message

Message
created

Send
message

Message
received

Read
message Available

Logout

Offline

Drop
message Offline

Logout

Available

Online

Create
message

Message
created

Send
message

Message
received

Read
message Available

Logout

Offline

Drop
message Offline

Logout

Available

b4

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Update
documents

p3

Create new
entry

p4

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Update
documents

p3

Create new
entry

p4

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Update
documents

p3

Create new
entry

p4

p1
Prepare
report p2

Send
report

Update
entry

p5
File

report p6

Create new
entry

p4

b7 File
report

b8

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Create new
entry

p4

p5 File
report

p6p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Create new
entry

p4

p5 File
report

p6File
report

Update
entry p5

File
report 1 p6

Create new
entry

p4

p7 File
report 2

p8

p1
Prepare
report p2

Send
report p4

p1
Prepare
report p2

p5 File
report

p6

Figure 3.6: Non-free choice Petri net

Definition 3.15 (free-choice Petri net). A Petri net N is free-choice if for

any pair of places p1, p2 ∈ P then either p1
● ∩ p2

● = ∅ or p1
● = p2

●.

Occurrence nets Occurrence nets were introduced in [Niel 81], and they

can be seen as a generalization of causal nets where a form of (forward)

conflict is allowed. In this type of nets, places and transitions are often

referred to as conditions and events, respectively. Among of the syntactical

restrictions imposed by this type of nets is that every condition has up to

one event in its preset, but it can have any number of events in its postset.

Occurrence nets are acyclic and the transitive closure of the flow relation

is a partial order. Different from causal nets, occurrence nets define three

behavioral relations between the nodes: causality, concurrency and conflict.

Let us first present the three behavioral relations and, even though, the

definition for the causal relation is the same as the one in Definition 3.8,

we include it below for completeness.

Definition 3.16 (causality, conflict and concurrency relation). Let N =

(P,T,F) be a Petri net and x, y ∈ P ∪ T two nodes in N . Then

• x is a cause of y, denoted x <N y, if (x, y) ∈ F+. The inverse causal

relation is denoted >N . By ≤N we denote the reflexive causal relation.

• x and y are in conflict, denoted x #N y, if x, y ∈ T ∪ P are distinct

nodes and ∃t1, t2 ∈ T , such that (1) t1 ≠ t2, (2) ●t1 ∩ ●t2 ≠ ∅, and

(3) t1 ≤
N x and t2 ≤

N y.

• x and y are concurrent, denoted as x ∥N y, if ¬(x <N y), ¬(y <N x)

and ¬(x #N y).

46

Then an occurrence net can be formally defined as follows.

Definition 3.17. A net N = (P,T,F) is an occurrence net iff:

1. ∣●p∣ ≤ 1 for every condition p ∈ P

2. N is acyclic, i.e., the causal relation (≤N) is a partial order

3. The set {y ∈ P ∪ T ∣ y <N x} is finite for every x ∈ P ∪ T

4. #N is irreflexive, i.e., ¬(x#Nx) for any x ∈ P ∪ T

N

β

p1
Prepare
report p2

Send
report

Update
entry

p5
File

report p6

Create new
entry

p4

b1
Prepare
report b2

Send
report

Update
entry b5

File
report b6

Create new
entry

b4

b7 File
report

b8

p1
Prepare
report p2

Send
report

Update
entry

p5
File

report p6

Create new
entry

p4

Prepare
report

Send
report

Update
entry

File
report

Create new
entry

File
report

p1
Prepare
report p2

Send
report

Update
entry

p5
File

report p6

Create new
entry

p4

Prepare
transp. quote

Arrange
pickup appt.

Produce
ship. notice

Arrange
delivery appt.

a b

c

d

a b d

c

Figure 3.7: Occurrence net N1

The net in Figure 3.7 is an occurrence net and, for example, it is easy

to note that Prepare report <N1 Send report, and Update entry #N1 Create

new entry.

Behavioral restrictions

Workflow nets A class of Petri nets defining both semantical and struc-

tural restrictions is (sound) Workflow nets [van 97], shorthanded as WF-

nets. The imposed syntactical restrictions include the definition of a ded-

icated source and sink place, and the property that every transition is on

a path from the source to the sink place. Figure 3.8 shows a WF-net sys-

tem version of the process to file reports. In this example, p1 is the source

place and p6 is the sink place. Furthermore, it is easy to check that every

transition is on a path from p1 to p6.

The formal definition of a WF-net (system) is given below.

Definition 3.18 (WF-net, WF-net system). A Petri net N = (P,T,F) is

a workflow net, or a WF-net, iff N has a dedicated source place i ∈ P , with●i = ∅, N has a dedicated sink place o ∈ P , with o● = ∅, and the short-circuit

47

Online Create
message

Message
created

Send
message

Message
received

Read message Available

Logout Offline

Se
nd

er
Re

ce
iv

er

p1

Prepare
report

p2

Sen
report

p5

Logout

Online

Create
message

Message
created

Send
message

Available

Logout

Drop message

b1
Prepare
report b2

Send
report

Update
entry b5

File
report b6

Create new
entry

Online Create
message

Message
created

Send
message

Message
received

Read message Available

Logout Offline

Se
nd

er
Re

ce
iv

er

Drop message

Update
entry

Create new
entry

p5

File
report

Update
entry

Create new
entry

p5

Online

Create
message

Message
created

Send
message

Message
received

Read
message Available

Logout

Offline

Drop
message Offline

Logout

Available

Online

Create
message

Message
created

Send
message

Message
received

Read
message Available

Logout

Offline

Drop
message Offline

Logout

Available

b4

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Update
documents

p3

Create new
entry

p4

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Update
documents

p3

Create new
entry

p4

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Update
documents

p3

Create new
entry

p4

p1
Prepare
report p2

Send
report

Update
entry

p5
File

report p6

Create new
entry

p4

b7 File
report

b8

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Create new
entry

p4

p5 File
report

p6p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Create new
entry

p4

p5 File
report

p6File
report

Update
entry p5

File
report p6

Create new
entry

p4

p5 File
report

p6

p1
Prepare
report p2

Send
report p4

p1
Prepare
report p2

p5 File
report

p6

Figure 3.8: (sound) Workflow net system

net N∗ = (P,T ∪ {t∗}, F ∪ {(o, t∗), (t∗, i)}) of N is strongly connected, s.t.,

t∗ ∉ T . A WF-net system is a net system (N,M), where N is a WF-net

with the source place i and M = {i}.

The commonly adopted criterion of correctness for WF-net systems is

soundness [Aals 00]. It is a behavioral restriction guaranteeing that every

execution of a WF-net system ends with one token in the sink place and

no tokens elsewhere. Indeed, the WF-net system in Figure 3.8 is sound.

Below we provide the formal definition of soundness for WF-nets.

Definition 3.19 (soundness). Let N = (N,M), N = (P,T,F), be a WF-

net system. N is sound iff the net system (N∗,M), where N∗ is the

short-circuit net of N , is live and bounded.

Flow nets Another behaviorally restricted class of Petri nets is Flow

nets [Boud 90]. Transitions and places are referred to as events and con-

ditions, respectively. Flow nets are semantically acyclic, meaning that in

any firing sequence a token cannot return to a place that was previously

used as a precondition. Thus, all the transitions in a firing sequence are

distinct. Interestingly, any occurrence net is a flow net.

The places in flow nets define causal dependencies between transitions.

Intuitively, we say that a transition tj causally depends on another transi-

tion ti if there is a place p between them, and whenever both transitions

appear in a firing sequence then ti is the only transition that puts a token

in p; then p is said to be a strong postcondition of ti. In general, flow nets

48

Online Create
message

Message
created

Send
message

Message
received

Read message Available

Logout Offline

Se
nd

er
Re

ce
iv

er

p1

Prepare
report

p2

Sen
report

p5

Logout

Online

Create
message

Message
created

Send
message

Available

Logout

Drop message

b1
Prepare
report b2

Send
report

Update
entry b5

File
report b6

Create new
entry

Online Create
message

Message
created

Send
message

Message
received

Read message Available

Logout Offline

Se
nd

er
Re

ce
iv

er

Drop message

Update
entry

Create new
entry

p5

File
report

Update
entry

Create new
entry

p5

Online

Create
message

Message
created

Send
message

Message
received

Read
message Available

Logout

Offline

Drop
message Offline

Logout

Available

Online

Create
message

Message
created

Send
message

Message
received

Read
message Available

Logout

Offline

Drop
message Offline

Logout

Available

b4

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Update
documents

p3

Create new
entry

p4

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Update
documents

p3

Create new
entry

p4

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Update
documents

p3

Create new
entry

p4

p1
Prepare
report p2

Send
report

Update
entry

p5
File

report p6

Create new
entry

p4

b7 File
report

b8

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Create new
entry

p4

p5 File
report

p6p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Create new
entry

p4

p5 File
report

p6File
report

Update
entry p5

File
report p6

Create new
entry

p4

p5 File
report

p6

p1
Prepare
report p2

Send
report p4

p1
Prepare
report p2

p5 File
report

p6

(a) Non-flow net system

Online Create
message

Message
created

Send
message

Message
received

Read message Available

Logout Offline

Se
nd

er
Re

ce
iv

er

p1

Prepare
report

p2

Sen
report

p5

Logout

Online

Create
message

Message
created

Send
message

Available

Logout

Drop message

b1
Prepare
report b2

Send
report

Update
entry b5

File
report b6

Create new
entry

Online Create
message

Message
created

Send
message

Message
received

Read message Available

Logout Offline

Se
nd

er
Re

ce
iv

er

Drop message

Update
entry

Create new
entry

p5

File
report

Update
entry

Create new
entry

p5

Online

Create
message

Message
created

Send
message

Message
received

Read
message Available

Logout

Offline

Drop
message Offline

Logout

Available

Online

Create
message

Message
created

Send
message

Message
received

Read
message Available

Logout

Offline

Drop
message Offline

Logout

Available

b4

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Update
documents

p3

Create new
entry

p4

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Update
documents

p3

Create new
entry

p4

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Update
documents

p3

Create new
entry

p4

p1
Prepare
report p2

Send
report

Update
entry

p5
File

report p6

Create new
entry

p4

b7 File
report

b8

p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Create new
entry

p4

p5 File
report

p6p1
Prepare
report p2

Send
report

Update
entry p5

File
report p6

Create new
entry

p4

p5 File
report

p6File
report

Update
entry p5

File
report p6

Create new
entry

p4

p5 File
report

p6

p1
Prepare
report p2

Send
report p4

p1
Prepare
report p2

p5 File
report

p6

(b) Flow net system

Figure 3.9: Non-flow and flow net example

are not required to be safe, but it is necessary that the causal dependencies

between transitions are unambiguous.

Figure 3.9a shows an example of a Petri net that is not a flow net.

Observe that Update entry and Create new entry can occur in the same

firing sequence, and thus it is not possible to determine what event precedes

an occurrence of File report. Specifically, when p5 has two tokens, it is not

possible to determine whose token will be consumed once File report is

fired. Conversely, the Petri net displayed in Figure 3.9b is a flow net. In

this flow net, either Update entry or Create new entry puts a token in

the condition p5 in any firing sequence. Therefore, it is clear what event

precedes an occurrence of File report. Then p5 is a strong postcondition of

Update entry and Create new entry.

The formal definition of strong postcondition is presented next and

complements the informal description provided above.

Definition 3.20 (string postcondition). A place p ∈ P of a net system

N = (N,M), where N = (P,T,F), is a strong postcondition of t ∈ T if the

following holds

1. p ∈ t●, and

2. for any firing sequence σ = t1 . . . tn, such that ti = t, n ∈ N0 and

1 ≤ i ≤ n, then M(p) + ∣F ′∣ = 1, where F ′ = {(tj , p) ∈ F} for any

1 ≤ j ≤ n.

Let ψ(t, t′) denote the set of strong postconditions between a pair of

transitions t, t′ ∈ T , i.e., ψ(t, t′) ⊆ t● ∩ ●t′.
49

The formal definition of flow nets is given next.

Definition 3.21 (flow net, flow net system). A net system N = (N,M),

N = (P,T,F), is a flow net system and N is a flow net iff for every firing

sequence σ = t1 t2 . . . tn in N and for every i, j ∈ N0, s.t. 1 ≤ i < j ≤ n, it

holds that:

• p ∈ P cannot be used as a precondition more than once in a firing

sequence σ, i.e., ●ti ∩ ●tj =∅, and

• if ti
● ∩ ●tj ≠ ∅ then ∃p ∈ ti

● ∩ ●tj ∶ p ∈ ψ(ti, tj).

Flow nets are a class of nets defining a notion of configuration, which

describe the partial order semantics of a net system. A configuration can

be understood as sets of events that can occur in the same execution. In

flow nets, firing sequences and configurations are in close relation due to

the next definition.

Definition 3.22 (configuration of flow net). A configuration of a flow net

system N = (N,M), N = (P,T,F), is a subset C ⊆ T of transitions in N ,

such that there exist a firing sequence σ in N that consists of the transitions

in C, i.e.,

σ = t1 t2 . . . tn and C = {t1, t2, . . . , tn}

The set of all configurations of a flow net system N is denoted by Conf (N).

Set inclusion (⊆) defines an order over the flow net configurations. We

say that a configuration C evolves into a configuration C ′ if C ⊆ C ′. Fig-

ure 3.10 shows a flow net system and its configurations ordered by inclusion.

Furthermore, using the notion of configuration, it is possible to define

two relations between pairs of events in a flow net: flow and conflict. A

pair of events is in flow relation if they can occur in a firing sequence and

there is a strong postcondition between them. On the other hand, a pair of

events is in conflict relation if they never occur in the same configuration.

The formal definition of both relations, flow and conflict, is provided below.

50

i

a

o

b

e

d

c

i

a

b

c

i

a

b

c

c'

i

a

o

i

a

o

i

a

o

(a) Flow net system N 1

∅
{i}

{i, a}

{i, a, b}

{i, a, b, c}

{i, b}

{i, b, c′}

(b) Conf(N 1)

Figure 3.10: Flow net system and its configurations ordered by set inclusion

Definition 3.23 (conflict and flow relation). Let N = (N,M), N =

(P,T,F), be a flow net system and x, y ∈ P ∪ T be two events in N . Then

• x and y are in conflict, denoted as x#Ny, if for all configurations

C ∈ Conf (N) then {x, y} /⊆ C.

• x is a potential cause of y, denoted as x ≺N y and referred to as flow,

if ¬(x#Ny) and ψ(x, y) ≠ ∅.

Note that the presented notion of configuration for flow nets is not

applicable to any class of nets. In general, a configuration can contain

several occurrences of a single transition (e.g., in the presence of cycles) thus

it would not be a set, but a multi-set. Next we introduce the branching

process of a net system. Intuitively, it represents the unfolding of a net

system as an occurrence net that captures the partial order semantics of

the system. Furthermore, in this structure, it is possible to have a notion

of configurations as sets of events.

3.1.2 Branching process of a Petri net system

The causal semantics of a net can be described as runs or, more precisely,

prefixes of runs, by means of causal nets. Alternatively, several (possibly

all) runs can be accommodated in a single tree-like structure, called branch-

ing process [Enge 91, Niel 81]. A branching process is an occurrence net

and so describes three behavioral relations between the nodes: causality,

51

conflict and concurrency. We next provide a formal definition of branching

process and unfolding of a net system.

Definition 3.24 (unfolding, branching process). Let N = (N,M0) be a

net system and N = (P,T,F) be a net. The unfolding of N is the tuple

Unf (N) = (B,E,G, ρ), where (B,E,G) is an occurrence net generated by

the inductive rules in Figure 3.11, and a homomorphism ρ ∶ B ∪E → P ∪T ,

such that for every e1, e2 ∈ E, if ●e1 =
●e2 and ρ(e1) = ρ(e2) then e1 = e2.

We call branching process of N any prefix of the unfolding, i.e., any

tuple β = (B′,E′,G′, ρ′) such that B′ ⊆ B, E′ ⊆ E, for any e ∈ E′, ⌊e⌋ ⊆ E′
and ●e, e● ⊆ B′, and G′,ρ′ are the obvious restriction of G and ρ.

p ∈M0

b ∶= ⟨∅, p⟩ ∈ B ρ(b) ∶= p

t ∈ T X ⊆ B X2 ⊆ ∥ ρ(X) = ●t
e ∶= ⟨X, t⟩ ∈ E ●e ∶=X ρ(e) ∶= t

e = ⟨X, t⟩ ∈ E t● = {p1, . . . , pn}

bi ∶= ⟨e, pi⟩ ∈ B e● ∶= {b1, . . . , bn} ρ(bi) ∶= pi

Figure 3.11: Branching process, inductive rules

Intuitively the unfolding Unf (N) represents any possible behavior of

the net system, while a generic branching processes represents a subset of

the possible computations.

As stated in the definition of occurrence nets, an unfolding and a branch-

ing process do not contain merging conditions. As a result, some nodes in

a net system need to be represented more than once in the corresponding

branching process. Figure 3.12 shows a net system and its unfolding. The

shaded areas represent the relations in the function ρ and it is easy to note

that p5, File report and p6 are related to multiple nodes in the unfolding.

In what follows we provide some formal definitions related to branching

processes that will be used later.

Definition 3.25 (Basic notions on branching processes). Let β =

(B,E,G, ρ) be a branching process.

52

N

β

p1
Prepare
report p2

Send
report

Update
entry

p5
File

report p6

Create new
entry

p4

b1
Prepare
report b2

Send
report

Update
entry b5

File
report b6

Create new
entry

b4

b7 File
report

b8

p1
Prepare
report p2

Send
report

Update
entry

p5
File

report p6

Create new
entry

p4

Prepare
report

Send
report

Update
entry

File
report

Create new
entry

File
report

Figure 3.12: Petri net system and its unfolding

• A configuration C of β is a set of events, C ⊆ E, which is (i) causally

closed, i.e., ∀e′ ∈ E, e ∈ C ∶ e′ ≤β e⇒ e′ ∈ C, and (ii) conflict free, i.e.,

∀e, e′ ∈ C, ¬(e#β e′). We denote by Conf (β) the set of configurations

of the branching process β and by MaxConf (β) the subset of maximal

configurations w.r.t. set inclusion.

• The local configuration of an event e ∈ E is its set of causes ⌊e⌋ =

{e′ ∣ e′ ≤ e}. The set of strict causes of an event e ∈ E is ⌊e) = ⌊e⌋/{e}.

• A deterministic process π = (Bπ,Eπ,Gπ, ρ) is the net induced by a

configuration C, where Bπ = ⋃
c∈C(

●c∪ c●), Eπ = C, and Gπ = G∩ (Bπ ×

Eπ ∪Eπ ×Bπ).

For a condition b ∈ B we will write ⌊b⌋ as a shorthand for ⌊●b⌋.
The set Min(β) of minimal elements of B ∪E with respect to causal-

ity corresponds to the set of places in the initial marking of N , i.e.,

ρ(Min(β)) = M0. A co-set is a set of conditions B′ ⊆ B such that for

all b, b′ ∈ B′ it holds b ∥β b′. A cut is a maximal co-set w.r.t. set inclusion.

The target cut for a configuration C ∈ Conf (β) is defined as

Cut(C) = (Min(β) ∪ ⋃
c∈C c

●)/(⋃
c∈C

●c).

The image of Cut(C) in N , ρ(Cut(C)), is a reachable marking in N

denoted by Mark(C). Let C and C ′ be configurations of β, such that

53

C ⊂ C ′, and let π and π′ be their corresponding deterministic branching

processes. If X = C ′ ∖C, then we write π′ = π⊕X and we say that π′ is an

extension of π.

3.1.3 Configurations and families of pomsets

An alternative way to define the execution semantics of a net system is

using a notion of configurations as in the case of flow nets and branching

processes. Different from firing sequences, which describes the interleaving

semantics of a net system, configurations describe the partial order seman-

tics. A configuration C of a net system is a subset of events, occurrences

of actions, that represents a state of the system, i.e., the state in which the

events in C have occurred.

In order to have a more uniform presentation of the different formalisms

used throughout the thesis, which define a notion of configuration, we in-

troduce families of pomsets in the line of [Rens 92, Glab 96, Glab 95]; note

that in [Arma 14d] we refer to this concept as an abstract event structure.

A pomset is a tuple ⟨X,≤X , λX⟩, where X is a set of events, ≤X is a

partial order and λX is a labeling function. An isomorphism of pomsets

X and Y is an isomorphism between the underlying sets, which respects

labels and order, i.e., a bijection f ∶ X → Y such that, λX = λY ○ f , and

e <X e′⇔ f(e) <Y f(e
′) for all e, e′ ∈X.

A configuration C can be seen as a pomset, where the elements in C

are events and there is a partial order ≤C and a labeling function λC ∶ C →

Λ ∪ {τ}. Then C will used interchangeably for both the configuration and

its corresponding pomset. For a configuration C, we denote by CΛ = {e ∈

C ∣ λ(e) ≠ τ} the subset of visible events in C or the corresponding pomset,

which is called the visible pomset underlying C.

Definition 3.26 (family of pomsets). A family of pomsets is a triple

P = ⟨E,Conf (P), λ⟩ where E is a set of events, Conf (P) is a set of con-

figurations and λ ∶ E → Λ ∪ {τ} is a labelling function. Each configuration

54

consists of a set of events C ⊆ E, endowed with a partial order ≤C called

the local order of C.

The relation ≤C associated with a configuration C intuitively represents

the order in which the events in C can occur. A configuration will be often

denoted simply by C, leaving the partial order ≤C implicit.

Definition 3.27 (extension order). Let P = ⟨E,Conf (P), λ⟩ be a family of

pomsets. The set of configurations Conf (P) is endowed with the extension

order defined as C1 ⊑ C2 whenever C1 ⊆ C2, ≤C1=≤C2 ∩(C1 ×C1) and for all

e1 ∈ C1, e2 ∈ C2, if e2 ≤C2 e1 then e2 ∈ C1.

Intuitively, C1 ⊑ C2 means that the configuration C1 can evolve into

C2 by executing the events in C2 ∖ C1. In fact, C1 is required to be a

subset of C2, with events ordered exactly as in C2 and the new events

in C2 ∖ C1 cannot precede events already in C1. Moreover, we denote by

Conf (P)Λ the set of visible pomsets underlying a set of configurations of

a family of pomsets, i.e., Conf (P)Λ = {CΛ ∶ C ∈ Conf (P)}. Furthermore,

MaxConf (P) denotes the subset of maximal pomsets w.r.t. set inclusion,

and MaxConf (P)Λ the underlying visible pomsets.

Flow nets can be seen as an instance of a family of pomsets. The order

of each configuration C ∈ Conf (N), of a flow net system N = (N,M), is

given by (≺N∣C)∗. As specified above, the extension order is simply subset-

inclusion, so for C1,C2 ∈ Conf (N), we have C1 ⊑ C2, iff C1 ⊆ C2. Moreover,

in the case of flow nets, if ei ∈ C1, ej ∈ C2 and ej ≤C2 ei, then necessarily

ej ∈ C1, this property is captured in the following proposition.

Proposition 3.28. Let N = (N,M) be a flow net system and let C1,C2 ∈

Conf (N) be a pair of configurations, such that C1 ⊆ C2. Then, for any pair

of events ei ∈ C1, ej ∈ C2, if ej ≤C2 ei then necessarily ej ∈ C1.

Proof. By the definition of configurations of flow nets (Def. 3.22), there is

a firing sequence σ2 consisting of the transitions of C2 = {ei, . . . , en}, i.e.,

σ2 = ei . . . en, where n ∈ N0, such that 1 ≤ j < i ≤ n. Thus, by induction

55

on the distance from ej to ei in σ2, consider the base case when the length

0 and so ej ≺
N ei = ej+1. By the definition of flow relation (Def. 3.23),

∃p ∈ ej
● ∩ ●ei. First, note that ●ei cannot be part of the initial marking

M , i.e., ●ei ⊈ M , because the places in ●ei would be marked twice in C2,

one during the initial marking and another time after the occurrence of ej ,

and thus the places in ●ei would be used as preconditions twice in a firing

sequence. The last contradicts Definition 3.21. Then by the definition of

flow nets (Def. 3.21), let p be a strong postcondition of ej . Suppose that

ej /∈ C1, and since ●ei ⊈M , ∃e3 ∈ C1 ∶ e3
● ⊆ ●ei ∧ p ∈ ej

●∩e3
●, but as C1 ⊆ C2

then e3 ∈ C2. Although, p would not be a strong postcondition of ej and it

contradicts the assumptions. The inductive step follows accordingly.

∅ i

i a

i a

b

i a

b c

i b i b c′

Figure 3.13: Family of pomsets ordered by inclusion, i.e., pomsets of flow
net system in Fig. 3.10a.

Figure 3.13 shows an example of a family of pomsets ordered by inclu-

sion, it corresponds to the flow net system in Fig. 3.10.

Furthermore, it should be clear that a branching process β = (B,

E,G, ρ) of a net system is also an instance of a family of pomsets, where

each configuration C ∈ Conf (β) is ordered by ≤β∣C . The extension order

is simply subset-inclusion. Furthermore, by Definition 3.25, the configura-

tions of a branching process are causally closed, and thus given a pair of

configurations C1,C2 ∈ Conf (β) ∶ C1 ⊆ C2, if e1 ∈ C1, e2 ∈ C2 and e2 ≤
β∣C2

e1,

then e2 ∈ C1.

56

3.2 Event structures

Event structures (ES) are another formalism for modeling concurrent pro-

cesses. The seminal work [Wins 87, Niel 81] introduces event structures

as intermediate representations that connect Petri nets and domains. In

an event structure, computations underlying the execution of processes are

represented by means of events and behavioral relations. Events represent

occurrences of atomic actions; whereas behavioral relations, which differ in

the various types of event structures, explain how events relate each other.

Originally, two types of event structures were presented, elementary event

structures and prime event structures (PES), since then many others have

been proposed.

Elementary and prime event structures can be derived from causal and

occurrence nets, respectively, where the relations of causality and conflict

(in the case of occurrence nets) are defined. Either type of event structure

is obtained from the corresponding nets by removing the conditions and

keeping the events and the relations between them, i.e., causality in the

case of causal nets, and causality and conflict in the case of occurrence

nets. Intuitively, if a pair of events is in causal relation then the occurrence

of one requires the prior execution of the other. On the other hand, when

the occurrence of one event prevents the occurrence of another event, we

say that they are in conflict relation.

In this thesis, we consider three types of event structures, prime event

structures, asymmetric event structures (AESs) [Bald 01] and flow event

structures (FESs) [Boud 89]. On the one hand, AESs provide an asym-

metric version of conflict and, on the other hand, FESs provide a form of

disjunctive causality.

57

3.2.1 Prime event structures

Prime event structures (PESs) [Wins 87, Niel 81] represent the computa-

tions of concurrent systems by means of events and two relations, causality

and conflict. For example, Figure 3.14 represents a PES. The straight di-

rected arrows represent causality. Since causality in PESs is a transitive

relation, in pictures we only depict direct causal dependencies. The anno-

tated dotted edges represent conflict. They are undirected since conflict in

PES is symmetric. For instance, the presence of a straight directed arrow

from a to b indicates that a is a cause of b, written a ≤ b, which means that

“in any computation where b occurs, event a must have occurred before”.

Instead, events d and b, connected by a dotted arrow labelled by #, are in

conflict, written b#d, which means that “in any computation, either d or

b does not occur”.

a

e d b c2

c0 c1

#

#

#

#

#

Figure 3.14: Example of PES

We recall the formal definition of prime event structures [Niel 81] that

complements the informal description provided above.

Definition 3.29 (prime event structure). A (labelled) prime event struc-

ture (PES) is a tuple P = ⟨E,≤,#, λ⟩, where E is a set of events, ≤ and

are binary relations on E called causality and conflict, respectively, and

λ ∶ E → Λ ∪ {τ} is a labelling function, such that

• ≤ is a partial order and ⌊e⌋ = {e′ ∈ E ∣ e′ ≤ e} is finite for all e ∈ E;

• # is irreflexive, symmetric and hereditary with respect to causality,

i.e., for all e, e′, e′′ ∈ E, if e#e′ ≤ e′′ then e#e′′.
58

Henceforth, we will write e < e′ for e ≤ e′ and e ≠ e′. In order to

lighten the notation, events will be often named by the corresponding labels,

possibly with subscripts (e.g., c0, c1 and c2 are events labelled by c).

The computations in an event structure are usually described in terms

of configurations, i.e., sets of events that are closed with respect to causality

and conflict free.

Definition 3.30 (configuration of PES). Let P = ⟨E,≤,#, λ⟩ be a PES. A

configuration of PES is a set of events C ⊆ E such that

• for all e ∈ C, ⌊e⌋ ⊆ C and

• for all e, e′ ∈ C, ¬(e#e′).
The set of all configurations of a PES P is denoted by Conf (P).

PESs can be seen as instances of families of pomsets. More specifically,

given a PES P = ⟨E,≤,#, λ⟩ and its set of configurations Conf (P), the local

order of a configuration C ∈ Conf (P) is ≤C=≤∣C , i.e., the restriction of the

causality relation to C. The extension order turns out to be simply subset

inclusion. In fact, given C1 ⊆ C2 clearly ≤C1=≤ ∩(C1 ×C1) is the restriction

to C1 of ≤C2=≤ ∩(C2×C2). Moreover, if e1 ∈ C1 and e2 ∈ C2, with e2 ≤C1 e1,

then necessarily e2 ∈ C1 since configurations are causally closed.

3.2.2 Asymmetric event structures

Asymmetric event structures (AESs) [Bald 01] are another flavor of event

structures. In the case of AESs, there are two relations: causality, with

the same interpretation as in PES, and asymmetric conflict, which is a

non-symmetric version of the conflict in PES. Figure 3.15 depicts an AES.

Causal dependencies are still represented using straight directed arrows,

e.g., we have that a ≤ b. Instead, asymmetric conflict is represented by a

dotted directed arrow and the corresponding relation is denoted by ↗. For

instance, we have that b ↗ c01 which means that “the occurrence of event

59

c01 prevents b to occur afterwards”. Hence b and c01 can occur in the same

computation, but b has to precede c01 in such computations. Nevertheless,

whenever two events, such as d and b, are related by asymmetric conflict

in both directions, namely d↗ b and b↗ d, then none can occur after the

other, and thus “either event d occurs or b occurs, but not both”.

a

e d b

c0 c01

Figure 3.15: Example of AES

We start by briefly reviewing the basics of asymmetric event structures,

which, as mentioned before, generalise PESs by allowing a conflict relation

that is not required to be symmetric.

Definition 3.31 (asymmetric event structure). A (labelled) asymmetric

event structure (AES) is a tuple A = ⟨E,≤,↗, λ⟩, where E is a set of events,

≤ and ↗ are binary relations on E called causality and asymmetric conflict,

respectively, and λ ∶ E → Λ ∪ {τ} is a labelling function, such that

• ≤ is a partial order and ⌊e⌋ = {e′ ∈ E ∣ e′ ≤ e} is finite for all e ∈ E;

• ↗ satisfies, for all e, e′, e′′ ∈ E
1. if e < e′ then e↗ e′,
2. if e↗ e′ and e′ < e′′ then e↗ e′′;
3. ↗∣⌊e⌋ is acyclic;

4. if ↗∣⌊e⌋∪⌊e′⌋ is cyclic then e↗ e′.
Complementing the intuition provided above, we can say that asymmet-

ric conflict has two possible interpretations, that is e↗ e′ can be understood

as (i) the occurrence of e′ prevents e to occur afterwards or (ii) the occur-

rence of e precedes the occurrence of e′ in all computations where both

60

appear. In the first view, ↗ can be seen as an asymmetric form of conflict,

whence the name. Indeed, note that if e and e′ are related by asymmetric

conflict in both directions, i.e., e↗ e′ and e′ ↗ e, then none can occur after

the other, and thus e and e′ can never occur in the same computation as

it happens for symmetric conflict in PESs. In the second view, ↗ can be

seen as a weak form of causality since e ↗ e′ imposes an order on the oc-

currences of e and e′, but only when they appear in the same computation.

Instead, causality e < e′ imposes a stricter requirement: in any computation

in which e′ occurs then e also occurs, and the latter must occur before.

Condition (1) of Definition 3.31 is motivated by the fact that, as ob-

served in (ii), ↗ imposes weaker requirements than <, hence it is natural

to ask that ↗ includes <. In the graphical representation of an AES, the

asymmetric conflicts e↗ e′ between events that are also causally dependent

e < e′ are not represented explicitly. Condition (2) expresses inheritance

of asymmetric conflict along causality: if e ↗ e′ and e′ < e′′ then e is nec-

essarily executed before e′′ when both appear in the same computation,

hence e↗ e′′ (see Fig. 3.17a). Conditions (3) and (4) can be understood by

recalling that events forming a cycle of asymmetric conflict cannot appear

in the same computation, since each event in the cycle should occur before

itself. This leads to a notion of conflict over sets of events #X, defined by

the following rules

e0 ↗ e1 ↗ . . .↗ en ↗ e0

#{e0, . . . , en}

#(X ∪ {e}) e ≤ e′
#(X ∪ {e′})

The first rule captures the fact that events in a cycle of asymmetric conflict

cannot occur in the same computation. The second rule expresses inheri-

tance of conflict with respect to causality: if events in the set X∪{e} cannot

occur in the same computation and e ≤ e′, then also events in X ∪{e′} can-

not occur in the same computation. The reason is that the presence of e′
requires the prior occurrence of e. Figure 3.16 shows an example where

#{e1, e2, e3} by the first rule of conflict over sets and, by the second rule,

61

applied three times, we deduce #{e′1, e′2, e′3}. Note that the second rule

is essential: in fact, by Definition 3.31(2) we have that e3 ↗ e′1, e1 ↗ e′2
and e2 ↗ e′3 (as clarified later, inherited asymmetric conflicts are not rep-

resented in pictures), but events e′1, e′2, e′3 are not in a cycle of asymmetric

conflict, hence the first rule would be insufficient to prove #{e′1, e′2, e′3}.

e1 e2

e3

e′1 e′2
e′3

Figure 3.16: Inheritance of conflict along causality in AESs.

In this view, condition (3) corresponds to irreflexiveness of conflict in

PESs, and it ensures that any event is executable i.e., it appears in some

computation. Concerning condition (4), notice that whenever the union of

the causes of e and e′ includes a cycle of asymmetric conflict, according

to the rules for conflict above, we have that #{e, e′}, i.e., e and e′ are in

binary symmetric conflict. In this case, condition (4) imposes that e ↗ e′
and also e′ ↗ e, since union is symmetric and thus the role of e and e′
is interchangeable. This means that symmetric conflict is represented by

asymmetric conflict in both directions.

Conditions (2) and (4) impose a form of saturation for the asymmetric

conflict relation. Whenever e ↗ e′′ < e′ or ↗∣⌊e⌋∪⌊e′⌋ is cyclic, then it holds

that e′ cannot precede e in a computation. These conditions ask that this is

also represented syntactically with an explicit asymmetric conflict. Apart

from aesthetic motivations, the validity of these conditions will simplify the

formulation of the folding technique described in Chapter 6.

As usual, a set of events X is called consistent if its causal closure does

not include a subset of events in conflict, i.e., there is no Y ⊆ ⌊X⌋ such that

#Y .

62

e e′

e′′
(a) e↗δ e

′ and e↗ e′

e′

e e′′
(b) e′↗δ e and e#δ e

′′

Figure 3.17: Inheritance of ↗

We recall that PESs can be seen as special AESs where asymmetric

conflict is a symmetric relation. Namely, the following holds (see [Bald 01]).

Lemma 3.32 (PESs are AESs). If P = ⟨E,≤,#⟩ is a PES then A = ⟨E,≤

,↗⟩, with # =↗ is an AES. If A = ⟨E,≤,↗⟩ is an AESs with symmetric

↗, then P = ⟨E,≤,#⟩ with # =↗ is a PES.

In the following, direct relations, namely causality, asymmetric conflict

and conflicts that are not inherited, will play a special role.

Definition 3.33 (direct relations). Let A = ⟨E,≤,↗, λ⟩ be an AES and let

e, e′ ∈ E. We say that e is a direct cause of e′, denoted e<δ e
′, when e < e′

and there is no e′′ such that e < e′′ < e′. An asymmetric conflict e ↗ e′
is called direct, written e↗δ e

′ when there is no e′′ such that e ↗ e′′ < e′.
A binary conflict e#e′ is called direct, written e#δ e

′, when e↗δ e
′ and

e′↗δ e.

For instance, in Fig. 3.17a e↗δ e
′ while it is not the case that e↗δ e

′′,
since e ↗ e′ < e′′. In Fig. 3.17b we have that e′′↗δ e and e↗δ e

′′, hence

e#δ e
′′.

For the sake of readability and consistency with what we did for PESs,

in pictures, often only direct relations will be represented.

Configurations in AESs are defined, as in PESs, as causally closed and

conflict free sets of events.

Definition 3.34 (configuration of AES). A configuration of an AES A =

⟨E,≤,↗, λ⟩ is a finite set of events C ⊆ E such that i) for any e ∈ C, ⌊e⌋ ⊆ C

(causal closedness) and ii) ↗∣C is acyclic (conflict freeness).

63

The set of all configurations of A is denoted by Conf (A).

AESs can be seen as instances of families of pomsets by considering

each configuration C ∈ Conf (A) with local order (↗∣C)∗, i.e., the transitive

closure of asymmetric conflict restricted to C. Differently from what hap-

pens for PESs, the extension order is not simply set-inclusion. It is easy

to see that according to the definition showed above, for C1,C2 ∈ Conf (A),

we have C1 ⊑ C2, iff C1 ⊆ C2 and for all e ∈ C1, e
′ ∈ C2 ∖ C1, ¬(e′ ↗ e).

In words, configuration C1 cannot be extended with events which should

precede some of the events already present in C1.

A fundamental notion is that of history of an event in a configuration.

Definition 3.35 (possible histories). Let A = ⟨E,≤,↗⟩ be an AES and let

e ∈ E be an event in A. Given a configuration C ∈ Conf (A) such that e ∈ C,

the history of e ∈ C is defined as CJeK = {e′ ∈ C ∣ e′(↗∣C)∗e}. The set of

possible histories of e, denoted by hist(e), is then defined as

hist(e) = {CJeK ∣ C ∈ Conf (A) ∧ e ∈ C}

The history CJeK consists of the events which necessarily must occur

before e in the configuration C or, in other words, it is the minimal sub-

configuration of C, with respect to the extension order, which contains

event e. For PESs, each event e has a uniquely determined history, which

is the set ⌊e⌋, independently of the configuration it occurs in. Instead, in

the case of AESs, an event e may have several histories. For example, Fig-

ure 3.18 shows an AES A and its configurations ordered by extension. In

this example, it is easy to check that the event c has four different histories,

hist(c) = {{c},{d, c},{e, c},{d, e, c}}.

3.2.3 Flow event structures

Flow event structures [Boud 89] is another type of event structures. This

type of event structures has two relations, flow relation, which is represented

with a double-headed straight arrow and denoted by ≺, and conflict, with

64

d e

c

(a) A

∅
{e}

{e, c} {e, d}

{e, d, c}

{d}

{d, c}

{c}

(b) Conf(A)

Figure 3.18: AES A and its set of configurations ordered by extension

the same interpretation and representation as in PES. The flow relation is

not transitive and, intuitively, expresses the set of potential direct causes for

a given event. Then, in order for an event to occur, a maximal, conflict free

set of potential direct causes has to occur beforehand. Figure 3.19 shows

an example of a FES, where e ≺ c0, d ≺ c0 and b ≺ c0. Hence, {e, d, b} is the

set of potential direct causes for c0, whose execution must be preceded by

either {e, d} or {b}.

a

e d b c12

c0

#

#

#

#

#

#

Figure 3.19: Example of FES

We start by recalling the formal definition of (labelled) flow event struc-

tures [Boud 89].

Definition 3.36 (flow event structure). A (labelled) flow event structure

(FES) is a tuple F = ⟨E,#,≺, λ⟩ where E is a set of events, λ ∶ E → Λ∪ {τ}

is a labelling function, and

• ≺ ⊆ E ×E, the flow relation, is irreflexive.

65

• # ⊆ E ×E, the conflict relation, is a symmetric relation,

The ≺-predecessors of an event e ∈ E, are defined as ●e = {e′ ∣ e′ ≺ e}.

Similarly, for a set of events X we write ●X = ⋃
x∈X

●x.

Next, we present the formal definition of configuration of FES.

Definition 3.37 (configuration of FES). Let F = ⟨E,#,≺, λ⟩ be a FES. A

configuration of F is a finite subset C ⊆ E such that

1. ¬(e#e′) for all e, e′ ∈ C;

2. ≺∗∣C is a partial order, i.e., ≤C=≺
∗∣C ;

3. for all e ∈ C and e′ ∉ C s.t. e′ ≺ e, there exists an e′′ ∈ C such that

e′#e′′ ≺ e.

We denote by Conf (F) the set of configurations of F.

A configuration is a conflict free subset of events, where ≺∗ is acyclic,

conditions 1 and 2 in Definition 3.37. The third condition in Definition 3.37

requires that, given an event e ∈ C, for any ≺-predecessor e′ ≺ e, either e′ ∈ C
or it is excluded by the presence of e′′ ∈ C, where e′′ is in conflict with e′
and e′′ ≺ e. This means that for any e ∈ C, the configuration C must include

a maximal consistent subset of ≺-predecessors of e.

An alternative formulation of configurations of flow event structures is

done using proving sequences.

Definition 3.38 (proving sequence). A proving sequence in a FES F =

(E,#,≺) is a (finite or infinite) sequence σ = e1 . . . en . . . of distinct non-

conflicting events, s.t. ∀i∀e ∈ E ∶ e ≺ ei ⇒ (∃ j < i ∶ (e = ej ∨ e#ej)∧ ej ≺ ei).

A subset of events C ⊆ E is a configuration of a FES F = (E,#,≺), s.t.

C = {e1, . . . , en}, if and only C is conflict free and for every event ek ∈ C,

k ≤ n it holds that e1 . . . ek is a proving sequence in F, cf. [Boud 90].

FESs can be seen as another instance of families of pomsets by consid-

ering each configuration C ∈ Conf (F), of a FES F, ordered by (≺∣C)∗. As

66

for PESs, the extension order is simply subset-inclusion, namely according

to the definition above, for C1,C2 ∈ Conf (F), we have C1 ⊑ C2, iff C1 ⊆ C2.

In particular, observe that if e1 ∈ C1, e2 ∈ C2 we have that e2 ≤C2 e1, then

e2 ∈ C1, this is proved by the following proposition.

Proposition 3.39. Let F = (E,#,≺) be a FES and let C1,C2 ∈ Conf (F) be

a pair of configurations, such that C1 ⊆ C2. Then, for any e1 ∈ C1, e2 ∈ C2

if e2 ≤C2 e1, then e2 ∈ C1.

Proof. Assume by contradiction that e2 /∈ C1. Since ≤C2=≺
∗∣C2

, the proof can

proceed on induction on the length of the ≺-chain connecting e2 to e1. If

the length is 0, namely e2 ≺ e1, since e2 /∈ C1, by definition of configuration,

there must be e′1 ∈ C1 such that e′1 ≺ e1 and e′1#e2. Since e′1 ∈ C1 ⊆ C2

this means that C1 include the conflictual events e2, e
′
1, contradicting the

assumption that it is a configuration. This concludes the base case. The

inductive step is straightforward.

In FESs, the flow relation is not transitive and the conflict relation

is not inherited along causal chains as in PESs. Therefore, two events

that are not in conflict syntactically, might not appear together in any

configuration. For similar reasons, an event could be not executable at all.

More precisely, let us define the semantic conflict relation #s as e#se
′ when

for all configuration C ∈ Conf (F), it does not hold that {e, e′} ⊆ C. Then

clearly # ⊆ #s, but in general the inclusion is strict. Moreover, it could be

that e#se for an event e (hence e is never executable).

a b

c d

e

#

Figure 3.20: A FES which is neither faithful nor full.

For example, the FES in Fig. 3.20 is not faithful, i.e., despite the fact

that there is no conflict b#c, it holds b#sc, namely b and c cannot appear

67

in the same configuration. Moreover, since a is the only ≺-predecessor of

c, for any configuration C, if c ∈ C then also a ∈ C. Therefore, since a#b,

necessarily b /∈ C. Similarly, a#sd and c#sd. Additionally, observe that

any configuration containing e, according to Definition 3.37, should include

both c and d (since they are not in conflict with any other ≺-predecessor of

e). Therefore, there is no such configuration, i.e., e#se.

In line with the authors of [Boud 89], hereafter we restrict to the sub-

class of FES, where:

1. semantic conflict #s coincides with conflict # (faithfulness),

2. conflict is irreflexive (fullness), hence all events are executable,

3. ≺ and # are disjoint.

Condition 3 is not in [Boud 89]. We assume it here since it is in line with

conditions 1 and 2 and it allows us to simplify the presentation.

Note that that FESs generalise PESs. Specifically, every PES can be

seen as a special FES where the flow relation is transitive and the ≺-

predecessors of any event are conflict free.

3.3 True concurrency semantic equivalences

Several equivalence notions for concurrent systems have been presented in

the literature (see [Glab 89, Glab 90, Glab 01] for a compilation of some of

them). This thesis adopts equivalence notions on the true concurrency se-

mantics. I.e., we consider equivalence notions that distinguish arbitrary in-

terleaving from simultaneous (concurrent) execution of tasks. This section

introduces configuration equivalence, completed visible-pomset equivalence

and history preserving bisimulation equivalence. The following definitions

are formulated in terms of families of pomsets, thus the notions are appli-

cable to the different formalisms presented in this chapter.

68

3.3.1 Configuration equivalence

The first equivalence notion is configuration equivalence [Glab 95]. A pair

of families of pomsets are configuration equivalent if 1) there is a bijection

between events, and 2) they represent, essentially, the same set of configu-

rations over those events.

Observe that the bijection between the events is given and so the labels

of the events, as well as the order between them are not (explicitly) taken

into account.

Definition 3.40 (configuration equivalence ≈conf). Let P =

⟨E,Conf (P), λ⟩ and P ′ = ⟨E′,Conf (P ′), λ′⟩ be two families of pom-

sets, and let Γ ∶ E → E′ be a bijective function between the sets of events.

Let P ∶∶∼conf P
′ denote that for any configuration C in Conf (P) there is

a corresponding configuration C ′ in P ′ consisting of the images of C. I.e.,

∀C ∈ Conf (P)∃C ′ ∈ Conf (P ′) ∶ C ′ = {Γ(e) ∣ e ∈ C}.

The families of pomsets P,P ′ are configuration equivalent, denoted

P ≈conf P
′, if P ∶∶∼conf P

′ and vice-versa.

i

a

o

b

e

d

c

i

a

b

c

i

a

b

c

c

i

a

o

i

a

o

i

a

o

(a) N 2

≈conf

i

a b

e

d c

o

#

#

(b) FES F

Figure 3.21: Example of configuration-equivalent families of pomsets.

Figure 3.21 shows an example of two families of pomsets, a flow net

and a FES, which are configuration equivalent. The bijection between the

events is given by the labels.

69

3.3.2 Completed visible-pomset equivalence

Completed visible-pomset equivalence [Glab 89, Golt 94] deems as equiva-

lent a pair of families of pomsets iff they have isomorphic maximal visible-

pomsets (namely computations that cannot be further extended, because

they are either terminated or infinite). As mentioned previously, a pair of

pomsets are isomorphic if there is a bijection between the events and it

respects the order and labeling. This means that the concurrent structure

of such computations (causal dependencies and parallelism between visible

events) is exactly the same.

Definition 3.41 (completed pomset equivalence). Let P = ⟨E,Conf (P), λ⟩

and P ′ = ⟨E′,Conf (P ′), λ′⟩ be two families of pomsets. We say that two

net systems P and P ′ are completed (visible) pomset equivalent, denoted

P ≈cp P
′, whenever MaxConf (P)Λ = MaxConf (P ′)Λ.

i

a

o

b

e

d

c

i

a

b

c

i

a

b

c

c

i

a

o

i

a

o

i

a

o(a) N 3

≈cp

i

a

o

b

e

d

c

i

a

b

c

i

a

b

c

c

i

a

o

i

a

o

i

a

o

(b) N 4

∅ i

i a

i a

b

i a

b c

i b i b c

(c)

Figure 3.22: Visible pomset equivalent flow net systems (a), (b) and their
visible pomsets ordered by inclusion (c).

70

Figure 3.22 depicts a pair of completed visible pomset-equivalent net

systems along with their visible pomsets ordered by inclusion.

3.3.3 History preserving bisimilarity

History-preserving bisimilarity [Rabi 88, Glab 89, Best 91] is based on

branching time partial order semantics. Thus, it does not only look at

the behavior generated by the systems (e.g., pomsets or configurations),

but it also considers the moments of choice between alternative branches

of behavior.

Definition 3.42 (history preserving bisimilarity ≈hp). Let P =

⟨E,Conf (P), λ⟩ and P ′ = ⟨E′,Conf (P ′), λ′⟩ be two families of pomsets. A

history preserving (hp-)bisimulation is a set R of triples (C1, f,C2), where

C1 ∈ Conf (P), C2 ∈ Conf (P ′) and f ∶ C1 → C2 is an isomorphism of

configurations, such that (∅,∅,∅) ∈ R and for all (C1, f,C2) ∈ R

a) if C1
e1
Ð→ C1 ∪ {e1}, for an event e1 ∈ E, there exists e2 ∈ E′ such that

C2
e2
Ð→ C2 ∪ {e2} and (C1 ∪ {e1}, f[e1 ↦ e2],C2 ∪ {e2}) ∈ R;

b) if C2
e2
Ð→ C2 ∪ {e2}, for an event e2 ∈ E′, there exists e1 ∈ E such that

C1
e1
Ð→ C1 ∪ {e1} and (C1 ∪ {e1}, f[e1 ↦ e2],C2 ∪ {e2}) ∈ R;

When a history preserving bisimulation exists, P, P ′ are called history

preserving bisimilar, written P ≈hp P
′.

Observe that in the definition above, an event must be simulated by

an event with the same label, as it follows from the fact that for triple

(C1 ∪ {e1}, f[e1 ↦ e2],C2 ∪ {e2}) ∈ R the second component f[e1 ↦ e2] is

an isomorphism of configurations (thus it preserves labels). An example of

a pair of history-preserving bisimilar AESs is depicted in Figure 3.23.

71

i1

a1 b1 o′1
o1 o′′1 o′′′1

(a) A1

≈hp

i2

a2 b2

o2

(b) A2

Figure 3.23: History preserving bisimilar AESs

72

Chapter 4

Behavioral profiles for

process model comparison

Process
models

Behavioral
comparison Diagnostics

Petri
nets

Event
structures

Behavioral
equivalences

Unlabeled
WF-flow

nets

Behavioral
profiles Comparison Diagnostics

Co
nf

ig
ur

at
io

n
eq

ui
va

le
nc

e

Behavioral
profiles Comparison Diagnostics

Configuration
equivalence WF-flow

nets

Unlabeled

Labeled

Process
models

Behavioral
comparison Diagnostics

Petri
nets

Event
structures

Behavioral
equivalences

Petri
nets

Prefix
unfolding

Prime
Event

Structures

Partial
Synchronized

Product

Vi
sib

le
 p

om
se

t
eq

ui
va

le
nc

e

Detection of
differences

Verbalization
of differences

Canonical

Petri
nets

Prefix
unfolding

Asymmetric
Event

Structures Partial
Synchronized

Product

Vi
sib

le
 p

om
se

t
eq

ui
va

le
nc

e

Detection of
differences

Folding of
event

structuresFlow
Event

Structures

Verbalization
of differences

Petri
nets

Event
structures

Behavioral
equivalences

This chapter analyses the expressive power of Behavioral Profiles (BP),

which have been proposed as a behavioral abstraction of business process

models. Section 4.1 introduces behavioral profiles. Section 4.2 shows that

FESs can be behavioral profiles for a class of nets. An execution semantics

for an existing type of behavioral profiles, BP ∣w, is proposed in Section 4.3,

and the interpretation of its relations is discussed in Section 4.4. Next,

Section 4.5 shows that existing behavioral profiles cannot ensure a well-

known notion of equivalence for nets with silent transitions. Final remarks

and discussions are presented in Section 4.6.

73

4.1 Behavioral profiles (BP)

Behavioral profiles [Weid 11b] have been proposed as an abstract repre-

sentation of process models’ behavior. The behavioral profile of a process

model can be seen as a complete graph over the set of tasks of the model,

where edges are annotated by types of behavioral relations. Alternatively,

a behavioral profile is a matrix where rows and columns represent tasks

and each cell is labeled by a behavioral relation between a pair of tasks. In

this section we assume that the tasks (transitions in the nets) have distinct

labels and say that the size of the behavioral profile is O(∣Λ∣2).

i

a

b

e o

d

i

a

b

o
τ1

c

τ2

i

a

b

o

τ1

τ3

τ2

i a o

τ1 τ2

b

i

a

o

τ3

τ1

b

τ2

τ0

i

a1

an

o

τ1

τn

a2

τ2...

a

c

b

d

a

c

b

dp
0

p
1

t0
p
2

p
3

p
4

p
5

t1

t3

t4

t5
a

c

b

d

a

c

b

d

ee

e e t2

i

a

b

e

o

d

c

c o

i

a1

a2 o

τ0
τ1

τnan

τ2

...
i

a1

a2 o

τn+1
τ1

τnan

τ2

...

...

...

...

...

τ

(a) N 5

a b c d e

a + ↦ ↦ ↦ ↦
b ←[+ 9 ↦ +
c ←[9 + ↦ 9

d ←[←[←[+ ← [

e ←[+ 9 ↦ +
(b) BP ∣w

Figure 4.1: Net system and its behavioral profile BP ∣w

Figure 4.1 shows a net system and alongside its behavioral profile com-

puted with the relations from [Weid 11b], referred to as classic behavioral

profile and denoted as BP ∣w. In the matrix representation, the strict or-

der relation (↦) denotes causal precedence between a pair of tasks in all

the computations of the model. Exclusive order relation (+) denotes that

a pair of tasks never occurs in the same computation. Finally, interleav-

ing (9) represents the absence of order in the execution of a pair of tasks.

Since the introduction of classic behavioral profiles many other families

of relations have been proposed for creating O(∣Λ∣2) behavioral represen-

tations of process models; causal behavioral profiles [Weid 11c] and 4C

spectrum [Poly 14] are cases in point.

74

Classic behavioral profiles count with several properties appealing for

the behavioral comparison of process models. For instance, they can be

efficiently computed [Weid 11a], they have been used to define a behavior

similarity metric between process models [Kunz 11], and their comparison

can generate feedback in the form of mismatching pairs of behavioral rela-

tions. By the same token, if the behavioral relations used in this formalism

represent constructs in the modeling language – such as ↦, + and 9– then

the generated feedback can be easily interpretable.

Since the introduction of the behavioral profiles [Weid 11b], the authors

acknowledged that this representation does not correspond to any of the

well-known notions of behavioral equivalence insofar as two behaviorally

different models (e.g., by trace equivalence) may have the same matrix

representation. Other families of relations that follow the same idea of

behavioral profiles suffer from the same issue, e.g., causal behavioral profile

and 4C spectrum. Furthermore, the lack of execution semantics of these

representations hinders the analysis of their expressive power. Specifically,

it is not clear what is the behavior captured or lost in a behavioral profile.

Thus, it is still an open question how accurate behavioral profiles are, and

if it is possible to characterize a substantial family of Petri nets for which

a notion of equivalence can be ensured.

Figure 4.2: WF-flow nets

This chapter defines an execution semantics for behavioral profiles, con-

cretely for BP ∣w. The execution semantics is defined as a mapping from

BP ∣w to FES. Then, it is shown that BP ∣w can ensure a well known-notion

75

of equivalence in true concurrency semantics, i.e., configuration equivalence,

for a family of nets without silent transitions. The discussions throughout

this chapter consider Petri nets in the intersection of two families, sound

WF-nets and flow nets, shorthanded as WF-flow nets and denoted by η,

Figure 4.2.

WF-flow nets impose structural and behavioral restrictions, on the one

hand, a WF-flow net is acyclic and has a dedicated source place ●i = ∅ and a

dedicated sink place o● = ∅. On the other hand, a WF-flow net system 1) is

sound –and so every execution ends with one token in the sink place and

no tokens elsewhere–; 2) has an initial marking M = {i}; and 3) for every

firing sequence σ, a place can be in the preset of at most one transition of

σ, and if two transitions in σ have a place between them then there is a

strong postcondition between them. These restrictions are in line with the

definitions of (sound) WF-net system and flow net system (Def. 3.21 and

3.18).

Generalized behavioral profiles

Behavioral profiles can be seen as a framework that is concretely defined

according to a set of behavioral relations. Roughly speaking, a behavioral

profile BP ∣R of a process model is a complete graph over the set of tasks,

which uses a set of relations R as edge labels. This general notion of behav-

ioral profiles results useful for uniformly analyze the different formalisms

considered in this section. We denote the behavioral profile over R of a net

system N as BP ∣R(N)

We say that a behavioral profile is behavior preserving for a class of nets

N, if any pair of behavior-equivalent (under certain notion of equivalence)

net systems with nets in N, have isomorphic behavioral profiles (denoted by

≡iso) and vice-versa. This intuition is captured by the following definition.

Definition 4.1 (behavior-preserving BP ∣R). Let N be a class of nets and

≈ be an equivalence relation on N. A behavioral profile BP ∣R is behavior-

76

preserving on N, if for any N,N ′ ∈N with net systems N = (N,M0), N
′ =

(N ′,M ′
0) and behavioral profiles BP ∣R(N) and BP ∣R(N ′), respectively,

the following holds:

N ≈ N ′⇔ BP ∣R(N) ≡iso BP ∣R(N ′).

4.2 FES as BP

Boudol shows that FES corresponds to the family of flow nets [Boud 90],

i.e., it is always possible to compute a FES for a given flow net system,

where the configurations of the FES are firing sequences in the system.

Interestingly, it is possible to establish a bijection between the transitions

and the events in the corresponding FES representation for a sound WF-

flow net.1 Figure 4.3 shows a flow net system and the corresponding FES

aside. Note that for every transition in the net there is an event in the

event structure with the same label, and the relations of flow and conflict

are those of Definition 3.23. Intuitively, a pair of events are in flow relation

if there is a strong postcondition between them in the net; whereas they

are in conflict relation if they never occur in the same firing sequence.

i

a

b

o

c

d

i

a

b

o

c

d

i

a

b

o

c

d

(a) N 6

i

a b

d c

o

#

(b) FES of N 6

Figure 4.3: Flow net system and its corresponding FES

1Additional self-conflicting events can be required in a FES when, in the context of
WF-nets, a net system does not meet the property of liveness.

77

The next definition suggests how to construct a FES from sound WF-

flow nets and so self-conflicting events are omitted. Additionally, given that

there is a bijection between the transitions in the net and the events in the

FES, we use T to represent both, events and transitions, indistinctively.

Definition 4.2 (FES of a flow net). Let N = (N,M), N = (P,T,F) ∈ η, be

a WF-flow net system. The FES of N is the tuple F = ⟨T,#N ,≺N ⟩, where

#N and ≺N are those defined in Definition 3.23.

The following proposition restates the results proved in [Boud 90] for

flow nets.

Proposition 4.3 (Proposition 3.4 in [Boud 90]). Let N = (N,M0) be a

WF-flow net system, with a net N = (P,T,F) ∈ η, and let F be its cor-

responding FES, then Conf (N) = Conf (F). More precisely, a sequence

t1 . . . tn is firable in N if and only if it is a proving sequence in F.

A result from Proposition 4.3, captured in the following Corollary, is

that a pair of configuration equivalent WF-flow nets have, similarly, con-

figuration equivalent FESs.

Corollary 4.4. Let N,N ′ be nets in η. Moreover, let F and F′ be the FESs

of N and N ′, respectively. Then, the following holds:

N ≈conf N
′⇔ F ≈conf F′

FESs define a type of behavioral profiles, denoted by BP ∣fes, where the

events are the tasks of the behavioral profile, and the flow and conflict are

the relations thereof. Additionally, the notions of configuration and exten-

sion of FES gives an execution semantics to this type of behavioral profiles,

such that any conclusion (w.r.t. behavior) derived from BP ∣fes holds in the

corresponding WF-flow nets system, and vice-versa. The BP ∣fes represent-

ing the FES in Figure 4.3b is shown in Figure 4.4 and, by completeness, it

contains the inverse flow relations (≺−1).

78

i a b c d o

i ≺ ≺
a ≺−1 # ≺ ≺
b ≺−1 # ≺ ≺
c ≺−1 ≺−1 ≺
d ≺−1 ≺−1 ≺
o ≺−1 ≺−1

Figure 4.4: BP ∣fes(N 6)

In FESs, the flow relation is defined with respect to the strong post-

conditions between pairs of transitions. The following corollary shows that

all the places, with exception of the source and sink places, in a WF-flow

net are indeed strong postconditions. This technical result is used later to

show that BP ∣fes are not behavior preserving.

Corollary 4.5. Let N = (N,M0) be a net system, with a WF-flow net

N = (P,T,F) ∈ η, and t, t′ ∈ T be a pair of transitions, such that t●∩ ●t′ ≠ ∅.

Then, any place p ∈ t● ∩ ●t′ is a strong postcondition, i.e., p ∈ ψ(t, t′).

Proof. Let σ = t1 t2 . . . tn ∈ ∆(N), for a n ∈ N0, be an execution of N ,

such that ti = t and tl = t
′ and 1 ≤ i, l ≤ n. In this case, it is shown that

the property holds for an execution σ, but then it also holds for any firing

sequence, which elements are part of σ. Observe that p is neither the source

nor the sink place since ●p ≠ ∅ ≠ p● and that, by the properties of soundness

of WF-nets, M0[σ⟩Mn and Mn = {o}, where o is the sink place.

Suppose that p is not a strong postcondition of t, i.e., p ∉ ψ(t, t′). The

only chance p is not a strong postcondition is that M0(p) + ∣F ′∣ > 1, where

F ′ = {(tj , p) ∈ F} for 1 ≤ j ≤ n. M0(p) is clearly 0 since p is not the source

place, but then there is a tk ≠ t in σ, for a 1 ≤ k ≤ n, such that (tk, p) ∈ F .

Then p was marked, at least, twice while firing σ, by tk and t, but since

the net is 1-safe, then a token was consumed before the other was set. By

Definition 3.21, p is in the preset of at most one transition of σ and so tl

consumes a token from p, but then it remains with at least 1 token at Mn,

i.e., p ∈Mn. Nevertheless, it violates the property of sound WF-nets, since

79

Mn = {o} and p ≠ o. Thus p ∈ t● ∩ ●t′ is necessarily a strong postcondition

of t, as required.

As a result of the corollary above, the behavioral profiles BP ∣fes are

not behavior preserving. I.e., a net system with implicit places would de-

fine “unnecessary” flow relations between the events in the corresponding

FES. For instance, consider the WF-flow net systems and their FESs in Fig-

ure 4.5. The WF-flow net system in Figure 4.5b has an additional place that

leads to the flow relation between the events i and o in the corresponding

FES. Nevertheless, even though the resulting FESs are not isomorphic, they

represent the same set of configurations, namely {∅,{i},{i, a},{i, a, o}}.
i

a

o

b

e

d

c

i

a

b

c

i

a

b

c

c

i

a

o

i

a

o

i

a

o

i

a

o

(a) WF-flow net system
and its corresponding FES

i

a

o

b

e

d

c

i

a

b

c

i

a

b

c

c

i

a

o

i

a

o

i

a

o

i

a

o

(b) WF-flow net system with an implicit
place and the corresponding FES

Figure 4.5: Equivalent WF-flow nets without (4.5a) and with (4.5b) an
implicit place and their corresponding FESs aside.

4.3 An execution semantics for BP ∣w
As mentioned in Section 4.1, classic behavioral profiles [Weid 11b] lacks of

an execution semantics, which hinders on a behavioral evaluation of this

formalism. For example, it is not possible trace back the computations

of the system that lead to a given BP ∣w, or to identify the computations

captured in this formalism. This section presents a transformation from

BP ∣w to BP ∣fes and shows that it is behavior preserving for WF-flow nets

80

without silent transitions. First, let us define the behavior relations used

in BP ∣w, along with its computation.

Definition 4.6 (BP ∣w). Let N = (N,M) be a net system, with N =

(P,T,F). A pair of transitions t, t′ ∈ T is in one of the following relations:

• Strict order relation, denoted by t ↦ t′, if for every firing sequence

σ ∈ ∆(N), with σ = t1 t2 . . . tn such that ti = t and tj = t
′, it holds

1 ≤ i < j ≤ n.

• Exclusive order relation, denoted by t+ t′, if for every firing sequence

σ ∈ ∆(N) ∶ σ = t1 t2 . . . tn there are no ti, tj , where 1 ≤ i, j ≤ n, s.t.

i ≠ j, ti = t and tj = t
′.

• Interleaving relation, denoted by t 9 t′, if ¬(t ↦ t′), ¬(t′ ↦ t) and

¬(t + t′).
For technical reasons, we also define the direct strict order. Transitions t

and t′ are in direct strict order, denoted by t↠ t′, iff

ti ↦ tj ∧ ti
● ∩ ●tj ≠ ∅

The set BP ∣w(N) = {↦,+,9} is the classic behavioral profile of N .

i

a

b

o

c

d

i

a

b

o

c

d

i

a

b

o

c

d

(a) N 7

i a b c d o

i + ↠ ↠ ↦ ↦ ↦
a ↞ + 9 ↠ ↠ ↦
b ↞ 9 + ↠ ↠ ↦
c ←[↞ ↞ + + ↠
d ←[↞ ↞ + + ↠
o ←[← [← [↞ ↞ +

(b) BP ∣w

i a b c d o

i ≺ ≺
a ≺−1 ≺ ≺
b ≺−1 ≺ ≺
c ≺−1 ≺−1 # ≺
d ≺−1 ≺−1 # ≺
o ≺−1 ≺−1

(c) BP ∣fes

Figure 4.6: Net system N 7 and its behavioral profiles BP ∣w and BP ∣fes

For the sake of clarity, in the matrix representation of BP ∣w the direct

strict order is explicitly represented, but it should be clear that ↠ implies

81

↦. Figure 4.6 shows a WF-flow net system, its BP ∣w and its BP ∣fes. Note

that with the definition of ↠ in BP ∣w, both behavioral profiles are very

alike. In particular, direct strict order ↠ and exclusive order + (without

the self-exclusive relations) in BP ∣w correspond to flow ≺ and conflict #

in BP ∣fes. Such correspondence defines the proposed transformation from

BP ∣w to BP ∣fes and provides the former with the execution semantics of

the latter. This transformation is a good basis to analyze the behavior

represented (or lost) in a BP ∣w.

The transformation from BP ∣w to BP ∣fes is formally defined as follows.

Definition 4.7 (BP ∣fesw). Let BP ∣w(N) = {↦,+,9} be the classic behav-

ioral profile of a net system N = (N,M), with N = (P,T,F) ∈ η. Let +′ =
+/{(t, t) ∣ t ∈ T} be the exclusive order relation without the self-exclusive

relations. The BP ∣fes of BP ∣w(N) is defined as BP ∣fesw (N) = {↠,+′}.

The reminder of this section considers unlabeled WF-flow nets denoted

by ηλ. The case for labeled nets is presented in Section 4.5. The following

proposition shows that the BP ∣fesw (N) derived from BP ∣w(N) is isomor-

phic to BP ∣fes(N), i.e., BP ∣fesw (N) represents the same configurations as

BP ∣fes(N).

Proposition 4.8. Let N = (N,M) be a net system, where N = (P,T,F) ∈

ηλ is an unlabeled WF-flow net. Then BP ∣fesw (N) = {↠,+′} is isomorphic

to BP ∣fes(N) = {≺,#}. Specifically, for any two transitions x, y ∈ T 1) x+′
y ⇔ x#y, and 2) x↠ y ⇔ x ≺ y.

Proof. Given that the nets are unlabeled, then for any transition in T

there is a task in BP ∣fes and in BP ∣w (and so in BP ∣fesw). Therefore, let

us consider the same set of elements T throughout the different structures.

1. x +′ y ⇔ x#y. It is easy to check that the definition of exclu-

sive ordering relation (+′) in BP ∣w and conflict (#) in BP ∣fes is the

same. Then the conflict in the FES coincides with the exclusive order

relation in BP ∣w.

82

2. x↠ y ⇔ x ≺ y. (⇒) Consider a pair of transitions x, y ∈ T ∶ x↠ y.

By Definition 4.6, ∃σ = t1 t2 . . . , tn ∶ x = ti, y = tj ∧ i < j. Additionally,

since the causal relation is direct, then there is at least a place p ∈

x● ∩ ●y. Thus, by Definition 3.23, x ≺ y in BP ∣fes(N).

(⇐) Suppose x ≺ y in BP ∣fes(N), but ¬(x ↠ y) in BP ∣fesw (N).

First, by Definition 3.23, since x ≺ y then ∃p ∈ ψ(x, y) and ¬(x#y).

Furthermore, since p is a strong postcondition of x, there is a firing

sequence σ = t1 t2 . . . , tn such that x = ti, y = tj , where 1 ≤ i < j ≤ n.

The only case where ¬(x↦ y) can hold is if there is another execution

σ′ ∈ ∆(N), s.t., σ′ = t′1, t′2, . . . , t′n and t′k = x, t′l = y ∶ 1 ≤ l < k ≤ n,

and thus x 9 y in BP ∣w(N). Observe that since p ∈ ψ(x, y) then

p ∈ ●t′l. Although, the last would imply that M(p) + ∣F ′∣ > 1, where

F ′ = {(tj , p) ∈ F} for any 1 ≤ j ≤ n, in σ′. Specifically, p has a token

prior the firing of t′l and after the firing of t′k. The last contradicts

the fact that p is a strong postcondition (Def. 3.20(2)). Thus, if x ≺ y

then x↠ y.

i

a

b

o

c

d

i

a

b

o

c

d

i

a

b

o

c

d

(a) N 8

i a b c d o

i + ↠ ↠ ↠ ↠ ↠
a ↞ + 9 ↠ ↠ ↠
b ↞ 9 + ↠ ↠ ↠
c ↞ ↞ ↞ + + ↠
d ↞ ↞ ↞ + + ↠
o ↞ ↞ ↞ ↞ ↞ +

(b) BP ∣w

i a b c d o

i ≺ ≺ ≺ ≺ ≺
a ≺−1 ≺ ≺ ≺
b ≺−1 ≺ ≺ ≺
c ≺−1 ≺−1 ≺−1 # ≺
d ≺−1 ≺−1 ≺−1 # ≺
o ≺−1 ≺−1 ≺−1 ≺−1 ≺−1

(c) BP ∣fes

Figure 4.7: Net system N 8 and its behavioral profiles BP ∣w and BP ∣fes

83

Figure 4.7 shows another WF-flow net system and its corresponding

behavioral profiles. The net systems N 8 and N 7 (Fig. 4.6) are configura-

tion equivalent, but have non-isomorphic BP ∣fes due to the flow relations

derived from the additional places in N 8. Interestingly, the BP ∣w of both

net systems are isomorphic, and the difference in the set of flow relations

≺ is blurred by the definition of the strict order ↦ in BP ∣w.

Armed with the results above, the next proposition shows that BP ∣w is

behavior preserving for the ηλ.

Theorem 4.9. Let N = (P,T,F) and N ′ = (P ′, T ′, F ′) be WF-flow nets

in ηλ, and let Γ ∶ T → T ′ be a bijection between the transitions. Let N =

(N,M0) and N ′ = (N ′,M ′
0) be the net systems and M0 and M ′

0 be the

corresponding initial markings. Thus the following holds:

BP ∣w(N) ≡iso BP ∣w(N
′)⇔ N ≈conf N

′.
Proof. (⇒) Firstly, let us show that if BP ∣w(N) ≡iso BP ∣w(N

′) then

N ≈conf N
′.

Suppose that BP ∣w(N) ≡iso BP ∣w(N
′), but ¬(N ≈conf N

′). By Corol-

lary 4.4, we have ¬(BP ∣fesw (N) ≈conf BP ∣fesw (N ′)) since ¬(N ≈conf N
′).

Assume a configuration C ⊆ T in BP ∣fesw (N) and its mapping C ′ =
{Γ(t′) ∣ t′ ∈ C} in N ′, such that C ′ is not a configuration in BP ∣fesw (N ′).
By Definition 3.37, the configuration C (i) is conflict free, (ii) for all e′′ ∈ C
and e ∉ C, s.t., e ≺ e′′ there exist an e′ ∈ C s.t. e#e′ ≺ e′′, and (iii) has no

flow cycles. Then consider the following cases:

(i) Conflict freeness. Since C is a configuration in BP ∣fesw (N), then

for any e, e′ ∈ C it holds ¬(e#e′) and, in consequence, ¬(e +

e′) in BP ∣w(N) by Proposition 4.8(1). Then, by the assumption on

the isomorphism of the BP ∣w’s, ∃e1, e
′
1 ∈ C

′ ∶ Γ(e) = e1 ∧ Γ(e′) = e′1,

such that ¬(e1 + e
′
1) and thus ¬(e1#e′1). So, C ′ is also conflict free iff

C is conflict free.

(ii) For any e′′1 ∈ C ′ and e1 ∉ C ′, s.t., e1 ≺ e′′1 , there exist an e′1 ∈ C ′ ∶
e1#e′1 ≺ e′′1 . Suppose that there is an event e1 ∉ C ′, such that ∃e′′1 ∈

C ′ ∶ e1 ≺ e
′′
1 and ∀e′1 ∈ C ′ ∶ ¬(e1#e′1). Given that e1 ≺ e

′′
1 , then e1 ↦ e′′1

84

(more specifically, e1 ↠ e′′1), and since ¬(e1#e′1) then ¬(e1 + e
′
1) for

any e′1 ∈ C ′, by Proposition 4.8. Hence, by the isomorphism of BPw’s,

∃e ∉ C, e′′ ∈ C ∶ Γ(e) = e1 ∧ Γ(e′′) = e′′1 ∧ e ↦ e′′ and for any e′ ∈ C
it holds ¬(e + e′). However, the last contradicts the fact that C is a

configuration in BP ∣fesw (N), because e would necessarily be in C and

thus e1 ∈ C
′. Hence, condition 2 also holds for C ′.

(iii) Free of flow cycles. The only case remaining, so that C ′ is not a

configuration in BP ∣fesw (N ′), is when C ′ contains cycles, i.e., ≺∗C′ is

not a partial order. This case simply cannot happen because WF-

flow nets are acyclic and any firing sequence contains at most one

occurrence of each activity.

Therefore, if C is a configuration in BP ∣fesw (N), then C ′ must also be a

configuration in BP ∣fesw (N ′). The reverse case follows analogously.

(⇐) The opposite case, N ≈conf N
′ ⇒ BP ∣w(N) ≡iso BP ∣w(N

′), holds

directly from the construction of the BP ∣w (Def. 4.6).

Finally, the next Corollary states the fact that BP ∣w is behavior-

preserving for the class of nets ηλ.

Corollary 4.10. The behavioral profiles BP ∣w is behavior-preserving for

the class ηλ, w.r.t. configurations equivalence ≈conf .

The presented results also holds for the different extensions of the classic

behavioral profiles that have strict and exclusive order relations, e.g., causal

behavioral profile [Weid 11c] and behavioral profiles based on the relations

of the 4C spectrum [Poly 14].

4.4 Expressing differences using BP ∣w
A key consideration to use behavioral profiles for process model comparison

is the clear interpretation of the relations. They can express patterns of

behavior, such as strict order, exclusive order and interleaving in the case

of BP ∣w. For example, if a pair of tasks are in strict order relation in

one model and exclusive order in another, then it is clear that in the first

85

process the tasks can occur in the same computation and the occurrence of

one follows the occurrence of the other; whereas they never occur together

in the second process.

i

a

o

b

e

d

c

i

a

b

c

i

a

b

c

c

i

a

o

i

a

o

i

a

o

(a) N 9

a b c d e i o

a 9 9 ↠ ↠ ↞ ↦
b 9 ↠ 9 + ↞ ↦
c 9 ↞ 9 ↞ ← [↠
d ↞ 9 9 + ←[↠
e ↞ + ↠ + ↞ ↠
i ↠ ↠ ↦ ↦ ↠ ↦
o ← [←[↞ ↞ ↞ ←[

(b) BP ∣w

Figure 4.8: Net system N 9 and its behavioral profile BP ∣w

Even though BP ∣w was shown to be behavior preserving for WF-flow

nets without silent transitions, the interpretation of its relations can still

be ambiguous and produce misleading diagnostics. Consider the WF-flow

net system in Figure 4.8 and its behavioral profile BP ∣w aside. Let us draw

you attention to transitions a and c, for which BP ∣w asserts an interleaving

relation. However, in all the configurations where e occurs it is always the

case that a precedes c. It is only in the set of configurations where e does

not occur where a and c occur in any order. The fact is that these subtle

kind of differences requires a diagnostic with contextual information1.

i

a

b

e o

d

i

a

b

o
τ1

c

τ2

i

a

b

o

τ1

τ2

τ3

i a o

τ1 τ2

b

i

a

o

τ1

τ4

b

τ3

τ2

i

a1

an

o

τ1

τn

a2

τ2...

a

c

b

d

a

c

b

d
p0

p1

t0

p2

p3

p4

p5

t1

t3

t4

t5

a

c

b

d

a

c

b

d

ee

e
e

t2

i

a

b

e

o

d

c

c o

i

a1

a2 o

τ0
τ1

τn
an

τ2

...
i

a1

a2 o

τ0
τ1

τn
an

τ2

...

...

...
...

...

Figure 4.9: Branching process of net system N 9 (Fig. 4.8a)

1It should be clear that it is possible to derive such sets of configurations from the
BP ∣

fes
w .

86

A solution to disambiguate the situation presented in Figure 4.8 is given

by the branching processes, which reason not in terms of actions, but in

terms of instances of actions. In a branching process, it is possible to define

a single relation (causality, conflict or concurrency) between every pair of

nodes. For instance, the branching process of the net system N 9 (Fig. 4.8)

is displayed in Figure 4.9, and it contains two instances of c, one which

is preceded by a and one concurrent with a. The price to pay is that a

branching process can contain several instances of a single activity, and the

O(∣Λ∣2) size of the representation is no longer guaranteed.

Another approach to tackle the ambiguity of the BP ∣w is to use a larger

set of behavioral relations. For instance, the 4C spectrum [Poly 14] defines

a repertoire of eighteen basic behavioral relations that capture such be-

havioral phenomena as co-occurrence, conflict, causality, and concurrency.

One can employ the relations of the 4C spectrum to construct a behavioral

profile (guaranteeing a O(∣Λ∣2) size of the representation). Note that due

to the nature of the 4C spectrum, a pair of tasks can be associated with

several behavioral relations. Even though this approach solves the prob-

lem of the ambiguity for the family of unlabeled net systems, it falls short

when trying to generalize the solution to the case of net systems with silent

transitions (as discussed in the next section).

4.5 BP and silent transitions

This section extends the analysis of the behavioral profiles to labeled WF-

flow nets, i.e., nets containing silent transitions. It is shown that for this

class of nets neither the notion of classic behavioral profiles nor its exten-

sions, including those based on the relations of the 4C spectrum, provide

behavior-preserving representations of process models.

Proponents of classic behavioral profiles search for providing a represen-

tation that only considers the observable behavior. When it comes to repre-

87

senting labeled net systems, the common approach is to omit the columns

and rows in the matrix that would be associated with silent transitions.

This decision, however, comes with a loss of accuracy of the representa-

tion. E.g., consider the net system N 10 in Fig. 4.10a. Its classic behavioral

profile is isomorphic to the one of N 5, cf. Fig. 4.1. However, N 10 has two

additional configurations: {a, b, d} and {a, e, d}, w.r.t. N 5.
i

a

b

e o

d

i

a

b

o
τ1

c

τ2

i

a

b

o

τ1

τ3

τ2

i a o

τ1 τ2

b

i

a

o

τ3

τ1

b

τ2

τ0

i

a1

an

o

τ1

τn

a2

τ2...

a

c

b

d

a

c

b

dp
0

p
1

t0
p
2

p
3

p
4

p
5

t1

t3

t4

t5
a

c

b

d

a

c

b

d

ee

e e t2

i

a

b

e

o

d

c

c o

i

a1

a2 o

τ0
τ1

τnan

τ2

...
i

a1

a2 o

τn+1
τ1

τnan

τ2

...

...

...

...

...

τ

(a) Net system N 10

a b c d τ e

a ≺ ≺ ≺ ≺
b ≺−1 ≺ #

c ≺−1 ≺ #

d ≺−1 ≺−1 ≺−1 ≺−1

τ ≺−1 # ≺
e ≺−1 # ≺

(b) BP ∣fes(N 10)

Figure 4.10: WF-flow net system and its BP ∣fes

In order to preserve behavior, as for the case of unlabeled WF-flow nets,

one possibility is to explicitly represent silent transitions in the matrix, as

illustrated in Fig. 4.10b. It is easy to see that, using this approach, the

behavior of N 5 and N 10 would be represented with two non-isomorphic

matrices. However, this approach does not provide a complete solution

since multiple net systems may exist with different numbers of silent tran-

sitions exhibiting the same observable behavior.

The use of a larger number of behavior relations can be seen as a way

to tackle the above problem. For instance, both causal behavioral pro-

files and behavioral profiles based on the relations of 4C spectrum provide

non-isomorphic representations for N 5 and N 10. However, none of them

provides representations that distinguish the WF-flow net systems N 11 and

N 12 in Fig. 4.11 w.r.t. configuration or trace equivalence.

4C spectrum provides a vast family of behavioral relations. Al-

though, the set of common configurations between N 11 and N 12, namely

88

{{i, a, o},{i, b, o},{i, a, b, o}}, gives rise to the same representation based on

the relations of the 4C spectrum. Observe that there is only one configura-

tion that distinguishes both systems: {i, o}. Then an interesting question

is how accurate are the 4C spectrum relations and if it is worth to sacrifice

some accuracy while preserving the O(∣Λ∣2) representation.

i

a

b

e o

d

i

a

b

o
τ1

c

τ2

i

a

b

o

τ1

τ3

τ2

i a o

τ1 τ2

b

i

a

o

τ3

τ1

b

τ2

τ0

i

a1

an

o

τ1

τn

a2

τ2...

a

c

b

d

a

c

b

dp
0

p
1

t0
p
2

p
3

p
4

p
5

t1

t3

t4

t5
a

c

b

d

a

c

b

d

ee

e e t2

i

a

b

e

o

d

c

c o

i

a1

a2 o

τ0
τ1

τnan

τ2

...
i

a1

a2 o

τn+1
τ1

τnan

τ2

...

...

...

...

...

τ

(a) N 11

i

a

b

e o

d

i

a

b

o
τ1

c

τ2

i

a

b

o

τ1

τ3

τ2

i a o

τ1 τ2

b

i

a

o

τ3

τ1

b

τ2

τ0

i

a1

an

o

τ1

τn

a2

τ2...

a

c

b

d

a

c

b

dp
0

p
1

t0
p
2

p
3

p
4

p
5

t1

t3

t4

t5
a

c

b

d

a

c

b

d

ee

e e t2

i

a

b

e

o

d

c

c o

i

a1

a2 o

τ0
τ1

τnan

τ2

...
i

a1

a2 o

τn+1
τ1

τnan

τ2

...

...

...

...

...

τ

(b) N 12

Figure 4.11: Net systems with isomorphic sets of 4C relations over labels

Figure 4.12 shows two constructions that generalize the net systems in

Figure 4.11 with a variable number of transitions n. It turns out that,

for any fixed value of n ∈ N0, the system N 13 would comprise the set of

configurations {{i, a1, a2, . . . , an, o}} ∪ {{i, am, o} ∣ m ∈ [1 .. n]}, however, it

would have the same representation as the system N 14 over the relations

of the 4C spectrum. Note that system N 13 encodes n + 1 configurations,

whereas system N 14 describes 2n configurations. Therefore, there exist two

net systems for which there is an exponential number of configurations that

are indistinguishable when using the representation based on the relations

of the 4C spectrum. Specifically, 2n −n− 1 are indistinguishable configura-

tions between the net systems in Figure 4.12. This fact is captured in the

next proposition.

The counter example is not only for systems with concurrent behav-

ior, the net systems N 15 and N 16 have the same 4C relations over labels.

Although, the net system N 16 describes an additional configuration {i, o}

which is not captured by the net system N 15.

89

i

a

b

e o

d

i

a

b

o
τ1

c

τ2

i

a

b

o

τ1

τ3

τ2

i a o

τ1 τ2

b

i

a

o

τ3

τ1

b

τ2

τ0

i

a1

an

o

τ1

τn

a2

τ2...

a

c

b

d

a

c

b

dp
0

p
1

t0
p
2

p
3

p
4

p
5

t1

t3

t4

t5
a

c

b

d

a

c

b

d

ee

e e t2

i

a

b

e

o

d

c

c o

i

a1

a2 o

τ0
τ1

τnan

τ2

...
i

a1

a2 o

τn+1
τ1

τnan

τ2

...

...

...

...

...

τ

(a) Net system N 13

i

a

b

e o

d

i

a

b

o
τ1

c

τ2

i

a

b

o

τ1

τ3

τ2

i a o

τ1 τ2

b

i

a

o

τ3

τ1

b

τ2

τ0

i

a1

an

o

τ1

τn

a2

τ2...

a

c

b

d

a

c

b

dp
0

p
1

t0
p
2

p
3

p
4

p
5

t1

t3

t4

t5
a

c

b

d

a

c

b

d

ee

e e t2

i

a

b

e

o

d

c

c o

i

a1

a2 o

τ0
τ1

τnan

τ2

...
i

a1

a2 o

τn+1
τ1

τnan

τ2

...

...

...

...

...

τ

(b) Net system N 14

Figure 4.12: Generalization of the net systems in Fig. 4.11

i

a

b

e o

d

i

a

b

o
τ1

c

τ2

i

a

b

o

τ1

τ2

τ3

i a o

τ1 τ2

b

i

a

o

τ1

τ4

b

τ3

τ2

(a) N 15

i

a

b

e o

d

i

a

b

o
τ1

c

τ2

i

a

b

o

τ1

τ2

τ3

i a o

τ1 τ2

b

i

a

o

τ1

τ4

b

τ3

τ2

(b) N 16

Figure 4.13: Net systems with isomorphic sets of 4C relations over labels
without concurrency

Proposition 4.11. There exist two labeled WF-flow net systems that have

the same 4C relations over labels, while the number of distinct configura-

tions that the net systems describe differ in a value which is in the order of

O(2n), where n is the number of distinct labels assigned to transitions of

the net systems.

The obtained results confirm that existing behavioral profiles are lossy

behavioral representations of labeled net systems. So, if one relies on exist-

ing behavioral profiles for comparing process models, then one must tolerate

inaccurate diagnosis.

4.6 Discussion

This section shows that, despite their efficient computation, behavioral pro-

files can be used to decide configuration equivalence only for a restricted

family of acyclic and unlabeled net systems. Specifically, this result ceases

90

to hold (for any currently known notion of behavioral profile) once transi-

tions of net systems are allowed to ‘wear’ labels.

Event structures are a model of concurrency that represents processes

by means of dependency relations and events. The events are occurrences

of actions and the dependencies explain how the events relate each other.

Prime Event Structures (PESs) [Niel 81, Wins 87] are one type of event

structures where dependencies between events are reduced to causality and

conflict (then a pair of event are concurrent if they are neither in causal

nor in conflict relation). PESs solve the issues inherent to behavioral pro-

files. E.g., they have an execution semantics and every pair of tasks can

be associated to a single relation that accurately describes the behavioral

dependencies between them.

PES can be also represented as a matrix, but it can be considerably

larger than O(∣Λ∣2), since a task may occur in many different computa-

tions. Indeed, the prime event structure of a process with cyclic behavior

would contain an infinite amount of events. The following chapter proposes

a technique to compute the PES of a process with cyclic behavior. To this

end, we present an unfolding technique that captures all the causal depen-

dencies between tasks. Then, we define a comparison technique to diagnose

and explain behavioral differences using PESs.

91

Chapter 5

Process model comparison

based on event structures

Process
models

Behavioral
comparison Diagnostics

Petri
nets

Event
structures

Behavioral
equivalences

Unlabeled
WF-flow

nets

Behavioral
profiles Comparison Diagnostics

Co
nf

ig
ur

at
io

n
eq

ui
va

le
nc

e

Behavioral
profiles Comparison Diagnostics

Configuration
equivalence WF-flow

nets

Unlabeled

Labeled

Process
models

Behavioral
comparison Diagnostics

Petri
nets

Event
structures

Behavioral
equivalences

Petri
nets

Prefix
unfolding

Prime
Event

Structures

Partial
Synchronized

Product

Vi
sib

le
 p

om
se

t
eq

ui
va

le
nc

e

Detection of
differences

Verbalization
of differences

Canonical

Petri
nets

Prefix
unfolding

Asymmetric
Event

Structures Partial
Synchronized

Product

Vi
sib

le
 p

om
se

t
eq

ui
va

le
nc

e

Detection of
differences

Folding of
event

structuresFlow
Event

Structures

Verbalization
of differences

Petri
nets

Event
structures

Behavioral
equivalences

This chapter presents a comparison technique that takes pairs of (prime)

event structures as input and produces natural language statements (using

predefined templates) expressing encountered differences. A limitation of

this technique is that it is not be applicable to process model with cycles,

since the corresponding event structures have an infinite amount of events.

Section 5.1 addresses this limitation and presents an unfolding technique to

compute finite representations of cyclic process models. Section 5.2 intro-

duces the partial synchronized product of a pair of (prime) event structures,

which aims at finding similar and deviant behavior. By the same token,

this section also shows how to verbalize encountered differences as natural

language statements. Finally, Section 5.3 presents some discussions.

92

5.1 Finite representation of cyclic process models

A fundamental problem with cyclic process models is that their unfoldings

are infinite. The seminal work in [McMi 95], later developed by many au-

thors (see, e.g., [Espa 08] and citations therein) introduced sophisticated

strategies for truncating the unfolding to a finite level, while keeping a

representation of any reachable state, thus getting what is referred to as

the complete unfolding prefix (CP). In particular, the authors in [Khom 03]

introduced a framework where a canonical unfolding prefix, complete with

respect to a suitable property and not limited to reachability, can be con-

structed. Our own work relies on such a framework.a

b

c

c

b
d

a b

c

d

a

b
c

d
b

c

d

c

d b

c

d

b c

d

c

d
b

i a

o

i a

o

τ0

τ1

τ2

τ3
a

c

c

d

d

b

b

d

d

a

b

c

d
b0 b1 b5

b2

b3

b4

p0 p1 p3p2

a

b

c

d
b0 b1 b5

b2

b3

b4

a

b
c

d
b

c

d

c

d b

c

d

b c

d

c

d
b

a

b
c

d
b

c

d

c

d b

c

d

b c

d

c

d
b

a

b

c

d
p0 p1 p3

p2

p2

p1

a

b

c

d
p0 p1 p3

p2

p2

p1

b0 b1

b3

b2 b4

b5

(a) N 17

a

b

c

c

b
d

a b

c

d

a

b
c

d
b

c

d

c

d b

c

d

b c

d

c

d
b

i a

o

i a

o

τ0

τ1

τ2

τ3
a

c

c

d

d

b

b

d

d

a

b

c

d
b0 b1 b5

b2

b3

b4

p0 p1 p3p2

a

b

c

d
b0 b1 b5

b2

b3

b4

a

b
c

d
b

c

d

c

d b

c

d

b c

d

c

d
b

a

b
c

d
b

c

d

c

d b

c

d

b c

d

c

d
b

a

b

c

d
p0 p1 p3

p2

p2

p1

a

b

c

d
p0 p1 p3

p2

p2

p1

b0 b1

b3

b2 b4

b5

(b) β1

Figure 5.1: Petri net system and its complete unfolding prefix

Consider the net system N 17 and its complete unfolding prefix β1 pre-

sented in Figure 5.1. Both conditions b1 and b4 correspond to the place

p1 in N 17. To compute a complete unfolding prefix, we start applying the

inductive rules in Figure 3.11 and stop the unfolding once we reach b3 and

b4, roughly because any addition to the prefix would duplicate information

already represented. Events b and c are called cutoff events. Even though

this prefix includes a representation of all reachable markings and all exe-

cutable transitions, in our setting, it does not include the information that

we require to diagnose the behavioral differences of processes. E.g., the fact

that c causally precedes b and d is not explicitly represented in this prefix.

We define a cutoff condition that is stronger than state reachability.

Thus we obtain a larger prefix of the unfolding that makes explicit all the

causal relations between tasks (visible transitions). In the case of the net

93

system N 17 in Figure 5.1a, the required unfolding prefix is β2 in Figure 5.2.

The cutoff conditions and their equivalent states are represented with the

same color. This prefix describes all causal dependencies between tasks,

thus it also captures the fact that an occurrence of b can be preceded by

another occurrence of the same activity (e.g., events e1 and e7).

a

b

c

d
p0 p1 p3

p2

p2

p1

b0 b1

b3

b2 b4

b5

a

b
c

d
b c

d

c

d

b

c
d

e0

e2

e1

e6

e5

e3

e7

a b

c

d

e4

a

b
c

d
b

c
d

c

d

b

c
d

e0

e1

e2

e5

e6

e4

e10

e3 c
d

e13

Figure 5.2: Complete unfolding prefix β2

Formally, we resort to the notion of cutting context introduced

in [Khom 03]. A cutting context is a tuple Θ = (≈,⊲,C) where ≈ is an equiv-

alence relation over configurations, ⊲ is a total order over configurations,

and C is the set of configurations used at the time of the computation of

the unfolding prefix. E.g., the cutting context used in McMillan [McMi 95]

is ΘMcMillan = (≈mark,⊲size,Cloc), where ≈mark equates two configurations

when they produce the same marking, ⊲size is the total order induced by

the size of configurations, and Cloc = {⌊e⌋ ∣ e ∈ E} is the set of local con-

figurations. As already mentioned, the complete unfolding prefix β1 is

computed by using McMillan’s cutting context. In fact, if we consider

the local configurations ⌊c⌋ = {a, τ, c} and ⌊a⌋ = {a}, then one can easily

check that Mark(⌊a⌋) = Mark(⌊c⌋) = {p1}. Moreover, since ∣⌊a⌋∣ < ∣⌊c⌋∣,

then event c is a cutoff event. The cutting context in [Espa 02], denoted

ΘERV = (≈mark,⊲slf ,Cloc), differs from that in [McMi 95] for the definition

of the partial order ⊲slf , which is refined by considering action labels thus

leading to more cut-offs and smaller prefixes (see [Espa 02] for details). For

our purposes, consider a cutting context which is a modification of ΘERV

with a refined equivalence relation over configurations taking into account

94

also the tasks that produced the current marking. Roughly speaking, each

token stores also the history of the events.

Definition 5.1 (≈Pred). Let β = (B,E,G, ρ) be a branching process of a

labeled Petri net system with a net N = (P,T,F, λ). A pair of configu-

rations C1,C2 ∈ Conf (β) are equivalent, represented as C1 ≈Pred C2, iff

eMark(C1) = eMark(C2), where

eMark(C) = {⟨ρ(b), ρ(⌊b⌋Λ)⟩ ∣ b ∈ Cut(C)}.

We rely on the cutting context ΘPred = (≈Pred,⊲slf ,Cloc). According to

the theory in [Khom 03], once we have proved that the equivalence ≈Pred

and the adequate order ⊲slf are preserved by finite configuration extensions,

we immediately have an algorithm for constructing a canonical, finite prefix

of the unfolding, complete with respect to the equivalence ≈Pred. The latter

means that for any configuration C in the full unfolding there will be a

configuration C ′ in the finite prefix such that C ≈Pred C
′.

Since our cutting context is a slight variation of that in [Espa 02], we

can rely on their work for the proof.

Proposition 5.2 (equivalence is preserved by extension). Let β =

(B,E,G, ρ) be the branching process of a net system N , with a net

N = (P,T,F), and C,C ′ ∈ Conf (β) be a pair of configurations, s.t. that

C ≈Pred C
′. Therefore, for every suffix V of C, there exists a finite suffix

V ′ of C ′ s.t.:

C ′ ∪ V ′
≈Pred C ∪ V

Proof. Let C,C ′ be configurations such that C ≈Pred C
′ and let V be a

suffix of C. We can assume that V consists of a single event, namely

V = {e}. The general case easily follows by an inductive argument. This

means that there is a transition t in N such that ρ(e) = t and Mark(C)[t⟩.

According to Definition 5.1, eMark(C) = eMark(C ′), which in turn

implies that Mark(C) = Mark(C ′). Hence Mark(C ′)[t⟩, which implies the

existence of an extension V ′ = {e′} of C ′, where ρ(e′) = t.
95

Clearly Mark(C ∪ {e}) = Mark(C ′ ∪ {e′}). So, the fact that

eMark(C ∪ {e}) = eMark(C ′ ∪ {e′}) is quite immediate. Take any con-

dition s′ ∈ Cut(C ′ ∪ {e′}). There are two possibilities:

• s′ ∈ e′●
We have that ⌊s′⌋ = {e′}∪ ⋃

s′′∈●e′⌊s
′′⌋. Consider the only condition s ∈ e●

such that ρ(s′) = ρ(s). We have that

ρ(⌊s′⌋Λ) = {ρ(e′) ∣ λ(ρ(e′)) ≠ τ} ∪ ⋃
s′′∈●e′ ρ(⌊s

′′⌋Λ)

= {ρ(e) ∣ λ(ρ(e)) ≠ τ} ∪ ⋃
s′′∈●eρ(⌊s

′′⌋Λ) [since ρ(e) = t =

ρ(e′) and C ≈Pred C
′]

= ρ(⌊s⌋Λ)

Therefore ⟨ρ(s), ρ(⌊s⌋Λ)⟩ = ⟨ρ(s′), ρ(⌊s′⌋Λ)⟩.

• s′ ∈ Cut(C ′) ∖ ●e′
In this case, if we take the only condition s ∈ Cut(C) ∖ ●e such

that ρ(s′) = ρ(s), since C ≈Pred C ′, we immediately get that

⟨ρ(s), ρ(⌊s⌋Λ)⟩ = ⟨ρ(s′), ρ(⌊s′⌋Λ)⟩.

Therefore we conclude that eMark(C ′) ⊆ eMark(C). Since the argument

is perfectly symmetric, we can deduce the converse inclusion, and thus

equality.

The following proposition shows that the canonical unfolding prefix con-

structed with ΘPred contains witnesses for all the causal relations that

would be exhibited in the (possibly infinite) unfolding of a Petri net with

cycles.

Proposition 5.3 (causal dependencies in the prefix). Let N be a net

system, let β = (B,E,G, ρ) be its unfolding (i.e., β = Unf (N)) and let

βΘ = (BΘ,EΘ,GΘ, ρΘ) be the CP based on the cutting context ΘPred =

(≈Pred,⊲slf ,Cloc). Then βΘ is “complete with respect to causal dependen-

cies”, i.e., for any pair of events e1, e2 ∈ E ∶ e1 <
β e2 then

∃e′1, e′2 ∈ EΘ ∶ e′1 <βΘ e′2, where ρ(e1) = ρΘ(e′1) and ρ(e2) = ρΘ(e′2).

96

Proof. Let e1, e2 ∈ E
Λ be events of the unfolding such that e1 <

β e2. This

means e1 ∈ ⌊e2). Consider the configuration C = ⌊e2). By completeness

there is a configuration C ′ in the prefix such that eMark(C) = eMark(C ′).
Certainly Mark(C ′) = Mark(C) enables ρ(e2) hence C ′ admits an extension

with event e′2 such that ρΘ(e′2) = ρ(e2). Moreover, since e1 <
β e2 there is a

condition s ∈ ●e2 ∩ Cut(C) such that e1 <β s and thus ρ(e1) ∈ ρ(⌊s⌋Λ).

If we take the only condition s′ ∈ Cut(C ′) such that ρ(s) = ρΘ(s′),
we have that s′ ∈ ●e′2 and, since eMark(C) = eMark(C ′), it holds that

⟨ρΘ(s′), ρΘ(⌊s′⌋Λ)⟩ = ⟨ρ(s), ρ(⌊s⌋Λ)⟩. This means that there is e′1 ∈ ⌊s′⌋
such that ρΘ(e′1) = ρ(e1). Note that e′1 ∈ ⌊s′⌋ means e′1 <βΘ s′, whence

e′1 <βΘ e′2, as desired.

5.1.1 Multiplicity of activities

The unfolding prefix described above captures the fact that a task can

occur multiple times in a single run and thus a notion of multiplicity can

be attached to each task. Then if an event in the unfolding prefix, which is

an occurrence of task a, can be preceded by another occurrence of a, then

this activity can occur more than once in a computation. The multiplicity

of tasks helps differentiating the behavior of isomorphic unfolding prefixes

steaming from non-equivalent net systems. The last since the unfolding

prefix of a cyclic net can be isomorphic to an acyclic one (i.e., an occurrence

net) with duplicate labels.

We now show how to identify the multiplicity of each task (i.e., labeled

transition in the original net) given the canonical unfolding prefix induced

by ΘPred. To lighten the notation in the remaining of this subsection, we

omit the super index of the relations of the branching process β, i.e., <β is

simply represented as <.

Since we deal with safe nets, we observe that if a transition can occur

twice in a configuration, the corresponding events must be causally related.

Proposition 5.4 (repetition). Let β be a branching process of a net system

N , with a net N = (P,T,F). Let C ∈ Conf (N) be a configuration such that

97

there exists e, e′ ∈ C, e ≠ e′ and ρ(e) = ρ(e′) = t ∈ T . Then either e < e′ or

e′ < e.
Proof. Observe that e#e′ cannot hold, otherwise C would not be a con-

figuration. If we had neither e < e′ nor e′ < e, then e and e′ would be

concurrent. As a consequence also ●e ∪ ●e′ would be concurrent. Therefore,

the corresponding marking in N would be coverable and it would have two

tokens in any place in ●t, contradicting the assumption that N is safe.

The above observation motivates the interest for the following definition

in the study of repetitive behaviors.

Definition 5.5 (self-preceding transitions). Let β = (B,E,G, ρ) be the

unfolding prefix induced by ΘPred for a net N = (P,T,F, λ). The set of self-

preceding transitions of N is defined as R = {ρ(e1) ∣ ∃C ∈ Conf (β). e1, e2 ∈

C ∧ ρ(e1) = ρ(e2) ∧ e1 < e2}.

Note that the possibility of reducing the repetition to a causal depen-

dency ensures that the finite prefix (which contains full information about

causal dependencies) will be also sufficient to identify repeated events. As

an example it can be checked that C = {e0, e2, e6}, C ′ = {e0, e1, e5} and

C ′′ = {e0, e1, e3, e7, e13} are configurations in the unfolding prefix β2 from

Figure 5.2. Activity b is part of repetitive behavior as C ′′ includes two

(causal dependent) occurrences of b. This holds despite the fact that there

are (maximal) configurations including only a single occurrence of b (like

C) or none (like C ′).
Definition 5.5 tells us which transitions in the original net system may

occur more than once. By the same token, we can determine which tran-

sitions occur at least once. The latter correspond to events that occur in

the intersection of all completed configurations.

Definition 5.6 (necessary transitions). Let β = (B,E,G, ρ) be the unfold-

ing prefix induced by ΘPred for a net system N . The necessary transitions

K of N is defined as K = ⋂%(MaxConf (β)).

98

Based on the above definitions of R and K, we classify transitions in

a net system into three disjoint categories: those fired “0 or more times”

(denoted as “∗”); “1 or more times” (denoted as “+”); and at most once

“0..1”. Formally:

Definition 5.7 (multiplicity of a transition). Let β = (B,E,G, ρ) be the

unfolding prefix induced by ΘPred for a net system N , the multiplicity of

a labeled transition is defined as:

• 0..1 = {e ∈ E ∣ ρ(e) ∉R}

• + = {e ∈ E ∣ ρ(e) ∈R ∩K}

• ∗ = {e ∈ E ∣ ρ(e) ∈R ∖K}

Observe that if we are interested in the multiplicity of tasks, namely

transition labels, rather than of transition themselves (this makes a differ-

ence if the labeling in the net is not injective), we need some adjustments

to the definitions above. More precisely, the sets of labels corresponding to

R and K above are

• ΛR = {a ∈ Λ ∣ ∃C ∈ MaxConf (β). ∣(λ ○ ρ)−1(a) ∩C ∣ ≥ 2},

namely labels that can occur more than once in a computation are

those that occur more than once in a maximal configuration of a

branching process generated with ΘPred (this is, in general, a superset

of λ(R));

• ΛK = ⋂λ(%(MaxConf (β)))

namely labels that necessarily appear in a computation are those

that occur in any maximal configuration of the branching process

generated with ΘPred.

In the case a transition may be fired “one or more times” or “zero or

more times” (“+” or “∗”), the above definition does not tell us whether the

transition can be repeated an unbounded or a bounded number of times.

E.g., consider the net system and its unfolding in Figure 5.3, observe that

99

i
a

b
c

d

o

i a

b

c

d

o

i

a

b

c

d

o

a

i a

b

o

i a

b

o

a

b

o

(a) N 18

i
a

b
c

d

o

i a

b

c

d

o

i

a

b

c

d

o

a

i a

b

o

i a

b

o

a

b

o

(b) β3

Figure 5.3: Non-free choice “cyclic” net system and its unfolding

the multiplicity of activity a is “+”, but it can occur at most twice in a

computation.

Below, we refine the notion of multiplicity for a class of workflow nets,

for which we show that when a task is classified as “+” or “∗”, it means it

can be fired any number of times.

5.1.2 Multiplicity of activities in free-choice workflow nets

Transitions which, according to Definition 5.5 are marked as repetitive,

namely either “+” or “*” can surely occur more than once in a computation,

but still they could occur at most a bounded number of times (e.g., Fig. 5.3).

We next show that if we focus on the class of sound free-choice workflow

nets [van 97], a transition which is marked as “+” or “*”, may fire any

number of times, namely it is part of a cyclic behavior.

We show that for the class of (safe) free-choice sound WF-nets, the self-

preceding transitions captured by the proposed cutting context ΘPred =

(≈Pred,⊲slf ,Cloc), namely those transitions marked as “*” or “+” according

to Definition 5.5 represent unbounded repetitive behavior.

We first need a preliminary technical result.

Lemma 5.8 (sequences of firings). Let N be a sound free-choice WF-

net system. Let t0, . . . , tn be transitions such that ti
● ∩ ●ti+1 ≠ ∅ for

any i ∈ {0, . . . , n − 1} and let M be a marking such that M[t0⟩. Then

there are sequences of transitions σi ∈ T
∗, i ∈ {0, . . . , n − 1}, such that

M[t0σ0t1σ1 . . . σn−1tn⟩.

100

Proof. The proof is by induction on n. The base case n = 0 is trivial. Let

us assume the result for n and prove it for n + 1. By inductive hypothesis

there are σ0, . . . , σn such that M[t0σ0t1σ1 . . . σn−1tn⟩Mn. Moreover, by hy-

pothesis, there is at least one place p ∈ tn
●∩ ●tn+1 and we know that p ∈Mn.

Since N is a sound WF-net, from marking Mn there is a firing sequence

which leads to a marking consisting of one token only in the sink place

Mn[σ⟩{o}.

Since p ∈ ●tn+1, surely p ≠ o. Hence the token in p is consumed by some

transition in σ, namely σ = σ′tσ′′ with p ∈ ●t.
Since N is free-choice, and ●t ∩ ●tn+1 ⊇ {p} ≠ ∅ we deduce ●t = ●tn+1.

Therefore, since Mn[σ
′t⟩ we also have Mn[σ

′tn+1⟩. Therefore

M[t0σ0t1σ1 . . . σn−1tnσ
′tn+1⟩

as desired.

We can now easily conclude with the desired result.

Proposition 5.9. Let N be a free-choice sound WF-net and let t be a tran-

sition marked as repetitive (“*” or “+”). Then there are firings sequences

in which transition t fires any number of times.

Proof. Let t be a transition marked as repetitive (“*” or “+”). This means

that there are events e, e′ in the prefix βΘ, such that ρ(e) = ρ(e′) = t∧e < e′.
We show that for any markingM , such thatM[t⟩, there is a sequence σ ∈ T ∗
such that M[tσt⟩. From this the result immediately follows.

Since e < e′, there must be a causal chain of e = e0 < e1 < . . . < en = e′
such that ei

● ∩ ●ei+1 ≠ ∅ for any i ∈ {0, . . . , n − 1}. Therefore, if we consider

the image through ρ in N , we get corresponding sequence of transitions

ρ(e0) = t0 = t, ρ(e1) = t1, . . . , ρ(en) = tn = t, with ti
● ∩ ●ti+1 ≠ ∅ for

i ∈ {0, . . . , n − 1}.

Now, given any marking M such that M[t⟩, we can simply apply

Lemma 5.8, to deduce that there are σi ∈ T
∗, i ∈ {0, . . . , n − 1}, such that

M[t0σ0t1σ1 . . . σn−1tn⟩.

101

recalling that t = t0 = tn and denoting σ = σ0t1σ1 . . . σn−1, we get the desired

result.

Again, the theory can be adapted if the labeling of the net is not in-

jective and we are interested in the repetition of labels (tasks) rather than

transitions. In this case we can distinguish between labels that can occur

more than one time in a computation (the class “*” defined as before) and

the subclass of those which can occur an unbounded number of times in a

computation, defined as λ(R).

The insights we got from this section are used later in the verbalization

of differences involving repeated tasks (Section 5.2.3).

5.2 Comparison based on event structures

This section presents a comparison technique that takes pairs of event struc-

tures and produces natural language statements expressing encountered

differences. The computed differences reflect binary behavioral relations

between events and repetition of tasks that hold in one model but not in

the other. The comparison technique adopts completed visible-pomset as

the notion of equivalence and is formulated in terms of families of pom-

sets, thus it is applicable to various flavors of event structures (e.g., prime,

asymmetric and flow event structures).

As a starting point we consider the comparison of PESs, such that be-

havioral differences between a pair of process models are expressed in terms

of causality, conflict and concurrency binary relations. Before presenting

the comparison technique, we define the PES of a Petri net system and

put forward two different approaches to handle silent events present in the

event structures.

The PES of a Petri net system N is basically the unfolding Unf (N)

without the conditions and relations over conditions. However, in order

to tackle the problem of infinite unfoldings (as explained in the previous

102

section), we consider the branching process computed with the cutting

context ΘPred. The formal definition of the PES of a net system is as

follows.

Definition 5.10 (PES of a net system). Let N = (N,M0) be a net system,

where N = (P,T,F, λ), and βΘ = (B,E,G, ρ) be its branching process

computed with ΘPred. The labeled Prime Event Structure (PES) of βΘ is

defined as P = ⟨E,≤,#, λ′⟩ where ≤=≤β∣E and # = #β∣E . Finally, λ′ = λ ○ ρ
is a labeling function that associates each event e ∈ E with the label of its

corresponding transition t ∈ T , i.e., λ′(e) = λ(ρ(e)).
The differences between a pair of process models can include both ob-

servable and unobservable behavior. Although, reporting differences in-

volving silent transitions or events can result irrelevant to the user. For

this reason, the proposed technique considers only the observable events in

the PESs. This approach precludes the adoption of an equivalence notion

in branching semantics. For instance, Figure 5.4 shows a pair of non-history

preserving bisimilar PESs, but completed visible-pomset equivalent, which

differ only in the silent behavior (i.e., τ event).

a

b

c τ

d

#

(a) P′

a

b

c d#

(b) P′∣Λ

Figure 5.4: Non hp-bisimilar PESs, but completed visible-pomset equivalent

As a reference behavioral equivalence, we use a variation of pomset

equivalence, which ignores invisible events and is sensible to termina-

tion [Glab 89, Golt 94]. Roughly speaking, it equates systems which can

execute the same visible activities, with identical relations of causal depen-

dency and concurrency.

103

We can also take a more radical solution which consists in directly

removing the silent events from the PES, keeping only the visible events

and their dependencies. We adopt this latter approach.

The following definition is the restriction of a PES to its observable

behavior.

Definition 5.11 (restriction of PES to Λ). Let P = ⟨E,≤,#, λ⟩ be a labeled

PES, then the restriction of PES to observable behavior is defined as PΛ =

⟨E′,≤′,#′, λ′⟩, where E′ = {e ∈ E ∣ λ(e) ≠ τ}, ≤′=≤∣E′ , #′ = #∣E′ and

λ′ = λ∣E′ .

In specific cases, the restriction of a PES to its observable behavior

can lead to lose conflicts and maximal configurations. For example, the

restriction of P′′ in Figure 5.5 “loses” the (visible) maximal configuration

{a, b} in PΛ′′. The last is due to the fact that τ is the only event in conflict

with c in P′′.
It is easy to see that the problem does not occur if we consider process

models where silent events can never be maximal in a configuration, i.e.,

intuitively, where a silent event is never the last event of a computation.

a

b

c τ#

(a) P′′

a

b

c

(b) PΛ′′

Figure 5.5: PES and its restriction to observable behavior

Proposition 5.12 (restriction of PES to Λ preserves ≡cp). Let P = ⟨E,≤

,#, λ⟩ be a PES such that for any C ∈ MaxConf (P), no event in C ∖CΛ is

≤-maximal in C. Then P ≈cp PΛ.

104

Proof. It is immediate to see that, under the hypothesis, for any C ∈

MaxConf (P) we have C = ⋃
e∈CΛ

⌊e⌋P ∈ Conf (P) (where ⌊e′⌋P denotes the

set of causes of e′ in P).

Now, if C ∈ MaxConf (P) in order to conclude that CΛ ∈ Conf (PΛ) is

maximal, observe that if CΛ ⊆ C ′ for some C ′ ∈ Conf (PΛ) then, by the

above, C = ⋃
e∈CΛ

⌊e⌋P ⊆ ⋃
e∈C′

⌊e⌋P. Since the latter is a configuration in P,

by maximality of C we have C = ⋃
e∈C′

⌊e⌋P hence CΛ = (⋃
e∈C′

⌊e⌋P)
Λ = C ′, as

desired.

Vice versa, if CΛ ∈ MaxConf (PΛ), in order to conclude that C ∈

Conf (P) is maximal, observe that if C ⊆ C1 for some C1 ∈ Conf (P) then

CΛ ⊆ CΛ
1 . By maximality of CΛ this means that CΛ = CΛ

1 . Therefore

C = ⋃
e∈CΛ

⌊e⌋P = ⋃
e∈CΛ

1

⌊e⌋P = C1, as desired.

The comparison technique introduced in this chapter is compatible with

both approaches, namely, after the translation of a process model to a PES

one can either consider the underlying visible PES (if the transformation is

known to preserve the behavior) or keep the silent events and ignore them

in the later stage of the comparison.

The presence of different activities reduces, at the level of event struc-

tures, to the presence of events with different labels, which are easy to

detect and describe. Instead, properly diagnosing and reporting differences

in the way common activities (i.e., events carrying the same label in both

process models) are related in the process is a more complex problem.

A PES can be seen as a labeled graph, where events are nodes and re-

lations are edges. Thus, if two PES are diagnosed as isomorphic, it seems

sensible to conclude that they are behaviorally equivalent. Moreover, if an

error-correcting graph matching is used, the same algorithm would gather

the information about the differences on event occurrences (process activ-

ities) and mismatching behavior relations. Unfortunately, a conventional

approximate graph matching technique would not take into account the

order induced by the behavioral relations.

105

a

b(1) c(2)#

(a) P1

a1 a2

b(1) c(2)

#

(b) P2

Figure 5.6: Example of graph-based PES comparison

Figure 5.6 shows a pair of completed visible-pomset equivalent PESs

and a (partial) mapping between the events, which is given by the num-

bers in the parenthesis. Note that there are two possible mappings for the

event a in P2. Although, any mapping of a in P1, either with a1 or a2,

will spot the fact that there is another instance of a in P2 that cannot not

be mapped. Thus, relying on graph isomorphism techniques and report-

ing differences based on mappings and mismatches of nodes can lead to

inaccurate diagnosis.

One additional concern is to provide a systematic approach to produce

intuitive diagnostics describing the differences found while comparing a

pair of PESs. Therefore, in the remainder of this section we present the

elements of our approach to compare event structures: matching behavior,

identifying differences and verbalizing differences.

5.2.1 Partial synchronized product

The first challenge is to determine the behavior similarity between a pair

of event structures. We adopt completed visible-pomset equivalence as

the reference notion for the comparison. So, if two event structures exhibit

different behavior (due to differences in the set of events or in the underlying

behavioral relations), it is clear that their corresponding visible-pomsets

would differ as well. Hence, we are interested in finding the best (or at least

a good) approximated behavioral matching between both event structures.

106

We start by introducing the concept of partial match between two con-

figurations, which is intended to capture the idea of an approximated iso-

morphism between the corresponding visible-pomsets. Note that the def-

initions in this subsection are based on the notion of families of pomsets,

thus they apply to the different flavors of event structures. Let us indicate

that a partial function f is undefined on x as f(x) =⊥.

Definition 5.13 (partial match). Let P1 = ⟨E1,Conf (P1), λ1⟩ and P2 =

⟨E2,Conf (P2), λ2⟩ be a pair of families of pomsets and let Ci ∈ Conf (P i),

for i ∈ {1,2} be configurations. A partial match between C1 and C2 is a

partial injective function ξ ∶ C1 ↛ C2, such that for all e1, e
′
1 ∈ E1, with

ξ(e1), ξ(e
′
1) ≠ �, the following holds:

1. λ2(ξ(e1)) = λ1(e1)

2. e1 ≤1 e
′
1 iff ξ(e1) ≤2 ξ(e

′
1)

A partial match is a function ξ that establishes a correspondence be-

tween events of the two pomsets, respecting both labeling and order. Note

that partial match is a partial and non surjective function, meaning that

some events in C1 may not have a mapping to any event in C2, and vice

versa.

A partial match between configurations can be thought as the result of

applying two operations over “growing” pomsets

1. matching of events (both pomsets synchronously evolve a pair of

events that have the same label), and

2. hiding of an event (only one pomset evolves with a single event while

the other remains the same).

Matching and hiding operations can be expressed as inductive rules, as

shown if Figure 5.7, that applied to a partial match ξ between C1 and C2

produce another partial match involving larger configurations. Since the

same partial match can be associated with different pairs of configurations,

107

we write (C1, ξ,C2) to refer to ξ seen as a partial match between C1 and

C2. Finally, we write C
e
Ð→λ(e) C ∪ {e} to denote C ∪ {e} ∈ Conf (P), for a

configuration C ∈ Conf (P) and an event e /∈ C. Note that, in case silent

events have not been removed from the families of pomsets during their

extraction from the process, the hiding operations are used also to ignore

silent events.

C1
e1
Ð→a C

′

1 C2
e2
Ð→a C

′

2 ξ′ = ξ[e1 ↦ e2] partial match

(C1, ξ,C2)
match e1,e2
ÐÐÐÐÐÐÐ→ (C ′

1, ξ
′,C ′

2)
match e1, e2

C1
e1
Ð→a C

′

1

(C1, ξ,C2)
hide e1
ÐÐÐÐ→ (C ′

1, ξ,C2)
hide e1

C2
e2
Ð→a C

′

2

(C1, ξ,C2)
hide e2
ÐÐÐÐ→ (C1, ξ′,C ′

2)
hide e2

Figure 5.7: Partial matching operations given a partial match (C1, ξ,C2)

An example of partial matches between configurations is depicted in

Figure 5.8. The first and second rows show a pair of PESs P3 and P4,

and their corresponding visible-pomsets aside framed in a gray box. The

second row shows a pair of partial matches between the configurations of

both pomsets, the hidden events and their relations are highlighted in gray,

whereas the matches are in black. Formally, the matchings in Figure 5.8

are denoted as ({a, b, c}, [a↦ a, c↦ c],{a, c}) and ({a, b, c}, [b↦ b],{b}).

Starting from the above concepts, we aim at defining a technique that

allows to optimize the matching of pomsets or, equivalently, to minimize

the number of hiding operations in a partial match. Clearly, whenever

it is possible to establish a mapping between the pomsets of two families

of pomsets using only matching operations, those families will be equiv-

alent. Conversely, when the families of pomsets are not equivalent then

the optimal match of their pomsets –the one with the minimum number

of hidings– would capture both the largest approximate visible-pomset (or

108

a b

c

#

(a) P3

a

b

c

(b)
P4

a c b

a

b

c

a

b

c

a

b

c

Figure 5.8: PESs and a pair of partial matches between their configurations

common behavior) and the corresponding differences, in the form of hiding

operations.

Let P1 and P2 be families of pomsets, and C1 ∈ Conf (P1) and C2 ∈

Conf (P2) be a pair of configurations. The “quality” of a partial match

s = (C1, ξ,C2) is captured by a value g(s)

g(s) = ∣CΛ
1 ∣ + ∣CΛ

2 ∣ − ∣ξ∣ ⋅ 2. (5.1)

The function g(s) above is aimed at quantifying the “quality” of the

matchings between a pair of pomsets. When g(s) = 0, then ξ is a visible-

pomset isomorphism between pomsets C1 and C2. When g(s) > 0 the

partial match ξ required one or more hiding operations. This case can be in-

terpreted as an approximate (or non complete) visible-pomset isomorphism

of pomsets C1 and C2. E.g., the quality of the partial matches in Figure 5.8

are g({a, b, c}, [a↦ a, c↦ c],{a, c}) = 1 and g({a, b, c}, [b↦ b],{b}) = 2.

Given two families of pomsets P1 and P2, for any two configurations

C1 ∈ Conf(P1) and C2 ∈ Conf(P2) there is always a partial match. How-

109

ever, only a subset of the possible partial matches would have a minimum

cost; those partial matches are said optimal.

Definition 5.14 (optimal match). Let P1 and P2 be families of pomsets

and let Ci ∈ Conf (P i), for i ∈ {1,2} be configurations. A partial match

s = (C1, ξ,C2), where ξ ∶ C1 ↛ C2, is called optimal when

g(s) = min{g(s) ∣ ξ′ ∶ C1 ↛ C2}

The partial matches between configurations of two families of pomsets

can be collected in what we call a partial synchronized product, defined in

the line of [Adri 13] but for pairs of families of pomsets.

Definition 5.15 (partial synchronized product). Let P1 and P2 be families

of pomsets. The partial synchronized product is the graph G = ⟨S,T ⟩ where:

• S is the set of triples (C1, ξ,C2), where ξ ∶ C1 ↛ C2 is a partial match;

• T is the set of transitions (C1, ξ,C2)
op
Ð→ (C ′

1, ξ
′,C ′

2) defined by the

rules in Figure 5.7.

It is immediate to see that the partial synchronized product is induc-

tively built starting from an “initial” node (∅,∅,∅) corresponding to the

unique partial matching for the empty configurations, and then expand-

ing the graph by using the rules in Figure 5.7. Note that the hiding

(hide e1 and hide e2) operations can only increase the cost g of a par-

tial match by one (when the hidden event is visible) or leave it unchanged

(when the hidden event is silent); whereas the match e1, e2 always leave

the cost unchanged. Therefore, whenever (C1, ξ,C2)
op
Ð→ (C ′

1, ξ
′,C ′

2), then

g((C1, ξ,C2)) ≤ g((C
′
1, ξ

′,C ′
2)). This fact, when searching for optimal par-

tial matches, allows for some pruning in the generation of the partial syn-

chronized product.

The partial synchronized product obviously contains all optimal

matches (as it contains all partial matches). However, the size of a partial

110

synchronized product is exponential, making its full construction compu-

tationally unfeasible.

We adopt a branch an bound approach, more specifically an adaptation

of the well-known A∗ algorithm [Hart 68], in order to build an informative

part of the partial synchronized product. As usual, the A∗ algorithm re-

quires two cost functions: one to evaluate the cost from the root of the state

space to a given path, referred to as the function g or past-cost function,

and a heuristic function to estimate the distance to the goal state, referred

to as the function h or future-cost function.

Given a partial match s = (C1, ξ,C2), the past-cost function g(s) is that

defined in Equation 5.1. Let E′
i = ⋃

Ci⊑C′

C ′ ∖ Ci be the set of all possible

extensions of Ci, where i ∈ {1,2} and C ′ is any configuration extending Ci.

The future cost function h(s) is shown in Equation 5.2.

h(s) = ∣(λ(E′
1) ∪ λ(E

′
2)) ∖ (λ(E′

1) ∩ λ(E
′
2))∣ (5.2)

Intuitively, h provides a measure of the number of events to be hidden

in the future of C1 and C2. It optimistically assumes that events with the

same label will indeed contribute to a one-to-one match between the two

configurations. It can be seen that this estimate is admissible in the sense

required in [Dech 85] for the use of the algorithm A∗. Specifically, given

a partial match s = (C1, ξ,C2), in order to match all the events in the

extensions of C1 and C2, then it is necessary to hide at least the events

with different labels (labels seen only in the extension of either C1 or C2).

It does not necessarily mean that the partial matches obtained using the

function h will be optimal, since a single partial match s = (C1, ξ,C2) can

be “in the path” to match several maximal configurations.

The function for the A∗ algorithm is then κ(s) = g(s) + h(s) for any

partial match s = (C1, ξ,C2). The pseudo-code for the search algorithm is

presented in Algorithm 1 and uses function κ.

111

The presented version of the A∗ algorithm is tightly coupled with the

semantics of the underlying event structure, because the match and hide

operations are based on the possible extensions of the configurations. In

other words, the nodes expanded by the A∗ algorithm from a partial match

represent extensions in both configurations in the case of match, or exten-

sion in only one configuration in the case of hide.

Figure 5.9 shows two PESs and a part of their partial synchronized prod-

uct, which contains the optimal matches for the maximal configurations.

Observe that, in the partial synchronized product, the fact that a pair of op-

erations can be applied independently is captured by diamonds-like shapes

in the graph. E.g., in Figure 5.9, after ({a1}, ξ = [a1 ↦ a2],{a2}), it is

possible to match the events with label b ({a1, b1}, ξ
′ = ξ[b1 ↦ b2],{a2, b2})

and hide the c-labeled event ({a1, b1, c1}, ξ
′,{a2, b2}) in any order without

affecting the final partial match.

a1

b1 c1

(a) P5

a2

b2 c2#

(b) P6

(∅,∅,∅)
({a1}, ξ = [a1 ↦ a2],{a2})

({a1, b1}, ξ1 = ξ[b1 ↦ b2],{a2, b2}) ({a1, c1}, ξ,{a2})
({a1, b1, c1}, ξ1,{a2, b2})

({a1, c1}, ξ2 = ξ[c1 ↦ c2],{a2, c2}) ({a1, b1}, ξ,{a2})
({a1, b1, c1}, ξ2,{a2, c2})

match

match

match hide

hide

hide match

hide
match

(c) partial synchronized product for P5 and P6

Figure 5.9: PESs and their partial synchronized product with the optimal
partial matches

112

Algorithm 1 Computing partial matches

Algorithm
Input: P1 = ⟨E1,Conf (P1), λ1⟩ and P2 = ⟨E2,Conf (P2), λ2⟩

Output: Multiset of partial matches for the maximal configurations
// Initialization

foreach C ∈MaxConf (P1) ∪MaxConf (P2) do
GW (C) =∞

MATCHES[C] = ∅

end
s0 = ⟨∅,∅,∅⟩

OPEN ← {s0}

while OPEN ≠ ∅ do
Choose any s = ⟨C1, ξ,C2⟩ ∈ OPEN, with minimum κ(s)

OPEN ← OPEN ∖{s}
// Pruning

if isCandidate(C1, s,P1) ∨ isCandidate(C2, s,P2) then
// Best match

if C1 ∈MaxConf (P1) ∧C2 ∈MaxConf (P2) then
updateMatches(C1, s)
updateMatches(C2, s)

end

foreach C1
e1
Ð→ C′

1,C2
e2
Ð→ C′

2, s.t. λ1(e1) = λ2(e2) do
if ξ[e1 ↦ e2] is a partial match (Def. 5.13) then

OPEN ← OPEN ∪{⟨C′
1, ξ[e1 ↦ e2],C

′
2⟩} ▷ MATCH

end

end

foreach C1
e1
Ð→ C′

1 do
OPEN ← OPEN ∪ {⟨C′

1, ξ,C2⟩} ▷ HIDE e1

end

foreach C2
e2
Ð→ C′

2 do
OPEN ← OPEN ∪ {⟨C1, ξ,C

′
2⟩} ▷ HIDE e2

end

end

end
return MATCHES

Procedure isCandidate(C, s,P)
return ∃M ∈MaxConf (P) ∶ C ⊂M ∧ κ(s) ≤ GW (M)

Procedure updateMatches(C, s)
if κ(s) ≤ GW (C) then

MATCHES[C]←MATCHES[C] ∪ {s}
GW [C]← κ(s)

end

113

5.2.2 Identifying differences

The partial synchronized product is a rich structure that represents the

hide and match operations, which lead to some partial matches (possibly

optimal or simply good, when determined with some heuristic approach).

In order to explain the behavioral differences, a possibility consists in

simply verbalizing the hide operations. Note that differently from a purely

syntactical approach this will captures how early a discrepancy can arise

during the execution of the processes. In other words, the closer a hide

operation is from the “initial” node (∅,∅,∅), the sooner the discrepancy

can occur.

The partial synchronized product explicitly represents the state (par-

tial match) where a discrepancy occurs, hereinafter called the context.

Then, a hide operation can be expressed as an event that occurs in one

model but not in the other. For instance, in Figure 5.9 there is an

edge representing the hide operation ({a1}, ξ = [a1 ↦ a2],{a2})
hide c1
ÐÐÐÐ→

({a1, c1}, ξ,{a2}) and another representing the hide operation ({a1, b1}, ξ
′ =

ξ[b1 ↦ b2],{a2, b2})
hide c1
ÐÐÐÐ→ ({a1, b1, c1}, ξ

′,{a2, b2}). The behavioral differ-

ence represented by these two nodes is the same, namely: “In model 1,

there is a state where c occurs, whereas in the matching state in model 2,

it cannot occur”. These two differences however differ in terms of the state

where the difference is observed. In the first case, the state in question is

the one reached immediately after we execute activity a, whereas in the

second case, it is the state reached immediately after we execute activity

b. We can therefore see that if we map each hide operation in the partial

synchronized product into a difference diagnostic statement, the resulting

statements can be largely redundant and difficult to interpret.

For this reason a more abstract explanation of the differences, e.g.,

in terms of behavioral relations that hold in one process and not in the

other, can be more convenient and understandable for the user. Thus, we

114

next present an approach for expressing the hide operations in the partial

synchronized product as behavioral relations of an event structure.

In this approach, the behavioral difference between the PESs in Fig-

ure 5.9 can all be expressed using one single diagnostic statement, that

is: “In model 1, b and c are in parallel, whereas in model 2, b and c are

mutually exclusive”.

To implement this latter approach, we have to select the set of behav-

ioral relations that best helps with the verbalization of the discrepancies

captured by a given hide operation. To this end, we observe that a partial

matching (C1, ξ,C2) can be seen as a partially filled matrix of behavioral

relations, denoted as Ψξ. In this alternative representation, the columns

represent the matched events in ξ and the rows represent the hidden (un-

matched) events. For instance, the matrix representation of the matching

({a1, b1, c1}, ξ,{a2, b2}) (Figure 5.9) is displayed in Figure 5.10a.

(a1, a2) (b1, b2)

(c1,) (<,) (∣∣,)

(a) Ψξ

(a1, a2) (b1, b2)

(c1, c2) (<,<) (∥,#)

(b) Ψζ

Figure 5.10: (a) Matrix representations for (a) partial match
({a1, b1, c1}, ξ,{a2, b2}) and (b) extended partial match ({a1, b1, c1}, ζ =
ξ[c1 ↦ c2],{a2, b2})

The overall idea in order to diagnose the differences in terms of behav-

ioral relations is the following. Given a partial match ξ, we aim at extending

the mappings (even outside the configurations) for the unmatched events.

The matching for an unmatched event shall have the same label, so that

they can be seen as an instance of the same action, and their dependencies

with the events in ξ shall be as similar as possible. The extension of a

partial match renounces to the requirement that the match should respect

the order in the pomsets, but still tries (following some heuristic) to match

events which are alike. The formal definition of an extended partial match

is presented below.

115

Definition 5.16 (extended partial match). Let P1 = ⟨E1,Conf (P1), λ1⟩

and P2 = ⟨E2,Conf (P2), λ2⟩ be families of pomsets and let ξ ∶ C1 ↛ C2

be a partial match between configurations C1 and C2. An extended partial

match for ξ is an injective partial function ζ ∶ E1 ↛ E2 such that (i) ξ ⊆ ζ,

(ii) for any e1 ∈ C1 such that ζ(e1) ≠ � it holds λ2(ζ(e1)) = λ1(e1) and (iii)

for any e1 ∈ E1 if ζ(e1) ≠ � then either e1 ∈ C1 or ζ(e1) ∈ C2.

Intuitively, the extension of a partial match ξ is any label-preserving

partial function extending ξ. Condition (iii) states that extensions are only

allowed when they match previously unmatched events either in C1 or C2.

Let us introduce some measure of the “quality” of an extension.

Roughly, we try to minimize the number of dependencies on which the

matched events differ. The next definition uses a generic set of relations

R, which is concretely defined depending on the type of event structures

used. I.e., in the case of PES R = {≤,#}, in the case of AES R = {↗∗,<}
and in the case of FES R = {≺,#}.

Definition 5.17 (cost of extensions). Let ζ ∶ E1 ↛ E2 be an extension of

the partial match ξ between configurations C1 and C2, and let R be the

set of relations in the event structure. The cost of ζ is defined as

K(ζ) = ∣{((e1, e2), rel, (e
′
1, e

′
2)) ∶ rel ∈ R ∧ ζ(e1) = e2 ∧ ζ(e′1) = e′2 ∧

¬(e1 rel e′1 ⇐⇒ e2 rel e′2)}∣

We are interested in maximal extensions ζ of a partial match (namely

extensions where all pairs of events with the same labels have been

matched), which minimize the cost K(ζ). If the explicit computation of

a maximal extension with least cost is computationally too expensive, one

can use a local search criteria, i.e., start from a partial match ξ and add a

single pair of events each time (thus applying the rule in Figure 5.11, where

either e1 ∈ C1 or e2 ∈ C2, minimizing the cost at each step).

Consider for example the optimal matching ({a1, b1, c1}, ξ,{a2, b2})

(Figure 5.9). The corresponding optimal maximal extension is shown in

116

ζ(e1) =⊥= ζ
−1(e2) λ1(e1) = λ2(e2)

ζ[e1 ↦ e2]
synthetic match e1, e2

Figure 5.11: Synthetic matching operation

Figure 5.10b, i.e., ({a1, b1, c1}, ζ = ξ[c1 ↦ c2],{a2, b2}). This example is

very simple because there is only one possibility to match the event c1 in

P6 (with event c2).

The partial synchronized product may contain more than one optimal

match for a maximal configuration (and also more than one extended partial

match), each of which leads to the same number of differences. In the

absence of any other intuitive criteria for distinguishing optimal matches,

we select any such matching to generate a verbalization of differences. The

following section describes the verbalization step.

5.2.3 Verbalizing differences

We propose to verbalize each discrepancy by means of a statement consist-

ing of two parts: a description of the context where the discrepancy occurs

and a description of the difference itself.

The context describes the state s in the partial synchronized product

where a given discrepancy (hide operation) occurs. A full representation

of the context consists of the set of events matched in s leading to the dis-

crepancy. In the case of visual feedback, this can be visually represented by

animating the process model in order to show to the user an execution path

leading to the state in question. On the other hand, listing all the events

leading to a given state is arguably less readable in textual form. Instead,

when verbalizing a context in textual form, it may be more convenient to

refer only to a partial description of the context, consisting only of the last

event (i.e., last activity) executed before the hiding operation to be verbal-

ized is reached. In the examples given below we opt for this latter (highly

117

abbreviated) verbalization approach for the context. The problem of accu-

rate abbreviation of execution paths leading to a given state (configuration)

in a process model is further studied in [Lohm 14].

The difference itself is described by referring to either a behavioral re-

lation in one model that is not present in the other, or by stating that the

multiplicity of an activity in one model differs from the multiplicity of the

same activity in the other model. Given that the comparison technique

presented in this section is applicable to either AESs, PESs of FESs, below

we provide the verbalization of the different possible behavioral relations

between activities a and b:

• Causality (<): “a has to occur before activity b”.

• Asymmetric conflict (↗): “a can occur before b or a can be skipped”.

• Flow (≺): “a can occur before activity b”.

• Conflict (#): “a and b are mutually exclusive”.

• Concurrency (∣∣): “a and b are parallel”.

The multiplicity of an activity is verbalized as follows:

• 0..1: “occurs at most once”,

• +: “occurs at least once”, and

• ∗: “occurs 0,1 or more times”.

Whereas, for safe and sound free-choice workflow nets, the multiplicity of

an activity is verbalized as follows:

• +: “occurs any number of times, but at least once”, and

• ∗: “occurs any number of times”.

Based on the above verbalizations of context, behavioral relations and

multiplicity, we use the following templates to verbalize a given discrepancy

between two models M1 and M2 :

1. Case of unmatched event: “In M1, there is a state after < context >

where < activity > always occurs, whereas it cannot occur in the

matching state in M2”

118

2. Case of mismatching relations. “In M1, there is a state after

< context > where < verbalization of relation 1 >, whereas in the

matching state in M2, < verbalization for relation 2 >”

3. Case of mismatching multiplicity: “In M1, < activity > <

verbalization of multiplicity in M1 >, whereas in M2, it <

verbalization of activity multiplicity in M2 >.

As an example, Figure 5.12 shows a pair of PES and their partial syn-

chronized product. The differences, with the approximate context, can be

expressed with the following mismatching relations:

1. (b1, b2), (o
′
1, o2) = (#,<): “In M1, there is a state after i where o and

b are mutually exclusive, whereas in the matching state in M2, b has

to occur before activity o”,

2. (a1, a2), (o
′
1, o2) = (#,<): “In M1, there is a state after i where o and

a are mutually exclusive, whereas in the matching state in M2, a has

to occur before activity o”

3. (b1, b2)(o1, o2) = (#,<): “In M1, there is a state after a where o and

b are mutually exclusive, whereas in the matching state in M2, b has

to occur before activity o”, and

4. (a1, a2), (o
′′′
1 , o2) = (#,<): “In M1, there is a state after b where o

and a are mutually exclusive, whereas in the matching state in M2, a

has to occur before activity o”.

Observe that, even though there are six hiding operations in the

partial synchronized product, there are only four sentences explaining

the differences between both PES. It is due to the fact that ({i1}, ξ =

[i1 ↦ i2],{i2})
hide b2
ÐÐÐÐ→ ({i1}, ξ,{i2, b2}) and ({i1}, ξ,{i2, a2})

hide b2
ÐÐÐÐ→

({i1}, ξ,{i2, a2, b2}) are representing the hiding of b with the same context

ξ, similarly for hide a2 in ξ.

119

i 1

a
1

b 1
o′ 1

o 1
o′′ 1

o′′′ 1

#

#

##

(a
)
P 7

i 2

a
2

b 2

o 2

(b
)
P 8

(
∅
,
∅
,
∅
)

(
{
i 1

}
,
ξ
=
[
i 1
↦
i 2

]
,
{
i 2

}
)

(
{
i 1

}
,
ξ
,
{
i 2
,
b
2
}
)

(
{
i 1
,
a
1
}
,
ξ
1
=
ξ
[
a
1
↦
a
2
]
,
{
i 2
,
a
2
}
)

(
{
i 1

}
,
ξ
,
{
i 2
,
a
2
}
)

(
{
i 1
,
b
1
}
,
ξ
2
=
ξ
[
b
1
↦
b
2
]
,
{
i 2
,
b
2
}
)

(
{
i 1
,
a
1
}
,
ξ
1
,
{
i 2
,
a
2
,
b
2
}
)

(
{
i 1

}
,
ξ
,
{
i 2
,
a
2
,
b
2
}
)

(
{
i 1
,
a
1
,
b
1
}
,
ξ
3
=
ξ
1
∪
ξ
2
,
{
i 2
,
a
2
,
b
2
}
)

(
{
i 1
,
b
1
}
,
ξ
2
,
{
i 2
,
a
2
,
b
2
}
)

(
{
i 1
,
a
1
,
o
1
}
,
ξ
1
[
o
1
↦
o
2
]
,
{
i 2
,
a
2
,
b
2
,
o
2
}
)

(
{
i 1
,
o
′ 1
}
,
ξ
[
o
′ 1
↦
o
2
]
,
{
i 2
,
a
2
,
b
2
,
o
2
}
)

(
{
i 1
,
a
1
,
b
1
,
o
′
′ 1
}
,
ξ
3
[
o
′
′ 1
↦
o
2
]
,
{
i 2
,
a
2
,
b
2
,
o
2
}
)

(
{
i 1
,
b
1
,
o
′
′
′

1
}
,
ξ
2
[
o
′
′
′

1
↦
o
2
]
,
{
i 2
,
a
2
,
b
2
,
o
2
}
)

m
a
tc
h

h
id
e

m
a
tc
h

h
id
e

m
a
tc
h

m
a
tc
h

h
id
e

h
id
e

m
a
tc
h

m
a
tc
h

h
id
e

m
a
tc
h

m
a
tc
h

m
a
tc
h

m
a
tc
h

(c
)

p
a
rt

ia
l

sy
n
ch

ro
n
iz

ed
p
ro

d
u
ct

fo
r
P 7

a
n
d
P 8

F
ig

u
re

5
.1

2
:

P
E

S
s

an
d

th
ei

r
p

a
rt

ia
l

sy
n

ch
ro

n
iz

ed
p
ro

d
u

ct
w

it
h

th
e

o
p

ti
m

a
l

m
a
tc

h
es

120

5.3 Discussion

The use other types of event structures can lead to more compact repre-

sentations and, by the same token, diagnosis. For instance, Figure 5.13

shows an AES that is equivalent to the PES in Figure 5.12a, i.e., history

preserving bisimilar. In this example, the interpretation of the differences

using AESs instead of PESs can be expressed only in two sentences:

1. (b1, b2), (o1, o2) = (↗,<): “In M1, there is a state after i where b can

occur before o or b can be skipped, whereas in the matching state in

M2, b has to occur before activity o”, and

2. (a1, a2), (o1, o2) = (↗,<): “In M1, there is a state after i where b can

occur before o or b can be skipped, whereas in the matching state in

M2, b has to occur before activity o”.

i1

a1 b1

o1

Figure 5.13: AES equivalent to P7 in Figure 5.12a

Many different kinds of event structures have been proposed, relying on

more expressive dependency relations. In this work, we focus on two basic

extensions of prime event structures, namely asymmetric event structures

(AESs) [Bald 01], where conflict is allowed to be non-symmetric, and flow

event structures (FESs) [Boud 89], which provide a form of disjunctive

causality (the causes of an event can be chosen from a set of conflicting

events).

Interestingly, it can be seen that the three event structures depicted

in Figures 5.14(a)-(c) represent the same set of computations, but with

different numbers of events. This happens because AESs and FESs can

take advantage from their relations and semantics in order to avoid some

121

a

e d b c2

c0 c1

#

#

#

#

#

(a) PES

a

e d b

c0 c01

(b) AES

a

e d b c12

c0

#

#

#

#

#

#

(c) FES

Figure 5.14: Three history preserving bisimilar event structures

duplication of events representing activity c. Also, it should be noted that

PESs can be seen as special AESs, where asymmetric conflict is actually

symmetric, and as special FESs, where the flow relation is transitive and

potential causes do not contain conflicts.

The next chapter identifies suitable transformations which reduce the

size of AESs and FESs, without altering the original behavior. The method

is based on the identification of sets of events that intuitively represent

occurrences of the same activity in different contexts and can be safely

folded into a single event. As a reference notion of behavioral equivalence

we consider history preserving bisimilarity [Rabi 88, Glab 89, Best 91], one

of the classical equivalences in the true concurrent spectrum. Indeed, the

three event structures in Figure 5.14 can be shown to be history-preserving

bisimilar. The AES in Figure 5.14b can be seen as a reduction of the PES

in Figure 5.14a that was obtained by “folding” the events c0 and c1 into

a single event c01. Similarly, the FES in Figure 5.14c can be seen as a

reduction of the PES that was obtained by “folding” events c1 and c2 into

c12.

122

Chapter 6

Reduction of event

structures

Process
models

Behavioral
comparison Diagnostics

Petri
nets

Event
structures

Behavioral
equivalences

Unlabeled
WF-flow

nets

Behavioral
profiles Comparison Diagnostics

Co
nf

ig
ur

at
io

n
eq

ui
va

le
nc

e

Behavioral
profiles Comparison Diagnostics

Configuration
equivalence WF-flow

nets

Unlabeled

Labeled

Process
models

Behavioral
comparison Diagnostics

Petri
nets

Event
structures

Behavioral
equivalences

Petri
nets

Prefix
unfolding

Prime
Event

Structures

Partial
Synchronized

Product

Vi
sib

le
 p

om
se

t
eq

ui
va

le
nc

e

Detection of
differences

Verbalization
of differences

Canonical

Petri
nets

Prefix
unfolding

Asymmetric
Event

Structures Partial
Synchronized

Product

Vi
sib

le
 p

om
se

t
eq

ui
va

le
nc

e

Detection of
differences

Folding of
event

structuresFlow
Event

Structures

Verbalization
of differences

Petri
nets

Event
structures

Behavioral
equivalences

Chapter 5 shows an example where smaller event structures can lead

to more compact diagnostics during the comparison and verbalization of

differences. Two types of event structures that can avoid some of the event

duplication inherent to PESs are Asymmetric Event Structures (AESs) and

Flow Event Structures (FESs). This chapter proposes behavior-preserving

(w.r.t. hp-bisimulation) reduction techniques for AESs and FESs, which

aim at finding sets of events that can be replaced with a single event while

keeping the behavior unchanged. Section 6.1 presents an abstract notion

of folding of event structures. Sections 6.2 and 6.3 presents the folding

techniques for AESs and FESs, respectively. Section 6.4 defines a deter-

ministic order on the reduction operations, such that the folded version of

an event structure is always the same. Final discussions are presented in

Section 6.5.

123

6.1 Foldings

We next introduce the notion of folding, which is intended to formalize the

intuition of a behavior-preserving quotient for an event structure. In the

next sections we will provide some concrete folding techniques for AESs

and FESs. The following definition uses E to denote AES and FES indis-

tinctively.

Definition 6.1 (folding). Let E1 and E2 be event structures. A folding

morphism is a surjective function f ∶ E1 → E2 such that the relation Rf =

{(C1, f∣C1
, f(C1) ∣ C1 ∈ Conf (E1)} is a hp-bisimulation. A folding is called

elementary if there is a set X1 ⊆ E1 such that for all e1, e
′
1 ∈ E1, e1 ≠ e

′
1 and

f(e1) = f(e
′
1) iff e1, e

′
1 ∈X1.

In words, a folding is a mapping that “merges” some sets of events of

an event structure into single event keeping the behavior unaltered. It is

elementary if it merges only a single set of events.

Sometimes, with abuse of terminology, we will refer to E2 as the folding

of E1. It can be seen that under mild conditions, the target event structure

is completely determined by the folding map, hence it can be seen as a sort

of quotient along the map.

6.2 Reduction of AESs

The technique for behavior preserving reduction of AESs consists in iter-

atively identifying a set of events carrying the same label, i.e., intuitively

referring to the same activity, and replacing all the events in the set with a

single event. This quotient operation is shown to induce an elementary fold-

ing, i.e., it leaves the behavior unchanged with respect to hp-bisimilarity.

The prototypical example of folding in AESs, which exploits the expres-

siveness of asymmetric conflict, is provided in Figure 6.1. The right AES

is obtained by merging the two conflicting b-labelled events b0 and b1 (the

conflict b0#b1 is inherited from a#b1). Event a is in asymmetric conflict

124

a b1

b0

(a) A′

a

b01

(b)
A′′

Figure 6.1: AES A′ and a folding A′′.

with the event b01 resulting from the merge, thus hist(b01) in A′′ includes

{a, b01} and {b01}, which corresponds exactly to the histories of b0 and b1,

respectively, in the AES A′. The function mapping a identically and b0, b1

to b01 can be easily shown to be a folding.

More generally, the rough idea is that a folding will merge events in

conflict, with the same label and different sets of causes, into a single event

having such sets of causes as possible histories. However, events to be

merged have to be chosen carefully. Consider, for instance, the AESs in

Figure 6.2. The AES A1 can be thought of as a quotient of A0 obtained

by folding the two c-labelled events c0 and c1, the first in conflict with

d and the second caused by d, into a single event c01. The dependencies

d # c0 and d < c1 in A0 give rise to the asymmetric conflict d↗ c01 in A1.

Analogously, A2 is obtained from A0 by merging c0 and c2 into a single

event c02.

c0 d e

c1 c2

(a) A0

d e

c01 c2

(b) A1

d e

c1 c02

(c) A2

Figure 6.2: AESs such that A0 ≡hp A1 but A0 ≢hp A2.

Figure 6.3 shows the sets of configurations of the AESs in Figure 6.2,

endowed with the extension order. Observe that the AESs A0 and A1

have isomorphic partially ordered sets of configurations. Instead, the poset

125

∅
{e}

{e, d}

{e, d, c2}

{d}

{d, c1}

{c0}

(a) Conf(A0)

∅
{e}

{e, d}

{e, d, c2}

{d}

{d, c01}

{c01}

(b) Conf(A1)

∅
{e}

{e, c02} {e, d}

{e, d, c02}

{d}

{d, c1}

{c02}

(c) Conf(A2)

Figure 6.3: Configurations of the AESs in Figure 6.2, ordered by extension

corresponding to A2 has an additional configuration {e, c02} that does not

correspond to any configuration in Conf (A0). Hence, even though A1 and

A2 are obtained from A0 via an apparently similar procedure, the mapping

into A1 is a folding, while the one into A2 is not.

Events that can be merged, intuitively, should represent occurrences of

the same activity in different contexts (leading to different causal histories

for the events). Hence they surely need to have the same label and be

in conflict. Additionally they should relate to the remaining events, via

asymmetric conflict, essentially in the same way. This is formalised by the

notion of similar events.

Definition 6.2 (similar events). Let A = ⟨E,≤,↗, λ⟩ be an AES. We say

that X ⊆ E is a set of similar events if for all x,x′ ∈X, e ∈ E ∖X:

1. λ(x) = λ(x′) and x# x′
2. if x↗ e then x′ ↗ e ∨ e↗ x;

3. e↗δ x ⇒ e↗ x′.
Condition (1) requires that, as mentioned above, the events in X have

the same label and are conflict. By condition (2), given two events x,x′ ∈X,

if for an event e ∈ E ∖X we have x ↗ e then necessarily be also x′ ↗ e,

unless e↗ x, and thus x and e are in conflict. This last clause captures the

situation in which e is in the history of x′ but not in that of x, and thus

126

x and e are in conflict. Finally, condition (3) requires that any direct ↗-

predecessors of an event in X remains a ↗-predecessor for all other events

in X.

We next define the AES which results from the merge of a set of similar

events. For a relation r on events, we will denote by r∀ and r∃ the relations

between events and sets of events defined in the expected way. For instance,

given an event e and a set of events X, by e r∀ X we mean that e r x holds

for all x ∈X, and by X r∃ e we mean that x r e holds for some x ∈X.

Definition 6.3 (quotient of an AES). Let A = ⟨E,≤,↗, λ⟩ be an AES and

X be a set of similar events. The quotient of A with respect to X, denoted

A/X , is the AES A/X = ⟨E/X , </X ,↗/X , λ/X⟩ defined as follows

E/X = (E ∖X) ∪ {eX}

≤/X = ≤∣(E∖X) ∪{(e, eX) ∣ e <∀ X} ∪ {(eX , e) ∣X <∃ e}
↗X = ↗∣(E∖X) ∪{(e, eX) ∣ e↗∀ X} ∪ {(eX , e) ∣X ↗∀ e}
λ/X = λ[eX ↦ λ(x)] for an event x ∈X.

The quotient map fX ∶ A → A/X is defined by fX(x) = eX for x ∈ X and

fX(e) = e for e ∈ E ∖X.

In words, the quotient of A is obtained by replacing the set X of events

with a single event eX , with the same label as those in X. The causes of

eX are the common causes of the events in X. Any event originally caused

by at least an event in X is now caused by eX . This can be understood

by recalling that the quotient map, in order to be a folding, must be in

particular a simulation. Hence, on the one hand, in any computation, a

common cause of all the events in X will surely occur before eX and, on

the other hand, eX will occur before any causal consequence of an event in

X. The asymmetric conflicts for eX are exactly the common asymmetric

conflicts of the events in X. This is explained by the fact that, in order

to be a folding, the quotient map must preserve and reflect the local order

of configurations which is given by (the transitive closure of) asymmetric

conflict.

127

We can prove that, according to the intuition above, the quotient map is

a simulation, in the sense that it preserves configurations and the extension

relation on configurations. We start with a technical lemma, identifying

some relevant properties of the quotient map. This will be used also to

prove that A/X is a well-defined AESs, a fact which has not be showed

formally yet. It could be proved that the quotient map is an AES morphism

in the sense of [Bald 01], but this has not a relevant use in this context.

Lemma 6.4 (properties of the quotient map). Let A = ⟨E,≤,↗, λ⟩ be an

AES and let X ⊆ E be a set of similar events. Then for all e ∈ E, z ∈ E/X
1. if z </X f(e) then there exists e′ ∈ E such that e′ < e and f(e′) = z;

2. if f(e)↗/X f(e′) then e↗ e′;
3. if e↗δ e

′ then f(e)↗/X f(e′) or e#e′;
4. if e < e′ then fX(e)↗/X fX(e′).

Proof. 1. Let z ∈ E/X and e ∈ E be such that z </X f(e). We distinguish

various cases:

• If z = eX then, by Definition 6.3, there exists x ∈ X such that x < e.

Since f(x) = eX and f(e) = e, this is the desired conclusion.

• If e ∈X (and thus f(e) = eX) then by Definition 6.3, z = e′ <∀ X, i.e.,

e′ < x for all x ∈X. Therefore, in particular, e′ < e, as desired.

• If none of the above apply, then z = e′ ∈ E and f(e) = e, hence the

result trivially holds.

2. Let e, e′ ∈ E and assume f(e)↗/X f(e′). If e ∈X and thus f(e) = eX

then, by Definition 6.3, X ↗∀ e′ and thus, again, e↗ e′. If instead, e′ ∈ X
and thus f(e′) = eX then, by Definition 6.3, e ↗∀ X. Thus in particular,

e ↗ e′ as desired. Finally, if e, e′ /∈ X then fX is the identity on e, e′, and

thus the result trivially holds.

3. Let e, e′ ∈ E and assume e↗δ e
′. We distinguish three cases:

128

• If e ∈ X then, by Definition 6.2(2), either e′ ↗ e and thus e#e′ and

we are done, or for all x ∈X we have x↗ e′, namely X ↗∀ e′. In the

last case, according to Definition 6.3, we thus have f(e) = eX ↗/X
e′ = f(e′), as desired.

• If e′ ∈ X then, by Definition 6.2(3), for all x ∈ X we have e ↗ x,

namely e↗∀ X. Thus, by Definition 6.3, f(e) = e↗/X eX = f(e′), as

desired.

• Otherwise, neither e nor e′ are in X and thus the thesis trivially

follows.

4. Let e, e′ ∈ E and assume that e < e′. If e, e′ /∈ X then the relations

between the two events are left unchanged. Since e < e′ and thus e ↗ e′
we have that fX(e) ↗/X fX(e′). If e ∈ X then by Definition 6.2(2) either

x′ ↗ e′ for all x′ ∈ X or e′ ↗ e. The second possibility would lead to

a contradiction, since we would have e#e′ and e < e′. Hence the first

possibility must hold and thus X ↗∀ e′, thus fX(e) = eX ↗/X fX(e′).
Finally, if e′ ∈ X, from e < e′ we know that e < e′′ <δ e′, for some e′′. By

Definition 6.2(3), since e′′ <δ e′ and thus e′′↗δ e
′ we have that e′′ ↗ x, for

all x ∈ X. Recalling that e < e′′, we have e ↗ x, for all x ∈ X, namely

e↗∀ X. Therefore fX(e)↗X eX = fX(e′), as desired.

a

b c1

c0

(a) A3

a

b

c01

(b)
A′

3

Figure 6.4: AES and its quotient

Note that the converse of (2) above, i.e., if e ↗ e′ then fX(e) ↗/X
fX(e′), does not hold. For instance, consider the AES in Figure 6.4. If

129

we merge c0 and c1, we get that a ↗ c0 but it is not true that fX(a) ↗/X
fX(c0) = c01. Moreover, note from (4) and the definition of ≤ in the quotient

(Definition 6.3), it follows that the causes of some event in X which are

not common to all events are turn into (proper) asymmetric conflicts.

Lemma 6.5 (A/X is well-defined). Let A = ⟨E,≤,↗, λ⟩ be an AES and

let X ⊆ E a set of similar events. Then A/X = ⟨E/X ,≤/X ,↗/X , λ/X⟩ is an

AES.

Proof. Let A/X = ⟨E/X ,≤/X ,↗/X , λ/X⟩ be defined as in Definition 6.3 and

Let fX ∶ A → A/X be the quotient map. We first note that ≤ is a partial

order. Antisymmetry is obvious. Transitivity of ≤/X follows immediately

by transitivity of ≤ in A. Moreover, for any event z ∈ E/X , we have that

⌊z⌋ is finite. In fact, let e be any fX -counterimage of z, i.e., e ∈ E such that

fX(e) = z. For any z′ ∈ E/X , if z′ </X z, by Lemma 6.4(1), there exists

e′ < e such that fX(e′) = z′. This means that ⌊z⌋ ⊆ fX(⌊e⌋). Since ⌊e⌋ is

finite, we deduce that also ⌊z⌋ is finite.

Concerning asymmetric conflict ↗/X , conditions (1)-(4) in Defini-

tion 3.31 are easily inherited from those of ↗ in A. More explicitly, let

z, z′, z′′ ∈ E/X . Then we have

1. If z </X z′ then z ↗/X z′.
We distinguish various cases:

• if z = eX and z′ = fX(e′), for an event e′ ∈ E ∖ X then X <∃ e′,
namely, there exists x ∈ X such that x < e′. This implies that x↗ e′
and thus, by the notion of similar events (Definition 6.2) either x′ ↗ e′
for all x′ ∈ X or e′ ↗ x. The latter possibility would lead to x#e′,
contradicting the fact that x < e′. Hence it must be x′ ↗ e′ for all

x′ ∈X, namely X <∀ e′, and thus eX ↗/X fX(e′) = z′.
• if z = fX(e), for an event e ∈ E ∖X, and z′ = eX then e <∀ X. This

implies that e↗∀ X and thus e↗/X eX .

• if both e, e′ ∈ E ∖X, the desired consequence is trivial since the rela-

tions between e and e′ are not modified by the quotient operation.

130

2. if z ↗/X z′ </X z′′ then z ↗/X z′′.
We distinguish various cases.

• If z = eX and thus z′ = fX(e′), z′′ = fX(e′′), for events e′, e′′ ∈ E ∖X,

then by Definition 6.3, we have X ↗∀ e′ in A, and thus x ↗ e′ < e′′
for all x ∈ X. Therefore, x ↗ e′′ for all x ∈ X, namely X ↗∀ e′′ and

thus z = eX ↗ z′′ = fX(e′′).
• If z′′ = eX and thus z = fX(e), z′ = fX(e′), for events e, e′ ∈ E ∖X,

then by Definition 6.3, we have e <∀ X. Thus for all x ∈ X it holds

e ↗ e′ < x, hence e ↗ x. This means that e ↗∀ X and thus z =

fX(e)↗/X z′′ = fX(eX), as desired.

• If z′ = eX and thus z = fX(e), z′′ = fX(e′′), for events e, e′ ∈ E ∖X,

then by Definition 6.3 there exists e′ ∈X such that e′ < e′′. Moreover,

e ↗ e′ and thus e ↗ e′′ in A. Since e, e′′ are left unchanged by the

quotient, z = fX(e)↗ fX(e′′) = z′′ in A/X .

• If none of z, z′, z′′ ∈X then the thesis trivially holds since the relations

between such events are not modified by the quotient operation.

3. ↗⌊x⌋A/X is acyclic for all x ∈ E/X
Let z ∈ E/X be an event and suppose that ⌊z⌋ contains a cycle z1 ↗/X

z2 ↗/X . . . ↗/X z1. By surjectivity of fX we can find e ∈ E such that

z = fX(e). By Lemma 6.4(1), there are events e1, . . . , en ∈ ⌊e⌋ such that

fX(ei) = zi for any i ∈ {1, . . . , n}. By point (2) of the same lemma, e1 ↗

e2 ↗ . . . ↗ e1. This contradicts the property of ↗⌊e⌋∈ A being acyclic for

any event e ∈ A.

4. if ↗/X ∣⌊z⌋∪⌊z′⌋ is cyclic then z ↗/X z′.
Let e, e′ ∈ E such that fX(e) = z and fX(e′) = z′. As observed in the proof

of point (1), we have that ⌊z⌋ = ⌊fX(e)⌋ ⊆ fX(⌊e⌋) and ⌊z′⌋ = ⌊fX(e′)⌋ ⊆
fX(⌊e′⌋). Therefore if ↗/X is cyclic over ⌊z⌋ ∪ ⌊z′⌋, it is cyclic also over

fX(⌊e⌋) ∪ fX(⌊e′⌋) = fX(⌊e⌋ ∪ ⌊e′⌋). Since, by Lemma 6.4(2), fX reflects

asymmetric conflict, this implies that ↗ is cyclic on ⌊e⌋ ∪ ⌊e′⌋. Therefore

e↗ e′. Since this holds for any e, e′ such that fX(e) = z and fX(e′) = z′, a

131

case distinction similar to that in the previous points, allows us to conclude

z ↗ z′.
We can now show that quotient map preserves configurations and the

extension order.

Lemma 6.6 (quotient preserves configurations). Let A = ⟨E,≤,↗, λ⟩ be

an AES, X ⊆ E a set of similar events and let fX ∶ A → A/X be the

quotient map. Then for any configuration C ∈ Conf (A) it holds that

fX(C) ∈ Conf (A/X) and fX ∣C ∶ (C,↗∗
C) → (fX(C),↗∗

fX(C)) is an iso-

morphism of configurations.

Proof. Let C ∈ Conf (A) be a configuration. We first observe that fX(C) is

a configuration in Conf (A/X). For proving causal closedness, take e ∈ C and

consider the event fX(e) ∈ fX(C). If z </X fX(e) by Lemma 6.4(1) there

exists e′ ∈ E such that e′ < e and fX(e′) = z. Since C is a configuration,

necessarily e′ ∈ C and thus z = fX(e′) ∈ fX(C).

Moreover, ↗/X is acyclic on fX(C). In fact, if there were a cy-

cle in fX(C) it would be of the kind fX(e1) ↗/X fX(e2) ↗/X . . . ↗/X
fX(en) ↗/X fX(e1), for e1 . . . , en ∈ C. Then by Lemma 6.4(2), we would

have e1 ↗ e2 ↗ . . .↗ en ↗ e1, contradicting the fact that C is a configura-

tion.

In order to prove that fX ∣C ∶ (C,↗∗
C)→ (fX(C),↗∗

fX(C)) is an isomor-

phism of configurations, it suffices to observe that for all e, e′ ∈ C we have

that

1. if fX(e)↗δ fX(e′) then e↗ e′;
2. if e↗δ e

′ then fX(e)↗ fX(e′).
Point (1) is a special case of Lemma 6.4(2). For point (2), let e↗δ e

′. Then

by Lemma 6.4(3), either fX(e) ↗ fX(e′) or e#e′. Since the latter cannot

hold, because e, e′ ∈ C which is a configuration, necessarily fX(e)↗ fX(e′),
as desired.

As an immediate consequence of the above result, we can prove that

the extension order is preserved and reflected by the quotient map.

132

a0 a1

b

(a) A4

b

a0 a1

(b) A′
4

a01

b

(c)
A4/X

a01 b

(d) A′
4/X

Figure 6.5: Quotients with respect to a set X = {a0, a1} of non-similar
events

Corollary 6.7. Let A = ⟨E,≤,↗, λ⟩ be an AES, X ⊆ E a set of similar

events and let fX ∶ A→ A/X be the quotient map. Then for all configuration

C,C ′ ∈ Conf (A) it holds that C ⊑ C ′ iff fX(C) ⊑ fX(C ′).

Observe that conditions (2) and (3) in Definition 6.2 are necessary for

the simulation result. For instance consider the AESs in Figures 6.5a

and 6.5b, and their quotients A4/X and A′
4/X with respect to the set

X = {a0, a1}, in Figures 6.5c and 6.5d. In both cases, the quotients do

not simulate the original AES.

More in detail, for the AES A4, we have a0 ↗ b while neither a1 ↗ b nor

b↗ a0, thus violating condition (2). Indeed A4 has the configuration {a1, b}

with a1 and b concurrent, which is not in the quotient. In the AES A′
4 of

Figure 6.5b, b↗δ a0 while it is not the case that b ↗ a1, thus violating

condition (3). In this case A′
4 has the configuration {b, a0} with b < a0,

which is not in the quotient.

However, quotienting an AES on a set of similar events X still can alter

the behavior. Consider for instance the AESs A0 and A2 in Figure 6.2.

We have that A2 = A0/{c0,c2} and {c0, c2} set of similar events. We already

noted that A0 and A2 are not hp-bisimilar since A2 admits a configuration

133

{e, c02}, which has no counterpart in A0: it represents a new history for a c-

labelled event. The problem resides in the fact that the causes of some event

x ∈ X, which are not causes for all events in X will become asymmetric

conflicts in the quotient, hence they can either appear or not in the histories

of eX . The same applies to ↗-predecessors of such causes. The (consistent)

combinations of these events will lead to different possible histories for the

merged event eX . Such histories must be already histories of some event

in X in the original AES, otherwise they will represent newly generated

behaviors.

In order to formalise this fact given an AES A and a set X of similar

events A we introduce the set of possible events for X which intuitively are

those events which, in the quotient, can either occur or be omitted in the

histories of eX .

Definition 6.8 (possible events). Let A = ⟨E,≤,↗, λ⟩ be an AES and let

X ⊆ E a set of similar events. The set of possible events for X is

p(X) = {e ∈ E ∣ ¬(X ↗∀ e) ∧ ¬(e <∀ X) ∧ e↗∃ X}.

According the way in which ↗/X and </X are introduced in Defini-

tion 6.3 the requirement ¬(X ↗∀ e) implies ¬(eX ↗/X e) (and thus eX and

e are not in conflict) and the requirement ¬(e <∀ X) implies ¬(e </X eX).

Finally, concerning the requirement e↗∃ X, namely e↗ x for some x ∈X,

there are two possibilities. If e↗δ x then by Definition 6.2(3), e↗∀ X and

thus e↗/X eX in the quotient. Otherwise, e↗ e′ < x for some event e′, and

thus e↗/X e′ ↗/X eX in the quotient (since as observed above, causalities

either remains unchanged or become asymmetric conflicts). In both cases,

according to the informal explanation above, they can be either included

or not in the history of eX .

Marginally, we observe that the set p(X) can include events that are not

in the history of any event in X. This happens for the AES in Figure 6.6,

taking X = {c0, c1}.

134

a b

c0 c1

Figure 6.6: The set p({c0, c1}) = {a, b}, includes a which is neither in the
history of c0 nor of c1

As mentioned above, in order not to modify the overall behavior, all

consistent subsets of p(X) should match some possible history of an event

in X in the original AES. For instance, in Figure 6.2, in A0 we have that

p({c0, c1}) = {d} while p({c1, c2}) = {d, e}. While in the first case for any

(consistent) subset of p({c0, c1}) (namely ∅ and {d}) there are c-labelled

events (namely c0 and c1) having these subsets as histories; in the second

case the possible consistent subsets of p({c1, c2}) = {d, e} include {e} which

is not the history of any c-labelled event. Hence the first quotient A1 =

A0/{c0,c1} preserves the behavior, while the second A2 = A0/{c0,c2} does not.

The above considerations lead to the notion of combinable set of events.

Definition 6.9 (combinable set of events). Let A = ⟨E,≤,↗, λ⟩ be an AES.

A set of events X ⊆ E of similar events is combinable if for all Y ⊆ p(X),

consistent and causally closed (namely if e ∈ Y and e′ ∈ p(X), e′ < e then

e′ ∈ Y) there exists e ∈X and H ∈ hist(e) such that H ∩ p(X) = Y .

We finally now show that the quotient with respect to a combinable set

of events is a folding, i.e., the corresponding quotient map can be seen as

a hp-bisimilarity between A and A/X .

Theorem 6.10 (quotient map is a folding). Let A = ⟨E,≤,↗, λ⟩ be an

AES and let X be a combinable set of events. Then the quotient map

fX ∶ A→ A/X is a folding.

Proof. Let A be an AES, let X be a combinable set of events and let

fX ∶ A→ A/X be the quotient map, where A/X = ⟨E/X ,≤/X ,↗/X , λ/X⟩

We prove that

R = {(C1, f∣C1
, fX(C1)) ∣ C1 ∈ Conf (A)}

135

is a hp-bisimulation.

First of all notice that for any C1 ∈ Conf (A), if we let C2 = fX(C1), then

by Lemma 6.4, f∣C1
∶ (C1,↗

∗)→ (C2,↗
∗), is an isomorphism of pomsets.

In order to conclude, we next prove that

1. if there is e ∈ E such that C1 ⊑ C1 ∪ {e} ∈ Conf (A) then C2 ⊑ C2 ∪

{fX(e)} ∈ Conf (A/X);

2. if there is z ∈ E/X such that C2 ⊑ C2 ∪ {z} ∈ Conf (A/X) then there is

e ∈ E such that fX(e) = z and C1 ⊑ C1 ∪ {e} ∈ Conf (A/X).

which corresponds to conditions (a) and (b) in Definition 3.42.

1. Note that C2 ∪ {fX(e)} = fX(C1 ∪ {e}) is a configuration by

Lemma 6.6. Moreover C2 ⊑ C2 ∪ {fX(e)}, namely there is no e′ ∈ C1

such that fX(e) ↗/X fX(e′), otherwise by Lemma 6.4(2) we would have

e↗ e′, contradicting C1 ⊑ C1 ∪ {e}.

2. Assume that C2 ⊑ C2 ∪ {z} ∈ Conf (A/X) for some z ∈ E/X . We

distinguish two cases.

2.a) z ∈ E ∖X

Take the (unique) fX -counterimage of e of z, namely fX(e) = z. A key

observation is that

there is no e′ ∈ C1 such that e↗ e′. (†)

In fact, we can show that given e′ ∈ C1 such that e ↗ e′ then there exists

e′′ ∈ C1 such that z = fX(e) ↗/X fX(e′′), contradicting the fact that C2 ⊑

C2 ∪ {z}. In order to prove this, we distinguish two cases.

• First assume that e↗δ e
′. If e′ /∈X then clearly fX(e)↗/X fX(e′). If

e′ ∈ X then by Definition 6.2(3) e↗ x for all x ∈ X, namely e↗∀ X.

Thus also in this case, by Definition 6.3, fX(e) = e ↗ eX = fX(e′).
Hence the desired result holds taking e′′ = e′.

• If instead the asymmetric conflict is not direct, then there exists e′′′
such that e↗δ e

′′′ < e′. Since e′ ∈ C1 by causal closure also e′′′ ∈ C,

and thus the same argument of the previous case allows to conclude.

136

Now we can easily prove that C1 ∪ {e} ∈ Conf (A). For thus, we need

to show that ⌊e⌋ ⊆ C1 Take any e′ < e. Since e /∈ X, by Definition 6.3, we

have fX(e′) </X fX(e) and thus fX(e′) ∈ fX(C1). Take e′′ ∈ C1 such that

fX(e′′) = fX(e′). We observe that it must necessarily be e′ = e′′. In fact, if

e′ ≠ e′′ it should be e′, e′′ ∈ X and thus e′#e′′. By inheritance of conflict,

this would lead to e#e′′ and hence e ↗ e′′ violating (†) above. Hence it

must be e′ = e′′ ∈ C1, as desired. The absence of cycles of asymmetric

conflict in C1 ∪ {e} follows immediately by the same property in C1 and

property (†) above.

Also the fact that C1 ⊑ C1 ∪ {e} is an immediate consequence of (†)

above.

2.b) z = eX

Consider the set

Y = C1 ∩ p(X)

Clearly Y ⊆ p(X). Moreover, it is consistent and causally closed. In

fact, Y is consistent since it is a subset of C1. It is also causally closed. In

fact, if e ∈ Y and e′ ∈ p(X), e′ < e, since e ∈ Y ⊆ C1 and configurations are

causally closed, we deduce e′ ∈ C1 and thus e′ ∈ Y .

Hence, by Definition 6.9, there exists x ∈ X and H ∈ hist(x) such that

H ∩ p(X) = Y .

As in the previous case we observe that

there is no e ∈ C1 such that x↗ e. (†)

In fact, given e ∈ C1 such that x ↗ e then, according to Definition 6.2(2),

we have that either x′ ↗ e for all x′ ∈ X or there exists x′ ∈ X such that

¬(x′ ↗ e) and x#e. In the first case, we would have X ↗∀ e and thus

z = eX ↗/X fX(e) ∈ C2, contradicting the fact that C2 ⊑ C2 ∪ {z}. In the

second case, from x#e we have e ↗ x and, additionally, there is x′ ∈ X
such that ¬(x′ ↗ e). Hence e ↗∃ X and ¬(X ↗∀ e). Moreover it cannot

be e < x, since e#x, thus ¬(e <∀ X). This means that e ∈ p(X). Recalling

e ∈ C1, we deduce that e ∈ Y . Since by construction Y ⊆H, in turn, we get

e ∈H which leads to a contradiction since H is an history of x, and thus it

cannot include events in conflict with x.

137

Now observe that ⌊x⌋ ⊆ C1. In fact for any e < x either fX(e) < fX(x) =

eX or, by Lemma 6.4(4), fX(e) ↗ fX(x) = eX . In the first case, since

fX(e) < eX necessarily fX(e) ∈ C2 and thus, since fX is the identity on

e, we deduce e ∈ C1. In the second case, by Definition 6.3, it must be

¬(e <∀ X). Additionally, since e < x he have that e ↗∃ X and ¬(X ↗∀ e)
(in particular, ¬(x ↗ e)). Hence e ∈ p(X) and, since e < x, necessarily

e ∈H. Thus e ∈ Y =H ∩ p(X) and therefore e ∈ C1.

By above and (†) C1 ∪ {x} is a configuration and C1 ⊑ C1 ∪ {x}. By

Lemma 6.6, since f(C1 ∪ {x}) = C2 ∪ {eX}, they are isomorphic.

By iteratively applying the quotient to a given finite AES we can thus

obtain an AES which is hp-bisimilar to the original one and not further

reducible. Unfortunately, this does not provide a canonical minimal repre-

sentative of the behavior. For instance, consider the AES in Figure 6.2(a).

There exist two possible quotiented AESs, presented side-by-side in Fig-

ure 6.7, which are cannot be further reduced using the quotient operation.

d e

c01 c2

(a) A5

c0 d e

c12

(b) A6

Figure 6.7: Foldings for the AES in Figure 6.2

Observe that this is not due to a limitation of our quotient technique,

but rather it is intrinsic in the nature of AESs and their foldings. In fact,

one can see that for these two AESs there are no non-trivial foldings (i.e.,

the only foldings are isomorphisms). This fact can be shown just by inspect-

ing all the possible label preserving surjective mappings. In this regard, we

address the problem of the non-canonical minimal representation in Sec-

tion 6.4, where we present a way to define a deterministic order on the

folding operations. Still, the question remains as to whether our quotient

technique is in some sense complete, i.e., if it generates all the possible

138

foldings. We will come back to this question in the discussions at the end

of this chapter.

6.3 Reduction of FESs

The technique for behavior preserving reduction of FESs, as in the case of

AESs, consists in iteratively identifying a set of conflicting events with the

same label that, when replaced by a single event, induces an elementary

folding. As observed in the introduction, the way in which FESs generalizes

PESs is somehow orthogonal to that of AESs: the latter allow a non-

symmetric form of conflict, while the former introduce a form of disjunctive

causality. As a consequence, at a technical level the conditions defining the

sets of events that can be merged are quite different.

a b

c0 c1

d e

#

##

#

(a) F

a b

c01

d e

#

(b) F′

Figure 6.8: FES F and a folding F′

A prototypical example of folding in FESs, which exploits the possibility

of modelling disjunctive causality, is provided in Figure 6.8. The FES F′ is

obtained from F by merging the two conflicting c-labelled events c0 and c1.

The resulting merged event c01 has a and b as ≺-predecessors, and d and e

as ≺-successors. Since a and b are in conflict, exactly one of them will be in

a configuration including c01. The function mapping a, b, d, e identically,

and c0, c1 to c01 can be easily shown to be a folding.

Now consider a more complex example in Figure 6.9a. First, if we take

events c0 and c1 and try to merge them into a single event c01, there would

139

a b d e

c0 c1 c2

#

#

#

#

#

#

##

#

#

#

(a) F0

a b d e

c0 c12

#

#

#

##

#

#

(b) F1

Figure 6.9: Sample FESs

be no way of updating the dependency relations while keeping the behavior

unchanged (since b excludes c0 and precedes c1, the resulting dependency

between b and the merged event c01 would be an asymmetric conflict that

cannot be represented in FESs). Instead, we can merge events c1 and c2

in F1 into a single event c12, thus obtaining the FES in Figure 6.9b. In

this case, the merge is possible because the original events c1 and c2 are

enabled by {b} and {d, e}, respectively, and since b#d, b#e, after the merge

the same situation is properly represented as a disjunctive causality.

In order to define sets of events that can be safely merged we need some

further notation. Given a set of events Z, we denote by mc(Z) the set of

maximal and consistent (i.e., conflict free) subsets of Z. Additionally, as in

the case of AESs, we need to single out conflicts that are direct.

Definition 6.11 (direct conflict). Let F be a FES and let e, e′ ∈ E. We say

that e is a direct conflict for e′, denoted as e#δ e
′, if e#e′ and ∃Y ∈mc(●e)

such that Y ∪ {e′} is consistent.

Intuitively, a conflict e#e′ is direct when there is a way of reaching a

configuration where e is enabled, without disabling e′. Note that direct

conflict is not symmetric in FESs. For instance for the FES depicted in

Figure 6.10, we have a#δ d while it is not the case that d#δ a.

We use the extensions of relations # and ≺ to relations between sets

and events, as already done for AESs. For instance, given X ⊆ E and e ∈ E

140

a b

c d

#

##

#

Figure 6.10: Example of direct conflict in FES, a#δ d and ¬(d#δ a)

we write X#∀e whenever for all x ∈X, we have x#e, or X ≺∃ e when there

exists x ∈X such that x ≺ e.

We can now define the notion of combinable set of events for FESs.

Definition 6.12 (combinable set of events). Let F be a FES. A set of

events X ⊆ E is called combinable if for all x,x′ ∈ X and e, e′ ∈ E ∖X the

following holds

1. λ(x) = λ(x′) and x#x′,
2. x#δ e⇒ x′#e,
3. x ≺ e⇒ x′ ≺ e ∨ x′#e,
4. e ≺ x⇒ ●x′ ≠ ∅ ∧ (e ≺ x′ ∨ (∀e′ ≺ x′ ∧ e′ ∉ ●x. e#e′)),
5. x, e′ ∈ ●e ∧ x#e′ ∧ ¬(X ∖ {x}#∀e′)
⇒ ∀Y ∈mc(●e). (x ∈ Y ⇒ ∃e′′ ∈ Y ∖ {x}. e′′#e′)∧

(X ∩ Y = ∅⇒ ∃e′′ ∈ Y. X#e′′)
Roughly speaking, condition (1) requires that the events in X are oc-

currences of the same activity (they have the same label and they are in

conflict). Condition (2) requires that events in X have the essentially the

same conflicts: for any x ∈ X, if x is in direct conflict with an event e

(hence this conflict is not derivable from the ≺-predecessors) then all events

in X must be in conflict with e. Conditions (3) and (4) state that predeces-

sors and successors are preserved among events in X or they can become

conflicts. The rough intuition is that events whose causes are in conflict

can be possibly merged thus getting a single event having the conflicting

causes as ≺-predecessors and the conflicting consequences as ≺-successors.

More in detail, by condition (4), if an event x ∈ X has a non-empty set of

≺-predecessors, then the same must be true for all events in X. Moreover,

141

if e is a ≺-predecessors of some x ∈ X then for any other x′ ∈ X, either e is

a ≺-predecessor of x′ or it is in conflict with all the ≺-predecessors of x′ not

in common with x (namely with the events in ●x′ ∖ ●x). This ensures that,

whenever we merge the events in X thus joining their ≺-predecessors, the

maximal consistent subsets of ≺-predecessors will remain unchanged (see

Lemma 6.13, where the role of condition (4) emerges formally).

Finally, condition (5) takes into account the situation in which events

x ∈X and e′ ∈ E ∖X are conflicting ≺-predecessor of an event e, but not all

events in X are in conflict with e′. This is problematic because, after the

merging, the conflict between x and e′ will be lost, thus possibly changing

the maximal subsets of ≺-predecessors. The condition indeed says that

merging is still allowed if the conflict x#e′ is not essential when forming

the maximal consistent sets of ≺-predecessors for e. In detail, it is required

that for any Y ∈mc(●e)
• if x ∈ Y then x is not the only event in Y which is in conflict with

e′, so that losing the conflict x#e′ would not be problematic and Y

would remain a maximal consistent set;

• if none of the events of X occur in Y then this is due to the presence in

Y of an event e′′ in conflict with all events in X (which, in particular,

is not e′ and thus this will remain a maximal set even if the conflict

x#e′ is lost).

For example, consider the FES F2 in Figure 6.11a. If we take X =

{ax, ax′} then condition (5) fails. Please note that events corresponding

to those in condition (5) have a subscript which should suggest their role.

We have ●ce = {ax, ax′ , be′} and thus mc(●ce) = {Y,Y ′} with Y = {ax} and

Y ′ = {ax′ , be′}. Observe that ax ∈ Y but clearly there is no e′′ ∈ Y ∖{ax} = ∅

satisfying e′′#be′ . The quotient of F2 with respect to X (formally defined

later in Definition 6.14) would lead to the FES F3 in Figure 6.11b, which

is not behaviorally equivalent to F2. In particular, observe that ce is no

142

e d

ax ax′ be′

ce

#

#

#

#

#

#

(a) F2

e d

axx′ be′

ce

#

#

(b) F3

e d

fe′′ ax ax′ b

ce

#

#

#

#

#

#

#

#

#

(c) F4

e d

fe′′ axx′ be′

ce

#

##

#

(d) F5

Figure 6.11: Example FESs to illustrate Condition 5 in Definition 6.12

longer executable after the occurrence of e since it would require the prior

execution of axx′ and be′ , which instead cannot be in the same computation

since be′#e. This means that axx′#sbe′ , i.e., the two events are in semantic

conflict, although it is not the case that axx′#be′ (hence the quotient FES is

not faithful). Note that saturating the conflict would not solve the problem.

In fact, if in the quotient FES F3 we enforced the conflict axx′#be′ , then

a configuration corresponding to {d, ax, be′} ∈ Conf (F2) would be missing.

A situation in which condition (5) is satisfied is instead illustrated by the

FES F4 in Figure 6.11c. Again we take X = {ax, ax′}. We have ●ce =

{fe′′ , ax, ax′ , be′} and thus mc(●ce) = {Y,Y ′} with Y = {fe′′ , ax} and Y ′ =
{ax′ , be′}. Note that ax ∈ Y and there is indeed fe′′ ∈ Y such that fe′′#be′ .

143

The condition is satisfied also exchanging the roles of ax and ax′ . Indeed, in

the resulting quotient FES F5, depicted in Figure 6.11d, after the execution

of e or d, there are still two maximal and consistent set of ≺-predecessors

for the event ce, namely {axx′ , fe′′} and {axx′ , be′}.

We prove a technical lemma which shows that for a combinable set of

events X, the maximal consistent sets of the ≺-predecessors of X and those

of single events in X coincide. This clarifies the role of condition (4) in the

definition of combinable set of events and will be useful later, for proving

that the quotient does not alter the behavior.

Lemma 6.13 (preservation of consistent sets). Let F = ⟨E,#,≺, λ⟩ be a

FES and let X ⊆ E be a combinable set of events. Then for any consistent

set Y ⊆ E it holds that Y ⊆ ●X iff there exists x ∈ X such that Y ⊆ ●x.

Hence:

Y ∈mc(●X) iff there exists x ∈X such that Y ∈mc(●x).

Proof. Let Y ⊆ E be consistent. Let us assume that Y ⊆ ●X = ⋃x∈X ●x and

prove that there exists x ∈X such that Y ⊆ ●x. If Y = ∅ the assert is trivial.

Otherwise, take e′ ∈ Y . By the assumption Y ⊆ ●X there must be x′ ∈ X
such that e′ ∈ ●x′. We show that Y ⊆ ●x′. In fact, for any e ∈ Y there must

exists x ∈ X such that e ∈ ●x. Since e ≺ x, by Definition 6.12(4), either

e ≺ x′ or we should have e#e′. The latter possibility would contradict the

consistency of Y . Hence it must be e ≺ x′, namely e ∈ ●x′. Therefore Y ⊆ ●x′,
as desired. The converse implication is trivial since ●X = ⋃x∈X ●x.

Now, the second part of the lemma, namely the fact that Y ∈ mc(●X)

iff there exists x ∈X such that Y ∈mc(●x) is an immediate consequence of

the first. In fact, let Y ∈mc(●X). Then, by the first part of the lemma we

know that there is x ∈ X such that Y ⊆ ●x. Again by the first part of the

lemma Y is maximal among the consistent subsets of ●x, since these are also

consistent subsets of ●X. Hence Y ∈ mc(●x). Vice versa, let Y ∈ mc(●x).
Clearly Y ⊆ ●X. Moreover, Y is maximal among the consistent subsets of●X. To see this, take any Y ′ ⊆ ●X consistent and assume that Y ⊆ Y ′.
By the first part of the lemma, there is x′ ∈ X such that Y ⊆ ●x′. Then

144

necessarily Y = Y ′, otherwise, by Definition 6.12(4), given y′ ∈ Y ′ ∖ Y we

would have y′#y for any y ∈ Y , which is absurd since Y ⊆ Y ′ and Y ′
consistent.

We next formally define the quotient of a FESs with respect to a com-

binable set of events.

Definition 6.14 (quotient of FESs). Let F = ⟨E,#,≺, λ⟩ be a FES, X be

a combinable set of events. The quotient of F with respect to X, denoted

by F/X , is the FES F/X = ⟨E/X ,#/X ,≺/X , λ/X⟩ where

E/X = (E ∖X) ∪ {eX}

#/X = #∣(E/X) ∪ {(e, eX) ∣ e#∀X}

≺/X = ≺∣(E/X) ∪{(e, eX) ∣ e ≺∃ X} ∪ {(eX , e
′) ∣X ≺∃ e′}

λ/X = λ/X[eX ↦ λ(x)] for an event x ∈X.

The quotient map fX ∶ F → F/X is defined by fX(x) = eX for x ∈ X and

fX(e) = e for e ∈ E ∖X.

The rest of the section is dedicated to showing that the quotient op-

eration on FESs induces a (elementary) folding, namely it preserves hp-

bisimilarity.

The idea underlying the proof for AESs was that events that are merged

are occurrences of the same activity with different histories. They could

be merged if the histories were compatible and after merging, the possible

histories remained the same. For FESs the intuition of the proof is similar,

but now events can occur after a maximal consistent set of ≺-predecessors

which roughly play the role of histories in AESs. By Lemma 6.13, after

merging a set of combinable events this maximal subsets of consistent events

remains unchanged. This will be a core ingredient in the proof that the

quotient does not alter the behavior.

We start by showing some properties of the quotient map which will be

used later for showing that it transforms configurations of the original FES

into isomorphic configurations of the quotient FES. We do not rely on the

145

notion of FES morphism from [Cast 97], which would be too strong for our

needs (in particular, condition (iii) of [Cast 97, Definition 4] is not satisfied

by our quotient map).

Lemma 6.15 (properties of the quotient map). Let F = ⟨E,#,≺, λ⟩ be a

FES, X ⊆ E be a combinable set of events let fX ∶ F → F/X be the quotient

map. Then for all e, e′ ∈ E:

1. if fX(e)#/XfX(e′) then e#e′
2. if e ≺ e′ then fX(e) ≺/X fX(e′);

3. if fX(e) ≺/X fX(e′) then e ≺ e′ ∨ e#e′
4. if fX(e) = fX(e′) then e = e′ ∨ e#e′.

Proof. 1. Let e, e′ ∈ E and assume fX(e)#/XfX(e′). Notice that at least

one between e and e′ is not in X, otherwise we would have fX(e) = fX(e′)
that is a contradiction since, by construction, #/X is irreflexive. We distin-

guish various cases. If e ∈X and thus fX(e) = eX , then by definition of con-

flict in the quotient FES (Definition 6.14), since fX(e) = eX#/XfX(e′), it

must be X#∀e′, and thus in particular e#e′, as desired. The case in which

e′ ∈ X is analogous, since conflict is symmetric. Otherwise, if e, e′ ∉ X the

property trivially holds, since fX is the identity on e, e′ and their mutual

relations are not changed by the quotient operation.

2. Let e, e′ ∈ E be such that e ≺ e′. Note that it cannot be e, e′ ∈ X,

otherwise, we would have e ≺ e′ and, by Definition 6.12(1), e#e′, violating

the disjointness of ≺ and #. Hence we distinguish the following cases:

• If e ∈X and e′ ∉X, by Definition 6.14, eX = fX(e) ≺/X fX(e′) = e′ as

desired.

• If e′ ∈X and e ∉X, by construction, e = fX(e) ≺/X fX(e′) = eX .

• If e, e′ ∉ X then fX is the identity on e, e′ and the result trivially

holds.

3. Let e, e′ ∈ E be such that fX(e) ≺/X fX(e′). Note that it cannot be

e, e′ ∈ X, otherwise, we would have fX(e) = eX ≺/X eX = fX(e′), while by

construction ≺/X is irreflexive. Hence we distinguish the following cases:

146

• If e ∈ X and e′ ∉ X, by construction, there exists x′ ∈ X such that

x′ ≺ e′. Then, either x′ = e and thus e ≺ e′, or, by Definition 6.12(3),

e′#e as desired.

• If e′ ∈ X and e ∉ X, by construction, there exists x ∈ X such that

e ≺ x. Then, either x = e′ and thus e ≺ e′, or, by Definition 6.12(4),

e′#e as desired.

• Otherwise, if e, e′ ∉X then fX is the identity on e, e′ and hence e ≺ e′.

4. Let e, e′ ∈ E such that fX(e) = fX(e′), with e ≠ e′. This means that

e, e′ ∈ X and thus, since the events in X are pairwise conflicting, we have

that e#e′.
We can now show that the quotient map transforms any configuration

of the original FES into an isomorphic configuration of the quotient.

Lemma 6.16 (quotient preserves configurations). Let F = ⟨E,#,≺, λ⟩ be

a FES, X ⊆ E be a combinable set of events and let fX ∶ F → F/X be the

quotient map. For any configuration C ∈ Conf (F) then fX(C) ∈ Conf (F/X)

and, additionally, fX ∣C ∶ (C,≺∗C) → (fX(C),≺∗fX(C)) is an isomorphism of

configurations.

Proof. We first prove that fX(C) is a configuration.

1. fX(C) is conflict free.

This follows directly from Lemma 6.15(1). In fact, for e, e′ ∈ C, if it

were fX(e)#/XfX(e′) then we would deduce e#e′, contradicting the

fact that C is a configuration.

2. fX(C) has no ≺-cycles.

Observe that, by Lemma 6.15(3), fX reflects the flow relation over

events of a configuration, namely for e, e′ ∈ C, if fX(e) ≺/X fX(e′)
then e ≺ e′ (since the case e#e′ would contradict the fact that C

is a configuration). As a consequence, a ≺-cycle in fX(C) would be

reflected in C.

147

3. For all z ∈ fX(C) and z′ ∉ fX(C) s.t. z′ ≺ z, there exists z′′ ∈ fX(C)

such that z′#z′′ ≺ z.
Let z ∈ fX(C), z′ ∉ fX(C), such that z′ ≺ z. Therefore, there are

e ∈ C such that z = fX(e) and, by surjectivity of fX , e′ ∉ C such that

z′ = fX(e′).
By Lemma 6.15(3) either (i) e′#e or (ii) e′ ≺ e. Below we treat the

two cases separately.

(i) If e′#e, the fact that ¬(e′ ≺ e) while fX(e′) ≺/X fX(e), the con-

struction in Definition 6.14, implies that one of the following holds:

• e ∈X and there exists x ∈X such that e′ ≺ x.

Note that the conflict e#e′ cannot be direct, otherwise, by Def-

inition 6.12(2), one should have also x#e′. Hence, since by def-

inition of configuration, the set ●e ∩ C ∈ mc(●e), there must be

e′′ ∈ ●e ∩ C such that e′#e′′. Hence e′′ ∈ C and e′′ ≺ e. There-

fore by Lemma 6.15(2), fX(e′′) ≺/X fX(e) = z. Moreover, since

e′, e′′ ∉X, we have fX(e′′)#/XfX(e′) = z′, as desired.

• e′ ∈X and there exists x′ ∈X such that x′ ≺ e.
In this case note that fX(x′) = fX(e′) = eX and thus we can take

x′ instead of e′, and proceed as in case (ii).

(ii) Let us focus on the other case, in which e′ ≺ e. Since C is a

configuration, there exists e′′ ∈ C such that e′′ ≺ e and e′′#e′. By

Lemma 3, fX(e′′) ≺ fX(e) = z. We distinguish various subcases:

(a) {e′, e′′} ⊆ X. This simply cannot happen as it would imply

fX(e′) = fX(e′′) ∈ fX(C), while we are assuming fX(e′) ∉

fX(C).

(b) e′ ∈ X,e′′ ∉ X. Let Y ∈ mc(●e) be the set of maximal and

consistent set of predecessors of e in C. Obviously, e′′ ∈ Y and,

by Lemma 6.15(2), for all e1 ∈ Y we have fX(e1) ≺ fX(e) =

z and fX(e1) ∈ fX(C). Clearly, there is no e2 ∈ Y ∩ X such

that e2 ∈ C, otherwise fX(e2) = fX(e′) = z′ ∈ fX(C) and this

148

would contradict the assumptions. Therefore, Y ∩X = ∅ and,

by Definition 6.12(5), there exists e′′1 ∈ Y such that e′′1 #∀X.

In this case, by construction, fX(e′′1)#/XfX(e′) = z′ = eX and,

since fX(e′′1) ∈ fX(C), this gives the desired result.

(c) e′ ∉ X,e′′ ∈ X. By Definition 6.12(5), for all Y ∈ mc(●e), with

e′′ ∈ Y there is e1 ∈ Y ∖ {e′′} such that e1#e′. Since neither e′
nor e1 are in X, this conflict is preserved by the quotient map

and thus fX(e1)#fX(e′) = z′. Since, fX(e1) ∈ fX(C) and, by

Lemma 6.15(2), fX(e1) ≺ fX(e) = z, we get the desired results.

(d) {e′, e′′} ⊈ X. Since {e′, e′′} ⊈ X and e′#e′′ then, by

Lemma 6.15(1), fX(e′′)#fX(e′), as desired.

Concerning the last assertion, note that the fact that fX ∣C ∶ (C,≺∗C) →
(fX(C),≺∗fX(C)) is an isomorphisms follows immediately by items (2) and

(3) of Lemma 6.15.

Recall that FESs are assumed to be faithful, full and disjoint. We next

prove that the quotient preserves this properties.

Lemma 6.17 (quotient is full and faithful). Let F = ⟨E,#,≺, λ⟩ be a FES,

X a combinable set of events and let fX ∶ F → F/X be the quotient map.

The FES F/X is 1) faithful, 2) full and 3) disjoint.

Proof. 1. Let z, z′ ∈ E/X be events in F/X such that ¬(z#z′). We need to

prove that there exists a configuration C1 ∈ Conf (F/X) such that {z, z′} ⊆
C1.

Take e, e′ ∈ E such that fX(e) = z and fX(e′) = z′ (they exist since fX is

surjective). If ¬(e#e′) then, by faithfulness of F, there exists C0 ∈ Conf (F)
such that {e, e′} ⊆ C0. By Lemma 6.16, fX(C0) ∈ Conf (F/X) is the desired

configuration, since {z, z′} = {fX(e), fX(e′)} ⊆ fX(C0).

If instead e#e′, it means that one of the two events is in X (oth-

erwise their dependencies would not be changed by the quotient). As-

sume without loss of generality that e ∈ X, hence z = eX , and e′ /∈ X.

The fact that ¬(fX(e)#fX(e′)) means that there is e′′ ∈ X such that

¬(e′′#e′). Therefore, again by fullness there exists C0 ∈ Conf (F) such that

149

{e′′, e′} ⊆ C0 and we conclude as above. In fact, fX(e′′) = fX(e) = z,

hence {z, z′} = {fX(e), fX(e′)} ⊆ fX(C0), which is a configuration by

Lemma 6.16.

2. By Lemma 6.15(1) and surjectivity of fX , a self-conflicting (inconsis-

tent) event in F/X would be reflected in F. More precisely, let z ∈ F/X such

that z#z. Then take e ∈ F such that fX(e) = z. We have fX(e)#fX(e)

and thus, by Lemma 6.15(1), e#e, contradicting the fullness of F.

3. In order to show that #/X and ≺/X are disjoint we proceed by

contradiction. Assume that z ≺/X z′ and z#/Xz′. By Definition 6.14 there

are e, e′ ∈ E such that fX(e) = z, fX(e′) = z′ and e ≺ e′. However, by

Lemma 6.15(1), we have also e#e′, contradicting the disjointness of F.

Building on the previous technical results, we can finally prove that the

quotient map fX is a folding, i.e., that it can be seen as a hp-bisimulation.

Theorem 6.18 (quotient map is a folding). Let F = ⟨E,#,≺, λ⟩ be a FES

and let X ⊆ E be a combinable set of events. Then the quotient map fX ∶

F→ F/X is a folding.

Proof. Let F be a FES, X be a combinable set of events and fX ∶ F→ F/X
be the quotient map, where F/X = ⟨E/X ,#/X ,≺/X , λ/X⟩. We prove that

R = {(C1, fX ∣C1
, fX(C1)) ∣ C1 ∈ Conf (F)}

is a hp-bisimulation.

Given a configuration C1 ∈ Conf (F), define C2 = fX(C1). Recall from

Lemma 6.16 that fX ∣C1
∶ (C1,≺

∗)→ (C2,≺
∗) is an isomorphisms of pomsets.

In order to show that R is a hp-bisimilarity it remains to prove that

1. if there is e ∈ E such that C1 ∪ {e} ∈ Conf (F) then C2 ∪ {fX(e)} ∈

Conf (F/X).

2. if there is z ∈ E/X such that C2 ∪ {z} ∈ Conf (F) then there is e ∈ E

such that fX(e) = z and C1 ∪ {e} ∈ Conf (F).

150

In fact, since the extension order for FESs is subset inclusion, (1) and (2)

above correspond to conditions (a) and (b) in Definition 3.42.

We prove the two points separately.

1. The fact that if C1 ∪ {e} ∈ Conf (F) then C2 ∪ {fX(e)} ∈ Conf (F/X)

follows immediately by Lemma 6.16, since C2 ∪ {fX(e)} = fX(C1 ∪

{e}).

2. Let z ∈ E/X be such that C2 ∪ {z} ∈ Conf (F/X) and let us show that

there is an event e ∈ E such that fX(e) = z, C1 ∪ {e} ∈ Conf (F).

Let Y2 =
●z ∩C2 be the set of ≺-predecessors of z in C2. By definition

of configuration in FESs we know that Y2 ∈mc(
●z).

We distinguish two cases:

(a) z = eX .

In this case events in ●z are left unchanged by the quotient and

hence if we let Y1 = Y2 we have that Y1 ⊆ C1, fX(Y1) = Y2 and

Y1 is consistent. By definition of the quotient (Definition 6.14)

we have that e ≺/X eX iff e ≺∃ X and hence Y1 ⊆ ●X and, by

Lemma 6.13, there is an event e′ ∈ X, s.t. Y1 ∈ mc(●e′). Since

Y1 ⊆ C1, we deduce that C1 ∪ {e′} ∈ Conf (F), with fX(e′) = eX ,

as desired.

(b) z ≠ eX .

In this case the event z = e ∈ E ∖X is mapped identically by the

quotient map fX . In order to conclude, we just need to show

that C1 ∪ {e} is a configuration. Let Y1 = {e′ ∈ C1 ∣ fX(e′) ∈ Y2}.

We have that Y1 ⊆ ●e. In order to prove this fact, note that

for any e′ ∈ Y1, since fX(e′) ≺/X fX(e) = z, by Lemma 6.15(3)

we know that e′ ≺ e or e′#e. We show that the second case

cannot happen. If e′ /∈ X this is obvious. Otherwise, if e′ ∈ X,

from ¬(fX(e)#/XfX(e′)), by Definition 6.14, there is x ∈ X

such that ¬e#x. Then by Definition 6.12(2), the conflict e′#e

151

is not direct. Therefore, since ●e′ ∩ C1 ∈ mc(●e′), by definition

of direct conflict, there is e′′ ∈ ●e′ ∩ C1 such that e′′#e. Since

e′′ /∈X, this conflict is preserved by the quotient map and we get

that fX(e′′)#/XfX(e), which is absurd since fX(e), fX(e′′) ∈

fX(C1) ∪ {z}, and the latter is a configuration by hypothesis.

The set Y1 is clearly consistent, since it is included in C1. It is

also maximal, i.e., Y1 ∈ mc(●e). In fact if it were not maximal,

there would be e′′ ∈ ●e∖Y1 such that Y1 ∪{e′′} is consistent. But

then, since the quotient map preserves configurations and thus

consistent sets, fX(Y1 ∪ {e′′}) would be consistent and strictly

larger then Y2.

Since Y1 ∈ mc(
●e), we conclude that Y1 ∪ {e} is a configuration,

as desired.

As in the case of AESs the iterative application of the quotient operation

to a finite FES leads to a “minimal” FES hp-bisimilar to the original one.

Different sequences of quotient operations can lead to non-isomorphic FESs,

which are not further reducible. An example is provided in Figure 6.12.

In the FES F6 there are two combinable sets of events, namely {a0, a1}

and {b0, b1}. In the quotient F6/{a0,a1}, depicted in Figure 6.12(b), the set

{b0, b1} is no longer combinable. In fact, condition (4) in Definition 6.12 is

violated since a ≺ b0, but it does not hold that a ≺ b1 and there is event e

such that e ≺ b1, ¬(e ≺ a) and ¬(a#e). Similarly, in the quotient F6/{b0,b1},

depicted in Figure 6.12(c), the set {a0, a1} is no longer combinable. Hence

we get two non-isomorphic FESs which are not further reducible. Also in

this case, one can see that this is intrinsic in the nature of FESs and their

foldings. In fact, by inspecting all the possible label preserving surjective

mappings one realizes that the two quotients does not admit any non-trivial

folding. The following section shows an approach to address this issue.

152

c e

a0 b1

b0 a1

#

#

#

#

#

#

#

#

#

(a) F6

c e

a01 b1

b0

#

#

#
#

(b) F6/{a0,a1}

c e

a0 b01

a1

#

#

#

#

(c) F6/{b0,b1}

Figure 6.12: FES and two minimal non-isomorphic quotients

6.4 Deterministic foldings and canonicity

In order to exploit the reduced event structures for model comparison pur-

poses, the result of the foldings should be uniquely determined from the

original model. In other words, starting from two isomorphic AESs or

FESs and repeatedly applying the behavior preserving folding operation,

the resulting minimal AESs of FESs should be isomorphic.

b c′

c b′
(a) A7

b c′

c

(b) A8

b c′

b′
(c) A9

Figure 6.13: Equivalent AESs

As showed in previous sections, different choices of the sets of events

to be folded can lead to different minimal representations. For instance,

the AESs A8 and A9 in Figure 6.13 can be obtained from A7 by folding

events b, b′ or c, c′, respectively. They are not further reducible and thus

they provide minimal representations of the same AES.

In order to address this problem, we leverage some concepts from

graph theory. Specifically, we rely on the concept of canonical label-

ing of a graph [McKa 81], that originates as an approach to deciding

153

graph isomorphism. Let Canon(G) be a function that maps a graph G

to a canonical label in the sense that, given graphs G and H, we have

Canon(G) = Canon(H) iff H and G are isomorphic. If we use the string

representation of the adjacency matrix of a graph, then a canonical label

for a graph G can be determined by computing all permutations of its ad-

jacency matrix and selecting the largest (or the smallest) lexicographical

exemplar among them. Clearly, this approach is computationally expen-

sive, but state-of-the-art software implement several practical heuristics to

compute canonical labels.

Formally, let G = (V,A) be a graph, where V is the set of vertices

and A the set of arcs. Moreover, let M(G) be the adjacency matrix of G,

in some fixed linear representation. For any order of the set of vertices,

represented as a numbering γ ∶ V → {0,1, ...∣V ∣}, we get a corresponding

string M(G)γ . Then the canonical label of G is the string induced by an

order γ̂, s.t., M(G)γ ≤lex M(G)γ̂ holds for every possible order γ. The

order γ̂ is referred to as the canonical order.

In our implementation, we use nauty (http://pallini.di.uniroma1.

it/) for computing the graph canonical label and the corresponding order

γ̂ on the vertices which is mostly of interest for us. Nauty and other similar

tools work on graphs with unlabeled edges, while an event structure can be

naturally seen as graphs with labeled edges. The problem is easily overcome

by using some isomorphism preserving transformation of edge-labeled into

edge-unlabeled graphs (we used the one in [Kant 10]).

The canonical order on the vertices of the graph associated to an event

structure can be easily used to establish a total order on the folding that

yields a minimal and canonical AES or FES. For a combinable set of events

X, we denote by X γ̂ the ordered string of numbers corresponding to the

events in X.

Definition 6.19 (deterministic folding). Let E be an event structure and

γ̂ ∶ E → N0 be the canonical order of events. Let X,Y ⊆ E be combinable

154

http://pallini.di.uniroma1.it/
http://pallini.di.uniroma1.it/

a

b c

c d b d

d d

0

1

2

3

4

5

6

7

8

(a) A10

a

c

b

c d d d

d

0

1

2

3

4
6 5 7

(b) f(A10)/{b,b}

a

c

b

c d

d

(c) f+(A10)

Figure 6.14: Canonical labeling and folding

sets of events. Then the precedence of X over Y in a deterministic folding

is defined by the following conditions, listed in decreasing relevance:

(i) λ(e) >lex λ(e
′) where e′ ∈ Y and e ∈X, or

(ii) λ(e) =lex λ(e
′) ∧ ∣X ∣ > ∣Y ∣, or

(iii) λ(e) =lex λ(e
′) ∧ ∣X ∣ = ∣Y ∣ ∧X γ̂ >lex Y

γ̂ .

Whenever, applying folding according to such order, we reach an event

structure where no further folding steps are possible, this is denoted by

f+(E) and referred to as minimal canonical folding.

Figure 6.14 illustrates the canonical folding of A10. The AES A10 shows

the order γ̂ assigned by nauty. The combinable sets of events in A10

are {{b(1), b(2)},{c(3), c(4)},{d(5), d(6)},{d(7), d(8)}}, and from Defini-

tion 6.19 we know that {b(1), b(2)} takes precedence over the others. The

155

folding of {b(1), b(2)} is depicted in Figure 6.14b. Note that a fresh event

b is added, replacing the set {b(1), b(2)}, and the order γ̂ is recalculated

for the new AES. Finally, Figure 6.14c depicts the minimal and canonical

AES. In this particular case, it was necessary to keep two events with label

c and two with label d to preserve the behavior.

The fact that the order on folding steps given in Definition 6.19 is

clearly total, and thus folding is essentially deterministic, ensures that the

reduction of an event strucutre will produce a uniquely determined result.

Proposition 6.20 (canonical folding of an ES). Let E1 and E2 be isomor-

phic event structures. Then the deterministic folding of E1 and E2 produces

a canonical event structure, such that f+(E1) is isomorphic to f+(E2).

6.5 Discussion

This chapter presented (deterministic) reduction techniques for AESs and

FESs. As mentioned previously, the use of more compact representations

of the behavior, in the context of process model comparison, can lead to

smaller and more succinct difference diagnostics. It is straightforward to see

that canonical and minimal AESs and FESs can be used in the comparison

technique presented in previous chapter, where the verbalization of their

relations has also been presented.

A natural question arising from the quotient operations presented in

this chapter is concerning the completeness of the technique. More pre-

cisely, is any folding induced by a sequence of quotient operations proposed

for AES and FES? The answer is negative. In fact, consider the PES in

Figure 6.15(a), which can either be seen as an AES or a FES. It admits the

folding in Figure 6.15(b), where a0, a1 are merged into a01 and similarly b0,

b1 are merged into b01. It is not difficult to see that P′ cannot be obtained

by our quotient operations, neither seeing P as an AES nor as a FES.

156

a0 a1

b0 b1

#

##

#

(a) P

a01 b01

(b) P′

a01

b0 b1#

(c) P/{a0,a1}

Figure 6.15: A PES P and a possible folding P′ that cannot be obtained by
composing elementary foldings

The limitation seems to reside in the fact that a quotient operations

realize only elementary foldings (only a single set of events is merged each

time). Indeed, the folding P′ cannot be expressed as the composition of

elementary foldings. For instance, notice that the quotient P/{a0,a1} in

Figure 6.15(c) is not a folding. In fact event a0 should be simulated by

f{a0,a1}(a0) = a01. However, in P/{a0,a1} after a01 we can execute b0 while

in P after a0 event b0 is ruled out.

Preliminary results lead us to conjecture that the quotient technique

for AESs is complete for elementary foldings and a complete technique for

general foldings can be defined at the price of reducing the efficiency (all

sets to be merged have to be searched for at the same time). For FESs,

instead, the intensional nature of the dependency relations seems to be an

obstacle towards a completeness result already for elementary foldings.

Consider the FESs in Figure 6.16, F7 and F8, and corresponding quo-

tients with respect to the set X = {d0, d1}. It is not difficult to see that

the two FESs have exactly the same posets of configurations. Indeed, the

only difference between F7 and F8 is the absence, in the former, of the flow

a ≺ d1. Since a is the only ≺-predecessor of c, which in turn is the only

≺-predecessor of d1, this flow is semantically enforced. Hence, its explicit

presence does not alter, in any way, the behavior. However, this subtle dif-

ference is very important for the quotient operation. It is immediate to see

that {d0, d1} is combinable in F8; whereas, {d0, d1} is not combinable in F7,

because condition (4) of Definition 6.12 is violated. In fact, in F7, we have

157

a ≺ d0, but ¬(a ≺ d1) and there is c ≺ d1 such that ¬(c ≺ d0) and ¬(c#a).

Still, the quotient operation applied to F7 and F8 produces the same re-

sult F7/{d0,d1} = F8/{d0,d1}. Thus, in both cases, the quotient preserves the

behavior, namely it induces an elementary folding, but only the second is

allowed by our technique. This means that, in the case of FESs, complete-

ness fails also for elementary foldings. We conjecture that this problem can

be faced by restricting to classes of FESs where the dependency relations

are saturated (in the spirit of the faithfulness and fullness requirements).

a

b c

d0 d1

#

##

#

(a) F7

a

b c

d01

#

(b) F7/{a0,a1}

a

b c

d0 d1

#

##

#

(c) F8

a

b c

d01

#

(d) F8/{a0,a1}

Figure 6.16: Non-completeness of the quotient technique for FESs

158

Chapter 7

Implementation and

validation

We implemented the ideas presented in the previ-

ous Chapters in a research prototype, called BP-

Diff [Arma 14b]. BP-Diff takes as input pairs of process

models expressed in the standard BPMN notation and

produces diagnostics of the differences found, both in

visual and textual form. The textual feedback explains

how a given pair of tasks is related in one model in con-

trast to the other model. Meanwhile, the visual feed-

back allows users to pinpoint the exact configuration

where the discrepancy occurs. In its current version,

BP-Diff uses the AES representation for the behavioral

comparison, i.e., the internal representation of the behavior of a process is

a canonically reduced AES and the differences are verbalized using the re-

lations in AESs. The tool is publicly available as a Software-as-a-Service at

http://diffbp-BP-Diff.rhcloud.com/ and its source code can be found

at https://code.google.com/p/fdes/.

159

http://diffbp-BP-Diff.rhcloud.com/
https://code.google.com/p/fdes/

Specifically, given a pair of process models, the BP-Diff tool: i) com-

putes the canonically reduced AES of the behavior of each of the processes,

ii) constructs the partial synchronized product, iii) identifies the best partial

matchings between the maximal configurations of the AESs, and iv) out-

puts the pairs of mismatching relations (herein called discrepancies) in the

corresponding AESs

In this setting, a discrepancy consists of: (i) a configuration where a

behavioral difference is observed; and (ii) a description of the discrepancy,

meaning what behavior is observed in said configuration in one of the mod-

els but not in the other. Note that designating the configuration where

the discrepancy occurs is important as the same pair of events can appear

in different behavioral relations depending on the configuration when they

occur. For example, in the process model M4 depicted in Figure 7.1 there

is a run where the task n form precedes task exe; conversely, there is an-

other run where n form does not occur together with exe (i.e., when t form

occurs).������	
��

	�

������

������

������

��	��	

	� 	�	

�����

����� �����

�	�

�	�

���

�	����� ������

Figure 7.1: Process model example M4

A configuration is characterized by the set of event occurrences leading

to it. However, describing this set of events by means of a textual statement

is impractical and would hinder on the understandability of the resulting

statements. Accordingly, BP-Diff reports only the last event(s) that need to

occur before the configuration where the discrepancy arises. To complement

this incomplete textual designation of a configuration, BP-Diff additionally

offers a graphical representation thereof by highlighting the events that

lead to the configuration in question. For example, in the process model in

Figure 7.2, the configurations where the difference occurs are highlighted

160

in green. The discrepancy itself relates to the execution of the activities m

insp and o insp (highlighted in red), which may occur in one model but not

in the other in the configurations in question. The numbers attached to

each of the highlighted elements represent the number of times the task was

executed – this is relevant when there is repetitive behavior in the process.

In the example of Figure 7.2, the numbers in gray boxes are attached to the

tasks that lead to the execution of o insp; whereas, those in green boxes

are attached to the tasks that lead to the execution of m insp.

Figure 7.2: Representation of differences

BP-Diff provides a simple Web interface as depicted in Figure 7.3. The

textual descriptions of the encountered discrepancies are displayed on the

left hand side of the screen. Finally, the models are rendered on the

right-hand side of the window. The tool relies on a third-party libraries

for the rendering BPMN process models, specifically Camunda’s BPMN.io

JavaScript library1.

7.1 Evaluation

Performance

In order to assess the scalability of our method, we measured the perfor-

mance of BP-Diff with respect to one of its more critical steps, namely the

1http://bpmn.io/

161

http://bpmn.io/

Figure 7.3: Web interface of BP-Diff

computation of canonical reduced AESs. To this end, we used the BIT pro-

cess library (release 2009), which is a collection of real-life process models

from financial services, telecommunications and other domains [Fahl 09].

From this collection of models we selected the subset of sound models,

since not all of the models exhibit this property. The final dataset consists

of 352 models, with an average size of 12.4 elements. More details are given

in Table 7.1.

Library Number of models
Number of elements

Min Max Avg

A 152 3 33 12.3

B3 184 3 37 9.1

C 16 8 36 17.3

Table 7.1: BIT process library

We computed the canonical reduced AES for each model in the collec-

tion five times and averaged the execution time. The tests were run on a

laptop computer running Mac OS X with a 2 GHz Intel Core i7 with 4 GB

162

of main memory. As the tool is implemented in Java, we used an Oracle

Java Virtual Machine 1.7 with 1 GB of maximum heap size.

Three models (two from Library A and one from Library C) were dis-

carded because of the large overhead of the computation of the canonical

labeling. It was due to the large size of the corresponding PESs, which

consisted of 566, 779 and 1630 events, respectively. The computation time

over such PESs was larger than 8 minutes. Table 7.2 summarizes the sizes

of the resulting PESs and AESs for the remaining process models (150 in

Library A, 184 in Library B and 15 in Library C). The greatest reduction

of the AESs was observed in the process models from the library C, where

the average size of the event structures was reduced from 57.93 to 36.27

from the PESs to AESs, accounting for a reduction of 37 %.

#Events PES #Events AES

Min Max Avg Min Max Avg

A 3 203 18.27 3 203 16.77

B3 3 72 9.08 3 72 8.53

C 6 420 57.93 4 259 36.27

Table 7.2: Sizes of PESs and AESs for the BIT process library

The minimum, maximum and average execution times for this experi-

ment are reported in Table 7.3. To better understand the source of over-

head, the execution times are split for each of the major phases in the

method, namely the computation of the PES (including the computation

of the unfolding prefix of the net system), the computation of the canonical

labeling of events in the PES, and the computation of the corresponding

minimal canonical folded AES.

The largest execution time was observed on the computation of AESs

for Library C. This is somewhat consistent with the fact that this Library

also observed the largest reduction in the size of its AESs. Both overhead

and reduction can be associated with a pair of process models that are

particularly complex in their topology and that resulted in large PESs. The

163

Computation time (sec)

PES Canonical
labeling

Minimal canonical
folded AES

Min Max Avg Min Max Avg Min Max Avg

A 0 2.39 0.06 0.01 0.56 0.02 0 5.93 0.07

B3 0 0.32 0.02 0.01 0.10 0.01 0 1.19 0

C 0.01 52.61 3.67 0.01 2.92 0.36 0 535.61 36.76

Table 7.3: Execution times for computing the minimal canonical AESs of
the BIT process library

large size of those PESs induced also a high overhead in the computation

of the folding of the AESs. In spite of the above, the average execution

time remains reasonable in the order of seconds for most of the cases.

Comparison: Performance and size of the diagnostics

We conducted a second set of experiments to assess the size of the diag-

nostics reported to users. To this end, we selected a collection of process

models taken from the process for handling land development applications

used by two Australian states, namely South Australia (SA) and West-

ern Australia (WA). The collection consists of 3 pairs of process models in

BPMN notation, each pair corresponding to subprocesses of the whole land

development application process from each state. The models use uniform

naming conventions, in a way that we can consider that nodes with the

same label as referring to the same concrete task. Table 7.4 presents the

size of models in the final dataset.

Table 7.5 presents the size of the event structures associated to the

models in the land development dataset. In this case, the size of the AES

remained the same for the first two pairs of models. However, we observe

a reduction for the AESs associated to the third case. The execution times

for computing the canonical folded AESs are shown in Table 7.6.

164

Model Number of BPMN elements

SA 1 37

SA 2 47

SA 3 36

WA 1 28

WA 2 50

WA 3 31

Table 7.4: Land development application process

Events
PES AES

SA 1 13 13

SA 2 80 80

SA 3 52 30

WA 1 14 14

WA 2 80 80

WA 3 46 23

Table 7.5: Size of event structures of the land development application
dataset

The execution times for comparing the introduced pairs of process mod-

els are presented in Table 7.7. The execution times includes the computa-

tion of the partial synchronized product for every pair of models.

The diagnostic of differences found when comparing the third pair of

models comprised 104 statements when using PES, which was reduced to

80 statements when using AES. A more detailed analysis of the diagnostics

showed that 14 statements distilled when comparing the PESs where sum-

marized by 4 statements generated using AESs. Moreover, 10 statements

generated from the comparison of PESs were not longer required because

the corresponding events were folded in the AESs. All the remaining diag-

nostic statements were the same for both types of event structures.

Consider the excerpts of the process models SA 3 and WA 3, which

are presented in Figure 7.4. Concretely, we consider the differences involv-

ing tasks J2 and P2, which are rendered with red borders in the picture.

165

Computation time (sec)

PES Canonical
numbering

Minimal canonical
folded AES

SA 1 0.25 0.05 0.01

SA 2 1.34 0.14 0.44

SA 3 1.19 0.12 0.22

WA 1 0.09 0.03 0

WA 2 0.95 0.08 1.33

WA 3 0.32 0.05 0.54

Table 7.6: Size of event structures, PESs and AESs, for the land development
application process

Avg. Time (sec) # Differences

Model 1 Model 2 PES AES PES AES

SA 1 WA 1 0.16 0.29 23 23

SA 2 WA 2 2.79 5.17 6 6

SA 3 WA 3 98.56 145.52 104 80

Table 7.7: Comparison results. Average time and number of differences

C2

D2 E2

F2 I2... J2

P2

...

M2 O2 ...
J2

...
N2 P2

O2 ... J2

P2 ... J2

I2 J2 P2...

O2 P2 ... J2

O2 ... J2

P2

M2 O2 ... J2

N2 O2 P2

C2

D2 E2

F2 I2... J2

P2F2 I2... J2 ...

(a) SA3

C2

D2 E2

F2 I2... J2

P2

...

M2 O2 ...
J2

...
N2 P2

O2 ... J2

P2 ... J2

I2 J2 P2...

O2 P2 ... J2

O2 ... J2

P2

M2 O2 ... J2

N2 O2 P2

C2

D2 E2

F2 I2... J2

P2F2 I2... J2 ...

(b) WA3

Figure 7.4: Snippet of the process models SA 3 and WA 3

The tool generates a total of 4 statements for explaining this difference,

when using PESs. Such differences, both in textual and visual formats, are

presented below.

1. “In model 1, there is a state after the execution of I2 where J2 precedes

P2; whereas in model 2, there is a state after the execution of O2 where

P2 precedes J2” (Fig. 7.5),

166

C2

D2 E2

F2 I2... J2

P2

...

M2 O2 ...
J2

...
N2 P2

O2 ... J2

P2 ... J2

I2 J2 P2...

O2 P2 ... J2

O2 ... J2

P2

M2 O2 ... J2

N2 O2 P2

C2

D2 E2

F2 I2... J2

P2F2 I2... J2 ...

(a) SA3
1

C2

D2 E2

F2 I2... J2

P2

...

M2 O2 ...
J2

...
N2 P2

O2 ... J2

P2 ... J2

I2 J2 P2...

O2 P2 ... J2

O2 ... J2

P2

M2 O2 ... J2

N2 O2 P2

C2

D2 E2

F2 I2... J2

P2F2 I2... J2 ...

(b) WA3
2

Figure 7.5: Difference 1 (J2, P2) between SA 3 and WA 3 using PES

2. “In model 1, there is a state after the execution of I2 where J2 precedes

P2; whereas in model 2, there is a state after the execution of O2 where

J2 and P2 are mutually exclusive” (Fig. 7.6),

C2

D2 E2

F2 I2... J2

P2

...

M2 O2 ...
J2

...
N2 P2

O2 ... J2

P2 ... J2

I2 J2 P2...

O2 P2 ... J2

O2 ... J2

P2

M2 O2 ... J2

N2 O2 P2

C2

D2 E2

F2 I2... J2

P2F2 I2... J2 ...

(a) SA3
1

C2

D2 E2

F2 I2... J2

P2

...

M2 O2 ...
J2

...
N2 P2

O2 ... J2

P2 ... J2

I2 J2 P2...

O2 P2 ... J2

O2 ... J2

P2

M2 O2 ... J2

N2 O2 P2

C2

D2 E2

F2 I2... J2

P2F2 I2... J2 ...

(b) WA3
3

Figure 7.6: Difference 2 (J2, P2) between SA 3 and WA 3 using PES

3. “In model 1, there is a state after the execution of I2 where J2 precedes

P2; whereas in model 2, there is a state after the execution of M2

where J2 and P2 are mutually exclusive” (Fig. 7.7), and

C2

D2 E2

F2 I2... J2

P2

...

M2 O2 ...
J2

...
N2 P2

O2 ... J2

P2 ... J2

I2 J2 P2...

O2 P2 ... J2

O2 ... J2

P2

M2 O2 ... J2

N2 O2 P2

C2

D2 E2

F2 I2... J2

P2F2 I2... J2 ...

(a) SA3
1

C2

D2 E2

F2 I2... J2

P2

...

M2 O2 ...
J2

...
N2 P2

O2 ... J2

P2 ... J2

I2 J2 P2...

O2 P2 ... J2

O2 ... J2

P2

M2 O2 ... J2

N2 O2 P2

C2

D2 E2

F2 I2... J2

P2F2 I2... J2 ...

(b) WA3
4

Figure 7.7: Difference 3 (J2, P2) between SA 3 and WA 3 using PES

4. “In model 1, there is a state after the execution of C2 where J2 and

P2 are mutually exclusive; whereas in model 2, there is a state after

the execution of O2 where P2 precedes J2” (Fig. 7.8).

Conversely, only one statement is produced when using AESs, which

would replace the four statements presented above. The statement is:

167

C2

D2 E2

F2 I2... J2

P2

...

M2 O2 ...
J2

...
N2 P2

O2 ... J2

P2 ... J2

I2 J2 P2...

O2 P2 ... J2

O2 ... J2

P2

M2 O2 ... J2

N2 O2 P2

C2

D2 E2

F2 I2... J2

P2F2 I2... J2 ...
(a) SA3

2

C2

D2 E2

F2 I2... J2

P2

...

M2 O2 ...
J2

...
N2 P2

O2 ... J2

P2 ... J2

I2 J2 P2...

O2 P2 ... J2

O2 ... J2

P2

M2 O2 ... J2

N2 O2 P2

C2

D2 E2

F2 I2... J2

P2F2 I2... J2 ...

(b) WA3
2

Figure 7.8: Difference 4 (J2, P2) between SA 3 and WA 3 using PES

“In model 1, there is a state after the execution of I2 where J2 precedes

P2; whereas in model 2, there is a state after the execution of O2 where

P2 can occur before J2, or P2 can be skipped” (Fig. 7.9).

C2

D2 E2

F2 I2... J2

P2

...

M2 O2 ...
J2

...
N2 P2

O2 ... J2

P2 ... J2

I2 J2 P2...

O2 P2 ... J2

O2 ... J2

P2

M2 O2 ... J2

N2 O2 P2

C2

D2 E2

F2 I2... J2

P2F2 I2... J2 ...

(a) SA3
1

C2

D2 E2

F2 I2... J2

P2

...

M2 O2 ...
J2

...
N2 P2

O2 ... J2

P2 ... J2

I2 J2 P2...

O2 P2 ... J2

O2 ... J2

P2

M2 O2 ... J2

N2 O2 P2

C2

D2 E2

F2 I2... J2

P2F2 I2... J2 ...

(b) WA3
1

Figure 7.9: Difference 1 (J2, P2) between SA 3 and WA 3 using AES

This gain in compactness clearly stems from the expressive power in-

troduced by the presence of asymmetric conflict in AESs, which allows the

technique to merge some duplicated tasks.

168

Chapter 8

Conclusions

8.1 Summary of contributions

Comparison of process models has become a basic operation when man-

aging collections of process models. For example, analysts need compare

models to identify opportunities for standardization or understand relative

performance differences between pairs of variants of a process. Compari-

son techniques can be roughly divided into those based on structure and

those based on behavior. Structure-based comparison techniques consider

the process models as graphs and describes the differences between a pair

of process models as edit operations (e.g., insert, remove or substitute)

over nodes (tasks and gateways of the process models). Although a pair of

structurally different process models can represent the equivalent behavior,

for instance, they can produce the same set of traces.

This thesis approaches the behavioral comparison of process models,

which abstracts away from the structural differences and, instead, focus

on the differences of the behavior represented underneath. In this regard,

we propose a comparison technique based on event structures and adopt

a notion of equivalence in the true concurrency spectrum, i.e., completed

visible-pomset equivalence.

169

Event structures represent concurrent processes by means of events,

which are occurrences of actions (or tasks in a process model), and behav-

ioral relations representing dependencies between the events, e.g., causal

precedence or exclusiveness. Since the introduction of this formalism, dif-

ferent types of event structures have been proposed with a variety of behav-

ioral relations. In this work, we use three different event structures: prime,

asymmetric and flow event structures. Nevertheless, the event structure

semantics of process models with cycles contains an infinite set of events,

since every iteration in a cycle produces new events.

The first contribution of this thesis is an unfolding technique to compute

a finite unfolding prefix of a process with cycles that captures all the causal

dependencies between the tasks in the process. This finite representation

has two main purposes, on the one hand, it is used to define a notion

of multiplicity for each task in the process. I.e., it it is determined if a

task can be executed more than one time in a computation, or at most

once. On the other hand, the unfolding prefix is used to obtain the prime

event structure describing the behavior in terms of causality, conflict and

concurrency relations.

The second contribution of the thesis is the definition of a so called par-

tial synchronized product. Given a pair of (any type of) event structures, a

partial synchronized product is a graph where every node is a partial match

between a pair of configuration pomsets (one configuration from each event

structure) and every edge between a pair of nodes is an operation over

source node to obtain the target node. We define two operations, matching

events and hiding event. The former, matching events, aims at represent-

ing equivalent events (instances of the same action) that can be executed

from the matched execution state in the two event structures; whereas the

latter aims at finding the behavioral discrepancies, i.e., events that can be

executed in one model and not in the other. This graph can then be used

170

to find optimal behavioral matchings for the maximal configurations, i.e.,

those requiring the least amount of hide operations to match all the events.

The encountered differences (hiding operations) can then be verbalized

as the events that can occur at a given point in one process but not in the

other. Nevertheless, this can lead to a large, and potentially redundant,

set of differences. Thus, a first approach, and third contribution of the

thesis, is to interpret the differences as mismatching behavioral relations in

the prime event structures. Nevertheless, more expressive formalisms than

prime event structures, e.g., asymmetric and flow event structures, can

provide more compact representations that lead to more concrete diagnosis.

The fourth contribution of the thesis is a reduction technique for event

structures. I.e., we propose a set of rules to identify sets of events in an

asymmetric and a flow event structure that can be replaced with a single

event while preserving the behavior. In the case of the reduction techniques,

the adopted equivalence notion is history preserving bisimulation. We note

that an asymmetric and a flow event structure can be reduced to different

minimal representations (i.e., no other reduction operation is possible),

thus the canonicity is not ensured. We note that the non-canonicity of the

minimal event structures is not due to the proposed reduction techniques,

but it seems to be intrinsic to the nature of both types of event structures.

In this regard, we put forward a method to compute a canonical folding

of an event structure by leveraging canonical graph labeling techniques.

Specifically, we define a deterministic order on the folding operations.

Finally, we present an overview, as well as an evaluation, of a tool

implementing the proposed techniques, BP-Diff. It is a web-based tool

that takes pairs of business process models in BPMN format and produces

difference diagnostics in the form of textual statements and graphically

overlaid on the process models.

171

8.2 Future work

The contributions of this thesis put into evidence the potential benefits of

using event structures as a foundation for behavioral comparison of process

models. At the same time, the contributions open up a number of directions

for future research:

1. General theory of foldings.

Following the discussions in Chapter 6, an interesting line of research

is to develop a general theory of foldings. In this thesis we presented

a folding technique based on elementary foldings, i.e., only a set of

events is folded at a time. Although, in some scenarios, an AES or

a FES can be a non-elementary folding of another event structure

where, in order to keep the behavior unaltered, one needs to merge

different sets of events at once. By the same token, a deeper research

on the folding of FESs would ensure the completeness for elementary

and non-elementary foldings.

2. Transformation from AES to FES.

We noted that the conditions defining sets of combinable events are es-

sentially orthogonal for AESs and FESs. In this respect, we envision a

transformation from AESs to FESs which would allow further folding

at the price of inserting unobservable events to simulate asymmetric

conflict on a FES. We contend that such a transformation would open

the possibility of taking advantage of the combined expressiveness of

AES and FES, possibly leading to more compact representations.

3. Application of model comparison techniques in process mining.

Another context where the comparison technique can be applied is

that of compliance checking. In this regard, the comparison technique

can detect and explain where the actual behavior (e.g., based on

172

a mined process model) of a process differs from the one originally

modeled.

4. (Semi-) Automatic consolidation of multiple process variants.

The current comparison technique aims at providing textual and

graphical description of the behavioral differences between a pair of

process models. The analysts comparing the process models are then

responsible to make the appropriate changes for the consolidation of

a pair of variants. In this regard, a natural extension of the proposed

comparison technique, is the automatic or semi-automatic consolida-

tion of variants. For example, given a pair of process models, one

can detect the behavioral differences and then the analyst can decide

what is the behavior to keep in the consolidated process model.

5. Automatic propagation of changes across variants.

Another extension is the automatic propagation of changes across

variants. The idea is to compute the blueprint (common behavior) of

a set of variants and monitor the changes performed over the corre-

sponding models, such that every modification affecting the blueprint

is propagated to all the variants.

6. Automated business process discovery based on event structures.

In process mining, a widely studied concept is that of process discov-

ery. Specifically, given a set of execution logs, it aims at constructing

the processes represented in the logs. Then, a process discovery tech-

nique based on event structures can have several benefits, first, it

would allow the explicit representation of behavioral relations, such

as concurrency, causality and conflict in the case of PES. Second, the

reduction techniques presented in this thesis would allow the con-

struction of a more concrete representation of the discovered process.

173

It can ease the analysis of the represented behavior while keeping

unaltered the discovered behavior [Bees 15].

7. Conformance checking based on event structures.

Another path for future research in the context of process mining is

conformance checking. Conformance checking aims at verifying if the

behavior recorded in an execution log conforms to the corresponding

process model, and vice-versa. The comparison technique presented

in this thesis can be used to detect deviant and common behavior

between an event structure (PES, AES or FES) extracted from the

log, as considered in previous point, and the event structure obtained

from the model.

174

References

[Aals 00] Wil van der Aalst. Workflow Verification: Finding Control-

Flow Errors Using Petri-Net-Based Techniques. In: BPM,

pp. 161–183, Springer, 2000. 48

[Aals 03] W. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski,

and A. P. Barros. Workflow Patterns. In: Distributed and

Parallel Databases, pp. 5–51, 2003. 23

[Adri 13] Arya Adriansyah, Boudewijn F van Dongen, and Wil MP

van der Aalst. Memory-efficient alignment of observed and

modeled behavior. BPMcenter. org, Tech. Rep, 2013. 110

[Ait 09] Ali Ait-Bachir, Marlon Dumas, and Marie-Christine Fau-

vet. Detecting Behavioural Incompatibilities between Pairs

of Services. In: George Feuerlicht and Winfried Lamers-

dorf, editors, Service-Oriented Computing – ICSOC 2008 Work-

shops, pp. 79–90, Springer, 2009. 32

[Arma 14a] Abel Armas-Cervantes, Paolo Baldan, Marlon Dumas, and

Luciano Garćıa-Bañuelos. Behavioral Comparison of Pro-

cess Models Based on Canonically Reduced Event Struc-

tures. In: Proc. of BPM, pp. 267–282, Springer, 2014. 27, 28

[Arma 14b] Abel Armas-Cervantes, Paolo Baldan, Marlon Dumas, and

Luciano Garćıa-Bañuelos. BP-Diff: A Tool for Behavioral

Comparison of Business Process Models. In: Proceedings of the

BPM Demo Session 2014, 2014. 28, 159

[Arma 14c] Abel Armas-Cervantes, Paolo Baldan, Marlon Dumas, and

Luciano Garćıa-Bañuelos. Diagnosing Behavioral Differ-

175

ences Between Business Process Models: An Approach

Based on Event Structures. CoRR, 2014. 27, 28

[Arma 14d] Abel Armas-Cervantes, Paolo Baldan, and Luciano

Garćıa-Bañuelos. Reduction of Event Structures under His-

tory Preserving Bisimulation. CoRR, Vol. abs/1403.7181, 2014.

28, 54

[Arma 14e] Abel Armas-Cervantes, Marlon Dumas, Luciano Garcıa-

Banuelos, and Artem Polyvyanyy. On the Suitability of

Generalized Behavioral Profiles for Process Model Compar-

ison. 2014. 27

[Bado 12] Eric Badouel. On the α-Reconstructibility of Workflow

Nets. In: Serge Haddad and Lucia Pomello, editors, ATPN,

Springer, 2012. 34

[Bald 01] Paolo Baldan, Andrea Corradini, and Ugo Montanari.

Contextual Petri Nets, Asymmetric Event Structures, and

Processes. Information and Computation 2001, Vol. 171, pp. 1–49,

2001. 57, 59, 63, 121, 128

[Bees 15] N.R.T.P. van Beest, M. Dumas, L. Garćıa-Bañuelos, and

M. La Rosa. Log delta analysis: Interpretable differencing

of Business process event logs. Eprint No. 83018, Queensland

University of Technology, 2015. 174

[Best 87] Eike Best. Structure theory of Petri nets: the free choice

hiatus. In: Petri Nets: Central Models and Their Properties, pp. 168–

205, Springer, 1987. 45

[Best 91] Eike Best, Raymond Devillers, Astrid Kiehn, and Lucia

Pomello. Concurrent bisimulations in Petri nets. Acta In-

formatica, Vol. 28, pp. 231–264, 1991. 71, 122

[Boud 89] Gérard Boudol and Ilaria Castellani. Permutation of tran-

sitions: An event structure semantics for CCS and SCCS. In:

Linear Time, Branching Time and Partial Order in Logics and Mod-

els for Concurrency, School/Workshop, pp. 411–427, Springer, 1989.

57, 64, 65, 68, 121

176

[Boud 90] Gérard Boudol. Flow event structures and flow nets. In:

Semantics of Systems of Concurrent Processes, pp. 62–95, Springer,

1990. 48, 66, 77, 78

[Cast 97] Ilaria Castellani and Guo qiang Zhang. Parallel Product Of

Event Structures. Theoretical Computer Science, Vol. 179, pp. 203–

215, 1997. 146

[Cayo 13] Ugur Cayoglu, Remco Dijkman, Marlon Dumas, Peter Fet-

tke, Luciano Garcıa-Banuelos, Philip Hake, Christopher

Klinkmüller, Henrik Leopold, André Ludwig, Peter Loos,

et al. The process model matching contest 2013. In: 4th

International Workshop on Process Model Collections: Management

and Reuse (PMC-MR’13), 2013. 32

[Clea 91] Rance Cleaveland. On automatically explaining bisimula-

tion inequivalence. In: CAV, pp. 364–372, Springer, 1991. 33

[Dech 85] Rina Dechter and Judea Pearl. Generalized Best-first

Search Strategies and the Optimality of A*. J. ACM, Vol. 32,

pp. 505–536, 1985. 111

[Dese 95] Jörg Desel and Javier Esparza. Free Choice Petri Nets. Cam-

bridge University Press, New York, NY, USA, 1995. 45

[Dijk 08a] Remco Dijkman. Diagnosing Differences between Business

Process Models. In: BPM, pp. 261–277, Springer, 2008. 33

[Dijk 08b] Remco Dijkman, Marlon Dumas, and Chun Ouyang. Seman-

tics and analysis of business process models in BPMN. In-

formation and Software Technology, Vol. 50, No. 12, pp. 1281–1294,

2008. 24

[Dijk 09a] Remco Dijkman, Marlon Dumas, and Luciano Garćıa-

Bañuelos. Graph Matching Algorithms for Business Process

Model Similarity Search. In: BPM 2009, pp. 48–63, Springer,

2009. 32

[Dijk 09b] Remco Dijkman, Marlon Dumas, Luciano Garćıa-Bañuelos,

and Reina Kaarik. Aligning business process models. In: En-

terprise Distributed Object Computing Conference, 2009. EDOC’09.

IEEE International, pp. 45–53, IEEE, 2009. 32

177

[Dijk 11] Remco Dijkman, Marlon Dumas, Boudewijn van Dongen,

Reina Käärik, and Jan Mendling. Similarity of business pro-

cess models: Metrics and evaluation. Inf. Sys., Vol. 36, No. 2,

pp. 498–516, 2011. 21, 31, 32

[Duma 09] Marlon Dumas, Luciano Garćıa-Bañuelos, and Remco Di-

jkman. Similarity Search of Business Process Models. IEEE

Data Engineering Bulletin, Vol. 32, No. 3, pp. 23–28, 2009. 29, 30, 31

[Duma 13] Marlon Dumas, Marcello La Rosa, Jan Mendling, and

Hajo A. Reijers. Fundamentals of Business Process Management.

Springer, 2013. 19

[Ehri 07] Marc Ehrig, Agnes Koschmider, and Andreas Oberweis.

Measuring similarity between semantic business process

models. In: John F. Roddick and Annika Hinze, editors, Pro-

ceedings of the fourth Asia-Pacific conference on Conceptual mod-

elling, pp. 71–80, Australian Computer Society, Inc., 2007. 31

[Enge 91] Joost Engelfriet. Branching processes of Petri nets. Acta

Informatica, Vol. 28, pp. 575–591, 1991. 24, 51

[Espa 02] Javier Esparza, Stefan Römer, and Walter Vogler. An Im-

provement of McMillan’s Unfolding Algorithm. Formal Meth-

ods in System Design, Vol. 30, No. 2, pp. 285–310, 2002. 12, 94,

95

[Espa 08] J. Esparza and K. Heljanko. Unfoldings - A Partial order Ap-

proach to Model Checking. EACTS Monographs in Theoretical Com-

puter Science, Springer, 2008. 93

[Fahl 09] D. Fahland, C. Favre, B. Jobstmann, J. Koehler,

N. Lohmann, H. Völzer, and K. Wolf. Instantaneous sound-

ness checking of industrial business process models. In: BPM,

pp. 278–293, Springer, 2009. 162

[Favr 15] Cédric Favre, Dirk Fahland, and Hagen Völzer. The rela-

tionship between workflow graphs and free-choice workflow

nets. Information Systems, Vol. 47, pp. 197–219, 2015. 24

178

[Glab 01] Rob van Glabbeek and Ursula Goltz. Refinement of ac-

tions and equivalence notions for concurrent systems. Acta

Informatica, Vol. 37, pp. 229–327, 2001. 33, 68

[Glab 89] Rob van Glabbeek and Ursula Goltz. Equivalence Notions

for Concurrent Systems and Refinement of Actions. In:

Mathematical Foundations of Computer Science 1989, pp. 237–248,

Springer, 1989. 33, 68, 70, 71, 103, 122

[Glab 90] Rob J. van Glabbeek. The linear time-branching time spectrum.

Springer, 1990. 33, 68

[Glab 95] R. J. van Glabbeek and Gordon D. Plotkin. Configuration

Structures. In: Proceedings of LICS’95, pp. 199–209, IEEE Com-

puter Society Press, 1995. 54, 69

[Glab 96] Rob van Glabbeek. History preserving process graphs, draft.

Draft available at: http://theory. stanford. edu/˜ rvg/abstracts. html#

hppg, 1996. 54

[Golt 94] U. Goltz and A. Rensink. Finite Petri nets as models for re-

cursive causal behaviour. Theoretical Computer Science, Vol. 124,

pp. 169–179, 1994. 70, 103

[Hart 68] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A

formal basis for the heuristic determination of minimum cost

paths. IEEE Transactions on Systems, Science, and Cybernetics,

Vol. SSC-4, No. 2, pp. 100–107, 1968. 111

[Kant 10] G. Kant. Using Canonical Forms for Isomorphism Reduc-

tion in Graph-based Model Checking. Technical Report, CTIT

University of Twente, Enschede, July 2010. 154

[Khom 03] Victor Khomenko, Maciej Koutny, and Walter Vogler.

Canonical prefixes of Petri net unfoldings. Acta Informatica,

Vol. 40, No. 2, pp. 95–118, 2003. 93, 94, 95

[Klin 13] Christopher Klinkmüller, Ingo Weber, Jan Mendling, Hen-

rik Leopold, and André Ludwig. Increasing Recall of Pro-

cess Model Matching by Improved Activity Label Matching.

179

In: Florian Daniel, Jianmin Wang, and Barbara Weber, ed-

itors, Business Process Management, pp. 211–218, Springer Berlin

Heidelberg, 2013. 31

[Kunz 11] Matthias Kunze, Matthias Weidlich, and Mathias Weske.

Behavioral Similarity - A proper metric. In: Stefanie

Rinderle-Ma, Farouk Toumani, and Karsten Wolf, editors,

Proc. of the International Conference on Business Process Manage-

ment (BPM) 2011, pp. 166–181, Springer, 2011. 75

[Leop 12] Henrik Leopold, Mathias Niepert, Matthias Weidlich,

Jan Mendling, Remco Dijkman, and Heiner Stucken-

schmidt. Probabilistic Optimization of Semantic Process

Model Matching. In: Alistair Barros, Avigdor Gal, and

Ekkart Kindler, editors, Business Process Management, pp. 319–

334, Springer Berlin Heidelberg, 2012. 31

[Leve 66] Vladimir I Levenshtein. Binary codes capable of correcting

deletions, insertions, and reversals. In: Soviet physics doklady,

pp. 707–710, 1966. 30

[Lohm 14] Niels Lohmann and Dirk Fahland. Where Did I Go Wrong?

- Explaining Errors in Business Process Models. In: BPM,

pp. 283–300, 2014. 118

[Madh 04] Therani Madhusudan, J.Leon Zhao, and Byron Marshall.

A case-based reasoning framework for workflow model man-

agement. Data & Knowledge Engineering, Vol. 50, No. 1, pp. 87–115,

2004. 32

[McKa 81] Brendan D McKay. Practical graph isomorphism. Department of

Computer Science, Vanderbilt University, 1981. 153

[McMi 95] Kenneth L. McMillan and David K. Probst. A Technique

of State Space Search Based on Unfolding. Formal Methods in

System Design, Vol. 6, No. 1, pp. 45–65, 1995. 12, 93, 94

[Meln 02] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm.

Similarity flooding: a versatile graph matching algorithm

and its application to schema matching. In: Data Engineering,

2002. Proceedings. 18th International Conference on, pp. 117–128,

2002. 32

180

[Mess 95] B. Messmer. Efficient Graph Matching Algorithms for Pre-

processed Model Graphs. PhD thesis, University of Bern, Switzer-

land, 1995. 31, 32

[Niel 81] Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel.

Petri Nets, Event Structures and Domains, Part I. Theoretical

Computer Science, Vol. 13, pp. 85–108, 1981. 24, 46, 51, 57, 58, 91

[Petr 62] Carl Adam Petri. Kommunikation mit Automaten. PhD thesis,

Darmstadt University of Technology, Germany,, 1962. 24, 37

[Poly 14] Artem Polyvyanyy, Matthias Weidlich, Raffaele Con-

forti, Marcello La Rosa, and Arthur H. M. ter Hofstede.

The 4C Spectrum of Fundamental Behavioral Relations for

Concurrent Systems. In: Petri Nets, pp. 210–232, 2014. 34, 74,

85, 87

[Rabi 88] Alexander M. Rabinovich and Boris A. Trakhtenbrot. Be-

haviour structures and nets. Fundamenta Informatica, Vol. 11,

pp. 357–404, 1988. 71, 122

[Rens 92] A. Rensink. Posets for Configurations! In: W. R. Cleaveland,

editor, Proceedings of CONCUR’92, pp. 269–285, Springer, 1992. 54

[Rosa 10] Marcello La Rosa, Stephan Clemens, Arthur H. M. ter

Hofstede, and Nick Russell. Appendix A. The Order Ful-

fillment Process Model. In: Modern Business Process Automation,

Springer, 2010. 22

[Soko 06] Oleg Sokolsky, Sampath Kannan, and Insup Lee.

Simulation-Based Graph Similarity. In: TACAS, pp. 426–

440, Springer, 2006. 33

[van 04] Wil M. P. van der Aalst, Ton Weijters, and Laura

Maruster. Workflow mining: discovering process models

from event logs. IEEE TKDE, Vol. 16, No. 9, pp. 1128–1142, 2004.

34

[van 08] Boudewijn van Dongen, Remco Dijkman, and Jan Mendling.

Measuring Similarity between Business Process Models. In:

CAiSE, pp. 450–464, Springer, 2008. 30

181

[van 97] Wil M. P. van der Aalst. Verification of workflow nets. In:

ICATPN, pp. 407–426, Springer, 1997. 47, 100

[van 98] Wil M. P. van der Aalst. The Application of Petri nets

to Workflow Management. The Journal of Circuits, Systems and

Computers, Vol. 8, No. 1, pp. 21–66, 1998. 24

[Weid 10] Matthias Weidlich, Remco Dijkman, and Jan Mendling.

The ICoP Framework: Identification of Correspondences be-

tween Process Models. In: Advanced Information Systems Engi-

neering, pp. 483–498, Springer Berlin Heidelberg, 2010. 31

[Weid 11a] Matthias Weidlich, Felix Elliger, and Mathias Weske.

Generalised Computation of Behavioural Profiles Based on

Petri-Net Unfoldings. In: Mario Bravetti and Tevfik

Bultan, editors, Web Services and Formal Methods, pp. 101–115,

Springer, 2011. 75

[Weid 11b] Matthias Weidlich, Jan Mendling, and Mathias Weske. Ef-

ficient Consistency Measurement Based on Behavioral Pro-

files of Process Models. IEEE TSE, Vol. 37, No. 3, pp. 410–429,

2011. 34, 74, 75, 80

[Weid 11c] Matthias Weidlich, Artem Polyvyanyy, Jan Mendling, and

Mathias Weske. Causal Behavioural Profiles. Fundamenta In-

formaticae, Vol. 113, No. 3-4, pp. 399–435, 2011. 34, 74, 85

[Weid 12] Matthias Weidlich and Jan van der Werf. On Profiles and

Footprints-Relational Semantics for Petri Nets. In: ATPN,

pp. 148–167, Springer, 2012. 34

[Wins 87] Glynn Winskel. Event structures. In: W. Brauer, W. Reisig,

and G. Rozenberg, editors, Petri Nets: Applications and Relation-

ships to Other Models of Concurrency, pp. 325–392, Springer, 1987.

57, 58, 91

[Yan 12] Zhiqiang Yan, Remco Dijkman, and Paul Grefen. Fast busi-

ness process similarity search. Distributed and Parallel Databases,

Vol. 30, pp. 105–144, 2012. 32

182

Appendix A

Basic notions and notations

A.1 Sets and numbers

Let X and Y be sets.
∣X ∣ cardinality of X

X ∖ Y elements in X and not in Y

X ⊆ Y X is subset of Y , including the case X = Y

X ⊂ Y X is a proper subset of Y , i.e., X ⊆ Y and
X ≠ Y

N denotes the set of natural numbers including 0.

A.2 Sequences

Let X be a set. A finite sequence is a mapping {1, . . . , n}→X or 0→X.
0→X empty sequence

σ ∶ {1, . . . , n}→X sequence of n elements in X. σ is represented
as a string x1 x2 x3 . . . xn, where xi = σ(i) for
1 ≤ i ≤ n

length of σ (n or 0) the length of a sequence σ is n if σ =

x1 x2 x3 . . . xn, or 0 if σ is empty

183

A.3 Relations

Let X,Y be sets. Let r ⊆X × Y be a binary relation.
r+ irreflexive transitive closure of r

r∗ reflexive transitive closure of r

r is partial order r is reflexive, antisymmetric and transitive

r∣(W×Z) restriction of r to W × Z, where W ⊆ X,Z ⊆ Y .
I.e., r∣W×Z = r ∩ (W ×Z). By abuse of notation,
if W = Z and X = Y , the restriction r∣W 2 is
denoted simply as r∣W .

r is well-founded r has no infinite descending chain, i.e., a se-
quence ⟨ei⟩i∈N, where ei ∈ X ∪ Y , such that
ei+1 r ei, ei ≠ ei+1, for all i ∈ N

r is acyclic r has no “cycles”, that is, e0 r e1 r . . . r en r e0

with ei ∈ X ∪ Y , does not hold. In particular,
if r is well-founded, then it has no (non-trivial)
cycles

A.4 Functions

Let X,Y,U,V be sets. A function f ∶ X → Y is a relation f ⊆ X × Y .

Consider another function g ∶ U → V and a subset of elements X ′ ⊆X.
f ○ g composition of functions f and g,

i.e., for an element x ∈ X, then
(f ○ g)(x) = f(g(x))

f(X ′) mapping of the elements in X ′, i.e.,
{f(x) ∣ x ∈X ′}

f[x↦ y] ∶X ∪ {x}→ Y ∪ {y} function defined by f[x↦ y](x) = y
and f[x ↦ y](z) = f(z) for z ∈

X ∖ {x}. Similarly, it represents an
update of f , when x ∈ X, or an ex-
tension of its domain, otherwise

184

Kokkuvõte

(Summary in Estonian)

Äriprotsesside käitumuslike erinevuste diagnoosimine

Mitmel turul või turusegmendil tegutsevatel ettevõtetel tuleb tihti hal-

lata sama äriprotsessi mitut varianti. Selline variantide paljusus võib

olla tingitud eristuvatest toodetest, erinevatest klienditüüpidest, erinevat-

est eeskirjadest riikides, kus ettevõte tegutseb, või erinevatest aja jook-

sul tehtud valikutest mitmetes äriüksustes. Nende protsesside jätkuva

haldamise käigus peavad analüütikud võrdlema mitme protsessivariandi

mudeleid selleks, et tuvastada standardiseerimisevõimalusi või aru saada

suhtelistest jõudluserinevustest eri variantide vahel.

Olemasolevaid lähenemisi protsessimudelite võrdlemiseks saab laias

laastus jaotada struktuursel sarnasusel põhinevateks ja käitumuslikul sar-

nasusel põhinevateks. Struktuursel sarnasusel põhinevad lähenemised os-

kavad hästi seletada kindlaid protsessimudelite paaride vahelisi erinevusi

nagu ülesannete lisamine, kustutamine või asendamine või lihtsad tippude

ümberpaigutamised (nt. kahe ülesande vahetamine teineteisega). Siiski,

kaks varianti võivad küll olla süntaktiliselt erinevad kuid käitumuslikult ek-

vivalentsed. Vastupidi, nad võivad olla süntaktiliselt sarnased kuid käitu-

muslikult väga erinevad kuna muutused üksikutes lüüsides või servades

võivad kaasa tuua olulisi käitumuslikke erinevusi.

185

Selles kontekstis uurib see väitekiri äriprotsessimudelite paaride vahe-

liste käitumuslike erinevuste diagnoosimist võttes aluseks samaaegsust ar-

vestava ekvivalentsi määratluse. Selles väitekirjas pakutakse välja mee-

tod, mis kahe protsessimudeli puhul teeb kindlaks, kas nad on käitumus-

likult ekvivalentsed või juhul kui nad seda pole, kirjeldab nendevahelisi

erinevusi ühes mudelis leiduvate ja teises puuduvate käitumuslike seoste

abil. Pakutud lahenduse aluseks on protsessimudelite teisendus sündmuste

struktuuridesse, täpsemalt asümmeetrilistesse sündmuste ja voosündmuste

struktuuridesse. Selle teisenduse naiivne versioon kannatab kahe piirangu

all. Esiteks tekitab see üleliigseid erinevuste diagnostilisi lauseid kuna

sündmuste struktuur võib sisaldada ebavajalikku sündmuste dubleerim-

ist. Teiseks ei ole see teisendus kasutatav tsükleid sisaldavate protses-

simudelite korral. Esimese piirangu ületamiseks pakub väitekiri võtte

sündmuste struktuuris sündmuste duplitseerimise vähendamiseks säilitades

kanoonilisuse rakendades hulka käitumist säilitavaid sündmuste voltimise

reegleid. Teise piirangu tarvis pakub väitekiri iga tsüklis esineva sündmuse

kõiki võimalikke põhjusi katva voltimise määratluse. Sellest voltimisest

on võimalik tuletada sündmuste struktuur kus korduvad sündmused on

eristatud mittekorduvatest, millega võimaldatakse käitumuslike erinevuste

diagnoosimine ühes mudelis esinevate ja teises puuduvate korduvuste ja

põhjuslike seoste kaudu.

Töös kirjeldatud meetod on teostatud prototüübina, mis võtab sisendiks

äriprotsessimudelid Business Process Model and Notation (BPMN) kujul ja

loob erinevuste kirjelduse loomulikus keeles. Erinevusi saab ka graafiliselt

äriprotsesside kohal näidata.

186

Curriculum vitae

General

Name: Abel Armas Cervantes
Date and place of Birth: 26.07.1986, Mexico
Citizenship: Mexican

Education

2009 – 2011 University of Tartu,
Faculty of Mathematics and Computer Science,
Master of Science in Software Engineering

2004 – 2009 Universidad Autónoma de Tlaxcala,
Facultad de Ciencias Básicas Ingenieŕıa y Tecnoloǵıa,
Bachelor of Computer Engineering

Work experience

01/2010 – 08/2011 STACC, Junior researcher

187

Elulookirjeldus

Üldandmed

Nimi: Abel Armas Cervantes
Sünniaeg ja koht: 26.07.1986, Mehhiko
Kodakondsus: Mehhiko

Haridus

2009 – 2011 Tartu Ülikool,
Matemaatika-informaatikateaduskond,
magistriõpe, Eriala: tarkvaratehnika

2004 – 2009 Universidad Autónoma de Tlaxcala,
Facultad de Ciencias Básicas Ingenieŕıa y Tecnoloǵıa,
bakalaureuseõpe, Eriala: arvutiteadus

Teenistuskäik

01/2010 – 08/2011 STACC, nooremteadur

188

189

DISSERTATIONES MATHEMATICAE
UNIVERSITATIS TARTUENSIS

 1. Mati Heinloo. The design of nonhomogeneous spherical vessels, cylindrical

tubes and circular discs. Tartu, 1991, 23 p.
 2. Boris Komrakov. Primitive actions and the Sophus Lie problem. Tartu,

1991, 14 p.
 3. Jaak Heinloo. Phenomenological (continuum) theory of turbulence. Tartu,

1992, 47 p.
 4. Ants Tauts. Infinite formulae in intuitionistic logic of higher order. Tartu,

1992, 15 p.
 5. Tarmo Soomere. Kinetic theory of Rossby waves. Tartu, 1992, 32 p.
 6. Jüri Majak. Optimization of plastic axisymmetric plates and shells in the

case of Von Mises yield condition. Tartu, 1992, 32 p.
 7. Ants Aasma. Matrix transformations of summability and absolute summa-

bility fields of matrix methods. Tartu, 1993, 32 p.
 8. Helle Hein. Optimization of plastic axisymmetric plates and shells with

piece-wise constant thickness. Tartu, 1993, 28 p.
 9. Toomas Kiho. Study of optimality of iterated Lavrentiev method and

its generalizations. Tartu, 1994, 23 p.
10. Arne Kokk. Joint spectral theory and extension of non-trivial multiplica-

tive linear functionals. Tartu, 1995, 165 p.
11. Toomas Lepikult. Automated calculation of dynamically loaded rigid-

plastic structures. Tartu, 1995, 93 p, (in Russian).
12. Sander Hannus. Parametrical optimization of the plastic cylindrical shells

by taking into account geometrical and physical nonlinearities. Tartu, 1995,
74 p, (in Russian).

13. Sergei Tupailo. Hilbert’s epsilon-symbol in predicative subsystems of
analysis. Tartu, 1996, 134 p.

14. Enno Saks. Analysis and optimization of elastic-plastic shafts in torsion.
Tartu, 1996, 96 p.

15. Valdis Laan. Pullbacks and flatness properties of acts. Tartu, 1999, 90 p.
16. Märt Põldvere. Subspaces of Banach spaces having Phelps’ uniqueness

property. Tartu, 1999, 74 p.
17. Jelena Ausekle. Compactness of operators in Lorentz and Orlicz sequence

spaces. Tartu, 1999, 72 p.
18. Krista Fischer. Structural mean models for analyzing the effect of

compliance in clinical trials. Tartu, 1999, 124 p.

190

19. Helger Lipmaa. Secure and efficient time-stamping systems. Tartu, 1999,
56 p.

20. Jüri Lember. Consistency of empirical k-centres. Tartu, 1999, 148 p.
21. Ella Puman. Optimization of plastic conical shells. Tartu, 2000, 102 p.
22. Kaili Müürisep. Eesti keele arvutigrammatika: süntaks. Tartu, 2000, 107 lk.
23. Varmo Vene. Categorical programming with inductive and coinductive

types. Tartu, 2000, 116 p.
24. Olga Sokratova. Ω-rings, their flat and projective acts with some appli-

cations. Tartu, 2000, 120 p.
25. Maria Zeltser. Investigation of double sequence spaces by soft and hard

analitical methods. Tartu, 2001, 154 p.
26. Ernst Tungel. Optimization of plastic spherical shells. Tartu, 2001, 90 p.
27. Tiina Puolakainen. Eesti keele arvutigrammatika: morfoloogiline ühesta-

mine. Tartu, 2001, 138 p.
28. Rainis Haller. M(r,s)-inequalities. Tartu, 2002, 78 p.
29. Jan Villemson. Size-efficient interval time stamps. Tartu, 2002, 82 p.
30. Eno Tõnisson. Solving of expession manipulation exercises in computer

algebra systems. Tartu, 2002, 92 p.
31. Mart Abel. Structure of Gelfand-Mazur algebras. Tartu, 2003. 94 p.
32. Vladimir Kuchmei. Affine completeness of some ockham algebras. Tartu,

2003. 100 p.
33. Olga Dunajeva. Asymptotic matrix methods in statistical inference

problems. Tartu 2003. 78 p.
34. Mare Tarang. Stability of the spline collocation method for volterra

integro-differential equations. Tartu 2004. 90 p.
35. Tatjana Nahtman. Permutation invariance and reparameterizations in

linear models. Tartu 2004. 91 p.
36. Märt Möls. Linear mixed models with equivalent predictors. Tartu 2004.

70 p.
37. Kristiina Hakk. Approximation methods for weakly singular integral

equations with discontinuous coefficients. Tartu 2004, 137 p.
38. Meelis Käärik. Fitting sets to probability distributions. Tartu 2005, 90 p.
39. Inga Parts. Piecewise polynomial collocation methods for solving weakly

singular integro-differential equations. Tartu 2005, 140 p.
40. Natalia Saealle. Convergence and summability with speed of functional

series. Tartu 2005, 91 p.
41. Tanel Kaart. The reliability of linear mixed models in genetic studies.

Tartu 2006, 124 p.
42. Kadre Torn. Shear and bending response of inelastic structures to dynamic

load. Tartu 2006, 142 p.

191

43. Kristel Mikkor. Uniform factorisation for compact subsets of Banach
spaces of operators. Tartu 2006, 72 p.

44. Darja Saveljeva. Quadratic and cubic spline collocation for Volterra
integral equations. Tartu 2006, 117 p.

45. Kristo Heero. Path planning and learning strategies for mobile robots in
dynamic partially unknown environments. Tartu 2006, 123 p.

46. Annely Mürk. Optimization of inelastic plates with cracks. Tartu 2006.
137 p.

47. Annemai Raidjõe. Sequence spaces defined by modulus functions and
superposition operators. Tartu 2006, 97 p.

48. Olga Panova. Real Gelfand-Mazur algebras. Tartu 2006, 82 p.
49. Härmel Nestra. Iteratively defined transfinite trace semantics and program

slicing with respect to them. Tartu 2006, 116 p.
50. Margus Pihlak. Approximation of multivariate distribution functions.

Tartu 2007, 82 p.
51. Ene Käärik. Handling dropouts in repeated measurements using copulas.

Tartu 2007, 99 p.
52. Artur Sepp. Affine models in mathematical finance: an analytical approach.

Tartu 2007, 147 p.
53. Marina Issakova. Solving of linear equations, linear inequalities and

systems of linear equations in interactive learning environment. Tartu 2007,
170 p.

54. Kaja Sõstra. Restriction estimator for domains. Tartu 2007, 104 p.
55. Kaarel Kaljurand. Attempto controlled English as a Semantic Web language.

Tartu 2007, 162 p.
56. Mart Anton. Mechanical modeling of IPMC actuators at large deforma-

tions. Tartu 2008, 123 p.
57. Evely Leetma. Solution of smoothing problems with obstacles. Tartu 2009,

81 p.
58. Ants Kaasik. Estimating ruin probabilities in the Cramér-Lundberg model

with heavy-tailed claims. Tartu 2009, 139 p.
59. Reimo Palm. Numerical Comparison of Regularization Algorithms for

Solving Ill-Posed Problems. Tartu 2010, 105 p.
60. Indrek Zolk. The commuting bounded approximation property of Banach

spaces. Tartu 2010, 107 p.
61. Jüri Reimand. Functional analysis of gene lists, networks and regulatory

systems. Tartu 2010, 153 p.
62. Ahti Peder. Superpositional Graphs and Finding the Description of Struc-

ture by Counting Method. Tartu 2010, 87 p.
63. Marek Kolk. Piecewise Polynomial Collocation for Volterra Integral

Equations with Singularities. Tartu 2010, 134 p.

192

64. Vesal Vojdani. Static Data Race Analysis of Heap-Manipulating C Programs.
Tartu 2010, 137 p.

65. Larissa Roots. Free vibrations of stepped cylindrical shells containing
cracks. Tartu 2010, 94 p.

66. Mark Fišel. Optimizing Statistical Machine Translation via Input Modifi-
cation. Tartu 2011, 104 p.

67. Margus Niitsoo. Black-box Oracle Separation Techniques with Appli-
cations in Time-stamping. Tartu 2011, 174 p.

68. Olga Liivapuu. Graded q-differential algebras and algebraic models in
noncommutative geometry. Tartu 2011, 112 p.

69. Aleksei Lissitsin. Convex approximation properties of Banach spaces.
Tartu 2011, 107 p.

70. Lauri Tart. Morita equivalence of partially ordered semigroups. Tartu
2011, 101 p.

71. Siim Karus. Maintainability of XML Transformations. Tartu 2011, 142 p.
72. Margus Treumuth. A Framework for Asynchronous Dialogue Systems:

Concepts, Issues and Design Aspects. Tartu 2011, 95 p.
73. Dmitri Lepp. Solving simplification problems in the domain of exponents,

monomials and polynomials in interactive learning environment T-algebra.
Tartu 2011, 202 p.

74. Meelis Kull. Statistical enrichment analysis in algorithms for studying gene
regulation. Tartu 2011, 151 p.

75. Nadežda Bazunova. Differential calculus d3
 = 0 on binary and ternary

associative algebras. Tartu 2011, 99 p.
76. Natalja Lepik. Estimation of domains under restrictions built upon gene-

ralized regression and synthetic estimators. Tartu 2011, 133 p.
77. Bingsheng Zhang. Efficient cryptographic protocols for secure and private

remote databases. Tartu 2011, 206 p.
78. Reina Uba. Merging business process models. Tartu 2011, 166 p.
79. Uuno Puus. Structural performance as a success factor in software develop-

ment projects – Estonian experience. Tartu 2012, 106 p.
80. Marje Johanson. M(r, s)-ideals of compact operators. Tartu 2012, 103 p.
81. Georg Singer. Web search engines and complex information needs. Tartu

2012, 218 p.
82. Vitali Retšnoi. Vector fields and Lie group representations. Tartu 2012,

108 p.
83. Dan Bogdanov. Sharemind: programmable secure computations with

practical applications. Tartu 2013, 191 p.
84. Jevgeni Kabanov. Towards a more productive Java EE ecosystem. Tartu

2013, 151 p.
85. Erge Ideon. Rational spline collocation for boundary value problems.

Tartu, 2013, 111 p.
86. Esta Kägo. Natural vibrations of elastic stepped plates with cracks. Tartu,

2013, 114 p.

87. Margus Freudenthal. Simpl: A toolkit for Domain-Specific Language
development in enterprise information systems. Tartu, 2013, 151 p.

88. Boriss Vlassov. Optimization of stepped plates in the case of smooth yield
surfaces. Tartu, 2013, 104 p.

89. Elina Safiulina. Parallel and semiparallel space-like submanifolds of low
dimension in pseudo-Euclidean space. Tartu, 2013, 85 p.

90. Raivo Kolde. Methods for re-using public gene expression data. Tartu,
2014, 121 p.

91. Vladimir Šor. Statistical Approach for Memory Leak Detection in Java
Applications. Tartu, 2014, 155 p.

92. Naved Ahmed. Deriving Security Requirements from Business Process
Models. Tartu, 2014, 171 p.

93. Kerli Orav-Puurand. Central Part Interpolation Schemes for Weakly
Singular Integral Equations. Tartu, 2014, 109 p.

94. Liina Kamm. Privacy-preserving statistical analysis using secure multi-
party computation. Tartu, 2015, 201 p.

95. Kaido Lätt. Singular fractional differential equations and cordial Volterra
integral operators. Tartu, 2015, 93 p.

96. Oleg Košik. Categorical equivalence in algebra. Tartu, 2015, 84 p.
97. Kati Ain. Compactness and null sequences defined by spaces. Tartu,

2015, 90 p.
98. Helle Hallik. Rational spline histopolation. Tartu, 2015, 100 p.
99. Johann Langemets. Geometrical structure in diameter 2 Banach spaces.

Tartu, 2015, 130 p.

	List of Abbreviations
	List of Symbols
	List of Figures
	List of Original Publications
	1 Introduction
	1.1 Problem Statement
	1.2 Contributions
	1.3 Outline

	2 State of the art
	2.1 Process model comparison based on task labels
	2.2 Process model comparison based on model structure
	2.3 Process model comparison based on behavior

	3 Background
	3.1 Petri nets
	3.1.1 Petri net subclasses
	3.1.2 Branching process of a Petri net system
	3.1.3 Configurations and families of pomsets

	3.2 Event structures
	3.2.1 Prime event structures
	3.2.2 Asymmetric event structures
	3.2.3 Flow event structures

	3.3 True concurrency semantic equivalences
	3.3.1 Configuration equivalence
	3.3.2 Completed visible-pomset equivalence
	3.3.3 History preserving bisimilarity

	4 Behavioral profiles for process model comparison
	4.1 Behavioral profiles (BP)
	4.2 FES as BP
	4.3 An execution semantics for BP|w
	4.4 Expressing differences using BP|w
	4.5 BP and silent transitions
	4.6 Discussion

	5 Process model comparison based on event structures
	5.1 Finite representation of cyclic process models
	5.1.1 Multiplicity of activities
	5.1.2 Multiplicity of activities in free-choice workflow nets

	5.2 Comparison based on event structures
	5.2.1 Partial synchronized product
	5.2.2 Identifying differences
	5.2.3 Verbalizing differences

	5.3 Discussion

	6 Reduction of event structures
	6.1 Foldings
	6.2 Reduction of AESs
	6.3 Reduction of FESs
	6.4 Deterministic foldings and canonicity
	6.5 Discussion

	7 Implementation and validation
	7.1 Evaluation

	8 Conclusions
	8.1 Summary of contributions
	8.2 Future work

	References
	Appendix A Basic notions and notations
	A.1 Sets and numbers
	A.2 Sequences
	A.3 Relations
	A.4 Functions

