
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Mathematics
Mathematics

Annabell Kuldmaa

EFFICIENT MULTIPLICATION IN
BINARY FIELDS

Bachelor Thesis (9 ECTS)

Supervisor: Lauri Tart

Author: . ”” June 2015

Supervisor: . ”” June 2015

Head of Institute: . ”” June 2015

TARTU 2015

Efficient Multiplication in Binary Fields
Abstract: The thesis discusses the basics of efficient multiplication in finite fields,
especially in binary fields. There are two broad approaches: polynomial rep-
resentation and normal bases, used in software and hardware implementations,
respectively. Due to the advantages of normal bases of low complexity, there is
also a brief introduction to constructing optimal normal bases. Furthermore, as
irreducible polynomials are of fundamental importance for finite fields, the thesis
concludes with some irreducibility test.
Keywords: finite field multiplication, modular reduction, polynomial basis, nor-
mal basis, irreducible polynomials

Tõhus korrutamine binaarsetes korpustes
Lühikokkuvõte: Käesolevas bakalaureusetöös käsitletakse tõhusa korrutamise
põhitõdesid lõplikes korpustes, keskendudes peamiselt binaarsetele korpustele.
Levinumad on kaks lähenemist: ühed toetuvad polünoombaasidele ning teised
normaalbaasidele, mida kasutatakse vastavalt tarkvaras ja riistvaras. Madala kee-
rukusega normaalbaaside eeliste tõttu vaatleme ka optimaalsete normaalbaaside
konstrueerimist. Lisaks uurime töö lõpuosas taandumatute polünoomide leidu-
mise tingimusi. Seda põhjusel, et taandumatud polünoomid on lõplike korpuste
konstrueerimisel fundamentaalse tähtusega.
Võtmesõnad: korrutamine lõplikes korpustes, modulaarne taandamine, polünoom-
baasid, normaalbaasid, taandumatud polünoomid

2

Contents
Introduction 4

1 Preliminaries 5
1.1 Rings and Fields . 5
1.2 Rings of Polynomials . 6
1.3 Field Extensions . 7
1.4 Bases for Finite Fields . 9
1.5 Representation of Field Elements 10

2 Multiplication Using Polynomial Bases 14
2.1 Standard Field Multiplication . 14
2.2 Polynomial Multiplication . 15
2.3 Field Reduction . 17
2.4 Montgomery Multiplication in GF(2n) 18

3 Multiplication Using Normal Bases 22
3.1 Multiplication Algorithm of Massey-Omura 22
3.2 Multiplication Algorithm of Reyhani-Masoleh and Hasan 24

4 Construction of Normal Bases 27
4.1 Normal Bases over GF(qn) . 27
4.2 Type I Optimal Normal Bases 30
4.3 Type II Optimal Normal Bases 31

5 On Irreducible Polynomials 33
5.1 Rabin’s Irreducibility Test . 33
5.2 Specific Trinomials . 34

References 36

3

Introduction
Finite fields are widely applied in coding theory and cryptography. Some promi-
nent examples are Reed-Solomon codes, the Advanced Encryption Standard and
elliptic curve cryptosystems. All of these applications require fast hardware and
software implementations of arithmetic, especially multiplication, in large finite
fields.

The aim of this thesis is to give an overview of selected methods for perform-
ing fast multiplication in finite fields. Over the last few decades this area has been
intensely studied and numerous implementations have been introduced. The the-
sis reviews the basics of these schemes and provides references for more detailed
resources.

The main focus of the thesis is on binary fields as these fields are widely used
and particularly suitable for hardware designs, since the arithmetic involves basic
bitwise operations. In general, it is common practice to use normal bases for
hardware implementations of multiplication and polynomial bases for software
ones.

While the hardware-oriented methods are compact and fast, they are also in-
flexible and expensive as the change of the field in hardware requires a complete
redesign. On the other hand, despite software implementations being slower, they
are more cost-effective and much more flexible. For example, the algorithms and
field parameters can easily be modified without requiring redesign. Thus, the
reader will be introduced to both software and hardware implementations.

The first chapter covers the fundamental definitions and properties of finite
fields. The theory is discussed only to the extent needed for our purposes. The
second chapter introduces several algorithms for multiplication via polynomial
bases. This also includes a look into how Montgomery modular multiplication can
be modified for binary fields. This is followed by two hardware implementations
using normal bases, the Massey-Omura scheme and an algorithm due to Reyhani-
Masoleh and Hasan. The existence of normal bases is discussed in Chapter 4 as
normal bases of low complexity are desirable in hardware designs. Finally, since
irreducible polynomials are of fundamental importance for finite fields, the thesis
concludes with an irreducibility test due to Rabin. As the field reduction process
can be accelerated using trinomials, the existence of irreducible trinomials is also
briefly discussed.

The thesis draws on a number of sources. The basics of finite fields are taken
from [7]. Chapter 2 relies heavily on [3], [4] and [5] and Chapter 3 on [6], [8] and
[11]. Chapter 4 is based on [8] and Chapter 5 on [2] and [10].

4

1 Preliminaries
In this chapter we introduce a number of fundamental concepts that are frequently
used in the following chapters. In general, we do not prove the results we cite,
instead we refer the reader to [7]. Also, we assume that the reader is familiar with
the concepts of modular arithmetic and primitive roots. If necessary, the reader
can consult [1] or [9].

1.1 Rings and Fields
Recall that a ring R is a division ring if the nonzero elements of R form a group
under multiplication and a field is a commutative division ring.

Definition 1.1. A finite field is a field F which contains a finite number of ele-
ments. The number of distinct elements in F is called the order of F.

An important example of a finite field is the field of integers modulo a prime
p, also called a prime field. We denote prime fields by

Fp = Zp = {0, 1, . . . , p− 1}.

Theorem 1.2 (Wedderburn). Every finite division ring is a field.

Definition 1.3. For an arbitrary finite field F there exists a positive integer p
such that pa = 0 for every a ∈ F. The least of such integers p is called the
characteristic of F and F is said to be of characteristic p.

A basic property of the characteristic is the following.

Theorem 1.4. Any finite field F is of prime characteristic.

In the rest of the thesis, we mainly focus on finite fields of characteristic 2.
Recall that a finite field of characteristic 2 is called a binary field.

Theorem 1.5. Let p be the characteristic of a field F. Then for every a, b ∈ F and
n ∈ N we have

(a+ b)p
n

= ap
n

+ bp
n

.

5

1.2 Rings of Polynomials
Next, we give a brief overview of rings of polynomials and quotient rings of poly-
nomial rings. Let R be a commutative ring. A polynomial over R is a formal
expression of the following form:

f(x) =
n∑
i=0

aix
i = a0 + a1x+ · · ·+ anx

n, ai ∈ R.

We define the sum of f(x) =
n∑
i=0

aix
i and g(x) =

m∑
j=0

bjx
j over F by

f(x) + g(x) =

max(m,n)∑
i=0

(ai + bi)x
i,

and their product of two polynomials over R by

f(x)g(x) =
n+m∑
k=0

ckx
k, where ck =

∑
i+j=k

aibj .

Definition 1.6. The set of all polynomials over R with the operations defined
above is called the ring of polynomials over R and denoted by R[x].

In the following, we consider polynomials over fields. Let F be a field. The
concept of divisibility, applied to the ring F [x], yields the following definition. A
polynomial f(x) ∈ F [x] divides another polynomial g(x) ∈ F [x], if there exists
a polynomial h(x) ∈ F [x] such that g(x) = f(x)h(x).

Definition 1.7. A polynomial p(x) ∈ F [x] is said to be irreducible over F [x] if
p(x) has a positive degree and p(x) = b(x)c(x) with b(x), c(x) ∈ F [x] implies
that either b(x) or c(x) is an invertible polynomial.

Therefore, a non-constant polynomial is irreducible in F [x] if it only allows
trivial factorizations. Recall that a factorization is called trivial if at most one
factor is non-constant. A non-constant polynomial in F [x] that is not irreducible,
is called reducible in F [x].

Fix a polynomial p(x) ∈ F [x]. Recall that the principal ideal generated by
p(x) is the set

I := p(x)F [x] = {p(x)f(x) | f(x) ∈ F [x]},

and the coset of a polynomial g(x) modulo I is

[g(x)] = g(x) + I = {g(x) + p(x)f(x) | f(x) ∈ F [x]}.

6

If we define addition and multiplication of cosets by

[g(x)] + [h(x)] = [g(x) + h(x)],

[g(x)][h(x)] = [g(x)h(x)],

then F [x]/I = {[g(x)] | g(x) ∈ F [x]} becomes a ring, called the quotient ring of
F [x] modulo p(x). Observe that equality of cosets means

[g(x)] = [h(x)] ⇐⇒ p(x) | g(x)− h(x) ⇐⇒ g(x) ≡ h(x) (mod p(x)).

Theorem 1.8. The quotient ring F [x]/p(x)F [x] is a field if and only if p(x) is
irreducible over F .

1.3 Field Extensions
Now, let us consider field extensions. Let F be a field. A subset F ′ of F that is
itself a field under the operations of F is called a subfield of F . Conversely, F is
called an extension field of F ′. Note that if F is an extension field of F ′, then F
can be viewed as a vector space over F ′. Elements a ∈ F can clearly be multiplied
by a scalar r ∈ F ′ so that ra ∈ F . Furthermore, all the laws for multiplication by
scalars are satisfied essentially by definition.

Theorem 1.9. Every finite field F with prime characteristic p contains a subfield
which is isomorphic to Zp.

The above can be used to deduce the possible number of elements in a finite
field.

Theorem 1.10. Let F be a finite field. Then F has pn elements, where prime p is
the characteristic of F and n is called the degree of F over its prime subfield Zp.

It can be shown that for every prime p and n ∈ N, there exists a finite field with
pn elements and all these fields of the same cardinality are isomorphic. Therefore,
we can speak of the finite field (also called the the Galois field) with q = pn

elements, where p ∈ P and n ∈ N. Such fields will be denoted by GF(q) in the
rest of the thesis. For a finite field GF(q) we denote by F∗q the multiplicative group
of the nonzero elements of GF(q).

Theorem 1.11. The multiplicative group F∗q of every finite field GF(q) is cyclic.

Definition 1.12. Generators of the multiplicative group F∗q are called the primitive
elements of GF(q).

7

The number of primitive elements of GF(q) is ϕ(q − 1), where ϕ is Euler’s
totient function. In the next section, we will describe how elements of finite fields
can be represented as powers of a primitive element of Fq, but here we will con-
clude with two useful lemmas.

Lemma 1.13. Let GF(q) be a finite field. Then for all a ∈ F∗q we have that
aq−1 = 1.

Note that the previous lemma is an analog of Fermat’s Little Theorem.

Lemma 1.14. Every element a ∈ GF(q) satisfies aq = a.

As a matter of fact, the converse also holds.

Lemma 1.15. For any finite extension K of GF(q) and a ∈ K, if we have aq = a,
then a ∈ GF(q).

Now, let us review splitting fields of polynomials. For that, we need to define
the roots of a polynomial.

Definition 1.16. An element b is called a root of the polynomial f(x) ∈ F [x] if
f(b) = 0.

Recall that the quotient ring F [x]/p(x)F [x] is a field if and only if p(x) is
irreducible over F .

Theorem 1.17. Let F be a field, and suppose p(x) ∈ F [x] is an irreducible
polynomial of degree n ≥ 2. Then F [x]/p(x)F [x] is a field which contains a
subfield F ′ isomorphic to F and, furthermore, p(x) has a root in F ′.

Successive use of the previous theorem leads to an extension containing all
the roots of p(x).

Theorem 1.18. Let F be a field, and suppose p(x) ∈ F [x] is an irreducible
polynomial of degree n ≥ 1. Then there exists an extension F ′ of F which contains
n roots of p(x).

Definition 1.19. An extension field F ′ of F is said to be the splitting field of
f(x) ∈ F [x] over F if f(x) can be written as a product of linear factors, i.e.

f(x) = b(x− a1) . . . (x− an),

where a1, . . . , an, b ∈ F ′ and F ′ is the smallest field containing all the roots of
f(x).

In fact, the preceding can be refined to a more concrete observation.

8

Lemma 1.20. If F is an extension field of GF(q) of degree n, then the polynomial
xq

n − x ∈ Fq[x] factors in F[x] as

xq
n − x =

∏
a∈F

(x− a)

and F is the splitting field of xq
n − x over GF(q).

Now, let us state the main characterization theorem for finite fields.

Theorem 1.21 (Existence and Uniqueness of Finite Fields). For every prime p
and every positive integer n there exists a finite field with pn elements. Any finite
field with q = pn elements is isomorphic to the splitting field of xq−x overGF (p).

Lemma 1.22. Let p(x) be an irreducible polynomial over Fq[x] of degreem. Then
p(x) | xqn − x if and only if m | n.

Theorem 1.23. If p(x) is an irreducible polynomial of degree n over Fq[x], then
p(x) has a root α in GF(qn)). All the roots of p(x) are simple (i.e. p(x) has
no multiple roots) and are given by the n distinct elements α, αq, . . . , αq

n−1 ∈
GF(qn).

Corollary 1.24. Let p(x) be an irreducible polynomial of degree n over Fq[x],
then the splitting field of p(x) over GF(q)) is given by GF(qn).

Let F be an arbitrary field. Recall that a ∈ F is an n-th root of unity in F if
an = 1. In the next chapters, we denote the set of all n-th roots of unity in F by
Hn. The next lemma will be used in the following sections.

Lemma 1.25. Let kl + 1 be a prime, GF(q) be a finite field and suppose there
exists a primitive (kl + 1)-th root of unity a in GF(q). Then for any primitive l-th
root of unity η in Zkl+1, we have

l−1∑
i=0

aη
i+j

=
l−1∑
i=0

aη
i

, j ∈ N.

1.4 Bases for Finite Fields
In this section we consider the finite extension GF(qn) of the finite field GF(q) as
a vector space over GF(q). Note that since {α1, . . . , αn} is a basis of GF(qn) and
since the dimension of GF(qn) over GF(q) is n, each element α ∈ GF(qn) can
be uniquely represented in the following form:

α = c1α1 + · · ·+ cnαn, ci ∈ GF(q).

9

Definition 1.26. Fix α ∈ GF(qn). Then the elements α, αq, . . . , αq
n−1

are called
the conjugates of α over GF(q).

Now, let us introduce a useful linear mapping from GF(q) to GF(qn).

Definition 1.27. For α ∈ GF(qn), the trace of α is defined by

TrGF(qn)(α) = α + αq + · · ·+ αq
n−1

.

Since (TrGF(qn)(α))
q = TrGF(qn)(α), the trace of an element α always lies in

the base field GF(q).

As stated above, every finite field is a vector space over each of its subfields,
and thus has a vector space basis over each of its subfields. In general, the number
of distinct bases of GF(qn) over GF(q) is rather large. Different kinds of bases
facilitate certain computations. In the following, we introduce two different types
of bases.

Definition 1.28. A basis of GF(qn) over GF(q) of the form {1, α, . . . , αn}, where
α ∈ GF(qn), is called a polynomial basis of GF (qn) over GF(q). The element α
is called the defining element of GF(qn) over GF(q).

A root of an irreducible polynomial p(x) over GF(q) of degree n can be
viewed as a generator of a polynomial basis. In other words, we can take a root
α of p(x), and its powers αi, 0 ≤ i ≤ n − 1, form a polynomial basis of GF(qn)
over GF(q).

Definition 1.29. A basis of GF(qn) over GF(q) of the form {α, αq, . . . , αqn−1},
where α ∈ GF(qn), is called a normal basis of GF(qn) over GF(q). Elements
α ∈ GF(qn) that give rise to normal bases as above are called normal elements.

Normal bases will be considered in much more detail in Chapters 3 and 4.

1.5 Representation of Field Elements
As discussed in previous section, there is more than one way to represent elements
of a finite field. One way is to use quotient rings over an irreducible polynomial
p(x) and the other is to use the fact that F∗q is cyclic and its elements can be
represented as powers of a primitive element.

Addition in finite fields using quotient rings over an irreducible polynomial
p(x) is neither difficult nor costly. In the case of binary fields, it is simply the
XOR operation. As multiplication is much more complicated, in the following we
will focus on that operation.

10

First, let us study multiplication modulo an irreducible polynomial. Let ele-
ments a, b ∈ GF(qn) be represented as polynomials

a(x) =
n−1∑
i=0

aix
i and b(x) =

n−1∑
i=0

bix
i, where ai, bi ∈ GF(q).

In order to multiply two elements a and b in GF(qn), we need an irreducible
polynomial of degree n. Let p(x) = xn + r(x) be an irreducible polynomial of
degree n over the field GF(q). The product c = ab ∈ GF(qn) is obtained by
computing

c(x) = a(x)b(x) (mod p(x)),

where c(x) =
n−1∑
i=0

cix
i, ci ∈ GF(q). Therefore, multiplication in the field GF(qn)

is accomplished by multiplying the corresponding polynomials modulo the irre-
ducible polynomial p(x). It is easy to see that this kind of multiplication is com-
plicated, especially the reduction modulo p(x). Multiplication with powers of a
primitive element is much easier, but leads to convoluted addition, necessitating
conversion into polynomials.

Before proceeding to primitive elements and index tables, note that the ab-
solutely fastest way to perform multiplication in finite fields is to precompute its
Cayley table. As an example, let us examine the finite field GF(16) as an exten-
sion of GF(2). Therefore, we need an irreducible polynomial of degree 4.

Take p(x) = x4 + x3 + 1 and verify that it is indeed irreducible over GF(2).
If p(x) is irreducible, it must contain a linear or a quadric factor. As p(1) 6= 0
and p(0) 6= 0, p(x) does not contain linear factors. Thus, we need to show that
there exist no polynomials l(x) of degree 2, such that l(x) | p(x). Note that, there
are exactly four polynomials of degree 2 over GF(2): x2, x2 + 1, x2 + x and
x2 + x + 1. It is easy to check that none of these divides p(x). Consequently, we
have shown that p(x) is irreducible over GF(2). Thus, we have that [x4] = [x3 +
1]. The Cayley table for multiplication consists of all possible binary polynomial
multiplications, where polynomials have degree at most 3 and the result is reduced
modulo x4 + x3 + 1.

The problem with Cayley tables is that they are not feasible to compute or store
for large n, and may otherwise lead to memory architecture-related vulnerabilities.
Furthermore, we will end up with huge tables which cannot be stored efficiently.
Therefore, we need an alternative.

Now let us combine the two representations, leading to much more memory-
efficient multiplication. For that we use the so-called index tables.

Let a be primitive in GF(q) and let p(x) = xn + r(x) be an irreducible poly-
nomial of degree n over the field GF(q). As a is a generator of F∗q , we have that

GF(qn) = {0, 1, a, a2, . . . , aqn−1}.

11

Also, note that since multiplication includes reduction modulo p(x), we shall
also use the fact that [an + r(a)] = [0], meaning [an] = [−r(a)].

Let us proceed with our example and check whether [x] is primitive in GF(16).
As prime factors of |F∗16| = 15 are 3 and 5, and we have that neither [x]3 6= [1] nor
[x]5 = [x]4[x] = [x3 + x+ 1] 6= [1], we can take [x] as a primitive element. Thus,
we have that

[x]4 = [x3 + 1],

[x]5 = [x]4[x] = [x3 + x+ 1],

[x]6 = [x]5[x] = [x3 + x+ 1][x] = [x4 + x2 + x] = [x3 + x2 + x+ 1],

. . .

[x]14 = [x]13[x2 + x][x] = [x3 + x2],

[x]15 = [x]14[x3 + x2][x] = [x4 + x3] = [x3 + x3 + 1] = [1].

The result can be represented in the index table, where instead of writing ak

we simply write k and instead of writing a polynomial kn−1an−1+ · · ·+k1a+k0,
we write kn−1 . . . k1k0. Thus, we arrive at the following result:

k k3k2k1k0

0 0001
1 0010
2 0100
3 1000
4 1001
5 1011
6 1111
7 0111
8 1110
9 0101
10 1010
11 1101
12 0011
13 0110
14 1100
15 1111

This index table can be used for fast multiplication in GF(16). Therefore, it
is useful to know a generator of a multiplicative group of a finite field and an ir-
reducible polynomial whose root this generator is. Note that finding irreducible

12

polynomials is quite difficult in general and we will return to this topic in subse-
quent chapters. Also, index tables, while more memory-efficient by a factor of q,
inherit the same problem that make Cayley tables infeasible for very large q.

13

2 Multiplication Using Polynomial Bases
As discussed in the previous section, there is more than one way to implement
multiplication in finite fields viewed as vector spaces over subfields. In order to
specify a multiplication rule, it is necessary to choose a basis. When it comes to
software implementations, using polynomial bases is more efficient than normal
bases. In the following we describe several algorithms for binary field arithmetic
using polynomial bases.

2.1 Standard Field Multiplication
Let a, b ∈ GF(2n) be represented as polynomials

a(x) =
n−1∑
i=0

aix
i and b(x) =

n−1∑
i=0

bix
i, where ai, bi ∈ GF(2)

or, equivalently, as vectors a = (an−1, . . . , a1, a0) and b = (bn−1, . . . , b1, b0). Let
p(x) = xn + r(x) be an irreducible polynomial of degree n over GF(2).

The simplest algorithm for field multiplication using polynomial representa-
tion is the shift-and-add method. This method is based on the observation that

a(x)b(x) = an−1x
n−1b(x) + . . .+ a1xb(x) + a0b(x).

Thus, we successively compute xib(x) modulo p(x) for all 1 ≤ i ≤ n− 1 and add
all the results for which ai = 1. If b(x) = bn−1x

n−1 + . . .+ b2x
2 + b1x+ b0, then

b(x)x = bn−1x
n + . . .+ b2x

3 + b1x
2 + b0x

≡ bn−1r(x) + (bn−2x
n−1 + . . .+ b2x

3 + b1x
2 + b0x) (mod p(x)).

Therefore, b(x)x (mod p(x)) can be computed by a left-shift of the vector repre-
sentation of b(x), followed by the addition of r(x) to b(x), if the most significant
bit bn−1 is 1. This algorithm is presented as Algorithm 1.

The shift-and-add method is not particularly suitable for software implementa-
tions as the bitwise shifts are costly to implement for processor architecture based
on fixed-length words.

14

Algorithm 1 Right-To-Left Shift-and-Add Field Multiplication

Input: a(x) =
n−1∑
i=0

aix
i, b(x) =

n−1∑
i=0

bix
i, ai, bi ∈ GF(2)

Output: c(x) = a(x)b(x) (mod p(x)) =
n−1∑
i=0

cix
i, ci ∈ GF(2)

if a0 = 1 then
c(x)← b(x)

else
c(x)← 0

for i = 0 . . . n− 1 do
b(x)← b(x)x (mod p(x))
if ai = 1 then

c(x)← b(x) + c(x)

return c(x)

2.2 Polynomial Multiplication
Next, we consider faster methods for field multiplication. First, we have two
improved algorithms for simply multiplying field elements that are represented
as polynomials. Then we present an algorithm for faster reduction modulo an
irreducible polynomial p(x).

To begin, it is necessary to describe how polynomials are stored in software.
Let w be the word-length of the processor (usually w is a multiple of 8) and t =
d n
w
e. Thus, the vector a = (an−1, . . . , a1, a0) may be stored in an array of t w-bit

words:
A = (A[t− 1], . . . , A[1], A[0]),

where the rightmost bit is a0 and the leftmost wt − n bits are set to 0. The i-th
bit of the j-th word is denoted by A[j][i]. We also use the following notion: if
C = (C[n], . . . , C[1], C[0]), then C{j} = (C[n], . . . , C[j + 1], C[j]).

Now, let us introduce a more efficient method for polynomial multiplication:
the comb method. Here, multiplication is implemented in two separate steps, first
performing polynomial multiplication to obtain a 2n-bit-length polynomial and
then reducing it via reduction polynomials.

The right-to-left comb method for polynomial multiplication is based on the
observation that if b(x)xi has been computed for some i ∈ {0, . . . , w − 1}, then
b(x)xwj+i can be easily computed by appending j zero words to the right of the
vector representation of b(x)xi. Algorithm 2 processes the bits of the words of A
from right to left.

15

Algorithm 2 Right-to-Left Comb Method for Polynomial Multiplication

Input: a(x) =
n−1∑
i=0

aix
i, b(x) =

n−1∑
i=0

bix
i, ai, bi ∈ GF(2)

Output: c(x) = a(x)b(x) =
2n−2∑
i=0

cix
i, ci ∈ GF(2)

C ← 0
for i = 0 . . . w − 1 do

for j = 0 . . . t− 1 do
if A[j][i] = 1 then

C{j} = C{j}+B

if i 6= w − 1 then
B ← Bx

return C

Note that Algorithm 2 can be also improved. One way to do this is the left-to
right comb method which processes the bits of a from left to right, as follows:

a(x)b(x) = (. . . ((an−1b(x)x+(an−2b(x))x+(an−3b(x))x+. . .+a1b(x))x+a0b(x).

Note that this modification does not accelerate multiplication in comparison with
Algorithm 2, but this left-to right comb method can be considerably accelerated
at the expense of some storage overhead by first computing u(x)b(x) for all poly-
nomials u(x) of degree less than some fixed w′ (w′ | w), and then processing the
bits of A[j] one at a time. This modified method is called the left-to-right comb
method with windows of width w′. The corresponding algorithm is presented
below as Algorithm 3.

As stated above, the previous two algorithms only perform polynomial multi-
plication. The maximal degree of the output polynomial c(x) is 2n − 2. In some
cases, the modular reduction required for field multiplication is done separately.
In others, the irreducible polynomial p(x) is included as an input to the algorithm
and reduction is done mid-step. For example, Algorithm 3 can be modified to
calculate u(x)b(x) (mod p(x)) which may allow optimization in the next steps.

16

Algorithm 3 Left-to-Right Comb Method for Polynomial Multiplication with
Windows of Width w′

Input: a(x) =
n−1∑
i=0

aix
i, b(x) =

n−1∑
i=0

bix
i, ai, bi ∈ GF(2)

Output: c(x) = a(x)b(x) =
2n−2∑
i=0

cix
i, ci ∈ GF(2)

Precompute Bu = u(x)b(x) for all polynomials u(x) of degree at most w′ − 1
for all i = w

w′
. . . 0 do

for all j = 0 . . . t− 1 do
u← (uw′−1, . . . , u1, u0) where uk = A[j][w′i+ k]
C{j} ← C{j}+Bu

if i 6= 0 then
C ← Cxw

′

return C

2.3 Field Reduction
In this section we explore how to efficiently reduce polynomials of degree 2n− 2,
as the output polynomial of the comb algorithms discussed above have degree at
most 2n− 2.

Let p(x) = xn+r(x) be an irreducible polynomial of degree n over GF(2) and

c(x) =
2n−2∑
i=0

cix
i, ci ∈ GF(2). The following algorithm is based on the observation

that

xn ≡ r(x) (mod p(x)),

xn+k ≡ r(x)xk (mod p(x)),

and thus

c(x)

= c2n−2x
2n−2 + · · ·+ c1x+ c0

≡ (c2n−2x
n−2 + · · ·+ cn)r(x) + cn−1x

n−1 + · · ·+ c1x+ c0 (mod p(x)).

In the following algorithm, reduction modulo p(x) is done one bit at a time, start-
ing from the leftmost bit. In order to accelerate reduction, polynomials xkr(x)
0 ≤ k ≤ w − 1 are precomputed. Moreover, Algorithm 4 works on the bit, not
word level. Recall that t = d n

w
e, where w is the word length of the processor.

Multiplication in a finite field is simply the product of two field polynomials,
reduced modulo p(x), but there are polynomials modulo which reduction is more
efficient than for others.

17

Algorithm 4 Bit-Level Modular Reduction

Input: c(x) =
2n−2∑
i=0

cix
i, ci ∈ GF(2), p(x) = xn + r(x)

Output: c(x) (mod p(x))
Precompute uk(x) = xkr(x) for all xnr(x), 0 ≤ k ≤ w − 1
for all i = (2n− 2) . . . n do

if ci = 1 then
j ← i−n

w

k ← (i− n)− wj
C{j} ← C{j}+ uk(x)

return (C[t− 1], . . . , C[0])

Specifically, the reduction of polynomials modulo p(x) is particularly effi-
cient if p(x) has a small number of terms. The irreducibles with the least number
of terms are the trinomials xn + xa + 1. Thus, it is common practice to choose a
trinomial for the field polynomial, provided that one exists. For example, Algo-
rithm 4 can be accelerated even more when using trinomials, because the space
requirements will be smaller and the additions involving xkr(x) become faster.

If an irreducible trinomial of degree n does not exist, then the next best poly-
nomials are the pentanomials xn + xa + xb + xc + 1. In binary fields for every n
up to 1000, there exists either an irreducible trinomial or pentanomial of degree n.
Such polynomials are widely recommended in all major standards. For software
implementation, reduction polynomials with middle terms close to each other are
more suitable. The existence of irreducible polynomials will be discussed further
in Chapter 5.

2.4 Montgomery Multiplication in GF(2n)

There is another variation of multiplication using polynomial representation. In-
stead of computing a(x)b(x) in GF(2n), we calculate a(x)b(x)r(x)−1 in GF(2n),
where r(x) is a special fixed element of GF(2n). This method is based on an
idea by Montgomery for modular multiplication of integers to replace division
in classical reduction algorithms with less-expensive operations. The method is
not efficient for a single modular multiplication, but can be used effectively in
computations such as modular exponentiation, where many multiplications are
performed for a given input.

It can be shown that Montgomery’s technique is applicable to the field GF(2n)
as well. The selection of r(x) = xn turns out to be very useful in obtaining

18

fast software multiplication. Thus, r(x) is the element of the field, represented
by the polynomial r(x) (mod p(x)), i.e., if p = (pn, pn−1, . . . , p1, p0), then r =
(pp−1, . . . , p1, p0), where p(x) is the field polynomial. Montgomery multiplication
requires that both r(x) and p(x) are relatively prime, i.e. gcd(p(x), r(x)) = 1,
since r(x) = xn, we must have x - p(x). As p(x) is an irreducible polynomial over
the field GF(2), this will always be the case. Since r(x) and p(x) are relatively
prime, there exist two polynomials r(x)−1 and p′(x) with the property that

r(x)r(x)−1 + p(x)p′(x) = 1,

where r(x)−1 is the inverse of r(x) modulo p(x). The polynomials r(x)−1 and
p′(x) can be computed using the extended Euclidean algorithm.

The Montgomery product of a(x) and b(x) is defined as the product

c(x) = a(x)b(x)r(x)−1 (mod p(x)).

For an implementation see Algorithm 5.
Note that from u(x) = t(x)p′(x) (mod r(x)) implies that there exists an poly-

nomial k(x) over GF(2) such that

u(x) = t(x)p′(x) + k(x)r(x).

Therefore, as r(x) = xn we can write

c(x) =
1

xn
(t(x) + u(x)p(x)) =

1

xn
(t(x) + (t(x)p′(x) + k(x)r(x))p(x))

=
1

xn
(t(x) + t(x)p′(x)p(x) + k(x)r(x)p(x)).

Now using that r(x)r(x)−1 + p(x)p′(x) = 1, c(x) can be computed as

c(x) =
1

xn
(t(x) + t(x)(1 + r(x)r(x)−1) + k(x)r(x)p(x))

=
1

xn
(t(x)r(x)r(x)−1 + k(x)r(x)p(x))

= t(x)r(x)−1 + k(x)p(x) ≡ a(x)b(x)r(x)−1 (mod p(x)),

as required. As mentioned before, the algorithm is similar to the algorithm given
by Montgomery for the multiplication of integers. The difference is that the final
subtraction step required in the integer case is not necessary for polynomials, as
the degree of polynomial c(x) computed by this algorithm is less than equal to
n− 1. Indeed, the degree of c(x) can be found to be

deg c(x) ≤ max(deg t(x), deg u(x) + deg p(x))− deg r(x)

≤ max(2n− 2, n− 1 + n)− n = 2n− 1− n = n− 1.

19

Algorithm 5 Montgomery Multiplication in GF(2n)

Input: a(x) =
n−1∑
i=0

aix
i, b(x) =

n−1∑
i=0

bix
i, p′(x) =

n−1∑
i=0

p′ix
i,

r(x) = xn, ai, bi, p
′
i ∈ GF(2)

Output: c(x) =
n−1∑
i=0

cix
i = a(x)b(x)r(x)−1 (mod p(x)), ci ∈ GF(2)

t(x)← a(x)b(x)
u(x)← t(x)p′(x) (mod r(x))

c(x)← t(x)+u(x)p(x)
r(x)

return c(x)

Thus, the polynomial c(x) is already reduced.

In the above algorithm, the computation of c(x) involves a regular polynomial
multiplication, a modulo r(x) multiplication, and finally a regular multiplication
and a division by r(x) as the last step. Note that the modular multiplication and
division operations are fast operations since we have r(x) = xn.

Also, it turns out that the computation of p′(x) can be completely avoided if the
coefficients of a(x) are scanned one bit at a time. Recall that we need to compute
a(x)b(x)r(x)−1. Again, we follow the analogy with the integer algorithm.

Firstly, if c0 = 1, we add p(x) to c(x). Therefore, since p(x) is irreducible,
p0 = 1 and c(x) becomes divisible by x. If c0 = 0, we do not add p(x) to c(x). In
other words, we compute c(x) = c(x)+c0p(x) after the addition step, making c(x)
always divisible by x. This bit-level algorithm for Montgomery multiplication is
given as Algorithm 6.

Algorithm 6 Bit-Level Algorithm for Montgomery Multiplication

Input: a(x) =
n−1∑
i=0

aix
i, b(x) =

n−1∑
i=0

bix
i, p(x) =

n−1∑
i=0

pix
i, ai, bi, pi ∈ GF(2)

Output: c(x) =
n−1∑
i=0

cix
i = a(x)b(x)r(x)−1 (mod p(x)), ci ∈ GF(2)

c(x)← 0
for i← 0 . . . n− 1 do

c(x)← c(x) + aib(x)
c(x)← c(x) + c0p(x)
c(x)← c(x)/x

return c(x)

Note that the bit-level algorithm for Montgomery multiplication can also be
generalized to a world-level algorithm as we did in the previous section for the

20

comb methods by proceeding word by word.

Observe that in order to compute a(x)b(x) (mod p(x)) there is a need for
conversion of the output. To achieve that, the output of the algorithm must be
multiplied with r(x). Therefore, actual speedup is achieved only when performing
a whole series of modular multiplications on intermediate results. For example,
this technique can be used to obtain fast software implementations of discrete
exponentiation.

21

3 Multiplication Using Normal Bases
In this chapter we discuss how multiplication in GF(qn) can be done in general
using multiplication tables for normal bases (which are not Cayley tables).

We view GF(qn) as a vector space over GF(q). Let α0, α1, ..., αn−1 ∈ GF(qn)
be linearly independent over GF(q). Then every element A ∈ GF(qn) can be

represented as A =
n−1∑
i=0

aiαi, ai ∈ GF(q), or, equivalently, as a vector

A = (a0, a1, ..., an−1). Let B = (b0, b1, ..., bn−1) and

A×B =: C = (c0, c1, ..., cn−1).

We have αiαj =
n−1∑
k=0

t
(k)
i,j αk = (t

(0)
i,j , t

(1)
i,j , ..., t

(n−1)
i,j) for some t(k)i,j ∈ GF(q). Thus,

we can write

ck =
n−1∑
i=0

n−1∑
j=0

aibjt
(k)
i,j = ATkB

T , 0 ≤ k ≤ n− 1,

where Tk = (t
(k)
i,j) are n × n matrices over GF(q) and BT is the transpose of B.

The collection of matrices {Tk} is called the multiplication table for GF(qn) over
GF(q). Note that the matrices {Tk} are independent of A and B.

For some bases the corresponding multiplication tables {Tk} are simpler than
others as they may have fewer non-zero entries and more regularities so that one
may choose some multiplication algorithm to make a hardware or software design
of finite field multiplication feasible for large finite fields.

3.1 Multiplication Algorithm of Massey-Omura
In the following we present a multiplication algorithm for normal bases, which is
based on the Massey-Omura scheme.

Let GF(qn) be a finite field and N = {α0, α1, ..., αn−1} be a normal basis,
where αi = αq

i for a fixed α ∈ GF(qn). Thus, we have αq
k

i = αi+k for any
integer k, where the subscripts of α are reduced modulo n.

As before, take

αiαj =
n−1∑
k=0

t
(k)
i,j αk,

22

with coordinates t(k)i,j ∈ GF(q). Then by the above, Theorem 1.5 and Lemma 1.14,
we have for all l ∈ N ∪ {0}

αiαj = (αi−lαj−l)
ql =

(
n−1∑
k=0

t
(k)
i−l,j−lαk

)ql

=
n−1∑
k=0

(t
(k)
i−l,j−l)

qlαk+l =
n−1∑
k=0

t
(k−l)
i−l,j−lαk,

where the subscripts and superscripts of t(k)i,j are reduced modulo n. Therefore, we
get that

t
(k)
i,j = t

(k−l)
i−l,j−l for all 0 ≤ i, j, l ≤ n− 1.

In particular, if we take k = l,

t
(k)
i,j = t

(0)
i−k,j−k.

For simplicity we denote t(0)i,j := ti,j and take T = (ti,j) to be the matrix with
entries ti,j . Hence, we can write that

α0αi = ααi =
n−1∑
j=0

ti,jαj.

Therefore, instead of n matrices, we need only one. The number of non-zero
entries in T is called the complexity of the normal basis and denoted by cN .

Theorem 3.1. For any normal basis N of GF(qn) over GF(q), cN is at least 2n−1.

Proof. Let {α, αq, ..., αqn−1} = {α0, α1, ..., αn−1} be a normal basis of GF(qn).

Then b =
n−1∑
i=0

αi = TrGF(qn)(α) ∈ GF(q). Therefore, we have

α0b+ α10 + . . .+ αn−10 = α0b = αb = α

n−1∑
i=0

αi =
n−1∑
i=0

ααi

=
n−1∑
i=0

n−1∑
j=0

ti,jαj =
n−1∑
j=0

αj(
n−1∑
i=0

ti,j).

Hence,
n−1∑
i=0

ti,j = b when j = 0, otherwise
n−1∑
i=0

ti,j = 0.

Since α is non-zero and generates the normal basis, {ααi : 0 ≤ i ≤ n − 1}
is also a basis of GF(qn), so the matrix T = (ti,j) is invertible. Thus, for each j
there is at least one non-zero ti,j . Note that for each j 6= 0, there must be at least
two non-zero elements in each column, since the column must sum to zero. So
there are at least 2n− 1 non-zero terms in T . This completes the proof.

23

A normal basis N is called optimal if cN = 2n− 1.

Now, take A =
n−1∑
i=0

aiαi ∈ GF(qn) and B =
n−1∑
i=0

biαi ∈ GF(qn). Then

C = A×B =
n−1∑
k=0

ckαk ∈ GF(qn). On the other hand, we can write

C = A×B =
n−1∑
i=0

n−1∑
j=0

aibjαiαj =
n−1∑
i=0

n−1∑
j=0

aibj

(
n−1∑
k=0

t
(k)
i,j αk

)

=
n−1∑
k=0

(
n−1∑
i=0

n−1∑
j=0

aibjt
(k)
i,j

)
αk.

Using our result that t(k)i,j = ti−k,j−k, we have the coefficients ck of C = A×B as

ck =
n−1∑
i=0

n−1∑
j=0

aibjt
(k)
i,j =

n−1∑
i=0

n−1∑
j=0

aibjti−k,j−k =
n−1∑
i=0

n−1∑
j=0

ai+kbj+kti,j, (1)

where the subscripts and the superscripts of a, b and ti,j are reduced modulo n.
Therefore, the coordinates of C can be computed by cyclically shifting the

coordinates of A and B and multiplying them with T .

3.2 Multiplication Algorithm of Reyhani-Masoleh and Hasan
The multiplication algorithm for GF(2n) by Reyhani-Masoleh and Hasan is based
on the use of ααi instead of αiαj and the symmetry between ααi and ααn−1.

Let N = {α0, α1, ..., αn−1} be a normal basis of GF(2n) over GF(2), then

α2k

i = αi+k. Take A =
n−1∑
i=0

aiαi ∈ GF(2n) and B =
n−1∑
i=0

biαi ∈ GF(2n), then

C = A×B =
n−1∑
i=0

n−1∑
j=0

aibjαiαj =
n−1∑
i=0

aibiα
2
i +

n−1∑
i=0

∑
j 6=i

aibj(ααj−i)
2i

=
n−1∑
i=0

aibiαi+1 +
n−1∑
i=0

∑
j 6=i

aibj(ααj−i)
2i =

n−1∑
i=0

aibiαi+1 +
n−1∑
i=0

∑
j 6=0

aibj+i(ααj)
2i .

Denoting v = bn−1
2
c, for odd n we have on the right side

n−1∑
i=0

v∑
j=1

aibj+i(ααj)
2i +

n−1∑
i=0

n−1∑
j=n−v

aibj+i(ααj)
2i ,

24

and for even n we have

n−1∑
i=0

v∑
j=1

aibj+i(ααj)
2i +

n−1∑
i=0

n−1∑
j=n−v

aibj+i(ααj)
2i +

n−1∑
i=0

aibv+1+i(ααv+1)
2i ,

where summation has been rearranged with respect to j. Furthermore,

n−1∑
i=0

n−1∑
j=n−v

aibj+i(ααj)
2i =

n−1∑
i=0

v∑
j=1

aibn−j+i(ααn−j)
2i

=
n−1∑
i=0

v∑
j=1

ai+jbi(ααn−j)
2i+j

=
n−1∑
i=0

v∑
j=1

ai+jbi(ααj)
2i ,

where summation has been rearranged with respect to i and then all the subscripts
are reduced modulo n. Therefore, we get that

C = A×B =
n−1∑
i=0

aibiαi+1 +
n−1∑
i=0

v∑
j=1

(aibj+i + aj+ibi)(ααj)
2i

=
n−1∑
i=0

(aibiα1 +
v∑
j=1

(aibj+i + aj+ibi)ααj)
2i

or
C = A×B

=
n−1∑
i=0

aibiαi+1 +
n−1∑
i=0

v∑
j=1

(aibj+i + aj+ibi)(ααj)
2i +

n−1∑
i=0

aibv+1+i(ααv+1)
2i

=
n−1∑
i=0

(aibiα1 +
v∑
j=1

(aibj+i + aj+ibi)ααj + aibv+1(ααv+1))
2i .

Now, combining the above two equations, the following theorem can be obtained.

Theorem 3.2 ([11], Theorem 1). Let α0, α1, ..., αn−1 ∈ GF(2n) be a normal basis

of GF(2n) over GF(2), A =
n−1∑
i=0

aiαi and B =
n−1∑
i=0

biαi, ai, bi ∈ GF(2). Then

C = A×B = (((F 2
n−1 + Fn−2)

2 + Fn−3)
2 + . . .+ F1)

2 + F0, (2)

where Fi = Fi(A,B) = ai−gbi−gα +
v∑
j=1

zi,jααj , g ∈ {0, 1} and

25

zi,j =

(ai + ai+j)(bi + bi+j) if g = 0 and n is odd,
aibj+i + aj+ibi if q = 1 and n is odd,
bi(ai + ai+v) if g = 0 and n is even,
aibi+v if q = 1 and n is even.

Note that (2) is the key equation for the multiplier architectures AESMPO and
XESMPO proposed by Reyhani-Masoleh and Hasan in [11].

26

4 Construction of Normal Bases

4.1 Normal Bases over GF(qn)

We have seen that normal bases of low complexity are desirable in implementing
finite field arithmetic. In this chapter we describe a general construction of such
bases. First, we need the following lemma.

Lemma 4.1. Let n, k be positive integers such that nk+1 is a prime, and suppose
that gcd(nk

e
, n) = 1, where e is the order of q modulo nk+1. Let η be a primitive

k-th root of unity in Znk+1. Then, every non-zero element r in Znk+1 can be written
uniquely in the following form:

r = ηiqj, 0 ≤ i ≤ k − 1, 0 ≤ j ≤ n− 1.

Proof. Take l = nk
e

. Using the properties of indices, there exists a primitive
element g in Z∗nk+1 such that q = gl, as l is the index of q relative to g. Since g is
primitive, the order of g is nk, and the order of η is k, we have that η = gna for
some integer a. As η is a primitive k-th root of unity, gcd(a, k) = 1. Next, let us
suppose that there are 0 ≤ i, s ≤ k − 1 and 0 ≤ j, t ≤ n− 1 such that

ηiqj ≡ ηsqt (mod nk + 1).

Therefore, we have

ηi−s ≡ qt−j (mod nk + 1),

gna(i−s) ≡ gl(t−j) (mod nk + 1).

In particular, as nk + 1 is a prime and g is a primitive root modulo (nk + 1),

na(i− s) ≡ l(t− j) (mod nk).

As gcd(l, n) = 1, we have, by Euclid’s Lemma, n|(t− j). Hence, t = j, because
0 ≤ j, t ≤ n− 1. Thus,

a(i− s) ≡ 0 (mod k).

But as gcd(a, k) = 1, we get by Euclid’s Lemma that k | (i − s), and thus i = s
as 0 ≤ i, s ≤ k − 1. We have proven thus that

ηiqj, 0 ≤ i ≤ k − 1, 0 ≤ j ≤ n− 1

are all distinct. As η and q are invertible, ηiqj 6≡ 0 (mod nk + 1), and thus every
non-zero element r in Znk+1 can be expressed uniquely in the required form. The
proof is complete.

27

In the following define r(i, j) := ηiqj : Zk × Zn → Z∗nk+1.

Theorem 4.2. Let q = pl be a prime or a prime power, and let n, k be positive
integers such that nk+1 is a prime and nk+1 - q. Suppose that gcd(nk

e
, n) = 1,

where e is the order of q modulo nk + 1. Then, for any primitive (nk + 1)-th root
of unity β in GF(qnk) and any primitive k-th root of unity η in Znk+1, the element

α =
k−1∑
i=0

βη
i

,

generates a normal basis of GF(qn) over GF(q) with complexity at most kn − 1
if k ≡ 0 (mod p), otherwise with complexity at most (k + 1)n− k.

Proof. Note that k | nk and by Fermat’s Little Theorem nk + 1 | qnk+1−1, thus η
and β always exist.

Let us first show that α ∈ GF(qn). Using Fermat’s Little Theorem, we have
that qnk ≡ 1 (mod nk + 1). Therefore, (qn)k ≡ 1 (mod nk + 1), and qn is a
k-th root of unity in Znk+1. Thus, as η generates Hk, there exists l ∈ N such that
qn = ηl. Then using Theorem 1.5 and Lemma 1.25, we have

αq
n

=

(
k−1∑
i=0

βη
i

)qn

=
k−1∑
i=0

βη
iqn =

k−1∑
i=0

βη
iηl =

k−1∑
i=0

βη
i+l

=
k−1∑
i=0

βη
i

= α.

As α = αq
n , we have α ∈ GF(qn) by Lemma 1.15.

Next, we need to prove that α, αq, . . . , αq−1 are linearly independent over
GF(q). For that purpose suppose that

n−1∑
i=0

λiα
qi =

n−1∑
i=0

λi

k−1∑
j=0

βη
jqi = 0, λi ∈ GF(q).

For α, αq, . . . , αq−1 to be linearly independent, we must have λi = 0 for all
0 ≤ i ≤ n− 1.

Now, let γ be any (nk + 1)-th root of unity in GF(qnk). By Lemma 4.1, ηjqi

runs through Z∗nk+1 for 0 ≤ i ≤ n − 1, 0 ≤ j ≤ k − 1, thus there exist unique
ui ∈ GF(q) for 0 < i ≤ kn, such that the following holds for all γ:

n−1∑
i=0

k−1∑
j=0

λiγ
ηjqi =

n−1∑
i=0

k−1∑
j=0

λiγ
r(i,j) =

nk∑
m=1

umγ
m = γ

nk−1∑
m=0

um+1γ
m.

Note that ui and λj (0 < i, j ≤ kn) are equal in some order. Now, let us define

f(x) :=
nk−1∑
j=0

uj+1x
j . Note that again by Lemma 4.1, for all 0 < r ≤ nk there

28

exist integers u and v such that r = ηiqv. As βr is also a (nk+1)-th root of unity,
by the above, Theorem 1.5, Lemma 1.14 and Lemma 1.25, we can write

βrf(βr) = βr
nk−1∑
j=0

uj+1(β
r)j =

n−1∑
i=0

k−1∑
j=0

λi(β
r)η

jqi

=
n−1∑
i=0

λi

k−1∑
j=0

(βη
uqv)η

jqi =
n−1∑
i=0

λi

(
k−1∑
j=0

βη
u+jqi

)qv

=

(
n−1∑
i=0

λi

k−1∑
j=0

βη
jqi

)qv

=

(
n−1∑
i=0

λiα
qi

)qv

= 0.

Therefore, as f(βr) = 0 for all 0 < r ≤ nk, βr is a root of f(x). Thus, as β is
primitive, we have shown that there are nk distinct roots of f(x). Since f(x) is of
degree at most nk − 1, this is possible only if f(x) = 0. Therefore, we have that
uj = 0 for all 0 < j ≤ nk − 1, and thus λi = 0 for all 0 ≤ i ≤ n − 1. Hence,
α, αq, . . . , αq−1 are linearly independent over GF(q) and form a normal basis of
GF(qn) over GF(q).

Last, we need to examine the complexity of the normal basis. Therefore, let
us compute the multiplication table of the basis. As to its rows, for 0 ≤ i ≤ n− 1
we have by Lemma 1.25 that

ααq
i

=

(
k−1∑
u=0

βη
u

)(
k−1∑
v=0

βη
vqi

)
=

k−1∑
u=0

k−1∑
v=0

βη
u+ηvqi

=
k−1∑
u=0

k−1∑
v=0

βη
u(1+ηv−uqi) =

k−1∑
v=0

(
k−1∑
u=0

βη
u(1+ηvqi)

)
. (3)

Now, let us examine the pairs (v, i). There exists a unique pair (v′, i′) with
0 ≤ v′ ≤ k − 1, 0 ≤ i ≤ n − 1 such that 1 + ηv

′
qi
′ ≡ 0 (mod nk + 1). If

(v, i) 6= (v′, i′), then by Lemma 4.1, we have 1 + ηvqi ≡ ηwqj (mod nk + 1),
where 0 ≤ w ≤ k − 1, 0 ≤ j ≤ n− 1. Again by Theorem 1.5, Lemma 1.25 and
the fact that β has n distinct powers, we get

k−1∑
u=0

βη
u(1+ηvqi) =

k−1∑
u=0

βη
u(ηwqj) =

k−1∑
u=0

βη
u+wqj

=
k−1∑
u=0

βη
uqj = (

k−1∑
u=0

βη
u

)q
j

= αq
j

.

29

On the other hand, if we have (v, i) = (v′, i′), then

k−1∑
u=0

βη
u(1+ηvqi) = k1,

which is 0 if k ≡ 0 (mod p). Thus, for all i 6= i′, the sum (3) for ααqi is a sum
of at most k basis elements. Therefore, the complexity of the basis is at most
(n− 1)k + n = (k + 1)n− k.

If we have k ≡ 0 (mod p), then the sum (3) for ααqi
′

consists of at most k−1
basis elements. Therefore, if k ≡ 0 (mod p), there will be at most (n − 1)k +
k − 1 = nk − 1 non-zero elements.

In conclusion, we have shown that α, αq, . . . , αq−1 form a normal basis of
GF(qn) over GF(q) with complexity at most (kn − 1) if k ≡ 0 (mod p), where
p is the characteristic of GF (q), otherwise with complexity at most (k+ 1)n− k.
This completes the proof.

4.2 Type I Optimal Normal Bases
In this section we examine a special case of Theorem 4.2 for k = 1. Thus, we get
a construction of an optimal normal basis for GF(qn) over GF(q).

Theorem 4.3. Suppose n + 1 is a prime and q is primitive in GF(n + 1), where
q is a prime or a prime power. Then the n non-unit (n + 1)-th roots of unity in
GF(qn) are linearly independent and form an optimal normal basis of GF(qn)
over GF(q).

We call any optimal normal basis of this construction a type I optimal normal
basis. In the following we examine the multiplication tables for type I optimal
normal bases showing that these have complexity at most 2n− 1.

Let α be a primitive (n+ 1)-th root of unity in GF(qn), then αn+1 = 1. Since
q is primitive in GF(n+ 1), we have

N := {α, αq, . . . , αqn−1} = {α, α2, . . . , αn}.

By Theorem 4.2, {α, α2, . . . , αn} is a basis, so N is a normal basis of GF(qn)
over GF(q). Because α 6= 1 and

(
n∑
i=0

αi)(α− 1) = αn+1 − 1 = 0,

30

α is a root of the polynomial xn + . . . + x + 1. Note that ααi = αi+1 ∈ N

for 1 ≤ i < n and ααn = 1 = −TrGF(q)(α) = −
n∑
i=1

αi. Therefore, there are

n− 1 + n = 2n− 1 non-zero terms, and thus N is optimal.

The matrix T corresponding to this optimal normal basis has the following proper-
ties: there is exactly one 1 in each row, except for one row, where all the n entries
are equal to −1; all other entries are zeros.

As we are interested in finding normal bases for binary fields, using Theorem
4.3 we get the following sufficient result for the existence of an optimal normal
basis of GF(2n) over GF(2) :

Optimal normal basis of type I exists for a given binary field GF(2n) if:

1. n+ 1 is a prime,

2. 2 is a primitive root modulo n+ 1.

4.3 Type II Optimal Normal Bases
Again we examine a special case of Theorem 4.2, where k = 2 and q = 2. Thus,
we get a construction for an optimal normal basis of GF(2n) over GF(2).

Theorem 4.4. Let 2n+ 1 be a prime and assume either

1. 2 is primitive in GF(2n+ 1) i.e. 2 is a primitive root modulo 2n+ 1, or

2. 2n+1 ≡ 3 (mod 4) and 2 generates the quadratic residues modulo 2n+1.

Then α = γ + γ−1 generates an optimal normal basis of GF (2n) over GF (2),
where γ is a primitive (2n+ 1)-th root of unity in GF(22n).

Note that condition 2. is equivalent to n being odd and 2 generating the
quadratic residues modulo 2n+ 1.
We call any optimal normal basis obtained via this construction a type II opti-
mal normal basis. In Theorem 4.2, it was proved that α ∈ GF (2n) and that
α, α2, ..., α2n−1 are linearly independent overGF (2). ThusN = {α, α2, ..., α2n−1}
is a normal basis of GF (2n) over GF (2). If condition 1. holds, then

{2, 22, 23, . . . , 22n−1, 22n} ≡ {1, 2, 3, . . . , 2n} (mod 2n+ 1).

Therefore, we can write γ2i +γ−2i = γj+γ−j for all 1 ≤ j ≤ 2n. Furthermore, if
n+1 ≤ j ≤ 2n, then γj+γ−j = γ(2n+1)−j+γ−(2n+1)+j and 1 ≤ 2n+1− j ≤ n.

31

By condition 2., {2, 22, 23, . . . , 2n−1, 2n} is the set of quadratic residues mod-
ulo 2n + 1. Since 2n + 1 ≡ 3 (mod 4), we have that

(−1
2n+1

)
= −1 and

{−2,−22,−23, . . . ,−2n−1,−2n} is the set of quadratic non-residues. Therefore,
1, 2, . . . , 2n are congruent to 2, 22, . . . , 2n,−2,−22, . . . ,−2n modulo 2n + 1 in
some order.

Observing that if 2i (mod 2n + 1) is in the range of n + 1 to 2n, then −2i
(mod 2n+1) is in the range of 1 to n, we can always write γ2i +γ−2i = γj+γ−j

for all 1 ≤ j ≤ n.
So in both cases α2i = γj + γ−j for some 1 ≤ j ≤ n. Thus,

N = {γ + γ−1, γ2 + γ−2, ..., γn + γ−n}.

The cross-product terms are

α(γi + γ−i) = (γ + γ−1)(γi + γ−i) = (γ(1+i) + γ−(1+i)) + (γ(1−i) + γ−(1−i)),

which is a sum of two distinct elements in N except when i = 1. In that case, sum
is just α2 which is in N . Thus, cN = 2(n− 1) + 1 = 2n− 1 and N is an optimal
normal basis of GF(2n) over GF(2).

The matrix T corresponding to this optimal normal basis has the following
properties: there are exactly two 1’s in each row, except for the first row in which
there is exactly one 1; all the other entries are zeros.

32

5 On Irreducible Polynomials
In this chapter we present some criteria for testing the irreducibility of polynomi-
als.

5.1 Rabin’s Irreducibility Test
We begin with a result due to Rabin, which forms the basis of an irreducibility-
testing algorithm named after him.

Theorem 5.1. Let p(x) be a polynomial of degree n, and let r1, r2, . . . , rt be the
distinct prime divisors of n. Then p(x) is irreducible over GF(q) if and only if

1. p(x) | xqn − x,

2. gcd(xq
n
ri − x, p(x)) = 1 for all i ∈ {1, . . . , t}.

Proof. Let us first prove necessity. Assume that p(x) is irreducible over GF(q).
By Corollary 1.24 the splitting field of p(x) is given by GF(qn). Thus by Lemma
1.20 now implies p(x) | xqn − x, that is, condition 1. holds.

For condition 2., assume that there exists such an i that

r(x) := gcd(xq
n
ri − x, p(x)) 6= 1.

Thus, r(x) | xq
n
ri − x and r(x) | p(x) for some i. As p(x) is irreducible, we have

that r(x) = ±p(x), which implies p(x) | xq
n
ri − x. By Lemma 1.22, n | n

ri
for

some i and we arrive at a contradiction since n
ri
< n. Hence, condition 2. holds.

For sufficiency, assume that both conditions hold. Note that Fq[x] is factorial,
so p(x) can be written as a product of irreducible polynomials. From condition
1., it follows by Lemma 1.20 that all the roots of p(x) are in GF(qn). Assume
that there exists an irreducible factor p1(x) of p(x) of degree m < n. As p1(x) is
irreducible, by Lemma 1.22, we have m|n.

Therefore, since m < n, we have that m| n
ri

for one of the divisors ri, and all

the roots of p1(x) lie in GF(q
n
ri)). But then p1(x) | gcd(xq

n
ri − x, p(x)) and this

contradicts condition 2. Thus, p(x) must indeed be irreducible and sufficiency is
proven. This completes the proof.

Rabin’s irreducibility test is presented as Algorithm 7.

33

Algorithm 7 Rabin’s Irreducibility Test

Input: f(x) =
n∑
i=0

aix
i, where an = 1 and r1, r2, . . . , rt all distinct prime divi-

sors of n
Output: true if f(x) is irreducible, otherwise false
for all i = 1 . . . t do

ni ← n
ri

for all j = 1 . . . t do
g(x)← gcd(f(x), xq

ni − x (mod f(x)))
if g(x) 6= 1 then return false

g(x)← (xq
n − x (mod f(x))

if g(x) = 0 then return true
return false

5.2 Specific Trinomials
As described in Chapter 2, when using representation via polynomial bases for
implementing finite field multiplication, the reduction step is done modulo an
irreducible polynomial. In order to accelerate the reduction process, trinomials
and pentanomials are used. Recall that a trinomial is a polynomial with three and
a pentanomial with five nonzero terms, one of them being the constant term.

Theorem 5.2. Let a ∈ GF(q), where q is a prime power pn. The trinomial

xp − x− a

is irreducible over GF(q) if and only if TrGF(q)(a) 6= 0.

Proof. Let us start with proving necessity. Take α to be a root of xp − x − a. It
follows that

αp = α + a,

αp
2

= (α + a)p = αp + ap = α + a+ ap,

αp
3

= (α + a+ ap)p = αp + ap + ap
2

= α + a+ ap + ap
2

,

. . .

αp
n

= (α + a+ ap + · · ·+ ap
n−2

)p

= αp + ap + ap
2

+ · · ·+ ap
n−1

= α + TrGF(q)(a).

Thus, TrGF(q)(a) = 0 if and only if αq = α. In other words, TrGF(q)(a) = 0 if and
only if α ∈ GF(q). Note that α is an arbitrary root of xp − x− a, thus every root

34

of xp − x− a is in GF(q) in this case. Therefore, the splitting field of xp − x− a
is GF(q) if and only if TrGF(q)(a) = 0. Since p(x) is irreducible over GF(q),
TrGF(q)(a) 6= 0, which gives us necessity.

For sufficiency, let η := TrGF(q)(a) 6= 0. Since the trace of an element always
lies in the base field, η ∈ GF(q). Thus by the above and Lemma 1.14, we can
write

αq
i

= (αq)q
i

= (α + η)q
i−1

= αq
i−1

+ η = . . . = α + iη, i ∈ N.

Since GF(q) is of characteristic p, we have that α+ η = α+ (p+1)η. Therefore,
α has exactly p distinct conjugates over GF(q). Recall that the minimal polyno-
mial of α over GF(q) is the unique monic polynomial of least degree among all
polynomials over GF(q) having α as a root. Suppose that the minimal polynomial

m(x) = mdx
d + . . .+m1d+m0

of α is of degree d. Then by Theorem 1.5 and Lemma 1.14,

m(αq) = mdα
qd + . . .+m1α

q +m0 = mq
dα

qd + . . .+mq
1α

q +mq
0

= (mdα
d + . . .+m1α +m0)

q = m(α)q = 0.

Therefore, α, αq, . . . , αqp−1 are p distinct roots of m(x) and we have that d ≥ p.
As xp− x− a is a monic polynomial of degree p ≤ d having α as a root, we have
that m(x) must be equal to xp−x−a. Since minimal polynomials are irreducible
over the base field GF(q), so is xp − x− a. This completes the proof.

35

References
[1] D.M. Burton, Elementary Number Theory. Allyn and Bacon, Boston, 1980.

[2] S. Gao, D. Panario. Tests and constructions of irreducible polynomials
over finite fields. In: Foundations of Computational Mathematics, 346-361,
Springer, Berlin, 1997.

[3] J. Guajardo, S.S. Kumar, C. Paar, J. Pelzl. Efficient software-
implementation of finite fields with applications to cryptography. Acta
Appl. Math. vol 93(1), 3-32, 2006.

[4] D. Hankerson, A. Menezes, S. Vanstone. Guide to Elliptic Curve Cryptog-
raphy. Springer, New York, 2004.

[5] Ç.K. Koç, T. Acar. Montgomery multiplication in GF (2k). Des. Codes
Cryptogr. vol 14(1), 57-69, 1998.

[6] S. Kwon, K. Gaj, C.H. Kim, C.P. Hong. Efficient linear array multiplication
in GF (2m) using normal basis for elliptic curve cryptography. In: CHES
2004. LNCS vol 3156, 76-91, Springer, Heidelberg, 2004.

[7] R. Lidl, H. Niederreiter. Finite Fields. Cambridge University Press, Cam-
bridge, 1997.

[8] A.J. Menezes (ed.), I.F. Blake, X. Gao, R.C. Mullin, S.A. Vanstone, T.
Yaghoobian. Applications of Finite Fields. Kluwer, Boston, 1993.

[9] R.A. Mollin. Fundamental Number Theory with Applications, Second Ed-
dition. Chapman & Hall/CRC, Boca Raton, 2008.

[10] M.O. Rabin. Probabilistic algorithms in finite fields. SIAM J. Comput. vol
9(2), 273-280, 1979.

[11] A. Reyhani-Masoleh, M.A. Hasan. Low complexity sequential normal basis
multipliers over GF(2n). In: Proceeding of the 16th IEEE Symposium on
Computer Arithmetic, 188-195, 2003.

36

Non-exclusive licence to reproduce thesis and make thesis public

I, Annabell Kuldmaa (date of birth: 17.07.1993),

1. herewith grant the University of Tartu a free permit (non-exclusive licence)
to:

1.1 reproduce, for the purpose of preservation and making available to the
public, including for addition to the DSpace digital archives until expiry of
the term of validity of the copyright, and

1.2 make available to the public via the web environment of the Univer-
sity of Tartu, including via the DSpace digital archives until expiry of the
term of validity of the copyright,

”Efficient Multiplication in Binary Fields”, supervised by Lauri Tart,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intel-
lectual property rights or rights arising from the Personal Data Protection
Act.

Tartu, 05.06.2015

37

	Introduction
	Preliminaries
	Rings and Fields
	Rings of Polynomials
	Field Extensions
	Bases for Finite Fields
	Representation of Field Elements

	Multiplication Using Polynomial Bases
	Standard Field Multiplication
	Polynomial Multiplication
	Field Reduction
	Montgomery Multiplication in GF(2n)

	Multiplication Using Normal Bases
	Multiplication Algorithm of Massey-Omura
	Multiplication Algorithm of Reyhani-Masoleh and Hasan

	Construction of Normal Bases
	Normal Bases over GF(qn)
	Type I Optimal Normal Bases
	Type II Optimal Normal Bases

	On Irreducible Polynomials
	Rabin's Irreducibility Test
	Specific Trinomials

	References

