THE EFFECT OF ELECTRIC FIELD ON THE DEPOSITION OF RADON DAUGHTERS

Veljo Kimmel, Feliks Miller, and Hannes Tammet

Department of Environmental Physics, University of Tartu,
18 Ülikooli Str., Tartu EE2400, Estonia
Hannes.Tammet@ut.ee

1. Background

2. A rough model

3. Preliminary measurements

4. Environmental impact

ACKNOWLEDGEMENTS
This research has been supported by the Estonian Science Foundation grant no. 3050 and by the Swedish Institute Visby Programme.
1. Background

- **Conventional treatment**

 Deposition velocity of unattached daughters $u_g^f = 2 \ldots 15 \text{ cm/s}$.

- **Example by Wilkening**

- **Examples by Henshaw**

- **Electrostatic migration in normal atmospheric electric field**

 Electrical mobility of unattached daughters is about $1 \text{ cm}^2/(\text{V} \cdot \text{s})$. Normal electric field is about $1 \ldots 2 \text{ V/cm}$ and directed down to the ground. Corresponding migration velocity $1 \ldots 2 \text{ cm/s}$ is $10 \ldots 100\%$ of u_g^f.

 Special cases: thunderstorm, tops of trees, HV power lines.

2. A rough model

Model: a thin horizontal wire of diameter d spanned over the flat ground on the height H.
Diffusion deposition

Symbols:
- d – diameter of the wire, m
- u - air flow velocity, m/s
- λ – heat conductivity, W/(m·K)
- D – coefficient of diffusion, m2/s
- ν – cinematic viscosity, m2/s
- a – temperature conductivity $a = \lambda/c_p\rho$
- h – coefficient of heat transfer, W/(m2·K)
- u_D – velocity of diffusion deposition, m/s

Method:
Nondimensional heat transfer equations can be translated into the diffusion deposition equations replacing:

- Nusselt number $\text{Nu} = \frac{hd}{\lambda}$ with Sherwood number $\text{Sh} = \frac{u_Dd}{D}$
- Prandtl number $\text{Pr} = \frac{\nu}{a}$ with Schmidt number $\text{Sc} = \frac{\nu}{D}$
- Reynolds number $\text{Re} = \frac{ud}{\nu}$ remains

Equations:
If the condition $\text{Re} \cdot \text{Pr} > 0.2$ is satisfied, the Churchill-Bernstein equation of heat transfer offers a good approximation:

$$
\text{Nu} = \left[0.3 + \frac{0.62 \text{Re}^{1/2} \text{Pr}^{1/3}}{\left(1 + (0.4/\text{Pr})^{2/3} \right)^{1/4}} \right] \left[1 + \left(\frac{\text{Re}}{282000} \right)^{5/8} \right]^{4/5}.
$$

When translated into the terms of diffusion it gives the Sherwood number and the velocity of deposition

$$
u_D = \frac{D}{d} \text{Sh} = \frac{D}{d} \left[0.3 + \frac{0.62 \text{Re}^{1/2} \text{Sc}^{1/3}}{\left(1 + (0.4/\text{Sc})^{2/3} \right)^{1/4}} \right] \left[1 + \left(\frac{\text{Re}}{282000} \right)^{5/8} \right]^{4/5}$$
Example (of diffusion deposition):
assume \(d = 1 \text{ mm}, u = 5 \text{ m/s}, D = 0.03 \text{ cm}^2/\text{s} \) (unattached fraction), and standard conditions
obtain \(\text{Re} = 380, \text{Sc} = 4.4, \text{Sh} = 19.5, u_D \approx 6 \text{ cm/s} \).

- Electrostatic deposition

Symbols:
- \(u_E \) – velocity of electrostatic deposition, \text{m/s}
- \(Z \) – electric mobility, \text{m}^2/(\text{V} \cdot \text{s})
- \(E \) – electric field on wire surface, \text{V/m}
- \(E_o \) – undisturbed atmospheric electric field
- \(k \) – Boltzmann constant \(1.38 \times 10^{-23} \text{ J/K} \)
- \(T \) – temperature, \text{K}
- \(e \) – ion charge \(1.6 \times 10^{-19} \text{ C} \)
- \(H \) – height of the wire, \text{m}

Equations:

\[
u_E = ZE, \quad Z = \frac{eD}{kT}, \quad E = \frac{2H}{d \ln(4H/d)} E_o, \quad u_E = \frac{eD}{kT d \ln(4H/d)} E_o \]

Example:
assume \(H = 1 \text{ m}, d = 1 \text{ mm}, D = 0.03 \text{ cm}^2/\text{s}, E_o = 100 \text{ V/m} \)
obtain \(E = 24 \text{ kV/m}, Z = 1.27 \text{ cm}^2/(\text{V} \cdot \text{s}), u_E \approx 3 \text{ m/s} \).
• **Comparison**

The electrical deposition equals to the diffusion deposition \((u_E = u_D)\) when the electric field on the surface of the collector reaches the critical value

\[
E_{cr} = \frac{kT}{ed} Sh.
\]

The critical field depends on the wind velocity \(u\) via the Reynolds number \(\text{Re} = ud/\nu\) and on the particle mobility via the Schmidt number \(\text{Sc} = \nu/D\).

An example is given in the figure:

\[
(d = 1 \text{ mm}, \ D = 0.03 \text{ cm}^2/\text{s}, \ Z = 1.27 \text{ cm}^2 \text{ V}^{-1}\text{s}^{-1}, \text{standard conditions})
\]

Example:

Let the atmospheric electric field have a typical fair weather value of 200 V/m, the geometric factor for a well-exposed needle is \(E/E_0 = 100\), and the activity concentration of unattached \(^{218}\text{Po}\) is 2 Bq/m\(^3\).

It follows the equilibrium activity concentration on the surface of the needle about 1300 Bq/m\(^2\) that dramatically exceeds the activity estimated when considering only the diffusion deposition.
3. Preliminary measurements

Hypothesis: The short-living radionuclides on the leaves and needles of trees originate from the dry deposition from the air after some period of fair weather. The effect of electric field is enhanced under HV lines. Near Tartu, a 330 kV AC lines approaches the transformer substation over a high (about 4 m) spruce hedge. Top branches of spruces a well exposed to the electric field and collect the radon daughters from the air.

Method: The top needles of spruces under HV line were picked and measured using EG&G Ortec HPGe detector GEM-35200 and analyzer 92x-W3 Spectrum Master. The thoron daughter 212Pb was identified according to the 238.6 keV γ-line and radon daughter 214Bi according to the 609.5 keV γ-line.

Results: Any essential difference in 212Pb activity between the needles picked from different heights was not discovered. Probably, the vertical profile of the thoron concentration and the height profile of the electric field concentration factor on trees are compensating each other. The highest specific activity of 214Bi up to 4 kBq/kg was measured on the top branches of a spruce situated close to the 330 kV line. The specific activity of lower branches has varied between 0.1 and 1 kBq/kg. The number of measurements is not big enough for a firm synopsis. A preliminary conclusion is that the measurements did not contradict the theoretical estimates proclaiming the essential role of the electrical field in the deposition of the radon daughters on the trees.
4. Environmental impact

- **Atmospheric electric electrode effect**

- **Hypothetic biological effect**

 At higher voltages, the electric field can affect small organisms like bugs and birds.