Государственный комитет гидрометеорологии
и контроля природной среды СССР
ОРДЕН ТРУДОВОГО КРАСНОГО ЗНАМЕНИ
ГЛАВНАЯ ГЕОФИЗИЧЕСКАЯ ОБСЕРВАТОРИЯ им. А.И. ВОЕЙКОВА

На правах рукописи

ТАММАТ Ханнес Феликсович

СПЕКТРОМЕТРИЯ
ПОДВИЖНОСТЕЙ АЭРОИОНОВ

01.04.12 Геофизика

Автореферат
диссертации на соискание ученой степени
доктора физико-математических наук

Ленинград 1978
Работа выполнена в Тартуском ордена Трудового Красного Знамени государственном университете и Таллинском педагогическом институте им. Э. Вильде

Официальные оппоненты:
действительный член АН ЭССР,
доктор физико-математических наук, профессор Э.Т. Липпмаа,
член-корреспондент АН Лит. ССР
заслуженный деятель науки и техники Лит. ССР,
доктор физико-математических наук, профессор Б.И. Стыро,
заслуженный деятель науки и техники РСФСР,
доктор физико-математических наук, профессор Н.С. Щишкин.

Ведущее предприятие:
Институт экспериментальной метеорологии

Защита состоится "6" ...декабре... 1978 г.
в ..10.. часов на заседании специализированного совета по
защите диссертаций на соискание ученой степени доктора наук
при Главной геофизической обсерватории им. А.И. Воейкова
(194018, г. Ленинград, ул. Карбышева, д. 7, зал Ученого
совета).

С диссертацией можно ознакомиться в библиотеке Главной
геофизической обсерватории им. А.И. Воейкова

Автореферат разослан "2" ..декабре... 1978 г.

Ученый секретарь специализированного совета
доктор географических наук

Н.В. Кобышева
Актуальность проблемы

Аэроионы представляют известный интерес в физике атмосферы и электронно-ионной технологии. Исследования П.Н. Тверского, Г. Израэля, Дж. Брикара, Н. С. Шишкина, И. М. Имянитова и др. определили роль аэроионов в процессах атмосферного электричества. Современные задачи изучения атмосферного электричества требуют усовершенствования методов аэроионных измерений. Недостаточно знать только концентрацию легких аэроионов и концентрацию тяжелых аэроионов. Нужны детальные данные о распределении аэроионов по подвижности. Старые методы измерения не способны предоставить нам достаточную информацию о спектре подвижностей аэроионов. Необходимость углубленного анализа и усовершенствования методов измерения определяет один аспект актуальности проблемы спектрометрии подвижностей аэроионов.

Аэроионы являются элементом окружающей среды человека. А. А. Минх и др. в своих работах рассматривают аэроионы как непосредственно биологически активный фактор. Параметры распределения аэроионов являются чувствительными индикаторами степени загрязненности воздуха. В определенных условиях можно по спектру подвижностей аэроионов вычислить распределение взвешенных в воздухе аэрозольных частиц по размерам, в том числе в диапазоне размеров ниже 0,1 мкм, где оптические методы непригодны. Результаты диссертации показывают, что спектр подвижностей легких отрицательных аэроионов чувствителен к примесям электроноакцепторных газов в воздухе при концентрации порядка микрограмм на кубический метр. Спектральная селективность дает возможность различить, например, присутствие иода от примеси брома. Приложения в области анализа загрязнений воздуха — второй аспект актуальности проблемы спектрометрии подвижностей аэроионов.

3
Цель работы

Основная цель работы — создание систематической теории измерения спектра подвижностей аэроионов. Такая теория ранее отсутствовала. Теория измерения должна показать, как зависят от параметров аппаратуры и алгоритма обработки наблюдений отношения между состоянием природы, наблюдениями, полученными при помощи аппаратуры, и данными, полученными как результат математической обработки наблюдений. Внедрение систематической теории измерения должно увеличить количество и степень достоверности измерительной информации, обеспечить усовершенствование известных и разработку новых методов измерения и обработки наблюдений, и, наконец, повысить прикладной потенциал спектрометрии подвижностей аэроионов.

Дополнительная цель работы — выявление эффективности теоретических результатов в приложениях спектрометрии подвижностей аэроионов.

Основные задачи исследования

Создание систематической теории спектрометрии подвижностей аэроионов предполагает решение трех основных задач:

1) построение математической модели спектрометра,
2) вычисление реакции аппаратуры на известный спектр,
3) оценка спектра по известной реакции аппаратуры.

Математическая модель спектрометра должна быть достаточно общей для описания всевозможных конкретных методов измерения. Особенности конкретного метода измерения и конкретной аппаратуры должны учитываться при решении второй задачи, которая называется прямой задачей теории спектрометрии. При решении прямой задачи доминируют физические проблемы, и получаемые результаты специфичны для конкретных методов спектрометрии подвижностей аэроионов. Третья задача называется обратной задачей теории спектрометрии. При ее решении ведущую роль занимают математические методы, и получаемые результаты общи для разных видов спектрометрии.

Дополнительные задачи связаны с приложениями спектрометрии подвижностей аэроионов.

Недостаточная разрешающая сила по подвижности не позволяла ранее определить характер тонкой структуры спектра подвиж-
ностей легких аэроионов. В задачи исследования входит изучение спектра подвижностей легких аэроионов с целью поиска новых приложений спектрометрии подвижностей аэроионов в области анализа загрязнений воздуха.

Известная теория электрической гранулометрии аэрозолей предполагает функциональную зависимость заряда частицы от размера частицы. В действительности эта зависимость имеет статистический характер. Поэтому поставлена задача разработки обобщенной теории электрической гранулометрии аэrozолей, строго учитываящий статистическое распределение зарядов частиц.

К дополнительным задачам диссертации относится также внедрение полученных теоретических результатов при разработке аппаратуры для спектрометрии подвижностей аэроионов.

Научная новизна

Важнейшие новые теоретические решения и практические результаты диссертации следующие:

1) описание разных спектрометров подвижностей аэроионов при помощи одного общего уравнения,

2) сформулирование прямой задачи теории спектрометрии подвижностей аэроионов как задачи вычисления конкретных выражений аппаратной функции или аппаратной матрицы и решение этой задачи для важнейших методов измерения,

3) анализ свойств аспирантных спектрометров посредством приведения аппаратной функции в разностный вид и преобразования Фурье,

4) разработка модуляционных методов спектрометрии подвижностей аэроионов,

5) сформулирование обратной задачи теории спектрометрии подвижностей аэроионов независимо от конкретного метода измерения,

6) разработка новых алгоритмов обработки наблюдений, в том числе экономного алгоритма для работы на линии с ЭВМ и алгоритма с предельно допустимой стабилизацией оценки спектра,

7) анализ сущности априорной информации в спектрометрии, определение и использование понятий псевдоаппаратной матрицы и функции,

5
8) обнаружение действия микропримесей электроноакцепторных газов на спектр подвижностей легких отрицательных аэроионов и экспериментальное подтверждение линейчатой структуры спектра подвижностей легких аэроионов большого возраста,

9) обнаружение способа генерирования мономолольных легких аэроионов и возможности экспериментального определения аппаратной функции,

10) разработка метода описания электрического гранулометра аэрозолей аппаратной матрицей, учитывающей как статистический закон зарядки частиц, так и свойства анализатора подвижностей и реализация этого метода в алгоритме обработки наблюдений для многоканального спектрометра.

Практическая ценность и апробация

Основную практическую ценность имеет построенная в диссертации систематическая теория спектрометрии подвижностей аэроионов, указывающая способы создания спектрометров, которые более совершены по сравнению с приборами, основанными на известных ранее теоретических соображениях. Использование строгой математической модели спектрометра подвижностей аэроионов на практике геофизических наблюдений повышает как количество измерительной информации, так и степень достоверности результатов измерения. Этому же содействуют разработанные в диссертации математико-статистически обоснованные методы обработки наблюдений за спектром подвижностей аэроионов. Обнаруженное явление селективной чувствительности спектра подвижностей легких отрицательных аэроионов к микропримесям электроноакцепторных газов и алгоритм одноэтапной электрической гранулометрии аэрозолей обеспечивают приложения спектрометрии подвижностей аэроионов в практике контроля за загрязненностью атмосферного воздуха.

Основные результаты диссертации опубликованы в двух монографиях [1,2], пятнадцати статьях [3-17] и были представлены на следующих конференциях:

- X Генеральная ассамблея Международного геодезического и геофизического союза, Москва, август, 1971,

- Вторая всесоюзная конференция по применению аэрозолей в народном хозяйстве, Одесса, октябрь, 1972,
- Международная конференция по физическим аспектам загрязнения атмосферы, Вильнюс, июнь, 1974,
- Всесоюзный научно-технический симпозиум по физико-математическим и биологическим проблемам действия электромагнитных полей и ионизации воздуха, Ялта, 1975.

Результаты диссертации докладывались на семинарах Института экспериментальной метеорологии ГУГМС, Института физики атмосферы АН СССР, Главной геофизической обсерватории им. А.И. Воейкова и Тартуского государственного университета, а также в США на семинарах Института горного дела и технологии Нью-Мексико и университетов Вайоминга, Миннесота, Нью-Йорка и Мэриленда.

Объем работы и ее структура

Объем диссертации 299 страниц, в том числе 42 рисунка, 11 таблиц и список литературы, включающий 191 наименование. Диссертация состоит из введения, семи глав, выводов и рекомендаций, математического приложения и списка литературы. Первая глава посвящена задаче построения математической модели спектрометра, вторая и третья - прямой задаче спектрометрии подвижностей аэроионов, четвертая и пятая - обратной задаче спектрометрии, шестая - приложениям спектрометрии подвижностей аэроионов и седьмая - проблемам технической реализации методов спектрометрии подвижностей аэроионов.

СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Глава I. Математическая модель спектра и спектрометра

Спектр и запись спектрометра изображаются векторами некоторых формальных векторных пространств. Показано, что конечномерное описание спектра и записи не менее естественно, чем привычное бесконечномерное описание посредством функции непрерывного аргумента. Бесконечномерное описание требует бесконечно большее количество информации, которое не может быть извлечено из конечных наблюдений. Можно сказать, что задача исчерпывающего измерения бесконечномерной величины поставлена информационно некорректно или физически некорректно. Мат
тематическая некорректность бесконечномерной обратной задачи спектрометрии в смысле Адамара является математическим отображением информационной некорректности соответствующей задачи измерения. Конечномерный формализм позволяет обойти такую парадоксальную ситуацию, хотя и не устраняет затруднений, связанных с плохой устойчивостью решения. В диссертации бесконечномерный и конечномерный формализмы используются параллельно.

Процесс измерения рассмотрен как линейное преобразование спектра φ в запись спектрометра f с одновременным наложением аппаратного шума. Детерминированная часть аппаратного преобразования описывается в бесконечномерной математической модели интегральным уравнением

$$ f(y) = \int G(y,x)\varphi(x)dx, \quad (1) $$

а в конечномерной математической модели алгебраическим уравнением

$$ f = G\varphi. \quad (2) $$

Спектрометр характеризуется аппаратурной функцией $G(y,x)$ или аппаратурной матрицей G и ковариационной функцией или матрицей аппаратного шума.

В первой главе введены также соглашения, используемые при описании спектра подвижностей аэроионов. Спектр представляется функцией распределения плотности заряда по подвижности $\rho(k)$ или функцией распределения проводимости по подвижности $\lambda(k)$. Стандартным графическим изображением спектра предлагается кривая $\lambda(k)$ в логарифмической шкале подвижности.

В конце главы определено понятие кажущегося спектра φ^* как функции, точно удовлетворяющей уравнению (1) в случае приближенного выражения аппаратной функции G^*. Кажущийся спектр линейно связан с истинным спектром

$$ \varphi^*(x) = \int W(x,x')\varphi(x')dx'. \quad (3) $$

В спектрометрии подвижностей аэроионов нередко удается непосредственно вычислить приближенную аппаратную функцию G^* и функцию искажения W. Задача обработки наблюдений может быть поставлена двухэтапно: сначала требуется решить уравнение (1) с ядром G^*, откуда выводится φ^*, а затем - уравнение (3).
Переход на одноэтапную обработку наблюдений возможен на основе соотношения \(G(y,x) = \int G^*(y,x')W(x',x)dx' \).

Глава 2. Основные методы спектрометрии подвижностей аэроионов

Во второй главе решается прямая задача для простейших методов спектрометрии подвижностей аэроионов. Все спектрометры описываются одним и тем же уравнением (1) или (2), и решение прямой задачи для конкретного метода измерения сводится к составлению конкретного выражения аппаратной функции или матрицы.

В первом параграфе анализируются основы динамики идеальных аэроионов. Приведены уточненные доказательства теоремы Лиувилля, приложенной к задаче движения аэроионов, и теоремы о поверхностях тока аэроионов. Эти теоремы устраняют лишние ограничения, которые ранее налагались на геометрию измерительного конденсатора. Сформулировано общее уравнение силы тока, учитывающее электростатическую индукцию согласно теореме Рамо-Шокли и получена оценка дробового шума.

Излагаемые в первом параграфе теоремы и уравнения позволяют в дальнейшем легко вывести выражения аппаратных функций импульсных и аспирационных спектрометров. Результаты для интегрального импульсного спектрометра не противоречат известным результатам Л. Р. Цванга и Н. Н. Комарова. Для аспирационных спектрометров получены универсальные выражения аппаратной функции для стандартной шкалы подвижности, а также для логарифмической шкалы подвижности. Примем обозначения

\[k_0 = \varepsilon \phi/(CU), a = 1/(1-\delta_C), b = 1/(1-\delta_\phi) \quad \text{и} \quad x = \ln(k_0/k), \]

где \(\varepsilon \) - абсолютная диэлектрическая проницаемость воздуха (все уравнения записаны в системе единиц измерения SI), \(\phi \) - полный расход воздуха, \(\delta_\phi \) - отношение расхода изучаемого воздуха к полному расходу, \(C \) - полная действующая емкость измерительного конденсатора, \(\delta_C \) - отношение действующей емкости задней части собирающей обкладки к полной действующей емкости и \(U \) - напряжение измерительного конденсатора. Уравнение спектрометра (1) для логарифмической шкалы подвижности является разностным:
\[I_2(\ln k_\phi)/\phi = \int_{-\infty}^{\infty} g(\ln k_\phi - \ln k) \lambda(\ln k) d(\ln k). \quad (4) \]

И2 - сила тока через заднюю часть собирающей обкладки.
Аппаратная функция имеет выражение

\[
g(x) = \begin{cases}
0 & \text{при } x \leq -a \\
1 - (1 - \delta_c) e^{-x} & \text{при } -a \leq x \leq \min(0, b-a) \\
\delta_c e^{-x} & \text{при } 0 \leq x \leq b-a \\
\delta \phi & \text{при } b-a \leq x \leq 0 \\
e^{-x} - (1 - \delta_\phi) & \text{при } \max(0, b-a) \leq x \leq b \\
0 & \text{при } b \leq x
\end{cases} \quad (5)
\]

В теоретическом выражении аппаратной функции можно дополнительно принять во внимание множество мелких отступлений от простейшей модели. Относительно точно поддаются учету тепловая диффузия аэроионов. В аспирационных спектрометрах существенна также турбулентная диффузия. На практике спектрометрии количественные значения параметров, входящих в разные функции искажения, как правило, неизвестны. Высказанное относится, например, к эффектам, связанным с неточностями изготовления измерительного конденсатора и с турбулентной диффузией. Для точного учета реальной ситуации в практике спектрометрии предложен метод экспериментальной аппаратной функции. Определение экспериментальной аппаратной функции возможно при наличии генератора точно или приближенно мономобильных аэроионов. Возможность создания генераторов мономобильных легких аэроионов вытекает из результатов экспериментов, описанных в шестой главе диссертации. Мономобильность отрицательных легких аэроионов достигается при добавлении к воздуху какого-либо галоида в количестве от ста микрограмм до одного миллиграмм на кубический метр. В качестве стандартного аэроионизатора предложен генератор легких отрицательных аэроионов в воздухе с примесью иода. Как правило, точность относительной калибровки спектрометра аэроионов по подвижности намного превышает точность абсолютной калибровки. Поэтому подвижность аэроионов стандартного аэроионизатора предложена как практическая единица изме-
рения подвижности легких аэроионов.

В последнем параграфе главы приведен анализ передаточной функции логарифмически-гармонических составляющих спектра. Передаточная функция вычисляется как Фурье-образ разностной аппаратной функции. Если аппаратная функция является сверткой функции \((5)\) с логарифмически-нормальной функцией искажения, имеющей постоянную стандартную ширину \(\sigma\), то передаточная функция имеет выражение

\[
\tilde{g}(\omega) = \frac{\exp(-\omega^2/2)}{1 + \omega^2} \left\{ \left[1 + \frac{\sin \omega a}{\omega} - \cos \omega a + \right. \right. \\
\left. \left. + (1 - \delta_\phi) \left(\frac{\sin \omega (b-a)}{\omega} + \cos \omega (b-a) - \frac{\sin \omega b}{\omega} - \cos \omega b \right) \right] + \right. \\
\left. + \left[\frac{1}{\omega} - \frac{\cos \omega a}{\omega} - \sin \omega a + (1 - \delta_\phi) \times \\
\times \left(\frac{\cos \omega (b-a)}{\omega} - \sin \omega (b-a) - \frac{\cos \omega b}{\omega} + \sin \omega b \right) \right] i \right\}. \tag{6}
\]

Анализ графиков модуля передаточной функции в зависимости от параметров \(\delta_\phi\), \(\delta_c\) и \(\sigma\) позволяет судить о разрешающей способности спектрометра и сравнивать спектрометры разных систем.

Глава 3. Модуляционные, многоканальные

и мультиплексные методы

В практике спектрометрии подвижностей приходится регистрировать исключительно слабый ток аэроионов. Изолятормы измерительного конденсатора подвергаются действию атмосферного воздуха и генерируют паразитный ток, существенно искажающий результаты измерения. Новый метод модулирования тока аэроионов при помощи специального предварительного конденсатора подавляет описанное искажение и имеет также дополнительные преимущества. Показана также возможность осуществления дифференциального модуляционного спектрометра. Аппаратная функция такого спектрометра похожа на аппаратную функцию обычного дифференциального спектрометра второго порядка. Модуляционный спектрометр реализуется без необходимости разделения потока и дезоионизации воздуха, что может оказаться технически выгодным.
Во втором параграфе главы найдена количественная оценка специфического искажения модуляционного метода - индукционной ошибки. Указан способ аппаратного устранения этой ошибки.

В теории многоканальных измерений предложены понятия полуобработанной записи и специальной аппаратурной функции многоканального спектрометра аэроионов. В случае достаточно узкой специальной аппаратурной функции полуобработанная запись приблизительно пропорциональна спектральной функции проводимости, которая может быть оценена по формуле

\[
\lambda(k_n) \approx \frac{2}{\phi} \sum_{i=1}^{n} \frac{C_i}{C_n} \frac{C_{n+1} I_n - C_n I_{n+1}}{C_{n+1} + C_n},
\]

где \(k_n = \epsilon \phi / (U \sum_{i=1}^{n} C_i) \) - предельная подвижность, \(C_n \) - действующая емкость и \(I_n \) - сила тока для \(n \)-той секции собирающей обкладки.

Узловой проблемой при реализации многоканального метода является одновременная регистрация сверхслабых сигналов множества каналов. Поэтому изучены возможности, которые может представить многоканальный электрометр с общим усилителем. Если запись спектрометра подлежит численной обработке, то паразитная связь между каналами электрометра может быть учтена в аппаратной матрице спектрометра и автоматически скорректирована при обработке наблюдений. Многоканальный электрометр позволяет простыми средствами осуществить некоторые линейные преобразования вектора входного сигнала и тем самым аппаратурную обработку наблюдений. Подробно рассмотрена теория циркуляционного электрометра, который позволяет реализовать мультиплексную структуру внутри электрометра. При этом показано, что псевдощумовая структура - не обязательно оптимальная мультиплексная структура. Например, в случае 15-канального модулятора псевдощумовая структура уступает мультиплексной структуре 101001000100000.

По аналогии с Адамар-спектретрами в оптике и ядерной физике предложено слоистое входное устройство аспирационного измерительного конденсатора, позволяющее осуществить мульти-
плексный метод измерения. Мультиплексность может быть совмещена с многоканальностью при выполнении условия согласования структуры \(C_n/C_{n+1} = \phi_n/\phi_{n+1} = \text{const} \) для всех слоев и каналов.

Глава 4. Обратная задача спектрометрии

Запись спектрометра, которая непосредственно не воспринимается как спектр, рассматривается как "латентное" изображение спектра. Обработка наблюдений, которая должна определить "явный" вид спектра, называется проявлением спектра.

В отличие от прямой задачи спектрометрии, специфической для каждого метода измерения, обратная задача допускает общее рассмотрение и получаемые здесь результаты приложимы к разным видам спектрометрии.

П. Ланжевен в 1905 г. впервые предложил метод проявления спектра подвижностей аэроионов путем вычисления второй производной записи интегрального аспиранционного спектрометра. В первом параграфе метод Ланжевена обобщен на приведение любого интегрального уравнения первого рода со сплайн-ядром к задаче дифференцирования записи спектрометра.

Метод Ланжевена относится к бесконечномерной математической модели спектральных измерений. В практике обработки наблюдений все множество данных и результатов конечномерны. Поэтому основная теория обработки наблюдений построена для конечномерной математической модели. Оценка спектра определяется по принципу наименьшего правдоподобия, что в случае гауссового аппаратного шума приводит к алгоритму

\[
\hat{\Psi} = (G^T D^{-1} G + A_p)^{-1} (G^T D^{-1} f + b_p),
\]

где \(\hat{\Psi} \) — оценка спектра, \(D \) — ковариационная матрица аппаратного шума, \(A_p \) — информационная матрица и \(b_p \) — локализационный вектор предварительных сведений о спектре. Для упрощения формализации предварительной информации о спектре предлагается метод априорных уравнений. Алгоритм (8) учитывает как измерительную, так и объективную предварительную информацию и совпадает с алгоритмом, который известен в литературе как алгоритм статистической регуляризации. В нашем рассмотрении алгоритм (8) не связан с понятием регуляризации, поскольку задача проявления решается
здесь естественным путем без всякого "доопределения".

Определенность предварительных сведений о спектре является обязательным условием вычисления информационной продукции спектрометра. Запись спектрометра содержит о спектре количество информации

$$I = \log \sqrt{\det(E + G_A^{-1}G_D^{-1})},$$ \hspace{1cm} (9)$$

где E означает единичную матрицу. Вклад отдельной точки записи в информационную продукцию

$$\Delta I = \log \sqrt{1 + \frac{g^T C g}{\sigma^2}},$$ \hspace{1cm} (10)$$

где g - текущая строка аппаратной матрицы, σ^2 - дисперсия ошибки измерения и C - текущая ковариационная матрица оценки спектра, полученной в результате предыдущих шагов. Если точка записи измеряется последней, то ее информационный вклад называется постинформативностью. Вычисление постинформативностей позволяет провести анализ и оптимизацию программы сканирования записи.

Для обработки наблюдений на линии с ЭВМ предложен специальный алгоритм последовательного проявления, в котором использована идея пополнения обратной матрицы Дуайера и Уо. Ковариационная матрица и локализационный вектор после каждого шага сканирования пополняются по предписанию

$$C: = C - \frac{C g (C g)^T}{\sigma^2 + g^T C g},$$

$$b: = b + \frac{f}{\sigma^2} g,$$ \hspace{1cm} (11)$$

Текущую оценку спектра $\Psi = C b$ можно найти на каждом шаге без обращения матрицы. Количество арифметических операций на один шаг сокращается с $\sim n^3$, необходимых при обычном алгоритме, до $\sim n^2$. Символ n означает число координат спектра. При проявлении
спектра по алгоритму (11) информационные вклады вычисляются по формуле (10) с минимальной затратой труда.

Рассмотрено также проявление спектра в собственной системе координат, что возможно при перестановочных информационных матрицах. Свойство перестановочности информационных матриц получает прикладное выражение в частном случае, когда аппаратное преобразование, аппаратный шум и предварительная информация описываются циркуляционными матрицами, имеющими стандартный собственный базис. В этом случае переход в собственный базис, или диагонализация задачи, осуществляется при помощи конечномерного преобразования Фурье и арифметический объем проявления спектра может оказаться в сотни раз меньше арифметического объема проявления по общему алгоритму.

Глава 5. Стабилизация спектра

В бесконечномерной математической модели обратные задачи спектрометрии оказываются некорректно поставленными в смысле Адамара. В вводном параграфе резюмируются идеи метода регуляризации Тихонова и предлагается метод двумерной неопределенности. Метод двумерной неопределенности дает для первоначально бесконечномерно описанной задачи стабильное конечномерное решение.

Систематический анализ стабилизации спектра проведен для конечномерной математической модели измерения. Стабилизация целесообразна тогда, когда информация, вложенная в результат измерения, иначе не может быть воспринята исследователем без существенных потерь. При стабилизации измерительная информация дополняется конвенциональной информацией, которая лишена объективной природы и имеет силу соглашения. Небольшое количество конвенциональной информации может превратить большое количество объективной информации из скрытого вида в воспринимаемый вид.

Если \(b_p = 0 \), то из алгоритма линейного проявления (8) выпадает нулевой член и \(\bar{y} = Kf \), где матрица \(K \) называется проявителем. Обозначим матрицу объективной предварительной информации через \(A_o \) и матрицу натуральной информации через \(A_n = G^T D^{-1} G + A_o \). Нестабилизированный или натуральный проявител по алгоритму (8) имеет вид \(K_n = A_n^{-1} G^T D^{-1} \), а стабилизированный проявител \(K = (A_n + A_a)^{-1} G^T D^{-1} \), где \(A_a \) — матрица
конвенциональной информации, точнее говоря, неструктурной составляющей конвенциональной информации, которая называется аппликативной информацией. Стабилизированный проявитель может быть выражен через натуральный соотношением $K = SK_n$, где матрица

$$S = (E + A_n^{-1}A_a)^{-1}$$

называется стабилизатором. Если $\Psi_n = K_n f$, то $\Psi = S\Psi_n$. Стабилизатор может быть интерпретирован как сглаживающий фильтр для дообработки натуральной оценки спектра.

Стабилизатор описывает остаточное преобразование, неустранимое при стабилизированном проявлении спектра. В этом смысле он играет роль аппаратной матрицы для спектрометра, расширенного средствами стабилизированного проявления спектра. Поэтому матрица S называется также псевдоаппаратной матрицей. В бесконечномодерной модели псевдоаппаратную матрицу заменяет псевдоаппаратная функция — это образ истинно дискретной спектральной линии, полученной в результате стабилизированного проявления по идеальной записи, не содержащей аппаратного шума.

На практике спектрометрии запись иногда непосредственно принимается за оценку спектра, что равносильно проявлению со стабилизатором, совпадающим с аппаратной матрицей, и называется тривиальным проявлением спектра.

При проявлении спектра непосредственно можно задать матрицу A_a. Тогда говорят об аддитивной технике стабилизации. Если непосредственно задается матрица S, то говорят о мультипликативной технике стабилизации. Матрица аппликативной информации при этом может быть вычислена по соотношению

$$A_a = A_n (S^{-1} - E).$$

Если эта матрица неотрицательно определена, то говорят об ординарной стабилизации, в противном случае — о неординарной стабилизации. Например, тривиальное проявление в случае прямоугольной аппаратурной функции относится к неординарной стабилизации.

Если множество допустимых стабилизаторов ограничивается
матрицами, перестановочными с матрицей натуральной информации, то говорят о перестановочной стабилизации. Требование перестановочности существенно упрощает решение задачи оптимальной стабилизации. В диссертации поставлена в общем виде проблема оптимальной стабилизации и решены некоторые частные задачи. Например, для предельно допустимого по принципам математической статистики перестановочного стабилизатора, минимизирующего след ковариационной матрицы оценки спектра, получен результат

\[S_k^i = \frac{\lambda a_k^{i^2} |\psi_k^i|^2}{1 + \lambda a_k^{i^2} |\psi_k^i|^2}, \]

(14)

где \(S_k^i, a_k \) - собственные значения матриц \(S \) и \(A_n \), а \(\psi_k^i = T^{-1} \psi_n^i \), матрица \(T \) собрана по столбцам из собственных векторов матрицы \(A_n \). Лагранжевый множитель \(\lambda \) определяется уравнением

\[\sum_k \frac{a_k^{i^2} |\psi_k|^2}{1 + \lambda a_k^{i^2} |\psi_k|^2} = \chi^2_n, q, \]

(15)

где \(\chi^2_n, q \) - критическое значение распределения \(\chi^2 \) с \(n \) степенями свободы на выбранном уровне значимости \(q \).

Рассмотрены также параметрические методы выбора стабилизатора и показано, что известные методы статистической регуляризации равносильны некоторой узко поставленной частной задаче оптимальной стабилизации.

Глава 6. Спектрометрия подвижностей аэроионов

как метод анализа воздуха

Для обеспечения контроля за чистотой внешней среды необходимы методы анализа биологически и метеорологически активных примесей воздуха. Концентрация таких примесей обычно ниже миллиграмм на кубический метр. Детектирование и анализ примесей по электрическим параметрам воздуха предлагается обозначить термином "электроанализ воздуха". Можно выделить три направления электроанализа воздуха: 1) собственно электрический анализ (аэроионные измерения), 2) химический анализ и
3) механический анализ (гранулометрия аэрозолей). Спектрометрия подвижностей аэроионов непосредственно решает первую задачу электроанализа воздуха. В первом и третьем параграфах приведен краткий обзор спектрометрии легких и тяжелых аэроионов как фактора атмосферного электричества. В качестве примера представлены результаты конкретных наблюдений.

Возможность химического анализа следует из результатов экспериментов, описанных во втором параграфе. Обнаружено действие микропримесей электроноакцепторных газов на спектр подвижностей легких отрицательных аэроионов. При добавлении к воздуху определенного галоида с концентрацией порядка сотен мкг/м³ спектр подвижностей вырождается в дискретную линию, подвижность которой зависит от добавленного вещества. Чувствительность предлагаемого метода детектирования электроноакцепторных примесей демонстрируют записи спектрометра, снятые до и после добавления к воздуху 3 мкг/м³ хлора. Расхождение между записями почти на два порядка величины превышает аппаратный шум. Спектры остались бы уверенно различимыми при уменьшении концентрации хлора до 0,1 мкг/м³.

Во второй половине главы изложена общепринятая теория электрической гранулометрии аэрозолей, в которой строго учитывается статистический разброс зарядов на частицах одного и того же размера. Преобразование спектра размеров в запись прибора можно описать при помощи двухэтапной модели: вначале рассматривается преобразование спектра размеров в спектр подвижностей \(\rho(k) = \int M(k,r)\varphi(r)dr \), затем преобразование спектра подвижностей в запись прибора \(f(y) = \int G(y,k)\rho(k)dk \). В одноэтапной модели эти два преобразования объединяются в одно преобразование типа (1), где аппаратная функция \(H(y,r) = \int G(y,k)M(k,r)dk \). Теория обработки гранулометрических наблюдений строится на основе конечномерного уравнения типа (2):

\[
f = Hn,
\]

где \(f \) — вектор записи, \(H \) — аппаратная матрица и \(n = \{n_j\} \) — вектор фракционных концентраций. Каждое \(n_j \) равно численной концентрации частиц в \(j \)-том поддиапазоне размеров \([r_{j-1}, r_j] \). Допустим, что внутри каждого поддиапазона
\[\phi(r) = n_j \phi^{(j)}(r) / \int_{r_{j-1}}^{r_j} \phi^{(j)}(r) \, dr. \] Функции \(\phi^{(j)}(r) \) считаются заранее известными, измерение должно определить лишь число \(n_j \).

Тогда элементы аппаратурной матрицы могут быть вычислены по формуле

\[H_{1j} = \frac{q_e}{\int_{r_{j-1}}^{r_j} \phi^{(j)}(r) \, dr} \int_{r_{j-1}}^{r_j} \phi^{(j)}(r) \sum_{i} p_i(r) G(y_1, k_i(r)) \, dr, \]

где \(q_e \) - элементарный заряд, \(p_i \) - вероятность \(i \)-кратного элементарного заряда и \(k_j(r) \) - подвижность \(i \)-кратно заряженной частицы радиусом \(r \). Функция \(p_i(r) \) изучена в работах Н.А. Фукса и др., функция \(k_i(r) \) определяется формулой Стокса-Кеннинггема-Милликена.

Качество электрического гранулометра существенно определяется устройством зарядки аэрозолей. Показано, что наименьшая возможная напряженность электрического поля в зоне зарядки униполлярного диффузионного зарядника зависит от допустимой пространственной неоднородности зарядки частиц. На основе уточненной математической модели найдены предельные размеры эффективно заряжаемых частиц в зависимости от параметров зарядника.

Техническая сложность ограничивает применение спектральных методов вне лаборатории. Для полевых работ нужна простая и надежная аппаратура, позволяющая регистрировать интегральные параметры, характеризующие радиоактивную и аэрозольную загрязненность воздуха. Такими параметрами могут быть рассмотрены интенсивность ионообразования и коэффициент поглощения легких аэроионов частицами аэрозоля. Предложен простой метод совместного измерения этих параметров при помощи интегрального аспирационного конденсатора.

Глава 7. Аппаратура для спектрометрии подвижностей аэроионов

При разработке аппаратуры внедрялись теоретические результаты, полученные в предыдущих главах диссертации. В диссертации описана экспериментальная аппаратура, разработанная под руководством и при участии автора. Приборы изготовлены в экспе-
риментальных мастерских и лаборатории Тартуского государственного университета как уникальные образцы. В количестве нескольких десятков изготовлены универсальные интегральные счетчики аэрононов. В этом приборе внедрен конический измерительный конденсатор, предложенный на основе результатов, изложенных во второй главе диссертации.

Проблема систематической оптимизации конструкции и режима измерительного конденсатора рассматривается во втором параграфе на примере частной задачи разработки измерительного конденсатора для радиоактивных аэрозолей.

Для исследования действия электроноакцепторных примесей воздуха на спектр подвижностей аэрононов и для анализа таких примесей построен специальный спектрометр подвижностей одно-секундных легких отрицательных аэрононов. Снятие спектров полностью автоматизировано: через 75 с после нажатия пусковой кнопки получается готовый результат в виде графика, где аргументом служит логарифм подвижности, а ордината соответствует спектральной функции проводимости. График является записью дифференциального спектрометра второго порядка и изображает спектр в сглаженном виде. Спектрометр калибруется по характерной линии йода.

В четвертом параграфе описан простой опытный счетчик, построенный для демонстрации и исследования метода модулирующего предварительного конденсатора. Счетчик сохраняет работоспособность при снижении изоляции собирающей обкладки до сотен мегаом, что на несколько порядков величины ниже критического сопротивления утечки счетчиков обычной системы в том же диапазоне измерения.

В последних двух параграфах рассмотрена техническая реализация многоканального метода. Опытный многоканальный аспирационный спектрометр снабжен двумя логарифмически разделенными 25-канальными измерительными конденсаторами. Измерение полностью автоматизировано. Сигнал снимается с собирающих обкладок сканированием при помощи электрометрического коммутатора и импульсного электрометрического усилителя, и выводится на перфоленту. Испытание прибора показало, что надежность многоканального спектрометра определяется, с одной стороны, качеством системы изоляторов и коммутатора каналов, с другой —
алгоритмом обработки наблюдений. Программа "AEROSOL SPECTRUM 10-100 NM" позволяет продолжать измерения в условиях выхода из строя до десяти каналов, что приводит лишь к небольшому росту случайных ошибок измерения. Это возможно благодаря информационной избыточности - по отсчетам 48 каналов вычисляется 5 фракционных концентраций высокодисперсного аэрозоля. ЭВМ дополняет индивидуально каждый спектр оценками ошибок измерения концентраций отдельных фракций и коэффициентов корреляции между ошибками. В программе внедрены теоретические идеи, развитые в главах 3...6.

Приложение

В кратком приложении рассмотрены математические свойства циркуляционных матриц, которые используются в 3...5 главах диссертации. Все циркуляционные матрицы имеют один и те же собственные векторы и их собственные значения вычисляются при помощи конечномерного преобразования Фурье.

ВЫВОДЫ И РЕКОМЕНДАЦИИ

1. Конечномерное математическое описание спектра и спектрометра имеет в теории спектрометрии самостоятельное значение и не должно рассматриваться как только вычислительная аппроксимация традиционного бесконечномерного формализма.

2. Уравнение любого спектрометра подвижностей аэроинов формулируется в универсальном виде (1) или (2) и решение прямой задачи теории спектрометрии для конкретного метода измерения сводится к составлению конкретного выражения аппаратной функции или матрицы.

3. Всевозможные отклонения от упрощенного теоретического решения прямой задачи могут быть учтены тогда, когда аппаратная функция снимается экспериментально. Для этого необходим стандартный генератор строго или приближенно моноцелебных аэроинов. Моноцелебные легкие отрицательные аэроины можно генерировать при условии добавления к воздуху паров йода с концентрацией до одного миллиграмма на кубический метр.

4. Если аппаратная функция аспирационного спектрометра является идеальной или дополнительно включает логарифмически нормальное сглаживание, то функция передачи логарифмически-
гармонических составляющих спектра проводимости аспириционным спектрометром вычисляется аналитически (5). Это упрощает обработку наблюдений и обеспечивает проведение сравнительного анализа разрешающей способности спектрометров разной системы.

5. Модуляционные методы позволяют устранить действие паразитного тока, генерируемого изоляторами собирающей обкладки, а также ряд других недостатков, свойственных обычным спектрометрам подвижностей аэроионов. Модуляционные, многоканальные и мультиплексные спектрометры описываются в рамках той же универсальной математической модели, что и обычные спектрометры.

6. Алгоритм статистической оценки спектра (8), где учитывается также предварительная информация о спектре, вводится без использования понятия регуляризации. Если предварительная информация описана в стандартизованной форме, то возможно вычислить информационную продукцию спектрометра (9) и использовать алгоритм последовательного проявления (11), что существенно уменьшает объем вычислений и нагрузку памяти при обработке наблюдений на линии с ЭВМ.

7. Проявление спектра с использованием конечномерного преобразования Фурье рассматривается как частный случай проявления спектра в базисе собственных векторов информационных матриц, которые должны обладать циклической структурой.

8. Метод Ланжевена вычисления спектра по второй производной записи допускает обобщение на спектрометры, аппаратная функция которых является полиномиальным сплайном. Стабильную оценку производных даёт метод двумерной неопределенности.

9. Предварительная информация состоит из разных составляющих, для правильной интерпретации методов стабилизации конвенциональную составляющую необходимо отличать от объективной составляющей предварительной информации.

10. Стабилизация слаживает спектр подобно аппаратному преобразованию. Матрица или функция стабилизирующего преобразования называется поздноаппаратной матрицей или функцией. Поздноаппаратная матрица интерпретируется как аппаратная матрица измерительно-вычислительного комплекса.

11. Существуют разные частные задачи оптимальной стабилизации спектра. Предельно допустимый по принципам математической
статистики стабилизатор (14,15) обеспечивает минимальное случайное рассеивание оценок спектра при условии, что оценка спектра не отвергается статистической проверкой на заданном уровне значимости.

12. Электроноакцепторные газы, например галоиды, действуют на спектр подвижностей легких отрицательных аэроионов при концентрации порядка микрограмм на кубический метр, что может быть использовано для детектирования и анализа электроноакцепторных микропримесей воздуха.

13. Электрический гранулометр аэрозолей описывается одним уравнением, которое по форме совпадает уравнением спектрометра подвижностей аэроионов. Аппаратная матрица электрического гранулометра вычисляется по формуле (17), где учтено статистическое распределение зарядов частиц одного и того же размера.

14. Алгоритм обработки наблюдений существенно определяет эксплуатационные характеристики, в том числе и надежность аппаратуры для спектрометрии подвижностей аэроионов. Программы обработки наблюдений должны быть рассмотрены как составная часть комплекта прибора на разных основах с техническими средствами.
2. Введение в линейную конечномерную теорию спектрометрии. Таллин, "Валгус", 1975, 100 с.
4. Расчет аспирационного конденсатора на максимум удельной интенсивности осаждения аэроионов. — "Уч. зап. Тартуского гос. ун-та", 1971, вып. 239, с. 16-29.
5. К общим проблемам спектрометрии аэроионов. — "Уч. зап. Тартуского гос. ун-та", 1973, вып. 320, с. 5-12.

Л. Фазимбеков

Вп.ЛТ0.22.05.78.З.ИС.Т.ИО0.М-09484.Бесплатно.