ИОНИЗИРОВАНИЕ ВОЗДУХА БОЛЬШИХ ПОМЕЩЕНИЙ ПОСРЕДСТВОМ ПРОВОЛОЧНЫХ АНТЕНН, ПИТАЕМЫХ АППАРАТОМ ДЛЯ ФРАНКЛИНИЗАЦИИ

Х. Ф. ТАММЕТ, Я. И. САЛЬМ
(Тартуский государственный университет)

В настоящей работе описывается метод ионизации воздуха, который позволяет достичь наиболее однородную униполярную ионизацию в больших помещениях и, несмотря
на крайнюю простоту, не уступает методу электроэффективных люстр.

Под потолком помещения натягивается горизонтальная проволочная антенна, на которую подается постоянное напряжение порядка нескольких десятков тысяч вольт. Ионизация воздуха возникает, если напряжение антенны \(U \) превышает начальное напряжение коронного разряда \(U_0 \). Для проволоки диаметром 0,1 мм напряжение \(U_0 \) около 9 кВ, при диаметре 0,2 мм \(U \approx 12 \) кВ, при диаметре 0,5 мм \(U_0 \approx 20 \) кВ. Материал проволоки для ионизации не существует. При увеличении напряжения концентрация ионов \(n \) возрастает по линейному закону.

\[
p = a \left(U - U_0 \right),
\]

где \(a \) — постоянная, зависящая от размеров помещения и расположения антенн. Зависимость концентрации ионов от температуры, влажности и т. д. незначительная.

Мы рекомендуем применять нихромовую проволоку диаметром около 0,2 мм. Для изолирования антенны оба конца проволоки прикрепляются к стенам при помощи отрезков обычной полиэтиленовой рыболовной лески диаметром 0,4—0,5 мм и длиной около одного метра.

Коронирующие антенны потребляют ток порядка десятков микроампер, что позволяет для их питания применять любой маломощный высоковольтный выпрямитель. Наиболее подходящими и доступными являются выпрямители аппаратов для франклинизации. Мы применяли аппарат АФ-3, отличавшийся полной безопасностью и обеспечивающий выходной ток до 200 мА. Так как выпрямитель АФ-3 позволяет получить только отрицательное напряжение, все опыты, описываемые ниже, проведены при отрицательной ионизации.

Выпрямитель соединяется с антенной при помощи гибкой монтажной проволоки диаметром около 2 мм (с изоляцией). Удаление антенны от потолка следует выбирать наибольшим, насколько это допускается при конкретной обстановке. Если антенну расположить ближе к потолку, то концентрация ионов убывает, а сила разрядного тока увеличивается. Величину разрядного тока можно вычислить по приближенной формуле

\[
J_{(мкм)} \approx \frac{I_{(М)}}{U_{(кВ)}} \left[U_{(кВ)} - U_{0(кВ)} \right],
\]

238
где I — длина антенны и h — удаление антенны от потолка.
Увеличение коронного тока может привести к заметному образованию биологически активных газов. Генерирование озона исследовалось нами в помещении с кубатурой 234 м³. При отношении коронного тока к объему помещения 0,035 мка/м³ никто из группы 12 человек при входе в помещение не обнаруживал запаха озона. При 0,07 мка/м³ некоторые люди ощущали запах озона, а при 0,12 мка/м³ слабый запах озона становился легко заметным. При оценке максимального напряжения антенны, при котором озон не будет еще по запаху заметным, можно пользоваться формулой

\[
U_{доп}^{(кв)} = U_{0}^{(кв)} - \frac{1}{2} + \frac{\sqrt{U_{0}^{2} + \frac{R_{2}(м)R_{3}(м)\cdot V^{(м)}}{I_{(м)}}}}{4}
\]

где V — объем помещения.

В широких помещениях для обеспечения однородной ионизации рекомендуется устанавливать несколько параллельных антенн, соединенных между собой. При использовании нескольких антенн потребление тока на одну антенну несколько уменьшилось, ввиду взаимного влияния антенн.

Коронный разряд генерирует легкие ионы. При наших измерениях подвижность легких отрицательных ионов составляла около 1,5 см²/в. сек.

Тяжелые ионы образуются путем прилипания легких ионов к аэрозольным частицам. Ввиду образования тяжелых ионов пыль оказывает некоторое влияние на концентрацию легких ионов. Это влияние тем меньше, чем больше концентрация ионов.

В помещении физической лаборатории с размерами 9×6×4,3 м проверялось пылеосадительное действие ионизации, осуществленной описанным методом. На удалении 1 м от потолка были установлены две антенны, на которые подавалось напряжение 36 кв. Концентрация легких ионов в точке измерения составляла 140000 эл. зар./см³. Счетная концентрация пыли с размерами частиц более 0,05 мк определялась ультрамикроскопом ВДК-4. Ионизация включалась после окончания занятий студентов в помещении.

Концентрация пылевых частиц указанного диапазона уменьшалась с 46·10³ частиц/см³ до 0,3·10³ частиц/см³ за 100 мин. При контролном опыте, проведенном в другой
день, без включения ионизации, концентрация пыли уменьшилась в течение трех часов только на 35%. Параллельно с измерениями при помощи ультрамикроскопа проводилась регистрация концентрации и подвижности тяжелых ионов. Зарядение аэрозольных частиц происходило медленно. Соответственно возрастала и средняя подвиженность тяжелых ионов, которая через 80 минут установилась на значении 0,0025 см²/в. сек.

При повторении опыта в условиях меньшей интенсивности ионизации рассеивание пыли и тяжелых ионов соответственно замедлилось. Время убивания концентрации пыли и тяжелых ионов на половину первоначального значения при этом выражается следующим отношением:

\[t_{1/2(мин)} = \frac{630}{k \left(\frac{см^2}{в.сек} \right) \cdot N_0 \left(\frac{эл.-зар}{см^3} \right)} \]

где \(k \) — подвижность рассеивающихся частиц и \(N_0 \) — плотность объемного заряда. После длительной ионизации наступило состояние, при котором естественное генерирование аэрозоля уравновешивает электростатическое осаждение.

Подчеркиваем, что выше представленные результаты получены в помещении, где присутствовали один-два наблюдателя. В условиях сильного образования пыли (когда в помещении проходят лабораторные занятия студентов) влияние электростатического осаждения намного меньше. Изменения концентрации пыли при этом оставались в пределах случайных колебаний.

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА НЕКОТОРЫХ ПРОМЫШЛЕННЫХ АЭРОИОНИЗАТОРОВ

А. А. ЮШКИН
(Институт экспериментальной медицины АМН СССР, Ленинград)

В проводимых экспериментах по исследованию влияния ионизированного воздуха на биологический объект используются целый ряд ионизирующих устройств как промышленного, так и собственного изготовления. Они чрезвычайно разнообразны по конструкции и по принципу действия. На-