Эве TAMMET, X. TAMMET

ВЫЧИСЛЕНИЕ КОЭФФИЦИЕНТОВ СЛОЖЕНИЯ
УГОЛЬНЫХ МОМЕНТОВ

Эве TAMMET, H. TAMMET. IMPULSIMOMENTIDE SUMMEERIMISTOEFFECTIDENTE ARVU-TAMINE
Эве TAMMET, H. TAMMET. COMPUTING OF ANGULAR MOMENTA COUPLING COEFFICIENTS

Решение прикладных задач квантовой механики нередко приводит к выражениям, содержащим коэффициенты Клебша—Гордана, 3j- и 9j-коэффициенты. Практическая применимость таких результатов существенно зависит от возможности определения численных значений коэффициентов. Для этого составлены объемистые таблицы (см., напр., [1, 2]), однако они содержат лишь долю необходимых на практике значений и почти бесполезны при расчетах на ЭВМ.
В последнем случае взамен таблиц необходимы подпрограммы или процедуры вычисления коэффициентов сложения угловых моментов.
Удовлетворительные подпрограммы известны лишь для коэффициентов Клебша—Гордана [3].

Ниже описывается универсальная процедура, позволяющая вычислить все перечисленные и треугольные коэффициенты. Процедура реализована в МАЛГОЛ-системе [4], которая базируется на определенном диалекте языка АЛГОЛ-60 и отличается особым удобством при решении задач физики.
Процедура используется в программах как функция, принимающая значение вычисляемого коэффициента. Обращение записывается следующим образом:

коэффициент записи на языке МАЛГОЛ
\[
\Delta(abc) = \begin{cases}
\text{CAM}('3', A, B, C) \\
\text{CAM}('CG', J1, J2, J, M1, M2) \\
\text{CAM}('3J', J1, J2, J3, M1, M2)
\end{cases}
\]

6 ENSV TA Toimetised F"M 1 1974
\[ \{ j_1, j_2, j_3 \} \quad \text{CAM('6J', J1, J2, J3, L1, L2, L3)} \]

\[ \{ l_1, l_2, l_3 \} \quad \text{CAM('9J', J1, J2, J3, L1, L2, L3, K1, K2, K3)} \]

Расчет исходит из значений параметров, округленных до ближайшего целого или полуцелого числа. В ходе вычислений проверяются всевозможные ограничения, накладываемые на аргументы. При обнаружении недопустимой комбинации аргументов результата будет равен нулю, и если на пульте ЭВМ включен ключ 100, то одновременно выводится сообщение

```
ERROR CAM: X P1 P2... 
```

где X — признак конкретного вида коэффициента и P1, P2, ... — значения аргументов. При обращении с неправильным признаком происходит то же самое, но сообщение ограничивается словами «ERROR CAM:». 

Процедура вместе с собственными переменными и постоянными занимает 1227,8 ячеек в первом блоке МОЗУ ЭВМ «Минск-22» и если аргументы небольшие, то 63,8 ячеек во втором блоке. Кроме того, используются стандартные функции и процедура вывода общей длиной 750,8 ячеек. Эти функции и процедура вывода, как правило, вызываются в МОЗУ уже по требованию других частей программы. Все длины приведены для системы МАЛГОЛ-72. Для сравнения укажем, что, по данным [3], программа вычислений только коэффициентов Клейбша—Гордана ОИЯИ имеет длину 1445,8, а такая же программа ЦЕРН — длину 13545,8.

Время вычисления сложным образом зависит от набора аргументов. Ограничиваемся примерами (для ЭВМ «Минск-32»):

\[
\begin{align*}
\triangle (2 & 3 4) & 16 \text{ мс} \\
[3,5 & 1,5 4] & 54 \text{ мс} \\
[2,5 & -0,5 2] & \\
\{ & 2 \quad 2,5 & 3,5 \} & 67 \text{ мс} \\
\{ & 1,5 & 3 \} & \\
\{ & 2 & 2 \} & 270 \text{ мс} \\
\{ & 2,5 & 1,5 \} & \\
\{ & 0,5 & 0,5 \} & 
\end{align*}
\]

Расчет можно существенно ускорить, если писать подпрограмму F (см. приложение) на машинном языке.

В приложении представлен текст процедуры, используемый в системе МАЛГОЛ-72. Для согласования процедуры с описанием [4] достаточно заменить выражение \( R'(\text{LOGF},X+1) \) на \( \text{LOGF}(X) \) и слово \( O' \) на OCTAL'.

```
Приложение

PROCEDURE 'CAM (P0, P1, P2, P3, P4, P5, P6, P7, P8, P9); BEGIN
  SUBROU'PP: Y := 0.5 × ENTIER (X + X + 0.5);
  SUBROU'MN: IF X < MIN THEN MIN := X;
  SUBROU'MX: IF X > MAX THEN MAX := X;
  SUBROU'CH: IF MAX < MIN THEN GOTO 'ERROR;
  SUBROU'G: BEGIN
    IF X THEN GOTO 'ERROR;
    IF FRACX = 0 THEN GOTO 'ERROR;
    IF X = MAX THEN GOTO 'EXTEND;
    Y := R(LOGF X + 1) ENDS;
  SUBROU'FP: BEGIN F; S := S + Y ENDS;
  SUBROU'FM: BEGIN F; S := S - Y ENDS;
  SUBROU'TRI2: BEGIN
    X := A + B + C + 1; F: S := -Y;
    FOR X := A + B - C, A + B + C, -A + B + C DO 'FP ENDS;
  SUBROUTS: BEGIN TRI2; SS := SS + S ENDS;
  SUBROUXP: XX := XX + (1 - 4 × FRAC' (K/2)) × EXP'S;
  SUBROU'J6: BEGIN
    SS := 0;
    A := I1; B := I2; C := I3; TS; U1 := A + B + C;
    B := M2; C := M3; TS; U2 := A + B + C;
    A := M1; B := I2; TS; U3 := A + B + C;
    B := M2; C := I3; TS; U4 := A + B + C;
    CONST := SS/2;
    V1 := I1 + I2 + M1 + M2; V2 := I1 + I3 + M1 + M3;
    V3 := I2 + I3 + M2 + M3;
    MIN := U1; FOR X := U2, U3, U4 DO 'MN;
    MAX := V1; FOR X := V2, V3 DO 'MX CH;
    XX := 0;
    FOR K := MIN STEP 1 UNTIL MAX DO 'BEGIN
      X := K + 1; F: S := CONST + Y;
      FOR X := K - U1, K - U2, K - U3, K - U4, V1 - K, V2 - K, V3 - K
      DO 'FM;
    XP END 'END;
  IF 'TTT = 'PI THEN 'BEGIN
    TTT := 'PI;
    XMAX := 30;
    PREPARATION:
    ARRAY LOGF. '0 XMAX.);
    LOGF ('0) := 0;
    FOR I := 1 STEP 1 UNTIL XMAX DO
      LOGF ('I) := LOGF ('I - 1) + LN 1;
    GOTO 'CALCUL;
    EXTEND:
    DELETE (LOGF);
    XMAX := ENTIER ('1.25 × X);
    GOTO 'PREPARATION END;
  CALCUL:
  Q := P0;
  X := P1; PP; A := Y;
  X := P2; PP; B := Y;
  X := P3; PP; C := Y;
  IF 'Q = O'200000000000 THEN 'BEGIN
    TR12;
    XXX := EXP' (S/2);
    GOTO 'EXIT END;
  X := P4; PP; M1 := Y;
  X := P5; PP; M2 := Y;
  IF 'Q = O'20053000000000 + Q = O'207200000000 THEN 'BEGIN
    J := A; J2 := B; J := C;
    M := M1 + M2;
    TR12; S := S + LN ('2 × J + 1);
    FOR X := J1 + M1, J1 - M1, J2 + M2, J2 - M2, J + M, J - M DO 'FP;
    CONST := S/2;
    MIN := 0; MAX := J1 + J2 - J;
    FOR X := -J + J2 - M1, -J + J1 + M2 DO 'MN;
    FOR X := J1 - M1, J2 + M2 DO 'MX CH;
XX := 0;
FOR'K: = MIN STEP'1 UNTIL'MAX DO'BEGIN'
S: = CONST;
FOR'X: = K, J — J2 + M1 + K, J — J1 — M2 + K,
J1 + J2 — J — K, J1 — M1 — K, J2 + M2 — K DO'FM;
XP END';
XXX: = XX;
IF'Q: = O'207200000000 THEN'
XXX: = XX × (1 — 4 × FRAC'((J1 — J2 + M1)/2))/SQRT(2 × J + 1);
GOTO'EXIT END';
X: = P6; PP: M3: = Y;
IF'Q: = O'257200000000 THEN'BEGIN'
I1: = A; I2: = B; I3: = C;
M1: = L3; M2: = M2; L1: = M3;
X: = P7; PP: K1: = Y;
X: = P8; PP: K2: = Y;
X: = P9; PP: K3: = Y;
IF'KEYO' 100 THEN'
ELSE'IF'FRAC'((K1 + K2 + K3)/2) = /0 THEN'BEGIN'XXX: = 0; GOTO'EXIT END';
MIN: = 0; MAX: = J1 + K3;
FOR'X: = J1 — K3, J2 — L3, L1 — K2 DO'
IF'ABS'X)'EN' THEN'MIN: = ABS'X;
FOR'X: = J2 + L3, L1 + K2 DO'MX; CH;
KKMAX: = MAX; XXX: = 0;
FOR'KK: = MIN STEP'1 UNTIL' KKMAX DO'BEGIN'
T: = (2 × KK + 1)×(1 — 4 × FRAC'KK);
I1: = J1; I2: = J2; I3: = J3;
M1: = L3; M2: = M2; M3: = KK; J6: = T × XX;
I1: = L1; I2: = L2; I3: = L3;
M1: = J2; M2: = KK; M3: = K2; J6: = T × XX;
I1: = K1; I2: = K2; I3: = K3;
M1: = KK; M2: = J1; M3: = L1; J6: = T × XX;
XXX: = XXX + T END';
GOTO'EXIT END';
ERROR:
XXX: = 0;
IF'KEYO'100 THEN'BEGIN'
OUTPUT'(1):
TEXTRI(‘ERROR CAM: ‘);
IF'Q: = O'200000000000 THEN'
TEXTRI(3, 1, ‘3’, P1, P2, P3);
IF'Q: = O'565300000000 THEN'
TEXTRI(3, 1, ‘CG’, P1, P2, P3, P4, P5);
IF'Q: = O'207200000000 THEN'
TEXTRI(3, 1, ‘3J’, P1, P2, P3, P4, P5, P6);
IF'Q: = O'257200000000 THEN'
TEXTRI(3, 1, ‘6J’, P1, P2, P3, P4, P5, P6);
IF'Q: = O'307200000000 THEN'
TEXTRI(3, 1, ‘9J’, P1, P2, P3, P4, P5, P6, P7, P8, P9);
OUTPUT'(1) END';
EXIT: X: = XXX END';
ЛИТЕРАТУРА

2. Визбарайте Я. И., Глембоцкий И. И., Каразия Р. И., Строцките Т. Д., Улдуките В. И. (под ред. А. П. Юциса), Таблицы 9j-коэффициентов для целых значений параметров с одним параметром, равным единице, ВЦ АН СССР, М., 1968.
5. Юцис А. П., Бандзайтис А. А., Теория момента количества движения в квантовой механике, Вильнюс, 1965.

Институт кибернетики
Академии наук Эстонской ССР

Поступила в редакцию 26/IX 1973