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1. INTRODUCTION 
Energy allocation between reproduction and self-maintenance is a key life his-
tory trade-off. Therefore, forces that provoke constant renewal of an organism's 
tissues are investigated to understand their role in shaping life. As an organism 
comes across a hazardous substance, it invokes an energy demanding process to 
either counteract or tolerate it. Ultimately selection favours those organisms that 
not only learn to effectively detoxify but also find a use for those harmful sub-
stances (Bickham & Smolen 1994). One such substance is oxygen. Since the 
emergence of aerobic energy production some 3 billion years ago (Sessions et 
al. 2009), aerobic organisms have embraced the challenges imposed by respira-
tion. Inevitable by-products of this electron relocation process are molecules 
containing an unpaired electron (or molecules prone to give one) collectively 
called reactive species (RS, Halliwell & Gutteridge 2007). These highly reac-
tive molecules, including reactive oxygen (ROS), nitrogen, chlorine and many 
more species, pose a threat to the integrity of biological structures (Dröge 2002; 
Santo et al. 2016). Therefore, a variety of antioxidant mechanisms have evolved 
for billions of years to counteract their harmful effects (Benzie 2000). These 
mechanisms, including enveloping vital structures, synthesizing RS scavengers 
and promoting repair of damaged biomolecules, have been fine-tuned over 
countless generations (Benzie 2000; Gutteridge & Halliwell 2010). Meanwhile 
RS have also proved useful as a weapon against invading pathogens (Nappi & 
Ottaviani 2000; Dröge 2002) and signalling molecules (Dröge 2002; Isaksson et 
al. 2011), possibly representing a general signal of cellular stress (Finkel & 
Holbrook 2000). In light of evidence for the multipurpose nature of RS, oxida-
tive stress (OS) is defined as a disturbance in the pro-oxidant/antioxidant bal-
ance in favour of the oxidants, leading to a disruption of redox signalling and 
control, and/or molecular damage (Sies & Jones 2007). The field that searches 
for the way(s) in which disruption in redox homeostasis affects fitness through 
shaping sexual selection, reproduction, ageing and survival (Costantini et al. 
2010) is called oxidative stress ecology. Together with immunoecology – a field 
that connects immune responses and disease susceptibility with individual fit-
ness consequences (Sheldon & Verhulst 1996; Schulenburg et al. 2009) – this 
field of research has tried to link OS with major life history trade-offs.  

 
 

1.1 Oxidative stress – jack of all trades 

OS has been held responsible for reduced lifespan. Specifically, cell prolifera-
tion in general is thought to be affected by OS, which causes telomere short-
ening (von Zglinicki 2002) and is long believed to accompany higher metabolic 
rates (i.e the rate of living hypothesis; Bokov et al. 2004). However, the mecha-
nism by which RS production depends on metabolic state is under debate, as 
increased mitochondrial energy production decreases its ROS production 
(Speakman & Garratt 2013). Nevertheless, it has been shown that higher growth 
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rates can translate into either elevated or reduced antioxidant defences and oxi-
dative damage (reviewed in Metcalfe & Alonso-Alvarez 2010). Furthermore, 
oxidative damage to macromolecules is shown to increase during ageing 
(Hulbert et al. 2007), leading to the idea that the rate of senescence might be 
mediated by a balance between OS and membrane susceptibility to it (Galván et 
al. 2015). 

Reproduction might also increase OS. Cells proliferate rapidly in gonads and 
antioxidants are allocated into the gametes to promote their survival at the 
expense of bodily antioxidant defences (Costantini et al. 2010; Metcalfe & 
Alonso-Alvarez 2010). In addition, OS is shown to reduce sperm performance 
and oocyte maturation, leading to deterioration of gamete quality, aggravated 
over time (Costantini et al. 2010; Metcalfe & Alonso-Alvarez 2010). Further-
more, females may provide oxidative shielding to offspring by reducing their 
OS levels during breeding at the expense of defence during non-reproducing 
seasons (Blount et al. 2015). Both gamete quality and body condition are 
directly related to the reproductive potential of an individual, enabling it to tie 
OS with fitness.  

The costs of mounting an immune response can be mediated by OS 
(Dowling & Simmons 2009). The activation of innate immune response 
involves release of RS by phagocytes. This process, oxidative burst, is used to 
kill invading pathogens (Nappi & Ottaviani 2000) but can also non-specifically 
damage any cells, leading to immunopathology (Halliwell & Gutteridge 2007). 
Inflammation, especially chronic, has been shown to promote increased oxida-
tive damage and lead to antioxidant depletion even outweighing the direct neg-
ative cost of pathogen replication (reviewed in Sorci & Faivre 2009). Although, 
such an effect is estimated to be small in birds (Costantini & Møller 2009), 
tolerating pathogens can still cost less than eliciting a prolonged immune 
response (Medzhitov et al. 2012). 

Conspicuous sexually selected traits like feather colour or song complexity 
in birds, may signal the oxidative status of an individual (von Schantz et al. 
1999). While carotenoids, antioxidants in vitro, do not seem to have such an 
effect in vivo (Costantini & Møller 2008; Isaksson & Andersson 2008; Simons 
et al. 2012), melanin-based traits, also under sexual selection (Roulin 2015), are 
more often shown to be influenced by OS (Galván & Alonso-Alvarez 2008; 
Hõrak et al. 2010; Roulin et al. 2011; Henschen et al. 2015). Melanin coloration 
may even signal cognitive abilities (Galván & Moller 2011), which are shown 
to depend on OS in rodents (Fukui et al. 2002; Rosa et al. 2007). The few stud-
ies associating song and OS have resulted in mixed results (Casagrande et al. 
2014; Costantini et al. 2015a), leaving the question open for debate. 

As OS is alleged to affect virtually every major life history trait, it is thought 
of as a major mediator of life history trade-offs (Dowling & Simmons 2009; 
Monaghan et al. 2009; Costantini et al. 2010). Unfortunately, the experimental 
results often fail to conclusively demonstrate such a role for OS (Isaksson et al. 
2011; Selman et al. 2012). Typically, the occurrence of OS is established by 
detecting changes in few antioxidant or oxidative damage markers (Costantini 



9 

2008). Yet, the redox status of an organism is dependent on a delicate balance 
of pro- and antioxidants, which have various regulatory roles within an indi-
vidual (Finkel & Holbrook 2000). Unfortunately, only by quantifying all 
important mediators of the redox state in different tissues and timeframes 
(Hõrak & Cohen 2010) can the actual role of OS in the abovementioned trade-
offs be established.  

 
 

1.2 Quantifying redox state – decades of perplexity 

Advancement in oxidative stress ecology is much hindered by a lack of reliable 
measurement techniques (McGraw et al. 2010). There is great number of meth-
ods used to estimate in vivo concentrations of various endo- and exogenous 
antioxidants, RS, and damaged lipids, proteins or DNA (reviewed in Dalle-
Donne et al. 2006; Halliwell & Gutteridge 2007; Knasmüller et al. 2008). How-
ever, currently none of the available methods fulfils the required technical crite-
ria (high specificity, full validity, good repeatability and simplicity of measure-
ment) for any given biomarker of OS (Halliwell & Gutteridge 2007). Moreover, 
the usefulness of many measured biomarkers is doubtful, as some have ques-
tionable role in vivo (e.g. resistance of plasma components to in vitro generated 
severe oxidative insult (Halliwell & Gutteridge 2007)), depend on diet (e.g. uric 
acid (Cohen et al. 2007), reactive oxygen metabolites (ROMs, Pérez-Rodríguez 
et al. 2015; Butler et al. 2016) and lipid peroxidation (Pérez-Rodríguez et al. 
2015)) or fluctuate in time due to unknown reasons (e.g. total antioxidant capac-
ity and lipid peroxidation (Galván & Alonso-Alvarez 2009; Sepp et al. 2012b)). 
Proper biomarker selection is therefore of utmost importance. 

A single measure of OS is insufficient to declare an occurrence of OS 
(Hõrak & Cohen 2010; Selman et al. 2012). There are differences in the 
removal/repair time of different damaged biomolecules (Halliwell & Whiteman 
2004), and different tissues differ in damage susceptibility (Medzhitov et al. 
2012). Therefore, careful measurement time and tissue selection is essential. 
Moreover, while selecting biomarker combinations, it is crucial not only to 
include both pro- and antioxidant markers (Halliwell & Gutteridge 2007; 
Costantini & Verhulst 2009) but also to select several biomarkers within each 
category to cover all arms of antioxidant defence, oxidative damage and pro-
oxidant generation (Cohen & McGraw 2009; Romero-Haro & Alonso-Alvarez 
2014). Unfortunately, ecological studies generally require non-invasive methods 
to allow longitudinal sampling from a small amount of easily obtainable tissue 
(Pedersen & Babayan 2011). Consequently, quantifying redox state in wild 
animals has to rely on a small subset of OS biomarkers measurable from blood 
or other easily obtainable tissues. Such limitations further complicate the pro-
cess of linking oxidative stress to life history trade-offs. Only when advances in 
measurement techniques allow a better overview of the physiological state of an 
organism can the role of OS in life history trade-offs be properly investigated 
(Speakman et al. 2015). 
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1.3 Aims of the thesis 

This work aims to characterise the usability of some widely used markers of OS 
and antioxidant capacity in ecological studies. In particular I want to highlight 
(1) the importance of proper biomarker selection in determining the occurrence 
of OS in ecological setups and (2) emphasize the general inability to reliably 
demonstrate disruption in redox homeostasis with currently available bio-
markers under ecologically relevant stressors.  

There is a lack of consensus on ways of determining oxidative stress in free 
ranging animals (Costantini & Verhulst 2009; Garratt & Brooks 2012; Selman 
et al. 2012). While OS cannot be accurately assessed using a single marker and 
is tissue dependent (Dotan et al. 2004; Hõrak & Cohen 2010) studies of oxida-
tive stress ecology have mainly relied on biomarkers from easily obtainable 
tissues like blood (Monaghan et al. 2009). I aimed to clarify which of the popu-
lar blood-based measures of antioxidant capacity and oxidative damage (to 
proteins, lipids and DNA) prove to be most useful in detecting mild to severe 
oxidative insult in wild birds after an experimentally induced oxidative insult in 
captive greenfinches (Carduelis chloris, Paper I). Subsequently, I aimed to 
assess the applicability of d-ROMs assay. This assay has, despite concerns 
about its selectivity in detecting ROMs (Lindschinger et al. 2004; Erel 2005; 
Harma et al. 2006; Lindschinger & Wonisch 2006; Buico et al. 2009; Ganini et 
al. 2012), become increasingly popular amongst studies of OS ecology and is 
actively promoted by some researchers (see Costantini 2016). I aimed to clarify 
how much of the detected signal can be attributed to changes in redox status in 
different animal species and whether the assay can be modified to meet its pur-
pose (Paper II).  

With an idea of usable blood-based biomarkers in place, I looked at OS 
under naturally occurring situations. As immune system activation is thought to 
cause OS via enhanced ROS production to combat pathogens (Sorci & Faivre 
2009), I subsequently asked if a disruption to redox homeostasis can be detected 
under immune system activation with bacterial lipopolysaccharide (LPS) injec-
tion (Paper III). Furthermore, advances in transcriptome profiling enabled an 
elaboration of the underlying sources of the variation. Changes in redox regula-
tion during acute phase response might stem from changes within the measured 
tissue as well as originate from others (Speakman & Garratt 2013). I asked how 
gene expression in blood is adjusted to maintain homeostasis following immune 
system stimulation via LPS injection (Paper IV). Finally, as ageing is suppos-
edly affected by OS (Costantini et al. 2010; Nussey et al. 2013) and links 
between biomarkers of OS and longevity are rarely evaluated from blood of 
non-human vertebrates (Stier et al. 2015), I tested for the effect of age on some 
blood based OS biomarkers in a long lived seabird, the common gull (Larus 
canus, Paper V). 
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2. MATERIALS AND METHODS 
2.1 Study systems  

2.1.1 Greenfinches 

The European greenfinch is a seed-eating passerine bird belonging to the family 
Fringillidae (Zuccon et al. 2012). Adult birds weigh around 30 g and have a 
wing span of 25 cm. Greenfinches produce multiple broods per year with an 
average clutch size of 4 eggs (Bensouilah et al. 2014). Birds are sexually 
dichromatic and male carotenoid-based plumage coloration is under sexual 
selection (Eley 1991) and sensitive to infections (Merilä et al. 1999; Lindström 
& Lundström 2000; Hõrak et al. 2004). Greenfinches are a good model species 
for ecophysiological research as they cope well in captive conditions. The spe-
cies has been previously studied for carotenoid metabolism (Peters et al. 2008), 
immune function (Aguilera & Amat 2007; Sarv & Hõrak 2009), chronic infec-
tions (Lindström et al. 2001; Sepp et al. 2012a), oxidative stress (Hõrak et al. 
2007; Hõrak et al. 2010; Herborn et al. 2011b; Sepp et al. 2012a), personality 
and behaviour (Lilliendahl 2000; Herborn et al. 2011a; Herborn et al. 2011b; 
Sild et al. 2011a; Sepp et al. 2014). 

Male and female greenfinches that contributed to this thesis were captured 
with mist-nets in January of 2012 and 2013 at bird feeders in the city of Tartu, 
Estonia (58°22' N, 26°43' E). The birds were housed indoor in individual cages 
(27x51x55 cm) with sand-covered floors and released after two months. Male 
and female birds were housed in separate aviaries, where they had visual con-
tact with their neighbours. The birds were supplied ad libitum with sunflower 
seeds and tap water. The natural day-length cycle was maintained in the aviaries 
using artificial lighting by luminophore tubes.  

 
 

2.1.2 Common gulls 

The common gull is a monogamous long-lived seabird from the family Laridae. 
Adult birds weigh around 400 g and have a wingspan of 120 cm. The common 
gull breeds in colonies where it lays a clutch of 3 eggs. Both parents provide 
parental care. Breeding usually starts at the age of 3 and lasts on average 5–6 
years (Rattiste 2004), although it may continue over 30 years. Nevertheless, 
after ten years of breeding indications of reproductive senescence emerge as 
breeding success declines (Rattiste 2004). Gulls exhibit sexually dichromatic 
wing ornamentation reflecting individual quality (Sepp et. al in prep.) and dis-
plays conspicuous carotenoid based coloration on bill and legs.  

Gulls for the current study were caught from years 2008 to 2010 at the islet 
of Kakrarahu in Matsalu National Park (west coast of Estonia; 58°46' N, 23°26' 
E) using spring traps. The colony has been continuously monitored since 1962. 
Hence, its population structure is well documented. According to Rattiste 
(2004), over half of the males return to their birth colony to breed and less than 
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3% switch breeding colonies between years. Therefore, such a study system 
enables the collection of longitudinal individual-based data from first to last 
breeding attempt.  

 
 

2.2 Studied biomarkers  

This thesis evaluated only blood-based biomarkers of  oxidative stress (OS) for 
their suitability to detect changes in redox physiology. Both blood plasma and 
cells were used. From numerous methods for quantifying antioxidant status or 
oxidative damage (reviewed in Dalle-Donne et al. 2006; Halliwell & Gutteridge 
2007; Knasmüller et al. 2008) I measured a subset of OS biomarkers that has 
been extensively used in studies of avian ecology.  

Biomarkers of antioxidant status were measured both from blood plasma and 
cells. Plasma total antioxidant capacity (TAC) was assessed by measuring 
Trolox equivalence antioxidant capacity. The method evaluates plasma capacity 
to scavenge in vitro hydrogen peroxide generated radicals (Somogyi et al. 
2007). In addition, plasma uric acid concentration was determined using a com-
mercial kit relying on plasma reaction with uricase (uric acid liquicolor, 
HUMAN, Wiesbaden, Germany). Uric acid has important antioxidant capacities 
and has been shown to significantly contribute to TAC values (Cohen et al. 
2007). Oxygen radical absorbance test (OXY, Diacron International, Grosseto, 
Italy) was performed to add another possible measure of total plasma antioxi-
dant status. The test evaluates plasma ability to cope with in vitro oxidant action 
of hypochlorous acid. Total glutathione (GSH) concentration from blood cells 
was assessed following a method described by Alonso-Alvarez et al. (2008). 
The assay reduces sample glutathione disulfide to GSH, which forms a coloured 
end product with a chromophore. Lastly, carotenoid concentration, a possible 
exogenous contributor to plasma antioxidant status, was determined using a 
simple spectrophotometrical method previously described by Sild et al. (2011b).  

Biomarkers of oxidative damage to lipids, proteins and DNA were evaluated 
either from blood plasma or cells. Oxidative damage to DNA of blood cells was 
assessed using single cell gel electrophoresis, i.e. the comet assay (Collins 
2009). Detection of oxidised DNA bases (mainly 8-oxo-7,8-dihydroguanine) 
was achieved by combining the alkaline version of the assay and sample treat-
ment with bacterial repair endonucleases. Oxidative damage to proteins is 
reflected by the amount of carbonyl groups in the sample (Requena et al. 2003). 
The total amount of protein carbonyls in blood cells were measured as previ-
ously described (Qujeq et al. 2005). The assay relies on spectrophotometric 
detection of coloured adduct that forms after a reaction between 2,4-dinitro-
phenylhydrazine and sample carbonyls.  

The amount of lipid peroxidation was assessed from serum samples. Stable 
end products of lipid peroxidation include mainly aldehydes (e.g. malondialde-
hyde, MDA), alkanes or isoprostanes (Mateos & Bravo 2007). This thesis 
included plasma MDA quantification using liquid chromatography mass spec-
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trometry analysis (Andreoli et al. 2003). This technique avoids the short-
comings of the classical MDA quantification assay that utilises thiobarbituric 
acid. A combination of all damaged biomolecules is supposedly detected by the 
d-ROMs test (Diacron International, Grosseto, Italy). This test aims to measure 
organic hydroperoxides from serum (Costantini 2016). The assay relies on 
Fenton reaction that generates peroxyl radicals from sample hydroperoxides. 
Generated peroxyl radicals react with a chromogen to produce a coloured chro-
mogen radical. 

 
 

2.3 Ethics of the experiments 

Experiments that were carried out in this thesis comply with the current laws of 
Estonia and were approved by the Estonian Ministry of the Environment 
(licence no. 1-4.1/11/100, issued on 23 March 2011) and by the Animal Proce-
dures Committee of the Estonian Ministry of Agriculture (decision no. 95, 
issued on 17 January 2012). These licences granted permission to:  

 Catch greenfinches and other bird species not in the list of endangered 
species.  

 Take blood and feather samples in an amount that has been previously 
amply reported not to be harmful for the species in question.  

 Bring the birds into a laboratory for a restricted time for measurements 
and analyses, releasing them into the capture location in good condition. 

 Gather other kinds of necessary data about the reproductive and other life 
history traits of birds in a restricted scale. 

 Generate oxidative stress using non-lethal doses of paraquat 
 Treat natural coccidian infection and infecting birds with coccidian 

strains 
 Immune stimulate birds with E. coli lipopolysaccharides and Brucella 

abortus dead vaccine 
 

The studies compiled with the organizational conditions of the experiments, 
which were stated in the licences. 
  



14 

3. RESULTS AND DISCUSSION 
3.1 Measuring OS under experimentally  

generated oxidative insult (I) 

Progress in oxidative stress ecology is impeded until issues of what and how to 
measure are solved. In vivo generation of oxidative stress (OS) is particularly 
needed to clarify links between fitness and antioxidant levels or oxidative dam-
age (Pérez-Rodríguez 2009). In the first paper I addressed this question by 
administering a pro-oxidant compound, paraquat, through the drinking water of 
female captive greenfinches. Like diquat, paraquat generates oxidative stress by 
producing superoxide anions (Dinis-Oliveira et al. 2008). It is widely used for 
the generation of OS in biological systems (Halliwell & Gutteridge 2007; 
Knasmüller et al. 2008) and is probably the most suitable molecule for chemical 
induction of OS (Koch & Hill 2016). The experiment aimed to test how differ-
ent levels of experimentally generated OS reflect in blood-based parameters of 
antioxidant protection and oxidative damage to all major macromolecule clas-
ses. Antioxidant parameters under inspection included "total" antioxidant pro-
tection markers from plasma (total antioxidant capacity (TAC) and oxygen 
radical absorbance test (OXY)) and individual antioxidants (erythrocyte gluta-
thione (GSH), plasma uric acid and carotenoids). Oxidative damage was quanti-
fied to plasma lipids (malondialdehyde, MDA), erythrocyte proteins (protein 
carbonyl levels) and DNA.  

The experiment succeeded in disrupting the redox homeostasis of paraquat 
administered birds, as birds from the treatment group receiving 0.2 g/L paraquat 
lost significantly more body mass, had increased oxidative damage to erythro-
cyte DNA and showed an increase in erythrocyte GSH levels. Unfortunately 
this dose also generated 50 % mortality in this treatment group. Surprisingly 
none of the other measured parameters were affected either by high or low (0.1 
g/L) dose paraquat treatment.  

The obtained results comply with the few other studies using experimentally 
induced OS in wild birds (Galvani et al. 2000; Isaksson & Andersson 2008; 
Galván & Alonso-Alvarez 2009). Such results may imply either that (a) many 
of the popular biomarkers of OS are fairly insensitive in detecting OS. Indeed, 
the few other studies that have used known sources reactive oxygen species 
(ROS) have failed to detect changes in lipid or protein peroxidation markers or 
antioxidant markers including TAC and uric acid (Galván & Alonso-Alvarez 
2009; Lucas et al. 2014). It is also possible that, (b) the usage of few antioxi-
dant and damage markers from a single tissue is not enough to draw conclusions 
about the occurrence of OS in an animal as a whole. Encompassing measure-
ments from different tissues has shown that changes in oxidative damage or 
antioxidant concentration can be detected in some while absent in other tissues 
depending on the manipulation conducted (Galvani et al. 2000; Kammer et al. 
2011; Guerra et al. 2012; Hermes-Lima et al. 2012; Marasco et al. 2013). Such 
a discrepancy between tissues may result from differences in susceptibility to 
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oxidative insult and tissue regeneration times (Speakman et al. 2015). Another 
possibility is that (c) disruption in redox homeostasis is naturally occurring only 
under severe pathophysiologies. In humans OS can be detected only with some 
severe diseases (Halliwell & Gutteridge 2007), so it is likely that under mild 
increases of ROS bodily antioxidant mechanisms or reserves are sufficient to 
prevent OS (Lucas et al. 2014). The organism's ability to successfully counter-
act increases in ROS seems especially likely considering the number of genera-
tions organisms have lived in environments rich in oxygen (Benzie 2000). In 
any case (a, b, c, or a combination thereof) the current experiment implies that 
the chances of detecting OS from those blood-based measures are poor in eco-
logical studies of animals under naturally occurring stressors. Especially con-
sidering that the response to oxidative stimulus may be time lagged and differ-
ent parts of the redox balance machinery have different response times (Khassaf 
et al. 2001; Vider et al. 2001; Pedraza-Chaverrí et al. 2005). In such a situation 
only the response to elevated ROS may be detectable. Specifically, from the 
measured markers only blood GSH levels and DNA damage may have diagnos-
tic value, as these biomarkers respond to environmental stimuli more often than 
others (Isaksson 2010; Keles et al. 2010; Rodriguez-Estival et al. 2010; 
Freeman-Gallant et al. 2011). However I managed to show changes in GSH and 
DNA damage only under severe OS, which is not likely to accompany common 
life history events. Therefore this study further highlights methodological hur-
dles in detecting OS in wild animals.  

 
 

3.2 d-ROMs assay is not suitable for detecting OS (II) 

In recent years, despite its lack of specificity in detecting oxidative metabolites, 
the d-ROMs test has become the most commonly used method to measure OS 
in wild animals (Costantini & Dell'Omo 2006; Bonisoli-Alquati et al. 2010; 
Costantini & Bonadonna 2010; van de Crommenacker et al. 2010; Casagrande 
et al. 2012; Isaksson 2013; Schneeberger et al. 2013). Any attempts to criticise 
the selectivity of d-ROMs assay towards measuring ROMs (Lindschinger et al. 
2004; Erel 2005; Harma et al. 2006; Lindschinger & Wonisch 2006; Buico et 
al. 2009; Ganini et al. 2012) have faced fierce accusations of methodological 
inaccuracy (Iorio & Balestrieri 2005; Banfi et al. 2006; Costantini 2016). Fur-
thermore, results providing evidence for the shortcomings are sometimes inter-
preted as supportive (Colombini et al. 2015; Abuelo et al. 2016; Butler et al. 
2016). I aimed to disentangle whether the assay could be modified to selectively 
measure serum ROMs. For that purpose d-ROMs kit readings from human and 
avian serum as well as commercial ceruloplasmin (CP) and H2O2 solutions were 
compared under different assay conditions. The paper examined the effects of 
temperature and the availability of iron or endogenous antioxidants (uric acid, 
GSH, albumin) to the d-ROMs assay readouts. In addition, serum d-ROMs 
values were compared with the serum ferroxidase activity of two wild bird spe-
cies from the genus Carduelis.  
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The results showed clearly that serum d-ROMs test values of wild birds cor-
relate strongly with serum ferroxidase activity and are more temperature sensi-
tive than could be expected from simple Fenton reaction. In addition the assay 
readouts depended on serum iron availability and albumin content. Uric acid did 
not affect the assay readouts. 

As expected, a correlation between serum ferroxidase activity and d-ROMs 
values was found in wild birds, consistent with previous results in humans (Erel 
2005). However, the absolute values for both measures turned out to be much 
lower in avian species compared with measurements from the tested mamma-
lian species. This implies that the serum components producing the signal have 
either a much lower concentration or are functionally different in birds. Fur-
thermore, the temperature dependence kinetics of the d-ROMs assay suggested 
enzymatic contribution to the assay readouts. Although CP ferroxidase activity 
can be blocked with azide, its concentrations required for sufficient inhibition 
also affect the detection of ROMs. In addition, iron availability as well as other 
serum metals (Abuelo et al. 2016), contribute to assay readouts. Altogether our 
results suggest that the d-ROMs assay cannot be adjusted to accurately quantify 
serum reactive oxygen metabolites (ROM) content, as too many physiologically 
variable serum components contribute to the signal. Therefore, many of the 
experiments declaring detection of OS based on d-ROMs test (e.g. Bonisoli-
Alquati et al. 2010; Costantini & Bonadonna 2010; Costantini et al. 2015b), 
especially those that have linked OS and immune responses (e.g Costantini & 
Dell'Omo 2006; van de Crommenacker et al. 2010; Casagrande et al. 2012; 
Schneeberger et al. 2013) would need re-evaluation. Often these results can be 
easily explained through changes in inflammatory responses as many well 
known positive acute phase proteins like CP (Georgieva et al. 2010) or ferritin 
(Lawson et al. 1989) display ferroxidase activity and are also known to respond 
to various non-inflammatory conditions (Murata et al. 2004). Indeed, many 
conditions, including inflammation, may cause OS but the d-ROMs test is not 
suitable to selectively distinguish the underlying cause of an observed change. 
To add another level of confusion, even the promoters of the d-ROMs assay 
cannot decide whether it estimates production of free radicals, oxidative damage 
or ROMs (Costantini 2016). Hence, a change in the d-ROMs assay readouts 
does not necessarily mean a change in OS levels, an interpretation too often 
used in studies of oxidative stress ecology.  

 
 
3.3 The effect of immune challenge on biomarkers of OS (III) 

Fending off parasites and pathogens is presumably costly (Sheldon & Verhulst 
1996). These costs may be energetic (Klasing 2004), immunopathological 
(Graham et al. 2005) or stem from trade-offs within the immune system (Ardia 
et al. 2011). In any case such costs may be mediated by OS (Dowling & 
Simmons 2009). I aimed to find out whether experimentally inducing different 
types of immune response (via injection of lipopolysaccharide LPS and 
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Brucella abortus (BA) antigen) or psychologically stressing the birds (via expo-
sure to a predator image) results in OS. To include the costs of possible inter-
actions between LPS and psychological stress a 2*2 factorial experiment was 
conducted. The redox state of birds was assessed measuring changes in antioxi-
dant (erythrocyte GSH, uric acid, TAC, OXY) and oxidative damage (erythro-
cyte DNA damage and protein carbonyls) markers. In addition I looked at the 
differences in overall body condition and BA antibody concentration. The tim-
ing of blood sampling was chosen so that it would be comparable to the chemi-
cal induction of OS in paper I.  

The results showed that although the LPS treatment appeared to be costly in 
terms of reduction in body mass, similarly to chemical induction of OS (Paper 
I) only an upregulation in antioxidant defences (measured as increased GSH 
and OXY) was detected among the LPS injected birds. However, change in 
OXY correlated with change in total plasma proteins: (r=0.53, p=0.01, n=23). 
None of the other biomarkers tested reacted significantly to LPS injection. BA 
injection and psychological stress failed to cause detectable changes in any of 
the measured parameters. 

Indeed, according to a meta-analysis by Isaksson (2010) GSH appears to be 
the most sensitive antioxidant marker. On the other hand, LPS-induced immune 
challenge (Jaeschke 1992; Portolés et al. 1996) or higher parasite prevalence 
(Lopez-Arrabe et al. 2015) generally result in reduced GSH levels. Undeniably, 
the timing of measurements may be a key factor causing such discrepancies (see 
Fig. 2 in Paper I). Likewise, immunostimulation has been shown to decrease 
plasma OXY values when measured up to 24h (Costantini & Dell'Omo 2006; 
van de Crommenacker et al. 2010), increase if measured 2-3 days (this study 
and Marri & Richner 2015) and again decrease if measured 6 days (Casagrande 
et al. 2012) post injection. However confirmation of such patter would require a 
time course study. Yet observing changes in OXY or GSH do not necessarily 
mean an occurrence of OS. GSH has various roles within an organism from 
regulating cell proliferation and apoptosis to cytokine production and detoxifi-
cation of xenobiotics (reviewed in Wu et al. 2004). Likewise, measuring the 
resistance of a biological matrix to high concentrations of HClO in vitro (OXY 
test), is not indicative of its antioxidant capacities under in vivo occurring oxi-
dative insults (Halliwell & Gutteridge 2007). Furthermore, changes in OXY 
may just indicate a change in total plasma proteins, which this study clearly 
demonstrates (change in these two biomarkers were strongly correlated). The 
finding that no other measure of oxidative damage or antioxidant status 
responded to the LPS treatment further undermines the possibility to interpret 
the observed change as an alteration in redox homeostasis. In chickens and 
white-browed sparrow weavers (Plocepasser mahali), immune stimulation had 
no effect on plasma TAC or uric acid levels (Cohen et al. 2007; Cram et al. 
2015), similarly to this study. Still, many earlier studies have claimed that 
immune stimulation affects markers of OS (summarized in Costantini & Møller 
2009), so the role of OS in mediating immune system related trade-offs remains 
elusive. 
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Psychological stress had no effect on any of the measured parameters. Alt-
hough the applied stressor influenced locomotor activity of the birds (Männiste 
et al. 2013), no differences in feather corticosterone concentrations were 
observed. It is possible that mild acute stress (detectable changes in behaviour 
up to 2 days) does not affect antibody production or redox homeostasis. How-
ever, if the applied stressor could be considered ecologically relevant, occur-
rence of OS in wild animals under such behavioural stressors would be 
extremely hard to detect. Clearly, distinguishing actual occurrence of OS from 
inflammation or other processes that alter body condition is hard, especially if 
only a few currently popular blood-based biomarkers of OS are used. Therefore, 
a more complete picture of changes during an immune response should be 
obtained. 

 
 

3.4 Immune challenge induced transcriptional  
changes in avian blood (IV) 

Physiological processes underlying immune function are more complex than 
acknowledged (Schmid-Hempel 2005; Pedersen & Babayan 2011). Hence, 
research in immunoecology would benefit greatly from a more complete picture 
of physiological processes following an immune stimulation. Quantifying tran-
scriptional changes in blood, the preferred sampling tissue for ecological studies 
(Monaghan et al. 2009; Pedersen & Babayan 2011), may thus offer a 
complimentary way to understand the underlying processes in the tissue. In 
order to further investigate the response to experimentally induced immune 
challenge, I injected 8 female greenfinches either with LPS or saline and subse-
quently (12h later) quantified the full transcriptional profile of their blood cells.  

Altogether 66 084 different RNA sequences were identified from the whole 
blood transcriptome. From those sequences 86% s mapped to the zebra-finch 
(Taeniopygia guttata) genome. However only ~44% of these found a match 
from Uniprot-SwissProt database and again only around half of the latter were 
unique genes. In total immune stimulation significantly changed the expression 
of 1911 transcripts from which 466 were annotated.  

As a large part of the mammalian transcriptome is not characterised 
(McGettigan 2013) and even genes absolutely essential for a fully functional 
organism often lack annotations (Hutchison et al. 2016), the obtained annota-
tion efficiency of greenfinch transcriptome could be considered satisfactory. 
Especially as most of the sequences mapped to zebra-finch genome and all of 
the conserved core eukaryotic genes (Parra et al. 2007) were present in the 
dataset. 

Immune challenge clearly influenced the gene expression pattern of blood 
cells. However, only a quarter of the up- or downregulated transcripts was 
functionally annotated, so most of the differentially regulated genes had 
unknown function. Of all of the differentially regulated transcripts most of the 
annotated genes pointed to an induction of cellular rearrangement, specifically, 
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enhanced protein catabolism (ubiquitin mediated proteolysis) was confirmed. 
Such a pattern coincides well with recent study on red-legged partridges 
(Alectoris rufa) (Sevane et al. 2015). Most of strongly upregulated genes, 
including gallinacin-2, avidin (AVID), serum amyloid A and protein MRP-126, 
are known acute phase proteins (Tuohimaa et al. 1989; Uhlar & Whitehead 
1999; Figdor et al. 2002; Matulova et al. 2012; Cuperus et al. 2013), suggesting 
an on-going acute phase response. Upregulation of AVID following immune 
challenge has also been shown in skin, cecum and spleen samples of chicken 
and red-legged partridges (Matulova et al. 2012; Matulova et al. 2013; Sevane 
et al. 2015), rendering AVID the most useful transcript for robust detection of 
acute phase response in avian species. 

Disruption of redox homeostasis in this study was hinted at by the upregula-
tion of some subunits of DNA repair complex TFIIH and some promoters of 
antioxidant protection (copper-transporting ATPase 1, sirtuin, Superoxide dis-
mutase 1 and ferritin). However many other OS related genes present in the 
dataset were either downregulated (glutathione peroxidase 1, 70kDa heat shock 
proteins) or remained unaltered (e.g. several peroxiredoxins, thioredoxins, glu-
tathione S-transferases). Furthermore, no OS related pathway emerged from the 
available annotated transcripts, similarly to transcriptome profiling of immune 
stimulated red-legged partridges (Sevane et al. 2015). Hence, disruption of 
redox homeostasis in blood cells following induction of innate immune 
response remains rather hypothetical based on our current knowledge of gene 
functions. 

 
 

3.5 Ageing and markers of OS (V) 

Accumulating evidence from different taxa suggests that life-history traits asso-
ciated with reproduction and survival depend on age (reviewed in Nussey et al. 
2013; Fletcher & Selman 2015). However, the physiological mechanisms 
explaining age-related declines in such traits are poorly understood. Senescence 
has been proposed to result from OS either by direct damaging of biomolecules 
by ROS (Harman 1956; Kirkwood & Kowald 2012) or by a balance between 
disruption in redox homeostasis and membrane fatty acids susceptibility to ROS 
attack (Galván et al. 2015). Although many studies have looked at how OS 
relates to senescence, they have mostly been done on short-lived laboratory 
model organisms (Costantini et al. 2010). Only recently have natural popula-
tions been included (Galván et al. 2012; Bize et al. 2014; Herborn et al. 2015; 
Rattiste et al. 2015). Still, rarely these studies include more than a few markers 
of OS. I aimed to test whether several markers of antioxidant protection or oxi-
dative damage correlate with age or predict lifespan in a long-lived seabird, the 
common gull. Antioxidants measured over multiple years included erythrocyte 
GSH, uric acid, TAC and carotenoids. From oxidative damage markers, lipid 
peroxidation was measured. In addition, overall body condition was assessed by 
quantifying plasma protein and triglyceride concentrations. 
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The obtained results did not indicate age related increase or decrease in any 
of the measured OS parameters. However female gulls with lower GSH levels 
tended to live longer, while none of the other OS biomarkers predicted survival. 
Nevertheless, age related senescence in reproductive functions was evident 
among the birds. 

 Although the study confirmed previously shown age related decline in 
breeding success (Rattiste 2004; Brommer et al. 2009), no age related decline in 
the measured parameters of OS were observed. Indeed, more and more data 
refute a simple link between OS and ageing (reviewed in Speakman & Selman 
2011; Speakman & Garratt 2013; Rattiste et al. 2015). It is possible that some 
functions of an organism deteriorate faster than others (Nussey et al. 2013), so 
disruption in redox balance may not coincide spatially or temporally with 
reduction in reproductive performance. More often than not OS parameters in 
different tissues do not correlate with each other (Speakman et al. 2015) and 
show different temporal patterns of up- or downregulation (Khassaf et al. 2001; 
Vider et al. 2001; Pedraza-Chaverrí et al. 2005). The only antioxidant marker 
associating with lifespan in this study was total erythrocyte GSH. As elevated 
glutathione levels may suggest occurrence of past oxidative insult via compen-
satory up-regulation of antioxidant defences (Paper I and Trzeciak et al. 2012), 
these results may perhaps indicate that OS impacts the lifespan of long-lived 
birds. Yet, by no means the bulk of OS markers measured in this study can be 
considered comprehensive. Furthermore I discourage drawing conclusions from 
a single measure of OS from a single tissue, as many markers of OS measure a 
variety of processes (Halliwell & Gutteridge 2007; Paper II). Thus, it would be 
unwarranted to declare that OS shapes ageing in natural populations, although 
current knowledge is also insufficient to refute the idea.  
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CONCLUSIONS 
Identifying proper biomarkers for measuring occurrence of oxidative stress 
(OS) in ecological setups highlighted the usefulness of measuring erythrocyte 
glutathione (GSH) and deceptiveness of d-ROMs assay. From all of the 
biomarkers of OS that had their validity assessed in this thesis, only one marker 
of antioxidant protection, erythrocyte GSH concentration, detectably reacted to 
chemical induction of OS (Paper I), was influenced by immune stimulation 
(Paper III) and was associated with the lifespan of birds (Paper V). However, 
sensitivity to natural stressors and OS does not necessarily mean that changes in 
GSH concentration are undeniably indicative of OS. Reliably capturing the 
redox state of an individual requires both excellent knowledge of its general 
physiology and current health state (Cram et al. 2015). Importantly, many 
markers used to measure OS also quantify the state of various components 
within an organism. This thesis highlights the confounding factors influencing 
the readings from an increasingly popular d-ROMs assay and discourages its 
use in studies of oxidative stress ecology (Paper II). Using only few 
biomarkers of antioxidant status and oxidative damage is highly error prone and 
thus should be avoided in studying the constraints posed by reactive oxygen 
species ROS production, as the exact number of tissues, measurement 
timepoints and markers to measure, is context dependent (Dotan et al. 2004).  

It remained unclear to what extent OS mediates life-history trade-offs under 
naturally occurring stressors. While psychological stress failed to induce 
disruption of redox homeostasis (Paper III), induction of immune response 
failed to clearly result in OS (Paper III), even if the whole transcriptomic pro-
file of bird blood was quantified (Paper IV). Clearly, sampling only one tissue 
is not enough to state anything about the actual occurrence of OS in the whole 
animal. Unfortunately, currently available techniques of non-terminal sampling 
limit the possibilities of using tissues other than blood (Speakman et al. 2015). 
Therefore most studies on OS in natural populations rely on measurements 
taken from easily obtainable tissues. However, too often such studies of OS rely 
on the premise that more antioxidants AO and/or less RS are beneficial for an 
organism (Costantini & Verhulst 2009), while the multidimensionality of their 
roles calls for a delicate balance of those substances (Dröge 2002). This balance 
is shaped by natural selection to fit the needs of an organism (Gutteridge & 
Halliwell 2010). It is possible that elevated ROS levels are so well counteracted 
within the body that the only observable cost is energetic (reduction in body 
mass in papers I, III and IV). Indeed, even during reproductive senescence, 
birds seem to maintain their redox balance in blood, so that OS cannot be 
observed during ageing (Paper V), adding further support to the need to revisit 
the free-radical damage theory of ageing (Speakman & Selman 2011). How-
ever, as dealing with oxygen toxicity is so well integrated into all aerobic ani-
mals, finding out if ROS production is actually constraining life history strate-
gies (i.e. driving the evolution of optimal investment patterns) requires a far 
more complex approach than employed hitherto.   
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SUMMARY 
Oxygen is a noxious molecule that easily forms radicals that readily react with 
biological matrices. Hence, in the course of evolution organisms have devel-
oped various types of antioxidant defence in order to protect themselves against 
toxic effects of O2 while harvesting its power in energy production. For a long 
time oxidative stress, a body-damaging imbalance between reactive oxygen 
species and antioxidants, has been proposed as shaping individual fitness. 
Numerous theories under the field of oxidative stress ecology link sexual selec-
tion, reproduction, ageing and survival to disturbances in redox homeostasis. 
Nevertheless, trustworthy quantification of individual's oxidative status has 
proven to be more challenging than anticipated. Thus, previous claims about the 
role of oxidative stress in mediating life history trade-offs have been acquired 
using non-consistent methods often lacking measurements of either relevant 
antioxidant or oxidative damage markers.  

This thesis aimed to clarify the suitability of some widely used biomarkers 
of antioxidant protection and oxidative damage for use in studying oxidative 
stress ecology. In addition, I aimed to highlight the incapability of the current 
measurement techniques to reliably demonstrate induction of oxidative stress 
under some ecologically important scenarios.  

In order to verify the sensitivity of some popular blood-based antioxidant 
and oxidative damage markers to oxidative stress, experimental disruption of 
redox homeostasis was chemically induced in captive greenfinches. From all of 
the measured biomarkers only erythrocyte glutathione levels and oxidative 
DNA damage showed sensitivity to manipulation. However, this was evident 
just among life-threateningly stressed birds, implying either that the used meth-
ods, tissue and/or measurement timepoints are unsuitable to detect oxidative 
stress in a wild passerine, or that outside severe pathophysiologies animals are 
able to maintain redox homeostasis with intrinsic mechanisms. Unfortunately 
these intrinsic mechanisms are extremely hard to disentangle using currently 
available biomarkers of oxidative stress. 

Subsequently I aimed to validate a method for quantifying oxidative stress, 
the d-ROMs test. This method has been both extensively praised and criticised 
in recent years. I aimed to sort out whether the assay can be modified to selec-
tively determine occurrences of oxidative insult. Unfortunately, it appeared 
impossible to block the signal from all of the other serum sources that con-
tribute to the d-ROMs test readout without also inhibiting the detection of reac-
tive oxygen metabolites. In addition, it was shown that d-ROMs assay readings 
from serum samples correlate strongly with serum ferroxidase activity, sug-
gesting that the assay is more suitable for measuring induction of acute phase 
response than oxidative damage. However, despite this and previous critique the 
assay is gaining popularity, adding more confusion to studies of oxidative stress 
ecology. 

The costs of mounting an immune response are associated with oxidative 
stress. I asked whether induction of innate immune response and imposing psy-
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chological stress on birds results in disruption of redox homeostasis. Although 
immune system stimulation imposed energetic costs, only upregulation of anti-
oxidant defences was observed. Such results imply that intrinsic mechanisms 
may balance increased levels of reactive oxygen species so that oxidative dam-
age to macromolecules cannot be detected. Psychological stress failed to influ-
ence any physiological parameter measured. All in all, these results suggest 
either that oxidative stress has not much to do with these conditions, or that 
investigating occurrence of oxidative stress under naturally occurring stressors 
using only some popular blood based biomarkers is misleading.  

In order to further elaborate the changes following induction of innate 
immune response in blood, I subsequently aimed to characterise the full tran-
scriptomic profile of immune challenged greenfinches. As expected, it appeared 
that the role of most of the up- or downregulated genes could not be established, 
as they remained unannotated. The available annotation data enabled confirma-
tion that immune stimulation caused cellular rearrangement including upregula-
tion of some avian host defence proteins like avidin, gallinacin and serum 
amyloid A. Disruption in redox homeostasis was hinted at by induction of some 
parts of a DNA repair complex. Nevertheless, several oxidative stress related 
transcripts identified from the dataset showed no change, so that the overall 
picture was not providing enough support to claim induction of oxidative stress 
following immune challenge. 

Ageing has long been believed to result from oxidative damage to biomole-
cules. I asked whether age-related trends in blood antioxidant defences or oxi-
dative damage emerge in a long-lived seabird. Although reproductive senes-
cence was evident in the dataset, none of the measured biomarkers exhibited 
any age-related patterns. Unfortunately no definite conclusions can be reached 
from these results due to incomplete tissue and biomarker selection. However, 
such results add further support to the need to revisit the free radical theory of 
ageing. 

In all, this thesis highlights the general insensitivity of some popular blood 
based biomarkers of oxidative stress to accurately detect disruption in redox 
homeostasis. In particular the d-ROMs test seems to be unsuitable to measure 
oxidative status. On the other hand, erythrocyte gluthathione concentration 
provides some valuable information about the individual's antioxidant defence 
machinery. However, oxidative stress cannot be measured using only one tissue, 
timepoint or biomarker. Thus, current measurement techniques are incapable of 
reliably demonstrating the involvement of oxidative stress in mediating the 
costs of immune system activation or old age in wild birds. 
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SUMMARY IN ESTONIAN 
Oksüdatiivse stressi mõõtmismeetodite valideerimine ja rakendamine 

vabalt elavate lindude redoksfüsioloogia kirjeldamisel 
 

Hapnik on mürgine gaas, kuna võib kergesti moodustada erinevaid bio-
loogilisi struktuure kahjustavaid reaktiivseid radikaale. Seetõttu on organis-
midel evolutsiooni käigus välja arenenud suur hulk erinevaid antioksüdantseid 
kaitsemehhanisme, mis võimaldavad kasutada hapnikku energia tootmiseks, 
vältides seejuures hapniku toksilist mõju. Arvatakse, et oksüdatiivne stress ehk 
kehas kahjustusi põhjustav tasakaalu puudumine reaktiivsete hapnikuosakeste ja 
antioksüdantide hulga vahel, põhjustab kohasuse langust. Mitmed teooriad 
seovad sugulist valikut, sigimist, vananemist ja ellujäämist redoksfüsioloogiaga. 
Ometi on isendi oksüdatiivse staatuse usaldusväärne mõõtmine osutunud soo-
tuks keerulisemaks kui algselt oodati. Senised tulemused, mis on kinnitanud 
oksüdatiivse stressi rolli elukäigutunnuste vaheliste lõivsuhete vahendajana, on 
saadud vastuolulisi meetodeid kasutades. Lisaks pole senistes uuringutes sageli 
piisavalt hinnatud oluliste antioksüdantide või oksüdatiivsete kahjustuste hulka. 

Käesoleva töö eesmärgiks oli analüüsida, kui hästi sobivad mitmed laialt 
kasutatavad antioksüdantkaitse ja oksüdatiivsete kahjustuste markerid oksüda-
tiivse stressi mõõtmiseks ökoloogilistes uurimustes. Lisaks kontrollisin oksüda-
tiivse stressi mõõtmiseks kasutavate meetodite seoseid elukäigu lõivsuhetega 
erinevates ökoloogilistes kontekstides. 

Selgitamaks, kui tundlikud on mitmed laialt kasutatavad antioksüdantkaitse 
ja oksüdatiivsete kahjustuste biomarkerid oksüdatiivsele stressile, kutsusin 
rohevintidel (Carduelis chloris) keemiliste vahenditega esile oksüdatiivse 
stressi. Verest mõõdetud biomarkeritest avaldas manipulatsioon mõju vaid 
punaliblede glutatiooni ning DNA kahjustuste tasemele, ja sedagi vaid elu-
ohtlike oksüdatiivse stressi tasemete juures. Seetõttu võib pidada tõenäoliseks, 
et kasutatud meetodid, kude ja/või mõõtmisaeg ei sobinud vabalt elavatel 
värvulistel oksüdatiivse stressi tuvastamiseks. Teisalt võib ka oletada, et kui 
välja jätta tõsised patoloogiad, suudavad loomad sisemiste mehhanismide abil 
oma redokshomöostaasi säilitada. Kahjuks on nende sisemiste mehhanismide 
olekut olemasolevate redoksfüsioloogia mõõtmise meetoditega väga raske 
täpselt hinnata. 

Järgnevalt keskendusin ühe laialt kasutatava meetodi – oksüdatiivseid kah-
justusi hindava d-ROMs testi – valideerimisele. Kuigi mitmed tööd on rõhu-
tanud, et d-ROMs test ei pruugi olla sobilik oksüdatiivse stressi marker, on 
viimastel aastatel seda testi aina enam hakatud just isendi redoksstaatuse määra-
miseks kasutama. Käesolevas väitekirjas püüdsin välja selgitada, kas ja mil 
määral saaks d-ROMs testi nii täiendada, et selle testi abil oleks võimalik 
usaldusväärselt isendi oksüdatiivset seisundit hinnata. Töö tulemusena selgus, et 
testi tulemusi mõjutavate vereseerumi komponentide inhibeerimine nii, et sama-
aegselt oleks võimalik täpselt mõõta lipiidsete hüdroperoksiidide kontsentrat-
siooni, ei ole võimalik. Lisaks selgus, et d-ROMs testi tulemused korreleeruvad 
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tugevalt vereseerumi võimega rauda oksüdeerida – asjaolu, mis viitab, et test 
sobib eelkõige põletikuliste protsesside tuvastamiseks, mitte oksüdatiivsete 
kahjustuste hindamiseks. Seega hägustab d-ROMs testi laialdane kasutamine 
veelgi võimalust usaldusväärselt hinnata oksüdatiivse stressi rolli isendisiseste 
lõivsuhete vahendajana. 

Oksüdatiivne stress võib kaasneda immuunsüsteemi aktiveerimisega. See-
tõttu uurisin, kas kaasasündinud immuunsüsteemi aktiveerimine ja psühholoogi-
line stress põhjustavad häireid lindude redoksfüsioloogias. Kuigi katseliselt 
esile kutsutud immuunaktivatsioon oli lindudele energeetiliselt kulukas, kaasnes 
sellega vaid antioksüdantide kontsentratsiooni tõus. Seega võib järeldada, et 
organismisisesed regulatsioonimehhanismid võivad tõepoolest olla piisavad, 
selleks et tasakaalustada suurenenud reaktiivsete osakeste produktsiooni seda-
võrd, et biomolekulide kahjustusi pole võimalik tuvastada. Lindudele tekitatud 
psühholoogiline stress ei olnud piisav, et üleüldse nähtavaid füsioloogilisi muu-
tuseid põhjustada. Nendest tulemustest võib jõuda mitme erineva järelduseni. 
Esiteks võib olla, et vaadeldud olukordadel ei ole seost oksüdatiivse stressiga. 
Teiseks on võimalik, et kasutatud oksüdatiivse stressi biomarkerid on eba-
sobivad looduses esinevate stressoritega kaasneva oksüdatiivse stressi tuvasta-
miseks. 

Täpsustamaks, millised muutused toimuvad lindude veres peale immuun-
süsteemi aktiveerimist, võtsin eesmärgiks sekveneerida immuunstimuleeritud 
rohevintide koguvere transkriptoomi. Suurema osa üles- või allareguleeritud 
geenide funktsioone ei olnud võimalik tuvastada. Samas võis edukalt annotee-
ritud transkriptide põhjal järeldada, et immuunaktivatsioon kutsus esile suure-
mahulise rakusisese ümberkorralduste laine. Muuhulgas suurenes mitme-
kordselt ka selliste kaitsevalkude nagu avidiin, gallinatsiin ja seerum amüloid A 
tootmine. Võimalikule oksüdatiivse stressi esinemisele viitas ühe DNA paran-
duskompleksi mõnede alamosade suurenenud produktsioon. Samas ei viidanud 
mitmed teised andmestikus esinenud oksüdatiivse stressiga seostatavad transk-
riptid muutustele redoksfüsioloogias. Seetõttu ei ole võimalik ka vereliblede 
transkriptoomile tuginedes väita, et immuunaktivatsiooniga kaasneb oksüda-
tiivne stress. 

Oksüdatiivseid koekahjustusi on pikka aega peetud vananemise põhjusta-
jaks. Uurisin pikaealise merelinnu kalakajaka (Larus canus) näitel, mil määral 
korreleeruvad vanusega mõned verest mõõdetavad antioksüdantkaitse ja oksü-
datiivsete kahjustuste markerid. Vaatamata sellele, et lindude sigimisnäitajad 
halvenesid kõrges vanuses, ei korreleerunud ükski mõõdetud oksüdatiivse 
stressi biomarker lindude vanusega. Nende tulemuste põhjal ei saa siiski teha 
lõplike järeldusi vananemise ja oksüdatiivse stressi seoste kohta, kuna mõõtsin 
vaid väikest osa kõikvõimalikest biomarkeritest. Ometi rõhutavad need tule-
mused veelgi vajadust üle vaadata võimalikud mehhanismid, kuidas vabade 
radikaalide produktsioon vananemisprotsessiga seotud on. 

Kokkuvõtvalt võib öelda, et käesolev töö tõi välja enamike laia kasutust 
leidvate verest mõõdetavate oksüdatiivse stressi markerite võimetuse usaldus-
väärselt tuvastada muutusi isendi redokstasakaalus. d-ROMs test tundub olema 
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eriti sobimatu organismi oksüdatiivse staatuse määramise meetod. Teisalt võib 
vererakkude glutatiooni kontsentratsiooni mõõtmine anda olulist infot isendi 
antioksüdantkaitse süsteemi toimimise kohta. Ometi tuleb rõhutada, et oksüd-
atiivset stressi pole võimalik mõõta, kasutades selleks ainult ühte kude, ajahetke 
või biomarkerit. Seega ei näita mitmed olemasolevad ökoloogilistes uurimustes 
kasutust leidvad mõõtmismetoodikad usaldusväärselt, et oksüdatiivne stress 
vahendab immuunsüsteemi aktiviseerimise või vananemisega seotud kulusid 
metsikutel lindudel ning uurimistulemustesse, mis on saadud neid meetodeid 
kasutades, tuleks suhtuda skeptiliselt.  
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