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1. Introduction

1.1 Background

In sample surveys (or shortly surveys), the ultimate goal is to estimate un-
known parameters of a population of interest, based on a selected sample
from that population. Statistical results that the government and author-
ities of a country, researchers and other people daily consume are often
coming from sample surveys. For example, news headlines announce the
latest poll results on people’s political party preference, politicians explain
recent dynamics of nation’s wellbeing, ministries determine new quotas for
fishing, land use or forest management, companies make marketing decisions
using customer satisfaction surveys.

The survey environment is rapidly changing today. New flexible designs
are developed, that use emerging possibilities. Surveys are designed to use
multiple data sources for sample selection, to collect data in multiple modes
like through telephone calls and online web forms simultaneously, to achieve
a better-balanced or representative response set by adaptive designs. Rich
administrative data sources enable statistical agencies to publish register
based statistics. There are also new innovative ways of approaching popu-
lations and obtaining data, like using mobile positioning and other big-data
recorders. In the age of information, the speed of data production is a
challenge, and the public always demands more and more accurate, timely,
and relevant statistics. In this context, surveys are ever more challenging
and complex to implement. Applying modern possibilities for improving
survey designs is largely forced by increasing problems in the survey in-
dustry like declining response rates (i.e. high non-response rates), limited
survey budgets and high response burdens of persons and companies, among
others.

In a survey, the study variables (the variables whose unknown parameters
like totals, means, proportions and other characteristics are required) are
measured and respective data is used for estimation. There is yet another
important type of variables – auxiliary variables. These variables play a
crucial role in all steps of the survey process. They are used in most of the
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modern survey designs and data collection methods; their ultimate use is
in the estimation stage. The overall aim of using auxiliary variables is to
reduce bias and decrease variance of estimators. Fortunately the number of
possible sources for auxiliary information is growing.

Data sources for auxiliary information. With advancements in tech-
nology and data storage becoming more affordable, many national statistical
agencies and governments over the world have invested in digital registers
and systems that provide data about many different populations within a
country. For example, there are housing, business, population and motoring
registers. The reasons behind creation of such databases are usually easier
cost efficient governance and public openness, but these databases are also
valuable for survey statisticians. For example, Finland maintains 3 key reg-
isters, like population, real estate and business registers, that are central
to the functioning of the society, 4 other major registers like the taxation,
employment, job applicants and pension registers, and other smaller and
regional registers (Statistics Finland, 2004, pp. 10-12). Statistics Finland
is allowed to use these rich sources of auxiliary information for statistics
production.

Modern digital society has lead to wider adoption of computers and web
forms in conducting surveys. This allows to gather paradata, i.e. admin-
istrative data about the data collection process. Kreuter (2013) gives a
thorough overview of paradata. Paradata has proven useful for manag-
ing existing surveys and designing future ones (Couper, 1998; Chun and
Kwanisai, 2010; Couper and Kreuter, 2012). For example, it can be num-
ber of contact attempts of each sampled element or data on interviewers
who carry out fieldwork. European Social Survey interviewers, upon a visit
gather data on survey respondents’ housing and environment, irrelevant if
the person fills in the survey or not. This data is used to evaluate measure-
ment and non-response bias, and also used in the planning of next waves of
data collection (Stoop et al., 2010).

After the completion of a survey project and publishing results the data
is not thrown away. Many survey agencies store raw survey data to form
their ”pseudo” populations for quality control, lessening respondent burden
and use recent survey results to validate or unify estimates of ongoing sur-
veys. For example, Statistics Netherlands constructed a Social Statistical
Database, where registers and data from sample surveys are linked. Esti-
mates related to social statistics are obtained from this database (Houbiers,
2004).

12



All these mentioned sources provide an abundant pool of auxiliary infor-
mation. Ideally this information can be in the form of known values for all
population elements, but more commonly the information is known only for
all sampled elements and/or in the form of known population totals. For
example, national population registers often have data on age, gender, level
of education, owning a driving license, and/or marital status among oth-
ers, which can be used by survey agencies in different stages of the survey
process.

Uses of auxiliary information. Auxiliary variables can be used in the
sample selection stage to rule out ”obscure samples”. In the case of simple
random sampling (SRS) of size n every sample of size n has a positive prob-
ability of occurring and that means a sample consisting of only males from
a nation’s population has a positive probability, although very small. Strat-
ified and cluster sampling designs, probability proportional to size (usually
noted πps) designs and balanced sampling designs use auxiliary variables
to make samples more representative, where balanced means that auxiliary
variable means in the sample and population are equal. Theory of strat-
ified, cluster, πps and other sampling designs is thoroughly presented in
Särndal et al. (1992). Methods which produce balanced samples given a
set of auxiliary variables include the Cube Method (Deville and Tillé, 2004)
and the Local Pivotal Method (Grafström et al., 2012). The use of auxiliary
variables in the sampling process will not be discussed in current thesis, the
focus is kept on the steps that follow sample selection – data collection and
estimation stages.

In responsive and adaptive designs data collection strategies (i.e. treat-
ments) are adapted to auxiliary information that becomes available before
or during data collection. Monitoring the data collection process and plan-
ning interventions can bring a more appropriate final set of respondents,
compared with a stationary design where the data collection follows a fixed
unchanging protocol from beginning to end. Usually high response rates
are demanded with any means, but Groves (2006) raised concerns about
the quality of survey data with blindly gathering respondents. It was in
response to these concerns that responsive and adaptive designs were born,
with Groves and Heeringa (2006) being an early reference and a review
on the literature is given by Tourangeau et al. (2017). There is practical
evidence that responsive designs lower bias caused by non-response (e.g.
Schouten et al., 2009; Schouten et al., 2012; Lundquist and Särndal, 2013;
Särndal and Lundquist, 2014a; Särndal and Lundquist, 2014b; Särndal and
Lundquist, 2017). In this thesis theoretical evidence is presented.
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After data collection survey statisticians rely on estimation theory to resolve
the challenge of non-response, primarily how to achieve low bias in the
estimates. After the completion of data collection, the set of responding
units is fixed. The choice of auxiliary variables plays a crucial role, an aspect
that has been dealt with extensively, as in Särndal and Lundström (2005)
and a comprehensive review of non-response weighting adjustment is found
in Brick (2013). But assume that in the estimation stage additional auxiliary
information is made available, for example, in the form of paradata or other
register data. So the auxiliary vectors used in data collection and estimation
stages may differ from each other. The aspect of different auxiliary vectors
has been considered in Särndal and Lundquist (2014b), but receives more
focused attention in current thesis.

After estimation stage the gathered information is still usable to improve
quality of results in other surveys. Assume that population totals for cer-
tain variables are estimated in one survey, that we call the reference survey
(RFS). Estimates of the same variables are produced in another survey, that
we call the present survey (PRS), but in greater detail. In PRS the estimates
are produced for totals of population subgroups, referred to as domains. The
two surveys are carried out independently. Naturally, consumers would as-
sume that these two surveys produce numerically consistent estimates - e.g.
domain total estimates in PRS sum up to the population total estimate in
RFS. Sadly this does not always hold. There are many methods to achieve
consistency between estimates. Knottnerus (2003) proposes a general re-
striction estimator that is constructed upon unbiased initial estimators so
that the result satisfies desired linear restrictions. Lepik (2011) extends
this method for domain estimation. Särndal and Traat (2011) treat the
inconsistency problem in another way and they propose a new method, the
AC-calibration (A - auxiliary variables, C - common variables). Statistics
Netherlands has also studied the problem and several articles have been pub-
lished on repeated weighting (RW). Current thesis uses the last two methods
to achieve consistency in a more complex case, i.e. for cross-classified do-
mains under presence of outside sources (RFS) for marginal domains.
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1.2 Aims of the Thesis

The general aim of this thesis is to contribute to the estimation theory in
sample surveys by using auxiliary information. Auxiliary information is
used for balanced data collection as well for calibration in the estimation
phase. The broad question is whether this information, used in both phases,
can increase accuracy of survey estimators more than its traditional applica-
tion, i.e. using auxiliary information only in the estimation phase. The aim
is to quantify the additional effect from balancing; also to characterise the
contribution into final estimator if different auxiliary vectors are used in the
two phases. Another question studied and solved in this thesis is consistency
of survey estimates with other known results. Now auxiliary information is
extended to involve also known information about study variable.

In more detail the goals are:

– Assuming there is considerable non-response, consider data collection
methods that improve balance of the final response set with respect to
selected auxiliary variables. The aim is to present theoretical evidence
that balancing efforts during data collection will improve the accuracy,
primarily reduce bias of the estimates that are ultimately produced
by calibrated weighting (Paper I);

– Looking for the answer whether to use auxiliary information only for
balancing response or only for calibrating estimators or for doing both,
a novel situation with different auxiliary vectors in monitoring and
estimation phases, is considered. Assume that after monitoring phase
there is more auxiliary information available. The aim is to present
the calibration estimator in a way that the effect of added auxiliary
variables can be explicitly separated (Paper II);

– Assuming that some general information on study variable(s) is known
from other surveys or registers, the aim is to develop formulas for con-
sistent estimation of domains. The more complex situation of cross-
classified domains is considered. The requirement is that the new
domain estimators satisfy the summation restrictions, i.e. the estima-
tors sum up to the known (or a priori estimated) marginal domain
totals coming from external sources (Paper III);

– Illustrate and confirm thesis results in simulation studies.
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1.3 Thesis outline

The thesis is arranged as follows: Section 2 introduces basics about design
based survey sampling and notation, presents methods to employ auxiliary
information, and gives formulas for estimators under full response and non-
response. Section 3 includes short summaries of the contributions based
on the three papers making up the thesis. Section 4 gives concluding re-
marks and discusses on further research ideas emerging from the considered
topics.
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2. Notation and methods

Throughout the thesis we consider the design-based approach where values
of variables in a finite population are fixed constants and randomness is
introduced by a sampling design – a set of rules and procedures by which
elements of the finite population are included into the sample.

2.1 Design based sampling

Let U = {1, 2, . . . , N} denote a finite population of N units and the enu-
meration of population units is referred to as a sampling frame. Let a
random vector (design vector) I = (I1, I2, . . . , IN) describe the sampling
process on U and the random variable Ik indicates the number of selections
for unit k ∈ U . For without-replacement (WOR) designs Ik ∈ {0, 1} and
with-replacement (WR) designs Ik ∈ {0, 1, 2, . . .}. The multivariate distri-
bution of the vector I with the probability function I ∼ p(i) = P (I = i),
where i = (i1, i2, . . . , iN) is a outcome of design vector I, gives probabilistic
description of the sampling design (Traat et al., 2004). In this thesis we
consider WOR designs.

A sample s of size n is selected to estimate some characteristics of U ac-
cording to a chosen sampling design. The sampling design generates for
each element k a known inclusion probability, P (k ∈ s) = E(Ik) = πk > 0,
and a corresponding design weight dk = 1/πk. Designs where each unit in
the population has exactly the same inclusion probability are called self-
weighting designs. In case of non-response, data can only be collected from
a subset r within the sample, r ⊂ s ⊂ U , and the values yk of the study
variable y are recorded for units k ∈ r only.

Example 2.1. An example of a simple random sampling design (SRS WOR).
Let us have a population of N = 100 persons. Put 100 balls with persons’
names into a bowl. Select 10 balls randomly from the bowl to form a sample
of size n = 10. Inclusion probability for each person in this case would be
πk = n/N = 1/10.

17



Example 2.2. An example of a Bernoulli sampling design. For every per-
son in a population of N = 100 a dice is rolled and if the result is a ”6”,
then the person is included in the sample, otherwise not. Inclusion probabil-
ity for each person in this case would be πk = π = 1/6. This is a sampling
design where the sample size is not fixed and on average the sample size
would be E(n) = E [

∑
U Ik] = Nπ = 100/6.

The objective is to estimate the population total Y =
∑

U yk of the study
variable y, where yk denotes value of the study variable for unit k ∈ U (here
and later

∑
A denotes a sum over all the units k in set A).

2.2 Domains

Often insights are needed for population subgroups like geographical ar-
eas of households, social groups of people, economic field of operations of
companies or soil type of farmlands. Let population U be divided into D
non-overlapping and exhaustive domains Ud, d ∈ D = {1, 2, . . . , D}. Let
domain indicators be

γdk =

{
1, k ∈ Ud,
0, otherwise.

(2.1)

Domain totals of study variables can now be expressed as sums over the
population

Yd =
∑

Ud

yk =
∑

U

γdkyk.

This reveals that the estimation results for population totals can be directly
applied for the domain estimators.

Example 2.3. Using the setting of Example 2.1, let the population register
of N = 100 persons have the information of persons’ gender, forming do-
mains of males and females. Let each of the balls with a name be colored
according to gender of the person it represents. Again, 10 balls are selected
randomly WOR and information gathered from domain representatives in
the sample is generalized to the whole domain in the estimation phase.

Domains can be a priori identified (Example 2.3) or unidentified. Uniden-
tified domains means that an element’s classification into a domain is not
known until it is determined from response. This case occurs if gender is
not given in the population register.

18



2.3 Auxiliary information

It is assumed that there is access to auxiliary information on unit level, i.e.
the vector of J auxiliary variables xk = (x1k,x2k, . . . ,xJk)′ is known at least
for every element k ∈ s (or for every k ∈ U if it is compiled from compre-
hensive registers). Often, instead of population level individual values the
known totals

∑
U xk = X belong to available auxiliary information. In this

thesis we assume that the auxiliary variable vector satisfies

µ′xk = 1,∀k ∈ U , for some vector µ not depending on k. (2.2)

It is not a major restriction as most vectors xk in practice are of this kind or
can easily be altered to satisfy (2.2), as Example 2.4 will demonstrate.

An important type of auxiliary vector is a group vector. It identifies mem-
bership of every unit k in one of J mutually exclusive and exhaustive popu-
lation groups, so that xk = (0, . . . , 1, . . . , 0)′, where the only 1 indicates the
unique group (out of J possible) to which k belongs.

Example 2.4. Assume that we have a numerical (continuous or discrete)
auxiliary variable xk, then by taking xk = (1, xk)′ and µ = (1, 0)′ satisfies
the requirement (2.2). When xk = (0, . . . , 1, . . . , 0)′ is a group vector, then
µ = (1, 1, . . . , 1)′ satisfies the requirement.

Example 2.5. A group vector can be constructed by crossing all categorical
auxiliary variables. Let there be information on gender (male / female),
employment status (employed / unemployed) and highest level of education
(low / middle / high). Then the group vector x is a vector with dimension
J = 2×2×3 = 12. With more variables and more variable levels the vector
can become very long, for example Särndal and Lundquist (2014b) used a
x-vector of dimension 14 with 256 possible values for a study of the Swedish
Living Conditions Survey.

2.4 Balance of the response set

The concept of balance has been often used in statistical literature with
reference to an equality of means of certain variables for two sets of units,
where one is the subset of the other. For example balanced sampling aims
to give a random sample so that the means of a set of auxiliary variables
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are equal (or approximately equal) within the sample and the population.
Such sampling methods include the Cube Method (Deville and Tillé, 2004),
and Local Pivotal Method (Grafström et al., 2012). Here we look at mea-
suring balance of auxiliary variables in the response set with respect to the
sample.

With the given auxiliary vector x, means can be calculated for the response,
x̄r =

∑
r dkxk/

∑
r dk, and for the sample, x̄s =

∑
s dkxk/

∑
s dk. If x̄r =

x̄s, then the response set is said to be perfectly balanced on the given x-
vector. In practice this is usually not the case and the J-dimensional mean
difference x̄r − x̄s signals drift from perfect balance. A univariate indicator
of imbalance is defined as

IMB = P 2 (x̄r − x̄s)
′Σ−1

s (x̄r − x̄s) , (2.3)

where Σs =
∑

s dkxkx
′
k/
∑

s dk is a J × J weighting matrix assumed non-
singular and P =

∑
r dk/

∑
s dk is the design weighted response rate. IMB

is a value between 0 ≤ IMB ≤ P (1 − P ) and can be calculated at any
point during data collection. It characterizes r in relation to s with respect
to the chosen x-vector.

Based on the IMB value, or some other imbalance characteristic value,
steps can be taken to change the initial data collection process with the aim
to get a more balanced response in the end. For example, at fixed points in
the data collection process, IMB is calculated from the gathered response.
Hypothetical IMB(k) can be calculated for units k ∈ s − r, i.e. units who
have not responded yet, if they were to be included into the response set. In
the next data collection step we approach only those units that decrease the
imbalance measure. The process is repeated in the next intervention point.
The intervention points can, for example, depend on time or respondents
in the response set (e.g. after collection of every 100 respondents). We call
such activity monitoring the data collection process, and it is one example
of a responsive design.

2.5 Estimation under full response

The basic design unbiased estimator of population total Y from a full sample
is the Horvitz-Thompson (HT) estimator:

ŶFUL =
∑

s

dkyk. (2.4)
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For domain total Ŷd, it can be written ŶdFUL =
∑

s dkγ
d
kyk, where γdk is

defined in (2.1) and d ∈ D.

With the availability of auxiliary information, statistical agencies around
the world use calibration estimators with the aim to get more accurate es-
timates. The principal behind calibration estimators is to adjust the design
weights dk with weights wk so that the calibration equations

∑
sdkwkxk =∑

U xk would be satisfied. There are many ways for finding wk, the two
main methods are the distance minimization, used by Deville and Särndal
(1992), and the instrument vector method considered in Estevao and Särn-
dal (2000), and Kott (2006). The method with chi-square distance measure
between weights dk and wk gives an analytic solution,

wk =

(∑

U

xk

)′(∑

s

dkxkx
′
k

)−1

xk.

These weights, using only auxiliary variables, are then applied for all study
variables to get a calibration estimator,

Ŷ ∗CAL =
∑

s

dkwkyk. (2.5)

Remark. Notice that the weights wk satisfy the population level calibration
requirement:

∑

s

dkwkx
′
k =

(∑

U

xk

)′(∑

s

dkxkx
′
k

)−1∑

s

dkxkx
′
k =

∑

U

x′k.

For domains the calibration estimator can be written

Ŷ ∗dCAL =
∑

s

dkwkγ
d
kyk, d ∈ D.

2.6 Consistent estimation under full response

Assume that the population total Y is known, either from registers or accu-
rately estimated from a previous survey (RFS), where the desired domains
are unidentified and thus their estimation is impossible. In the present
survey (PRS) the domain indicators are recorded and domain estimation
becomes possible. It is natural to demand that the estimated domain totals
in the PRS sum up to the corresponding known totals.
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Example 2.6. In the Example 2.3 with the population forming domains of
males and females from register info, there might be a need to further in-
vestigate happy and unhappy males and females. This additional separation
is not known until sampled persons are surveyed in PRS. So a survey is
done regarding these new domains, but the domain estimates will probably
be inconsistent with marginal information from RFS.

Särndal and Traat (2011) proposed to use what they call AC-calibration (A
- auxiliary and C - common variables, further the terms A-variables and
C-variables are used). This method is basically standard calibration where
the auxiliary information vector xk is extended with C-variables. For each
element k ∈ s, construct a J + 1 dimensional vector:

(
xk

yk

)
, k ∈ s.

The calibration weights are then

wACk =

(
X

Y0

)′
M−1

(
xk

yk

)
, (2.6)

where X =
∑

U xk, Y0 =
∑

U yk or is its estimate Y0 = Ŷ from RFS,
and

M =
∑

s

dk

(
xk

yk

)(
xk

yk

)′
.

Plugging the AC-weights (2.6) into the calibration estimator we get

Ŷ AC
CAL =

∑

s

dkwACkyk,

and we can use the domain indicators (2.1) to find AC-calibration estimators
for domains.

Kroese and Renssen (1999), Houbiers (2004), Knottnerus and Van Duin
(2006) use the repeated weighting method (RW) to achieve consistency.
The overall idea is to calibrate the initial calibration weights wk again to
get new weights wRWk, so that

∑
s dkwRWkyk = Y0. The auxiliary vector in

this case would be (
1

yk

)
, k ∈ s,

so that requirement (2.2) would be satisfied and RW-weights have the
form:

wRWk =

(
N̂

Y0

)′(∑

s

dk

(
1

yk

)(
1

yk

)′)−1(
1

yk

)
,
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where N̂ =
∑

s dk estimates the population size.

Remark. Notice that the new weights wRWk will not satisfy the calibration
requirements for x-variables, i.e

∑

s

dkwRWkxk 6=
∑

U

xk.

2.7 Estimation under non-response

In the presence of non-response HT-estimators cannot be computed. In
such a situation one can use the simple expansion estimator

ŶEXP = N̂ ȳr, (2.7)

where ȳr =
∑

r dkyk/
∑

r dk is the design weighted mean of the study vari-
able in r. But this estimator is often considerably biased, so a more widely
used method is to calibrate on the auxiliary vector xk:

ŶCAL =
∑

r

dkgkyk,

where

gk =

(∑

s

dkxk

)′(∑

r

dkxkx
′
k

)−1

xk (2.8)

are the calibration weights under non-response (g-weights for short).
Remark. Notice that the weights gk satisfy the sample level calibration re-
quirement ∑

r

dkgkxk =
∑

s

dkxk,

where
∑

s dkxk are unbiased estimates for population totals
∑

U xk.

2.8 Imbalance of the study variable

We analyze the relationship between study variable imbalance, caused by
non-response, and imbalance of the auxiliary variables. We measure
y-variable imbalance with ȳr − ȳs, where ȳr =

∑
r dkyk/

∑
r dk is the design

weighted mean of y in the response set, ȳs =
∑

s dkyk/
∑

s dk is the design

23



weighted mean of y in the sample, and x-vector imbalance with IMB de-
fined in (2.3). By multiplying the difference ȳr − ȳs with N̂ =

∑
s dk, we

are able to extract two meaningful terms:

N̂(ȳr − ȳs) = ŶEXP − ŶFUL = (ŶEXP − ŶCAL) + (ŶCAL − ŶFUL). (2.9)

The first term ŶEXP − ŶCAL is computable and shows adjustment from the
naive expansion estimator when we calibrate with auxiliary information.
The second term ŶCAL − ŶFUL is not computable and quantifies the de-
viation of calibration estimator under non-response from the full sample
HT-estimator. This illustrates the deviations we face in estimation stage
due to non-response.

The property µ′xk = 1 in (2.2) reveals that x̄′rbr = ȳr, x̄′sbs = ȳs and
x̄′sbr = ŶCAL/N̂ , where br and bs are ordinary linear regression coefficient
vectors for the whole sample s and for the response r, respectively,

bs =

(∑

s

dkxkx
′
k

)−1(∑

s

dkxkyk

)
,

br =

(∑

r

dkxkx
′
k

)−1(∑

r

dkxkyk

)
.

Now we get from (2.9)

ȳr − ȳs = (x̄r − x̄s)
′ br + (br − bs)

′ x̄s. (2.10)

The decomposition (2.10) highlights two undesirable differences, x̄r − x̄s

due to imbalance and br − bs due to inconsistent regression. The ad-
justment term (x̄r − x̄s)

′ br = (ŶEXP − ŶCAL)/N̂ can clearly be reduced
by constructing r to have low imbalance. The effects of low IMB on
(br − bs)

′ x̄s = (ŶCAL − ŶFUL)/N̂ is not so evident and is studied further
in the next section and Paper I.
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3. Summary of contributions

3.1 Summary of Paper I

The paper explores the deviance of the calibration estimator ŶCAL from
the unbiased (but unrealized) full sample estimator ŶFUL. Under specified
assumptions, the conditional expectation and variance of that deviance are
derived.

In Result 1 of the paper, the design-based approach is chosen with yk being
non-random. A self-weighting sampling design of size n and equally prob-
able response sets of size m are assumed. The auxiliary vector is assumed
to be a group vector. In Result 2 the model-based approach is considered
where random yk are regressed on auxiliary vector xk with assumptions on
the residuals. No restrictions are made on the auxiliary variables.

The observed deviance is

∆r = (ŶCAL − ŶFUL)/N̂ = (br − bs)
′ x̄s.

Under both approaches, the conditional expectation of ∆r, for given r, s,
and x-variables, is zero. The exact formula for conditional variance of ∆r is
derived. In Result 1 the approximation of that variance, explicitly showing
the relationship with IMB, is given. Under assumptions where the sample s
is divided into non-overlapping subgroups sj of size nj, j ∈ {1, 2, . . . , J}, by
the group vector xk, and where group variance S2

yj and the group response
rates pj = mj/nj vary by little only over the groups, the approximation
is

S2
∆ = Var (∆r|x̄r,m, s) ≈

(
1− p+

IMB

p2

)
S2
y

m
, (3.11)
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with p = m/n as the overall response rate, and

S2
y =

J∑

j=1

nj

n
S2
yj,

S2
yj =

∑

sj

(
yk − ȳsj

)2

nj − 1
.

Here we specify the approximation (3.11) by giving its remainder term. The
formula (3.11) follows from the exact formula (7.3) in Paper I which is here
presented in the form

S2
∆ = Var (∆r|x̄r,m, s) =

1

m

[
(1− p)S2

y +
J∑

j=1

nj

n

(
p

pj
− 1

)
S2
yj

]
. (3.12)

Let us assume equal variances in groups, S2
yj = S2

y , and study the term of
(3.12),

J∑

j=1

nj

n

(
p

pj
− 1

)
. (3.13)

Denote

δj =

(
pj
p
− 1

)
, (3.14)

then IMB, which we want to see in (3.13), has in our group vector case the
form,

IMB = p2

J∑

j=1

nj

n

(
pj
p
− 1

)2

= p2

J∑

j=1

nj

n
δ2
j .

Assuming |δj| < 1, the power series expansion (R̊ade and Westergren, 1988,
p.192) gives,

1

1 + δj
= 1− δj + δ2

j +Rj,

where

Rj =
1

1 + δj
− 1 + δj − δ2

j = − δ3
j

1 + δj
.

Since
p

pj
− 1 =

1

1 + δj
− 1 = −δj + δ2

j +Rj,
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we get for (3.13)

J∑

j=1

nj

n

(
p

pj
− 1

)
=

J∑

j=1

nj

n
(−δj) +

J∑

j=1

nj

n
δ2
j +

J∑

j=1

nj

n
Rj. (3.15)

The first term on the right hand side of (3.15) is 0, the second term is
IMB/p2, and the third term is related to IMB, as we see below.

Now, under assumptions S2
yj = S2

y and |δj| < 1 for each j, our formula
(3.12) takes the form

S2
∆ =

S2
y

m

(
1− p+

IMB

p2
+

J∑

j=1

nj

n
Rj

)
. (3.16)

Let us evaluate the absolute value of the remainder term:
∣∣∣∣∣

J∑

j=1

nj

n
Rj

∣∣∣∣∣ =
J∑

j=1

nj

n
δ2
j

∣∣∣∣−
δj

1 + δj

∣∣∣∣ ≤
IMB

p2
max

j

∣∣∣∣
δj

1 + δj

∣∣∣∣ .

Comparing the last two terms in (3.16), we have
∣∣∣∣∣

∑J
j=1

nj

n
Rj

IMB/p2

∣∣∣∣∣ ≤ max
j

∣∣∣∣
δj

1 + δj

∣∣∣∣ . (3.17)

Now, in the process pj → p, ∀j, we have δj → 0, ∀j, due to (3.14), and

the bound in (3.17) goes to 0. Consequently, in this process,
∑J

j=1
nj

n
Rj =

o( IMB
p2

), i.e. the remainder term in (3.16) goes to 0 faster than IMB/p2.

This justifies our approximation (3.11). Moreover, we have the explicit
expression for the remainder term

∑J
j=1

nj

n
Rj, and can analyze its size for

any fixed set of pj-values.

The result (3.16) says that under conditions for pj, by decreasing imbalance
IMB of the response set, in general, we decrease conditional variance of
∆r. Consequently there is smaller risk to have large deviation between
calibration estimator and the unbiased full sample HT-estimator. We see
that the right hand side of (3.16) is zero for full response when p = 1. Then
pj = 1 implies δj = 0, ∀j, and IMB as well as Rj are zero. The factor S2

y

decreases magnitude of S2
∆ when S2

yj are small, which happens under strong
relationship between y- and x-variables.

Result 2 in the paper makes a small exception from following the design
based approach in the thesis. The result is derived under model-based
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approach, where the finite population values are assumed to be random
with assumptions to their random nature. In Result 2 we assume a linear
regression model between y and x. The yk are considered random, with
properties stated by the model. A group vector feature for x is no longer
necessary. The conclusions are in some respects similar to those in Result
1.

The theoretical results were validated in a simulation study with real data
from an Estonian household survey. Illustration of the relationship (3.11)
is given in Figure 3.1.

Figure 3.1: Conditional variance of ∆r as a function of imbalance IMB; xk

is a group vector of dimension 3; response sets r of fixed size 12 from a fixed
sample s of size 20.
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3.2 Summary of Paper II

In responsive survey designs the goal is to get a well representative set of
respondents through planning and appropriate intervention in the data col-
lection process. One possibility is to monitor data collection with more
advanced quality measures than the response rate, here we consider the
imbalance measure IMB, defined in (2.3), with respect to given auxiliary
variables. Thus, monitoring response means computing IMB and pursuing
respondents who would reduce imbalance in several time points during data
collection. Literature found on IMB uses the same x-vector in the moni-
toring and estimation stages, i.e. in calculation of IMB and definition of
estimators that use auxiliary information.

Here a clear distinction is made, assume that we have access to additional
calibration variables after data collection, for example in the form of para-
data. Paradata, collected during data collection phase for each element in
the sample, can be used for calibrating estimates from the response level to
the sample level. Like in Paper I the decomposition (2.10) is taken under
study, but the auxiliary vector is split into two parts:

xk = xMEk =

(
xMk

xEk

)
, (3.18)

where xMk : p × 1 is an auxiliary vector used for monitoring response and
xEk : q×1 is an auxiliary vector of extra set of variables that are later added
to compute the calibration estimator in the estimation stage. Here indexes
M and E show whether the auxiliary vector xMk or xEk is used.

Using the new auxiliary vector (3.18) the g-weights in (2.8) can be split into
two distinct parts:

gk = gMk + hk,

where gMk is dependent only on auxiliary information available or used for
monitoring response and hk is residual information from added auxiliary
variables not linearly explained by xM -variables. The explicit expressions
for these terms are derived in the paper. Useful properties of the new
weights hk are proved. The split weights gk are used to express calibration
estimator in two terms, ŶCAL =

∑
r dkgMkyk +

∑
r dkhkyk, the first one

calibrating on monitoring variables. If full balance with respect to the xM -
variables is received in the response set, then the first term is a simple
expansion estimator ŶEXP in (2.7). The second term explicitly includes
lack of balance indicator of added auxiliary variables, x̄Er − x̄Es, and the
effect of residuals εk when regressing xEk on xMk.

29



Auxiliary vector (3.18) also enables us to split IMB into two terms:

IMB = IMBM + IMBE,

where IMBM is the imbalance measure with regard to xM -information and
IMBE is extra imbalance introduced by xE-information. IMBE has a more
complex formula behind it than the IMB in (2.3), see Paper II for the exact
form.

A simulation study was carried to test two interesting cases of survey pro-
cesses that emerged from theoretical part:

Case 1 Response accumulation is not monitored, instead additional auxil-
iary information is added in the estimation stage, i.e. xM -information
and xE-information are only used to calculate the calibration estima-
tor.

Case 2 Response accumulation is monitored and the process intervened to
gather a response r with lower IMB value, but no extra auxiliary
variables were used in estimation, i.e. only xM -information is used to
calculate the calibration estimator.

That produced two response sets with response rate for both cases being
60%, calibrated estimates were found using only xM -variables in Case 2 and
xME-variables in Case 1. This was repeated 1000 times.

The results suggest that if xE-variables are not strongly correlated with the
study variable, then monitoring and balancing the response set (Case 2)
gives slightly more accurate results in terms of bias from the true population
totals. If xE-variables are strongly correlated with the study variable, then
we would get more accurate results in Case 1, compared to the estimation
with monitored responses and no extra auxiliary information.

Balancing on the monitoring variables reduced IMBE, implying that the
lack of balance of added auxiliary variables, x̄Er − x̄Es, decreased.

3.3 Summary of Paper III

The novel results of Paper III concern the situation where we have two
sources of information on the study variables (either surveys or registers).
One source, let it be RFS1, has information on domains formed by certain
categorical variable, not considered or not identified in the other source
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RFS2. Instead, RFS2 has information on domains formed by another cat-
egorical variable. In the present survey PRS we are however interested in
study variable estimates in domains cross-classified with these categorical
variables. We are aiming to estimates that are consistent with known infor-
mation.

In the Example 2.6 this would correspond to a situation where RFS1 has
domains by males and females. Domains of happy and unhappy people is
studied in RFS2, but domains are not separated by gender. In PRS we
are interested in cross-classified domains of happy and unhappy males and
females, and y total estimates that would be consistent with RFS1 and
RFS2.

To achieve consistency AC-calibration and repeated weighting (RW) were
used and formulas were developed for the previously explained case. In
these formulas we have cross-classified domains in the form of a × b table,
where a and b are the number of category levels of the variables forming
domains in RFS1 and RFS2 respectively. The formulas are derived for the
case of multiple study variables, i.e. y is a v-dimensional vector and we
estimate y-totals in table cells.

The AC-calibrated estimates that are consistent with known table marginals
(sum up to these marginals), are given by the formula

ŶAC
CAL =

∑

s

wACkIk ⊗ yk,

where wACk are the calibrated weights on A- and C-information and they
encompass the design weight dk, Ik is an indicator matrix for the cross-
classified domains. The result ŶAC

CAL is a (av) × b matrix of domain total
estimators for study variables y that satisfy marginal sums coming from
external sources. The explicit form of the weights wACk, as well formal
definitions and formulas of RW in the cross-classified case are given in Paper
III.

The formulas of AC-calibration and RW for the cross-classified domains
were tested in a simulation study. Simulations were done on a population
composed of real data from the Estonian Household Survey. The results re-
vealed that consistency was achieved with the information from RFS using
AC-calibration and RW. In terms of comparing AC versus RW they both
give almost equal estimates, compared to HT-estimates AC and RW esti-
mates had lower variance, but slightly higher bias, since calibration methods
are approximately unbiased.
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4. Concluding remarks and
open problems

As a conclusion, the aims of the thesis were achieved. Explicit expressions
were derived highlighting the stated research problems.

A connection between imbalance and the deviance of the calibration esti-
mator ŶCAL from the unbiased full information estimator ŶFUL was shown
for two special cases.

In the case of different auxiliary variable vectors being used in the data
collection and estimation stages, the expression for the calibration weights
with two terms were derived, explicitly showing the contribution of xM -
and xE-variables to the calibration estimator ŶCAL. Useful properties were
proved and special cases were studied where full balance with respect to
xM -variables was assumed.

Formulas for achieving consistency in a case of cross-classified domains and
known marginal information from two external sources, were derived. Sim-
ulation studies confirmed the results, and enabled further insight on previ-
ously mentioned topics.

Today there are many sources for auxiliary information and methods are
being developed to use them in different stages of the survey process. The
aims have been: (i) achieving more accurate estimates by reducing variance
or reducing bias caused by non-response, or (ii) make the survey processes
more efficient.

The question, whether to make balancing efforts during data collection
phase, or only later, in the estimation stage, is still under research focus
(Brick and Tourangeau, 2017).

In general, the author of this thesis advocates the use of responsive de-
signs where data collection is monitored to arrive at a more representative
response set. Many practical papers with same conclusions have been pub-
lished, but there are few with theoretical evidence. So the search continues
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for further evidence of balancing effect on the non-response bias of calibra-
tion estimator, e.g. by relaxing assumptions of the results in Paper I.

An idea in similar direction would be to investigate study variable imbal-
ance (2.10) when the full sample HT-estimator (2.4) is substituted with full
sample calibration estimator (2.5) with population level information. It is
widely known that the calibration estimator has lower variance than the
HT-estimator, so with non-response we should try to aim for the full infor-
mation calibration estimator. With this we loose the appealing property of
reducing deviance form an unbiased estimator, but calibration estimators
are approximately unbiased and statistical agencies around the world use
calibration estimators instead of the HT-estimator.

Another open problem is present with consistent estimation with informa-
tion from outside sources. Särndal and Traat (2011) and in the thesis we
consider only the case where there is full response. A more realistic case to
study is when non-response occurs and we still want to achieve consistency
with known study variable totals. Also the case of cross-classified domains
would be of interest.
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PAPERS 



Kokkuvõte

Valikuuringute hinnangute täpsuse tõstmine

abiinformatsiooni kasutamisega andmekogu-

mise ja hindamise etappides

Valikuuringute eesmärgiks on hinnata üldkogumi parameetreid juhusliku
valimi pealt. Igapäevaselt kuuleme uudiseid ja otsuseid, mille aluseks on
valikuuringute tulemused. Näiteks võime ajalehtede pealkirjadest lugeda
rahva poliitiliste parteide eelistustest või ministeeriumi ametite kehtestatud
kalapüügi ja metsaraie kvootidest.

Valikuuringute keskkond on aga pidevas muutuses ja arenev. Tänu teh-
nika arengule on võimalik läbi viia keerukaid valikuuringuid, mis kasuta-
vad mitmeid andmeallikaid tulemuste ja protsesside parandamiseks, seal-
hulgas uudseid mobiilpositsioneerimise, sensorandmete ja muude suurand-
mete (”Big Data”) salvestisi. Administratiivandmed võimaldavad statistika
ametitel avaldada registrite põhiseid näitajaid.

Uudsete meetodite rakendamise ja arendamise vajadus on enamasti tingitud
valikuuringute keskkonda vaevavate probleemide tõttu. Juba pikemat aega
on valikuuringute vastamismäärad pidevas languses, küsitluste populaarsuse
kasvu tõttu räägitakse juba vastajate kurnamisest. Uuringute läbiviimine
on läinud üha kallimaks, samas kui eelarved on jäänud samaks või hoopis
vähenenud. Mitmete uudsete meetodite keskmes on abiinformatsioon.

Valikuuringute eesmärgiks on hinnata huvipakkuvate uuritavate tunnuste
parameetreid nagu keskmised, osakaalud, ja kogusummad. Tänapäevased
meetodid kasutavad uuritavate tunnuste kõrval ka teisi, nimelt abitunnu-
seid. Abitunnused sisaldavad teavet üldkogumi (või äärmisel juhul valimi)
elementide kohta, mida kasutades saame oluliselt parandada hinnangute
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täpsust ja/või andmekogumise kulgu. Näiteks on Eesti rahvastikuregistris
teavet isikute vanuse, soo, hariduse ja perekonna seisu kohta, mida saab ära
kasutada kõikides valikuuringu etappides.

Üha rohkem tähelepanu koguv lähenemine on kohanduvad disainid (ingl. k.
responsive designs), kus sekkutakse andmete kogumise protsessi eesmärgiga
saada esinduslik vastanute hulk. Varasemalt on andmete kogumine lähtunud
peamiselt kõrge vastamismäära saavutamisest. Kohanduvates disainides ka-
sutatakse abitunnuseid.

Kohanduvas disainis võib näiteks kasutada tasakaalu mõistet ja tasakaalu
indeksit andmete kogumise protsessis. Käesolevas töös on vastanute hulga
tasakaalu all mõeldud abitunnuste keskmiste võrdumist vastanute hulgas ja
valimis. Vastanute hulga tasakaalu mõõdame indeksiga IMB – skalaar, mis
võrdleb abitunnuste keskmisi vastanute hulgas ja valimis.

Teaduslikus kirjanduses on mitmeid praktilisi uurimusi, kus näidatakse ko-
handuvate disainide positiivseid mõjusid, st. mitte-vastanutest tingitud hin-
nangu nihke vähendamisel. Antud dissertatsioonis esitame teoreetilised tu-
lemused, kus näitame, et vastanute hulga tasakaalustamine indeksi IMB
järgi vähendab suure nihke riski.

Kasulikku abiinformatsiooni saab leida ka hilises uuringu faasis, näiteks
võivad abiinformatsiooni allikaks olla ka teised valikuuringud. Sageli viiak-
se läbi uuringuid samaaegselt ning tihti on neis uurimise all ühiseid tunnu-
seid, aga kuna neid viiakse ellu üksteisest sõltumatult, siis ühiste tunnuste
hinnangud üldiselt erinevad. Tulemustes kooskõla saavutamine on disser-
tatsiooni üheks uurimisprobleemiks.

Antud dissertatsiooni eesmärk on panustada valikuuringute teooriasse kasu-
tades abiinformatsiooni. Abiinformatsiooni kasutatakse andmete kogumise
etapis, et saada tasakaalustatud vastanute hulk, ja hindamise etapis hin-
nangute parandamiseks kalibreerimise teel. Ühtlasi käsitletakse juhtu, kus
uuritavat tunnust ennast saab käsitleda abiinformatsioonina, kui see pärineb
välisest allikast.

Dissertatsiooni eesmärgid on detailselt järgmised:

– Eeldades, et uuringus on arvestatav kadu, kasutatakse andmete kogu-
misel meetodeid, mis parandavad vastanute hulga tasakaalu valitud
abiinformatsiooni suhtes. Eesmärk on esitada teoreetilisi tõendeid, et
pingutused vastanute hulga tasakaalustamisel parandavad hinnangute
täpsust hindamise etapis. Eelkõige peame silmas kaost tingitud nihke
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– Otsides vastust dilemmale, et kas pigem kasutada abiinformatsiooni
ainult hindamise etapil või hoopis panustada vastanute hulga tasakaa-
lustamisele andmete kogumise etapil (või mõlemat), uurime erinevate
abiinformatsiooni vektorite kasutamist. Eeldame, et hindamise eta-
pil on meil saadaval rohkem abiinformatsiooni kui andmete kogumise
etapil. Eesmärk on esitada kalibreeritud hinnang viisil kus lisatud abi-
tunnuste mõju on otseselt eristatav (Artikkel II);

– Eeldades, et uuritava tunnuse kohta on teavet kahest andmeallikast
(nt. muud uuringud või registrid), milles aga osakogumiteks (ehk üld-
kogumi gruppideks) jaotamine oli mõlemas allikas erineva tunnuse
järgi. Käes-olevas uuringus huvitavad meid aga nende kahe tunnu-
se järgi ristklassifitseeritud osakogumid. Varem teadaolevat infot saab
ära kasutada ning käes-olevas töös tuletame valemid ristklassifitsee-
ritud osakogumite koos-kõlaliseks hindamiseks väliste andmeallikate
olemasolu korral (Artikkel III);

– Illustreerida ja kinnitada kõikide teoreetilisi tulemusi simulatsiooni-
des.

Dissertatsioon koosneb kolmest artiklist ja nende loetelu on esitatud töö
alguses. Läbivalt eeldame, et järgime disainipõhist lähenemist ehk üldkogum
on lõplik hulk, uuritavate tunnuste väärtused on fikseeritud ja juhuslikkus
tuleneb viisist, kuidas kaasatakse üldkogumi elemente valimisse ehk valiku
disainist. Järgnevalt on esitatud lühikokkuvõtted artiklite kaupa.

I artikkel

Antud artikkel on ühine artikkel koos professor Carl-Erik Särndali ja dotsent
Imbi Traadiga, kus minu ülesanne oli läbi viia põhjalikud simulatsioonid.
Lisaks osalesin teoreetilistes diskussioonides ja panustasin artikli valmimis-
se.

Artiklis eeldame, et uuringu käigus on tekkinud kadu ja uuritavate tunnus-
te väärtused on teada vaid vastanute hulgas. Seega pole võimalik kasutada
hinnanguid, mis eeldavad kogu valimi vastamist. Üldiselt kasutatakse kaoga
hindamisel kalibreeritud hinnanguid. Küsimuseks on, kui palju need erine-
vad kogu valimi pealt leitud hinnangutest (kui see oleks leitav)? Võtame
aluseks kaost tingitud kalibreeritud hinnangu erinevuse kogu valimi pealt
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leitud nihketa hinnangust, tähistame selle vahe ∆r, ja uurime tasakaalu
indeksi IMB mõju ∆r-le.

Artikli peamisteks tulemusteks on tasakaalu indeksi IMB ja ∆r vahelise
seose tuletamine kahel erijuhul:

Tulemus 1. Esimesel juhul eeldatakse, et abiinformatsiooni vektor on in-
dikaator vektor ehk grupivektor, mis määratleb millisesse gruppi valimi-
element kuulub. Sellisel juhul lihtsustuvad hinnangute valemid ning tasa-
kaalu mõõdetakse selle järgi, kui palju vastamismäärad gruppides erinevad
üldisest vastamismäärast.

Töös on näidatud, et ∆r tinglik keskväärtus on teatud tingimustel 0 ja ting-
lik dispersioon on seotud tasakaalu indeksiga IMB. Tasakaalu indeksi IMB
vähenedes väheneb ka ∆r tinglik dispersioon ehk meil on väiksem tõenäosus
saada suur erinevus kalibreeritud hinnangu ja kogu valimi hinnangu vahel.
Osutub, et ∆r tinglik dispersioon sõltub ka uuritava tunnuse ja grupitun-
nuse seosest. Mida paremini grupeerimine seletab uuritavat tunnust, seda
väiksem on ∆r tinglik dispersioon.

Tulemus 2. Teise tulemuse tuletamisel on hetkeks disainipõhise lähenemise
asemel kasutatud mudeli põhist lähenemist ehk uuritavad tunnuse väärtused
on juhuslikud ja juhuslikkust kirjeldab eeldatav mudel. Sellisel juhul saame
loobuda grupivektori eeldusest, järeldused on üsna sarnased Tulemusega
1.

Mõlemaid tulemusi valideeriti simulatsioonidega. Joonis 3.1 illustreerib Tu-
lemus 1 juhtu.

II artikkel

Artiklis käsitleme juhtu, kus andmete kogumist jälgitakse (monitooritakse)
tasakaalu indeksi abil. Täpsemini, teatud ajahetkedel andmete kogumises
arvutatakse tasakaalu indeks ja edasises andmekogumisprotsessis külasta-
takse vaid neid objekte, kes suurendavad vastanute hulga tasakaalu.

Seni on kohanduvate disainide uurimisel kasutatud enamasti üht ja sama
abiinformatsiooni vektorit andmete kogumise ja hindamise etapis. Artiklis
II eeldame, et hindamise etapis on meil kasutada rohkem abitunnuseid kui
andmete kogumise ja monitoorimise etapis. Artiklis toodud uudsetest tule-
muste eristame abitunnused kogu vektoris vastavalt monitoorimises kasuta-
tud abitunnusteks ja lisatud abitunnusteks. Tuletame kalibreerimiskaalud
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nii, et eelnevalt eraldatud vektorite mõju on selgelt näha. Ilmutatud kujul
kaalude abil esitame kalibreeritud hinnangu valemi. Tulemus heidab val-
gust huvitavatele erijuhtudele, nagu täieliku tasakaalu juht, sõltuvuse ja
sõltumatuse juhud lisatud tunnuste ja monitoorimises kasutatavate tunnus-
te vahel.

Simulatsioonides käsitleme kahte huvitavat juhtumit. Esimesel juhul and-
mete kogumist ei monitoorita, keskendutakse hoopis lisa abitunnuste leid-
misele, mida kasutatakse siis hindamise etapis hinnangute parandamiseks.
Teisel juhul keskendutakse andmete kogumisele, lisa abitunnuseid hinda-
mise etapis ei kaasata, kalibreerimis hinnangute leidmisel kasutatakse samu
abitunnuseid, mida monitoorimisel.

Simulatsioonide tulemused näitavad, et kui lisatud abitunnused on tuge-
valt korelleeritud uuritava tunnusega, siis saame esimesel juhul keskmiselt
väiksema nihkega hinnangud võrreldes teise juhuga. Kui aga lisatud abitun-
nused on nõrgalt korelleeritud uuritava tunnusega, siis saame paremad tu-
lemused teisel juhul. Simulatsioonide ülesehitus lubas hinnata ka olukorda,
kus tehakse mõlemaid tegevusi ehk monitooritakse vastanute hulga moo-
dustumist ja hangitakse lisa abitunnuseid hindamise etapiks. Sellisel juhul
saadi paremad tulemused võrreldes eelmise kahe juhuga. Ühtlasi oli näha,
et monitoorimine parandas tasakaalu ka lisatud abitunnuste suhtes.

III artikkel

Eeldame, et meil on ligipääs kahele infoallikale, kus osakogumiteks jagamine
on toimunud erinevate tunnuste järgi. Uues valikuuringus on kogutud and-
mestikus olemas mõlemad osakogumeid moodustavad tunnused ja moodus-
tame ristklassifitseeritud osakogumid. Eelnevatest allikatest teadaoleva info
paigutame marginaalidesse ja nõuame, et osakogumites leitud hinnangud
ühilduksid vastava rea- või veeru marginaalidega. Kooskõla saavutamiseks
kasutame AC-kalibreerimise meetodit (A - auxiliary, C - common), kus pi-
kendame abiinformatsiooni vektorit suurustega, millega soovime kooskõla
saada, ja korduv-kaalumise meetodit (repeated weighting - RW), kus ju-
ba olemasolevad kalibreerimiskaalud (A-informatsiooni abil) kalibreeritakse
ümber C-informatsiooni abil, nii et summeerimiskitsendused oleksid rahul-
datud.

Töös on esitatud valemid, kus uuritavaid tunnuseid võib olla mitu ja need
on esitatud vektorina. Kõik ristklassifitseeritud kooskõlalised osakogumite
hinnangud on leitavad ühe suure maatriksina.
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Simulatsiooniülesandes testiti tuletatud valemeid ja võrreldi AC-kalibreeri-
mise ja RW meetodeid. Selleks tekitati tehislik üldkogum Eesti Leibkonna
Uuringu andmete põhjal. Kolme tunnuse abil moodustati kahemõõtmeline
ristklassidega tabel, kus tuli kokku 12 osakogumit. Meetodite võrdlemiseks
ja headuse hindamiseks kasutati baastasemena Horvitz-Thompsoni hinnan-
guid. Simulatsioonides käsitleti kahte juhtu, kus ühes kasutati täpseid mar-
ginaalsummasid, teises hinnati neid sõltumatust valimist.

AC-kalibreerimise ja RW meetodiga saavutati kooskõla teadaolevate suu-
rustega teistest allikatest. Simulatsioonide tulemustest võib järeldada, et
AC-kalibreeritud ja RW hinnangud on omavahel võrrelduna üsna sarnased,
aga mõlemad olid väiksema standardhälbega kui HT hinnangud.
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