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1. INTRODUCTION 

Glucagon-like peptide 1 (GLP1) is an important regulator of homeostatic pro-
cesses in the alimentary and central nervous systems. GLP1 receptor agonists 
(GLP1RA) have become a popular tool for treating type 2 diabetes mellitus 
(T2DM), displaying benefits beyond their anti-hyperglycaemic action. The key 
benefits of GLP1RAs include a low risk of hypoglycaemia and modest weight 
loss, with some of them having been proven to be protective agents against 
cardiovascular events. Moreover, unconventional therapeutic effects have been 
proposed for the drug class, e.g., neuroprotective effect in Parkinsonʼs (Athauda 
et al., 2017) and Alzheimerʼs disease (Perry & Greig, 2005), alcohol depen-
dence (Thomsen et al., 2017), chemotherapy-induced vascular toxicity (Altieri 
et al., 2017), and septic complications (Steven et al., 2017). GLP1RAs seem to 
affect both peripheral and central targets. The appetite-suppressing and weight-
reducing effects of GLP1 analogues are a combination of GLP1 receptor effects 
on the vagus nerve and in the area postrema, as well as in the underlying 
nucleus of the solitary tract (Secher et al., 2014), and the administration of 
GLP1RAs has been demonstrated to reduce food-induced brain responses (van 
Bloemendaal et al., 2014).  

There are several GLP1RAs approved for the treatment of T2DM. Unlike 
many other anti-diabetic drug classes, distinct GLP1RAs have different thera-
peutic profiles, primarily due to their different pharmacokinetic properties. For 
example, one of the effects of GLP1RA administration is decreased gastric 
motility. It has been demonstrated that tolerance to that effect develops with 
long-acting GLP1RAs but not with the short-acting molecule (Jelsing et al., 
2012). Furthermore, it is well known that gastrointestinal adverse effects, such 
as nausea and vomiting, subside with prolonged treatment (Gamble et al., 
2015). As there is clear evidence that some effects of GLP1RAs are subject to 
tachyphylaxis/tolerance development, it is logical to ask whether the core effect 
of these drugs on glucose regulation may also be affected. We have studied 
whether tolerance develops toward the glucose-lowering effect of GLP1RAs. 

GLP1RAs have been successfully used to treat certain forms of monogenic 
diabetes, which are traditionally managed by sulfonylureas. We have tested 
whether a rare type of diabetes associated with Wolfram syndrome may respond 
to GLP1 receptor agonists. 
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2. LITERATURE REVIEW 

2.1. Glucagon-like peptide 1 

2.1.1. Incretins and “incretin effect” 

The term “incretin” was coined in 1932 by the Belgian physiologist Jean La 
Barre after discovering that an isolated fraction of the gut extract decreased the 
blood glucose level in experimental animals (La Barre, 1932). Since then, many 
decades have passed in the search for those glucose-lowering gut substances. In 
the early 1960s, thanks to the development of radioimmunoassays, several 
nearly simultaneous reports demonstrated that insulin secretion is much greater 
in response to oral glucose administration than intravenous glucose administra-
tion (Elrick et al., 1964; Mcintyre et al., 1964). The phenomenon became 
known as “the incretin effect” (Rehfeld, 2018). Gastric inhibitory peptide (GIP) 
was discovered in 1970 and named based on its ability to inhibit gastric acid 
secretion (Brown et al., 1970). However, later studies demonstrated that GIP 
could stimulate insulin secretion under physiological conditions (Dupre et al., 
1973); the hormone was renamed glucose-dependent insulinotropic polypeptide 
(GIP) to retain the acronym. In 1983 the human glucagon gene was cloned and 
sequenced, which led to the discovery that the prohormone proglucagon con-
tained, in addition to the pancreatic glucagon, two novel peptides. The peptides 
were named glucagon-like peptide 1 and glucagon-like peptide 2 (GLP2) 
because of the structural similarities with glucagon (Bell et al., 1983). Although 
the original definition suggests that incretin is any gut hormone that stimulates 
the secretion of hormones from the pancreatic endocrine cells, the narrower 
definition is used nowadays. Incretins are the gut hormones that, in a glucose-
dependent manner, stimulate insulin secretion. To date, only GIP and GLP1 ful-
fil the definition; they additively stimulate insulin secretion and contribute 
equally to the incretin effect (Baggio & Drucker, 2007). 
 
 

2.1.2. GLP1 synthesis, secretion, and clearance 

Synthesis: GLP1 is produced by the proteolytic cleavage of its precursor pro-
glucagon (Fig. 1). Proglucagon, precursor molecule for various hormones, is en-
coded by the proglucagon gene (GCG), which is expressed in multiple cells, 
prevailingly in pancreas alpha-cells, intestine enteroendocrine L-cells, and in 
brainstem neurons (Drucker & Asa, 1988; Mojsov et al., 1986; Nian et al., 
1999). Proglucagon proteolytic cleavage is a tissue-specific process because of 
selective expression of the prohormone convertase (PC) and results in different 
products in different locations. In neurons and enteroendocrine L-cells, mostly 
prohormone convertase 1 (PC1) is expressed; therefore, the cleavage products 
are GLP1, GLP2, oxyntomodulin, glicentin, and intervening peptide 1 (IP1). In 
pancreatic alpha cells, PC2 is expressed, and proglucagon is cleaved into 
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glucagon, IP1, major proglucagon fragment (MPGF), and glicentin-related 
pancreatic polypeptide (GRPP) (Holst et al., 1994; Rouille et al., 1995).  

Several proglucagon-derived peptides have important functions in regulating 
metabolism, whereas others seem inactive (Holst et al., 1994). GLP1 is pro-
duced as a larger inactive molecule GLP11-37, which is amidated or cleaved to 
the bioactive “truncated” isoform-amidated GLP1 (GLP17-36) or glycine-
extended GLP1 (GLP17-37) soon after synthesis. Both “truncated” isoforms are 
equally potent in stimulating insulin secretion (Holst et al., 1987). The ratio of 
GLP1 isoforms differs significantly between species. In humans, GLP17-36 
contributes about 80% of synthesised GLP1, and GLP17-37 contributes about 
20% (Ørskov et al., 1989). In rats, the ratio is 50/50, whereas, in mice, the 
GLP1 is exclusively amidated (Kuhre et al., 2014). 

 

 
Figure 1. Tissue-specific proglucagon processing. GLP1 is encoded by the proglucagon 
gene (GCG) and cleaved by its precursorʼs preproglucagon and glucagon (Baggio & 
Drucker, 2007; Müller et al., 2019). Proglucagon post-translational processing is a 
tissue-specific process mediated by PC1 (in the brain and intestine) or PC2 (in 
pancreatic alpha-cells). IP1 – intervening peptide 1, GRPP – glicentin-related pancreatic 
polypeptide; PC – prohormone convertase, MPGF – major proglucagon fragment. 
 
 
Secretion: GLP1 is produced in the gastrointestinal tract, nervous system, and 
pancreas. Most GLP1 is made in the intestine by enteroendocrine L-cells as a 
response to food ingestion. L-cells are located in the intestinal epithelium, with 
higher density in the ileum and colon (Bryant et al., 1983). GLP1 secretion 
occurs as a response to food intake in a biphasic pattern starting with an early 
phase (within 10–15 minutes) and followed by the prolonged second phase (30-
60 minutes). Food consumption is the most potent stimulus for GLP1 secretion. 
Early rapid secretion is indirectly mediated by combining endocrine and neural 
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signals and the prolonged phase directly by contact between nutrients and L-
cells (Eissele et al., 1992; Herrmann et al., 1995). 

GLP1 is also produced in the pancreas, mainly in alpha-cells. In physio-
logical conditions, pancreatic alpha-cells mainly produce glucagon, whereas, 
during metabolic stress, more GLP1 is produced (Nie et al., 2000). The mecha-
nism seems essential to compensate for increased beta-cell functional demand 
under insulin resistance or cellular stress (Thyssen et al., 2006). 

In the central nervous system (CNS) GLP1 is produced by the neuronsʼ 
specific population. Those neurons are mainly located in the nucleus tractus 
solitarius (NTS) and have projections to numerous regions of the brain (Drucker 
& Asa, 1988; Larsen et al., 1997). GLP1-producing neurons store GLP1 in the 
axon terminal as a neurotransmitter (Zheng et al., 2015). 
 
Clearance: Native GLP1 half-life is short, approximately 1-2 minutes (Hui et 
al., 2002). It is hydrolysed by the enzyme dipeptidyl-peptidase 4 (DPP4) or 
eliminated by the kidneys. DPP4 cleaves GLP17-36 and GLP17-37 at the N-ter-
minal dipeptide. During the hydrolysis, two metabolites are generated, GLP19-36 
or GLP19-37, both low-affinity ligands to the GLP1 receptor. Inactive metabo-
lites are cleared from the circulation via renal elimination (Kieffer et al., 1995; 
Mentlein et al., 1993). The clearance of GLP1 varies in different species. Com-
pared to humans, in mice, the half-life of GLP1 is even lower (Windeløv et al., 
2017). 
 

2.1.3. GLP1 receptor 

GLP1 receptor (GLP1R) belongs to the secretin/glucagon receptorsʼ superfami-
ly and is encoded by the GLP1R gene. It is a heterotrimeric G-protein coupled 
receptor located in the cell membrane (Mayo, Miller, Bataille, 2003). A single 
structurally identical GLP1R has been identified. GLP1R has several endo-
genous ligands, such as GLP1 and glucagon. In contrast, GLP1 exclusively 
binds to GLP1R (Thorens, 1992). 

The GLP1Rs have been discovered in various tissues, including the pancreas, 
nervous system, heart, kidney, lung, adipose tissue, and smooth muscle (Andersen 
et al., 2018). In the pancreatic islets, GLP1R is robustly expressed in beta-cells, 
moderately in delta-cells, and absent or expressed only in the small proportion in 
alpha-cells (Adriaenssens et al., 2016; Gray et al., 2020). Also, GLP1R is 
expressed in the pancreatic acinar cells (Hou et al., 2016).  

GLP1 is produced only in a small population of neurons, whereas GLP1 
receptors are widely distributed throughout the central nervous system. The 
exceptionally high expression of GLP1 receptors has been shown in the ventro-
medial hypothalamus, nucleus paraventricularis, nucleus arcuatus, hippo-
campus, thalamus, amygdala, putamen caudatum, and globus pallidum (Musco-
giuri et al., 2017). 
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2.1.4. Physiological effects of GLP1  

Endocrine pancreas: GLP1 produces several biological actions in the different 
organ systems (Fig. 2). The best-known action is stimulation of insulin secretion 
in pancreatic beta-cell and suppression of glucagon release in alpha-cell. The 
action is glucose-dependent and leads to decreased blood glucose levels 
(Scrocchi et al., 1996).  

GLP1 binding to its receptor on pancreatic beta-cells leads to activation of 
adenylate cyclase (AC) and production of cyclic adenosine monophosphate 
(cAMP). Subsequently, cAMP mediates its effects by (1) increasing intracellu-
lar Ca2+, adenylate cyclase, and phospholipase C and (2) activation of protein 
kinase A (PKA), protein kinase C, phosphatidylinositol 3 kinase (PI3K), Epac2, 
and MAPK signal transduction pathways (Nauck et al., 1993).  

 
 

 
Figure 2. Physiological effects of GLP1. GLP1 is secreted from the GI tract as a 
response to food consumption. GLP1 has several metabolic effects. GLP1 mediates its 
effects by an endocrine (or paracrine) regulator or in the CNC as a neuromediator.  
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GLP1 also acts synergistically with glucose to promote insulin gene transcrip-
tion and biosynthesis. Those mechanisms contribute to the refilling of beta-cell 
insulin stores. Different mechanisms have been identified, such as activating 
nuclear factor of activated T cells (NFAT) and pancreas duodenum homeobox 1 
(Pdx1), transcription factors which are essential for pancreatic development and 
functioning. Moreover, the receptor-ligand binding activates early gene expres-
sion mechanisms, which lead to cell proliferation and survival (Mayo, Miller, 
Bataille, 2003). 

GLP1 also inhibits glucagon and stimulates somatostatin secretion. The 
stimulatory effect of GLP1 on somatostatin secretion is caused by direct inter-
action with somatostatin-secreting pancreatic delta-cell (Fehmann & Habener, 
1991). On the other hand, the inhibitory effect on glucagon secretion seems to 
be indirect since GLPR gene expression is absent in pancreatic alpha-cells 
(Adriaenssens et al., 2016; Gray et al., 2020). Moreover, multiple products 
secreted from beta-cells (insulin, Zn, GABA) inhibit glucagon secretion and 
might contribute to the GLP1R-dependant inhibition of alpha-cell secretory 
activity (Drucker, 2018). 
 
Gastrointestinal tract: GLP1 decelerates gastric motility and emptying, which 
contributes to postprandial glucose control. The mechanisms underlying those 
actions involve central and peripheral nervous system communication, espe-
cially the activation of ascending vagal afferents (Imeryüz et al., 1997). More-
over, GLP1 regulates acid secretion in the stomach and secretion of digestive 
enzymes in the exocrine pancreas. GLP1 receptors are expressed in the stomach 
on gastric parietal cells and directly regulate gastric acid secretion (Schmidtler 
et al., 1994). In the pancreatic acinar cells, where GLP1 receptors are also ex-
pressed, GLP1 regulates digestive enzyme secretion by increasing the enzyme 
concentration in the pancreatic secrete (Hou et al., 2016). 
 
Nervous system: GLP1 receptors and GLP1-containing neurons are present in 
CNS regions regulating various homeostatic functions such as feeding beha-
viour, gastric motility, glucose regulation, and cardiovascular function. More-
over, GLP1 signalling is associated with regulating multiple neurological and 
cognitive functions. Although the GLP1 molecule can diffuse passively throw 
the blood-brain barrier, itsʼ rapid degradation makes direct action of peri-
pherally secreted GLP1 in the CNS unlikely. There are three different ways in 
which GLP1 might affect the nervous system: (1) indirectly, by peripherally-
secreted GLP1 activating the vagus nerve (Rüttimann et al., 2009); (2) by 
accessing the brain via the circumventricular organs, such as the area postrema, 
subfornical organ, median eminence and choroid plexus (Muscogiuri et al., 
2017; Ørskov et al., 1996); and (3) as a neuromediator when centrally produced 
GLP1 binds to the GLP1 receptors in different parts of the nervous system. 

GLP1 mediates inhibition of food intake, which may lead to weight loss. 
GLP1 anorexic effects are most likely mediated by a combination of direct and 
indirect actions. Peripherally secreted GLP1 binds to the receptors in enteric and 
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vagal sensory neurons that transmit signals to the brain stem and hypothalamus 
appetite-regulating centres (Hayes, Kanoski, et al., 2011; Rüttimann et al., 
2009). Also, centrally produced GLP1 mediates its direct actions as a neuro-
mediator by activating neurons in brain areas expressing GLP1R. For example, 
activation of GLP1 receptors in the hindbrain and cortical food reward centres 
in the mesolimbic reward system leads to decreased food intake and weight loss 
(Alhadeff et al., 2012; Hayes, Leichner, et al., 2011). Moreover, GLP1 is pro-
duced in the oral taste cells, and GLP1 receptors are expressed on taste nerve 
fibres, which leads to the assumption that GLP1 is associated with mediating 
taste sensation, mechanism, which may also contribute to the food consumption 
regulation (Muscogiuri et al., 2017; van Bloemendaal et al., 2014). Studies 
demonstrate that GLP1-producing neurons are also activated in stress situations 
and, therefore, may play a part in a risk assessment system (McLean et al., 
2020). 

GLP1R signalling has been associated with neuroprotective processes, such 
as anti-apoptotic actions and enhanced neuronal differentiation and proliferation 
(Perry, Haughey, et al., 2002; Perry, Lahiri, et al., 2002). Moreover, GLP1R-
dependent pathways may be involved in memory and learning processes as 
these are expressed widely in the corresponding brain areas (During et al., 
2003).  
 
Other organs: In addition to regulating glucose metabolism, gastric emptying, 
and food intake, emerging evidence shows GLP1 involvement in various other 
physiological effects. In the kidney GLP1 produces natriuretic and diuretic 
responses which are associated with increase in glomerular filtration rate and 
inhibition of sodium reabsorption in the proximal tubule.(Gutzwiller et al., 
2004; Kodera et al., 2011). GLP1 has been related to the activity of the 
hypothalamic-pituitary-adrenal axis and is known to increase corticosterone, 
aldosterone, and adrenocorticotropin levels (Gil-Lozano et al., 2010; Herman, 
2018). In addition, GLP1 signalling has been implicated in cardiac development 
and functioning (Gros et al., 2003), apoptosis, inflammation, and adipogenesis, 
to name a few (Bose et al., 2005; Buteau et al., 2004; Challa et al., 2012; Li et 
al., 2003). 
 

2.2. GLP1 receptor agonists 

2.2.1. Drug development 

In 1932 when La Barre coined the term “incretin”, he also suggested that this 
concept of gut hormones lowering the blood glucose levels could be used to 
treat diabetes mellitus (Barre, 1936). Thus, the idea of incretin-based therapy is 
nearly a century old. GLP1 signalling system has been a fruitful drug target for 
the treatment of T2DM. Given in physiological and supraphysiological con-
centrations, GLP1 stimulates insulin secretion, inhibits glucagon release, delays 
gastric emptying, and reduces food intake. Due to its short half-life, GLP1, as 
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the natural peptide, is not a beneficial therapeutic agent (Ritzel et al., 1995). 
Two main classes of drugs have been developed based on the incretin system: 
GLP1 receptor agonists (GLP1RA) and DPP4 inhibitors. Clinically used drugs 
are modified GLP1 analogues with improved pharmacokinetic properties (Dea-
con et al., 1998) and DDP4 inhibitors as “incretin enhancers”, which inhibit the 
enzyme DPP4 resulting in the extended circulation of endogenous GLP1 and 
GIP (Holst & Deacon, 1998). The first GLP1RA, exenatide, was introduced to 
the clinical practice in 2005; the first DPP4 inhibitor, sitagliptin, was a year 
later (Drucker & Nauck, 2006). Since then, multiple GLP1RAs have been 
approved by the US Food and Drug Administration (FDA) and European 
Medicines Agency (EMA), and several molecules are in development. One 
avenue of further drug development is investigating molecules that address not 
only GLP1 receptors but a second or even third receptor, such as glucagon, GIP, 
or peptide YY receptor (Baggio & Drucker, 2020; Frias et al., 2018). 
 
 

2.2.2. Pharmacokinetics 

Compared to native GLP1, all GLP1RAs are resistant to DPP4 enzymatic de-
gradation. Also, they have structural differences that lead to slower elimination 
and a longer half-life. Depending on the drugʼs pharmacokinetics, GLP1RAs 
are classified as short-acting and long-acting GLP1RAs (Drucker & Nauck, 
2006). Short-acting GLP1RAs, exenatide, and lixisenatide have a half-life of 
about 60–90 minutes. They are administered twice daily (exenatide) or once 
daily (lixisenatide) and are effective in far less than 24 hours. Long-acting 
GLP1RAs have a significantly longer half-life and are administered once-daily 
(liraglutide, semaglutide p.o form) or once-weekly (dulaglutide, exenatide LAR, 
albiglutide, semaglutide s.c form) (Tran et al., 2017). Different mechanisms are 
used to achieve a prolonged half-life: embedding drug into biodegradable 
microspheres (exenatide LAR), increasing affinity for albumin binding by 
adding a fatty acid chain (liraglutide, semaglutide s.c, albiglutide) or an immu-
noglobulin fragment (dulaglutide, efpeglenatide) to the drug molecule (Ryan et 
al., 2013; Tran et al., 2017). Moreover, implantable subdermal osmotic mini-
pump ITCA 650 has been developed to provide continuous exenatide release for 
up to 12 months (Henry et al., 2014). 

GLP1RAs are generally not suitable for oral administration as peptide mole-
cules and are administered as subcutaneous injections. Semaglutide, the newest 
GLP1 in the market, has an advanced oral administration formula, but the 
bioavailability is still very low (0,4–1%) (Brayden et al., 2020; Hall et al., 
2018). Subcutaneous bioavailability of GLP1RAs is relatively high, reaching 
from 62% for exenatide to 94% for semaglutide. Clearance of the GLP1RAs 
occurs primarily by glomerular filtration with tubular proteolysis (exenatide, 
lixisenatide) or through the metabolic pathway of large plasma proteins (long-
acting GLP1RAs) (Hall et al., 2018; Handelsman et al., 2018). The key 
characteristics of GLP1RAs are provided in Table 1. 



18 

Table 1. Characteristics of glucagon-like peptide 1 receptor agonists (Hall et al., 2018; 
Henry et al., 2014; Nauck et al., 2020; Prato et al., 2018). IR – immediate-release,  
LAR – long-acting release, FDA – Food and Drug Administration, EMA – European 
Medicines Agency, p.o – orally, s.c – subcutaneously. 

GLP1 Approved Half-life Structure Administration 
Exenatide IR 2005 (FDA)/ 

2006 (EMA) 
2.4 h Exendin 4 analogue Twice daily, s.c 

Liraglutide 2009 (EMA)/ 
2010 (FDA) 

13 h GLP1 analogue with 
free fatty acid 

Once daily, s.c 

Exenatide 
LAR 

2011 (EMA)/ 
2012 (FDA) 

2 weeks Exendin 4 analogue 
encapsulated in 
microspheres 

Once weekly, s.c 

Albiglutide 2014 5 days GLP1 analogue with 
albumin 

Once weekly, s.c 

Dulaglutide 2014 5 days GLP1 analogue with 
immunoglobulin Fc 
fragment 

Once weekly, s.c 

Lixisenatide 2013 (EMA)/ 
2016 (FDA) 

3 h Exendin 4 analogue 
with poly-lysine tail 

Once daily, s.c 

Semaglutide 2017 (FDA)/ 
2019 (EMA) 

1 week GLP1 analogue with 
free fatty acid 

Once weekly, s.c 

Semaglutide 
oral 

2019 1 week GLP1 analogue with 
free fatty acid 

Once daily, p.o 

Efpeglenatide In development 1 week GLP1 analogue with 
immunoglobulin Fc 
fragment 

Once weekly, s.c 

 
 

2.2.3. Pharmacodynamics 

2.2.3.1. Mechanism of glucose-dependent stimulation  
of insulin secretion 

All GLP1 receptor agonists have a common mechanism of action – binding and 
activating the GLP1 receptor. The GLP1 receptor is widely expressed in the 
pancreas, especially in beta-cells. The activation of the pancreatic beta-cell 
GLP1 receptor leads to increased insulin secretion and exocytosis in a glucose-
dependent manner. Moreover, chronic activation of the GLP1 receptor leads to 
stimulation of insulin gene transcription, islet cell growth, and neogenesis 
(Müller et al., 2019). 
 
Mechanisms of insulin release: GLP1 exerts its insulinotropic effects by 
stimulating the formation of cAMP, its primary effector, and activating down-
stream pathways coupled to protein kinase A (PKA) and PKA-independent 
activation of guanine nucleotide exchange factor (GEF). Many different mecha-
nisms have been described how GLP1 synergises with glucose and stimulates 
insulin secretion, whereas the exact functioning of the system and pathways 
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involved are yet to be discovered. Glucose-stimulated insulin secretion (GSIS) 
is regulated by several ionic (KATP-dependent) and non-ionic (KATP-indepen-
dent) pathways: 

KATP-dependent pathways: GLP1 stimulates insulin secretion by regulating 
the activity of several ion channels in the beta-cell membrane involved in KATP-
dependent pathways. The mechanisms are: (1) inhibiting KATP channels leading 
to beta-cell membrane depolarisation; (2) increasing intracellular Ca2+ levels by 
increasing ion influx, and (3) mobilising intracellular Ca2+ storage; (4) closing 
K+ channels preventing membrane repolarisation (MacDonald et al., 2002; 
Meloni et al., 2013).  

KATP-independent pathways: Glucose can exert a stimulatory effect on insu-
lin exocytosis, independent of its actions initiated by KATP channelsʼ inhibition. 
Those mechanisms involve several signals that act on non-ionic targets, parti-
cularly the distal steps of insulin exocytosis. For this stimulatory effect, glucose 
metabolism is required and is mediated by ATP, cAMP, PKA, glutamate, and 
malonyl-CoA (MacDonald et al., 2002; Portha et al., 2011; Rowlands et al., 
2018). 
 
Effects on other islet cells: Also, GLP1 inhibits glucagon and stimulates soma-
tostatin secretion. The stimulatory effect on somatostatin is likely related to 
direct interaction with GLP1R on somatostatin-secreting pancreatic delta-cells 
(Fehmann & Habener, 1991). In contrast, mechanisms for inhibiting glucagon 
secretion are less clear. 
 
 

2.2.3.2. Tolerance toward GLP1RAs effects 

Whether and how tolerance toward GLP1RAs develops is not fully understood. 
In vitro experiments have shown that the GLP1 receptor has the capacity for 
rapid desensitisation (Fehmann et al., 1991; Gromada et al., 1996; Widmann et 
al., 1996). In theory, GLP1RAs with dramatically prolonged exposure to GLP1 
receptor, compared to native GLP1, may have an enhanced capacity to desen-
sitise the receptors. Likewise, the phenomenon of tolerance has been demon-
strated in the case of gastric effects – sustained GLP1R agonism leads to rapid 
receptor desensitisation (tachyphylaxis) and diminished inhibition of gastric 
motility (Jelsing et al., 2012; Nauck et al., 2011). Evidence for GLP1RAs 
tolerance toward glucose-lowering effect is vague. In our previous studies in 
mice, it seemed that some degree of tolerance might develop toward the 
glucose-lowering effect, but not toward the corticosterone stimulating effect of 
exenatide and liraglutide (Krass et al., 2015). Nauck et al. demonstrated that the 
effect of GLP1 infusion on postprandial glucose was already diminished after 6 
hours, but the change was probably mediated by gastric emptying (Nauck et al., 
2011). Another study reported a trend of weakening of anti-hyperglycaemic 
effects of GLP1RAs after chronic dosing, but authors attributed it to the change 
in food intake (Baggio et al., 2004). Tudurí et al. demonstrated that, in mice, 
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acute activation of brain GLP1 receptors enhanced glucose-stimulated insulin 
secretion, whereas chronic activation did not affect insulin secretion or glucose 
tolerance (Tudurí et al., 2015). In addition, Rolin et al. demonstrated in diabetic 
mice models GLP1RAs diminished glucose-lowering effect after prolonged 
dosing (Rolin et al., 2002). 
 
 

2.2.3.3. Clinical effects of GLP1RAs  

Glucose control in T2DM: Anti-hyperglycaemic effect is achieved by multiple 
mechanisms, including glucose-dependent stimulation of insulin release, inhi-
bition of glucagon release, and decreased gastric emptying. The treatment of 
T2DM with GLP1RAs results in improved glycaemic control, as indicated by 
reduced haemoglobin A1c (HbA1C) and fasting glucose levels (Zander et al., 
2002). Treatment with GLP1RAs achieves the lowering of HbA1c by 0.5–1.5% 
(Gamble et al., 2015). Short-acting GLP1RAs are inferior compared to long-
acting GLP1RAs in reducing HbA1c and fasting plasma glucose levels, whereas 
they have a comparable effect on postprandial glucose levels (Madsbad, 2016).  
GLP1 inhibits beta-cell death, induces beta-cell proliferation, and promotes 
beta-cell mass expansion in experimental models of diabetes; it is speculated 
that sustained treatment with GLP1RAs might preserve and enhance beta-cell 
function, thereby resulting in a disease-modifying activity. Although in clinical 
trials modest improvements in beta-cell function have been occasionally 
reported, these have not been robust, and thus, current data do not prove the 
hypothesis (Drucker, 2018). 
 
Effect on food consumption and body weight: Treatment with GLP1RA is 
associated with anorexigenic effects, food consumption reduction, and weight 
loss in diabetic and non-diabetic overweight individuals (Drucker & Nauck, 
2006). In long-term clinical trials, the average weight loss using GLP1RAs is 
approximately 2–3 kg (Vilsbøll et al., 2012). The weight loss is dose-dependent 
and progressive, independent of nausea and other gastrointestinal adverse 
effects (Amori et al., 2007). Interestingly, the weight loss can be further aug-
mented by increasing the dose of GLP1RAs above the doses used in diabetes 
treatment (Nauck et al., 2016; Pi-Sunyer et al., 2015). Although GLP1RAs 
activate brown fat tissue in preclinical experiments and increase energy expen-
diture in rodents (Osaka et al., 2005), clinical trials with human subjects do not 
show a significant increase in fat oxidation or energy expenditure using 
GLP1RAs (Harder et al., 2004; Horowitz et al., 2012). The available evidence 
suggests that weight loss in humans is mainly connected to reducing food 
consumption (Faerch et al., 2015). 
 
Cardiovascular benefits: Treatment with GLP1RAs is associated with im-
provements in several cardiovascular risk factors, such as blood pressure and 
serum lipid concentration (Bethel et al., 2018; Marso et al., 2016), and in large-
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scale cardiovascular outcome trials (CVOT), some of the long-acting GLP1RAs 
(liraglutide, dulaglutide, semaglutide) have shown a positive effect in reducing 
major adverse cardiovascular events (MACE) (Goldman, 2020; Marso et al., 
2016). Interestingly, the effects do not expand to all GLP1RAs as lixisenatide 
had no effect on MACE, and trials with exenatide long-acting release (LAR) did 
not reach clear statistical significance in principal outcome (Holman et al., 
2017; Pfeffer et al., 2015). Whether the cardiovascular effects are mediated 
directly by the activation of GLP1R in the heart, found in the left ventricle, the 
sinoatrial node, and endothelium, or indirectly by modifying cardiovascular risk 
factors (weight, blood pressure, lipid-profile) or anti-inflammatory pathways 
have not been fully identified (Cornell, 2020). However, GLP1RAs increase the 
heart rate of non-diabetic humans, and no apparent adverse outcomes have been 
detected in individuals with T2DM (Cornell, 2020; Smits et al., 2017). 
 
Actions in the liver: Although GLP1 receptors are not expressed in hepatocytes 
and expression in other non-hepatocyte liver cells is uncertain, GLP1RAs have 
many effects on the liver (Pyke et al., 2014). Preclinical and clinical data have 
demonstrated GLP1RAs positive impact in non-alcoholic steatohepatitis as 
reducing hepatic steatosis and decreasing its progression (Panjwani et al., 2013; 
Petit et al., 2016). As hepatocytes do not express GLP1R, the actions are 
probably indirect and mediated by neural circuits, GLP1R-dependant reduction 
in postprandial lipidaemia, glycaemia, and inflammation or, given the impor-
tance of weight loss in the treatment of non-alcoholic fatty liver disease 
(NASH), is mediated by the weight loss (Drucker, 2018). 
 
Actions in the kidney: Collective evidence suggests that GLP1RAs have direct 
actions in the kidney. GLP1RAs induce diuresis and natriuresis and are 
associated with renoprotective effects beyond modulating metabolic risk factors 
for kidney disease (Crajoinas et al., 2011; Gutzwiller et al., 2004; Kodera et al., 
2011; Steven P. Marso et al., 2016; Tuttle et al., 2018). However, the possible 
renoprotective mechanisms are not entirely understood. It is hypothesized that 
GLP1 receptor activation can protect the vascular endothelium reducing 
oxidative stress and local inflammation responses, ameliorating albuminuria and 
glomerular sclerosis (Cornell, 2020; Kodera et al., 2011; Sarafidis et al., 2019). 
 
Actions in the nervous system: GLP1RAs are associated with anorexigenic 
effect, reward processing system, memory and learning, and range of neuropro-
tective abilities. Moreover, peripherally administered GLP1RAs stimulate the 
hypothalamic-pituitary-adrenal (HPA) axis and increase circulating corticoste-
rone, aldosterone, and adrenocorticotropic hormone (ACTH) levels (Gil-Lozano 
et al., 2010). GLP1R signalling is also associated with memory and learning. 
Central signalling of GLP1R has been demonstrated to have neuroprotective 
properties (Perry, Haughey, et al., 2002; Perry, Lahiri, et al., 2002). So far, 
neuroprotective effects have been demonstrated only in in vivo experiments and 
animal studies. If those findings would be translatable to human subjects, they 
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could be potentially helpful in neurodegenerative diseases, such as Alzheimerʼs 
disease. 
 

2.2.3.4. Adverse effects, safety, and tolerability 

The most common adverse effects using GLP1RAs are gastrointestinal distur-
bances, namely, mild to moderate nausea, diarrhoea, and vomiting. Up to 50% 
of individuals experience gastrointestinal disturbances during the treatment with 
GLP1RAs (Drucker & Nauck, 2006). Gastrointestinal adverse effects are 
thought to be due to the inhibition of gastric motility and emptying. Both short- 
and long-acting GLP1s are associated with actions in the gastrointestinal tract; 
however, long-acting GLP1RAs effects seem to diminish over time due to the 
rapid development of tachyphylaxis and GLP1 receptor desensitisation (Nauck 
et al., 2011). Those adverse effects are dose-dependent, peaking during the 
initial weeks and decline after that (Gamble et al., 2015). Using titration regi-
mes with slower escalation to effective doses decreases the rates of nausea and 
vomiting. As GLP1RAs may delay gallbladder emptying, they are associated 
with a higher risk of gallbladder diseases, such as cholecystitis (Pizzimenti et 
al., 2016). Hypoglycaemia, a common and dangerous adverse effect in many 
anti-diabetic drugs, is uncommon in GLP1RAs since the drug classʼs insulin-
releasing effect is glucose-dependent. 

Since the introduction of GLP1RAs in clinical practice, concerns about the 
drug class safety have been raised. GLP1RAs have been associated with 
pancreatitis and increased malignancy risk (pancreatic cancer, medullar thyroid 
cancer, colorectal neoplasms). Although anecdotal evidence from small clinical 
studies and preclinical experiments raised some concerns, no large-scale safety 
studies have confirmed the causal link between GLP1RA use and pancreatic 
diseases or malignancy (Egan et al., 2014). 
 
 

2.2.4. Clinical use 

Over the past 15 years, the popularity of GLP1RAs has tremendously increased 
as medications for T2DM and obesity. GLP1RAs are not yet a first-line 
treatment for T2DM in patients who are inadequately controlled with diet and 
exercise. Usually, GLP1RAs are the preferred drugs after metformin in patients 
with established cardiovascular disease or high cardiovascular risk factors (Buse 
et al., 2020). In some guidelines, GLP1RAs are the first-line treatment for 
patients with T2DM and comorbid obesity (Cosentino et al., 2020). According 
to international recommendations, 30–60% of patients with T2DM would quali-
fy for treatment with GLP1RA. However, in reality, only 1–10% of patients 
receive the treatment. Limitations for the broader use of GLP1RAs are probably 
the relatively high price and administration route (Nauck et al., 2020).  In addi-
tion to treatment for adult patients with T2DM, liraglutide is approved for 
treating obesity in adults and adolescents since 2014 and the treatment of 
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T2DM in children since 2019 (Nuffer & Trujillo, 2015; Tamborlane et al., 
2019). 

Interest in using GLP1RAs goes beyond T2DM and obesity because of their 
favourable safety profile and wide range of beneficial effects. GLP1RAs appear 
promising for treating non-alcoholic steatohepatitis (Panjwani et al., 2013; Petit 
et al., 2016). GLP1RAs, associated with neuroprotection, are investigated to 
treat neurodegenerative diseases, such as Alzheimerʼs and Parkinsonʼs disease 
(Athauda et al., 2017; Perry & Greig, 2005). In psychiatry, the positive effects 
of GLP1RAs have been shown in animal models of psychosis and alcohol 
dependence (Dixit et al., 2013; Marty et al., 2020) and in pilot clinical trials for 
eating disorders (Da Porto et al., 2020). In treatment optimisation, a new ap-
proach is combining GLP1RAs with another glucose-lowering agent for 
improved cardiovascular outcomes. Such combinations have been studied with 
SGLT2 inhibitors (Frías et al., 2016). 
 
 

2.3. Wolfram syndrome 

2.3.1. The clinical manifestations of Wolfram syndrome 

Wolfram syndrome (WS) is a rare genetic disorder affecting multiple organ 
systems. The syndrome was described and named by Dr. Wolfram in 1938 
when he presented a study of diabetes mellitus and optic nerve atrophy in four 
siblings (Wolfram, 1938). Wolfram syndrome is also known by the acronym 
DIDMOAD, indicating its main clinical manifestations – developing diabetes 
insipidus, diabetes mellitus, optic nerve atrophy, and deafness (Barrett & 
Bundey, 1997). The prevalence of Wolfram syndrome is estimated to be 
between 1/700,000 in the UK and Japan 1/1,000,0000 in North America and 
Italy (Barrett et al., 1995; Lombardo et al., 2014; Matsunaga et al., 2014; Rigoli 
et al., 2020). 

WS is a progressive neurodegenerative and endocrine condition. The main 
clinical manifestations are described in Table 2. The childhood manifestations 
are usually diabetes mellitus and optic nerve atrophy. During the second decade 
of life, diabetes insipidus occurs; third-decade renal tract abnormalities; and 
fourth-decade neurological complications such as cerebellar ataxia and myo-
clonus. Comorbidity with psychiatric diseases is high, whereas depression and 
affective disorders are the most common. The prognosis is poor; life expectancy 
is about 30–40 years. Death occurs by respiratory failure due to brain stem 
atrophy and neurodegeneration (Minton et al., 2003). Suicide is more common 
in patients with WS than in the general population (Sequeira et al., 2003). 
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Table 2. The clinical manifestations of Wolfram syndrome (Barrett et al., 1995; Minton 
et al., 2003; Pallotta et al., 2019). T1DM – type 1 diabetes mellitus, HbA1c – haemo-
globin A1c. 

Major clinical 
sign 

Clinical sign description The average 
age of 
diagnosis 

Frequency 

Diabetes mellitus Compared to T1DM slower 
progression, longer duration of 
remission, lower insulin 
requirements, and HbA1c level, 
ketoacidosis is rare; episodes of 
severe hypoglycaemia are frequent 

6 years 100% 

Optic nerve 
atrophy 

Progressive decrease of visual acuity, 
colour vision defect 

10–11 years 100% 

Diabetes insipidus Cranial form 14–15 years 40-75% 
Hearing loss Sensorineural, progressive, affecting 

high frequencies 
16 years 50-60% 

Neurological 
manifestations 

Cerebellar ataxia, dysarthria, 
dysphagia, areflexia, epilepsy 

15 years 60% 

Urinary tract 
problems 

Incontinence, urinary infections, 
renal dysfunction 

20 years 60% 

Psychiatric 
symptoms 

depression, psychosis, anxiety 20–30 years 60% 

Autosomal 
dysfunction 

central apnoea, dysphagia, areflexia, 
gastroparesis 

20 years 60% 

 
 
WS is classified as an endoplasmic reticulum (ER) disease. The disease trans-
mission occurs in an autosomal recessive manner, but autosomal dominant 
mutations responsible for WS-related disorders have also been described 
(Pallotta et al., 2019). Two causative genes (WFS1 and WFS2) have been iden-
tified. The WFS1 gene is associated with Wolfram syndrome (sometimes 
referred to as Wolfram syndrome 1) and WFS2 with Wolfram syndrome 2. 
Wolfram syndrome 2 is similar to childhood-onset diabetes mellitus and optic 
atrophy, with distinctive gastrointestinal ulcers and bleeding and absence of 
diabetes insipidus (Al-Sheyyab et al., 2001). Even though dominant WFS1 
mutations are rare, genome-wide association studies have shown that carriers of 
heterozygous WFS1 mutations may have an increased risk for the development 
of type 2 diabetes and other Wolfram syndrome-associated disorders (psychiat-
ric disease, hearing loss) (Chaussenot et al., 2011; Sandhu et al., 2007). 
 
 

2.3.2. WFS1 gene and WFS1 protein 

In 1998, two separate groups identified the Wolfram Syndrome gene. Inoue group 
from Japan called the gene WFS1, and Stromʼs group from Germany named it 
wolframin (Inoue et al., 1998; Strom et al., 1998). WFS1 gene comprises eight 
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exons, spanning 33.4kb of genomic DNA, and is located in the short arm of the 
4th chromosome in humans and the long arm of the 5th chromosome in mice. The 
gene is widely expressed in various tissues, such as the pancreas, heart, brain, 
lung, liver, kidney, skeletal muscle, and placenta. The human WFS1 gene has 
87% homology with the mouse Wfs1 gene (Inoue et al., 1998; Strom et al., 1998). 

The WFS1 gene encodes the protein WFS1 (wolframin). WFS1 is a membra-
ne glycoprotein that is primarily localised in the ER membrane. It is an 890-
amino acid protein and has nine transmembrane segments across the ER 
membrane (Takeda et al., 2001).  

In Wolfram syndrome, a wide range of mutations in the WFS1 gene have 
been described to produce dysfunctional protein. Over 200 mutations have been 
reported. Identified mutations are distributed along the whole coding sequence, 
with no apparent hotspots or clusters identified (Piccinno et al., 2014). 
 
WFS1 functions: The protein WFS1, located in the ER membrane, has an im-
portant role in ER functioning, whereas Wolfram syndrome is associated with 
ER dysfunction. WFS1 seems to have a significant role within the ER in trans-
porting proteins, lipids, and ions and, in addition, regulating insulin gene ex-
pression and cell apoptotic mechanisms (Ariyasu et al., 2017).    

ER is the cellular organelle with an essential role in cell survival. It is essen-
tial to store Ca2+ and is responsible for folding and posttranslational modifica-
tion of secretory proteins, cell surface receptors, and integral membrane pro-
teins. Different physiological and pathological conditions may perturb the 
folding environment of ER, leading to exceeded folding capacity and accumu-
lation of unfolded/misfolded proteins, a process defined as “ER stress”. To 
retrieve homeostasis, a pathway called “unfolded protein response” (UPR) is 
activated. In high or continuous ER stress conditions, UPR cannot retrieve 
homeostasis, and ER stress leads to cell apoptosis. UPR reduces ER stress by 
activating three different signalling proteins: inositol-requiring protein 1 (IRE1), 
protein-kinase RNA-like ER kinase (PERK), and transcription factor 6 (ATF6). 
Activating those proteins can culminate in both survival-adaptive and death 
responses (Pallotta et al., 2019).  

WFS1 seems to be a negative regulator of the UPR pathway by preventing 
ATF6 activity; therefore, it has anti-apoptotic properties. WFS1 regulates Ca2+ 
signal transduction process and influences the storage of Ca2+ in the ER, con-
sequently, cell apoptosis. Moreover, WFS1 is a crucial component of proinsulin 
folding and processing in the beta-cell ER (Fonseca et al., 2005; Pallotta et al., 
2019). 

In patients with Wolfram syndrome, WFS1 functioning is inefficient, leading 
to dysfunctional activation of the genes that regulate insulin gene expression 
and promote apoptosis of beta-cells and neurons. Depending on the cell, those 
dysfunctional mechanisms lead to the development of Wolfram syndrome clini-
cal manifestations. Considering the WS symptoms, the most detrimental effects 
of dysfunctional WFS1 seem to be in the pancreatic beta-cells and neurons. 
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2.3.3. Wolframin deficient mouse model 

Monogenic diabetes is a heterogeneous group of disorders representing attrac-
tive models to study glucose metabolism and diabetes mechanisms. Moreover, 
for rare diseases like WS, animal models are essential for evaluating the poten-
tial treatment effects because of the small patient population. Several groups 
have developed and characterised the mouse model of Wolfram syndrome 
(Ishihara et al., 2004; Noormets et al., 2011; Riggs et al., 2005). Wfs1-deficient 
mice generated in the University of Tartu have the 8th exon at the C-terminal 
end replaced by NLSLacZ-Neo expression cassette. In contrast, the N-terminal 
domain of the wolframin remains functional (Luuk et al., 2009).  

Wolframin-deficient mice develop diabetes; however, the phenotype has 
been slightly different between various knockout lines. Wfs1-deficient mice 
developed in the University of Tartu have lower body weight, lower insulin 
secretion, and severe glucose intolerance since two months of age. In contrast, 
an increase in fasting blood glucose levels does not develop until the age of 24 
months (Noormets et al., 2011). 
 
 

2.3.4. Treatment of Wolfram syndrome 

Curative therapy is not available for the treatment of Wolfram syndrome. The 
main treatment goal is to treat the symptoms and delay the diseaseʼs progression 
(Urano, 2016). Diabetes is usually managed by insulin treatment (Reschke et 
al., 2021). 
 

2.4. Summary of the literature review 
Diabetes is one of the most prevalent chronic diseases globally, affecting more 
than 8,5% of the adult population. As most of the complications of diabetes are 
avoided or delayed with appropriate treatment, new, safe, and effective anti-
diabetic medications are needed (Sarwar et al., 2010). One of the newest 
antidiabetic drug classes is GLP1RAs. They are popular tools in the treatment 
of diabetes, displaying cardiovascular benefits beyond antihyperglycemic 
action, low risk of hypoglycemia, and modest weight loss. The adverse effects, 
most frequently nausea, are generally mild and subside with time. GLP1RAs 
affect multiple organ systems and may hold promise as a new treatment 
modality for other chronic disorders besides diabetes. 

Even though GLP1RAs have been widely studied, many important know-
ledge gaps remain to be filled.  

One of the effects of GLP1RA administration is decelerated gastric motility. 
Interestingly, it is well known that this effect subsides with prolonged treatment. 
As there is clear evidence that some effects of GLP1RAs are subject to tachy-
phylaxis/tolerance development, it is logical to ask whether the core effect of 
these drugs on glucose regulation may also be affected. We hypothesised that 
tolerance may develop toward GLP1RAsʼ glucose-lowering effect. To test it, 
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we designed a comprehensive study including animal experiments as well as a 
pilot clinical trial in healthy volunteers.  

Wolfram syndrome is a rare progressive neurodegenerative and endocrine 
condition. Wolfram syndromeʼs main clinical manifestations are diabetes insi-
pidus, diabetes mellitus, optic nerve atrophy, and deafness, and it is classified as 
an endoplasmic reticulum disease. Curative treatment is not available for the 
syndrome. Usually, the treatment is aimed to alleviate and treat the symptoms, 
whereas WS diabetes is traditionally managed by insulin treatment. We have 
asked whether this rare type of diabetes associated with Wolfram syndrome 
may respond to GLP1RAs.  
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3. AIMS OF THE STUDY 

The aims of this study were the following:  
1) To elucidate whether tolerance towards GLP1RAs glucose-lowering effect 

develops in mice and humans. 
2) To investigate GLP1RAs glucose-lowering effect in the animal model of 

Wolfram syndrome.  
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4. METHODS 

4.1. Animal experiments (I, III) 

4.1.1. Drugs and chemicals 

In all experiments, commercially available liraglutide (Victoza, Novo Nordisk, 
Bagsværd, Denmark) and exenatide solution (Byetta, AstraZeneca AB, Cam-
bridge, London or Eli Lilly, Houten, Netherlands) were used. In animal experi-
ments, the drug solution was diluted in saline (154 mmol/l NaCl). Glipizide 
(Sigma-Aldrich, Missouri, USA) was dissolved in a few DMSO drops and then 
diluted to the final concentration using saline. In the intraperitoneal glucose 
tolerance test (IPGTT), a 20% glucose solution was used (Braun, Melsbungen, 
Germany). All injections were carried out in a volume of 10 ml/kg. 
 
 

4.1.2. Animals 

All animal procedures were conducted according to standards set forth by the 
NIH guidelines on the care and use of animals and had the permission of the 
Estonian National Committee for Ethics in Animal Experimentation (No. 13, 
June 2009; No 80, June 2011). Animal studies are reported in compliance with 
the ARRIVE guidelines (Kilkenny et al., 2011; McGrath & Lilley, 2015). Male 
C57Bl/6J mice (Harlan, Horst, The Netherlands) aged 6–8 months and 
weighing 28–38g were used (I). Wfs1-deficient mice (Wfs1-/-), their wild type 
(Wfs1+/+), and heterozygous (Wfs1+/-) littermates were used (III). Wfs1-deficient 
mice were F2 hybrids ([129S6/SvEvTac × C57BL/6] × [129S6/SvEvTac x 
C57BL/6]) (Kõks et al., 2009), and breeding and genotyping were performed in 
the Department of Physiology, Institute of Biomedicine and Translational 
Medicine, University of Tartu. Male mice aged 6–7 months weighing 17–26 g 
were used. 

All mice were kept eight per cage in an animal house under standard 
conditions (temperature 20–22˚C, 12 h/12 h light-dark cycle) and fed standard 
chow and water ad libitum (unless otherwise stated). 
 
 

4.1.3. Animal procedures 

In paper I, animal experiments were conducted to test the glucose-lowering 
effect of GLP1RA in acute, sub-chronic, and chronic settings. The general 
design of the study is shown in Fig. 3. The effects of treatment with liraglutide 
(600 μg/kg once a day s.c.) or exenatide (10 μg/kg twice a day s.c.) were tested 
in separate experiments. According to our previous experiments, the doses of 
drugs were selected to possess an equipotent effect on glucose level (Krass et 
al., 2012). Drugs (or saline) were given for 18 days (chronic group) or 11 days 
(sub-chronic group). All injections were performed at the same time every day.  
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The treatment effect on the non-fasting glucose level was measured seven 
days (subchronic group) or 14 days (chronic group) after the initiation of treat-
ment (Test I). The control group received saline once or twice daily. Liraglutide 
(600 μg/kg s.c.) or exenatide (10 μg/kg s.c.) was injected 60 min before the 
glucose measurement, during that time animals were in their home cages 
without access to food. 

An intraperitoneal glucose tolerance test (IPGTT) (Test II) was performed 
on the 11th or 18th day (subchronic and chronic group, respectively). Mice were 
fasted overnight for 12 h. A glucose solution (2 g/kg) was administered by 
intraperitoneal injection (at time point 0 min). Liraglutide (600 μg/kg s.c), 
exenatide (10 μg/kg s.c), or saline was injected 30 min before the glucose 
administration. Blood glucose was monitored by tail bleed before the study and 
at time points 0, 30, 60, and 120 min. Blood for insulin measurements was 
collected at the 30 min time point during the study with liraglutide. All groups 
consisted of 10 (liraglutide study) or 12 animals (exenatide study). 

 
 

Figure 3. Design of animal experiment. During the study, four experimental groups 
were used for both exenatide and liraglutide: (1) control group; (2) acute treatment 
group; (3) subchronic treatment group; (4) chronic treatment group. Liraglutide 600 
μg/kg once a day s.c and exenatide 10 μg/kg twice a day s.c. were used. Experiment 
with liraglutide, n=10; exenatide, n=12. The effect of drugs was tested on the non-
fasting glucose level (Test I), and an intraperitoneal glucose tolerance test was 
conducted (Test II). Mice were injected with saline or liraglutide/exenatide before the 
testing. 
 
 
In paper III, animal experiments were conducted to test the glucose-lowering 
effect of GLP1RAs in Wolframin knockout mice.  

Experiment I – acute effects of exenatide and glipizide on the non-fasting 
glucose level. Exenatide was injected s.c. 90 minutes before the glucose 
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measurement, and glipizide was injected, i.p. 60 minutes before the measure-
ment. All groups consisted of 8 animals. 

Experiment II – acute effect of exenatide on glucagon secretion. Glucose 
was measured, and blood samples for insulin were taken before and 60 minutes 
after exenatide injection; after that, animals were killed, and the blood samples 
for glucagon were collected. All groups consisted of 8 animals.  

Intraperitoneal glucose tolerance test (IPGTT). The mice were fasted over-
night for 12 h. A glucose solution (2 g/kg) was administered by intraperitoneal 
injection (at time point 0 min). Exenatide (10 μg/kg, s.c.), glipizide (0.6 mg/kg 
or 2 mg/kg, i.p.) or saline was injected 30 minutes before the glucose admi-
nistration (time point -30). Blood glucose was monitored at the following time 
points: -30, 0, 15, 30, 60, and 120 minutes. Blood for insulin measurements was 
collected at time points -30 and 60 minutes by the tail bleed. All groups 
consisted of 8 animals. 
 
 

4.1.4. Biochemistry 

Plasma insulin levels were determined using a mouse insulin ELISA kit (Crystal 
Chem, Illinois, US). Plasma glucagon levels were determined using a mouse 
glucagon ELISA kit (Kamiya Biomedical Company, Washington, USA). The 
samples were assayed in duplicate, and the guidelines of the manufacturers were 
followed. Blood glucose concentration was determined using an Abbott Optium 
Xceed glucometer (Abbott Diabetes Care, Alameda, CA, USA). 
 
 

4.1.5. Statistical methods 

Data are presented as mean ± SEM. A P value <0.05 was considered statis-
tically significant. Data were statistically examined using one-way or repeated 
measures ANOVA (I) or two-way ANOVA (III) to test for the genotype and 
treatment effects. Duncanʼs multiple range post hoc test was used when applic-
able after statistically significant ANOVA. For the statistical analysis, STATIS-
TICA 7 (StatSoft, Bedford, UK) was used. The area under the curve was 
calculated using the trapezoidal method using GraphPad Prism 8 (GraphPad 
Software Inc., San Diego, CA, USA). 
 
 

4.2. Clinical trial (II) 

4.2.1. Study design 

The study design is shown in Figure 4. To study GLP1RAs effect in acute and 
chronic settings a single group, open-label clinical trial. The studyʼs primary 
purpose was to investigate the development of tolerance to the glucose-lowering 
effect of liraglutide after chronic administration in healthy subjects. The 
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primary endpoint was a difference in the dose-response relationship between 
calculated insulin secretion rate (ISR) and blood glucose level, expressed as the 
slope of these curves. 
 
 

4.2.2. Study approval 

The clinical trial was approved by the Research Ethics Committee of the Uni-
versity of Tartu (236/T-10) and the Estonian Agency of Medicines (RKU-4/18). 
All clinical investigations were conducted according to the Declaration of 
Helsinki principles, and all study subjects provided written informed consent 
before their inclusion in the study. 
 
 

4.2.3. Study participants 

Ten healthy volunteers were recruited. The inclusion criteria were: 1) age 18–50 
years; and 2) bodyweight 50–100 kg. The exclusion criteria were: 1) underlying 
chronic illnesses; 2) use of daily medications; 3) pregnancy or lactation; or 4) 
fasting glucose >6 mmol/l. Each volunteer read and signed a written informed 
consent form and received thorough training about handling and using the 
liraglutide injection device. 
 
 

4.2.4. Study procedures 

The study design is shown in Figure 4. Liraglutide pharmacodynamic effects 
were evaluated during a graded glucose infusion test (GGIT). Each subject 
underwent the test three times: the first was to assess the subjectʼs normal state; 
the second to measure acute effects of the drug; the third to test for chronic 
effects. The study design made it possible to use every participant as his/her 
control. Subjects received treatment with liraglutide at a dose of 0.6 mg for 21 
consecutive days. Liraglutide was self-administered subcutaneously in the 
stomach area using self-injection pens (Victoza pen) once daily between 9 PM 
and 11 PM. Seven days before the initiation of treatment, the first GGIT was 
performed. The second GGIT was performed 12 h after the first liraglutide in-
jection, and the third GGIT was performed 12 h after the last liraglutide injection. 

GGITs were carried out in the morning between 8 AM and 10 AM. Subjects 
were asked to fast for 12 h before the beginning of the test and avoid extreme 
physical activity during the previous day. A peripheral venous catheter was 
placed in both arms; one was used to obtain blood for analysis, and the other 
was used to administer the glucose infusion. Two blood samples were taken (10 
min apart) for baseline levels of glucose and hormones. An intravenous infusion 
of 20% glucose was then started at the rate of 1 mg/kg/min, followed by 5, 9, 
and 12 mg/kg/min. Each rate was sustained for 40 min, and the total duration of 
the infusion was 160 min. Blood samples for glucose and C-peptide measure-
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ment were drawn every 20 min. Study subjects were in a semi-supine position 
during the study, avoided physical activity, and did not eat or drink. 

 
 

Figure 4. Clinical study design. Each participant underwent the GGIT three times: 
control study with no treatment, acute study after liraglutide (0.6mg s.c) single 
injection, chronic study after treatment with liraglutide for 21 consecutive days. 
 
 

4.2.5. Materials and analysis 

Materials Commercially available liraglutide solution (Victoza, Novo Nordisk, 
Bagsværd, Denmark) was administered using prefilled injection pens and Novo-
fine needles (Novo Nordisk, Bagsværd, Denmark). During GGIT, 20% glucose 
solution (Braun, Meldbungen, Germany) was used.  
 
Laboratory analysis: In the clinical trial, all the laboratory analyses were 
carried out by the accredited laboratory at Tartu University Hospital. Glucose 
was measured using the enzymatic reference method with hexokinase (Cobas 
Glucose HK test; Roche Diagnostics GmbH, Mannheim, Germany). C-peptide 
was measured using an electrochemiluminescence immunoassay (Cobas C-
peptide immunoassay, Roche Diagnostics GmbH). 
 
 

4.2.6. Calculations and statistics 

The insulin secretion rate was calculated for each time interval during the 
GGIT, using the computer program ISEC version 3.4, obtained from the author 
(Hovorka et al., 1996). This program calculates pre-hepatic insulin secretion 
from plasma C-peptide measurements using a regression model to derive C-
peptide kinetics parameters from a subjectʼs gender, type (normal, obese, non-
insulin-dependent diabetes mellitus), age, weight, and height (Hovorka & Jones, 
1994). The relationship between glucose and insulin secretion rate (ISR) was 
used to describe the beta-cell responsiveness to glucose. Mean ISR was plotted 
against the corresponding glucose level, thereby establishing a dose-response 
relationship between the variables. The responsiveness to glucose was ex-
pressed as the slope of the linear regression line relating insulin secretion rate 
and plasma glucose concentration. 
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Data are presented as mean ± SEM. A P value of <0.05 was considered 
statistically significant. Data were statistically examined using one-way 
ANOVA. Duncanʼs multiple range post hoc test was used when applicable after 
statistically significant ANOVA. For the statistical analysis, STATISTICA 7 
(StatSoft, Bedford, UK) was used. The regression analysis was performed, and 
the slope between the ISR and glucose relationship was calculated in R version 
3.2.5 using the ggplot2 package (R Foundation for Statistical Computing, 
Vienna, Austria). The area under the curve (AUC) was calculated using the 
trapezoidal method using GraphPad Prism 6 (GraphPad Software Inc., San 
Diego, CA, USA).  
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5. RESULTS 

5.1. Tolerance toward GLP1RAs  

5.1.1. Tolerance develops toward GLP1RAs glucose-lowering 
effect in mice 

The glucose-lowering effect of liraglutide in mice weakened with prolonged 
dosing: The design of animal experiments is shown in Fig. 3. In the first part of 
the experiment (Test I), the glucose-lowering effect of the drugs was assessed 
after acute, sub-chronic (7 days of saline followed by seven days of GLP1 
receptor agonist), or chronic (14 days of GLP1 receptor agonist) treatment with 
exenatide (10 μg/kg twice daily) or liraglutide (600 μg/kg once daily). Glucose 
was measured at baseline and 60 min after administration of liraglutide or 
exenatide in non-fasted mice. Both subchronic (11 days) and chronic (18 days) 
administration with liraglutide and exenatide significantly decreased the body 
weight compared to the control group (Fig. 5A and B). During the experiment, 
both liraglutide and exenatide significantly lowered blood glucose levels (Fig. 
6, A and B). The absolute effect of liraglutide was weaker after subchronic and 
chronic administration compared to acute administration (Fig. 6C), indicating 
tachyphylaxis/tolerance development. However, the baseline values of glucose 
were numerically lower, although statistically not significant, in the chronic and 
subchronic groups than the acute group. Unlike liraglutide, exenatide was 
equally effective after acute, subchronic, and chronic administration (Fig. 6D). 
 

 
Figure 5. Effect of treatment with liraglutide (600 μg/kg s.c once daily: A) and exena-
tide (10 μg/kg s.c twice daily: B) on body weight after subchronic (11 days) and chronic 
(18 days) administration. One-way ANOVA with Duncanʼs post hoc test was used. 
Experiment with liraglutide, n=10; exenatide, n=12. 
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Figure 6. Glucose levels before and after administration (60 min) of liraglutide (600 
μg/kg; A) and exenatide (10 μg/kg; B) (Test I). Decrease in glucose level from the 
baseline after administration of liraglutide (C) and exenatide (D). One-way ANOVA 
with Duncanʼs post hoc test was used. *P < 0.05, **P < 0.01 vs. baseline (A, B) or vs. 
control (C, D). Experiment with liraglutide, n=10; exenatide, n=12. 
 
 
Both liraglutide and exenatide were less potent in intraperitoneal glucose 
tolerance tests after prolonged dosing: Four days after the first part of the 
experiment, an IPGTT was conducted (treatment duration 11 and 18 days, 
respectively, for subchronic and chronic groups). Mice were fasted for 12 h 
before the test. Blood glucose levels during IPGTT are shown in Fig. 7A and 
7B. Predictably, both liraglutide and exenatide decreased area under the curve 
(AUC) for glucose compared to the control group (Fig. 7, C and D). Interes-
tingly, with both liraglutide and exenatide, the AUC for glucose was noticeably 
more extensive in the chronic groups than in the acute groups. In the experiment 
with liraglutide, the smallest AUC value was in the acute treatment group; the 
subchronic groupʼs difference was statistically significant and close to signi-
ficant with the chronic group (Fig. 7C). Similarly, exenatide lowered the AUC 
of glucose during the IPGTT the most in acute settings than subchronic and 
chronic treatment (Fig. 7D).  
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Figure 7. Intraperitoneal glucose tolerance test (Test II). Glucose levels during IPGTT 
and AUC for glucose with liraglutide (A, C) and exenatide (B, D). Liraglutide  
600 μg/kg s.c or exenatide 10 μg/kg s.c was administered 30 min before glucose admi-
nistration (2 g/kg i.p). The Control group received a saline injection. During the experi-
ment with liraglutide, insulin level was measured 30 min after glucose administration 
(E), and the insulin-to-glucose ratio was calculated (F). Liraglutide or exenatide was in-
jected before the experiment for 11 days (subchronic group) or 18 days (chronic group). 
One-way ANOVA with Duncanʼs post hoc test was used. *P < 0.05 vs. control. 
Experiment with liraglutide, n=10; exenatide, n=12. 
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Stimulation of insulin release declined after chronic treatment with liraglu-
tide: During the IPGTT with liraglutide, the level of insulin was measured 30 
minutes after the glucose administration. Insulin response to the glucose admi-
nistration was augmented only in the acute treatment group, whereas the res-
ponse in chronic groups was comparable to the control group insulin level (Fig. 
7E). Since the glucose levels at the 30 min time point were markedly different 
between the groups, the insulin-to-glucose ratio was calculated. Again, the 
insulin-to-glucose ratio increase was significantly blunted after subchronic and 
chronic treatment (Fig. 7F). 
 
 

5.1.2. Tolerance does not develop toward GLP1RAs glucose-
lowering effect in humans 

Effect of liraglutide remained unaltered during the 3-week treatment in 
healthy volunteers: We conducted a small clinical study to test whether tole-
rance develops in humans. Ten healthy volunteers were recruited. The baseline 
characteristics of study participants are given in Table 3. The general design of 
the study is shown in Figure 4. Three different GGITs were conducted on every 
participant to evaluate the effect of acute and chronic liraglutide treatment com-
pared to no treatment conditions. All tests were carried out under the same con-
ditions. As expected, treatment with liraglutide significantly lowered glucose 
levels and raised C-peptide levels and ISR during the GGIT (Fig. 8A–C). For all 
parameters, chronic liraglutide treatment was as effective as acute treatment 
(Fig. 8D–G). Slope values of calculated ISR vs. blood glucose level were: 
control group 1.6 ± 0.7, acute group 8.4 ± 2.7 (P > 0.05 vs. control), and chronic 
group 6.8 ± 2.2 (P > 0.05 vs. control). Hence, the studyʼs primary endpoint 
(ISR/glucose slope) did not change after the drugʼs chronic administration. 
 
 
Table 3. Baseline characteristics of study participants. 

Characteristic Value 
Age (mean ± SD) 28.2 ± 1.9 years 
Sex (males/females) 7/3 
Weight (mean ± SD) 77.0 ± 2.6 kg 
Body mass index (mean ± SD) 25.3 ± 0.8 kg/m2  
Fasting glucose (mean ± SD)  4.8 ± 0.2 mmol/l 
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Figure 8. The effect of acute and chronic liraglutide treatment on the level of glucose 
(A), C-peptide (B), and calculated ISR (C) during GGIT in healthy participants; AUC 
for glucose (D), C-peptide (E), ISR (F) and ISR vs. glucose (G). The general design of 
the study is shown in figure 4. During GGIT, subjects received intravenous glucose 
infusion at a progressively increasing rate (1, 5, 9, 12 mg/kg/min), and each rate was 
administered for 40 min (A). One-way ANOVA with Duncanʼs post hoc test was used. 
*P < 0.05 vs. control study. n=10 in every group. 



40 

5.2. GLP1RAs are effective in the Wolfram syndrome model 
Acute stress induces hyperglycaemia in Wfs1-deficient mice: During the 
intraperitoneal glucose tolerance test, all genotypes, irrespective of treatment 
group, experienced certain hyperglycaemia during the first 30 minutes as a 
response to acute stress (handling, blood sample collection, injection). ANOVA 
with time as a repeated measure indicated a significant effect of time (F=48; 
p<0.001) and close to a significant interaction of genotype x time (F=2.9; 
p=0.068). The post hoc Duncan test revealed that glucose levels were signi-
ficantly higher at the time point of 30 min in all groups, and Wfs1-deficient 
mice had augmented hyperglycaemia compared to heterozygotes (p<0.05) or 
their wild-type littermates (p<0.05) (Fig. 9). 

 
Figure 9. Stress-induced hyperglycaemia before IPGTT. Wfs1+/+, white bars; Wfs1+/-, 
gray bars; Wfs1-/-, black bars. Repeated measures ANOVA, followed by the Duncan 
post hoc test, where ** p<0.01 vs. time point -30; # p<0.05 vs. other genotypes at time 
point 0. Data of saline-treated animals were pooled from two independent experiments. 
n=16 in all groups. 
 
 
Exenatide lowers the blood glucose level in Wfs1-deficient mice; glipizide 
has no significant effect: Two-way ANOVA revealed a significant effect of 
treatment with exenatide on the blood level of glucose (F=33.6, p<0.001). An 
experiment with glipizide showed significant effects of genotype (F=3.5, 
p<0.05) and treatment (F=29.1, p<0.001). The post hoc Duncan test revealed 
that exenatide lowered glucose levels compared to saline in every genotype 
(p<0.01 in wild type and heterozygotes, p<0.001 in Wfs1-deficient mice) (Fig. 
10A). Glipizide lowered the glucose level in wild-type mice (p<0.001) and 
heterozygotes (p<0.001) but had no significant effect in Wfs1-deficient mice 
(p=0.174) (Fig. 10B). 
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Figure 10. Effect of treatment with exenatide (A) and glipizide (B) on the blood 
glucose level. Wfs1+/+, white bars; Wfs1+/-, gray bars; Wfs1-/-, black bars. Two-way 
ANOVA was used, followed by Duncan post hoc test, where * p<0.01 vs. saline; ** 
p<0.001 vs. saline. n=8 in all groups. 
 
 
Exenatide has a potent glucose-lowering effect during IPGTT in Wfs1-
deficient mice; glipizide has no significant effect: The administration of 
glucose (2 g/kg i.p.) induced a rise in blood glucose level in all genotypes 
despite the treatment. The maximum blood level peak was traceable 30 minutes 
after glucose administration (Fig. 11). Two-way ANOVA revealed that both 
exenatide and glipizide had a significant genotype effect on glucose AUC 
during IPGTT (exenatide F=19.3, p<0.001; glipizide F=18.9, p<0.001). Treat-
ment had a significant effect in the exenatide experiment (F=14.9, p<0.001) and 
close to a significant effect in the glipizide group (F=3.7, p=0.063). Treatment 
with exenatide lowered AUC significantly in wild-type mice (p<0.05) and 
Wfs1-deficient animals (p<0.01), but the decrease was not statistically signi-
ficant in heterozygotes (p=0.233); the biggest decline was in the Wfs1-deficient 
group (Fig. 12A). Treatment with glipizide decreased AUC significantly in 
wild-type mice (p<0.05), but the effect was not significant in heterozygotes and 
the Wfs1-deficient group (heterozygotes p=0.268 Wfs1-deficient group glipizide 
0.6 mg/kg p=0.855 and glipizide 2 mg/kg p=0.09) (Fig. 12B). The higher dose 
of glipizide was only used in Wfs1-deficient animals. 
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Figure 11. Glucose levels during IPGTT with exenatide in Wfs1+/+ (A), Wfs1+/- (B), 
Wfs1-/- mice (C); saline (white dots), exenatide 10 μg/kg (black dots) and with glipizide 
in Wfs1+/+ (D), Wfs1+/- (E), Wfs1-/- mice (F); saline (white dots), glipizide 0.6 mg/kg 
(black dots), glipizide 2 mg/kg (black triangles). n=8 in all groups. 
 

 
Figure 12. Effect of treatment with exenatide (A) and glipizide (B) on glucose AUC 
during IPGTT. Wfs1+/+, white bars; Wfs1+/-, gray bars; Wfs1-/-, black bars. Two-way 
ANOVA was used, followed by Duncan post hoc test, where * p<0.05 vs. saline; ** 
p<0.01 vs. saline. n=8 in all groups. 
 
 
Exenatide increases insulin-to-glucose ratio irrespective of genotype: 
During the IPGTT with exenatide treatment, there were no differences in basal 
levels of insulin. Exenatide tended to enhance the increase in insulin levels, but 
this change was not statistically significant (Fig. 13A). Since the glucose levels 
at the 60 min time point were markedly different between the groups, we calcu-
lated the insulin-to-glucose ratio. ANOVA with time as repeated measure 
indicated a significant effect of time x genotype x treatment with exenatide on 
the insulin-to-glucose ratio (F=14.6, p<0.001). In contrast to other groups, 
wolframin-deficient mice had a lower insulin-to-glucose ratio during the 
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IPGTT, indicating impaired insulin secretion. Exenatide increased the insulin-
to-glucose ratio in all genotypes (p<0.05 in every group; Fig. 13B).  
 

 
Figure 13. Effect of treatment with exenatide during IPGGT on insulin levels (A) and 
insulin-to-glucose ratio (B). Wfs1+/+, white bars; Wfs1+/-, gray bars; Wfs1-/- black bars. 
Repeated measures ANOVA was used to compare the insulin levels between baseline (-
30 min) and the 60 minute time point, followed by the Duncan post hoc test, where * 
p<0.05 vs. baseline; ** p<0.001 vs. baseline. To compare the treatment effect at the 60-
minute time point, two-way ANOVA was used, followed by the Duncan post hoc test, 
where # p<0.05 vs. saline at the same time point; ## p<0.001 vs. saline at the same time 
point. n=8 in all groups. 
 
 
Exenatide had no significant effect on glucagon level: ANOVA indicated no 
effect of treatment or genotype on glucagon level. Sixty minutes after the 
treatment, the glucagon level was comparable in all groups irrespective of 
treatment or genotype (Table 4). 
 
 
Table 4. Effect of treatment with exenatide on glucagon level. Glucagon was measured 
sixty minutes after the treatment. Two-way ANOVA was used to test for statistical 
differences. Data are mean±SEM. n=8 in all groups. 

Genotype Treatment Glucagon (ng/ml) 
Wild type  Saline 121.2 (±36.1) 

Exenatide (10 μg/kg) 111.3 (±14.7) 
Wfs1-deficient Saline 110.4 (±12.7) 

Exenatide (10 μg/kg) 103.9 (±17.7) 
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6. DISCUSSION 

6.1. Tolerance toward GLP1RAs effects 
Several studies have demonstrated tachyphylaxis/tolerance for gastric emptying 
with prolonged use of GLP1 (Näslund et al., 2004; Nauck et al., 2011; 
Umapathysivam et al., 2014) and long-acting GLP1 receptor agonists 
(Abdulreda et al., 2016; Jelsing et al., 2012). The attenuated gastric emptying 
delay has been shown after 8- and 24-hours of continuous GLP1 i.v infusion 
(Nauck et al., 2011; Umapathysivam et al., 2014) and five days of s.c infusion 
(Näslund et al., 2004). Similar effects have been demonstrated with liraglutide 
after 14 days of dosing (Jelsing et al., 2012). Furthermore, it is well known that 
most important gastrointestinal side effects of GLP1RAs, such as nausea and 
vomiting, subside with prolonged treatment (Bettge et al., 2017). For example, 
in case of liraglutide, nausea is initially reported in 25–30% of subjects, 
declining to 2–5% after the first 8–12 weeks (Garber et al., 2011). 

As there is clear evidence that some effects of GLP1RAs are subject to 
tachyphylaxis/tolerance, it is unclear whether tachyphylaxis/tolerance may 
modulate GLP1RAs insular effects and diminish their glucose-lowering effect 
in prolonged use. Our previous studies in mice have indicated that GLP1RAs 
lower the blood glucose level more robustly after acute administration than after 
chronic dosing (Krass et al., 2012, 2015). Whether tolerance develops toward 
the glucose-lowering effect of GLP1RAs has never been formally studied. 
However, several studies have reported indirect evidence about GLP1RAs 
chronic effects on glucose control. Preclinical studies demonstrated that 
liraglutide lost efficacy after prolonged treatment in a humanised mouse model 
generated by intraocular islet transplantation (Abdulreda et al., 2016) and in 
diabetic mice models (Rolin et al., 2002). Nauck et al. demonstrated in a clinical 
trial that GLP1 induced rapid tachyphylaxis in gastric emptying, whereas 
postprandial glucose control was also diminished after GLP1 continuous 
administration (Nauck et al., 2011). The authors attributed the change in 
postprandial glucose control to the change in gastric emptying. Interestingly, 
Tuduri et al. showed a diminished effect of intracerebroventricular GLP1 
infusion on glucose-stimulated insulin secretion during prolonged dosing in 
mice (Tudurí et al., 2015). The evidence about tolerance development using 
GLP1 and GLP1RAs is summarised in Table 5. 

We tested the hypothesis of whether tolerance develops toward GLP1RAsʼ 
glucose-lowering effect in chronic use in mice and humans. 
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Table 5. Comparison of animal and human studies of the development of tolerance 
toward different pharmacological effects of GLP1RAs. 

  
Rodents Humans 

G
as

tr
ic

 e
m

pt
yi

ng
 Short-acting 

GLP1RA 
No tolerance (Jelsing et al., 
2012) 

No tolerance (Lorenz et al., 
2013; Näslund et al., 2004) 

Long-acting 
GLP1RA 

Tolerance  (Jelsing et al., 
2012) 

Tolerance (GLP1 infusion) 
(Näslund et al., 2004; Nauck 
et al., 2011; Umapathysivam 
et al., 2014) 

G
lu

co
se

 lo
w

er
in

g 

Short-acting 
GLP1RA 

No tolerance (Baggio et al., 
2004); 
Tolerance (Abdulreda et al., 
2016; Rolin et al., 2002; 
Sedman et al., 2020) 

Not tested 

Long-acting 
GLP1RA 

Tolerance (Rolin et al., 2002; 
Sedman et al., 2020); 
Tolerance (i.c.v GLP1 
infusion) 
(Tudurí et al., 2015) 

No tolerance (Sedman et al., 
2017) 
 

H
ea

rt
 

ac
ce

le
ra

tio
n 

Short-acting 
GLP1RA 

Not tested No tolerance (Nakatani et al., 
2016) 

Long-acting 
GLP1RA 

No tolerance (Simonds et al., 
2019) 

No tolerance (Jendle et al., 
2018; Smits et al., 2017) 

 
 

6.1.1. Tolerance in mice 

In the current study, exenatide and liraglutide were used to represent short-
acting and long-acting GLP1 receptor agonists, respectively. In the first part of 
the experiment, the drugsʼ glucose-lowering effect was assessed after different 
treatment periods (acute administration and treatment for 7 and 14 days) with 
exenatide (10 μg/kg twice daily) or liraglutide (600 μg/kg once daily). Exe-
natide and liraglutide similarly lowered blood glucose levels demonstrating that 
the doses were correct and comparable during the experiment. The absolute 
effect of liraglutide was weaker after chronic and sub-chronic administration 
compared to acute administration, indicating tachyphylaxis/tolerance develop-
ment. However, the baseline values of glucose were numerically lower in the 
chronic and sub-chronic groups compared to the acute group, probably due to a 
carryover effect of the previous dose of liraglutide on glucose level or food 
consumption. This difference was not statistically significant, yet may offer an 
alternative explanation to tolerance development. Unlike liraglutide, exenatide 
was equally effective after acute, sub-chronic, and chronic administration. The 
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different propensity of short- and long-acting GLP1 receptor agonists to induce 
tolerance has also been demonstrated in the case of gastric emptying (Jelsing et 
al., 2012). 

Four days after the experimentʼs first part, an IPGTT was conducted (treat-
ment duration 11 and 18 days, respectively, for sub-chronic and chronic 
groups). Acute administration of liraglutide and exenatide were equally 
effective in decreasing the AUC for glucose compared to the control group, and 
both drugs lost efficacy with prolonged treatment. Thus, during the 11- or 18-
day treatment with a GLP1 receptor agonist, tolerance to the glucose-lowering 
effect developed. Overall, our results from animal experiments support and 
broaden the previous reports of loss of efficacy of GLP1 receptor agonists after 
chronic treatment (Abdulreda et al., 2016; Jelsing et al., 2012; Tudurí et al., 
2015). Importantly, tolerance developed toward the glucose-lowering effect of 
exenatide, demonstrating that short-acting molecules are not an exception. 
During the IPGTT with liraglutide, insulin response to the glucose administ-
ration was significantly blunted after sub-chronic and chronic treatment. Thus, 
the impaired stimulation of insulin release seems to be the leading mechanism 
of tolerance development. However, as we have not tested shorter exposures to 
GLP1 receptor agonists, we are currently unable to say how quickly the loss of 
efficacy appears. 

Interestingly, the possible loss of the anti-hyperglycaemic effect after pro-
longed dosing was noted in an early preclinical study with liraglutide (Rolin et 
al., 2002). The authors explained the finding as loss of food intake lowering 
effect of both liraglutide and exendin 4 after four treatment days. We conducted 
the IPGTT after 12 hours fast. Accordingly, it seems clear that a change in food 
intake cannot explain the diminished effect of liraglutide and exenatide. 
Another remarkable aspect of the study mentioned above was that liraglutide 
and exenatide had a similar anti-hyperglycaemic effect pattern but divergent 
effects on beta-cell mass (Rolin et al., 2002).  

In line with our results, Tudurí and colleagues demonstrated similar findings 
after acute or prolonged intracerebral dosing of GLP1 (Tudurí et al., 2015). 
They showed in mice that acute intracerebroventricular infusion of GLP1 
resulted in significantly improved glucose tolerance and higher plasma insulin 
levels compared to saline in response to a glucose load, suggesting that central 
GLP1 regulates pancreatic beta-cells and potentiates insulin secretion. In 
contrast, after chronic i.c.v infusion of GLP1, the glucose levels did not differ 
from these of saline-treated animals. Interestingly, no differences in the expres-
sion of GLP1 receptor levels were observed in either the brainstem or the 
hypothalamus when comparing GLP1-treated mice with the saline group in both 
acute and chronic studies, suggesting that chronic intracerebral GLP1 infusion 
does not down-regulate the expression of GLP1 receptors. The authors 
speculated that increased DPP4 activity after chronic dosing might explain these 
findings. As we used GLP1RAs which are resistant to DPP4 and not native 
GLP1, this hypothesis does not explain our findings. However, the study by 
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Tudurí et al. raises the possibility that, at least in animals, central effects of 
GLP1RAs on glucose regulation may be subject to tolerance.  

We have to admit that our study has several limitations regarding the exact 
mechanistic background of tolerance development. Insulin levels were mea-
sured only at one time-point with liraglutide, and we did not collect pancreatic 
samples. Thus, a more focused study is necessary to prove whether insulin 
release, change in pancreatic mass, insulin sensitivity, or CNS tolerance 
development is the leading mechanism.  
 
 

6.1.2. GLP1RAs tolerance in humans 

We conducted a small clinical trial to demonstrate whether the animal findings 
can be replicated in humans. Ten healthy volunteers were treated with a low 
dose of once-daily liraglutide (0.6 mg s.c) for three weeks, and insulin secretion 
parameters were measured by conducting GGIT. The trialʼs primary endpoint 
was a difference in the dose-response relationship between calculated insulin 
secretion rate (ISR) and blood glucose level, expressed as the slope of these 
curves. 

The drug was administered 12 hours before testing as the maximum plasma 
concentration after liraglutide administration is reached after approximately 10-
14 hours (Agersø et al., 2002).  

As expected, treatment with liraglutide lowered glucose levels and raised C-
peptide levels and ISR during the GGIT. For all parameters, chronic liraglutide 
treatment was as effective as acute treatment. Hence, the studyʼs primary end-
point (ISR/glucose slope) did not change after chronic administration. Thus, we 
have demonstrated that tolerance does not develop in healthy volunteers 
towards the glucose-lowering effect of liraglutide after three weeks of treat-
ment. Our finding does not support the previous results from the mouse studies 
(Abdulreda et al., 2016; Rolin et al., 2002; Sedman et al., 2020). Studies 
looking at gastric motility effects of GLP1 agonists have revealed consistent 
results in animal models and humans (Jelsing et al., 2012; Lorenz et al., 2013; 
Näslund et al., 2004; Nauck et al., 2011; Umapathysivam et al., 2014). This 
may not hold for the glucose-lowering effect of the drugs. The different results 
in mouse and human studies might be explained by the essential differences 
between human and mouse islet structure, function, and/or beta-cell regulation 
(Hart & Powers, 2019). Even animal studies have generated conflicting results 
about the chronic effect of GLP1 agonists on beta-cells. Thus, in diabetes 
models, treatment with various molecules has increased beta-cell mass and 
function (Jelsing et al., 2012). On the contrary, the treatment of normo-
glycaemic animals led to decreased beta-cell mass (Ellenbroek et al., 2013; 
Mondragon et al., 2014). The latter study even found reduced beta-cell mass 
after chronic treatment with liraglutide, but not with exenatide (Mondragon et 
al., 2014). Alternatively, it is possible that tolerance development in mice is 
through effects on the central nervous system. Tuduri et al. demonstrated a 
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significant difference in acute and chronic glucose-lowering effects of GLP1 
when administered i.c.v (Tudurí et al., 2015). One may speculate that in human 
beings either the brain penetrance of GLP1RAs or the role of CNS system in 
glucose regulation is different from rodents explaining the lack of tolerance. 

However, it is important to address some limitations. Firstly, the liraglutide 
dose was lower than the usual clinical dose of 1.2 mg per day. Stepwise intro-
duction of the drug is used in clinical practice to ease gastrointestinal side 
effects. Such an approach would obscure the development of tolerance; hence, 
flat dosing was used in our study. As the drugʼs effect on glucose parameters 
and insulin release was robust in our experiment, the dose used does not seem to 
be a significant concern. 

Secondly, the study used healthy volunteers instead of T2DM patients. It 
would be challenging to test this hypothesis in diabetes patients because the 
liraglutide-induced improvement in glucose levels may enhance beta-cell 
function via reduced glucotoxicity and mask the possible development of 
tolerance. While there have been speculations regarding whether GLP1RAs 
may directly improve beta-cell function, the clinical trial data in early T2DM 
patients did not support this hypothesis (Gudipaty et al., 2014). 

Thirdly, in our clinical trial, the treatment time was three weeks. One may 
speculate that a more extended period of treatment is needed to induce tole-
rance. In previous clinical trials where the diminished effect on gastric motility 
was demonstrated, various treatment durations and drug administration routes 
were used. Thus, continuous intravenous GLP1 infusions have been used lasting 
8- and 24-hours (Nauck et al., 2011; Umapathysivam et al., 2014). In contrast, 
similar results were obtained after five days of subcutaneous infusion of GLP1 
administration (Näslund et al., 2004).  

Despite these limitations, we find that our results largely refute the hypo-
thesis of tolerance development toward glucose-lowering effect with prolonged 
use of liraglutide in humans. 
 
 

6.2. Wolfram syndrome and potential of GLP1RAs as  
a treatment modality 

We have further described the diabetic phenotype of mice lacking a functional 
wolframin gene. The perturbation of glucose metabolism was only apparent in 
homozygous mice. Mice with one copy of the functional wolframin gene had 
similar characteristics to control mice in all experiments. As in a previous 
report, wolframin-deficient mice had nearly normal fasting glucose levels but 
developed hyperglycaemia after the glucose challenge (Ishihara et al., 2004). 
Interestingly, fasted wolframin-deficient mice displayed an augmented hyper-
glycaemic response 30 minutes after relatively mild stress – blood sampling by 
tail bleed and the subcutaneous injection of saline. This kind of stress-induced 
hyperglycaemia has been previously demonstrated in another diabetes model – 
ob/ob mice (Surwit et al., 1984). However, in the previous report, a much more 
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stressful protocol (30 min of immobilisation followed by 5 min of shaking) was 
used. It has been previously shown that wolframin-deficient mice display an 
exaggerated corticosterone response (Luuk et al., 2009). Thus, we speculate that 
stress-induced hyperglycaemia results from a higher corticosterone response to 
stress combined with limited insulin availability.  

Specific or disease-modifying therapy is not available in the treatment of 
WS, and therefore, insulin has been used as a mainstay of treatment of WSD. 
As WS is considered a prototype of endoplasmic reticulum disease, one 
possibility for the identification of novel therapies is directed to maintaining ER 
homeostasis and, thus, the regulation of calcium levels and protein folding. 
GLP1RAs, as ER stabilisers, may hold promise in patients with WS. In WS 
animal models, GLP1R signalling has been shown to alleviate the cellular stress 
and beta-cell function improvements (Kondo et al., 2018; Yusta et al., 2006). 
Moreover, GLP1RAs have shown an effect on beta-cell functioning in the 
mouse models of WS2 (Danielpur et al., 2016). Although preclinical data are 
promising, clinical trials studying the effect of GLP1RAs in patients with WS 
are so far limited to case studies and phase 1 clinical trials (Danielpur et al., 
2016; Toppings et al., 2018). 

Repurposing of existing drugs is an attractive line of developing new 
treatments for WS. Different treatment approaches and candidate drugs in 
development are shown in figure 14. The muscle relaxant dantrolene, T2DM 
medication pioglitazone, and immunosuppressants rapamycin, and macrolide 
may benefit WS as ER calcium level regulators. Molecular chaperones, a class 
of molecules assisting protein folding, may be beneficial by stabilising protein 
conformation in the ER (Abreu & Urano, 2019). The anticonvulsant and mood 
stabiliser valproic acid has shown neuroprotective properties in preclinical 
studies and promising results in WS models, most probably by modulating the 
ER stress response (Kakiuchi et al., 2009; Pallotta et al., 2019). Some of these 
drugs have severe adverse effects that limit their clinical use (Kim et al., 2011; 
Pallotta et al., 2019). One promising strategy to achieve cure in WS treatment is 
regenerative and gene therapy, which may replace pathogenic WFS1 variants or 
damaged cells and tissues (Abreu & Urano, 2019).  

 



50 

 
Figure 14. Pathophysiological steps in the development of WS and various therapeutic 
strategies and candidate drugs targeting them (Akiyama et al., 2009; Hara et al., 2014; 
Lu et al., 2014). 
 
 
Our study characterised the effects of GLP1 receptor agonist and sulphonylurea 
on glucose regulation in wolframin knockout mice. Sulphonylureas, insulin 
secretagogues, have been effective in the treatment of some monogenic forms of 
diabetes, whereas the efficacy in WS has been unknown (Zhang et al., 2021). 
As expected, both exenatide (10 μg/kg s.c.) and glipizide (0.6 mg/kg i.p.) signi-
ficantly decreased glucose levels in control mice and heterozygotes injected in a 
non-fasted state. Interestingly, in wolframin-deficient mice, sulphonylurea did 
not change glucose levels after acute administration. In contrast, exenatide at a 
dose of 10 μg/kg decreased glucose levels as effectively as in control mice. As 
the first experiment was performed with food available ad libitum, one can 
argue that the drugʼs anorexigenic effect may partly explain the GLP1 receptor 
agonist effect. Nevertheless, in the next set of experiments, the effects of drugs 
were studied in the intraperitoneal glucose tolerance test with fasting animals 
and no food availability. The results in the IPGTT were similar to the previous 
experiment: exenatide was effective in wolframin-deficient mice while the 
glipizide effect was diminished.  

Thus, one can conclude that wolframin-deficient mice display contrasting 
sensitivity towards different insulin secretagogues, and GLP1 agonists may 
have potential in treating Wolfram syndrome diabetes. Previously, pioglitazone 
treatment has been shown to protect wolframin-deficient mice against diabetes 
(Akiyama et al., 2009). However, these data are not directly comparable to ours, 
as the model combined wolframin deletion with the introduction of an agouti 
lethal yellow mutation to promote insulin resistance. 

We also studied the possible mechanisms beyond the effect of the GLP1RAs. 
There was no difference in glucagon levels after exenatide administration in any 
group of mice. The insulin levels tended to be higher in the glucose tolerance 
test after exenatide administration, but the difference was not statistically 
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significant. However, one must consider that glucose levels were much higher 
in wolframin-deficient animals after the glucose challenge. Thus, insulin-to-
glucose ratios were also calculated. In contrast to other groups, wolframin-
deficient mice had a lower insulin-to-glucose ratio during the IPGTT, indicating 
impaired insulin secretion. Exenatide increased the insulin-to-glucose ratio 
during the glucose tolerance test irrespective of genotype, demonstrating the 
ability to correct the impaired insulin secretion caused by wolframin deficiency. 

Recent evidence from other groups supports the potential effect of 
GLP1RAs in the case of Wolfram syndrome-related diabetes. One of the final 
effectors in the pathway after GLP1 receptor activation is synaptotagmin 7, a 
molecule involved in the calcium-sensitive transmitter (incl. insulin) release 
(Wu et al., 2015). In line with that, a recent report using Wfs1-deficient beta 
cells as a model linked altered calcium homeostasis with cell death. Several 
molecules were able to protect beta cells in the model mentioned above, and 
GLP1 was one of them (Lu et al., 2014). Thus, we speculate that there is a 
defect in the calcium-dependent release of insulin in the case of WS, which may 
explain why GLP1RAs, but not sulfonylurea, were effective in the model. 
Furthermore, Seppa et al. demonstrated liraglutideʼs neuroprotective effect in 
the WS rat model – 6-month treatment with liraglutide reduced neuro-
inflammation in the inferior olive and protected retinal ganglion cells from cell 
death and degeneration (Seppa et al., 2019). 

Thus, we propose that GLP1RAs could be tried to treat (early) WSD 
patients. GLP1RAs have a solid background in terms of efficacy and safety in 
clinical studies. Exenatide has been successfully tried in a MODY3 (related to 
the defect in HNF-1alpha gene) patient (Ahluwalia et al., 2009). In a case study 
of autosomal dominant WFS1-related disorder, GLP1RA has shown efficiency 
in glycemic control (Scully & Wolfsdorf, 2021). GLP1 receptor agonist 
therapyʼs key benefits would be the lower risk of hypoglycemia and the lower 
number of injections needed with long-acting molecules. 

As a general limitation, one must realise that islet structure, function, and 
beta-cell regulation are different between rodents and humans. For example, the 
chronic treatment of mice with liraglutide led to decreased beta-cell mass 
(Mondragon et al., 2014). Thus, our encouraging findings in the WS mouse 
model do not automatically guarantee clinical success in patients.  
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7. CONCLUSIONS 

The conclusions of this study were the following:   
(I) Tolerance toward GLP1 receptor agonists glucose-lowering effect 

develops in mice using both short- and long-acting molecules. 
(II) Unlike in mice, GLP1 receptor agonists do not induce tolerance toward 

their effect on glucose regulation in humans. 
(III) Different results in developing tolerance in humans and mice indicate the 

core differences in glucose regulation in different species and, therefore, 
indicate the difficulties in translating results from animal studies to 
clinical practice. 

(IV) The glucose regulation pathway is selectively impaired in Wolfram 
syndrome, and the GLP1 receptor may have the potential to improve 
glucose regulation.  
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SUMMARY IN ESTONIAN 

Uued suunad GLP1 retseptori agonistide kasutamises  
diabeedi ravis 

Glükagoonilaadne peptiid 1 (GLP1) on peptiidhormoon, mis vabaneb soolesti-
kust vastusena söömisele. GLP1-l on mitmeid  toimeid erinevates elundsüstee-
mides. Inkretiinhormoonina osaleb see glükoosi ainevahetuses – stimuleerides 
insuliini ja inhibeerides glükagooni vabanemist vere glükoositase langeb. GLP1 
toimel aeglustub mao motoorika ja tühjenemine. Kesknärvisüsteemis reguleerib 
GLP1 söögiisu ning seeläbi ka kehakaalu, osaleb mälu- ja õppimisprotsessis. 
Lisaks toimib GLP1 südame-veresoonkonnale, neerudele ja maksale.    

GLP1 füsioloogilistel toimetel põhineb ravimklassi GLP1 retseptori agonis-
tide kasutamine. GLP1 retseptori agonistid on diabeediravimid, mis lisaks vere-
suhkru taseme langetamisele vähendavad söögiisu ja alandavad kehakaalu. 
Ravimklass on võrreldes mitmete teiste diabeediravimitega ohutum, kuna hüpo-
glükeemia risk on väga väike. Nende ravimite kõrvaltoimed on pigem  kerged, 
sagedasemateks iiveldus ja harvem oksendamine. Tänu efektiivsele põhitoi-
mele, heale talutavusele ja soodsatele lisatoimetele on GLP1 retseptori agonistid 
muutunud populaarseks nii diabeedi ravis kui ka muudel näidustustel.  

GLP1 retseptori agonistide mõnede toimete suhtes kujuneb välja tolerant- 
sus – näiteks mao motoorika aeglustumine, mis ravi kestel väheneb. Samuti 
vähenevad ravimi korduval kasutamisel kõrvaltoimed, möödudes tavapäraselt 
esimeste ravinädalatega. Seda, kas GLP1 retseptori agonistide veresuhkru taset 
langetava toime suhtes tekib tolerantsus, ei ole seni teada.  

GLP1 retseptori agoniste on kasutatud monogeensete diabeedivormide pu-
hul. Wolframi sündroomi, geneetiline haigus, mille käigus areneb insuliinravi 
vajav diabeet, magediabeet ja silmanärvi kahjustus, spetsiifilist ravi pole seni 
leitud. Seda, kas GLP1 retseptori agonistidel on toime Wolframi sündroomi 
puhul, ei ole seni teada.  

 
Käesoleva uurimistöö eesmärgid:  
1) Võrrelda GLP1 retseptori agonistide toimet lühiajalisel- ja pikaajalisel kasu-

tamisel nii hiirtel kui ka inimestel selgitamaks välja tolerantsuse teke; 
2) Uurida GLP1 retseptori agonistide toimet Wolframi sündroomi loommudelil. 

 
Uurimistöö meetodid ja tulemused: 
Tolerantsuse uurimiseks hiirtel teostati erinevaid loomkatseid. Uuritavate ravi-
mite (eksenatiid ja liraglutiid) toimet veresuhkru tasemele hinnati peale ühe-
kordset manustamist ja peale 2-nädalast ravikuuri. Toime hindamiseks kasutati 
erinevaid eksperimente – paastuveresuhkru mõõtmine, glükoosi taluvuse proov. 
Mõlemad GLP1 retseptori agonistid langetasid veresuhkru taset ühekordse ma-
nustamise järgselt oluliselt rohkem kui pikemaajalise manustamise korral viida-
tes tolerantsuse tekkele. 
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Tolerantsuse uurimiseks inimestel viidi läbi kliiniline ravimuuring. Uurin-
gusse kaasati kümme tervet vabatahtlikku, kellel teostati kolmel korral astmelise 
glükoosi manustamise test. Esimene test teostati ilma ravimita, teine peale ühe-
kordset liraglutiidi manustamist ja kolmas peale 21-päevast ravikuuri. Iga testi 
käigus manustati uuritavatele kahe tunni jooksul intravenoosselt glükoosilahust 
ning määrati veresuhkru ja C-peptiidi tase. Ravimi efekti hindamiseks arvutati 
veresuhkru ja C-peptiidi tasemete alusel insuliini sekretsiooni kiirus. Liraglutiid 
langetas efektiivselt veresuhkru taset nii ühekordse kui ka pikemaajalise manus-
tamise järgselt, mis tähendas, et liraglutiidi põhitoime suhtes ei tekkinud tole-
rantsust. 

GLP1 retseptori agonistide efektiivsuse uurimiseks Wolframi sündroomi 
ravis kasutati Wolframi sündroomi loommudelit – Wfs1 geeni puudulikkusega 
hiir. GLP1 retseptori agonist eksenatiid langetas geenipuudulikkusega hiirtel 
veresuhkru taset, samas kui sulfonüüluurea preparaadil glipisiidil toime puudus. 
GLP1 retspetori agonistide antidiabeetiline toime Wolframi sündroomi mudelis 
viitab GLP1 retseptori osalusele Wolframi sündroomi patogeneesis. 
 
Järeldused: 
1) Hiirtel tekib glükoosi langetava toime suhtes tolerantsus nii pika- kui ka 

lühitoimeliste GLP1 retseptori agonistide puhul. 
2) Erinevalt hiirtest ei teki inimestel GLP1 retseptori agonistide põhitoime 

suhtes tolerantsust. 
3) Wolframi sündroomi puhul on glükoosi metabolism selektiivselt häiritud 

ning GLP1 retseptori mõjutamine võib omada selle haiguse puhul positiivset 
toimet.  
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