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1. INTRODUCTION  

Every pregnant woman has a compound risk of about 4% for carrying a struc-
turally or genetically abnormal fetus [Harper 2010]. The main aim of deve-
loping prenatal screening (PS) programs is to identify pregnancies that are at 
high-risk of being affected by a disease and to offer diagnostic options to these 
women [ACOG 2020]. By contrast, the technologies used in prenatal diagnosis 
(PD) are developed with the intention of determining whether a specific chro-
mosomal or genetic disorder is present in the fetus, aiming to allow a definitive 
diagnosis [ACOG 2016b]. These possibilities are essential for enabling preg-
nant women to exercise their reproductive rights: making decisions regarding 
pregnancy termination or expectant management in cases of diagnosed conge-
nital malformation or genetic disease.  
 Different types of PS for chromosomal disease have been used during the 
past 40 years; nonetheless, a general shift has occurred towards testing during 
the first trimester of pregnancy [Nicolaides 2011a]. One of the main changes in 
the field of PS for aneuploidy was made in 1992, when fetal nuchal translu-
cency (NT) was discovered and its potential diagnostic utility was described by 
Nicolaides et al. [Nicolaides et al. 1992]. A model for combined first-trimester 
risk assessment was introduced in 1999, in which maternal age, serum bio-
chemical markers, free β-chorionic human gonadotropin (β-hCG), and 
pregnancy-associated plasma protein A (PAPP-A) were used in combination 
with the sonographic measurement of fetal NT [Spencer et al. 1999]. This pro-
gram achieved a detection rate (DR) for trisomy 21 (T21) of almost 90%; how-
ever, the relatively high invasive-testing rate of 5% was a major concern. In the 
following years, several ultrasound (US) markers were introduced into com-
bined first-trimester risk assessment including absence of the fetal nasal bone 
(NB) [Cicero et al. 2001], tricuspid valve regurgitation (TR) [Faiola et al. 
2005], and the ductus venosus (DV) flow pattern [Matias et al. 1998]. A large 
multicenter study of 75,821 pregnancies showed that by using a combination of 
maternal age, serum biochemistry, fetal NT, and additional sonographic mar-
kers in a specifically defined group of women, it was possible to increase the 
T21 DR to over 90% and to reduce the false-positive rate (FPR) to below 3% 
[Nicolaides et al. 2005].  
 In Estonia, the use of PS was initially started in 1995, and the main known 
risk factor at that time was maternal age. In 1999, with the support of the Esto-
nian Health Insurance Fund (EHIF), a national program of PS was imple-
mented, based on second-trimester serum markers, which was known as the 
triple test (TT). However, further investigations were needed before fully con-
verting to combined first-trimester screening (cFTS), and new PS and US 
diagnostics guideline was implemented in 2016 [Ustav et al. 2016].  
 Subsequent developments in PS required new technological solutions. The 
presence of fetal DNA in maternal plasma was described for the first time in 
1997 [Lo et al. 1997]. This initiated a new era of non-invasive prenatal testing 
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(NIPT) in the field of PS. Large-scale validation studies based on the se-
quencing of cell-free fetal DNA (cff-DNA) were published almost ten years 
ago, in which the T21 DR was almost 100% with low false-positivity [Bianchi 
et al. 2012; Palomaki et al. 2011]. In Estonia, a local NIPT assay was recently 
developed and validated [Žilina et al. 2019]. 
 The next step after a high-risk result from PS is definitive diagnosis: con-
firmation or exclusion of chromosomal disease. The gold standard for whole-
chromosome aneuploidy has been karyotyping of fetal cells that are acquired 
via an invasive diagnostic procedure. Conventional karyotyping remained the 
first-tier diagnostic test for chromosomal disease for a long period. However, a 
major problem with this method was its low (5–10 Mb) resolution, which did 
not allow the diagnosis of submicroscopic rearrangements.  
 Chromosomal microarray analysis (CMA) or ‘molecular karyotyping’ is a 
DNA-based technology that detects genome-wide DNA losses or gains, copy-
number variants (CNV), at a 100-fold higher resolution than karyotyping [Shea-
rer et al. 2007]. Debates remain over the universal use of CMA in PD. The 
American College of Obstetricians and Gynecologists (ACOG) stated in 2013 
that CMA should be used in PD as a first-tier diagnostic test in fetuses with US 
anomalies [ACOG 2013]. However, the incidence of pathogenic CNVs in the 
prenatal setting can be as high as 1 in 270 pregnancies and is not dependent on 
maternal age [Srebniak et al. 2018]. This is concerning in the present era of 
NIPT, due to possible underdiagnoses of clinically relevant submicroscopic 
chromosomal anomalies. In Estonia, CMA has been funded by the EHIF since 
2011. Its clinical utility has been investigated mostly in the pediatric population, 
with a diagnostic yield of 25% [Žilina et al. 2014].  
 One of the greatest challenges in PD is to reach a definitive diagnosis in 
cases of fetal congenital anomalies that are discovered by US examination. 
CMA can identify disease-related alterations at the chromosomal level in about 
27.4% of such cases [Fiorentino et al. 2013]. Thus, the majority of these fetuses 
do not receive a diagnosis [Monaghan et al. 2020]. The main difficulty in these 
cases is establishing phenotype–genotype correlation. Next-generation sequen-
cing (NGS) methods in PD range from targeted sequencing with phenotype-
specific gene panels, to large-scale gene panels, exome sequencing (ES), and 
even genome sequencing (GS) [Ferretti et al. 2019]. Several studies have shown 
that additional diagnostic information can be found in between 8.5% and 81% 
of these cases [Chandler et al. 2018; Lord et al. 2019]. In Estonia, NGS diag-
nostic performance has been evaluated in a pediatric and adult population, and a 
diagnostic yield of 26.3% was found in a cohort of 501 probands [Pajusalu et al. 
2018].  
 The aim of this doctoral thesis was, firstly, to establish the diagnostic effec-
tiveness of the new strategies for PS and PD of chromosomal diseases in a large 
cohort of pregnancies, representative of the whole population. For that purpose, 
a standardized cFTS protocol was applied and CMA performed in high-risk 
cases. Secondly, this thesis focused on using NGS in PD in a selected group of 
fetuses with congenital malformations.  
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2. LITERATURE REVIEW  

2.1. General principles of prenatal screening and  
diagnosis 

Screening is the systematic application of a test or inquiry to identify those indi-
viduals at sufficient risk of a specific disorder to benefit from further investi-
gation or direct preventive action, among persons who have not sought medical 
attention on account of symptoms of that disorder [Wald 2006]. The foundation 
of prenatal screening (PS) for any disease process requires a fundamental under-
standing of the differences between diagnostic and screening tests. Diagnostic 
tests are often expensive, invasive and performed only in those individuals, who 
are believed to be “at-risk”. Screening tests on the other hand should be cheap, 
easy to use and widely applicable for the population [Evans et al. 2005]. Crite-
ria for worthwhile screening programs include a well-defined medically impor-
tant disorder with known prevalence and tests that are cost-effective, safe, 
accessible, and have well-defined performance [Benn 2002]. Four key measures 
are used in the evaluation of screening tests: sensitivity, specificity, positive 
predictive value (PPV) and negative predictive value (NPV) [Evans et al. 2005]. 

Due to the above-mentioned reasons, PS was initially focused on the identi-
fication of pregnancies, which are at higher risk for being affected with T21 due 
to its relatively high prevalence in the population, severity of the disease and its 
importance in terms of public health costs. Recent decades have seen the 
development of PS approaches from using multiple biochemical and ultrasound 
markers in the first and second trimesters to analyzing cff-DNA in the maternal 
plasma [Kagan et al. 2017; Rink and Norton 2016]. These developments now 
give the opportunity to screen prenatally for broader variety of chromosomal 
disease. 

However, as understanding of the molecular basis of many genetic condi-
tions has increased, so have the opportunities for prenatal diagnosis (PD) of a 
wide range of disorders [Skirton et al. 2014]. Prenatal genetic testing has evol-
ved considerably over the past decades, and new tests are being introduced into 
the prenatal setting at a very rapid pace [Dukhovny and Norton 2018]. In 2021 
we can already discuss not only non-invasive aneuploidy screening, but even 
non-invasive PD for monogenic disorders [Scotchman et al. 2020]. These 
possibilities are very promising, but can be confusing not only for the patients, 
but for the medical professionals as well.  

The goals of PD and PS from a public health perspective may be different 
from the goals of an individual patient. In public health model, the basic aim of 
prenatal testing is to reduce the frequency of select birth defects, improving 
population-level health along with reducing the burden of disease on society. 
The reproductive autonomy model is focused on providing women with crucial 
information that can help them make important reproductive decisions, such as 
whether to continue the pregnancy [Begovic 2019]. Women choose PD methods 
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and weigh the outcomes of prenatal genetic testing quite differently [Kupper-
mann et al. 2016]. For some patients, a PD of a genetic disease may mean 
choosing to terminate the pregnancy, while for others this may mean preparing 
for the birth of an infant with medical needs [Dukhovny and Norton 2018].  

The latest recommendations to date on PS for chromosomal abnormalities 
are clearly stating that possibilities of PS and PD should be discussed with 
every woman, regardless of age and her ´a priori´ risk for chromosomal disease 
[ACOG 2020]. 

Further, in this literature review we will discuss different methods, used in 
PS for chromosomal anomalies as well as molecular analyses, used for PD of 
chromosomal or genetic disease. 
 

2.2. Combined first-trimester screening 
Antenatal care has developed dramatically over the past 30 years. The initial 
approach of simple observation and management of pregnancy complications as 
they appear has undergone a paradigm shift to the new pyramid of care, in 
which attention focuses on the first trimester to select cases at high-risk of 
aneuploidy and to predict complications [Nicolaides 2011b].  

Down’s syndrome (DS), or T21, is the most frequent chromosomal disease 
at birth, with a prevalence of 1.17 per 1,000 livebirths in Estonia reported in 
2006 [Reimand et al. 2006]. Its frequency differs among countries, ranging 
from 5.03 per 10,000 livebirths in Korea to 12.6 per 10,000 livebirths in the 
USA [de Graaf et al. 2015; Park et al. 2019]. During the last 10 years, the 
incidence of DS livebirths has decreased to less than five cases per year in 
Estonia (Department of Clinical Genetics, Tartu University Hospital, unpub-
lished records). The major known risk factor for T21 is advanced maternal age 
and its incidence increases markedly after the age of 35 [Hook 1981]. Initial 
estimates of the maternal age-specific live-birth prevalence of Down’s synd-
rome were revised using predictive models based on a large dataset and cor-
rected in later publications [Morris et al. 2005] (Table 1). 
 
 
Table 1. Predicted odds of DS live birth by maternal age. Adapted from [Morris et al. 
2005]. 

  

Maternal age at birth (years) Predicted odds 
20 1:1476
30 1:938
35 1:352
40 1:85
45 1:35
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While the prevalence of T21 increases with maternal age, it decreases with 
gestational age due to spontaneous abortions of fetuses with DS [Savva et al. 
2006]. At 12 weeks of pregnancy, the prevalence of T21 is 30% higher than at 
40 weeks [Snijders et al. 1999]. Therefore, maternal and gestational age-speci-
fic risks should be used in the estimation of a-priori risk for chromosomal di-
sease during PS [Snijders et al. 1994]. These estimates from 1994 are still valid 
and used in the risk calculations. 

Prenatal aneuploidy screening tests have been developed to identify pregnan-
cies that are at a high-risk of DS and to offer diagnostic procedures to this parti-
cular group of women [ACOG 2020]. Developments in the field of PS were 
necessary to increase the DR of T21 and to ensure that invasive diagnostics 
were offered to as few women as possible, due to the potential for fetal loss 
after the procedure, although such losses are relatively rare [Akolekar et al. 
2015; Martins et al. 2020; Wulff et al. 2016]. Screening by maternal age and 
second-trimester US examination alone is not highly effective, detecting no 
more than 68% of DS cases. Moreover, in women younger than 35 years, the 
T21 DR is only 53% using this strategy [Howe et al. 2000]. PS on the basis of 
maternal age alone is therefore not recommended [Benn et al. 2015]. Different 
approaches have been used across European countries for PS for chromosomal 
diseases including combinations of maternal age, US examinations, and serum 
markers in the first and second trimesters [Boyd et al. 2008]. These national 
strategies have shown different performances. The Estonian national PS pro-
gram, TT, using the second-trimester serum markers alfa-fetoprotein (AFP), 
total HCG, and unconjugated estriol, was first implemented in 1998 [Sitska et 
al. 2008]. Initial reports of the TT screening model in the early 1990s showed a 
good uptake of 74%, but a relatively low DR of T21 of 48% with an FPR of 
4.1% [Wald et al. 1992]. This method was quickly adopted in our small popu-
lation, and had reached a coverage of over 90% of all pregnant women by 2006. 
However, major problems remained with the strategy in terms of the high pro-
portion of false-positive results (4.7%) and the relatively low DR of T21 
(57.8%) [Sitska et al. 2008].  

Clinical and laboratory research eventually started to focus on the first tri-
mester of pregnancy, due to the relatively poor performance of second-trimester 
serum screening, the developments in research into new serum markers, and 
discoveries of the diagnostic value of first-trimester US scans. 

 
 

2.2.1. NT and first-trimester serum markers 

In 1992, the discovery of an association between the fetal NT thickness and 
trisomies by Nicolaides et al. marked the beginning of a new era in the field of 
PS for chromosomal diseases [Nicolaides et al. 1992]. NT is the subcutaneous 
accumulation of lymphatic fluid behind the fetal neck, which can be effectively 
measured during US examination between 11 and 14 weeks of gestation (Figure 
1). Measurements of the NT thickness made by well-trained operators were 
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shown to be highly reproducible [Pandya et al. 1995]. Guidelines for the mea-
surement of NT have developed over time due to increases in the quality of US 
probes and are freely available on the Fetal Medicine Foundation (FMF) web-
site (Appendix 1). 
 
 

 
 
Figure 1. Sonographic measurement of NT thickness following the FMF rules in the 
mid-sagittal plane of the fetal head (from an unpublished personal archive). 
 
 
Such a strict protocol and external quality assessment was necessary, because 
failure to perform a good quality scan results in a much poorer performance for 
screening, as was shown in a French population-based study [Fries et al. 2018]. 
For this reason, all US operators should have annual recertification by a FMF 
reviewer online. Some attempts have been made to measure NT-thickness auto-
matically, but this method is not currently widely accepted [Sciortino et al. 
2017].  

Fetal NT thickness is the single US marker that is highly associated with T21 
and all other major chromosomal diseases [Kagan et al. 2006]. When the risk of 
T21 was calculated from the maternal age and gestational-age-related pre-
valence, multiplied by the likelihood ratio depending on the deviation from 
normal NT thickness for the crown-rump length (CRL), almost 80% of cases 
could be detected prenatally [Snijders et al. 1998]. In this large study, the 
screen-positive group comprised 8.3% of all participants and the risk cut-off 
point for invasive testing was 1 in 300.  

There were originally two approaches to quantifying NT deviation from the 
normal median: subtraction of the normal median from the NT measurement to 
produce a deviation in millimeters, referred as the delta NT; or division of the 
NT by the normal median to produce a multiple of the median (MoM) value 
[Spencer et al. 2003]. Furthermore, a study by Wright et al. revealed that NT 
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distribution followed two patterns, namely CRL-dependent and CRL-indepen-
dent, which differed in normal and chromosomally abnormal fetuses [Wright et 
al. 2008]. They showed that 95% of fetuses affected by T21 followed a CRL-
independent distribution of NT thickness. By contrast, 95% of chromosomally 
normal fetuses followed a CRL-dependent distribution of NT [Wright et al. 
2008].  

Running in parallel to the developments in US diagnostics was a search for 
first-trimester biochemical markers. Of the several serum markers that have 
been investigated, only two have shown clinical usefulness in terms of detection 
of fetal trisomy: free β-hCG [Spencer et al. 1992a; Spencer et al. 1992b] and 
PAPP-A [Wald et al. 1996]. Initial attempts to develop a combined screening 
program using fetal NT and first-trimester serum markers have shown that at a 
fixed FPR of 5%, the DR for T21 could be about 90% [Spencer et al. 1999]. 
This original methodology was developed further over the subsequent 10 years, 
due to ongoing research aiming to increase the performance of screening.  

Research has shown that to accurately estimate the MoMs of both these bio-
chemical markers, it is essential to adjust their values according to several 
maternal and pregnancy characteristics, including gestational age, ethnicity, 
smoking status, maternal weight, and type of conception [Kagan et al. 2008].  

 
 

2.2.2. First-trimester additional US markers  
for chromosomal disease 

In terms of the US element of cFTS, further developments have involved the 
inclusion of additional markers in the risk calculation with the aim of better 
delineating the risk of chromosomal disease and thereby lowering the FPR. 
These US markers are as follows: presence or absence of fetal nasal bone (NB) 
(Figure 2); tricuspid valve blood-flow pattern (Figure 3); and DV-flow assess-
ment (Figure 4). The same strict standards for the performance techniques are 
applied to each of these markers with annual certification for the operators 
[Sonek and Nicolaides 2010].  

The inclusion of additional US markers into cFTS is possible in different 
ways. The first large-scale study by Nicolaides et al. of almost 76,000 preg-
nancies used a contingent model with additional sonographic markers. After 
initial cFTS, using a standard combination of maternal age, NT thickness, and 
serum markers, the women were divided into three groups according to the T21 
risk level. If the risk was high, which was defined as greater than 1 in 50, 
diagnostic invasive testing was offered. If the risk was low, defined as less than 
1 in 1,000, no further testing was needed. If the risk was deemed intermediate, 
defined as a combined value ranging from 1 in 51 to 1 in 1,000, assessment of 
additional US markers was offered and the risk was then recalculated. As a 
result, only about 15% of women needed two-step US evaluation, the DR for 
T21 exceeded 90%, and the FPR was about 3% [Nicolaides et al. 2005]. 
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Different strategies to increase the effectiveness of cFTS were evaluated in 
terms of the performance of each marker [Kagan et al. 2009a; Kagan et al. 2009c; 
Maiz et al. 2009]. All these approaches yielded a DR for T21 of over 90% with a 
low FPR of 2–3%. The low FPR was achieved by the better estimation of 
aneuploidy risks through the use of additional markers, due to clear differences in 
the incidence of their pathological findings between euploid and chromosomally 
abnormal fetuses (Table 2). The use of all three markers in the first trimester with 
NT measurement as a screening model can yield the same performance in terms 
of T21 DR, even without biochemical markers [Abele et al. 2015].  

The use of additional US markers requires specific skills and the continuous 
performance of these examinations in everyday practice [Maiz et al. 2008; Sonek 
and Nicolaides 2010]. Nevertheless, the ‘final’ model of cFTS, which is used 
nowadays was prospectively validated in 2009 without the use of additional US 
markers and yielded 90% DR of T21 with FPR of 3% [Kagan et al. 2009b]. 

 
 

 
 

Figure 2. Appearance of the fetal NB. Left: a normal fetus showing the presence of the 
NB (arrow), which is more echogenic than the nasal skin overlying it. Right: a fetus 
with T21, in which there no echogenic NB (arrow) is observed in the same diagnostic 
plane. Images taken from an unpublished personal archive. 
 

 
 

Figure 3. Tricuspid valve blood-flow. Left: a fetus with T21 and TR showing a regurgi-
tation jet of more than 60 cm/s (arrow) during ventricular contraction. Right: a normal 
fetus showing no reversal in flow (arrow) at the same point in the cardiac cycle. Images 
taken from an unpublished personal archive. 
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Figure 4. Doppler waveforms of the DV flow pattern. Left: a reversed α-wave (arrow). 
Right: a normal waveform with a positive α-wave during atrial contraction (arrow). 
Images taken from an unpublished personal archive. 

 
 

The main cFTS US, biochemical characteristics and their differences between 
euploid fetuses and fetuses with common trisomies are summarized in Table 2.  

 
 

Table 2. Characteristics of euploid and aneuploid fetuses in cFTS. Adapted from [Ka-
gan et al. 2017]. Confidence intervals for MoM medians were not available in the 
review. 
 

Condition Standard cFTS Extended cFTS 
Median 

NT 
(mm) 

Median 
free  

b-hCG 
(MoM) 

Median 
PAPP-a 
(MoM) 

Hypoplastic 
NB (%) 

Tricuspid 
regurgitation 

(%) 

Reversed 
DV flow 

(%) 

Euploid 1.8 1.0 1.0 0.6 0.9 3.2 
T21 3.5 2.0 0.5 63 56 66 
T18 5.1 0.2 0.2 55 33 58 
T13 3.9 0.5 0.3 35 30 55 

β-hCG – beta-human chorionic gonadotropin; cFTS – combined first trimester 
screening; DV – ductus venosus; MoM – multiple of median; NB – nasal bone; NT – 
nuchal translucency; PAPP-a – pregnancy-associated plasma protein a; T13 – trisomy 
13; T18 – trisomy 18; T21 – trisomy 21. 
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2.2.3. Impact of cFTS in clinical practice 

Establishing a systematic protocol in PS programs is essential for providing wo-
men with the best antenatal care possible. The impact of introducing cFTS into 
routine antenatal care remains considerable. A large population-based study 
conducted in France showed, that the introduction of cFTS in comparison to 
second-trimester serum screening resulted in a 47% reduction in invasive 
testing at a national level, due to a two-fold lower screen-positive rate (9.5% 
versus 4.8%, respectively). The DR for T21 increased by 2.7% [Royere et al. 
2016]. A very high (97.5%) DR for T21 was reported recently in a Taiwanese 
population study using cFTS with a risk cut-off point for invasive testing of 1 in 
270 [Lan et al. 2018]. The first European country to adopt a national T21 
screening program was Denmark [Lou et al. 2018]. Starting from 2006, cFTS 
was offered to all pregnant women in Denmark. A Danish population-based 
study reported that this had a huge impact. The introduction of combined risk 
assessment during the first trimester at a national level halved the number of 
infants born with DS. These changes in screening strategy resulted in a con-
siderable decline in the number of invasive procedures that were carried out 
[Ekelund et al. 2008]. According to the Danish Fetal Medicine Database, during 
the period 2008–2012 the prenatal DR for T21 ranged from 82% to 90% with a 
maximum screen-positive rate of 4.7% [Ekelund et al. 2015].  
 In Estonia, initial attempts to perform cFTS were undertaken in 2005 in the 
public healthcare system. Between 2006 and 2016, several PS protocols were 
used, but there was no clear national policy. A model of contingent screening, 
which used cFTS as a first-tier test followed by TT, was introduced in the 
majority of hospitals from 2008. In this method, all pregnant women were 
offered cFTS if they had attended their first antenatal visit before 13 weeks of 
gestation. In cases where the combined risk for T21 was higher than 1 in 270 
and the trisomy 18 (T18) risk was higher than 1 in 100, an invasive diagnostic 
procedure was suggested. Integrated TT, which combined second-trimester 
biochemical markers with NT measurement, was performed as a second-tier test 
in pregnancies where the combined risk for T21 was between 1 in 270 and 1 in 
1,500 and the T18 risk ranged from 1 in 100 to 1 in 400 (Figure 5). Using a 
variation of this strategy, with a different definition of the intermediate-risk 
group, the T21 DR increased to 88.3% and the FPR decreased to 3.4% [Muru et 
al. 2010]. The new national prenatal diagnostics guidelines designated cFTS as 
the primary PS test for all pregnant women in Estonia [Ustav et al. 2016].  
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Figure 5. Protocol for PS in Estonia in the years 2008–2015. Adapted from [Muru et al. 
2010]. 
AC – amniocentesis; AFP – alfa fetoprotein; β-hCG – beta human chorionic gonado-
tropin; CRL – crown-rump length; CVS – chorionic villous sampling; hCG – human 
chorionic gonadotropin; NT – nuchal translucency; NTD – neural tube defect; PAPP-A – 
pregnancy- associated plasma protein A; T18 – trisomy 18; T21 – trisomy 21; uE3 – 
unconjugated estriol.  

 
 

Conventional cFTS had shown effectiveness in the detection of aneuploidy for 
almost two decades. Some countries have included this method of screening for 
chromosomal disease as a gold standard in their national health programs 
[Ekelund et al. 2015; Royere et al. 2016; Ustav et al. 2016]. A T21 DR of 90%, 
a T18 DR of 95%, and a trisomy 13 (T13) DR of 95% have been reported 
[Kagan et al. 2017]. Despite the relatively high FPR of 3–5% [Kagan et al. 
2017], conventional cFTS is the most appropriate choice as a first-line scree-
ning method for most women in the general obstetric population [ACOG 2015]. 
This is particularly true in developing countries. A recent retrospective analysis 
of different contingent screening models in Southwestern China recommended 
cFTS as the first choice in cases when only traditional PS methods were 
available. The DR of T21 in this study was 78.8% [Luo et al. 2020]. The fin-
dings of this analysis were in accordance with the Cochrane review, which also 
highlighted the effectiveness of cFTS over second-trimester serum markers 
[Alldred et al. 2017].  
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2.3. Non-invasive prenatal testing 

2.3.1. Cell-free fetal DNA 

Despite effective cFTS, there is a need for further developments in PS in the 
direction of new technological solutions. In 1997, the presence of fetal DNA in 
maternal plasma was described for the first time [Lo et al. 1997]. The authors 
reported that plasma from pregnant women contained cell-free DNA (cf-DNA), 
including a fraction that is thought to be of placental origin, resulting from 
apoptosis of the trophoblasts. This fraction was called the ‘fetal fraction’ (FF) 
[Lo et al. 1997; Lo et al. 1998]. Later, it was understood, that ‘fetal’ cf-DNA 
was actually of cytotrophoblastic origin in the placenta [Bianchi et al. 2012; 
Faas et al. 2012]. The FF of cf-DNA in the maternal plasma is estimated to be 
about 10–20% of the whole circulating cf-DNA [Lun et al. 2008]. It can be 
detected as early as 4 weeks of gestation [Illanes et al. 2007] and is no longer 
detectable in the maternal plasma shortly after the delivery [Lo et al. 1999; 
Smid et al. 2003]. The whole fetal genome is represented in the maternal plas-
ma in small fragments of cf-DNA, approximately 150 base pairs in size [Chan 
et al. 2004; Li et al. 2004]. The fact that fetal cf-DNA represents only a small 
fraction of the total DNA in the maternal plasma, where the main quantity of 
DNA is contributed by the pregnant woman, offered a great challenge for deve-
loping technology that could allow the use of cff-DNA in aneuploidy screening. 
In 2008, a proof-of-principle study was published, in which massively parallel 
genomic sequencing (MPGS) of DNA in maternal plasma was used to detect 
T21. It was suggested that this approach could potentially be applicable to all 
pregnancies for the purpose of NIPT of aneuploidies [Chiu et al. 2008].  

 
 

2.3.2. NIPT methods 

There are several NIPT methods, but the three that have been studied the most 
and are therefore implemented in clinical practice are massively parallel shot-
gun sequencing (MPSS), targeted massively parallel sequencing (t-MPS), and 
single nucleotide polymorphism (SNP) based sequencing [Benn et al. 2013]. 
Brief summary of these methods is given in Table 3. 
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Table 3. Summary of NIPT methods. 
 

NIPT method Validation studies Special features/points to consider 
MPSS [Palomaki et al. 2011] 

[Bianchi et al. 2012] 
[Chiu et al. 2011] 

- Possible incidental findings, confined 
to the placenta. 

- Possible detection of maternal 
mosaicism or occult malignancies  

t-MPS [Sparks et al. 2012] 
[Ashoor et al. 2012b] 
[Ashoor et al. 2013b] 

- Possible reduction of cost 
- Possible quicker turnaround time 
- Possible lower detection of trisomy 

13 
SNP-based [Zimmermann et al. 2012]

[Nicolaides et al. 2013a] 
- Distinguishing fetal genotype from 

maternal 
- Detection of triploidy 
- Detection of zigosity in twin 

pregnancies 
 
 
The initial approach is based on the identification and counting of large numbers 
of DNA fragments in maternal plasma. This method utilizes MPSS of millions 
of fetal and maternal DNA fragments sequenced at the same time after each 
piece has been mapped to a locus on the chromosome from which it came. If 
fetal aneuploidy is present, there should be a relative excess or deficit of the 
quantity of DNA from the chromosome of interest [Chiu et al. 2008]. Valida-
tion studies using this method were the first in the field of NIPT, and all 
reported a high DR for T21 of about 97–99% [Bianchi et al. 2012; Chiu et al. 
2011; Palomaki et al. 2011].  

The targeted approach relies on selectively amplifying only those chromo-
somal regions that are of clinical interest (that is, chromosomes 21, 18, and 13). 
The advantage of this method is that it involves considerably less sequencing 
and therefore gives possible reductions in test costs [Sparks et al. 2012]. There 
have been several validation studies of this method, which have reported over 
99% detection of T21 and 97.4–98% of T18 with a very low FPR [Ashoor et al. 
2012b; Norton et al. 2012]. The sensitivity for T13, using this method, was 
much lower at 63.6%, but the FPR remained good at 0.05% [Ashoor et al. 
2013b]. 

An approach for NIPT that uses DNA polymorphisms was demonstrated in 
2007 [Dhallan et al. 2007]. The authors demonstrated that by using SNPs, it 
was possible to distinguish fetal DNA from maternal DNA. A validation study 
taking the different approach of using SNPs was published in 2012. In this 
work, cff-DNA from maternal blood was isolated, amplified using a multiplex 
polymerase chain reaction (PCR) assay targeting 11,000 SNPs on chromosomes 
13, 18, 21, X, and Y in a single reaction, and sequenced. The authors reported 
the correct identification of all aneuploidy cases [Zimmermann et al. 2012]. The 
only NIPT platform using SNP-based selective sequencing was validated in 
2013 by Nicolaides et al. [Nicolaides et al. 2013a]. 



23 

In 2019, an Estonian-based NIPT platform was validated and is now in 
clinical use under the name of the NIPTIFY® test. This platform uses MPSS 
methodology with the new bioinformatics tool NIPTmer [Sauk et al. 2018], 
which counts pre-defined per-chromosome sets of unique k-mers from se-
quencing data. NIPTmer uses less computer resources and is faster than the 
other available NIPT-tools. NIPTIFY® was validated with 424 samples taken 
from pregnant women in the local population and proved its readiness to be 
used in prenatal settings in Estonia by correctly identifying all samples with 
T21, T18, and T13 [Žilina et al. 2019]. 

 
 

2.3.3. Fetal fraction 

The FF is the percentage of the total maternal plasma cf-DNA that is of feto-
placental origin [FF=fetal cfDNA/(fetal cf-DNA+maternal cf-DNA)][Hui and 
Bianchi 2020]. The median of the FF at the time of the first-trimester screening 
has been reported to be 11.4% [Ashoor et al. 2012a]. The FF increases with 
increasing levels of maternal β-hCG and PAPP-A and decreases with higher 
maternal weight. No correlation between the FF estimates was found in terms of 
smoking status, racial origin, or maternal age [Ashoor et al. 2012a]. A larger 
study by the same group subsequently showed an association between the FF 
and smoking status, Afro-Caribbean racial origin, fetal CRL, and T21 karyotype 
[Ashoor et al. 2013a]. Associations between the FF estimates and assisted 
reproduction [Galeva et al. 2019; Lee et al. 2018; Revello et al. 2016] as well as 
among twins were also reported [Galeva et al. 2019; Zhou et al. 2015]. Still, the 
strongest independent factor affecting the FF in a negative way remains as high 
maternal body-mass index (BMI) [Hou et al. 2019].  

Measuring the FF in maternal plasma is an important factor affecting the 
performance of NIPT, as was highlighted by Canick et al. in 2013 [Canick et al. 
2013]. Some laboratories do not measure the FF in NIPT samples, thereby 
possibly providing patients with false-negative results [Takoudes and Hamar 
2015]. It is believed that measuring the FF should be one of the main quality 
control factors in future developments of NIPT platforms [Grati 2016]. Still, 
according to the consensus opinion on standards for reporting NIPT results by 
experts in the field, no clear guidance on the need to measure the FF was given 
[Deans et al. 2017]. Nevertheless, clinicians must understand the biological 
influences on the FF to be able to provide post-test counselling and clinical 
management [Hui and Bianchi 2020]. 

 
 
2.3.4. Screening performance of NIPT for common trisomies 

The performance of cff-DNA screening for aneuploidy was extensively in-
vestigated in both high-risk and general populations. The largest meta-analysis 
of NIPT performance to date was based on 35 high-quality studies, in which 
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different methods of NIPT were used in various obstetric populations, both 
high-risk and low-risk, in either prospective or retrospective ways [Gil et al. 
2017]. It was clear that in terms of screening performance, NIPT superseded 
conventional cFTS. A summary of the NIPT performance for T21, T18, and 
T13 in singleton pregnancies is shown in Table 4. 
 
 
Table 4. Performance of cff-DNA testing with weighted pooled DR and FPR for 
common trisomies. Adapted from [Gil et al. 2017]. 
 

Condition DR (%) (95% CI) FPR (%) (95% CI) 
T21 99.7 (99.1–99.9) 0.04 (0.02–0.07) 
T18 97.9 (94.9–99.1) 0.04 (0.03–0.07) 
T13 99.0 (65.8–100) 0.04 (0.02–0.07) 

CI – confidence interval; DR – detection rate; FPR – false-positive rate. 
 
 

A recent meta-analysis of the performance of NIPT using microarray-based 
quantification reported similar results: the sensitivity was 99.5% for T21 (95% 
CI, 96.3–99.9%), 97.7% (95% CI, 87.9–99.6%) for T18, and 100% (95% CI, 
83.2–100%) for T13 [Geppert et al. 2020]. 

In terms of aneuploidy screening in twins, there is insufficient data to sup-
port the routine use of cff-DNA testing, thus it is not recommended [ACOG 
2015]. The latest meta-analysis of NIPT performance in twins states that the 
performance of cff-DNA testing for T21 in twin pregnancies is similar to that 
reported in singleton pregnancies and is superior to cFTS performance; 
however, the number of cases of T18 and T13 are too small to accurately assess 
the predictive performance of the cff-DNA test [Gil et al. 2019]. By contrast, in 
the largest prospective study to date on the performance of NIPT in twin 
pregnancies, good results were demonstrated. Khalil et al. showed that T21 can 
be detected in 100% of cases using the IONA test: the pooled estimated DR for 
T21 in their systematic review was 95% (95% CI, 90–99%) [Khalil et al. 2021]. 
The NIPT performance for T18 and T13 may be less than that of T21 due to the 
small numbers of affected fetuses in the studies included in the systematic 
review. It is likely that with more studies to come in the future, a better under-
standing of NIPT performance in twins will be achieved. 

 
 

2.3.5. NIPT implementation into clinical practice 

The implementation of NIPT into clinical practice has been mainly laboratory 
driven and all NIPT assays have been commercially developed. Despite the 
obvious advantages of NIPT over cFTS, the latter remains the first-line scree-
ning test for aneuploidy in the general obstetric population [ACOG 2015]. One 
of the reasons for this is the fact that during first-trimester US examination it is 
possible to diagnose fetal malformations [Minnella et al. 2020; Syngelaki et al. 
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2019] and to predict certain pregnancy complications due to the changes in 
maternal biomarkers and hemodynamics [Wright et al. 2019]. The greatest 
advantage of NIPT over cFTS is its low FPR; thus, the main expectation from 
the implementation of NIPT in clinical practice is a reduction of the invasive-
testing rate. 

Nicolaides et al. in 2013 showed with the use of a mathematical model that 
applying cff-DNA testing in a contingent way after cFTS, the DR of T21 could 
reach 96.9% with an invasive testing rate of 0.66% [Nicolaides et al. 2013b]. 
Invasive testing carries a very low risk of pregnancy loss [Akolekar et al. 2015; 
Martins et al. 2020; Salomon et al. 2019; Wulff et al. 2016], but still the 
majority of women would prefer NIPT, at least in some settings [Oepkes et al. 
2016; Seror et al. 2019]. The major question arising from this fact is how to 
implement NIPT into routine clinical practice.  

There are essentially three possibilities for NIPT use in screening for 
chromosomal disease: routine use for all pregnancies; offering NIPT as a 
second-tier test only in high-risk groups after cFTS; or a contingent model of 
NIPT use in cFTS settings [Kagan et al. 2017]. The uptake of NIPT varies 
between different populations. In countries where NIPT is reimbursed by health 
insurance, the main factors influencing the uptake of NIPT are maternal edu-
cation, racial origin, pregnancy termination acceptance, level of risk for 
aneuploidy after cFTS, and possibilities of molecular diagnostics after invasive 
testing [Gil et al. 2015; Lou et al. 2018; Miltoft et al. 2018]. 

Offering NIPT only to the group at high-risk after cFTS would lower the 
invasive-testing rate, while the DR of trisomies would stay at the same level as 
was shown in the TRIDENT-1 trial [Oepkes et al. 2016]. In the TRIDENT-2 
study, where NIPT was implemented, as a first-tier screening test for chromo-
somal disease, the uptake of NIPT was only 42%, and 54% of women still did 
not participate in the screening program. This study showed a high DR of aneu-
ploidies, but some questions regarding the reporting and managing of incidental 
findings of NIPT using the MPSS method, have arisen [van der Meij et al. 
2019]. Latest nationwide NIPT implementation study from Belgium showed a 
much higher uptake (78.7%) of NIPT as a first-tier PS test. The Belgian 
approach of managing RATs after MPSS-based NIPT was based on national 
guidelines [Van Den Bogaert et al. 2021]. Some studies conducted in the public 
healthcare system have shown that the implementation of NIPT is feasible and 
straightforward in countries with established cFTS programs [Gil et al. 2016; 
Guy et al. 2021; Miltoft et al. 2018] and can be cost-effective, if applied in a 
contingent model with cFTS [Colosi et al. 2017; Xie et al. 2020]. Examples of 
current use of NIPT in the world are shown in Table 5. 
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Table 5. Examples of current NIPT use in different regions of the world, adapted from 
[Gadsboll et al. 2020]. 
 

Country NIPT implementation, reimbursement  
Denmark High-risk after cFTS, reimbursed 
Iceland High-risk after cFTS, reimbursed 
USA No national policy, partly-reimbursed  
Australia No national policy, NIPT self-funded 
Netherlands NIPT for all women, partly reimbursed 
Belgium NIPT for all women, reimbursed 
France High-risk after cFTS, reimbursed 
UK High-risk after cFTS, reimbursed 
Russian Federation No national policy, self-funded 

 
 
A local NIPT assay was recently developed and validated in Estonia, using the 
MPSS method with a novel bioinformatics algorithm [Žilina et al. 2019]. This 
gives us an opportunity to start using NIPT in clinical settings in our population, 
but the basis for this initiative is still cFTS. In 2020, the EHIF decided that 
NIPT will be offered as a second-tier screening test to women with certain indi-
cations after cFTS. During the COVID-19 pandemic in 2020, the EHIF in colla-
boration with the Estonian Gynecologist’s Society decided to reimburse NIPT 
to all pregnant women in Estonia as a primary test for PS of chromosomal 
disease. 
 

2.3.6. Challenges in clinical use of NIPT 

Several factors can influence the performance of NIPT in terms of false-positive 
or false-negative results, including an insufficient or absent fetal fraction 
[Ashoor et al. 2013a; Takoudes and Hamar 2015], fetoplacental mosaicism 
[Grati et al. 2014], and the presence of a vanishing twin [Gromminger et al. 
2014]. Furthermore, false-positive NIPT results can rarely be explained by ma-
ternal chromosomal mosaicism or maternal malignancies [Bianchi et al. 2015; 
Wang et al. 2014]. The origin of cff-DNA is in the external layer of the pla-
centa, the trophoblast, or more accurately in the cytotrophoblast [Faas et al. 
2012]. The fact that cff-DNA testing targets a mixture of DNA fragments of 
maternal and fetoplacental origin leads to certain biological limitations; con-
sequently, cff-DNA testing can present both false-positive and false-negative 
results, and although it is a highly sensitive screening method it is not a diag-
nostic tool [Grati 2016; Van Opstal et al. 2016].  
 Based on the known data regarding the presence and types of fetoplacental 
mosaicism, this biological phenomenon could cause both false-positive and 
false-negative NIPT results [Grati et al. 2014; Suzumori et al. 2021]. Fetal US 
examination in the first trimester is still necessary and important in cases of 
high-risk NIPT results [Salomon et al. 2014] and can influence the timing of 
confirmatory diagnostic procedures depending on the type of aneuploidy 



27 

present [Grati et al. 2015; Van Opstal and Srebniak 2016]. This is of particular 
concern for high-risk NIPT results for T18 and T13, in which US evaluation of 
the fetus is of great importance [Zhen et al. 2019a; Zhen et al. 2019b]. Recent 
systematic reviews of discordant NIPT results have summarized the available 
data highlighting the need for transparent reporting of discordant or failed NIPT 
results [Hartwig et al. 2017; Samura and Okamoto 2020].  
 Another issue, which concerns only MPSS-based NIPT platforms, is inci-
dental findings of rare autosomal trisomies (RATs). The incidence of such 
findings can be as frequent as 1 in 835 cases and can be related to poor preg-
nancy outcome [Scott et al. 2018]. However, the majority of such findings are 
limited to the placenta, but can trigger parental anxiety or unnecessary invasive 
testing [van der Meij et al. 2019]. Reporting such findings is still under debate 
in terms of pregnancy follow-up and parental counselling. The only RAT that 
showed a strong association with poor pregnancy outcome was trisomy 16; 
therefore, this was the only one that should be reported through cff-DNA testing 
[Grati et al. 2020]. Recently, according to leading experts in the field of PS, 
major concerns regarding MPSS-based NIPT platforms in the universal scree-
ning of the population have been raised. They stressed the following points of 
concern: clinical significance of RAT findings; lack of ability to predict the 
pregnancy outcome in those cases; and ethical and legal challenges in terms of 
how to counsel parents before the test, since accurate information is lacking 
[Jani et al. 2020].  

Reviewing the available evidence, the recommendations for cff-DNA scree-
ning for fetal aneuploidy were detailed in the professional societies’ guidelines 
[ACOG 2015; Benn et al. 2015]. Some points to consider in clinical practice are 
as follows: 
− definitive diagnosis of T21 and other chromosomal anomalies can be 

achieved only by the analysis of fetal cells obtained by CVS or AC;  
− cff-DNA testing can be offered in different ways: as a primary test for all 

women, secondary to a high-risk assessment after cFTS, or in contingent 
way to a broader group of women ascertained to have high or intermediate 
risk after conventional screening; 

− pregnancy management decisions should not be based on the cff-DNA 
screening results alone; 

− in cases of fetal structural anomaly, diagnostic testing, and not cff-DNA 
screening, should be offered; 

− cff-DNA testing does not screen for fetal structural abnormalities; therefore, 
US examination of the fetus should be offered to all women; 

− routine cff-DNA screening for microdeletion syndromes should not be per-
formed; 

− A discussion of the risks, benefits, limitations, and alternatives to the diffe-
rent methods of PS and diagnosis should take place with all patients. 
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The benefits and harms of screening programs must be carefully considered 
before implementation. There is clear evidence of excellent performance of 
NIPT in PS of common trisomies, but expanding the scope of NIPT to the 
microdeletions and genome-wide assessment of chromosomal imbalances could 
be premature [Di Renzo et al. 2019]. A good example of how NIPT could be 
implemented as a nationwide first-tier PS test comes from Belgium, which was 
the first country to implement fully reimbursed NIPT as a first-tier PS test for 
all pregnant women from 2018. The uptake of NIPT in the study reported by 
Van Den Bogaert et el. was 78.7% [Van Den Bogaert et al. 2021], which is 
almost two-fold higher than in a Dutch population-based study [van der Meij et 
al. 2019]. The authors are discussing in detail the performance of NIPT, the 
decrease in the invasive testing rate, and the management of RATs with the 
outcomes of pregnancies in most cases. 

 
 
2.4. Invasive procedures in prenatal diagnosis  

2.4.1. Amniocentesis 

During this procedure, a small sample of amniotic fluid is obtained. The proce-
dure is performed transabdominally after completing 15 weeks of pregnancy. 
An earlier procedure is related to a higher risk of miscarriage [CEMAT 1998]. 
The first report of AC with chromosomal analysis of cultivated amniocytes was 
published in 1966 [Steele and Breg 1966]. An evidence-based technique for 
performing AC has been described in detail in the recent guidelines issued by 
the International Society of Ultrasound in Obstetrics and Gynecology (ISUOG) 
[Ghi et al. 2016]. The rate of fetal losses is lower if 100 or more procedures are 
performed annually. Laboratory failure of culturing amniocytes is a very rare 
event, reported in less than 0.1% of the cases: main reasons for this are ad-
vanced gestational age and blood-stained amniotic fluid [Ghi et al. 2016].  
 
 

2.4.2. Chorionic villous sampling 

CVS is a procedure through which a sample of trophoblastic cells from the pla-
centa is obtained. There are two ways of performing CVS: the transabdominal 
or the transcervical route. The only randomized-controlled trial (RCT) regar-
ding the safety of these two methods did not find any difference [Jackson et al. 
1992]. The choice of the method of CVS should be made by the operator, 
according to their experience or preference [Young et al. 2013]. The rate of 
fetal losses is lower if 100 or more procedures are performed annually [Ghi et 
al. 2016]. The main issue of CVS in PD is the biological phenomenon of 
‘chromosomal mosaicism’ [Grati et al. 2017]. Different types of fetoplacental 
mosaicism with incidence rates are described. In the largest study to date, 
60,347 chorionic samples were investigated and mosaic cases were detected in 
2.18%: 87% of these were confined to the placenta and 13% were confined to 
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the fetus [Malvestiti et al. 2015]. Confirmatory AC is therefore a suggested 
procedure after mosaic findings in CVS samples along with proper counselling 
regarding the probability of the true fetal mosaicism [Malvestiti et al. 2015]. 

Invasive prenatal testing focuses on each woman’s reproductive goals and 
preferences. Appropriate, nondirective pre-test counseling is essential to explain 
the benefits, limitations, and risks of these procedures. Indications for prenatal 
diagnostic testing are usually high-risk results from aneuploidy screening, fetal 
anomaly, detected on US examination, familiar history or maternal request 
[Norton and Rink 2016]. Prenatal genetic testing requires direct analysis of fetal 
tissue. There are three possibilities to obtain fetal cells: chorionic villous 
sampling (CVS); amniocentesis (AC); and fetal blood sampling (FBS). CVS 
and AC are the most frequent procedures in PD [Ghi et al. 2016]. 

The main issue with invasive diagnostics during pregnancy is safety. It has 
been stated for two decades that performing AC carries an additional risk for 
miscarriage of 1% [Tabor et al. 1986]. More recent data from two large syste-
matic reviews show that procedure-related risk is actually much lower, being 
0.20–0.22% for CVS and 0.11–0.30% for AC [Akolekar et al. 2015; Martins et 
al. 2020; Salomon et al. 2019; Wulff et al. 2016]. In the latest systematic re-
view on the safety of invasive procedures it is clear that CVS might actually be 
a safer procedure than AC [Salomon et al. 2019].The decision to undergo 
invasive diagnostics should be made only by the patient. Women weigh-up the 
risk of miscarriage against the possible diagnostic information widely, but tend 
to choose non-invasive options [Kuppermann et al. 2014]. However, in a recent 
randomized controlled trial on the influence of prenatal counselling (the 
INVASIVE trial), it was shown that after extensive prenatal counselling women 
were 32% more likely to choose invasive diagnostics over other PS possibilities 
[Paz et al. 2020]. The decline in the invasive-testing rate raises some concerns 
in term of its effect on education, training, and the maintenance of clinical 
competence in PD [Rose and Eller 2014]. In the era of NIPT, the decline in the 
invasive-procedure rate is universally appreciated. It has been shown with the 
use of mathematical models that the invasive-testing rate can be as low as 
0.66% after cFTS [Nicolaides et al. 2013b]. In terms of traditional indications 
for PD, such as advanced maternal age or high-risk after cFTS, such a decline is 
justified given the high DR and low FPR of NIPT for common trisomies [Gil et 
al. 2017; Gil et al. 2014]. However, with the developments in molecular PD, 
indications for invasive testing as well as methods used in genetic diagnosis 
have also evolved [Norton and Rink 2016]. Typical changes in indications for 
invasive procedures and in the amount of procedures performed are most clearly 
seen in a recent study from Belgium, where NIPT testing was implemented as a 
nationwide first-tier PS test [Van Den Bogaert et al. 2021]. An increase in the 
indications for PD such as fetal anomalies or single-gene disorder testing have 
been reported [Awomolo et al. 2018]. Given the outcomes of the INVASIVE 
trial, we can expect that more women will choose invasive PD over traditional 
PS options [Paz et al. 2020]. Women should be reassured that invasive pro-
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cedures carried out by an experienced operator are not associated with a signi-
ficant increase in miscarriage rate [Salomon et al. 2019]. 

There are several possibilities for PD after invasive procedure. Prenatal 
samples, acquired after CVS or AC, can be used for rapid aneuploidy detection 
or can be cultured for karyotyping. In cases, where CMA and NGS analysis are 
required fetal DNA can be extracted either directly for the sample or from the 
cell culture. General pathway of PD after invasive procedure is shown in Figure 
6. 

 

  

 

 
Figure 6. General possibilities for analysis of prenatal sample. 
AC – amniocentesis; CMA – chromosomal microarray analysis; CVS – chorionic 
villous sampling; ES – exome sequencing; GS – genome sequencing; iFISH – 
interphase fluorescence in situ hybridization; NGS – next-generation sequencing; QF-
PCR – quantitative fluorescent polymerase chain reaction 
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2.5. Chromosomal microarray analysis  
in prenatal diagnostics  

2.5.1. Implementation of CMA in prenatal diagnosis.  
Indications for CMA 

The aim of prenatal diagnostic tests is to reach a definitive diagnosis in each 
case that is referred for evaluation [ACOG 2016b]. Accurate genetic PD is 
essential in providing parents with better counseling about the prognosis of the 
child after birth or specifying the recurrence risk in cases of lethal anomaly and 
pregnancy termination. 
 Indications for PD may differ between countries, but generally can be divi-
ded into the following groups (adapted from [Silva et al. 2019]): 
− High-risk for aneuploidy after cFTS or NIPT; 
− Fetal anomaly detected on US examination; 
− Previous pregnancy or birth with a chromosome abnormality; 
− Parental chromosomal rearrangements; 
− Possible fetal mosaicism on prior prenatal study; 
− Familial history of monogenic disorders. 
Despite clear PD indications, and considering all possible relevant information 
on fetal health, invasive diagnostic testing for aneuploidy should be available to 
all women, regardless of maternal age [ACOG 2007]. 

PD of chromosome abnormalities was introduced in 1966, when karyotyping 
of fetal amniocytes was performed [Steele and Breg 1966]. Conventional G-
band karyotyping has been used for over 40 years as a gold standard in cyto-
genetics [Wou et al. 2016]. The diagnostic resolution of karyotyping is about 5–
10 million base pairs, which does not allow the detection of smaller chromo-
somal lesions: microdeletions and microduplications [Silva et al. 2019]. CMA 
or ‘molecular karyotyping’ is a DNA-based technology, which detects genome-
wide DNA losses or gains, CNV, at a 100-fold higher resolution than karyo-
typing [Kin Chau and Choy 2021; Shearer et al. 2007]. CMA was initially intro-
duced into clinical practice as a first-tier test for the postnatal diagnostic eva-
luation of individuals with unexplained developmental delay/intellectual disabi-
lity, autism spectrum disorders, or multiple congenital anomalies. Compared to 
conventional karyotyping, the additional diagnostic yield of CMA with these 
indications was 10–15% [Miller et al. 2010]. Nevertheless, at that point in time 
the routine use of CMA in PD was under debate and the use of CMA as a sub-
stitute for conventional karyotyping was not recommended [Novelli et al. 
2012]. There were several reasons for that: interpretation difficulties with CMA 
results in cases of normal fetal US; lack of experienced cytogeneticists to inter-
pret results in the prenatal setting; and the high cost of CMA analysis due to the 
frequent necessity to examine both the fetus and the parents [Vetro et al. 2012]. 

In 2012, Wapner et al. published a large study comparing karyotype with 
CMA diagnostic performance in prenatal settings. This prospective blinded 
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study of 4,406 pregnancies demonstrated an incremental diagnostic yield of 
6.0% in cases with fetal anomalies and 1.7% for all other indications [Wapner et 
al. 2012]. These findings triggered further research, and meta-analysis of this 
period states that it was likely that CMA would replace karyotyping in high-risk 
pregnancies (cases with US anomalies). CMA DR of chromosomal disease over 
karyotype was found to be 7% (95% CI, 5–10%) [Hillman et al. 2013]. Con-
sidering these data, the ACOG issued a statement in which CMA was recom-
mended as a first-tier test for PD in cases with fetal US anomalies, fetal demise, 
or stillbirth [ACOG 2016a]. It was also suggested that either karyotype or CMA 
was appropriate for prenatal testing in women with structurally normal fetuses, 
but no clear statement for choosing one method over the other was given. One 
of the main arguments against the routine prenatal use of CMA was the pos-
sibility of finding CNV of uncertain clinical significance (VOUS), which may 
complicate further counselling and decision-making processes regarding preg-
nancy follow-up [Lou et al. 2020; Richardson and Ormond 2018; Vetro et al. 
2012]. Nevertheless, an approach for the implementation of CMA as a first-tier 
cytogenetic test in PD for cases without US anomalies had already been 
proposed in 2013 [Srebniak et al. 2013]. In Estonia, CMA has been funded by 
the EHIF since 2011. It is used as a first-tier diagnostic test if one of the 
following indications is present [Ustav et al. 2016]: 
− NT greater than 3.5 mm; 
− Fetal US abnormality; 
− Family history or genetic referral; 
− Findings in karyotype requiring submicroscopic evaluation. 
 
 

2.5.2. CMA technology in prenatal settings 

There are two main types of CMA performed currently in prenatal and postnatal 
settings: comparative genomic hybridization (CGH) and SNP microarrays [Kin 
Chau and Choy 2021; Stosic et al. 2018; Wou et al. 2016].  

In the CGH approach, a patient’s DNA is compared to a reference genome 
DNA sample to identify regions of under- or over-representation. Two DNA 
samples are labelled in different colors, using fluorescent dyes; the information 
about losses and gains of DNA is therefore derived by calculation of the diffe-
rence in intensity of the fluorescent color signals for each probe. The normal 
copy number represents an equal intensity between the sample and reference 
DNA. A higher intensity of sample DNA over the reference would represent a 
gain; a lower intensity would mean a loss in the sample DNA [Karampetsou et 
al. 2014]. 

SNP array platforms are another approach. They do not use a comparative 
reference sample, but rather determine the patient’s genotype in specific areas 
of the genome that are highly polymorphic among individuals. These differen-
ces are referred to as SNPs. In this way, absent or duplicated stretches of DNA 
can be identified [Stosic et al. 2018]. An additional value of SNP-array techno-
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logy is the ability to detect uniparental disomy (UPD), mosaicism, zygosity, 
maternal cell contamination, and possible consanguinity. Triploidy can also be 
detected by SNP arrays [Levy and Wapner 2018]. This CMA technology has 
been used in Estonia since 2009. 

 
 

2.5.3. Reporting of CMA findings 

Chromosomal abnormalities observed on karyotype are generally associated 
with major clinical findings, due to the fact, that aberrations visible by a micro-
scope involve hundreds to thousands of genes. The CMA ability to detect small 
submicroscopic lesions may be appealing for parents in terms of getting more 
diagnostic information; however, it can constitute a great challenge in PD, espe-
cially in cases where CNV has been found and can have a wide-ranging pheno-
type [Richardson and Ormond 2018]. 

The American College of Medical Genetics (ACMG), in joint consensus 
with the Association for Molecular Pathology, published guidelines for the 
interpretation of sequence variants in 2015. It was proposed that CVNs should 
be classified into the following five groups based on the degree of likelihood of 
pathogenicity [Richards et al. 2015]:  
− benign, Class 1; 
− likely benign, Class 2; 
− uncertain clinical significance, Class 3; 
− likely pathogenic, Class 4; 
− pathogenic, Class 5. 
This classification was based on CNV-frequency differences between affected 
individuals and the general population [de Leeuw et al. 2012]. A CMA report 
should consist of the following parts [Kearney et al. 2011]:  
− cytogenetic location (chromosome and bands); 
− CNV category (loss or gain of DNA); 
− size and coordinates within genome; 
− classification of significance (five-class system); 
− genes involved in CNV, with specifications of disease-related genes, if 

applicable; 
− recommendations for clinical follow-up.  
Recently, the ACMG updated their technical standards for the interpretation of 
CNVs, introducing a quantitative scoring framework, encouraging the imple-
mentation of the five-tier system into the interpretation of CMA results, as 
described above [Riggs et al. 2020]. 

Different approach to the classification of array findings was proposed by 
Srebniak et al. in 2014, with a more detailed subcategorization of clinically 
relevant CNVs into causative array findings, variants in susceptibility loci (SL), 
and unexpected diagnoses [Srebniak et al. 2014]. Another, more simplified 
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approach was suggested in 2017 for clinical reporting in regards to classi-
fication of CNVs [Nowakowska 2017]. 

A major challenge in the use of CMA in prenatal cases is the interpretation 
of VOUS findings, especially in cases with a structurally normal fetus [Daum et 
al. 2021; Mardy et al. 2020; Vetro et al. 2012]. Several public databases pro-
vide helpful tools to facilitate the accuracy of CMA reporting, including the 
Database of Genomic Variants (DGV), the Database of Chromosomal Imbalan-
ce and Phenotype in Humans using Ensembl Resources (DECIPHER), the 
European Cytogeneticists Association Register of Unbalanced Chromosome 
Aberrations (ECARUCA), and the Database of genomic variation and its rela-
tionship to human health (ClinVar). These collect data from healthy individuals 
as well as from subjects with congenital anomalies or developmental delay [de 
Leeuw et al. 2012].  

The incidence of VOUS varies among published studies. Initially an inci-
dence of 1.5% was reported [Wapner et al. 2012], which was confirmed by later 
meta-analysis, stating that the VOUS rate, with all indications considered, was 
about 1.4% [Hillman et al. 2013]. In a recent population-based study, with 
CMA being the primary test for all indications, a higher incidence of VOUS of 
5.6% was reported [Muys et al. 2018]. Different incidences of VOUS can be 
explained by several factors, including differences in reporting guidelines, the 
CMA platform used, whole-genome versus targeted CMA, choices of CMA 
resolution, and ongoing research in terms of describing associations of CNVs 
with different phenotypes [Karampetsou et al. 2014; Levy and Wapner 2018; 
Srebniak et al. 2013; Vanakker et al. 2014]. In a recent study, focusing on 
VOUS findings, after performing CMA for various indications, the overall rate 
was 5.8%, which showed a decrease over time. The authors have suggested a 
classification of VOUS findings depending on the likelihood of an affected 
phenotype [Mardy et al. 2020]. 

The key-role of successful reporting of CMA findings is in the pre- and post-
test counseling of patients. Pre-test counseling should be focused on the diag-
nostic options available, the patient’s perception of risks and benefits, and their 
attitudes towards parenting a child with disabilities [Fonda Allen et al. 2016]. It 
should also include a discussion of the CMA potential to discover consanguinity 
or non-paternity [Dugoff et al. 2016]. The patient should understand what types 
of finding in terms of disease association that CMA can detect: early-onset 
severe conditions, autism-related findings, schizophrenia, and other late-onset 
conditions. These findings may not be related to the indication for the initial 
testing [Stosic et al. 2018]. Finally, patients should understand that CMA can-
not exclude all genetic conditions or congenital anomalies. When counselled in 
terms of PD possibilities, most women choose to get maximal information 
about their fetuses, but many wish to avoid uncertain results [Hochner et al. 
2020; Millo et al. 2021]. The post-test counseling should be done by an expert 
who has access to the databases that provide updated information concerning 
genotype–phenotype correlations [Dugoff et al. 2016]. Healthcare professionals 
should also bear in mind that parents’ perception and interpretation of CMA 
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findings and their ability to manage their uncertainty may vary [Lou et al. 
2020]. Understanding the genetic bases of disease, which could be identified 
with CMA, is also important for the providers of counselling, especially in 
cases where healthcare professionals do not have special training in genetics, 
because attitudes towards the discussion of CMA results can be different [Hui et 
al. 2020]. 

 
 

2.5.4. Diagnostic performance of CMA in different groups of 
prenatal indications 

CMA has now become the first-tier prenatal diagnostic test in following-up the 
pregnancies, where fetal structural anomalies were identified on US examina-
tion [Oneda and Rauch 2017]. Furthermore, recent data support the use of CMA 
in cases with fetal growth restriction (FGR), where additional diagnostic infor-
mation can be found in 4% of structurally normal fetuses and in 10% of FGR 
fetuses with US malformations [Borrell et al. 2018].  

The diagnostic yield of CMA in the group of fetuses with US anomalies 
varies between studies from 3.0% to 7.3% [Chong et al. 2019; Hillman et al. 
2013; Hui et al. 2021; Srebniak et al. 2016; Wapner et al. 2012]. These diffe-
rences can be explained by types of fetal anomaly, choice of CMA platform, 
and resolution [de Wit et al. 2014; Shaffer et al. 2012b]. The most common 
fetal malformations associated with CNVs are cardiac, renal, skeletal, and 
central nervous system (CNS) related [Chong et al. 2019; de Wit et al. 2014; 
Hillman et al. 2013; Hui et al. 2021; Muys et al. 2018; Shaffer et al. 2012b]. 

Congenital heart disease (CHD) is the most common birth defect in the 
world, with 1.35 million newborn cases every year. The reported total CHD 
birth prevalence in Europe is higher than that in North America at 8.2 per 1,000 
live births vs. 6.9 per 1,000 live births [van der Linde et al. 2011]. The overall 
incidence of chromosomal disease detectable with CMA in this group of fetuses 
is as high as 22.1%. Numerical chromosomal abnormalities, mostly T21, T18 
and T13, are found in 10.8% of cases [Wang et al. 2018]. An incremental yield 
of CMA over karyotype of 12% in fetuses with CHD was reported in a large 
systematic review [Jansen et al. 2015]. Similar results were found in a recent 
French retrospective nation-wide study with a CMA diagnostic yield of 10.4% 
[Hureaux et al. 2019]. The most frequent pathogenic CNV, found in fetuses 
with CHD, is a 22q11.2 microdeletion, which is accountable for up to 40% of 
the cases [Chong et al. 2019; Hureaux et al. 2019]. The incidence of 22q11.2 
microdeletion is even higher in those with non-isolated CHD, especially in 
fetuses with oral clefts, where this particular CNV is found in 100% of cases 
[Wang et al. 2018]. This evidence clearly supports the fact that conventional 
karyotyping alone is not enough in the PD of CHD. The only exception is 
probably isolated ventricular septum defects, where the prevalence of abnormal 
chromosomal findings is only 0.7% [Vedel et al. 2021].  
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CNS anomalies are diverse in terms of etiology, difficult to diagnose 
prenatally, and therefore complex to handle [Van den Veyver 2019]. It was 
reported that the incidence of clinically relevant findings in a group of fetuses 
with CNS defects after CMA was 8.6%, being highest in the subgroup with 
posterior fossa and cerebellar anomalies (13.8–19.6%) [Shaffer et al. 2012b]. 
Similar results were found in a study of 46 fetuses with CNS anomalies, identi-
fying pathogenic CNVs in 10.9% of the cases, and also highlighting Dandy–
Walker syndrome (33.3%) and holoprosencephaly (28.6%) [Sun et al. 2015]. In 
a study of 77 pregnancies affected with posterior fossa anomalies, the incidence 
of relevant CNVs was 18.5% [Zou et al. 2018]. The authors highlighted the fact 
that cerebellar hypoplasia cases seemed the most likely to have pathogenic 
CNVs on CMA (54.6%). In an 8-year observational study of CMA results in 
fetuses with CNS anomalies, the incidence of pathogenic CNVs was 6.7% 
among all the cases. The association of pathogenic findings in CMA with 
posterior fossa anomalies was also highlighted in this work [Santirocco et al. 
2020]. It is clear that in cases of complex CNS anomalies, CMA has a great 
additional value; moreover, even in cases with relatively common findings, 
such as mild ventriculomegaly, CMA can be considered. In a retrospective 
study of 101 fetuses with isolated mild ventriculomegaly, the application of 
CMA after an invasive procedure revealed pathogenic CNVs in 3.0% of the 
cases [Duan et al. 2019]. In a recent retrospective study of 312 fetuses with 
mild ventriculomegaly, the incidence of pathogenic CNVs was 5.0% [Chang et 
al. 2020].  

Increased fetal NT is a well-known marker of chromosomal disease and fetal 
structural defects, especially heart anomalies and genetic disorders [Baer et al. 
2014; Jelliffe-Pawlowski et al. 2015; Kagan et al. 2006; Kagan et al. 2017; 
Sotiriadis et al. 2013; Souka et al. 2005]. It has also been shown that increased 
NT is a marker for the risk of neurodevelopmental disorders in infants [Hell-
muth et al. 2017]. The results of a large systematic review published in 2015 
supported the use of CMA in fetuses with increased NT and normal karyotypes. 
The incremental yield of CMA in those fetuses was estimated at 5.0% (95% CI, 
2.0–8.0%) with a low incidence of VOUS of 0.8% [Grande et al. 2015]. 
Subsequent studies have confirmed these data, reporting an incidence of patho-
genic CNVs of 2.7–3.7% [Egloff et al. 2018; Leung et al. 2019]. Importantly, in 
the present era of NIPT, a considerable amount of pathogenic chromosomal 
aberrations in fetuses with increased NT would not be detected using cff-DNA 
testing [Sotiriadis et al. 2017]. Moreover, the additional value of NT measure-
ment over NIPT or CMA use in the group of fetuses with increased NT remains 
under debate [Huang et al. 2014; Lichtenbelt et al. 2015]. It is widely accepted 
that the cut-off point for invasive testing in the present era of NIPT should be a 
NT measurement of 3.5 mm or higher. The latest evidence raises questions as 
the cut-off for the invasive testing with CMA could be an NT measurement of 
3.0 mm or higher, because the residual risk for chromosomal aberrations other 
than common trisomies in such fetuses is 1 in 21 (all aberrations included, 4.8% 
[95% CI, 3.2–7.3%]) [Petersen et al. 2020]. Data from a large retrospective 
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study by Sagi-Dain et al. confirmed that the rate of abnormal CMA findings 
was significantly higher in fetuses with NT measurements between 3.1 and 3.4 
mm compared to fetuses with normal US findings. Notably, genome-wide NIPT 
as well as karyotyping would miss these findings in 1.5% or 1 in 69 cases [Sagi-
Dain et al. 2021].  

 
 

2.5.5. Challenges in prenatal use of CMA 

CMA is now recommended by several professional societies for diagnostic 
testing in high-risk pregnancies, focusing on fetuses with multiple or isolated 
US abnormalities, pregnancy loss or stillbirth, intrauterine growth restriction, 
and in fetuses with NT equal or greater than 3.5 mm [ACOG 2016a; Armour et 
al. 2018; Dugoff et al. 2016]. By contrast, it is also stated that most genomic 
changes, which can be identified by CMA, but not by conventional karyotyping, 
are not associated with maternal age. CMA can be considered for all women 
who undergo invasive testing [ACOG 2007; ACOG 2016a]. In some centers, 
CMA has been used as a primary prenatal cytogenetic test for several years 
[Fiorentino et al. 2013; Muys et al. 2018; Shaffer et al. 2012a; Srebniak et al. 
2013; Stern et al. 2020; Vogel et al. 2018]. In a recent systematic review and 
meta-analysis, it was estimated that the frequency of pathogenic CNVs was 
0.84% (95% CI, 0.55–1.30%) in pregnancies that were referred for invasive 
testing because of advanced maternal age or anxiety. What is more important is 
that pooled estimates from meta-analysis of studies including 10,314 fetuses 
indicate that early-onset syndromic disorder can be detected in 0.37% of the 
cases that are referred for invasive testing without US anomalies (95% CI, 
0.27–0.52%). This means that the risk of carrying a fetus with such an aber-
ration is 1 in 270, which is higher than the risk for carrying a fetus with T21 in 
young women [Srebniak et al. 2018]. In a Danish retrospective study of CMA 
as a primary diagnostic tool in high-risk pregnancies after cFTS, pathogenic 
CNVs were detected in 2.3% of the cases [Vogel et al. 2018]. In a nation-wide 
Belgian study of CMA performed in 13,266 fetuses, the incidence of pathogenic 
CNVs was 1.9%, all indications included [Muys et al. 2018]. The authors were 
particularly concerned about the fact that with the implementation of NIPT, 
invasive prenatal testing will increasingly become restricted to pregnancies with 
US anomalies and those with a known genetic defect in the family. If NIPT be-
comes the first-tier screening test for all, submicroscopic chromosomal anoma-
lies can be missed. The amount of such cases can be as high as 31.5% [Muys et 
al. 2018]. In the latest review, which included 29,612 structurally normal 
fetuses, the incidence of clinically relevant CNVs was between 1 in 250 and 1 
in 40 pregnancies. The probability of a pathogenic CNV, associated with severe 
early onset diseases, without any US malformation throughout the pregnancy, 
was 0.5% or less [Daum et al. 2021].These recent data support the routine use 
of CMA in PD, as was proposed in 2012 by Wapner et al. [Wapner et al. 2012]. 
Considering that the incidence of miscarriage after CVS or AC is as low as 
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0.2% and 0.3% respectively [Salomon et al. 2019], it is reasonable to inform 
women about the diagnostic yield of CMA, which should be a gold-standard 
test for all indications in invasive PD [Daum et al. 2021].  

The use of CMA in all pregnancies that undergo invasive testing raises 
several ethical questions concerning the diagnosis of uncertain prognosis, an 
unexpected diagnosis, or getting a result of uncertain or unknown clinical signi-
ficance [Richardson and Ormond 2018]. Expecting parents should understand, 
after pre-test counselling, that CMA cannot detect everything in the genome. 
This can reduce unrealistic expectations of the ’perfect‘ prenatal test. Medical 
professionals who are providing such counselling should help their patients to 
appreciate the fact that total predictability is not always a possible or preferred 
outcome [Werner-Lin et al. 2016]. Still, from available studies of parental 
choices about getting information from genetic testing, it is clear that most 
women are making fully informed decisions regarding PD at this time [Hochner 
et al. 2020; Millo et al. 2021]. 

 
 

2.6. Next-generation sequencing and exome sequencing in 
prenatal diagnostics  

The introduction of US into routine obstetrical care gave the possibility of the 
detection fetal structural abnormalities. Unexpected fetal anomalies occur in 
approximately 2–3% of all pregnancies and many have an underlying genetic 
condition [Ferretti et al. 2019]. Depending on the abnormality type, the number 
of organ systems involved, and the severity of the findings, up to 30% of such 
cases will have clinically relevant abnormal karyotypes [Zhang et al. 2017]. The 
application of CMA in this specific group of fetuses will reveal pathogenic 
CNVs in about 5–6% of cases [Chong et al. 2019; Hillman et al. 2013; Hui et 
al. 2021; Lin et al. 2020; Wapner et al. 2012]. Thus, using conventional karyo-
typing and molecular cytogenetics, more than 50% of fetuses with structural 
anomalies will be left without a diagnosis [Monaghan et al. 2020]. Due to the 
limitations of antenatal US imaging, there is an inability to identify subtle 
dysmorphic features, which hinders the ability to narrow the differential 
diagnosis [Kilby 2021] 
 Traditional prenatal evaluation of malformed fetuses in terms of possible 
associations with monogenic disorders in the absence of a family history is 
challenging, expensive, and time consuming; it is therefore not practical in a 
pregnancy setting [Ferretti et al. 2019]. NGS is a term used to describe many 
methods of high-throughput nucleotide-sequencing technologies [Kilby 2021]; 
these differ from Sanger sequencing [Sanger et al. 1977], which was the only 
method to evaluate the molecular causes of genetic diseases that was available 
for almost 30 years [Schuster 2008]. NGS is now widely used in the field of PS. 
All major NIPT platforms are based on NGS technology [Benn et al. 2013]. The 
evolution of NGS technologies in PD has enabled the screening of multiple 
genes in a single analysis, which is important and time saving in cases of de 
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novo monogenic disease in the fetus [Ferretti et al. 2019]. Traditionally such 
cases would require the sequential sequencing of many genes, exploring a 
potential molecular diagnosis of monogenic disorder [Normand et al. 2018]. 
 Two technologies are interrogating the genome at a nucleotide level: GS and 
ES: GS assesses both the coding and noncoding regions of the genome; while 
ES is limited to the protein-coding regions, representing 1–2% of the whole 
genome, and involving more than 20,000 genes [Kilby 2021; Monaghan et al. 
2020]. In clinical settings, ES is the preferred diagnostic option because most of 
the disease-related genes involve exons; thus, ES is more cost-effective than 
GS. Additionally, our current ability to interpret intronic regions of the genome 
is limited [Jelin and Vora 2018]. 
 In the pediatric population, ES yields a diagnosis of underlying molecular 
cause in 25% of cases of presumed genetic syndrome after negative findings in 
karyotyping and CMA [Yang et al. 2014]. These findings in children suggested 
that ES could be an important diagnostic tool in the evaluation of genetic causes 
of fetal structural anomalies [Petrovski et al. 2019]. Accurate and precise 
diagnosis in cases of fetal congenital anomalies would increase the ability to 
provide parents with better counselling regarding the prognosis and possible 
treatment of neonates or fetuses [Jelin and Vora 2018]. In Estonia, the NGS 
diagnostic performance was evaluated in the pediatric and adult population, and 
in a cohort of 501 probands, the diagnostic yield was 26.3% [Pajusalu et al. 
2018]. This study did not focus on PD. 
 The diagnostic yield of ES in prenatal cases ranges widely between pub-
lished studies. Being a relatively new and expensive method in PD, which 
focuses on the evaluation of rare cases, the initial reported findings of diag-
nostic effectiveness have been based on small, highly selected cohorts. The 
diagnostic yield in these small case series was reported to be between 10 and 
50% [Alamillo et al. 2015; Carss et al. 2014; Drury et al. 2015]. The largest 
prospective cohort study of the diagnostic performance of ES in PD in un-
selected cases of fetal anomalies to date reported a DR of 8.5% [Lord et al. 
2019]. In another prospective cohort of 234 fetuses analyzed in trios, an additio-
nal diagnostic yield of 10.3% was reported [Petrovski et al. 2019]. Differences 
among studies are explainable by several factors including selection criteria of 
the fetal cases in terms of anomalies and methods of NGS used in the study. 
The highest DR of 81% of pathogenic variants was reported in a case series of 
16 fetuses that were referred for NGS analysis with suspicion of skeletal 
dysplasia after multidisciplinary counselling [Chandler et al. 2018]. Thus, one 
of the factors affecting the diagnostic performance of ES in PS is actually a type 
of referral for the ES, unselected fetal anomalies, or highly selected cases, as 
referred by a geneticist [Mone et al. 2018]. The PAGE study identified specific 
phenotypes, which are associated with the highest yield of pathological variants. 
These are multiple anomalies (15.4%), skeletal anomalies (15.4%), and cardiac 
malformations (11.1%) [Lord et al. 2019]. The diagnostic yield appears to be 
considerably lower in large cohorts and higher in small cohorts with tight 
inclusion criteria. In a recent systematic review of performance of ES in PD, a 
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weighted diagnostic rate among all the studies included in the review was 19% 
[Guadagnolo et al. 2021]. 

In a recent study by Mone et al. (the CODE study), a prospective cohort of 
197 trio ES was evaluated in fetuses with CHD identified prenatally. The addi-
tional diagnostic yield over karyotyping and CMA in those fetuses was 12.7% 
[Mone et al. 2021]. Similar results came from another large prospective cohort 
of 260 fetuses with CHD analyzed in trios. The diagnostic yield of ES was 10% 
[Li et al. 2020]. In a systematic review focusing on fetuses with CHD done by 
the CODE study group, data on 636 fetuses with CHD were analyzed. The 
pooled incremental yield of ES was 21% [Mone et al. 2021]. There are only a 
few studies published with fetal cohorts of more than 100 cases. A summary of 
their findings is given in Table 6.  

There have been no reported studies of prenatal ES in the absence of fetal 
abnormalities [Harris et al. 2018]. According to a position statement issued by 
several professional societies, the routine use of ES in prenatal settings is not 
recommended [ISPD et al. 2018]. There is ongoing debate regarding the appro-
priate use of ES in PD: some researchers advocate unrestricted testing and 
others suggest that ES is justified only in severe cases [Harris et al. 2018]. Still, 
it is accepted now that ES in PD should be a phenotype-driven test. ES can 
result in thousands of detected variants and their interpretation is dependent on 
the precise phenotypical description, which is limited in prenatal settings [Kin 
Chau and Choy 2021]. There is evidence to show an increase in the detection of 
pathogenic variants after ES in cases where prenatal and postnatal phenotypes 
were combined, highlighting a need for deep phenotyping [Aarabi et al. 2018; 
Aggarwal et al. 2020]. 

 
 

Table 6. Results of ES diagnostic performance studies with cohorts of more than 100 
fetuses. 

Number of 
probands 

Inclusion criteria DR (%) of 
pathogenic 

variants 

Reference 

196 Live fetuses with US abnormalities 24 [Fu et al. 2018] 
146 Live and terminated/miscarried 

fetuses with US abnormalities 
32 [Normand et al. 2018] 

610 Fetuses with structural anomalies, 
increased NT 

8.5 [Lord et al. 2019] 

234 Fetuses with structural anomalies 10.3 [Petrovski et al. 2019] 
197 Fetuses with CHD 12.7 [Mone et al. 2021] 
260 Fetuses with CHD 10 [Li et al. 2020] 

CHD – congenital heart disease; DR – detection rate; NT – nuchal translucency; US – 
ultrasound.  
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All patients diagnosed with fetal anomaly should be offered the option of gene-
tic testing, in order to make fully informed decisions. This is essential in respect 
to patients’ reproductive autonomy [Howe 2014]. Clear communication, with 
detailed pre-test and post-test counselling, is required in prenatal ES referrals 
[Horn and Parker 2018]. It is crucial to consider, that NGS and ES have the 
potential to result in uncertain findings. Couples’ experiences of receiving 
uncertain results after genetic testing have been described in a recent systematic 
review, addressing both the clinical and the emotional aspects of the impact of 
uncertainty [Harding et al. 2020].  
 In the recent ACMG statement on the use of fetal ES, points to consider are 
discussed in detail, highlighting all aspects of referring for ES, the required 
genetic counselling, the need for detailed evaluation of the fetus, the use of 
available diagnostic modalities, and issues with reporting the ES results in pre-
natal settings. As the new diagnostic tool in fetal medicine, ES may be con-
sidered in cases where diagnosis cannot be obtained using other diagnostic 
methods to evaluate fetuses with congenital anomalies [Monaghan et al. 2020]. 
 Unresolved ethical dilemmas in the use of prenatal ES include the reporting 
of VOUS, the possibility of finding nonpaternity or consanguinity, and inci-
dental findings that are not related to the reason for the initial testing. These can 
include variants associated with low-penetrant disorders and adult-onset dis-
orders, both treatable and non-treatable [Abou Tayoun and Mason-Suares 
2020].  
 
 

2.7. Prenatal diagnosis of rare monogenic disorders 
highlighted in the thesis 

2.7.1. Simpson-Golabi-Behmel syndome 

SGB type I (OMIM 312870) is a rare X-linked disorder with characteristic pre- 
and post-natal overgrowth and multiple congenital anomalies. This well-known 
genetic condition has been rarely diagnosed prenatally. The prevalence of SGB 
syndrome is unknown. There were about 250 cases published by the year 2014 
[Tenorio et al. 2014]. Due to its specific presentation, the diagnosis is usually 
postnatal [Manor and Lalani 2020]. Typical findings of SGB syndrome are 
macroglossia, hepatosplenomegaly, cardiac malformations, skeletal anomalies, 
facial clefts, and high birthweight [Neri et al. 2013; Tenorio et al. 2014; Xiang 
et al. 2020]. These features can also be seen on prenatal US examination 
[Cottereau et al. 2013; Li and McDonald 2009; Reischer et al. 2021; Ridnoi et 
al. 2018]. 

Differential diagnosis of SGB syndrome is complex due to its overlap with 
other overgrowth syndromes [Manor and Lalani 2020]. Certain pathways of the 
diagnosis have been proposed, in which many factors should be considered, 
starting from pregnancy dating and exclusion of gestational diabetes [Vora and 
Bianchi 2009]. In terms of genetic disorders, the following four other syndro-
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mes should be considered when dealing with fetal overgrowth evaluation: 
Beckwith–Wiedemann syndrome (BWS), Pallister-Killian, Sotos, and Perlman. 

 
 

2.7.2. Meckel–Gruber syndrome  

MKS is a rare, lethal autosomal recessive ciliopathy caused by pathogenic 
variants in one of at least 17 genes [Hartill et al. 2017]. The overall worldwide 
incidence has been estimated at 1 in 135,000 livebirths, but it is relatively 
frequent in some populations, such as Finland, where the MKS incidence is 1 in 
9,000 livebirths [Salonen and Norio 1984]. The first disease-causing variant in 
the MKS1 gene was identified in the Finnish population [Kyttala et al. 2006]. 
The incidence of MKS can be even higher in populations with a high 
consanguinity rate, reaching 1 in 2,000 livebirths in Qatar [Al-Belushi et al. 
2016]. The highest incidence of MKS was reported in Gujarati Indians with 1 
case per 1,304 livebirths, and a carrier rate of 1 in 18 [Young et al. 1985]. 

MKS is a lethal disorder. In Europe 88% of prenatally detected cases are 
terminated [Barisic et al. 2015]. Profound prenatal features of MKS such as 
encephalocele, postaxial polydactyly and polycystic kidneys can be detected 
during US examination already in the first trimester [Sepulveda et al. 1997]. 
The incidences of these findings in MKS are 83.8%, 87.3%, and 97.7%, 
respectively [Barisic et al. 2015]. Other CNS findings or heart defects can also 
be present, including holoprosencephaly, cerebellar anomalies, or anencephaly 
[Khurana et al. 2017; Radhakrishnan et al. 2019; Yaqoubi and Fatema 2018]. 
An elevation of maternal serum AFP levels was described by Sepulveda et al. 
and is explained by the neural tube defect in MKS [Sepulveda et al. 1997].  

Targeted diagnosis of MKS is usually triggered by distinctive US findings 
and can be started with the use of targeted NGS gene panels [Ridnoi et al. 2019; 
Watson et al. 2020]. ES may be necessary to exclude rare gene associations 
[Ridnoi et al. 2019; Zhang et al. 2020] 

 
 
2.8. Prenatal screening and diagnosis in Estonia,  

past and present 
The development of antenatal care in Estonia was very rapid after regaining 
independency in 1991. Antenatal care is fully supported by EHIF for every 
pregnant woman with a residence permit in our country, regardless of citizen-
ship. All screening and diagnostic procedures during pregnancy, as well as labor 
are free of charge. This gives a great opportunity to apply PS and PD to every 
pregnant woman, who has the indication for the latter.  

The use of national PS program was initially started in 1995 with maternal 
age as the main risk factor. In 1999, with the support of the EHIF, a national 
program of PS was implemented, based on second-trimester serum markers. 
Between 2006 and 2016, several PS protocols were used, but there was no clear 
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national policy [Sitska 2018]. The new national prenatal diagnostics guidelines 
designated cFTS as the primary PS test for all pregnant women in Estonia 
[Ustav et al. 2016]. From 2020, with the support from EHIF, a local NIPT plat-
form was implemented into existing PS program, based on the universal cFTS 
(see the Results and Discussion part of the thesis).  

The prenatal diagnostics officially started with the performance of the first 
amniocentesis on October 29, 1990 by dr. Aivar Ehrenberg in Tartu University 
Hospital (TUH). Initially a conventional karyotyping was used in the diagnosis 
of chromosomal disease. From 2000 a rapid aneuploidy testing iFISH became 
available. The use of CMA in clinical practice started in 2011 and NGS analysis 
in 2015. Both analyses now are reimbursed by EHIF, so every patient with the 
indication for these tests gets them free of charge. In cases, where invasive 
diagnostics is required patients are referred to one of the three major hospitals. 
In Estonia there is only one Department of Clinical Genetics in the TUH and all 
prenatal as well as postnatal diagnostics of chromosomal and genetic disease is 
performed there. 
 

2.9. Summary of the literature  
The field of PS and PD is constantly evolving. Different strategies are in use to 
provide pregnant women with the best antenatal care. Despite the fact that cFTS 
was introduced into clinical practice almost 20 years ago, it is still the first-line 
screening choice for the majority of women in the obstetric population. More 
than 90% of Down, Edwards, and Patau syndrome cases can be identified pre-
natally using conventional cFTS. Nevertheless, advances in the technology 
cannot be ignored and with the development of NIPT it is likely that at some 
point in time the latter will replace current screening protocols. At the same 
time, NIPT is unlikely to replace the US assessment of both the fetus and the 
expectant mother for the early detection of congenital anomalies and pregnancy 
complications. In terms of adapting new technologies into clinical practice, it is 
important to acknowledge the need for prospective quality assurance and conti-
nuing education of healthcare professionals as well as patients. Understanding 
the scientific basis of the new molecular methods used in PS and PD is neces-
sary for evidence-based implementation in routine care. The benefits of NIPT, 
CMA, and NGS in prenatal setting can easily be overestimated by biases in 
counselling. The possibility of unclear or incidental findings in fetal DNA, 
using new molecular methods, needs to be addressed before testing. With the 
emerging evidence of the diagnostic effectiveness of CMA and NGS in PD, one 
can expect further studies in the field of PS and PD. Knowing this, it is wise to 
remind ourselves that all of these technologies have been developed to ensure 
that women are afforded their essential reproductive rights. 
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3. AIMS OF THE PRESENT STUDY  

The aims of the present study were: 
1. To evaluate the effectiveness of combined first trimester screening in Esto-

nia; 
2. To assess the use and effectiveness of chromosomal microarray analysis in 

high-risk pregnancies for the detection of chromosomal anomalies; 
3. To establish the next-generation sequencing methods and to evaluate their 

effectiveness for fetuses with high risk and/or combined anomalies; 
4. To characterize prenatal phenotype of Simpson-Golabi-Behmel syndrome; 
5. To characterize a pathogenic variant in the TXNDC15 gene in prenatally 

diagnosed case of Meckel-Gruber syndrome.  
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4. MATERIALS AND METHODS  

4.1. Study subjects 

4.1.1. The effectiveness of cFTS (Publication 4) 

The study period was two years from Jan 01, 2017, until December 31, 2018. A 
total of 14,859 pregnant women were followed in two major centers for 
antenatal care in Estonia: the East-Tallinn Central Hospital’s Women’s Clinic 
(ETCH) and the Women’s Clinic of Tartu University Hospital (TUH). Of these, 
293 cases were excluded due to multiple pregnancy and/or an incomplete scree-
ning protocol. The final study group consisted of 14,566 singleton pregnancy 
cases (Figure 7). Participation in the study was voluntarily and written informed 
consent was given as a part of routine antenatal care [Ridnõi et al. 2021b]. 
 
 

Figure 7. Study group of cFTS, from [Ridnõi et al. 2021b] 
 
 

Among the cFTS study group, 517 women were screen-positive with risk for 
chromosomal disease higher than 1 in 100 (Figure 7). According to Estonian 
antenatal diagnostic guideline invasive diagnostics should be offered to every 
patient with high-risk for chromosomal disease [Ustav et al. 2016]. To all of 
them diagnostic invasive procedure was offered.  
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4.1.2. The effectiveness of CMA in high-risk pregnancies 
(Publication 1) 

For the CMA diagnostic effectiveness evaluation, a total of 334 pregnant 
women were recruited out of 14,566 who underwent cFTS. Two groups were 
formed. Group A comprised 184 women all of whom were identified as at high-
risk for trisomies after cFTS, but had normal NT measurement (below 3.5 mm) 
and no US malformations (Figure 8). All women in Group A were counselled 
before the procedure and additional written informed consent was obtained to 
perform CMA on fetal DNA. Group B comprised 150 women all of whom met 
the criteria for CMA as a first-tier diagnostic test (Figure 8). CMA in Estonia is 
performed as a first-tier diagnostic test after an invasive procedure if one of the 
following clinical indications is met: NT greater than 3.5 mm, fetal malforma-
tions, family history or known balanced translocation in one parent. All women 
in Group B gave written consent for a performance of invasive procedure, no 
additional consent was given for the performance of CMA [Ridnõi et al. 
2021a]. 

 

 
Figure 8. Study group of CMA: group A (high-risk after cFTS, normal ultrasound), 
group B (CMA indicated as first-tier diagnostic test), from [Ridnõi et al. 2021a]. 
cFTS – combined first-trimester screening; CMA – chromosomal microarray analysis; 
CNV –copy-number variant; VOUS – variant of uncertain clinical significance. 
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4.1.3. The effectiveness of NGS for fetuses with high risk and/or 
combined anomalies (Publication 1) 

During the study period, a total of 28 cases (0.2%) were selected for the NGS 
panel analysis group. All cases were recruited from the cFTS study group. The 
inclusion criteria were as follows: fetal brain anomalies, non-immune fetal 
hydrops, combined heart defects, and multiple fetal anomalies, suggestive of an 
underlying genetic syndrome. The decision to perform NGS panel analysis was 
made by a clinical geneticist who also counselled the patient, and additional 
written informed consent was obtained for performing NGS analysis on fetal 
DNA. A detailed description of the indications for NGS analysis is given in 
Table 7. Only two pregnancies resulted in livebirths, all others were terminated 
according to medical indications before the 22nd gestational week [Ridnõi et al. 
2021a]. 
 
 
Table 7. Description of the findings in cases selected for NGS analysis, adapted from 
[Ridnõi et al. 2021a]. 
 

Case 
no Fetal US findings/types of anomaly on autopsy  

1 Corpus callosum dysgenesis. Bilateral ventriculomegaly 
2 Corpus callosum dysgenesis. Dysmorphic facial features 
3 Absence of corpus callosum. Additional spleen. Hydrops. Sandal gap 
4 Agenesis of corpus callosum 
5 Agenesis of corpus callosum. Dysmorphic facial features 
6 Agenesis of corpus callosum. Lissencephaly 
7 Cerebellar hypoplasia with ventriculomegaly 
8 Holoprosencephaly 
9 Brain atrophy with hemorrhage 

  Brain anomalies 9 
10 Combined heart defect, asplenia. Malrotation of the gut 
11 Combined heart defect. Polysplenia 
12 Truncus arteriosus communis 
13 Stenosis of pulmonary artery 
14 Truncus arteriosus communis. Maternal 2q13 2.1Mb microdeletion 
15 Cardiomegaly, critical aortic stenosis 

  Cardiac anomalies 6 
16 Cystic hygroma and generalized hydrops 
17 Enlarged NT and hydrops. Livebirth. 
18 Cystic hygroma and generalized hydrops 
19 Generalized hydrops 

  Non-immune hydrops 4 

20 
Facial cleft. Syndactyly of II–III toe. Absence of right kidney and 
ureter, aplasia of spleen  

21 
Polycystic kidneys diagnosed at 29th week of pregnancy. Presence of 
ascites. Livebirth.  
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Case 
no Fetal US findings/types of anomaly on autopsy  

22 Unexplained anhydramnion at week 17 
23 Multiple anomalies: facial cleft, anencephaly, gastroschisis 
24 Large midline defect 
25 Enlarged NT, ectopia cordis, gastroschisis 
26 Holoprosencephaly, dysplastic cystic kidneys 
27 Large diaphragmatic hernia, dysmorphic facial features 

28 
Large spina bifida in the thoracic region, dysmorphic facial features, 
deformation of the ribs on the right side  

  Multiple anomalies or syndromic suspicion 9 
 
 
 

4.1.4.  Family with SGB syndrome cases (Publication 2) 

A 28-year-old primiparous Estonian woman was referred for cFTS at 13+3 
weeks with a spontaneously conceived twin pregnancy (Probands 1 and 2). She 
had a history of spontaneous miscarriage in the first trimester but was otherwise 
healthy. The patient became pregnant four months after the first delivery. She 
was referred for a first-trimester scan at 12+6 weeks (Proband 3). The family 
history was negative for severe genetic disorders. Her partner was a healthy 
Estonian male. The pedigree is shown in Figure 9. 
 

 
 
Figure 9. The pedigree of the family with SGB syndrome. 
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4.1.5 Family with Meckel–Gruber syndrome case (Publication 3) 

A 33-year-old Estonian woman was referred for a clinical geneticist consul-
tation at 13+0 weeks after abnormal US investigation results from a first-tri-
mester scan. She was otherwise healthy but had experienced one ectopic preg-
nancy in the past. Her partner was a healthy Estonian male. The parents were 
not known to be related. The family history was negative for severe genetic 
disorders. The pedigree of the family is shown in Figure 10. 
 

 
 
Figure 10. The pedigree of the family with MKS. 
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4.2. Methods 

4.2.1. The effectiveness of cFTS  

cFTS was performed in all pregnant women according to the study protocol 
(Figure 11), which was adapted from the Estonian prenatal diagnostics guide-
lines [Ustav et al. 2016]. The serum markers f-βhCG and PAPP-A were col-
lected from patients between the 9th and 13th weeks of pregnancy. Two diffe-
rent systems for biochemical analysis were utilized: Roche Cobas (Roche Diag-
nostics, Basel, Switzerland) in TUH and KRYPTOR compact PLUS (Thermo 
Fisher Scientific, MA, USA) in ETCH.  

 

  
Figure 11. cFTS study protocol [Ridnõi et al. 2021b]. 
β-hCG – beta human chorionic gonadotropin; CRL – crown-rump length; DV PIV – 
ductus venosus pulsatility index; FHR – fetal heart rate; NB – nasal bone; NT – nuchal 
translucency; PAPP-A – pregnancy-associated plasma protein A; T13 – trisomy 13;  
T18 – trisomy 18; T21 – trisomy 21; TR – tricuspid regurgitation; US – ultrasound. 
 
 
Ultrasound examinations were performed between 11+0 and 13+6 weeks of 
pregnancy, according to the FMF standards, for NT measurement (Appendix 1), 
pregnancy dating, and excluding major fetal defects. All US examinations were 
performed by FMF license holders. Patients were divided into three groups after 
the risk calculation. A risk for T21, T18, or T13 higher than 1 in 100 was 
defined as high-risk. A risk lower than 1 in 1,000 was defined as low risk. In the 
intermediate risk group, which was defined as a risk ranging from 1 in 101 to 1 
in 999, additional US markers like NB; tricuspid flow, and DV pulsatility index 
were included in the calculation. All markers were assessed in accordance with 
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the FMF guidelines and a recalculation of aneuploidy risks was performed. After 
the recalculation, the high-risk group was defined as having a risk greater than 1 
in 100. Risk calculations were performed with either Viewpoint 6 for OB/GYN 
(GE Healthcare, IL, USA) in ETCH or Astraia (Astraia software gmbh, Munich, 
Germany) in TUH. High-risk cases were offered an invasive diagnostic proce-
dure. Pregnancy outcomes and information regarding livebirths with diagnosed 
trisomy were collected from the labor wards of the hospitals and the database of 
the Department of Clinical Genetics of TUH [Ridnõi et al. 2021b]. 

The performance of cFTS was measured as follows: 
 𝐷𝑅% = ,             ,            

*100. 

The DR% was calculated for each trisomy separately. 𝐹𝑃𝑅% = (     ) (    ,   )   ∗ 100. 𝑃𝑃𝑉% =    ,   (  ) (  ) *100. 

𝑁𝑃𝑉% =    ,   (  ) (  ) *100. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦% =    ,   (  ) (  ) *100. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦% =    ,   (  ) (  ) *100. 

 
4.2.2. Karyotyping  

Fetal samples for cytogenetic and molecular genetic testing were obtained by 
CVS or AC and were cultured according to the standard protocols in the Depart-
ment of Clinical Genetics of TUH. Karyotyping was performed by G-banding 
and chromosomes were analyzed at the 400–500 level according to the Inter-
national System for Human Cytogenetic Nomenclature (ISCN 2016) criteria 
[McGowan-Jordan et al. 2016]. Twelve metaphases were analyzed for each 
sample; in cases of suspected mosaicism, 30 metaphases were karyotyped in 
total [Ridnõi et al. 2021a; Ridnõi et al. 2021b]. 

 

4.2.3. NIPT 

Of the 517 screen-positive women after cFTS, 92 chose to perform NIPT as a 
second-tier screening to possibly avoid invasive diagnostics. During the study 
period in our two centers, two NIPT platforms were available: the PANO-
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RAMATM test (Natera Inc., SanCarlos, CA, USA); and the NIPTIFY ® test 
(Competence Centre on Health Technologies, CCHT, Tartu, Estonia), which is 
a new genome-wide NIPT assay developed in Estonia [Zilina et al. 2019]. 
Invasive diagnostics were offered only in cases with high-risk NIPT results 
[Ridnõi et al. 2021b]. 
 
 

4.2.4. The effectiveness of CMA in high-risk pregnancies 

Genomic DNA for CMA was extracted either directly from AC or CVS or from 
a cultured sample. CMA was performed using Illumina HumanCytoSNP-12 
BeadChips (Illumina Inc., SanDiego, CA, USA). Genotype analysis was per-
formed using GenomeStudio software v2011.1 (Illumina Inc.) with additional 
input from QuantiSNP v2.3 software [Colella et al. 2007]. CNVs were classi-
fied into four classes: pathogenic, likely pathogenic, VOUS and benign/likely 
benign variants [Nowakowska 2017]. All CMA analyses were performed in the 
United laboratory of TUH and interpretation carried out by the Department of 
Clinical Genetics of TUH. 

In prenatal cases, benign and likely benign findings or long contiguous 
stretches of homozygosity (LCSH) of any size were not reported. Several online 
databases were used in the decision making, particularly Online Mendelian 
Inheritance in Man (OMIM), human genome browsers (UCSC and Ensembl), 
DECIPHER, and the Database of Genomic Variants (DGV). PubMed was used 
for peer-reviewed article searches. In cases of reported findings, the parents’ 
genomic DNA, extracted from blood lymphocytes, was also analyzed to deter-
mine the heredity [Ridnõi et al. 2021a]. 

The diagnostic yield in the CMA study group was measured in DR% for the 
whole study group and in Group A and Group B separately: 

 𝐷𝑅% =         ∗ 100. 

 

4.2.5. The effectiveness of NGS for fetuses with high risk and/or 
combined anomalies 

Fetal DNA was extracted either from fetal material acquired from invasive 
procedures prenatally or from fetal tissues after the termination of pregnancy. 
NGS was performed using the TruSight One (4,813 genes) or TruSight One Ex-
panded (6,699 genes) sequencing panels (Illumina Inc., San Diego, California). 
Sequencing was carried out on the NextSeq 500 platform (Illumina) in the 
Department of Clinical Genetics of TUH. NGS was performed only on pro-
bands [Ridnõi et al. 2021a]. 

Reads were aligned to the reference genome hg19 by the Burrows‐Wheeler 
Aligner (BWA) [Li and Durbin 2009] and variants were identified by Genome 
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Analysis Toolkit (GATK) [McKenna et al. 2010] tools using BWA Enrichment 
v2.1 workflow on the BaseSpace Onsite system (Illumina). Variants from 
variant call format (VCF) files were annotated by an in‐house variant annotation 
pipeline involving ANNOVAR [Wang et al. 2010], SnpSift [Cingolani et al. 
2012], and GATK [McKenna et al. 2010]. CNV detection was carried out by 
CoNIFER software [Krumm et al. 2012]. All reported pathogenic, likely patho-
genic, and VOUS variants were validated by Sanger sequencing in the fetus and 
in both parents to confirm the inheritance pattern. Variants were reported 
according to the ACMG standards [Richards et al. 2015].  

The diagnostic yield in the NGS study group was calculated in the same way 
as in the CMA study group. 

 
 

4.2.6. Methods used to evaluate SGB syndrome cases 

According to the national PD guidelines, the first-tier test in cases identified as 
high-risk after cFTS is conventional karyotyping, using standard techniques, as 
described in chapter 4.2.2. Considering the fact that both fetuses (proband 1 and 
2) had increased NT over 3.5 mm, CMA was also performed on DNA from one 
twin. CMA was performed in the same way, which is described in chapter 4.2.4. 

For definitive molecular diagnosis, parent-offspring trio ES was performed 
on DNA extracted from proband 1. Library preparation and a sequencing run 
were performed by GenomeScan B.V. (Leiden, The Netherlands) using a 
SureSelect XT Human All Exon v5 enrichment kit (Agilent Technologies, Santa 
Clara, CA) and an Illumina HiSeq 4000 sequencer. Interpretation of the results 
was carried out in the Department of Clinical Genetics of TUH. 

 
 

4.2.7. Methods used in evaluating fetus with MKS  

US examination was performed during the first trimester of pregnancy. Preg-
nancy was terminated due to profound US findings and aborted fetuses were 
referred for pathoanatomical autopsy. DNA was extracted from fetal tissues 
after pregnancy termination. NGS analysis and ES of the fetal DNA was 
performed in the same way described in chapter 4.2.5 and 4.2.6. 
 
 

4.2.8. Statistical analysis 

Statistical analysis was performed with STATA 16.2 software using Wilson 
confidence intervals for binominal proportion. 
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4.3. Ethics 
The present study was approved by the Research Ethics Committee of the Uni-
versity of Tartu (protocol 263/M-19 17.10.2016) and supported by Estonian 
Research Council grants PUT355 and PRG471. 

All of the women from the cFTS study group gave their written informed 
consent as part of a regular antenatal care.  

Additional written informed consent for performing CMA on fetal DNA was 
taken from each woman recruited to CMA study Group A. For all of the women 
recruited to CMA study Group B, consent was obtained for a performance of 
diagnostic invasive procedure, no additional consent was taken for performing 
CMA. The obstetrician performing the invasive diagnostic procedure or a 
medical geneticist provided comprehensive counselling in terms of the benefits, 
advantages, risks, and possible incidental findings in CMA.  

In the NGS study group, written informed consent was taken in each case for 
performing panel testing on fetal DNA and counselling was provided by a 
clinical geneticist. 

In cases of SGB syndrome and MKS, written consent for the publication of 
fetal, neonatal, and autopsy images was obtained from parents. 
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5. RESULTS AND DISCUSSION 

5.1. The effectiveness of cFTS 
Combined FTS was performed in 14,566 singleton pregnancies. The screen-
positive rate was 3.54%, with 517 cases having a risk of greater than 1 in 100 
for T21, T18, or T13 (Figure 7). Results of the cFTS study group are sum-
marized in Table 8. 
 
 
Table 8. Results of cFTS: detected trisomies and screening performance, adapted from 
[Ridnõi et al. 2021b]. 
 

Condition 
Cases after 

cFTS/All cases DR% (95%CI) 
T21 48/51 94 (84.09–97.98) 
T18 11/11 100 (74.12–100) 
T13 3/3 100 (43.85–100) 

Screening performance 
Screen-positive  517 
True-positive   62 
False-positive 455 
Screen-negative    14049 
True-negative   14046 
False-negative 3 
Total   14566 
Sensitivity% (95%CI)   95,38 (86,24–98,80) 
Specificity% (95%CI)   96,86 (96,56–97,13) 
PPV% (95%CI)   11,99 (9,38–15,18) 
NPV% (95%CI)   99,97 (99,93–99,99) 

CI – confidence interval; cFTS – combined first trimester screening; DR – detection 
rate; NPV – negative predictive value; PPV – positive predictive value 

 
 

Among the 51 pregnancies affected by T21, 48 cases were diagnosed after 
cFTS. Three cases of T21 were false-negative after cFTS, one case was diag-
nosed after the first-trimester scan because of a major heart defect, and two 
other cases were diagnosed after the second-trimester US scan. In addition, 11 
cases of T18 and three cases of T13 were identified. Additionally we diagnosed 
Turner syndrome in 10 cases (including one with the mosaic condition), as well 
as four cases of polyploidy, four atypical mosaic cases, two cases of trans-
locations, one case of triple X syndrome, and two cases of Klinefelter syndro-
me. All were considered to have been false-positive cFTS results (Appendix 2). 
Therefore, the FPR was 3.12%. During the study period, there were no live 
births with undiagnosed trisomy in the initial cFTS study group of 14,566 
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pregnancies [Ridnõi et al. 2021b]. The characteristics of cFTS in pregnancies 
affected with chromosomal disease are summarized in Appendix 2. 

All cases except for two (one of T21 and one of Turner syndrome) were 
diagnosed using an invasive procedure. One case of T21 was identified as high 
risk in the first trimester using the combined test, had a positive NIPT result, 
and was strongly suspected of having an atrioventricular septal defect (AVSD). 
Invasive diagnostics were offered, but the patient declined this option and 
requested a pregnancy termination. A similar scenario arose in the case of 
Turner syndrome: a generalized hydrops of the fetus was diagnosed in a first-
trimester scan, but the patient declined invasive testing and opted for NIPT. 
Cytogenetic confirmation was not performed after termination; however, con-
sidering the high-risk NIPT results and US findings it was highly likely that the 
fetuses had chromosomal abnormalities [Ridnõi et al. 2021b]. In screen-positive 
group after cFTS 92 women (17.8%) chose NIPT as second-tier screening to 
avoid invasive testing, 33 women (6.4%) refused any further testing. 

It has been mandatory to offer cFTS to all pregnant women in Estonia since 
2016, due to the new national prenatal diagnostics guideline. The overall 
coverage of PS has reached more than 90% [Sitska 2018]. High coverage has 
been documented since 1998, when primary screening for T21 was based on 
second-trimester serum markers [Sitska et al. 2008]. The DR for common 
trisomies in the present study was comparable with previous results in the 
published literature [Ekelund et al. 2015; Nicolaides et al. 2005; Santorum et al. 
2017; Vogel et al. 2019]. Notably, the DR for T21 of 94% in the first trimester 
was higher compared to a previous Estonian study that used a contingent model 
of cFTS and second-trimester serum screening and achieved a DR for DS of 
88.3% [Muru et al. 2010]. cFTS has been shown to be superior to second-tri-
mester serum screening in terms of the detection of T21 in several population-
based studies and the Cochrane review [Alldred et al. 2017; Lan et al. 2018; 
Luo et al. 2020; Royere et al. 2016]. The present study proved that the shift 
towards chromosomal disease screening solely in the first trimester was 
justified in Estonia. The main weakness of cFTS is its relatively high FPR and 
low PPV due to high proportion of false-positive results. Comparing to cFTS in 
terms of FPR and PPV, NIPT is more accurate and superior in performance for 
common trisomies [Bianchi et al. 2014; Gil et al. 2017]. This is one of the main 
reasons why NIPT is actively implemented into current PS models nowadays. 

In the screen-positive group after cFTS, we performed 392 diagnostic 
invasive procedures. The invasive testing rate after cFTS in our study group was 
only 2.7%. In a large Danish study regarding the safety of procedures, the rate 
of invasive testing after cFTS was 4.7% [Wulff et al. 2016]. The main reason 
for this reduced invasive testing rate was the definition of the high-risk group 
for trisomies being over 1 in 100 in our study [Ridnõi et al. 2021b]. In Estonia, 
there was a huge decrease in the invasive testing rate from 12% in 2007 to about 
5% in 2016 [Sitska 2018]. This can be explained by the changes in national 
policies in PS from TT in 2007 to a contingent approach with a combination of 
cFTS and TT in 2016. Our study showed a continuing decline in these terms 
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with an invasive testing rate after cFTS of only 2.7%, which was attributed to 
universal cFTS. 

Further improvements in the detection of T21, T18, and T13, and a marked 
decrease in the invasive testing rate are possible with the implementation of 
NIPT into existing models of screening. The potentially invasive testing rate 
could be reduced to below 0.5% by offering NIPT to a larger group of women 
[Nicolaides et al. 2013b].  

With a cFTS coverage of over 90% in Estonia, NIPT has been implemented 
since 2020 as a second-tier screening test in a group with so-called intermediate 
risk after cFTS. NIPT is now offered to women with the following indications: 
a risk for T21 of 1 in 11 to 1 in 1,000, and risks for T18 and T13 of 1 in 11 to 1 
in 100 after cFTS. Additionally, NIPT can be provided to women with a history 
of diagnosed trisomies in previous pregnancies or in cases where invasive 
diagnostics would have a greater risk of miscarriage. NIPT, performed with 
above-mentioned indications is covered by EHIF and free of charge. 

In the present study, three false-negative cases of T21 were reported after 
prospective cFTS. All of them had a combined risk for DS lower than 1 in 
1,000. The first case had an Ebstein’s anomaly, such that an indication for inva-
sive testing would remain. The second case had a low combined risk due to mis-
interpretation of additional US markers. The third case had a normal NT mea-
surement and normal serum markers, and so would have been missed in the first 
trimester when NIPT was offered to women with a risk for T21 higher than 1 in 
1,000. Assuming that NIPT could correctly identify all T21, T18, and T13 
cases, we could potentially avoid over 300 procedures, performing invasive 
testing only in cases with NIPT high-risk results, but two cases of T21 would 
still have been missed [Ridnõi et al. 2021b]. Another model of using NIPT in 
the existing cFTS protocol showed that if all women with an increased risk 
(≥1:200) had an invasive test and it was performed up to a risk of 1:1,000, 95% 
of common trisomies/sex chromosome aberrations and 55% of atypical aberra-
tions would be detected [Iwarsson and Conner 2020].  

The use and uptake of NIPT varies greatly between different populations 
[Gadsboll et al. 2020]. In those countries where NIPT is reimbursed by public-
health insurance the main factors influencing its uptake are the level of trisomy 
risk after cFTS, maternal education, maternal racial origin, pregnancy termina-
tion acceptance, and the possibilities of molecular diagnostics after invasive 
testing [Gil et al. 2015; Lou et al. 2018]. On the other hand there is a good 
evidence from a randomized trial (INVASIVE) that counselling before PS can 
shift women’s preferences towards invasive diagnostics [Paz et al. 2020].  

The main issues of NIPT implementation in routine PS systems are universal 
or contingent model, type of NIPT method, what would be the best in terms of 
additional benefits. There are reasonable concerns regarding using MPSS-based 
NIPT platforms as a first-tier screening test, such as managing incidental fin-
dings (RATs or submicroscopic chromosomal rearrangements) and the need for 
optimal and transparent pre-test counselling [Di Renzo et al. 2019; Jani et al. 
2020]. The advances in US diagnostics should also be considered. NIPT cannot 
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substitute for first-trimester US examination. There is good evidence that the 
measurement of NT is still of importance even in the era of NIPT [Petersen et 
al. 2020; Sagi-Dain et al. 2021]. NIPT cannot diagnose fetal structural defects 
and negative NIPT results can sometimes be misleading for the management of 
pregnancy in the presence of fetal structural anomalies [Suzumori et al. 2021]. 
Therefore, in cases of fetal structural anomalies, invasive diagnostics rather than 
NIPT should be performed [Zhu et al. 2021]. 

Further studies are needed in Estonia to accurately estimate the effectiveness 
of NIPT implementation in the existing cFTS model of PS and the effect on 
perinatal outcomes. 

 
   

5.2. The effectiveness of CMA in high-risk pregnancies  
During the study period, cFTS was performed in 14,566 women with singleton 
pregnancies. In total, 334 CMA analyses were performed in two main indication 
groups. Group A comprised all patients with high-risk for trisomies after cFTS, 
but with a NT measurement below 3.5 mm and no US malformation. Group B 
comprised all patients who met the criteria for CMA as a first-tier diagnostic 
test based on the Estonian national PD guidelines [Ustav et al. 2016].  

CMA was performed in 184 cases in Group A and in 150 cases in Group B. 
In total, 12 clinically significant pathogenic or likely pathogenic CNVs were 
found in both study groups (Figure 8), which gave an additional diagnostic yield 
of 3.6% (95% CI, 2.07–6.17%). Nine of these findings were, as expected, in 
Group B, where the diagnostic yield was 6.0% (95% CI, 3.27–11.29%). In 
Group A, the diagnostic yield of CMA was 1.6% (95% CI, 0.56–4.71%). Addi-
tionally, we found 21 benign or likely benign CNVs and 11 VOUS, with most 
of them being LCSH regions, which were not reported according to our labo-
ratory protocol (Appendix 3) [Ridnõi et al. 2021a]. 

The main reason for dividing the cases into two groups was to compare the 
CMA diagnostic yield in terms of different indications. It was shown that 
clinically relevant CNVs were found in about 1.7% of fetuses when CMA was 
done with indications such as advanced maternal age, anxiety, or positive serum 
screening without US malformations [Wapner et al. 2012]. There is emerging 
evidence that CMA should be a first-tier diagnostic test in PD with all indi-
cations [Daum et al. 2021; Rodriguez-Revenga et al. 2020; Stern et al. 2020]. 

In the CMA study Group A, in which 184 CMA analyses were performed 
with broader indications, we found three pathogenic CNVs with clearly 
described associated phenotypes (Table 9). All of these had a normal con-
ventional karyotype.  

Among the pathogenic findings from Group A, a first case of 15q13.3 micro-
deletion of 1.6 Mb was diagnosed. This region of deletion covers five genes, 
including FAN1 and TRPM1. In this particular case, microdeletion was inhe-
rited from an apparently healthy mother, so the prognosis can vary. A pheno-
typically normal baby was born with a normal early neonatal period. This child 
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will need close neurobehavioral follow-up [Ridnõi et al. 2021a]. This is a 
highly variable syndrome associated with an increased risk of intellectual 
disability, epilepsy, and autistic spectrum disorders. Heterozygous deletions in 
this region are inherited in approximately 85.4% of individuals with this synd-
rome [Lowther et al. 2015]. Commonly reported associations are developmental 
delay or intellectual disability, epilepsy, speech problems, autism spectrum 
disorders, and attention deficit disorders. Serious congenital anomalies are rare 
[Simon et al. 2019]. 

In a second case, a low-level mosaicism (10–20%) for monosomy X was 
found. Ultrasound examination of the fetus was normal and a postnatal exami-
nation of a child at the age of 1 year showed no developmental delay. Still, 
chromosomal analysis from the peripheral lymphocytes confirmed a mosaic 
Turner’s syndrome [Ridnõi et al. 2021a]. In this case, regular follow-up by a 
pediatric endocrinologist and later by a gynecologist was recommended, due to 
the increased risk of infertility and endocrine disorders [Levitsky et al. 2015]. In 
a large population-based UK study of 244,000 women using UK Biobank data, 
the prevalence of mosaic Turner syndrome was estimated to be 76 in 100,000, 
but there was reduced penetrance in the adult population. The was no increased 
risk for cardiac disease or hypertensive disorders in these women, and the 
authors suggested that the clinical management of 45,X/46,XX individuals 
should be minimal [Tuke et al. 2019]. Still, there remain some concerns re-
garding pregnancy management and infertility issues in mosaic Turner synd-
rome [Calanchini et al. 2020]. 

The third pathogenic finding in Group A was a 3.7-Mb deletion in the 
9q22.32q22.33 region. This region covers 23 genes, including FANCC, PTCH1, 
ERCC6L2, HSD17B3, TDRD7, XPA, FOXE1, NANS, and GPR51. A baby 
weighing 3,990 g was born at term and had dysmorphic features including trigo-
nocephaly, hypoplasia of the eyebrow arches, postaxial polydactyly (a 
rudimentary finger on the left hand), broad nasal bridge, and dysmorphic ears 
[Ridnõi et al. 2021a]. This is a known 9q22.3 microdeletion syndrome in which 
craniosynostosis, hydrocephaly, macrosomia, and intellectual disability have 
been described [Muller et al. 2012]. This baby will need close follow-up due to 
a high risk of early craniosynostosis as well as early intellectual disability.  

Additionally, we found five VOUS cases, four of which were reported 
(Appendix 3) as follows: a 1.9-Mb deletion in the 15q13.3q14 region inherited 
from the father; a de novo 0.5-Mb duplication in the 3p25.2 region; a 2.9-Mb 
duplication in the 8q21.13q21.2 region; and a 0.36-Mb duplication in the 
15q11.2 region. The last variant was in a so-called susceptibility locus for 
neurodevelopmental disorders [Butler 2017] and so this child was followed-up 
by a medical geneticist and a pediatric neurologist. 

The diagnostic yield of 1.6% (95% CI, 0.56–4.71%) in Group A was similar 
to those reported in several previous studies and reviews [Hillman et al. 2013; 
Stern et al. 2020; Vogel et al. 2018; Wapner et al. 2012]; however, compared to 
a recently published Danish study in which the CNV detection rate in screen-
positive cases after cFTS was 2.3%, our number was smaller [Vogel et al. 
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2018]. This can be explained by the fact that the indication for the invasive 
diagnostics and CMA in our study was a risk higher than 1 in 100 after cFTS. 
By contrast, in the Danish study, the risk cut-off point was higher than 1 in 300.  

In the CMA study Group B, 150 analyses were performed. We found nine 
clinically significant pathogenic or likely pathogenic CNVs (Table 9). Six 
pregnancies were terminated due to fetal malformations and three babies were 
born: two of these were cases of 15q11.2-region microdeletions and one was a 
case of a 0.1-Mb deletion in the 11p15.4 region [Ridnõi et al. 2021a]. 

In the first two 15q11.2 cases, the microdeletion was inherited from appa-
rently healthy mothers, but this is a known region for possible intellectual 
disability and autistic spectrum disorders [Butler 2017], therefore these children 
will require thorough follow-up by a neurologist.  

The literature on the 15q11.2 deletions is extensive but confusing. It has 
been stated that this deletion is associated with neurodevelopmental disorders, 
and mild enrichment of the deletion is observed in individuals with schizo-
phrenia, epilepsy, and learning disabilities [Butler 2017]. A recent meta-
analysis of previously published data on the 15q11.2 deletion recommends that 
this CNV should be classified as “pathogenic with a mild sized effect” and 
should not be discussed in prenatal settings [Jonch et al. 2019]. The changes in 
the classification and interpretation of this CNV are a good example of how 
difficult their prenatal interpretation can be. 

In the second 11p15.4-deletion case, invasive diagnostics were performed 
due to a high-risk result after cFTS and the familial history. The mother had 
epsilon-gamma-delta-beta thalassemia due to an 11p15.4 microdeletion (OMIM 
141900). The same microdeletion was diagnosed in the fetus. Thus, close ante-
natal surveillance was conducted. By week 30, the fetus had developed signs of 
anemia and an intrauterine blood transfusion was performed. After the proce-
dure the fetus developed bradycardia and an emergency cesarean section was 
required. The hemoglobin level was 90 g/l after birth and several blood trans-
fusions were performed. In this case, CMA provided relevant clinical informa-
tion not only for postnatal management but also for antenatal surveillance 
[Ridnõi et al. 2021a].  

The diagnostic yield of CMA in Group B was 6.0% (95% CI, 3.27–11.29%), 
which was similar to those in other studies and reviews [Chong et al. 2019; 
Hillman et al. 2013; Hui et al. 2021; Kin Chau and Choy 2021; Lin et al. 2020; 
Vogel et al. 2018; Wapner et al. 2012]. 
  The incidence of VOUS between both CMA study groups was 3.3%. The 
Department of Clinical Genetics of TUH uses an SNP-array CMA platform. 
This allows evaluation of the presence of LSCH regions, although these fin-
dings are usually not reported prenatally due to the lack of corresponding 
phenotypic description and the difficulties in interpreting the results. LSCH 
regions are occasionally reported prenatally in cases where the clinician 
suspects a specific recessively inherited disease on the bases of US or post-
mortem findings [Ridnõi et al. 2021a]. Decisions about whether to report speci-
fic findings are made on a case-by-case basis [Pajusalu et al. 2015]. The 
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incidence of VOUS findings differs between studies and is dependent on the 
CMA technology used, local protocols, and difficulties of interpretation during 
fetal life [Levy and Wapner 2018; Mardy et al. 2020]. Reporting VOUS in the 
prenatal setting is challenging but is worthwhile, as some cases can change in 
significance over time [Mardy et al. 2020; Stosic et al. 2018]. 
 The present study results were in concordance with previously published 
data. Recently, a large study of 10,377 pregnancies with CMA application in 
every case showed an overall prevalence of CNVs of 2.1%, but this figure was 
twice as high in the subgroup of fetuses with US anomalies [Lin et al. 2020]. It 
is currently suggested that all women who undergo invasive diagnostics should 
be informed about the additional benefits of CMA in PD and should be offered 
this test rather than conventional karyotyping [Rodriguez-Revenga et al. 2020]. 
It is essential in the present era of possibilities for NIPT that women receive 
unbiased information regarding the diagnostic effectiveness and potential of 
CMA in PD as well as the incidence of pathogenic CNVs even in low-risk preg-
nancies [Daum et al. 2021]. In high-risk pregnancies, CMA has a superior 
diagnostic performance and should be offered to all women instead of expanded 
NIPT panels [Zhu et al. 2021].  
 Based on the results of the present study, as well as the published literature, 
we suggest that there is sufficient scientific data to support the routine use of 
CMA in PD for every indication in Estonia. Considering the implementation of 
NIPT in Estonia as a second-tier screening test after cFTS, we would predict a 
drastic decrease in the invasive testing rate. It is therefore important that women 
receiving invasive procedures for the purpose of PD have the most accurate 
information about the latest advances in molecular genetic diagnostics. In every 
case in which CMA is applied, comprehensive pretest advice should be pro-
vided by a specialist who has received appropriate training in PD and genetic 
counselling. 
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5.3. The effectiveness of NGS for fetuses with high risk 
and/or combined anomalies 

Out of 28 selected cases of dysmorphic fetuses, we found five pathogenic 
variants through NGS analysis related to fetal phenotype. Two variants of un-
known clinical significance, but with relevant phenotypes and two incidental 
findings were also reported (with informed consent). The additional diagnostic 
yield of the NGS analysis in our study group was therefore 17.9% (95% CI, 
7.88–35.59%). Detailed descriptions of the cases with pathogenic results and 
those with uncertain clinical significance are given in Table 10 [Ridnõi et al. 
2021a]. 

The incidence of pathogenic variants in NGS and ES prenatal cohorts varies 
widely between published studies. Reasons for such differences include the 
selection of cases according to fetal anomaly, the number of probands in the 
cohorts, and the selection of the NGS method used [Ferretti et al. 2019; Kilby 
2021; Monaghan et al. 2020]. The additional diagnostic yield reported in NGS 
studies, most of which used ES, ranged from 8.5% to 10% in large unselected 
cohorts of 610 [Lord et al. 2019] and 234 [Petrovski et al. 2019] fetuses, 
respectively, to 81% [Chandler et al. 2018] in a small series of 16 fetuses, with 
a strong suspicion of skeletal dysplasia, using a targeted sequencing panel. A 
weighted diagnostic rate of 19% was reported in a recent systematic review on 
the performance of ES in PD [Guadagnolo et al. 2021]. 

Besides the general limitations associated with NGS several considerations 
are specific to prenatal settings. These include sample type and quality, variant 
calling and filtration, genotype–phenotype correlations, interpretation, turn-
around time (TAT), and reporting [Abou Tayoun and Mason-Suares 2020]. The 
TAT of NGS analyses is an important issue in the prenatal setting, especially in 
countries like Estonia where pregnancy termination is not allowed after 22+0 
weeks. The mean TAT of rapid ES using targeted gene panels was 10 days 
(with a range of 4–28 days) in an observational study from the Netherlands 
[Deden et al. 2020]. A rapid TAT is of great importance in terms of the clinical 
utility of ES. It has been shown that ES results can influence the management of 
pregnancy, delivery, and the postnatal period in 35% of cases [Tolusso et al. 
2021]. 

ES increases the possibility of definitive diagnosis, but also increases the 
likelihood of identifying VOUS and incidental findings [Monaghan et al. 2020]. 
Similarly to CMA, challenges with reporting VOUS arise. It is important to 
follow standardized variant classifications [Richards et al. 2015] to separate 
pathogenic VOUS and benign variants. In fetal diagnostics, reporting VOUS is 
even more challenging than in post-natal cases due to the limited options for 
follow-up and phenotyping; however, in some cases reporting VOUS variants 
may still be considered, for example if the known phenotype associated with the 
gene is consistent with US findings [Monaghan et al. 2020]. In our study, there 
were two such examples: one case in which PKD1 VOUS was reported for a 
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fetus with polycystic kidneys and another case in which a NOTCH1 variant was 
reported after the US finding of a heart defect [Ridnõi et al. 2021a].  

Managing the incidental or secondary findings raises several ethical and 
clinical dilemmas. According to the ACMG guidelines, secondary or unsolicited 
findings may be reported after adequate counselling [Monaghan et al. 2020]. 
Two pathogenic secondary findings in the cancer-predisposing genes MLH1 and 
BRCA1 were detected in this cohort and reported back to the ordering physician 
for cascade screening of family members. This illustrates how NGS-based tests 
may have additional benefits that are outside of the scope of fetal medicine 
[Ridnõi et al. 2021a]. The recent recommendations of the European Society of 
Human Genetics regarding opportunistic genomic screening include advice to 
be cautious when reporting secondary findings in GS [de Wert et al. 2020]. The 
overall incidence of inconclusive findings after prenatal ES is 12%. The inci-
dence of secondary or incidental findings is difficult to estimate due to the small 
numbers of studies in which such findings have been reported [Guadagnolo et 
al. 2021]. 

In a previous study by our department, in which the NSG diagnostic perfor-
mance was investigated in an adult and pediatric population, a diagnostic yield 
of 26.3% was reported [Pajusalu et al. 2018]. The present study is the first 
report from our department to use NGS in PD in a group of 28 probands 
showing good results for the detection of genetic disease. Our results are in 
accordance with previously published data on small cohorts of selected fetuses 
[Alamillo et al. 2015; Deden et al. 2020; Drury et al. 2015; Tolusso et al. 
2021]. NGS has revolutionized clinical practice in medical genetics with its 
ability to rapidly analyze large sets of genes. Therefore, we can expect a signi-
ficant impact on both genetic research and clinical diagnostics [Guadagnolo et 
al. 2021]. More research is needed for better delineation of the malformation 
groups in which NGS will give the best diagnostic results. 
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5.4. Prenatal phenotypes of SGB syndrome 
At the time of the first-trimester US examination a dichorionic/diamniotic twin 
pregnancy was confirmed. The NT measurements were increased (5.25 mm and 
4.18 mm, respectively). No anatomical defects were noted. CVS was perfor-
med, according to the PD guideline, due to the increased NT measurements. 
The karyotype of both twins was normal (46, XY) [Ridnoi et al. 2018]. 
 A second US examination was performed at 20+2 weeks. The scan revealed 
numerous fetal anomalies. Dysmorphic features which were found in both twins 
including a flattened fetal profile with considerable prefrontal oedema, hyper-
telorism, dysgenesis of the corpus callosum, hepatomegaly, mildly enlarged 
hyperechogenic kidneys, and micropenis. Additionally, hypoplastic cerebellum 
was noted in one twin and one exhibited aberrant right subclavian artery 
(ARSA) with suspicion of double aortic arch (Figures 12–14). Both fetuses 
were near the 90th weight centile and had also marked polyhydramnios.  
 
 

 
Figure 12. Dysmorphic features of fetuses at 20-week scan. a) Hypertelorism (proband 
1). b) Prefrontal edema and flat facial profile (proband 2). c) Hyperechogenic kidneys. 
d) Micropenis (proband 1). Reproduced from [Ridnoi et al. 2018], with permission. 
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Figure 13. Dysmorphic features of fetuses at 20-week scan. e) Dysgenic corpus 
callosum and flat fetal profile (proband 1). f) Hypoplastic cerebellum (proband 1). g) 
Enlarged liver (proband 2). Reproduced from [Ridnoi et al. 2018], with permission. 
 
 

 
 
Figure 14. Dysmorphic features fetuses at week 22 scan. a) Round, edematous face 
(proband 2). b) Measurements of fetal liver (proband 1): antero-posterior (AP) length 
48.2 mm, cranio-caudal (CC) length 40.2 mm. c) Abdominal circumference (proband 1) 
with a transverse width of the liver of 56.4 mm. Reproduced from [Ridnoi et al. 2018], 
with permission. 
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CMA was performed in one twin. A small (1 Mbp) microduplication was found 
in the 22q11.2–11.3 region, which was not consistent with the profound fetal 
findings. The couple were counselled by a team of clinical geneticists and fetal 
medicine specialists, according to the fetal findings. The conclusion was that 
there was a strong clinical suspicion of a genetic syndrome. Due to the US 
findings, the option of pregnancy termination, with post-mortem examination 
and ES, was offered. The patient refused the termination and continued the 
pregnancy. Severe polyhydramnios had developed at 24+6 weeks and despite 
tocolysis preterm labor occurred at 25+2 weeks. Two premature boys were 
born, weighing 1,044 g and 1,090 g and with Apgar scores of 2/4/6 and 5/4/7 
respectively, both of which were on the 75th weight centile [Ridnoi et al. 2018].  
 Postnatal phenotypic findings included marked macroglossia, hypertelorism, 
low-set ears, contractures of the fingers, and dysmorphic genitalia. General 
body oedema in both neonates was also noted. Difficult intubation was perfor-
med for both twins due to macroglossia. All clinical findings were described by 
the neonatologist. After stabilization, both babies were transferred to the 
neonatal intensive care unit of Tallinn Children’s Hospital. The first baby died 
on the 6th day of life due to acute necrotizing enterocolitis. The second twin 
died 2 days prior due to infant respiratory distress syndrome [Ridnoi et al. 
2018].  

A pathoanatomical autopsy was performed for both twins. The main findings 
included hypertelorism, cardiomegaly, and hepato-splenomegaly. Both twins 
had enlarged kidneys and adrenal glands. Both had cryptorchidism. No cardiac 
malformations were found.  

To investigate the molecular etiology of any possible genetic syndrome, 
parent–offspring trio ES was performed on the fetal DNA. This identified a 
hemizygous splice site variant in the GPC3 gene, NM_004484.3:c.1166+1G>T. 
The mother was a heterozygous carrier [Ridnoi et al. 2018]. This variant had 
not been previously described in the BIOBASE Human Gene Mutation Data-
base (HGMD Professional) [Stenson et al. 2009] or the Exome Aggregation 
Consortium (ExAC) databases [Lek et al. 2016]. Splice-site variants usually 
cause a loss of protein function; therefore, the detected variant was classified as 
pathogenic according to the ACMG guidelines [Richards et al. 2015]. Patho-
genic hemizygous variants in the GPC3 gene cause SGB syndrome [Vuillaume 
et al. 2018].  

In the following pregnancy, PD started in the first trimester. Right-sided 
facial cleft and NT enlargement were diagnosed at the US examination for 
cFTS. At this time, CVS was not performed, because ES results from the pre-
vious pregnancy were pending. The diagnosis of cleft palate and lip on the right 
side, dysmorphic male genitalia, and flattened facial profile with prefrontal 
edema was confirmed during a follow-up scan at week 17+0. Amniocentesis 
with targeted sequencing of fetal DNA was performed at 17+0 weeks. The same 
hemizygous c.1166+1G>T pathogenic variant in the GPC3 gene was identified. 
Thus, SGB syndrome type 1 was molecularly confirmed in this fetus. Multi-
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disciplinary counselling regarding prognosis of SGB syndrome was conducted 
and the patient opted for pregnancy termination [Ridnoi et al. 2018].  

The pathoanatomical findings of the fetus were consistent with SGB syndro-
me: macrosomia (590 g), hypertelorism, macrostomia, and hepatosplenomegaly 
with three additional spleens. The fetus had a right-sided cleft of lip and hard 
palate (Figure 15). No cardiac malformations were found. 

 

 
 

SGB syndrome is usually diagnosed during the postnatal period [Manor and 
Lalani 2020]. Distinctive features of this syndrome are high birth weight, orga-
nomegaly (of the liver, spleen, and kidneys), facial clefts, cardiac malforma-
tions, abnormal genitalia, and CNS anomalies [Tenorio et al. 2014]. Some of 
the typical features of SGB syndrome can present during the antenatal period 
and can be seen as early as the first trimester of pregnancy [Li and McDonald 
2009; Reischer et al. 2021; Ridnoi et al. 2018]. In suspected cases of SGB 
syndrome, CMA and ES can be used to aid diagnosis [Kehrer et al. 2016; 
Reischer et al. 2021; Xiang et al. 2020]. A recent review of published prenatal 
cases evaluated US features of SGB syndrome based on the 60 examples 
available at that time, including the three fetal cases described above [Ridnoi et 
al. 2018]. Our SGB syndrome case in twins was the first known report of this 
disease in multiple pregnancy to be diagnosed prenatally. Another case of SGB 
syndrome in a twin pregnancy was published recently, in which only one twin 
was affected [Reischer et al. 2021]. The prenatal findings were similar to our 

 

 
Figure 15. Pathoanatomical findings in proband 3. a) Right-sided cleft lip and palate 
and macrostomia. b) Facial edema. Reproduced from [Ridnoi et al. 2018], with per-
mission. 
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case, but also included diaphragmatic hernia and malposition of the heart. Typi-
cal prenatal findings of SGB syndrome are summarized in Table 11. 

 
 
Table 11. Estimated incidence of prenatal US findings in SGB syndrome. Incidence 
percentage adapted from [Ridnoi et al. 2018]. 
 

 
Prenatal findings Proband 

1 
Proband 

2 
Proband 

3 

 
Incidence 

(%) 
Macrosomia/overgrowth + + + 86 
Polyhydramnios + +  70 
Organomegaly + + + 60 
Renal anomalies + +  32 
CDH    30 
Enlarged NT/NF + + + 28 
Craniofacial anomalies + + + 13 
Cardiac anomalies    13 
Elevated MSAFP    12 
Flat fetal profile + + + 10 
Genital anomalies + + + 8 
Ventriculomegaly    7 
Cystic hygroma    5 
Facial cleft   + 5 
CNS anomalies + +  5 
Polydactyly    5 
Omphalocele    5 
Skeletal anomalies    3 
SUA    1.6 

CDH – congenital diaphragmatic hernia; CNS – central nervous system; MSAFP – 
maternal serum alfa fetoprotein; NF – nuchal fold; NT – nuchal translucency; SUA – 
single umbilical artery. 

 
 
The main prenatal feature of SGB syndrome is fetal macrosomia. This has been 
reported in 86% of cases. In the present case series, all three fetuses were 
macrosomic by week 20 of pregnancy [Ridnoi et al. 2018].  

The next most frequent prenatal finding in SGB syndrome is polyhydram-
nios, which is reported in 70% of cases [Ridnoi et al. 2018]. Extreme poly-
hydramnios was a reason for the early preterm birth in the first pregnancy of our 
patient. The incidence of preterm birth in pregnancies with SGB syndrome is 
not clear. The largest review of a prenatal series with SGB syndrome in which 
pregnancy outcomes were followed reported a high proportion of preterm births 
(13/42, 31%), while most of the cases were moderately premature [Cottereau et 
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al. 2013]. Four pregnancies in that series were terminated late in the second 
trimester; therefore, the true incidence of preterm birth could be even higher. In 
a recent case report from China, polyhydramnios was also described in preg-
nancies affected with SGB syndrome [Xiang et al. 2020]. It is likely that the 
reason for most preterm deliveries in cases with SGB syndrome is a marked 
excess of amniotic fluid. 

The internal organ anomalies that are seen in SGB prenatal cases are listed in 
Table 9. The most frequent of these are organomegaly (reported in 60% of pre-
natal cases), renal malformations (32%), and congenital diaphragmatic hernia 
(30%). Omphalocele is rare in SGB syndrome (reported in 5% of prenatal 
cases) [Ridnoi et al. 2018]. Cardiac malformations in SGB syndrome are com-
mon: in a reported series of 101 cases (mostly postnatal), structural cardiac 
anomalies were found in 26% [Lin et al. 1999]. In a review of the published 
prenatal cases, cardiac anomalies were present in only 13% [Ridnoi et al. 2018]. 
This difference was attributed to the fact that some minor cardiac anomalies are 
difficult to diagnose prenatally and are therefore identified only after birth.  

The distinctive facial features of individuals with SGB syndrome, which are 
usually described as ‘coarse’, may already be present in the fetal stage. A ‘flat’ 
fetal profile has been described in 10% of prenatal cases [Ridnoi et al. 2018]. 
All three of the cases in the present series had prefrontal edema. 

NT is a well-known marker for chromosomal anomalies. Enlarged NT may 
be present in cases of chromosomal pathologies [Kagan et al. 2006] and certain 
genetic disorders, especially Noonan syndrome [Pergament et al. 2011]. An 
increased NT measurement was described in 2009, during a first-trimester scan, 
in a fetus that was later diagnosed with SGB syndrome [Li and McDonald 
2009]. In a recent report of SGB syndrome in a twin pregnancy, an enlarged NT 
measurement was also seen in the affected fetus [Reischer et al. 2021]. It is 
difficult to estimate the incidence of increased NT measurement as a marker of 
SGB syndrome because most published cases do not include data from the first-
trimester scan. Among 47 cases that were presumed to have first-trimester scan 
information available, increased NT or nuchal fold measurements were found in 
13 (28%) [Ridnoi et al. 2018]. In a French review of SGB syndrome in which 
prenatal symptoms were described, it remained unclear whether NT measure-
ments were available for all cases [Cottereau et al. 2013]. Increased NT mea-
surement could in reality be present in a larger proportion of SGB syndrome 
cases, but more observational data are needed to support this assumption. In all 
three of the fetuses presented in this case series, NT measurements were 
markedly increased, which was the reason for further chromosomal and genetic 
investigations [Ridnoi et al. 2018].  

SGB syndrome is inherited in an X-linked recessive manner [Vuillaume et 
al. 2019]. If the mother of a proband has a pathogenic variant, the chance of its 
transmission in each pregnancy is 50%. Males who inherit the pathogenic 
variant will be affected. Females who inherit the pathogenic variant will be 
carriers, although due to X-chromosome inactivation they may also show 
various manifestations of SGB syndrome, including intellectual disability, heart 
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defects, and coarse facial features [Schirwani et al. 2019]. Males with SGB 
syndrome will pass the pathogenic variant to all of their daughters and none of 
their sons [Sajorda et al. 1993]. During genetic counselling, the possibilities of 
oocyte donation and preimplantation genetic diagnosis (PGD) may be dis-
cussed. 

Differential diagnosis of SGB syndrome is challenging due to similarities in 
its clinical presentation with other overgrowth syndromes [Manor and Lalani 
2020]. A diagnostic pathway in PD for these conditions was proposed in 2009 
[Vora and Bianchi 2009], suggesting that many factors should be considered, 
including pregnancy dating and the possibility of gestational diabetes. However, 
in terms of genetic syndromes, the following five are the most likely: Pallister–
Killian (OMIM 601803), Sotos (OMIM 117550), Perlman (OMIM 267000), 
Beckwith–Wiedemann (OMIM 130650), and SGB. From a pediatric perspec-
tive, additional possible overgrowth syndrome are Weaver syndrome, Malan 
syndrome, and DNMT3A-related overgrowth syndrome [Brioude et al. 2019; 
Manor and Lalani 2020]. These are rarely diagnosed prenatally. The main 
overlap with clinical presentation and US findings in the prenatal setting for 
SGB syndrome is with BWS, which is the most frequent overgrowth syndrome 
[Manor and Lalani 2020]. Despite each having specific traits, overgrowth 
syndromes often share clinical features. This is particularly true for patients 
with BWS or SGB who can have macroglossia, macrosomia, umbilical hernia 
and almost the same spectrum of internal organs’ malformations. Careful and 
systematic evaluation of the fetus or newborn is required to reach to the precise 
diagnosis in cases with suspected overgrowth syndrome. The differential diag-
nosis of SGB syndrome with detailed description of similar overgrowth syndro-
mes can be found in a review article from our department [Ridnoi et al. 2018]. 

 
 

5.5. Pathogenic variant in the TXNDC15 gene  
in a prenatally diagnosed case of MKS 

The diagnostic US examination was performed in the first trimester of preg-
nancy. Numerous fetal anomalies were revealed on US examination comprising 
enlarged NT (4.1 mm), bilateral polycystic kidneys, occipital encephalocele, 
and postaxial polydactyly of the hands and feet (Figure 16). Based on the US 
examination, there was a strong suspicion of MKS. After multidisciplinary 
counselling, the patient decided to terminate the pregnancy with post-mortem 
pathoanatomical evaluation of the fetus and genetic testing of the fetal DNA.  

The initial targeted NGS analysis was performed using an Illumina TruSight 
One sequencing panel. No pathogenic variants were found in the MKS1, 
TMEM216, TMEM67, CEP290, RPGRIP1L, CC2D2A, NPHP3, TCTN2, B9D1, 
and B9D2 genes, which are known to be associated with MKS. Subsequently, 
parent–offspring trio ES was performed. 

After ES of fetal DNA two compound heterozygous variants in the 
TXNDC15 gene we identified: NM_024715.3:c.211dup p.(Gln71Profs*32) 
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rs780024847 (inherited from the father) and NM_024715.3:c.635T>C 
p.(Leu212Pro) rs760579409 (inherited from the mother). Sanger sequencing 
confirmed these variants, which have never been described before in association 
with genetic disorders [Ridnoi et al. 2019]. According to the gnomAD database, 
such allele variants are very rare in the general population, with allele frequen-
cies of 0.0029% and 0.00041%, respectively [Lek et al. 2016]. Based on these 
findings, we concluded that in our case, two pathogenic variants in the 
TXNDC15 gene are likely to be the cause for the congenital malformations and 
MKS diagnosis [Ridnoi et al. 2019]. The family recurrence risk for affected 
offspring is therefore 25%. 

The autopsy showed occipital encephalocele (0.9 × 1.0 cm) and bilateral 
enlarged polycystic kidneys (1.4 × 0.7 × 0.5 cm) with a total tissue mass of 
0.503 g (normal values at 12 weeks = 0.16 ± 0.04 g [Enid Gilbert-Barness 
2007]). Bilateral polydactyly of the hands (six fingers) and feet (seven toes) was 
also noted. No other anomalies were found. A histological study confirmed 
polycystic dysplastic kidneys (Figure 17). 

 
 

 
 
Figure 16. a) Occipital encephalocele in two-dimensional (2D) high-resolution trans-
vaginal US: the midsagittal view shows the large occipital bone defect through which 
the meninges and cerebral parenchyma have migrated. b) Postaxial polydactyly of one 
hand in three-dimensional (3D) high-resolution transvaginal US in surface mode 
demonstrating a postaxial view of the extra (sixth) digit. c) Cystic renal dysplasia in 3D 
high-resolution transvaginal US in constructed glass-body mode: the coronal view 
shows enlarged hyperechoic kidneys leading to distention of the abdomen. Adapted 
from [Ridnoi et al. 2019].  
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Homozygous pathogenic variants in the TXNDC15 gene causing MKS have 
been reported in one publication before our case, where MKS was described in 
three consanguineous families: two Saudi and one Pakistani [Shaheen et al. 
2016]. The prenatal findings in one stillbirth were typical for MKS: poly-
dactyly, enlarged cystic kidneys, and occipital encephalocele. In the first Saudi 
family, a homozygous NM_024715.3:c.672_686del:p.(Ser225_His229del) 
pathogenic variant was identified. The second Saudi family had several affected 
pregnancies with typical MKS findings, and in their case, a homozygous 
NM_024715.3:c.103+1G>A variant was present. The third family in the report 
was of Pakistani origin and had two children with MKS; the pathogenic 
homozygous variant NM_024715.3:c.956dupT,(p.Ser321Lysfs*15) was identi-
fied in that case [Shaheen et al. 2016].  

In the present case, we report same prenatal findings: bilateral postaxial 
polydactyly, occipital encephalocele, and bilateral polycystic kidneys caused by 
compound heterozygous variants in the TXNDC15 gene. Recent experimental 
findings using a CRISPR-based screen for ciliary disorders suggest that the 
TXDNC15 gene, which encodes a thioredoxin domain–containing trans-
membrane protein, is indeed a novel MKS gene [Breslow et al. 2018]. In  
our case we have identified frameshift variant NM_024715.3:c.211dup 

 
Figure 17. a) A fetus after termination of pregnancy. Postaxial polydactyly is seen in 
the six fingers and seven toes (arrows). b) Occipital encephalocele (arrow). c) Histo-
logical findings in the fetal kidneys. included a thin intermittent cortex with dysplastic 
cystic structures of varying sizes lined with a single layer of immature cubic nephro-
genic epithelium. Adapted from [Ridnoi et al. 2019]. 
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p.(Gln71Profs*32), which causes reading frame change and results in formation 
of premature stop codon, which likely initiates nonsense-mediated decay 
eliminating mRNA and altering the protein synthesis in this frame. In missense 
variant NM_024715.3:c.635T>Cp.(Leu212Pro)rs760579409, which located in 
thioredoxin domain, we see two possibilities: damaging the protein function, 
with possible residual activity or generation of new splice-site exon in sequence 
which also can alter protein synthesis in this frame [Ridnoi et al. 2019]. 

After our case, a pathogenic homozygous variant c.844C>T, p.(Arg282Ter) 
in TXNDC15 was reported in an Indian family also confirming that is a causa-
tive gene of MKS [Radhakrishnan et al. 2019]. In addition to classical fetal US 
findings of MKS holoprosencephaly, univentricular heart and bilateral bowing 
of tibia and fibula were described in this case. In other report an unusual finding 
of anencephaly was described with classical MKS ’triad” [Yaqoubi and Fatema 
2018]. Although MKS is very specific in US presentation certain differential 
diagnostic difficulties can occur in cases of severe Smith–Lemli–Opitz (micro-
cephaly, polydactyly), T13 or Patau syndrome (holoprosencephaly, polydactyly, 
heart defects) or Joubert syndrome (cerebellar anomalies, polydactyly, cystic 
renal lesions), which is also a ciliopathy [Khurana et al. 2017]. 

MKS is a heterogeneous syndrome in terms of the linked causative genes, 
but genotype–phenotype associations in particular genes are not fully under-
stood. For example pathogenic variants in the TCTN2 gene are associated with 
MKS, but experimental data show that this gene is not required for ciliogenesis 
in the kidney [Zhang et al. 2020]. In the first-line diagnosis, we used an NGS-
based large gene panel, but only 10 MKS genes were available on the platform 
used. In the case of prenatal US findings that are highly suggestive of MKS and 
a negative NGS MKS gene panel, we recommend performing ES not to miss 
rare causative genes linked to MKS based on our case report and the available 
literature [Ridnoi et al. 2019]. 
 
 

5.6. Practical implication 
The practical value of this work is to develop an evidence-based protocol for 
future directions in PS and PD in Estonia. Current study showed the effective-
ness of existing national PS program, based on the universal cFTS and parallel 
to that we showed the positive implications of applying DNA based molecular 
analyses into routine PD model. In future, the results of our study can be used as 
a scientific base for further investigations. Possible directions of such investi-
gations should include studies on routine use of CMA in the era of NIPT and 
larger studies on the application of NGS methods in PD in fetuses with 
congenital anomalies.   
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6. CONCLUSIONS  

1.  A two-year prospective cFTS-effectiveness study was conducted in a cohort 
of 14,566 pregnancies in two major hospitals in Estonia.  
1.1. cFTS was found to be an effective screening method for the prenatal 

detection of three major trisomies: the DR was 94% for T21, and 100% 
for T18 and T13, in the first trimester of pregnancy.  

1.2. Compared to the previous Estonian study, the DR of T21 increased 
from 88.3% to 94%. 

1.3. Our study results showed that the shift towards cFTS in Estonia led to 
an increase in the prenatal detection of chromosomal diseases and was 
justified. 

1.4. The invasive-testing rate of 2.7% after cFTS was lower in comparison 
with other published studies and local Estonian data from previous 
years. 

2.  The diagnostic effectiveness of CMA was investigated in a cohort of 334 
fetuses with normal karyotype and high-risk results after cFTS, US ano-
malies, or specific genetic indications. 
2.1. CMA had a diagnostic effectiveness of 3.6% in high-risk pregnancies 

after cFTS or fetal US examination. 
2.2. In a subgroup of fetuses with high-risk results for trisomies after cFTS 

but normal US findings, CMA discovered clinically relevant CNVs in 
1.6% of cases. This finding was in the accordance with previously 
published larger studies. It supported the use of CMA as a primary 
diagnostic test in cases with high-risk results after cFTS. 

2.3. The probability of pathogenic CNV in high-risk pregnancies after 
cFTS was 1 in 62 according to our results. Women should be aware of 
and appropriately counselled regarding the possibilities of CMA 
diagnostics. 

2.4. The use of CMA as a first-tier prenatal diagnostic test in pregnancies 
with fetal US anomalies or genetic indications had an additional diag-
nostic value of 6.0% over conventional karyotyping. This finding was 
in accordance with published studies. 

2.5. The VOUS incidence in the whole cohort of 334 CMA was 3.3%, 
which was lower than reported in most large CMA studies.  

2.6. Most of the benign findings were LSCH regions and were not reported 
in PD. 

3.  The diagnostic effectiveness of NGS analysis using a large-gene panel was 
investigated in a cohort of 28 fetuses with combined US anomalies and 
normal CMA.  
3.1. The diagnostic effectiveness of NGS analysis in pregnancies with 

combined US anomalies was 17.9%. This result was similar to other 
studies published in the literature, where the DR of pathogenic variants 
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after prenatal NGS analyses or ES ranged from 8.5% to 81%, depen-
ding on the inclusion criteria for fetal malformations. 

3.2. We reported two VOUS findings after NGS analysis in NOTCH1 and 
PKD1 genes that were related to fetal phenotype. In the NOTCH1 
variant, we diagnosed a combined heart defect in the fetus, but the 
carrier mother was phenotypically normal. In the PKD1 variant, we 
diagnosed polycystic kidneys in the fetus, but the parents were lost to 
follow-up. 

3.3. We reported two clinically relevant incidental findings in the cancer-
predisposing genes MLH1 and BRCA1, which were unrelated to fetal 
phenotype, and these findings lead to cascade screening of the family 
members.  

4.  We reported three cases of SGB syndrome in two consecutive pregnancies. 
The prenatal findings of this syndrome were analyzed in detail with a 
review of the previously published prenatal cases. 
4.1. We reported a novel hemizygous splice-site variant in the GPC3 gene, 

NM_004484.3:c.1166+1G>T, which was diagnosed in three fetuses 
from two consecutive pregnancies. 

4.2. The most frequent prenatal findings in SGB syndrome were macroso-
mia, polyhydramnios, organomegaly, and renal anomalies, which were 
detectable by detailed US examination.  

4.3. Other overgrowth syndromes should be considered in differential 
diagnosis, particularly BWS. 

5.  A case of MKS was diagnosed prenatally and described in detail in terms of 
the antenatal US findings, the molecular findings of ES, and the patho-
anatomical findings of the fetus. 
5.1. We classified two compound heterozygous TXNDC15 variants with no 

previous clinical annotations as disease causing: NM_024715.3: 
c.211dup p.(Gln71Profs*32) rs780024847 and NM_024715.3:c.635T> 
C p.(Leu212Pro) rs760579409. Association of this gene with MKS 
was previously reported only once in the literature. 

5.2. Ultrasound anomalies of the fetus, molecular findings, and pathoanato-
mical features in our cases supported previously published experi-
mental findings, suggesting that the TXNDC15 gene is a novel MKS-
related gene. 
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7. APPENDIX 

Appendix 1. Protocol for the measurement of fetal NT thickness. 
From FMF webpage. 

− The gestational period must be 11 to 13 weeks and six days. 
− The fetal crown-rump length (CRL) should be between 45 and 84 mm. 
− The magnification of the image should be such that the fetal head and thorax occupy 

the whole screen. 
− A mid-sagittal view of the face should be obtained. This is defined by the presence 

of the echogenic tip of the nose and rectangular shape of the palate anteriorly, the 
translucent diencephalon in the center, and the nuchal membrane posteriorly. Minor 
deviations from the exact midline plane would cause non-visualization of the tip of 
the nose and visibility of the maxilla. 

− The fetus should be in a neutral position, with the head in line with the spine. When 
the fetal neck is hyperextended, the measurement can be falsely increased, and when 
the neck is flexed, the measurement can be falsely decreased. 

− Care must be taken to distinguish between fetal skin and amnion. 
− The widest part of translucency must always be measured. 
− Measurements should be taken with the inner border of the horizontal line of the 

calipers placed on the line that defines the NT thickness – the crossbar of the caliper 
should be such that it is hardly visible as it merges with the white line of the border, 
and not in the nuchal fluid. 

− In magnifying the image (pre or post freeze zoom) it is important to turn the gain 
down. This avoids the mistake of placing the caliper on the fuzzy edge of the line, 
which causes an underestimate of the nuchal measurement. 

− During the scan, more than one measurement must be taken and the maximum value 
that meets all of the abovementioned criteria should be recorded in the database. 

− The umbilical cord may be round the fetal neck in about 5% of cases and this 
finding may produce a falsely increased NT. In such cases, the measurements of NT 
above and below the cord are different and, in the calculation of risk, it is more 
appropriate to use the average of the two measurements. 
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SUMMARY IN ESTONIAN  

Uute sünnieelse diagnostika strateegiate rakendamine ja  
nende efektiivsuse hindamine Eestis 

Iga raseduse puhul on umbes 4%-line tõenäosus, et sünnib arengulise kõrvale-
kaldega laps [Harper 2010]. Sünnieelsete sõeluuringute eesmärk on selgitada 
välja rasedad, kellel on suurenenud risk sünnitada kromosoomhaiguse või 
kaasasündinud arenguhäirega laps ning pakkuda riskigrupile täpsustavaid diag-
nostilisi analüüse [ACOG 2020]. Nende diagnostiliste analüüsidega püütakse 
leida arengurikke etioloogilist põhjust – kromosoomhaigust või geenimuutust. 
Sünnieelse diagnostika võimaluste loomisega me tagame naistele reproduktiivse 
autonoomia õigused: valiku võimalused raseduse katkestamise või jätkamise 
suhtes. Läbi aegade on kromosoomhaiguste sõeltestimise alusena kasutatud 
erinevaid näitajaid: ema vanust, ema vereseerumi erinevaid biokeemilisi marke-
reid, loote ultraheli markereid ja erinevaid kombinatsioone eeltoodud faktoritest 
[Sitska 2018]. Kõik sünnieelsed kromosoomhaiguste sõeltestid on käesolevaks 
hetkeks nihkunud raseduse esimesse trimestrisse. 

Nicolaides jt näitasid 1992. aastal oma uuringus, et loodetel, kelle kukla piir-
konna läbikumavus, e NT (nuchal translucency) rasedusesuuruses 10.–13. nä-
dalat oli üle 3 mm, esines suurema tõenäosusega kromosoomhaigus [Nicolaides 
et al. 1992]. See avastus märgib uue ajastu algust sünnieelses sõeltestimises ehk 
esimese trimestri kombineeritud sõeluuringu (KS) kasutusele võttu. Kombinee-
ritud kromosoomhaiguste sõeltestimise mudelit, kus ema vanuse juurde arves-
tati loote NT-väärtus koos ema vereseerumi vaba beeta-kooriongonadotropiini 
(β-hCG) ja rasedusega seotud plasmavalgu A (pregnancy associated plasma 
proteiin-A e PAPP-A) kohandatud väärtustega pakuti välja 1999. aastal. Sellega 
saavutati trisoomia 21 (T21) avastamismäär 89% ja fikseeritud vale-positiivsuse 
määr 5% [Spencer et al. 1999]. Esimese trimestri kombineeritud sõeluuringu 
avastamise määra (detection rate, DR) on võimalik tõsta, lisades riskikalkulat-
siooni ultraheli lisamarkerid nagu loote ninaluu olemasolu/puudumine, kolmik-
hõlmalise klapi regurgitatsiooni esinemine ja venoosjuha α-laine iseloomustus 
või pulsatiilsuse indeks. Suures mitme keskuse vahelises uuringus, mis hõlmas 
75 821 rasedat, näidati, et kasutades kombinatsiooni ema vanusest, NT-mõõ-
dust, seerumi biokeemiast ja ultraheli lisamarkeritest, on võimalik tõsta T21 DR 
üle 90% ja langetada vale-positiivsust alla 3% [Nicolaides et al. 2005]. 

Eestis alustati sünnieelsete sõeluuringutega 1995. aastal, mil peamiseks 
riskimarkeriks oli ema vanus. Alates 1999. aastast on olnud kasutusel teise tri-
mestri (14.–18. rasedusnädala) seerumskriining [Sitska et al. 2008]. Kuni 2015. 
aasta lõpuni oli Eestis kasutusel järjestikune skriiningmeetod, mille T21 DR oli 
88,3% ja vale-positiivsus 3,4% [Muru et al. 2010]. Alates 2016. aastast on 
vastavalt uuele sünnieelse diagnostika juhendile esimese trimestri KS Eestis 
esmane loote kromosoomhaiguste sõeluuring [Ustav et al. 2016]. 

Sünnieelse sõeltestimise edasiseks arenguks oli vaja uusi tehnoloogilisi 
lahendusi. Loote DNA esinemist ema plasmas kirjeldati esimest korda 1997. 
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aastal [Lo et al. 1997]. See algatas sünnieelse sõeltestimise valdkonnas uue, 
mitteinvasiivse sünnieelse testimise (non-invasive prenatal testing, NIPT) ajas-
tu. Ulatuslikud loote rakuvaba DNA sekveneerimisel põhinevad valideerimis-
uuringud avaldati juba 10 aastat tagasi. Nendes uuringutes T21 DR oli peaaegu 
100% koos väga madala (alla 0,5%) vale-positiivsusega [Bianchi et al. 2012; 
Palomaki et al. 2011]. Üks uus NIPT-platvorm on hiljuti välja arendatud ka 
Eestis [Žilina et al. 2019].  

Järgmine samm pärast kõrge riskiga sõeluuringu tulemust on uuritava loote 
lõplik diagnoos: kromosoomhaiguse kinnitamine või välistamine. Kogu kro-
mosoomi aneuploidia diagnoosimise kuldstandardiks on olnud loote rakkude, 
mida on võimalik saada vaid invasiivse protseduuri abil, karüotüpiseerimine. 
Klassikaline karüotüpiseerimine oli kromosoomhaiguse diagnoosimisel pikka 
aega esmaseks testiks. Selle meetodi peamine puudus on aga selle madal (5– 
10 Mb) eraldusvõime, mis ei võimalda diagnoosida submikroskoopilisi kromo-
somaalseid muutusi. 

Kromosomaalne mikrokiibi analüüs (KMA, chromosomal microarray ana-
lysis) ehk „molekulaarne karüotüüp“ on DNA-põhine diagnostikameetod, mis 
tuvastab kogu genoomi ulatuses DNA kadusid või lisakoopiaid ehk koopiaarvu 
muutusi (copy number variants, CNV) ning on 100 korda suurema lahutus-
võimega kui klassikaline karüotüpiseerimine [Shearer et al. 2007]. Käesoleval 
hetkel jätkub arutelu KMA universaalse kasutamise üle sünnieelses diagnosti-
kas. Ameerika sünnitusabi ja günekoloogide kolledž (ACOG) teatas 2013. aas-
tal, et KMA-d tuleks kasutada sünnieelses diagnostikas esmase diagnostilise 
testina ultraheli anomaaliatega loodetel [ACOG 2013]. On näidatud, et pato-
geensete CNV-de esinemissagedus võib sünnieelselt olla kuni üks juht 270 
raseduse kohta ning ei sõltu ema vanusest [Srebniak et al. 2018]. Seetõttu 
praegusel NIPT-ajastul võivad kliiniliselt olulised submikroskoopilised kromo-
soomianomaaliad olla aladiagnoositud invasiivsete protseduuride sageduse 
olulise languse tõttu. Eesti Haigekassa rahastab KMA-d alates 2011. aastast. 
Selle kliinilist kasutust ja diagnostilist efektiivsust on senini uuritud peamiselt 
lastel, diagnostilise lisaväärtusega 25% [Žilina et al. 2014]. 

Sünnieelse diagnostika suurim väljakutse on ultraheli uuringute käigus leitud 
loote kaasasündinud anomaaliate täpse tekkepõhjuse väljaselgitamine. Klassi-
kalise karüotüpiseerimine ja KMA abil leitakse täpne etiloogiline tegur kromo-
somaalsel tasemel umbes 27,4%-l nendel juhtudel [Fiorentino et al. 2013]. 
Seega ei saa ülejäänud neist uuritud loodetest lõplikku diagnoosi [Monaghan et 
al. 2020]. Järgmise põlvkonna sekveneerimismeetodid (next-generation sequen-
cing, NGS) sünnieelses diagnostikas on erinevad: sihitud sekveneerimine feno-
tüübispetsiifiliste geenipaneelidega, suuremahulised geenipaneelid, eksoomi 
sekveneerimine (exome sequencing, ES) ja isegi genoomi sekveneerimine (ge-
nome sequencing, GS) [Ferretti et al. 2019]. Mitmed uuringud on näidanud, et 
täiendavat diagnostilist informatsiooni võib leida 8,5–81%-l juhtudel [Chandler 
et al. 2018; Lord et al. 2019]. Loote NGS analüüsi korral on kõige keerulisem 
fenotüübi ja genotüübi korrelatsiooni tuvastamine. Eestis on NGS-i diagnostilist 
efektiivsust hinnatud senini ainult laste ja täiskasvanute populatsioonis ning 501 
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prooviga kohordis leiti 26,3%-line diagnostiline lisaväärtus [Pajusalu et al. 
2018]. 

 
Uurimistöö eesmärgid 

1. Hinnata esimese trimestri kombineeritud sõeluuringu efektiivsust Eestis; 
2. Hinnata kromosomaalse mikrokiibi analüüsi kasutust ja selle efektiivsust 

kõrge riskiga rasedustel loote kromosoomhaiguste avastamiseks; 
3. Juurutada järgmise põlvkonna sekveneerimismeetodid ja hinnata nende efek-

tiivsust kõrge riskiga või kombineeritud arenguriketega loodetel; 
4. Kirjeldada Simpson-Golabi-Behmeli sündroomi sünnieelset fenotüüpi; 
5. Kirjeldada TXNDC15-geeni uut patogeenset varianti sünnieelselt avastatud 

Meckel-Gruberi sündroomiga lootel. 

 

Uuringugruppide ja meetodite lühikirjeldus 

Esimese trimestri KS uuringugrupp ja meetodid 
Uuring viidi läbi kahe aasta jooksul Ida-Tallinna Keskhaigla (ITK) ja Tartu Üli-
kooli Kliinikumi (TÜK) naistekliinikus (perioodil 01. jaanuar 2017 kuni 31. 
detsember 2018). Lõplik uuringugrupp koosnes 14 566 üksiklootega rasedast. 
Kõigile nendele naistele tehti esimese trimestri KS ja nad andsid oma nõusoleku 
selleks rutiinse sünnieelse sõeluuringu osana. Andmed analüüsiti anonüümselt. 
Vereanalüüs võeti 9.–13. rasedusnädalal kahe seerummarkeri määramiseks: f-
βhCG ja PAPP-A. Analüüse tehti TÜK-is ja ITK-s erinevatel analüsaatoritel, 
vastavalt Roche Cobas (Roche Diagnostics, Basel, Switzerland) ja KRYPTOR 
compact PLUS (Thermo Fisher Scientific, MA, USA) seadmel. Loote ultra-
heliuuring tehti 11…13+6 rasedusnädalal vastavalt Fetal Medicine Foundationi 
(FMF) soovitustele (Appendix 1) ja Eesti sünnieelse diagnostika juhendi proto-
kollile. Ultraheliuuringu käigus täpsustati raseduse suurus, mõõdeti loote NT 
ning hinnati loote arengut. Vajadusel hinnati ka ultraheli lisamarkereid: ninaluu 
puudumine, kolmikhõlmalise klapi verevoolu ja venoosjuha pulsatiilsuse 
indeks. Ultraheliuuringu ja seerummarkerite tulemuste alusel kalkuleeriti risk 
kolme trisoomia (T21, T18 ja T13) esinemiseks lootel. Riski kalkulatsiooniks 
kasutati TÜK naistekliinikus Astraia (Astraia Software gmbh, Munich, Ger-
many) tarkvara ja ITK naistekliinikus Viewpoint 6 for OB/GYN (GE Health-
care, IL, USA) tarkvara. Kõigile kõrge riskiga rasedatele pakuti diagnostilist 
invasiivset protseduuri, koorionibiopsiat või amniotsenteesi vastavalt Eestis 
kehtivale sünnieelse diagnostika juhendile. KS-i kõrge riskitulemuse saanud 
517 rasedast 92 valisid teiseks sõeluuringuks NIPT-testi, kuna nad soovisid või-
malusel vältida invasiivset kromosoomhaiguste diagnostikat. Uuringuperioodil 
olid Eestis kättesaadavad kaks NIPT-testi: PANORAMA ™ test (Natera Inc., 
SanCarlos, CA, USA) ja NIPTIFY® test (Tervisetehnoloogiate Arenduskeskus 
AS, Tartu, Eesti), mis on Eestis välja arendatud NIPT-platvorm. Invasiivne 
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diagnostika tehti vaid nendele rasedatele, kelle NIPT-testi tulemus näitas kõrge-
nenud riski trisoomiate esinemiseks. Materjal loote tsütogeneetilise analüüsi 
tegemiseks kõrge riskiga rasedatele saadi koorionibiopsia või amniotsenteesi 
teel. Saadud lootematerjal kultiveeriti vastavalt kliinilisele diagnostilisele proto-
kollile. Loote karüotüüpi uuriti G-vöödistuse meetodil ja kromosoome analüü-
siti 450–550 vöödi tasemel vastavalt rahvusvahelise tsütogeneetika nomenkla-
tuurile (ISCN 2016). Igas proovis analüüsiti vähemalt 12 metafaasi; kahtlus-
tatud mosaiiksuse korral analüüsiti kokku 30 metafaasi.  

Võimalike vale-negatiivsete KS-testitulemuste avastamiseks koguti sünnieel-
selt diagnoosimata trisoomiaga sündinud laste kohta informatsiooni TÜK Klii-
nilise geneetika keskuse andmebaasidest. 

 
 

KMA uuringugrupp ja meetodid 
KMA diagnostilise efektiivsuse hindamiseks värvati 14 566-st esimese trimestri 
KS-i läbinutest 334 rasedat. Moodustati kaks rühma. A-gruppi kuulus 184 naist, 
kellest kõigil tuvastati pärast esimese trimestri KS-i kõrge trisoomide risk, kuid 
NT-mõõt oli normaalne (alla 3,5 mm) ja ultraheli anomaaliaid ei olnud. Kõiki 
naisi A-grupis nõustati enne protseduuri ja saadi täiendav kirjalik teadlik nõus-
olek KMA tegemiseks loote DNA-st. B-gruppi kuulus 150 naist, kes kõik vasta-
sid KMA kui esmase diagnostilise testi kriteeriumidele. KMA tehakse Eestis 
esmase diagnostilise testina pärast invasiivset protseduuri, kui on täidetud üks 
järgmistest kliinilistest näidustustest: NT suurem kui 3,5 mm, loote väärarendid, 
perekonna anamnees või teadaolev tasakaalustatud translokatsioon ühel vane-
mal. Kõik B-rühma naised andsid kirjaliku nõusoleku invasiivse protseduuri 
tegemiseks. 

Loote DNA oli KMA tegemiseks eraldatud kas otseselt koorionibiopsia või 
amniotsenteesi proovist või kultiveeritud rakkude kultuurist. KMA tehti, kasuta-
des Illumina HumanCytoSNP-12 BeadChips (Illumina Inc., SanDiego, CA, 
USA) ning QuantiSNP v2.3 tarkvara [Colella et al. 2007]. Tuvastatud koopia-
arvu muutused klassifitseeriti nelja klassi: patogeensed, tõenäoliselt patogeen-
sed, VOUS (ebaselge kliinilise tähendusega leid) ja healoomulised. Leidude 
tõlgendamisel kasutati mitmeid veebipõhiseid andmebaase nagu Online Mende-
lian Inheritance in Man (OMIM), human genome browsers (UCSC and En-
sembl), DECIPHER ja the Database of Genomic Variants (DGV). PubMed 
andmebaasi kasutati avaldatud eelretsenseeritud artiklite otsinguks. Raportee-
ritud leidude korral analüüsiti lisaks vanemate DNA-d, mida eraldati vere 
lümfotsüütidest, pärandumise täpsustamiseks. 

 
 

NGS uuringugrupp ja meetodid 
Uuringuperioodi jooksul valiti NGS paneelanalüüsi rühma 28 juhtumit. Kõik 
juhtumid värvati esimese trimestri KS uuringugrupist. Lisamise kriteeriumid 
olid järgmised: loote aju anomaaliad, mitteimmuunne loote hüdrops, kombinee-
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ritud südamerikked ja kombineeritud looteanomaaliad, mis andis alust kaht-
lustada geneetilist sündroomi. NGS-i paneelanalüüsi tegemise otsuse tegi medit-
siinigeneetik, kes ka patsienti nõustas. NGS-analüüsi tegemiseks loote DNA-l 
saadi patsiendilt täiendav kirjalik informeeritud nõusolek. Ainult kaks rasedust 
lõppesid elussünniga, kõik ülejäänud katkestati vastavalt meditsiinilistele 
näidustustele enne 22. nädalat. Loote DNA eraldati kas sünnieelse invasiivse 
protseduuri käigus saadud materjalist või loote kudedest peale raseduse kat-
kestamist. NGS analüüs tehti, kasutades TruSight One (4813 geeni) või 
TruSight One Expanded (6699 geeni) geenipaneele. Sekveneerimine tehti, kasu-
tades NextSeq 500 platvormi (Illumina).  

 

Simpson-Golabi-Behmeli sündroomiga looted ja nende uurimismeetodid 
SGB sündroom on haruldane X-liiteline retsessiivne haigus, mida on kirjeldatud 
maailmas vähem kui 100 sünnieelset juhtu. Dikoriaalse kaksikrasedusega 28 
aastane esmasrase, kellel on anamneesis üks varajane iseeneslik raseduse katke-
mine. Mõlemal kaksikul oli NT üle 3,5mm ja seetõttu teostati ühel kaksikul 
koorionbiopsia ning KMA ülalpool kirjeldatud meetodil. Ultraheli uuringul 20. 
rasedusnädalal diagnoositi mõlemal lootel mitmed kaasasündinud anomaaliad: 
liigkasv, lame näoprofiil, prefrontaalne turse näol, hüperehhogeensed neerud, 
suguelundite anomaaliad ja aju mõhkkeha düsgenees. Lootele teostati trio- ES 
koos vanemate materjaliga ning leiti GPC3-geeni uus patogeenne hemisügootne 
variant, NM_004484.3:c.1166+1G>T, mis kinnitas SGB diagnoosi. Järgmise 
raseduse ajal diagnoositi sama variant GPC3-geenis uuesti. Lootel esinesid 
huule-suulae lõhe, liigkasv ja prefrontaalne turse näol. Väitekirja raames tehtud 
kirjanduse ülevaade käsitleb ka avaldatud allikaid SGB sündroomi sünnieelsete 
juhtude kohta [Ridnoi et al. 2018]. 

 

Meckel-Gruberi sündroomiga loote uurimismeetodid 
33 aastane esmasrase suunati kliinilise geneetiku vastuvõtule. Tema loote esi-
mese trimestri UH uuringul 13. rasedusnädalal leiti NT suurenemine 4,1mm-ni, 
polütsüstilised neerud, entseefalotseele ja postaktsiaalne polüdaktüülia. Antud 
leiu alusel oli diagnoosi hüpoteesiks Meckel-Gruberi sündroomi (MKS). Suu-
natud NGS-analüüsil, mis teostati ülal kirjeldatud meetodil, ei leitud MKS-iga 
seonduvates geenides muutusti. Uus liit-heterosügootne variant TXNDC15-
geenis diagnoositi ES-i abil. Antud geeni seos MKS-iga oli eelnevalt kirjeldatud 
ainult ühes rahvusvahelises publikatsioonis. 
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Peamised tulemused ja järeldused 

1. Esimese trimestri KS prospektiivne uuring viidi läbi 14 566 rasedatest koos-
nevas kohordis kahes Eesti suurimas haiglas. 
1.1. Esimese trimestri KS on efektiivne meetod kolme sagedasema trisoo-

mia sünnieelseks avastamiseks. Trisoomia 21 avastamismäär oli 94%, 
trisoomia 18 ja 13 avastamismäär oli 100% raseduse esimeses tri-
mestris. Võrreldes eelmise Eestis läbi viidud uuringuga tõusis trisoomia 
21 avastamismäär 88,3%-lt 94%-ni.  

1.2. Käesoleva uuringu tulemused näitasid, et üleminek esimese trimestri  
KS-le on toonud kromosoomhaiguste suurema sünnieelse avastamise ja 
on ennast õigustanud. 

1.3. Invasiivsete diagnostiliste protseduuride sagedus peale esimese trimestri 
KS-d oli 2,7% ning on madalam võrreldes avaldatud uuringute ja Eesti 
eelnevate andmetega. 

2. KMA diagnostilist efektiivsust uuriti 334-l normaalse karüotüübiga kõrge 
riskiga lootel peale esimese trimestri KS-d, ultraheli anomaaliate või kindla 
geneetilise näidustusega lootel. 
2.1. KMA diagnostiline efektiivsus kõrge riskiga rasedustel oli peale esi-

mese trimestri KS-d või ultraheli anomaaliate korral 3,6%. 
2.2. Alarühmas, kus loodetel oli kõrge riski tulemus trisoomiate suhtes peale 

esimese trimestri KS-d, kuid normaalne ultraheli leid, on KMA-ga avas-
tatud kliiniliselt oluline koopia-arvu muutus 1,6%-l juhtudest. Antud 
andmed on kooskõlas varasemate uuringutega ja toetavad KMA kasu-
tust esmase diagnostilise analüüsina kõrge riski tulemusega loodetel 
peale esimese trimestri KS-d. 

2.3. Patogeense koopia-arvu muutuse sagedus kõrge riskiga rasedustel peale 
esimese trimestri KS-d on meie andmete puhul 1 juht 62st. Rasedad 
peavad olema teadlikud KMA teaostamise võimalustest ja vastavalt 
nõustatud. 

2.4. KMA kasutamine esmase diagnostilise analüüsina annab võrreldes 
karüotüübiga diagnostilist lisainformatsiooni 6,0%-l juhtudest ultraheli 
anomaaliate või geneetiliste näidustustega loodetel. Antud andmed on 
kooskõlas avaldatud uuringutega. 

2.5. Kogu KMA uuringugrupis oli VOUS-leidude sagedus 3,3%, mis on 
madalam kui enamusel avaldatud KMA uuringutel. 

2.6. Enamik healoomulistest leidudest peale KMA-d olid LSCH-alad ja ei 
olnud raporteeritud sünnieelselt. 

3. NGS analüüsi diagnostilist efektiivsust uuriti 28-l kombineeritud ultraheli 
anomaaliate ja normaalse KMA tulemusega lootel.  
3.1. NGS analüüsi diagnostiline efektiivsus kombineeritud anomaaliatega 

loodetel oli 17,9%. Antud tulemus sarnaneb teiste avaldatud uuringu-
tega, kus patogeensete variantide sagedus peale sünnieelset NGS-ana-
lüüsi või ES-i oli raporteeritud vahemikus 8,5–81%, sõltuvalt uuringu 
valimist ja anomaaliate tüüpidest.  
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3.2. Raporteerisime kahest VOUS-leiust peale NGS-analüüsi NOTCH1- ja 
PKD1-geenis, mis sobisid kokku loote fenotüüpidega. NOTCH1-geeni 
variandiga lootel oli diagnoositud kombineeritud südamerike, kuid gee-
ni kandlusega ema oli fenotüüpiliselt terve. PKD1-geeni variandiga loo-
tel diagnoositi polütsüstilised neerud, kuid vanemate analüüsi ei saanud 
teha. 

3.3. Raporteerisime kahest kliiniliselt olulisest juhuleiust vähi eelsoodumuse 
geenides MLH1 ja BRCA1, mis ei olnud seotud loote fenotüübiga, ning 
need juhuleiud viisid pereliikmete skriininguni.  

4. Raporteerisime kolmest SGB-sündroomi juhust kahel järjestikusel rasedusel. 
Sündroomi sünnieelseid leide analüüsiti detailselt koos varasemalt avaldatud 
kirjanduse ülevaatega. 
4.1. Raporteerisime uuest hemisügootsest splice-site-variandist GPC3-gee-

nis, NM_004484.3:c.1166+1G>T, mis diagnoositi kolmel lootel kahes 
järjestikusel rasedusel. 

4.2. Sagedasemad sünnieelsed leiud SGB-sündroomil olid loote makro-
soomia, lootevee liigsus, siseorganite suurenemine ja neerude anomaa-
liad, mis on avastatavad detailsel ultraheliuuringul. 

4.3. Teiste liigkasvusündroomide diferentsiaaldiagnostika on vajalik, eriti 
tuleb mõelda Beckwith-Wiedemanni sündroomile. 

5. MKS juht diagnoositi sünnieelselt ja kirjeldati detailselt antenataalsete ultra-
heli leidude, molekulaarsete ES-i leidude ja loote patoanatoomiliste leidude 
osas. 
5.1. Klassifitseerimisime kahte liit-heterosügootset varianti TXNDC15- 

geenis patogeenseks: NM_024715.3:c.211dup p.(Gln71Profs*32) 
rs780024847 ja NM_024715.3:c.635T>C p.(Leu212Pro) rs760579409. 
Selle variandi pole varem kirjeldatud haigusseolisena. Selle geeni seost 
MKS-ga on raporteeritud eelnevalt ainult ühel korral. 

5.2. Meie avaldatud juhtumi leitud loote ultrahelianomaaliaid, molekulaar-
sed variandid ja patoanatoomilised tunnused toetavad eelnevalt avalda-
tud hüpoteesi, et TXNDC15 on uudne MKS-ga seonduv geen.  

Käesoleva töö praktiliseks väljundiks on sünnieelse diagnostika ja sõeluuringute 
uute tõenduspõhiste juhendite väljatöötamine Eestis. Uurimistöö näitas selgelt 
raseduse esimese trimestri kombineeritud sõeluuringu tõhusust kromosoom-
haiguste sünnieelsel avastamisel. Samuti näitasime DNA-l põhinevate moleku-
laarsete analüüside tulemuslikkust rutiinses sünnieelses diagnostikas. Edasised 
uurimissuunad NIPT ajastul peaksid rohkem hõlmama KMA kasutamist tava-
diagnostikas ja lisaks NGS meetodi rakendamist loote arengurikete korral. 
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