STABILITY OF THE SPLINE COLLOCATION METHOD FOR VOLterra INTEGRO-DIFFERENTIAL EQUATIONS

MARE TARANG

TARTU 2004
Faculty of Mathematics and Computer Science, University of Tartu, Estonia

Dissertation is accepted for the commencement of the degree of Doctor of Philosophy (PhD) on April 23, 2004 by the Council of Faculty of Mathematics and Computer Science, University of Tartu.

Opponents:
PhD, Assoc. Professor Svetlana Asmuss
University of Latvia
Riga, Latvia

PhD, Professor Raul Kangro
Audentes University
Tartu, Estonia

Commencement will take place on June 18, 2004.

Publication of this dissertation is granted by the Institute of Applied Mathematics of the University of Tartu (research project DMTRM1974) and the Estonian Science Foundation grant No. 5260.
CONTENTS

1 INTRODUCTION 7
 1.1 A brief history of Volterra integro-differential equations . . 7
 1.2 Connection with integral equations 12

2 THE SPLINE COLLOCATION METHOD 17
 2.1 Description of the method 17

3 AUXILIARY RESULTS 20
 3.1 An overview of numerical stability conditions for VIE . . . 20
 3.2 Behaviour of linear iteration process 22

4 STABILITY OF THE SPLINE COLLOCATION METHOD FOR FIRST ORDER VIDE 25
 4.1 Method in the case of test equation 25
 4.2 Stability of the method . 29
 4.3 Examples . 34

5 STABILITY OF PIECEWISE POLYNOMIAL COLLOCATION METHOD FOR FIRST ORDER VIDE 36
 5.1 Method in the case of test equation 36
 5.2 Stability of the method . 38

6 STABILITY OF THE SPLINE COLLOCATION METHOD FOR SECOND ORDER VIDE 46
 6.1 Method in the case of test equation 46
 6.2 Stability of the method . 50
 6.3 Examples . 53

7 STABILITY OF THE SPLINE COLLOCATION METHOD WITH MULTIPLE NODES FOR FIRST ORDER VIDE 55
 7.1 Method in the case of test equation 55
 7.2 Stability of the method . 61
8 NUMERICAL TESTS
 8.1 First order VIDE .. 74
 8.2 Second order VIDE .. 76
 8.3 Collocation with multiple nodes for first order VIDE 77

References .. 79

Kokkuvote .. 82

Acknowledgement ... 84
Chapter 1

INTRODUCTION

1.1 A brief history of Volterra integro-differential equations

The theory of integral equations has been an active research field for many years and is based on analysis, function theory, and functional analysis.

An application arises on considering population dynamics involving a gestation period. Immune response and the heart-lung mechanism provides examples from medicine. The control of a satellite from an earth-based control system provides another example. Another application area is economics.

The theory of integral equations is interesting not only in itself, but its results are essential for the analysis of numerical methods. Besides existence and uniqueness statements, the theory concerns, in particular, questions of regularity and stability.

An integral equation is a functional equation in which the unknown function appears under one or several integral signs; if, in addition, the equation contains a derivative of this function we call the equation an integro-differential equation. In an integral or integro-differential equation of Volterra type the integrals containing the unknown function are characterized by a variable upper limit of integration. To be more precise, let \(I := [0, T] \) denote a given closed and bounded interval, with \(0 < T \), and set \(S := \{(t, s) : 0 \leq s \leq t \leq T\} \).

The functional equation (for the unknown function \(y \)) of the form

\[
y'(t) = F(t, y(t), z(t)), \quad t \in I,
\]

with

\[
z(t) = \int_0^t K(t, s, y(t))ds
\]

is called a first order Volterra integro-differential equation. Here, one usually looks for a solution which satisfies the initial condition \(y(0) = y_0 \).
The name "Volterra integral equation" was first coined by Rumanian mathematician Traian Lalesco in 1908, seemingly following a suggestion by his teacher French mathematician Emile Picard. The terminology "integral equation of the first (second, third) kind" was first used by German mathematician David Hilbert in connection with his study of Fredholm integral equations, while the name "integral equation" is due to German mathematician Paul Du Bois-Reymond.

The origins of the quantitative theory of integral equations with variable (upper) limits of integration go back to the early 19th century. Norwegian mathematician Niels Hendrik Abel in his works in 1823 and in 1826 considered the problem of determining the equation of a curve in a vertical plane such that the time taken by a mass point to slide, under the influence of gravity, along this curve from a given positive height to the horizontal axis is equal to a prescribed (monotone) function of the height. He showed that this problem can be described by a first kind integral equation of the form

$$\int_0^t (t-s)^{-\alpha} y(s) ds = g(t), \quad t < 0,$$

with $\alpha = 1/2$, and then he proved that, for any $\alpha \in (0,1)$, the solution of (1.1) is given by the "inversion formula",

$$y(t) = c_\alpha \frac{d}{dt} \left\{ \int_0^t (t-s)^{-\alpha-1} g(s) ds \right\}, \quad t < 0,$$

with $c_\alpha = \sin(\alpha\pi)/\pi = 1/(\Gamma(\alpha)\Gamma(1-\alpha))$.

Three years after Abel’s death, in 1832, the problem of inverting (1.1) was also studied by French mathematician Joseph Liouville (who seems to have been unaware of Abel’s work), again in a purely formal manner. The discovery of the inversion formula (1.2) was the starting point for the systematic development of what is known now as Fractional Calculus.

In 1896 Italian mathematician Vito Volterra published his general theory of the inversion of first kind integral equation. He transformed

$$\int_0^t K(t,s)y(s) ds = g(t), \quad t \in T, \quad g(0) = 0$$

into an integral equation of the second kind whose kernel and forcing functions are, respectively,

$$K(t,s) = -\frac{\partial K(t,s)}{\partial t} \quad \text{and} \quad \tilde{g}(t) = \frac{g'(t)}{K(t,t)}.$$

If $K(t,t)$ does not vanish on I, and if the derivates of K and g are continuous, then the (unique) solution of (1.3) is given by the "inversion formula"

$$y(t) = g(t) + \int_0^t \tilde{R}(t,s)g(s) ds, \quad t \in I.$$
Here, $\tilde{R}(t,s)$ denotes the so-called *resolvent kernel* of $\tilde{K}(t,s)$; it is defined in terms of the iterated kernels $\tilde{K}_n(t,s)$ of $\tilde{K}(t,s)$,

$$\tilde{K}_n(t,s) = \int_0^t \tilde{K}(t,u)\tilde{K}_{n-1}(u,s)du, \quad n \geq 2, \quad \tilde{K}_1(t,s) = \tilde{K}(t,s).$$

Volterra proved that the sequence \tilde{K}_n converges absolutely and uniformly on S for any kernel \tilde{K} in (1.3).

Even though Volterra’s result was new, his way of attack was not entirely a novel one. In his thesis in 1894, French mathematician Joel Le Roux had already studied the problem of inverting the “definite integral” (1.3), using the same approach. But second kind integral equation with variable limit of integration occurred already in the work of French mathematician Joseph Liouville in 1837.

The notion of the iterated kernels and the associated ”Neumann series” were first used by French mathematician Joseph Caqué in 1864. Generalizing Liouville’s idea, he studied the solution of the $(p+1)$-st order linear differential equation

$$y^{(p+1)} = \sum_{j=0}^{p} A_j(t)y^{(j)} + A(t),$$

by rewriting the equation as a second kind integral equation of Volterra type with the kernel

$$K(t,s) = \sum_{j=0}^{p} \frac{A_j(s)(t-s)^{p-j}}{(p-j)!}.$$

The existence of a solution was then established formally by introducing the iterated kernels and the corresponding Neumann series. At about the same time, in 1865, German mathematician August Beer used the same concepts, still in a purely formal way, in connection with the study of second kind integral equations with fixed limits of integration which arise in the analysis of Poisson’s equation in Potential Theory. It was left to German mathematician Carl Gottfried Neumann to furnish the rigorous convergence analysis for the series of iterated kernels (associated with a second kind integral equation of Fredholm type), now named after him.

In another paper in the year of 1896, Volterra extended his idea to linear integral equation of the first kind with weakly singular kernels. Using the approach employed by Abel to establish the inversion formula (1.2), he showed that

$$\int_0^t (t-s)^{-\alpha}K(t,s)y(s)ds = g(t), \quad t \in I, \quad 0 < \alpha < 1,$$
can be transformed into a first kind equation with regular kernel, to which
the theory of his first work applies. The remaining two papers of Volterra
from 1896 are concerned with the analysis of integral equation of the third
kind.

The next forty years mainly a consolidation of Volterra's work took
place. During this time the center stage belonged to the study of Fredholm
integral equations and their implications for the development of Functional
Analysis.

Since 1970 there has been renewed interest in study of qualitative and
asymptotic properties of solutions of Volterra equations.

It is known that the Cauchy problem for ordinary differential equation
is equivalent to a Volterra integral equation (VIE), the first order Volterra
integro-differential equation (VIDE) can be written as VIE and the second
order VIDE as first order VIDE. Thus, all approximate methods for solving
VIDE could be applied to Cauchy problem and to integral equations as well.

The presented brief history of Volterra equations is mainly based on [7].

One of the most natural methods for solving VIE and VIDE is the
standard step-by-step collocation method with polynomial splines. The
collocation method with piecewise polynomials is well studied for different
kind of equations under various assumptions and, as a rule, the convergence
results are positive, see, e.g., [9]. General case of collocation method can
be found in [7] and [20], see also [17].

Discretization methods in practical solving of differential and integral
equations are applicable only if they are stable, which we will mean as the
boundedness of approximate solutions when the number of knots increases.
In general such stability is necessary for convergence and it is also sufficient
in the case of a certain test equation. Convergence theory for collocation
is well developed for polynomial splines without any continuity conditions
in the knots or which are only continuous (see, e.g., [7], [9]). Let us men-
tion that general convergence theorems with two-sided error estimates and
stability analysis for VIDE are established in [26], see also [1]. They use
orthogonal projectors in Hilbert spaces which is not the case for spline
collocation methods.

Closely related problems have been investigated by several authors. The
stability of the numerical solutions obtained when applying very general
Runge Kutta methods to VIE and VIDE with degenerate kernels is ana-
lysed in [12]. The authors show that, under certain assumptions, the numer-
ical solution is bounded; this is the numerical analogue of the boundedness
of exact solution. The given results are generalizations of other results of
the authors of [13] for exact collocation methods applied to this type of
equation. Investigations of stability properties of exact and discretized col-
location methods for VIDE with degenerate kernel is continued in [15].
Some linear stability results for the repeated spline-collocation method ap-
piled to the linear VIDE of first order is obtained in the paper [19]. For the
stability condition introduced in [20] is proved that the repeated colloca-
tion method is stable for any choice of collocation parameters and degree.
of the spline function. Investigation of the convergence and the stability of collocation method for VIDE with weakly singular kernels can be found in [11]. Stability properties of reducible linear multistep methods and modified multilag methods, which are based on the test convolution equation is investigated in [6].

Using the Lyapunov method for solving VIDE, stability criterias are well studied. (see, e.g., [14] and [29]). Stability analysis of reducible quadrature methods for VIDE and necessary conditions for the method to be absolutely stable for given parameters of a test equation are derived in [10].

The authors of [5] consider the stability properties of certain integral equation type numerical methods when applied to the certain test equation. The simplest results are those obtained for a class of methods which may be derived on applying an appropriate method to a system of integral equations derived from the integro-differential equation. Results in [5] are similar to those obtained for integral equations in [4], from which they may be derived, and they are complementary to or consistent with earlier results of [8].

The first results about stability of the collocation method by polynomial splines for VIE are given in [21] and the most adequate ones seem to be in [24]. Investigation in [24] shows that in the case of piecewise polynomials (without continuity) the collocation method is stable for any order of spline and any choice of collocation parameters. Special case of smooth splines is treated in [25]. The most systematic attempt to study the numerical stability for VIDE seems to be [18]. It should be remarked that the proof of the main result of [18] (Theorem 2.3) is not correct. In [18] this Theorem 2.3 is also applied to the particular cases and there are obtained stability conditions. These results are disproved in our work.

The collocation with multiple collocation nodes coinciding with spline knots for the Cauchy problem of ordinary differential equations is studied in [23]. In particular, depending on order of the polynomial and multiplicity of the nodes, it is proved when the method is convergent and when divergent.

In the following we give a brief overview of the work by chapters. The present work consists of 8 chapters.

In present Chapter 1 we already gave an overview of history of integral equations. There is a standard reduction of 1st order VIDE to VIE considering the derivative of the solution as a new unknown solution. This connection between VIDE and VIE is shown in Section 1.2. There will be also shown that the certain test equation, which we use in studying the stability of collocation method, with constant kernel, transforms into an equation with nonconstant kernel and the results obtained for VIE are not directly extendable to the 1st order VIDE. Similar phenomena takes place if we try to reduce the problem of stability for 2nd order VIDE to that for 1st order VIDE.

In Chapter 2 the standard step-by-step spline collocation method is described.

In Chapter 3 we give a short overview of results containing numerical
stability conditions of spline collocation method for VIE. In addition, some auxiliary results from Linear Algebra, which will be used in the sequel, is given in Section 3.2.

In Chapter 4 we show the connection between stability conditions for integral and 1st order integro-differential equations, when the splines to be used are at least continuous. In some cases we get explicit formulae showing the dependence of the stability on collocation parameters.

In Chapter 5 we investigate the numerical stability of the spline collocation method by piecewise polynomials for 1st order VIDE. In this special case we will see that there is also dependence on the parameters of a certain test equation.

Chapter 6 treats the numerical stability of the spline collocation method for 2nd order VIDE. We also show the connection between stability conditions for 1st order VIDE and the 2nd order VIDE.

Chapter 7 deals with investigations of stability of spline collocation method with multiple nodes for 1st order VIDE. We consider the collocation method with only one collocation point per subinterval of the grid, with given multiplicity.

There is also given some examples in several cases.

In Chapter 8, a series of numerical tests is given to support the theoretical results.

1.2 Connection with integral equations

In this section we will show the connection between linear Volterra integro-differential equations and Volterra integral equations.

Let us consider the linear integro-differential equation in the form

\[y'(t) = p(t)y(t) + q(t) + \int_0^t K(t,s)y(s)ds, \quad t \in [0,T], \] \hspace{1cm} (1.4)

with initial condition

\[y(0) = y_0. \]

Here \(p, q \) and \(K \) are supposed to be real-valued and continuous on \([0,T]\) and \(S \), respectively. Integration of \((1.4)\) yields

\[y(t) = \int_0^t p(s)y(s)ds + \int_0^t q(s)ds + \int_0^t \int_0^s K(\tau,s)y(s)d\tau ds + y_0, \]

\[t \in [0,T]. \] \hspace{1cm} (1.5)

Using the Dirichlet’s formula which states

\[\int_0^t \int_0^s \Phi(\tau,s)d\tau ds = \int_0^t \int_s^t \Phi(\tau,s)d\tau ds, \quad (t,s) \in S, \]
provided the integral exists, we may rewrite equation (1.5) as

\[y(t) = \int_0^t q(s)ds + \int_0^t \left[p(s) + \int_s^T K(\tau, s)d\tau \right] y(s)ds + y_0, \quad t \in [0, T], \]
or as

\[y(t) = g(t) + \int_0^t Q(t, s)y(s)ds, \quad t \in [0, T], \quad (1.6) \]

where \(g(t) \) and \(Q(t, s) \) are the functions

\[g(t) = y_0 + \int_0^t q(s)ds, \quad t \in [0, T], \]

and

\[Q(t, s) = p(s) + \int_s^t K(s, \tau)d\tau, \quad (t, s) \in S. \]

An alternative to this approach is to consider an integro-differential equation as a system of two Volterra integral equations of the second kind. For the linear case (1.4), let

\[z(s) := q(s) + \int_0^s K(s, u)y(u)du, \quad s \in [0, T]. \]

This allows us to rewrite (1.5) in the form

\[y(t) = y_0 + \int_0^t p(s)y(s)ds + \int_0^t \left[q(s) + \int_0^s K(s, u)y(u)du \right] ds \]

\[= y_0 + \int_0^t p(s)y(s)ds + \int_0^t z(s)ds, \quad t \in [0, T]. \]

Thus, the equation (1.4) is reduced to the system

\[
\begin{pmatrix}
y(t) \\
z(t)
\end{pmatrix} =
\begin{pmatrix}
y_0 \\
q(t)
\end{pmatrix} +
\int_0^t
\begin{pmatrix}
P(s) & 1 \\
K(t, s) & 0
\end{pmatrix}
\begin{pmatrix}
y(s) \\
z(s)
\end{pmatrix} ds, \quad t \in [0, T].
\]

Example 1. Let us consider the first order VIDE having constant kernel

\[y'(t) = \alpha y(t) + \lambda \int_0^t y(s)ds + f(t), \quad t \in [0, T], \quad (1.7) \]

with \(y(0) = y_0 \). Equation (1.7) is called the basis test equation and it was suggested by Brunner and Lambert in 1974 (see [8]). It has been extensively used for investigating stability properties of several methods.
The transformation which we considered at the beginning of this section leads now to the equation (1.6), where
\[g(t) = y_0 + \int_0^t f(s)ds, \quad t \in [0, T], \]
as
\[Q(t, s) = \alpha + \int_s^t \lambda d\tau = \alpha + \lambda(t - s), \quad (t, s) \in S. \]
Thus, equation (1.7) can be rewritten as
\[y(t) = g(t) + \int_0^t (\alpha + \lambda(t - s))y(s)ds, \quad t \in [0, T]. \]
We see that the equation is not any more with a constant kernel, and later on when we will investigate stability, results obtained for VIE with a constant kernel are not extendable to the VIDE in form (1.7).

Let us now consider the second order Volterra integro-differential equation
\[y''(t) = p(t)y'(t) + q(t)y(t) + f(t) + \int_0^t K(t, s)y(s)ds, \quad t \in [0, T], \quad (1.8) \]
\[y(0) = y_0, \quad y'(0) = y_1 \]
with \(p, q, f \) and \(K \) to be real-valued and continuous on \([0, T]\) and \(S \), respectively. Integrating equation (1.8) and using Dirichlet’s formula, we get
\[y'(t) = \int_0^t p(s)y'(s)ds + \int_0^t q(s)y(s)ds + \int_0^t f(s)ds \]
\[+ \int_0^t \int_0^\tau K(\tau, s)y(s)dsd\tau + y_1 \]
\[= \int_0^t p(s)y'(s)ds + \int_0^t f(s)ds \]
\[+ \int_0^t \left[q(s) + \int_s^t K(\tau, s)d\tau \right] y(s)ds + y_1, \quad t \in [0, T]. \quad (1.9) \]
Assume, in addition, the continuous differentiability of \(p \). Then, using
integration by parts in
\[\int_0^t p(s)y'(s)ds = p(s)(y(s) + y_0) \bigg|_0^t - \int_0^t (y(s) + y_0)p'(s)ds \]
\[= p(t)y(t) - p(0)y(0) + (p(t) - p(0))y_0 - \int_0^t (y(s) + y_0)p'(s)ds, \]
we obtain first order VIDE
\[y'(t) = p(t)y(t) + g(t) + \int_0^t Q(t, s)y(s)ds, \quad t \in [0, T], \]
where
\[g(t) = -p(0)y(0) + (p(t) - p(0))y_0 + y_1 + \int_0^t f(s)ds - \int_0^t y_0p'(s)ds, \quad t \in [0, T], \]
and
\[Q(t, s) = q(s) - p'(s) + \int_s^t K(\tau, s)d\tau, \quad (t, s) \in S. \]

An easier way is to present second order VIDE as a system consisting of two first order VIDEs. First, transform (1.8) to (1.9). Now taking \(z(t) = y'(t) \), i.e.,
\[y(t) = \int_0^t z(s)ds + y_0 \]
and setting
\[g(t) = \int_0^t f(s)ds + y_1, \quad t \in [0, T], \]
\[Q(t, s) = q(s) + \int_s^t K(\tau, s)d\tau, \quad (t, s) \in S, \]
equation (1.8) reduces to the system
\[
\begin{pmatrix}
 y(t) \\
 z(t)
\end{pmatrix}
= \begin{pmatrix}
 y_0 \\
 g(t)
\end{pmatrix} + \int_0^t \begin{pmatrix}
 0 & 1 \\
 Q(t, s) & p(s)
\end{pmatrix}
\begin{pmatrix}
 y(s) \\
 z(s)
\end{pmatrix}ds, \quad t \in [0, T]. \quad (1.10)
\]

Example 2. Let us look at the second order VIDE with a constant kernel
\[y''(t) = \alpha y(t) + \beta y'(t) + \lambda \int_0^t y(s)ds + f(t), \quad t \in [0, T], \]
\[y(0) = y_0, \quad y'(0) = y_1 \]
which we will write as a system of two first order VIDEs. Using notations given in (1.10), we have

\[g(t) = \int_0^t f(s)ds + y_1, \quad t \in [0, T], \]

\[Q(t, s) = \alpha + \lambda(t - s), \quad (t, s) \in S, \]

and the system

\[
\begin{pmatrix}
 y(t) \\
 z(t)
\end{pmatrix}
= \begin{pmatrix}
 y_0 \\
 g(t)
\end{pmatrix}
+ \int_0^t \begin{pmatrix}
 0 & 1 \\
 Q(t, s) & \beta
\end{pmatrix}
\begin{pmatrix}
 y(s) \\
 z(s)
\end{pmatrix}
ds,
\quad t \in [0, T].
\]

As in Example 1, we have got an equation with a nonconstant kernel.
2.1 Description of the method

Consider the first order Volterra integro-differential equation
\[y'(t) = f(t, y(t)) + \int_0^t K(t, s, y(s))ds, \quad t \in [0, T], \] (2.1)
with the initial condition \(y(0) = y_0 \). Here the functions \(f : [0, T] \times \mathbb{R} \to \mathbb{R} \) and \(K : S \times \mathbb{R} \to \mathbb{R} \) (where \(S = \{(t, s) : 0 \leq s \leq t \leq T\} \)) with number \(y_0 \) are supposed to be given.

In order to describe this method, let \(0 = t_0 < t_1 < \ldots < t_N = T \) (with \(t_n \) depending on \(N \)) be a mesh on the interval \([0, T] \).

Denote
\[h_n = t_n - t_{n-1}, n = 1, \ldots, N, \]
\[\sigma_n = (t_{n-1}, t_n], n = 1, \ldots, N, \]
\[\Delta_N = \{t_1, \ldots, t_{N-1}\}. \]

Let \(P_k \) denote the space of polynomials of degree not exceeding \(k \).

Definition 2.1 For given integers \(m \geq 1 \) and \(d \geq -1 \) the space of polynomial spline functions of degree \(m + d \) and continuity class \(d \), possessing the knots \(\Delta_N \), is the set
\[S^d_{m+d}(\Delta_N) = \{u : u_n := u|_{\sigma_n} \in P_{m+d}, n = 1, \ldots, N, \quad u^{(j)}_{n-1}(t_n) = u^{(j)}_n(t_n), \quad t_n \in \Delta_N, \quad j = 0, 1, \ldots, d\}. \]
If \(d = -1 \), then the elements of \(S_{m-1}^{-1}(\Delta_N) \) may have jump discontinuities at the knots \(\Delta_N \).

An element \(u \in S_{m+d}^d(\Delta_N) \) as a polynomial spline of degree not greater than \(m + d \) for all \(t \in \sigma_n, n = 1, \ldots, N \), can be represented in the form

\[
 u_n(t) = \sum_{k=0}^{m+d} b_{nk} (t - t_{n-1})^k.
\]

From (2.2) we have that an element \(u \in S_{m+d}^d(\Delta_N) \) is well defined, when we know the coefficients \(b_{nk} \) for all \(n = 1, \ldots, N \) and \(k = 0, \ldots, m + d \). In order to compute these coefficients we consider the set of collocation parameters

\[
 0 < c_1 < \ldots < c_m \leq 1,
\]

and we define the set of collocation points by

\[
 X(N) = \bigcup_{n=1}^{N} X_n,
\]

with

\[
 X_n := \{ t_{nj} = t_{n-1} + c_j h_n, j = 1, \ldots, m \}, n = 1, \ldots, N.
\]

So, the approximate solution \(u \in S_{m+d}^d(\Delta_N) \) of the equation (2.1) will be determined imposing the condition that \(u \) satisfies the integro-differential equation (2.1) on set \(X(N) \), i.e.,

\[
 u'(t) = f(t, u(t)) + \int_0^t K(t, s, u(s)) ds, \quad t \in X(N).
\]

Starting the calculations by this method we assume also that we can use the initial values \(u_1^{(j)}(0) = y^{(j)}(0) \), \(j = 0, \ldots, d \), which is justified by the requirement \(u \in C^d[0, T] \). Another possible approach is to use only \(u_1(0) = y(0) \) and more collocation points (if \(d \geq 1 \)) to determine \(u_1 \). Thus, on every interval \(\sigma_n \) we have \(d + 1 \) conditions of smoothness and \(m \) collocation conditions to determine \(m + d + 1 \) parameters \(b_{nk} \). This allows us to implement the method step-by-step going from an interval \(\sigma_n \) to the next one.

In the case \(d = -1 \), to be able to use initial condition on \(\sigma_1 = [0, t_1] \), one collocation condition should be dropped.

In the case of second order VIDE

\[
 y''(t) = f(t, y(t), y'(t)) + \int_0^t K(t, s, y(s), y'(s)) ds, \quad t \in [0, T],
\]

with initial conditions

\[
 y(0) = y_0, \quad y'(0) = y_1
\]

18
description of the collocation method is similar. To calculate approximate solution \(u \in S_{m+d}(\Delta N)\) of equation (2.4) we impose the following collocation condition

\[
 u''(t) = f(t, u(t), u'(t)) + \int_0^t K(t, s, u(s), u'(s))ds, \quad t \in X(N).
\] (2.5)

Here, starting calculation by collocation method, other approach, additional to use initial values \(u^{(j)}(0) = y^{(j)}(0), \ j = 0, \ldots, d\), is to use initial conditions \(u_1(0) = y(0), \ u'_1(0) = y'(0)\) and more collocation points (if \(d \geq 2\)) to determine \(u_1\).

Remark 2.1 As the description of the collocation method for nonlinear equations is not more complicated than for linear ones, we presented here the method in general case. Moreover, the research practice shows that convergence theorems for linear equations also hold for some nonlinear equations without any additional requirements on the method.
Chapter 3

AUXILIARY RESULTS

3.1 An overview of numerical stability conditions for VIE

In this section we review some results about stability conditions for VIE. A thorough treatment of the numerical stability of the polynomial spline collocation method for VIE of the second kind is presented in [22] with equidistant collocation points (i.e. $c_j = j/m, j = 1, \ldots, m$). The method for general setting of collocation points is considered in [16], but the proof of the main result (Theorem 3.3 of [16]) is not correct. This result is also applied to the particular cases, and stability conditions are obtained. Note that several results of [16] are disproved in [24].

Consider the Volterra integral equation

$$y(t) = \int_0^t K(t, s, y(s))ds + f(t), \quad t \in [0, T],$$

(3.1)

with given functions $f : [0, T] \times \mathbb{R} \to \mathbb{R}$ and $K : S \times \mathbb{R} \to \mathbb{R}$ (where $S = \{(t, s) : 0 \leq s \leq t \leq T\}$).

The step-by-step collocation method for VIE is supposed to determine the approximate solution $u \in S^d_{m+d}(\Delta N)$ by the collocation conditions at the points t_{nj}

$$u(t) = \int_0^t K(t, s, u(s))ds + f(t), \quad t \in X(N).$$

(3.2)

The spline collocation method for the test equation

$$y(t) = \lambda \int_0^t y(s)ds + f(t), \quad t \in [0, T],$$

(3.3)
where λ may be any complex number, leads to the iteration process
\[
\alpha_{n+1} = (\overline{M} + W)\alpha_n + r_n, \quad n = 1, \ldots, N,
\] (3.4)
with $W = O(h)$ and $r_n = O(h)$. Here $\overline{M} = U_0^{-1}U$, where U_0 and U are $(m + d + 1) \times (m + d + 1)$ matrices as follows:

\[
U = \begin{pmatrix} I & 0 \\ G \end{pmatrix}, \quad U_0 = \begin{pmatrix} A \\ G \end{pmatrix},
\]

A being a $(d + 1) \times (m + d + 1)$ matrix

\[
A = \begin{pmatrix}
1 & 1 & 1 & 1 & \cdots & \cdots & 1 \\
0 & 1 & 2 & 3 & \cdots & \cdots & m + d \\
0 & 0 & 1 & \tilde{3} & \cdots & \cdots & \frac{m + d}{2} \\
& & & & & & \\
0 & \cdots & \cdots & 1 & \cdots & \cdots & \frac{m + d}{d}
\end{pmatrix},
\]

\[
G = \begin{pmatrix}
1 & c_1 & \cdots & c_{1}^{m+d} \\
& & \cdots & \cdots \\
1 & c_m & \cdots & c_{m}^{m+d}
\end{pmatrix},
\]

and I being the $(d + 1) \times (d + 1)$ identity matrix.

Denote $d_0 = \max\{d, 0\}$, $d_1 = \max\{d, 1\}$ for the method with initial values and $d_1 = 1$ for the method with additional initial collocation.

Definition 3.1 We say that the spline collocation method is stable if for any $\lambda \in \mathbb{C}$ and any $f \in C^{d_1}[0, T]$ the approximate solution u of (3.1) remains bounded in $L_\infty(0, T)$ in the process $h \to 0$.

Proposition 3.1 Matrix \overline{M} has eigenvalue $\mu = 1$ with geometric multiplicity m.

Proposition 3.2 If all eigenvalues of \overline{M} are in the closed unit disk and if those which lie on the unit circle have equal algebraic and geometric multiplicities, then the spline collocation method is stable. If \overline{M} has an eigenvalue outside of the closed unit disk, then the method is not stable (u has exponential growth: $\|u\|_\infty \geq \text{const} e^{KN}, K > 0$).
Proposition 3.3 If all eigenvalues of M are in the closed unit disk and there is an eigenvalue on the unit circle with different algebraic and geometric multiplicities, then the method is weakly unstable (u may have polynomial growth: $\|u\|_\infty \sim \text{const } N^k, k \in N$).

Propositions 3.1 - 3.3 are proved in [24].

3.2 Behaviour of linear iteration process

In this section we will review some well-known results from Linear Algebra, which will be used in the sequel.

1. Let M be a given $m \times m$ matrix. The polynomial $f_M(\lambda) = \det(\lambda I - M)$ is called the characteristic polynomial of M. The eigenvalues of M are the roots of the characteristic polynomial $f_M(\lambda)$. Denote by $\lambda_{\text{max}}(M)$ the maximal by modulus eigenvalue of the matrix M. The spectral radius of M is $|\lambda_{\text{max}}(M)|$. If $f_M(\lambda) = (\lambda - \lambda_0)^k g(\lambda)$, where $g(\lambda_0) \neq 0$, then λ_0 has algebraic multiplicity k. The algebraic multiplicity counts the number of times, an eigenvalue occurs. The dimension of the eigenspace $\text{Ker}(\lambda I - M)$ of an eigenvalue λ is called the geometric multiplicity of λ.

2. The geometric multiplicity is smaller or equal than the algebraic multiplicity.

3. There exists a vector norm such that the corresponding matrix norm is equal to the spectral radius of the matrix, i.e., $\sup_{\|x\| \leq 1} \|Mx\| = |\lambda_{\text{max}}(M)|$ if and only if all eigenvalues with maximal modulus have equal algebraic and geometric multiplicities.

Let us look at the following iteration process

$$\alpha_{n+1} = (M + W)\alpha_n + r_n, \quad n = 1, \ldots, N - 1,$$

where $\alpha_1, r_1, \ldots, r_{N-1}$ are supposed to be given, M is a fixed matrix, not depending on $h = T/N$, $r_n = O(h)$ and $W = O(h)$. We calculate

$$\alpha_{n+1} = (M + W)\alpha_n + r_n$$

$$= (M + W)((M + W)\alpha_{n-1} + r_{n-1}) + r_n$$

$$= (M + W)^n \alpha_1 + (M + W)^{n-1} r_1 + \ldots + r_n. \quad (3.5)$$

If additionally, all $\lambda_{\text{max}}(M)$ having equal algebraic and geometric multiplicities, we assume that $|\lambda_{\text{max}}(M)| \leq 1$, then there is a vector norm such
that the corresponding matrix norm $\|M\| \leq 1$. Thus, (3.5) yields

$$\|\alpha_{n+1}\| \leq \|(M + W)^n\| \|\alpha_1\| + \|(M + W)^{n-1}\| \|r_1\| + \ldots + \|r_n\|$$

$$\leq (1 + K_1 h)^n \|\alpha_1\| + ((1 + K_1 h)^{n-1} + \ldots + 1) \max_{1 \leq i \leq n} \|r_i\|$$

$$\leq (1 + K_1 h)^n \|\alpha_1\| + \frac{(1 + K_1 h)^n - 1}{(1 + K_1 h) - 1} K_2 h,$$

with some positive constants K_1 and K_2. Using the inequality

$$(1 + K_1 h)^n \leq (1 + K_1 h)^N$$

and the convergence

$$(1 + K_1 h)^N \to e^{K_1 T},$$

we get that α_n is bounded uniformly in n.

4. The eigenvalues of a matrix depend continuously on the coefficients of a matrix.

If $|\lambda_{\text{max}}(M)| > 1$, then $|\lambda_{\text{max}}(M)| \geq 1 + \delta$, $\delta > 0$. Thus,

$$|\lambda_{\text{max}}(M + W)| \geq 1 + \frac{\delta}{2} = 1 + \epsilon, \quad 0 < h \leq h_0$$

for sufficiently small h_0. Take $r_1 = \ldots = r_{N-1} = 0$ and α_1 such that $(M + W)\alpha_1 = \lambda_{\text{max}}(M + W)\alpha_1, \|\alpha_1\| = 1$. Then

$$\|\alpha_{n+1}\| = \|(M + W)^n\alpha_1\| = \|(\lambda_{\text{max}}(M + W))^n\alpha_1\|$$

$$= \|\lambda_{\text{max}}(M + W)^n\| \|\alpha_1\| \geq (1 + \epsilon)^n \to \infty \quad \text{as} \quad n \to \infty.$$

So, if $|\lambda_{\text{max}}(M)| > 1$ then the sequence α_n is not bounded.

5. If some of the eigenvalues of M have different geometric and algebraic multiplicity, then the matrix $M \in \mathbb{R}^{m \times m}$ can be decomposed into the form

$$M = PJP^{-1}, \quad (3.6)$$

where P is an $m \times m$ invertible matrix, having eigenvectors of M as columns, and J is a block-diagonal matrix having the form

$$J = \begin{pmatrix}
J_1 & 0 \\
J_2 & \ddots \\
0 & \ddots & J_p
\end{pmatrix},$$

23
with J_i as follows

$$J_i = \begin{pmatrix} \lambda_i & 1 & 0 \\ & \ddots & \ddots \\ & & \lambda_i \\ 0 & \cdots & \cdots & 1 \end{pmatrix}.$$

Representation (3.6) gives us

$$M^n = (PJP^{-1})^n = PJ^n P^{-1},$$

where J^n is

$$J^n = \begin{pmatrix} J_1^n & 0 \\ J_2^n & \ddots \\ 0 & \ddots & J_p^n \end{pmatrix},$$

with

$$J_i^n = \begin{pmatrix} \lambda_i^n & n\lambda_i^{n-1} & \frac{n(n-1)}{2!}\lambda_i^{n-2} & \cdots & \cdots \\ \lambda_i^n & n\lambda_i^{n} & \cdots & \cdots \\ \lambda_i^n & \cdots & \frac{n(n-1)}{2!}\lambda_i^{n-2} & \cdots & \cdots \\ 0 & \cdots & \cdots & \frac{n\lambda_i^{n-1}}{2!} \\ & \cdots & \cdots & \lambda_i^n \end{pmatrix}.$$

If $|\lambda_i| = 1$, then $|\lambda_i^n| = 1$, but $|n\lambda_i^n| = n$. Therefore, the matrix J^n (such is also M) is not bounded. Choosing α_1 and r_n as in the previous case we get that α_n is not bounded.
Chapter 4

STABILITY OF THE SPLINE COLLOCATION METHOD FOR FIRST ORDER VIDE

In this chapter we will analyze the stability of the spline collocation method where the splines are at least continuous, i.e., we suppose that \(d \geq 0 \).

4.1 Method in the case of test equation

Consider the test equation

\[
y'(t) = \alpha y(t) + \lambda \int_0^t y(s) ds + f(t), \quad t \in [0, T], \tag{4.1}
\]

where, in general, \(\lambda \) and \(\alpha \) may be any complex numbers.

Assume that the mesh sequence \(\{\Delta_N\} \) is uniform, i.e., \(h_n = h = T/N \) for all \(n \). Representing \(t \in \sigma_n \) as \(t = t_{n-1} + \tau h, \ \tau \in (0, 1] \), we have on \(\sigma_n \)

\[
u_n(t_{n-1} + \tau h) = \sum_{k=0}^{m+d} a_{nk} \tau^k, \quad \tau \in (0, 1], \tag{4.2}
\]

where we passed to the parameters \(a_{nk} = b_{nk} h^k \).

The smoothness conditions (for any \(u \in S_d^{m+d}(\Delta_N) \))

\[
u_n^{(j)}(t_n - 0) = u_{n+1}^{(j)}(t_n + 0), \quad j = 0, \ldots, d, \quad n = 1, \ldots, N - 1,
\]

can be expressed in the form

\[
a_{n+1,j} = \sum_{k=j}^{m+d} \frac{k!}{(k-j)!j!} a_{nk}, \quad j = 0, \ldots, d, \quad n = 1, \ldots, N - 1. \tag{4.3}
\]
The collocation conditions (2.3), applied to the test equation (4.1), give

\[u'(t_{nj}) = \alpha u(t_{nj}) + \lambda \int_{0}^{t_{nj}} u(s) \, ds + f(t_{nj}), \]

\[j = 1, \ldots, m, \, n = 1, \ldots, N. \] \hspace{1cm} (4.4)

From (4.2) we get

\[u_n(t_{nj}) = \sum_{k=0}^{m+d} a_{nk} c_j^k \]

and

\[u_n'(t_{nj}) = \frac{1}{h} \sum_{k=1}^{m+d} a_{nk} c_j^{k-1}. \]

Now the equation (4.4) becomes

\[\frac{1}{h} \sum_{k=0}^{m+d} a_{nk} c_j^{k-1} = \alpha \sum_{k=0}^{m+d} a_{nk} c_j^k + \sum_{r=1}^{n-1} \lambda h \int_{t_{r-1}}^{t_r} u_r(s) \, ds \]

\[+ \lambda h \int_{t_{n-1}}^{t_{nj}} u_n(s) \, ds + f(t_{nj}). \]

Using notations \(s = t_{r-1} + \tau h \) or \(s = t_{n-1} + \tau h \), we have \(ds = hd\tau \). The new limits of integration for \(s = t_{r-1} \) or \(s = t_{n-1} \) is \(\tau = 0 \), for \(s = t_r \) is \(\tau = 1 \) and for \(s = t_{n-1} + c_j h \) is \(\tau = c_j \).

So, we get that

\[\frac{1}{h} \sum_{k=0}^{m+d} a_{nk} c_j^{k-1} = \alpha \sum_{k=0}^{m+d} a_{nk} c_j^k + \sum_{r=1}^{n-1} \lambda h \int_{0}^{1} \left(\sum_{k=0}^{m+d} a_{rk} \tau^k \right) d\tau \]

\[+ \lambda h \int_{0}^{c_j} \left(\sum_{k=0}^{m+d} a_{nk} \tau^k \right) d\tau + f(t_{nj}) \]

\[= \alpha \sum_{k=0}^{m+d} a_{nk} c_j^k + \sum_{r=1}^{n-1} \lambda h \left(\sum_{k=0}^{m+d} \frac{1}{k+1} a_{rk} \right) \]

\[+ \lambda h \sum_{k=0}^{m+d} a_{nk} \frac{c_j^{k+1}}{k+1} + f(t_{nj}). \] \hspace{1cm} (4.5)
Using the notation \(\alpha_n = (a_{nk})_{k=0}^{m+d} \), we write (4.5) as follows:

\[
\sum_{k=0}^{m+d} a_{nk} k c_j^{k-1} - \alpha h \sum_{k=0}^{m+d} a_{nk} c_j^k - \lambda h^2 \sum_{k=0}^{m+d} \frac{a_{nk} c_j^{k+1}}{k+1}
\]

\[
= \lambda h^2 \langle q, \sum_{r=1}^{n-1} \alpha_r \rangle + h f(t_{nj}). \tag{4.6}
\]

where \(q = (1, 1/2, \ldots, 1/(m + d + 1)) \) and \(\langle \cdot, \cdot \rangle \) denotes the usual scalar product in \(\mathbb{R}^{m+d+1} \). The difference of the equations (4.6) with \(n \) and \(n + 1 \) yields

\[
\sum_{k=0}^{m+d} a_{n+1,k} k c_j^{k-1} - \alpha h \sum_{k=0}^{m+d} a_{n+1,k} c_j^k - \lambda h^2 \sum_{k=0}^{m+d} \frac{a_{n+1,k} c_j^{k+1}}{k+1}
\]

\[
= \sum_{k=0}^{m+d} a_{nk} k c_j^{k-1} - \alpha h \sum_{k=0}^{m+d} a_{nk} c_j^k - \lambda h^2 \sum_{k=0}^{m+d} \frac{a_{nk} c_j^{k+1}}{k+1} + \lambda h^2 \langle q, \alpha_n \rangle
\]

\[
+ h f(t_{n+1,j}) - h f(t_{nj}), \quad j = 1, \ldots, m, \quad n = 1, \ldots, N - 1. \tag{4.7}
\]

Now we may write together the equations (4.3) and (4.7) in matrix form

\[
(V - \alpha h V_1 - \lambda h^2 V_2) \alpha_{n+1} = (V_0 - \alpha h V_1 - \lambda h^2 (V_2 - V_3)) \alpha_n + h g_n,
\]

\[
n = 1, \ldots, N - 1, \tag{4.8}
\]

with \((m + d + 1) \times (m + d + 1)\) matrices \(V, V_0, V_1, V_2, V_3 \) as follows:

\[
V = \begin{pmatrix} I & 0 \\ C \end{pmatrix}, \quad V_0 = \begin{pmatrix} A \\ C \end{pmatrix},
\]

\(I \) being the \((d+1) \times (d+1)\) unit matrix,

\[
C = \begin{pmatrix} 0 & 1 & 2c_1 & \ldots & (m+d)c_1^{m+d-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & 2c_m & \ldots & (m+d)c_m^{m+d-1} \end{pmatrix},
\]

\(A \) being defined as in Section 3.1,

\[
V_1 = \begin{pmatrix} 0 \\ 1 & c_1 & c_1^2 & \ldots & c_1^{m+d} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & c_m & c_m^2 & \ldots & c_m^{m+d} \end{pmatrix},
\]

27
\[V_2 = \begin{pmatrix} 0 \\ c_1 \ c_1^2/2 \ldots c_1^{m+d+1}/(m+d+1) \\ \vdots \\ c_m \ c_m^2/2 \ldots c_m^{m+d+1}/(m+d+1) \end{pmatrix}, \]

\[V_3 \] having first \(d + 1 \) rows 0 and last \(m \) rows the vector \(q \), and, finally, the \(m + d + 1 \) dimensional vector

\[g_n = (0, \ldots, 0, f(t_{n+1,1}) - f(t_{n1}), \ldots, f(t_{n+1,m}) - f(t_{nm})). \]

Thus \(g_n = O(h) \) for \(f \in C^1 \).

Proposition 4.1 The matrix \(V - \alpha h V_1 - \lambda h^2 V_2 \) is invertible for sufficiently small \(h \).

Proof. Since \(d \geq 0 \), we have

\[
\det V = \begin{vmatrix} (d + 1)c_1^d & \ldots & (m + d)c_1^{m+d-1} \\ \vdots \\ (d + 1)c_m^d & \ldots & (m + d)c_m^{m+d-1} \end{vmatrix}
= (d + 1)c_1^d \ldots (m + d)c_m^d
\begin{vmatrix} 1 & \ldots & c_1^{m-1} \\ \vdots \\ 1 & \ldots & c_m^{m-1} \end{vmatrix}
\neq 0,
\]

so the matrix \(V \) is invertible. Such is also \(V - \alpha h V_1 - \lambda h^2 V_2 \) for small \(h \), which completes the proof.

Let us now take a look at \((V - \alpha h V_1 - \lambda h^2 V_2)^{-1} \). Denote \(B = \alpha V_1 + \lambda h V_2, \ B_1 = h V^{-1} B \) and observe that \(\|B\| \leq \text{const}, \|B_1\| \leq \text{const} \). Then

\[
(V - \alpha h V_1 - \lambda h^2 V_2)^{-1} = (V - h B)^{-1}
= (V(I - h V^{-1} B))^{-1}
= (I - B_1)^{-1} V^{-1}
= (I + B_1 + B_1^2 + \ldots) V^{-1}
= V^{-1} + B_1(I + B_1 + B_1^2 + \ldots) V^{-1}
= V^{-1} + B_1(I - B_1)^{-1} V^{-1}
= V^{-1} + h B_2,
\]
where $B_2 = V^{-1}B(I - B_1)^{-1}V^{-1}$ is such that $\|B_2\| \leq \text{const.}$

Again, denoting $B_3 = \alpha V_1 + \lambda h(V_2 - V_3)$ and having $\|B_3\| \leq \text{const}$, the equation (4.8) becomes

$$\alpha_{n+1} = (V - \alpha h V_1 - \lambda h^2 V_2)^{-1}(V_0 - \alpha h V_1 - \lambda h^2(V_2 - V_3))\alpha_n + (V^{-1} + h B_2)h g_n$$

$$= (V^{-1} + h B_2)(V_0 - h B_3)\alpha_n + (V^{-1} + h B_2)h g_n$$

$$= (V^{-1}V_0 + W)\alpha_n + r_n,$$

where $W = O(h)$ and $r_n = O(h^2)$ because of $g_n = O(h)$ for $f \in C^1$. Note that $W = 0$ if $\alpha = 0$ and $\lambda = 0$.

Set $M = V^{-1}V_0$, then the equation (4.8) takes the form

$$\alpha_{n+1} = (M + W)\alpha_n + r_n.$$ \hspace{1cm} (4.9)

4.2 Stability of the method

We have seen that the spline collocation method (2.3) for the test equation (4.1) leads to the iteration process

$$\alpha_{n+1} = (V^{-1}V_0 + W)\alpha_n + r_n, \hspace{1cm} n = 1, \ldots, N - 1,$$ \hspace{1cm} (4.10)

with $W = O(h)$ and $r_n = O(h^2)$.

We distinguish the method with initial values $u^{(j)}_1(0) = y^{(j)}(0), j = 0, \ldots, d$, and another method which uses only $u_1(0) = y(0)$ and additional collocation points $t_{0j} = t_0 + c_0 j h, j = 1, \ldots, d$, with fixed $c_0 \in (0, 1] \setminus \{c_1, \ldots, c_m\}$ on the first interval σ_1.

Denote $d_0 = \max\{d-1, 0\}$ for the method with initial values and $d_0 = 0$ for the method with additional initial collocation.

Definition 4.1 We say that the spline collocation method is stable if for any $\alpha, \lambda \in \mathbb{C}$ and any $f \in C^{d_0}[0, T]$ the approximate solution u of (4.1) remains bounded in $C[0, T]$ in the process $h \to 0$.

Let us notice that the boundedness of $||u||_{C[0, T]}$ is equivalent to the boundedness of $||\alpha_n||$ in n and h in any fixed norm of \mathbb{R}^{n+d+1}.

The principle of uniform boundedness allows to establish

Proposition 4.2 The spline collocation method is stable if and only if

$$||u||_{C[0, T]} \leq \text{const}||f||_{C^{d_0}[0, T]} \hspace{1cm} \forall f \in C^{d_0}[0, T],$$ \hspace{1cm} (4.11)

where the constant may depend only on T, α, λ and on parameters c_j and c_0j.

29
Proposition 4.3 Matrix M has eigenvalue $\mu = 1$ with geometric multiplicity m.

Proof. Since $\det(M - \mu I) = 0$ is equivalent to $\det(V_0 - \mu V) = 0$, then $\operatorname{Ker}(M - \mu I) = \operatorname{Ker}(V_0 - \mu V)$. The geometric multiplicity of $\mu = 1$ is $\dim \operatorname{Ker}(V_0 - V)$. But $\dim \operatorname{Ker}(V_0 - V) = m + d + 1 - \operatorname{rank}(V_0 - V)$. As $\operatorname{rank}(V_0 - V) = d + 1$, we get the assertion.

Theorem 4.1 For fixed c_j the eigenvalues of M for VIDE in the case m and $d + 1$ and eigenvalues of \overline{M} for VIE in the case m and d coincide and have the same algebraic and geometric multiplicities, except $\mu = 1$ whose algebraic multiplicity for VIDE is greater by one than for VIE.

Proof. The eigenvalue problem for M is equivalent to the generalized eigenvalue problem for V_0 and V, i.e., $(M - \mu I)v = 0$ for $v \neq 0$ if and only if $(V_0 - \mu V)v = 0$ and $(M - \mu I)w = v$ takes place if and only if $(V_0 - \mu V)w = Vv$. Denote $\nu = 1 - \mu$. Then for VIDE with the parameters m and $d + 1$ we have

\[
V_0 - \mu V = \begin{pmatrix}
\nu & 1 & 1 & 1 & \ldots & \ldots & 1 \\
0 & \nu & 2 & 3 & \ldots & \ldots & m + d + 1 \\
0 & 0 & \nu & \begin{pmatrix} 3 \\ 2 \end{pmatrix} & \ldots & \ldots & \begin{pmatrix} m + d + 1 \\ 2 \end{pmatrix} \\
\ldots & \ldots & \ldots & \nu & \ldots & \begin{pmatrix} m + d + 1 \\ d + 1 \end{pmatrix} \\
0 & \nu & \nu \cdot 2c_1 & \ldots & \ldots & \nu(m + d + 1)c_1^{m+d} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & \nu & \nu \cdot 2c_m & \ldots & \ldots & \nu(m + d + 1)c_m^{m+d}
\end{pmatrix}.
\] (4.12)

Let $I_{i,p}$ be the diagonal matrix obtained from an identity matrix, replacing the i-th diagonal element by the number p. Thus, the products $I_{i,p}A$ and $AI_{i,p}$ mean the multiplication of i-th row and i-th column of A, respectively, by p. Consider also the matrices U_0 and U, defined in Section 3.1, with the parameters m and d. A direct calculation and the observation that \(\binom{p}{q} \frac{q}{p} = \binom{p-1}{q-1} \), allows us to get from (4.12)

\[
I_{d+2,d+1} \cdots I_{3,2}(V_0 - \mu V)I_{3,1/2} \cdots I_{d+m+2,1/(m+d+1)} = \begin{pmatrix}
\nu & 1 & 1/2 & \ldots & 1/(m + d + 1) \\
0 & U_0 - \mu U
\end{pmatrix}
\]
or
\[S(V_0 - \mu V)S^{-1} = R \begin{pmatrix} \nu & 1 & 1/2 & \cdots & 1/(m + d + 1) \\ 0 & & & & \end{pmatrix}, \]
(4.13)

where
\[S = I_{d+2,d+1} \ldots I_{3,2} \]
and
\[R = I_{d+m+2,d+m+1} \ldots I_{d+3,d+2}. \]

Now (4.13) gives
\[\det(V_0 - \mu V) = (d + 2) \cdots (d + m + 1) \nu \det(U_0 - \mu U) \]
which permits to get the assertion about algebraic multiplicities of eigenvalues of \(M \) and \(\overline{M} \). By Propositions 4.3 and 3.1 the eigenvalue \(\mu = 1 \) of \(M \) and \(\overline{M} \) has geometric multiplicity \(m \).

It remains to consider the geometric multiplicity of eigenvalues \(\mu \neq 1 \). Thus, suppose \(\nu \neq 0 \). Using (4.13), the equation \((V_0 - \mu V)v = 0\) can be written as
\[\begin{pmatrix} \nu & 1 & \cdots \\ 0 & U_0 - \mu U \end{pmatrix} S v = 0 \]
or, denoting \(w = Sv \), equivalently
\[\nu w_1 + w_2 + \cdots + w_{m+d+2}/(m + d + 1) = 0, \]
(4.14)
\[(U_0 - \mu U)\mathbf{w} = 0 \]
(4.15)
with \(\mathbf{w} = (w_2, \ldots, w_{m+d+2}) \).

Let \(\mathbf{w}_1, \ldots, \mathbf{w}_k \) be linearly independent solutions of (4.15). Extending these vectors with the first components defined by (4.14), we get vectors \(w^1, \ldots, w^k \) and then \(S^{-1}w^1, \ldots, S^{-1}w^k \) as linearly independent solutions of \((V_0 - \mu V)v = 0\).

Conversely, consider \(v^1, \ldots, v^k \) as linearly independent solutions of \((V_0 - \mu V)v = 0\). Dropping the first components of the vectors \(w^1, \ldots, w^k \) we get the solutions \(\mathbf{w}_1, \ldots, \mathbf{w}_k \) of (4.15). Suppose \(\gamma_1\mathbf{w}_1 + \cdots + \gamma_k\mathbf{w}_k = 0 \) with at least one \(\gamma_i \neq 0 \). Then, (4.14) allows to get \(\gamma_1 v^1 + \cdots + \gamma_k v^k = 0 \) or \(\gamma_1 v^1 + \cdots + \gamma_k v^k = 0 \). This contradiction shows that the geometric multiplicities of \(\mu \neq 1 \) as an eigenvalue of \(M \) and \(\overline{M} \) coincide. The proof is complete.

Proposition 4.4 If \(M \) has an eigenvalue outside of the closed unit disk, then the spline collocation method is not stable with possible exponential growth of approximate solution.
Proof. Consider an eigenvalue \(\mu \) of \(M + W \) such that \(|\mu| \geq 1 + \delta \) with some fixed \(\delta > 0 \) for any sufficiently small \(h \). For \(\alpha_1 \neq 0 \), being an eigenvector of \(M + W \), we have here

\[
(V - \alpha h V_1 - \lambda h^2 V_2)\alpha_1 = h g_0, \quad (4.16)
\]

where

\[
g_0 = (\alpha_{10}, \ldots, \alpha_{1d}, f(t_{11}), \ldots, f(t_{1m}))
\]

and

\[
\alpha_{1j} = h^j y^{(j)}(0)/j!, \quad j = 0, \ldots, d.
\]

Because of

\[
y'(0) = \alpha y(0) + f(0),
\]

the vector \(\alpha_1 \) determines via (4.16) and (4.17) the values \(f^{(j)}(0), j = 0, \ldots, d - 1 \), \(f(t_{1j}), j = 1, \ldots, m \), and \(f^{(j)}(h) = 0, j = 0, \ldots, d_0 \) (if \(c_m = 1 \) then \(f^{(j)}(h) = 0, j = 1, \ldots, d_0 \)).

In the case of the method of additional knots let \(f \) be on \([0, h]\) the interpolating polynomial by the data \(f(0), f(t_{0j}), j = 0, \ldots, d, f(t_{1j}), j = 1, \ldots, m \), and \(f^{(j)}(h) = 0 \) (here \(d_0 = 0 \) and if \(c_m = 1 \), then \(f(t_{1m}) = f(h) \) is already given and we drop the requirement \(f(h) = 0 \)).

In both cases we ask \(f \) to be on \([nh, (n + 1)h]\), \(n \geq 1 \), the interpolating polynomial by the values \(f^{(j)}(nh) = 0 \) and \(f^{(j)}((n + 1)h) = 0 \), \(j = 0, \ldots, d_0 \) (if \(c_m = 1 \), then for \(j = 1, \ldots, d_0 \)), and also \(f(t_{n+1,j}) = f(t_{1j}), j = 1, \ldots, m \). This guarantees that \(f \in C^{d_0}[0, T] \) and \(r_n = 0, n \geq 1 \).

To represent function \(f \), we introduce Newton’s divided difference interpolation formula. Let

\[
\pi_k(x) = \prod_{j=0}^{k} (x - x_j), \quad k = 0, \ldots, n.
\]

Then Newton’s formula is

\[
f(x) = f(x_0) + \sum_{k=1}^{n} \pi_{k-1}(x)f[x_0, \ldots, x_k] + R_n(x), \quad (4.18)
\]

where \(f[x_0, \ldots, x_k] \) is divided difference, and the remainder is

\[
R_n(x) = \pi_n(x)f[x_0, \ldots, x_n, x] = \pi_n(x)f^{(n+1)}(\xi)/(n + 1)!, \quad x_0 < \xi < x_n.
\]
The divided differences $f[x_0, \ldots, x_n]$ on $n+1$ points x_0, \ldots, x_n of a function $f(x)$ are defined by $f[x_0] = f(x_0)$ and for $n \geq 1$

$$f[x_0, \ldots, x_n] = \frac{f[x_0, \ldots, x_{n-1}] - f[x_1, \ldots, x_n]}{x_0 - x_n}. \quad (4.19)$$

In fact, Newton’s formula (4.18) holds also for multiple knots. Then the divided differences could be represented, basing on the formula (4.19), by the divided differences of the form $f[x_i, \ldots, x_i]$ which, in turn, may be written as

$$f[x_i, \ldots, x_i] = \frac{f^{(l)}(x_i)}{l!},$$

where $l+1$ is the multiplicity of the knot x_i.

So, considering previous discussion, the interpolant f can be represented on $[t_n, t_{n+1}]$ by the formula:

$$f(t) = f(t_n + \tau h) = \sum_{i=0}^{\kappa} \left(\sum_{l=0}^{k_i} h^s p_{il} f^{(l)}(\xi_l) \right) \prod_{r=0}^{i-1} (\tau - b_r) \quad (4.20)$$

with b_r being c_j or c_{0j}, ξ_l being t_{n_j} or t_j, $0 \leq s_l \leq d_0$, $k_i \leq i$, constants p_{il} depending on c_j and c_{0j}.

In the case of initial conditions $\kappa = m + d + d_0$ ($\kappa = m + d + d_0 - 1$, if $c_m = 1$), in the case of additional knots $\kappa = m + d + 1$ ($\kappa = m + d$, if $c_m = 1$) on the interval $[0, h]$ and $\kappa = m + 2d_0 + 1$ ($\kappa = m + 2d_0$, if $c_m = 1$) on the interval $[nh, (n + 1)h]$, $n \geq 1$.

Replacing h by h/k, $k = 1, 2, \ldots$, and keeping $||\alpha_1|| = h/k$, we have

$$||g_0||_\infty = \frac{k}{h} ||V - \alpha h V_1 - \lambda h^2 V_2 ||_\infty \alpha_1 ||_\infty \leq \frac{k}{h} ||V - \alpha h V_1 - \lambda h^2 V_2 ||_\infty ||\alpha_1||_\infty.$$

So, $||g_0||_\infty$ is bounded which means that $f(t_{1j})$, $j = 1, \ldots, m$, and $h^j y^{(j)}(0)/k^j$, $j = 0, \ldots, d$, or $h^j f^{(j)}(0)/k^j$, $j = 0, \ldots, d_0$, are bounded, too, in the process $k \to \infty$.

Thus, (4.20) gives

$$||f||_{C^{d_0}[0,T]} \leq \text{const} \ k^{d_0}. \quad (4.21)$$

On the other hand, due to $r_n = 0$ for $n \geq 1$,

$$\alpha_{n+1} = (M + W)\alpha_n = \ldots = (M + W)^n \alpha_1 = \mu^n \alpha_1$$

and

$$||\alpha_{n+1}|| = ||\alpha_1|| = (1 + \delta)^n ||\alpha_1|| \geq (1 + \delta)^n ||\alpha_1||$$

33
yields
\[\|\alpha_{kN}\| \geq \frac{h}{k}(1 + \delta)^{kN-1} \]
and (4.11) cannot be satisfied. The inequalities (4.21) and (4.22) mean also
the exponential growth of approximate solution if we keep the norm of \(f \)
bounded in \(C^{d_0} \). The proof is complete.

The case where all eigenvalues of \(M \) are in the closed unit disk and there
is some of them on the unit circle having different algebraic and geometric
multiplicities can be treated as for VIE (see [24]). In fact, for VIDE the
eigenvalue \(\mu = 1 \) has always different algebraic and geometric multiplicities.
Thus, the collocation method is always at least weakly unstable. But this
weak instability cannot be observed for low order splines (see next section
for examples). In practice, the method is stable if and only if all eigenvalues
of \(M \) are in the closed unit disk which we keep in view describing the
examples.

4.3 Examples

Let us consider some special cases of \(d \) and \(m \).

Case \(d = 0 \), \(m \geq 1 \).
We have
\[V = \begin{pmatrix} 1 & 0 & \ldots & 0 \\ C \end{pmatrix}, \quad V_0 = \begin{pmatrix} 1 & 1 & \ldots & 1 \\ C \end{pmatrix} \]
and \(\det(V_0 - \mu V) = (1 - \mu)^{m+1} \det C_0 \) where \(C_0 \) is obtained from \(C \)
omitting the first column. This means that the method is always stable.

Case \(d = 1 \), \(m = 1 \) (quadratic splines).
The equation \(\det(V_0 - \mu V) = 0 \) has solutions \(\mu = 1 \) and \(\mu = 1 - 1/c_1 \). The
method is stable if and only if \(1/2 \leq c_1 \leq 1 \).

Case \(d = 1 \), \(m = 2 \) (Hermite cubic splines).
By proposition 4.3 \(\mu = 1 \) is a solution of \(\det(V_0 - \mu V) = 0 \) with geometric
multiplicity 2 and with algebraic multiplicity at least 3. The other solution
\(\mu(c_1, c_2) = 1 - (c_1 + c_2 - 1)/c_1 c_2 \) shows that if \(c_1 + c_2 < 1 \) the method is
unstable. Suppose \(c_1 + c_2 > 1 \). Then \(1/2 < c_2 \leq 1 \). As \(\mu(c_1, 1) = 0 \), only
the possibility \(1/2 < c_2 < 1 \) needs some analysis. Then \(1-c_2 < c_1 < c_2 \). As
\(\mu(1-c_2, c_2) = 1, 0 < \mu(c_2, c_2) < 1 \) and \(\mu(c_1, c_2) \) is strictly decreasing in \(c_1 \),
we conclude that \(0 \leq \mu(c_1, c_2) < 1 \) for \(c_1 + c_2 > 1 \) which yields the stability.
Clearly, the case \(c_1 + c_2 = 1 \) mean that \(\mu = 1 \) has algebraic multiplicity 4
and the method, being theoretically weakly unstable, is stable in practical
calculations.
Case $d = 2, m = 1$ (cubic splines).

Here the geometric multiplicity of $\mu = 1$ as solution of $\det(V_0 - \mu V) = 0$ is 1 and its algebraic multiplicity is 2. We also get

$$c_1^2 \nu^2 - (2c_1 + 1)\nu + 2 = 0$$

with $\nu = 1 - \mu$. From $\nu = (1 + 2c_1 \pm \sqrt{1 + 4c_1(1-c_1)})/2c_1^2$, we see that $\nu > 0$ and thus $\mu < 1$. For $c_1 = 1$, there are eigenvalues $\mu = 0$ and $\mu = -1$ corresponding to $\nu = 1$ and $\nu = 2$. The function $\phi(c_1) = (1 + 2c_1 + \sqrt{1 + 4c_1(1-c_1)})/2c_1^2$ is decreasing ($\phi'(c_1) < 0$) and hence for $c_1 < 1$, we get $\nu > 2$ and $\mu < -1$. Thus, the method is stable if and only if $c_1 = 1$.

35
Chapter 5

STABILITY OF PIECEWISE POLYNOMIAL COLLOCATION METHOD FOR FIRST ORDER VIDE

In previous chapter we showed that, for general case of spline collocation method, the stability depends only on the collocation parameters. In this chapter we will show that, for case of piecewise polynomial collocation method (i.e. for $d = -1$), there is also dependence on the parameters of certain test equation.

5.1 Method in the case of test equation

Consider the test equation

$$y'(t) = \alpha y(t) + \lambda \int_0^t y(s)ds + f(t), \quad t \in [0,T], \quad (5.1)$$

where, in general, λ and $\alpha \neq 0$ may be any complex numbers.

Similarly to the Section 4.1, using the collocation conditions (2.3), applied to the test equation (5.1)

$$u'(t_{nj}) = \alpha u(t_{nj}) + \lambda \int_0^{t_{nj}} u(s)ds + f(t_{nj}),$$

$$j = 1, \ldots, m, \; n = 1, \ldots, N, \quad (5.2)$$

we get the equation in matrix form

$$(V - \alpha hV_1 - \lambda h^2V_2)\alpha_{n+1} = (V - \alpha hV_1 - \lambda h^2(V_2 - V_3))\alpha_n + hg_n, \quad (5.3)$$
with $m \times m$ matrices V, V_1, V_2, V_3 as follows:

$$V = \begin{pmatrix}
0 & 1 & 2c_1 & \ldots & (m-1)c_1^{m-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 1 & 2c_m & \ldots & (m-1)c_m^{m-2}
\end{pmatrix}.$$

$$V_1 = \begin{pmatrix}
1 & c_1 & c_1^2 & \ldots & c_1^{m-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & c_m & c_m^2 & \ldots & c_m^{m-1}
\end{pmatrix}, \quad V_2 = \begin{pmatrix}
c_1 & c_1^2/2 & \ldots & c_1^m/m \\
\vdots & \vdots & \ddots & \vdots \\
c_m & c_m^2/2 & \ldots & c_m^m/m
\end{pmatrix},$$

$$V_3 = \begin{pmatrix}
1 & 1/2 & \ldots & 1/m \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1/2 & \ldots & 1/m
\end{pmatrix},$$

and the m dimensional vector

$$g_n = (f(t_{n+1,1}) - f(t_{n1}), \ldots, f(t_{n+1,m}) - f(t_{nm})).$$

Thus $g_n = O(h)$ for $f \in C^1$.

Let us introduce the polynomials $P_k(\lambda, \alpha)$ and $Q_k(\lambda, \alpha)$ by the following recurrence relations

$$Q_k = P_{k-1} + \alpha Q_{k-1}, \quad (5.4)$$

$$P_k = \lambda Q_{k-1} \quad (5.5)$$

starting with $P_0 = 0$ and $Q_0 = 1$. Then we have, for example, $P_1 = \lambda$, $Q_1 = \alpha$, $P_2 = \lambda \alpha$, $Q_2 = \lambda + \alpha^2$ etc. Combining (5.4) and (5.5) we get also

$$Q_k = \alpha Q_{k-1} + \lambda Q_{k-2}. \quad (5.6)$$

Note that for all $k \geq 0$ we have $Q_k \neq 0$ or $Q_{k+1} \neq 0$ because the assumption $Q_{k+1} = 0$ and $Q_k = 0$ via (5.6) gives $Q_{k-1} = 0, \ldots, Q_0 = 0$, which is not the case.

Denote by D_m Vandermonde’s determinant formed by c_1, \ldots, c_m, i.e., $D_m = \det V_1$.

Proposition 5.1 We have

$$\det(V - \alpha h V_1 - \lambda h^2 V_2) = (-1)^m Q_m D_m h^m$$

$$+ (-1)^m \lambda Q_{m-1}(c_1 + \cdots + c_m) D_m h^{m+1}/m + O(h^{m+2}). \quad (5.7)$$
Proof. Writing the columns of the determinant as rows with representative element, we get

\[
\det(V - \alpha hV_1 - \lambda h^2 V_2) = \begin{vmatrix}
-\alpha h - \lambda h^2 c_i \\
1 - \alpha h c_i - \lambda h^2 c_i^2 / 2 \\
\vdots \\
(m-1) c_i^{m-2} - \alpha h c_i^{m-1} - \lambda h^2 c_i^m / m
\end{vmatrix}
\]

\[
= -Q_1 h \begin{vmatrix}
1 + (P_1/Q_1) h c_i \\
1 - \alpha h c_i - \lambda h^2 c_i^2 / 2 \\
\vdots \\
(m-1) c_i^{m-2} - \alpha h c_i^{m-1} - \lambda h^2 c_i^m / m
\end{vmatrix} = \ldots
\]

\[
= (-1)^m Q_m h^m \begin{vmatrix}
1 + (P_1/Q_1) h c_i \\
c_i + (P_2/Q_2) h c_i^2 / 2 \\
\vdots \\
c_i^{m-1} + (P_m/Q_m) h c_i^m / m
\end{vmatrix},
\]

which gives the representation (5.7), when \(Q_m \neq 0, \ldots, Q_2 \neq 0\). In general case, take the sequences \(\lambda_j \to \lambda, \alpha_j \to \alpha\) such that \(Q_k(\lambda_j, \alpha_j) \neq 0\) for all \(j\) and \(k\). Then from (5.7) for \(\lambda_j, \alpha_j\) we get in limit process (5.7) for \(\lambda, \alpha\). The proof is complete.

Since \(Q_m \neq 0\) or \(Q_{m-1} \neq 0\), from (5.7) we get

Corollary 5.1 The matrix \(V - \alpha hV_1 - \lambda h^2 V_2\) is invertible for sufficiently small \(h\).

5.2 Stability of the method

Definition 5.1 We say that the spline collocation method by piecewise polynomials is stable if, for any \(f \in C^1[0, T]\), the approximate solution \(u\) of (5.1) remains bounded in \(L_\infty(0, T)\) as \(h \to 0\).

Denote \(W = V - \alpha hV_1 - \lambda h^2 V_2\), then the equation (5.3) takes the form

\[
W \alpha_{n+1} = (W + \lambda h^2 V_3) \alpha_n + h g_n.
\]
Therefore, the equation (5.3) may be written as follows

\[\alpha_{n+1} = (I + \lambda h^2 W^{-1} V_3) \alpha_n + h W^{-1} g_n. \]

(5.8)

Proposition 5.2 Matrix \(I + \lambda h^2 W^{-1} V_3 \) has eigenvalue \(\mu = 1 \) with geometric multiplicity \(m - 1 \).

Proof. It is clear that \(\ker(I + \lambda h^2 W^{-1} V_3 - \mu I) = \ker(W + \lambda h^2 V_3 - \mu W) \). The geometric multiplicity of \(\mu = 1 \) is \(\dim \ker V_3 \), but \(\dim \ker V_3 = m - \text{rank} V_3 \). As \(\text{rank} V_3 = 1 \), we get the assertion.

Besides the eigenvalue \(\mu = 1 \) there is one more \(\mu \in \text{spec}(I + \lambda h^2 W^{-1} V_3) \) which is equivalent to \(\mu - 1 \in \text{spec}(\lambda h^2 W^{-1} V_3) \). Thus, we have to find one additional solution of \(\det(\lambda h^2 V_3 - \mu W) = 0 \) having already 0 as solution of multiplicity \(m - 1 \) by Proposition 5.2.

Denote \(A = \lambda h^2 V_3 \) and \(B = W \) with corresponding entries \(a_{ij} \) and \(b_{ij} \). Taking into account

\[a_{11} = \ldots = a_{m1}, \ldots, a_{1m} = \ldots = a_{mm}, \]

we get

\[\det(A - \mu B) = \begin{vmatrix} a_{11} - \mu b_{11} & \ldots & a_{1m} - \mu b_{1m} \\ a_{21} - \mu b_{21} & \ldots & a_{2m} - \mu b_{2m} \\ \vdots & \ddots & \vdots \\ a_{m1} - \mu b_{m1} & \ldots & a_{mm} - \mu b_{mm} \end{vmatrix} = \begin{vmatrix} a_{11} - \mu b_{11} & \ldots & a_{1m} - \mu b_{1m} \\ \mu(b_{11} - b_{21}) & \ldots & \mu(b_{1m} - b_{2m}) \\ \vdots & \ddots & \vdots \\ \mu(b_{11} - b_{m1}) & \ldots & \mu(b_{1m} - b_{mm}) \end{vmatrix} = \mu^{m-1} \begin{vmatrix} a_{11} - \mu b_{11} & \ldots & a_{1m} - \mu b_{1m} \\ b_{11} - b_{21} & \ldots & b_{1m} - b_{2m} \\ \vdots & \ddots & \vdots \\ b_{11} - b_{m1} & \ldots & b_{1m} - b_{mm} \end{vmatrix}. \]

(5.9)
Expansion by the first row gives us
\[
\det(A - \mu B) = \mu^{m-1} \left[(a_{11} - \mu b_{11}) M_1 + (a_{12} - \mu b_{12}) M_2 + \ldots \\
+ (a_{1m} - \mu b_{1m}) M_m \right] \\
= \mu^{m-1} \left[a_{11} M_1 + a_{12} M_2 + \ldots + a_{1m} M_m \\
- \mu (b_{11} M_1 + b_{12} M_2 + \ldots + b_{1m} M_m) \right].
\]

Thus, we have \(\det(A - \mu B) = 0 \) if
\[
\mu = \frac{a_{11} M_1 + a_{12} M_2 + \ldots + a_{1m} M_m}{b_{11} M_1 + b_{12} M_2 + \ldots + b_{1m} M_m}
\]
(5.10)
with some \(M_i \) obtained from the determinant in (5.9).

Lemma 5.1 It holds
\[
(c_1 + c_2 + \ldots + c_m)D_m = \begin{vmatrix}
 c_2 - c_1 & \ldots & c_2^{m-2} - c_1^{m-2} & c_2^m - c_1^m \\
 c_3 - c_1 & \ldots & c_3^{m-2} - c_1^{m-2} & c_3^m - c_1^m \\
 \ldots & \ldots & \ldots & \ldots \\
 c_m - c_1 & \ldots & c_m^{m-2} - c_1^{m-2} & c_m^m - c_1^m
\end{vmatrix}.
\]

This is a standard exercise result from Linear Algebra.

Lemma 5.2 We have
\[
M_1 = Q_{m-1} h^{m-1} D_m + P_{m-1} h^m (c_1 + \ldots + c_m) D_m / m + O(h^{m+1}) \tag{5.11}
\]
with \(Q_{m-1} \neq 0 \) or \(P_{m-1} \neq 0 \),
\[
M_2 = -\lambda Q_{m-2} h^m D_m - \lambda P_{m-2} h^{m+1} (c_1 + \ldots + c_m) D_m / m + O(h^{m+2}) \tag{5.12}
\]
with \(Q_{m-2} \neq 0 \) or \(P_{m-2} \neq 0 \),
\[
M_3 = \lambda^2 h^{m+1} Q_{m-3} D_m / 2 + O(h^{m+2}) \tag{5.13}
\]
and
\[
M_k = O(h^{m+2}), \ k \geq 4. \tag{5.14}
\]
Proof. Let us start with matrix M_1. Writing the columns of the determinant as rows we get

$$M_1 = \begin{vmatrix} \alpha h (c_i - c_1) + \lambda h^2 \frac{c_i^2 - c_1^2}{2} \\ 2(c_i - c_1) + \alpha h (c_i^2 - c_1^2) + \lambda h^2 \frac{c_i^3 - c_1^3}{3} \\ \vdots \\ (m - 1)(c_i^{m-2} - c_1^{m-2}) + \alpha h (c_i^{m-1} - c_1^{m-1}) + \lambda h^2 \frac{c_i^m - c_1^m}{m} \end{vmatrix}$$

$$= Q_1 h \begin{vmatrix} c_i - c_1 + \frac{P_1 h c_i^2 - c_1^2}{Q_1} \\ c_i^2 - c_1^2 + \frac{P_2 h c_i^3 - c_1^3}{Q_2} \\ \vdots \\ c_i^{m-1} - c_1^{m-1} + \frac{P_{m-1} h c_i^m - c_1^m}{Q_{m-1}} \end{vmatrix} \begin{vmatrix} \frac{c_i - c_1}{Q_1} \\ \frac{c_i^2 - c_1^2}{Q_1} \\ \vdots \\ \frac{c_i^{m-1} - c_1^{m-1}}{Q_{m-1}} \end{vmatrix}$$

The straightforward calculations give an expansion of the last determinant as a sum of

$$c_i - c_1 + \frac{P_1 h c_i^2 - c_1^2}{Q_1} \\ c_i^2 - c_1^2 + \frac{P_2 h c_i^3 - c_1^3}{Q_2} \\ \vdots \\ c_i^{m-1} - c_1^{m-1} + \frac{P_{m-1} h c_i^m - c_1^m}{Q_{m-1}}$$

and other terms of order $O(h^2)$. Now, basing on Lemma 5.1, we get (5.11). As in the proof of Proposition 5.1, this argument is correct if
\(Q_{m-1} \neq 0, \ldots, Q_1 \neq 0 \), but in general case the limit process will arrange the proof. In addition, \(Q_{m-1} = 0 \) and \(P_{m-1} = 0 \) yield by (5.4) that \(Q_m = 0 \) which is impossible as we have seen earlier. Thus, \(Q_{m-1} \neq 0 \) or \(P_{m-1} \neq 0 \). The other formulae (5.12) - (5.14) can be obtained by similar calculations.

Proposition 5.3 For the solution (5.10) it holds

1) if \(Q_{m-1} \neq 0 \) and \(Q_m \neq 0 \) then
\[
\mu = -\lambda \frac{Q_{m-1}}{Q_m} h + O(h^2),
\]

2) if \(Q_{m-1} \neq 0 \) and \(Q_m = 0 \) then
\[
\mu = -\frac{m}{c_1 + \ldots + c_m} + O(h),
\]

3) if \(Q_{m-1} = 0 \) and \(Q_m \neq 0 \) then
\[
\mu = O(h^2).
\]

Proof. The main term in the numerator of (5.10) is \(\lambda h^{m+1} Q_{m-1} D_m \) for \(Q_{m-1} \neq 0 \). The denominator of (5.10) is
\[
(-\alpha h - \lambda h^2 c_1)(Q_{m-1} D_m h^{m-1} + O(h^m))
\]
\[
+ (1 - \alpha h c_1 - \lambda h^2 c_1^2/2)(-\lambda Q_{m-2} h^m D_m) + O(h^{m+1}) + O(h^{m+3}),
\]
where we find, by (5.6), that the coefficient of \(h^m \) is \(-Q_m D_m\). Therefore,
\[
\mu = \frac{\lambda h^{m+1} Q_{m-1} D_m + O(h^{m+2})}{-Q_m D_m h^m + O(h^{m+1})} = -\lambda \frac{Q_{m-1}}{Q_m} h + O(h^2).
\]

The third assertion follows immediately. If \(Q_m = 0 \), i.e., the coefficient of \(h^m \) in the denominator is zero, then the coefficient of \(h^{m+1} \) can be found as \(-\lambda (c_1 + \ldots + c_m) D_m Q_{m-1}/m\) which yields the formula for \(\mu \) in second case. The proof is complete.

It is natural to ask whether \(\mu \) in (5.10) may have higher order in \(h \) than 2? In fact, more detailed calculations show that
\[
M_1 = Q_{m-1} h^{m-1} D_m + \lambda Q_{m-2} h^m \text{sym}_1 D_m/m
\]
\[
+ \lambda^2 Q_{m-3} h^{m+1} \text{sym}_2 D_m/m(m-1) + \ldots
\]
\[
+ \lambda^{m-1} Q_0 h^{2m-2} \text{sym}_{m-1} D_m/m!,
\]

42
\[M_2 = -\lambda Q_{m-2} h^m D_m - \lambda^2 Q_{m-3} h^{m+1} \text{sym}_1 D_m / m - \ldots \]
\[- \lambda^{m-1} Q_0 h^{2m-2} \text{sym}_{m-2} D_m / m! , \]

\[M_m = (-1)^{m-1} \lambda^{m-1} Q_0 h^{2m-2} D_m / (m-1)! , \]

where \(\text{sym}_i \) are standard symmetrical polynomials of \(c_1, \ldots, c_m \) of order \(i \), for example, \(\text{sym}_1 = c_1 + \ldots + c_m \), \(\text{sym}_2 = c_1 c_2 + \ldots + c_{m-1} c_m \).

Proposition 5.4 If \(Q_m \neq 0 \), \(Q_{m-1} = 0 \) and \(c_1 + \ldots + c_m = m/2 \), then

\[\mu = \nu h^3 + O(h^4), \nu \neq 0 , \]

and, for \(k > 3 \),

\[\mu = \nu h^k + O(h^{k+1}), \nu \neq 0 , \]

is not possible.

Proof. The main term in the denominator of (5.10) is \(-\lambda Q_{m-2} D_m h^m \) as \(Q_{m-2} \neq 0 \). In the numerator of (5.10) the coefficient of \(h^{m+2} \) is

\[\lambda^2 Q_{m-2} D_m \left(\frac{\text{sym}_1}{m} - \frac{1}{2} \right) . \]

Therefore,

\[\mu = \lambda \left(\frac{\text{sym}_1}{m} - \frac{1}{2} \right) h^2 + O(h^3) . \]

If the coefficient of \(h^{m+2} \) in the numerator of (5.10) is zero, i.e., \(\text{sym}_1 = m/2 \), we find that the coefficient of \(h^{m+3} \) is

\[\lambda^3 Q_{m-3} D_m \left(\frac{\text{sym}_2}{m(m-1)} - \frac{1}{2} \frac{\text{sym}_1}{m} + \frac{1}{6} \right) . \]

Assuming that the coefficient of \(h^{m+3} \) is also zero, for \(Q_{m-3} \neq 0 \), we have

\[\text{sym}_2 = \frac{m(m-1)}{12} . \]

Now calculate

\[\text{sym}_1^2 = c_1^2 + \ldots + c_m^2 + 2\text{sym}_2 \]
\[= c_1^2 + \ldots + c_m^2 + \frac{m(m-1)}{6} , \]

from where

\[c_1^2 + \ldots c_m^2 = \frac{m^2 + 2m}{12} . \]
We get that \((m^2 + 2m)/12 \geq m/2\) for \(m \geq 4\), i.e., \(sym^2_2 \geq sym^2_1\). On the other side, always for \(m \geq 2\) it holds \(c_1 + \ldots + c_m > c_1^2 + \ldots + c_m^2\). Therefore,
\[
sym_1 = \frac{m}{2}, \quad sym_2 = \frac{m(m-1)}{12}
\]
cannot be valid together. Actually, \(Q_{m-3} \neq 0\), because \(Q_{m-2} \neq 0\) and \(Q_{m-3} = 0\) yield, by \((5.6)\), that \(Q_{m-1} \neq 0\). This contradiction completes the proof.

Denote \(M = I + \lambda h^2 W^{-1} V_3\).

Matrix \(M\) has eigenvalues with equal algebraic and geometric multiplicities. This implies that its Jordan form is diagonal matrix with \(m - 1\) entries 1 and one \(1 + \epsilon\) with \(\epsilon = O(h^k), k = 0, \ldots, 3\). The Jordan representation \(M = P J P^{-1}\) gives \(M^n = P J^n P^{-1}\) and at least for \(k \geq 1\) the matrix \(J^n\) is bounded. We see that the boundedness of \(M^n\) depends also on behaviour of \(P\) and \(P^{-1}\) in process \(h \to 0\).

Proposition 5.5 Matrix \(\lambda h^2 W^{-1} V_3\) or \(W^{-1} V_3\) has the same eigenvectors as the matrix \(M\).

Proof. Let \(\mu\) be an eigenvalue of \(W^{-1} V_3\) and \(v \neq 0\) a corresponding eigenvector. Then
\[
W^{-1} V_3 v = \mu v \Leftrightarrow \lambda h^2 W^{-1} V_3 v = \lambda h^2 \mu v \Leftrightarrow (I + \lambda h^2 W^{-1} V_3) v = (1 + \lambda h^2 \mu) v,
\]
which gives the assertion.

The eigenvalues of \(W^{-1} V_3\) could be chosen in such a way that they are the columns of \(P\). Take them as an orthonormal system \(p^1, \ldots, p^{m-1}\) corresponding to 0 \(\in\) spec\((W^{-1} V_3)\), which give \(p^1, \ldots, p^{m-1} \in Ker V_3\), and \(p^m\) of Euclidean norm 1 corresponding to \(\epsilon \in\) spec\((W^{-1} V_3)\). Clearly \(P\) is bounded. The boundedness of \(P^{-1}\) can be guaranteed if \(|\ det P | \geq \delta\) for some \(\delta > 0\). This takes place if we get \(\langle p, q \rangle \leq \sigma ||p|| ||q||\) with \(\sigma < 1\) for all \(p \in Ker V_3\) and all \(q \in Ker(\lambda h^2 V_3 - \mu W)\) which is equivalent to \(\langle p, q \rangle \leq \sigma ||p|| ||q||\) for all \(p \in (Ker V_3)^\perp\) and all \(q \in (Ker(\lambda h^2 V_3 - \mu W))^\perp\).

Here we may consider \(p = (1, 1/2, \ldots, 1/m)\) because \(\dim(Ker V_3)^\perp = 1\) and \(q = \sum_{1 \leq j \leq m-1} \lambda_j q^j\) with \(q^j\) (we write \(q^j\) here in column)

\[
q^j = \begin{pmatrix}
\lambda h^2 - \mu(-\alpha h - \lambda h^2 c_j) \\
\lambda h^2/2 - \mu(1 - \alpha h c_j - \lambda h^2 c_j^2/2) \\
\vdots \\
\lambda h^2/m - \mu((m-1)c_j^{m-2} - \alpha h c_j^{m-1} - \lambda h^2 c_j^m/m)
\end{pmatrix}
\]

44
as q^1, \ldots, q^{m-1} give a basis in $(\text{Ker} \ (h^2 V_3 - \mu W))^\perp$ at least for small h. Let $\bar{q}^j = q^j - \lambda h^2 p$. Since $\det W \neq 0$, $\bar{q}^1, \ldots, \bar{q}^{m-1}$ are linearly independent. Similarly, we get also the linear independence of $p, \bar{q}^1, \ldots, \bar{q}^{m-1}$ for small h. Then

$$< p, q > = \left(\sum_{j=1}^{m-1} \lambda_j \right) \lambda h^2 \langle p, p \rangle - \mu \langle p, \sum_{j=1}^{m-1} \lambda_j \bar{q}^j \rangle.$$

(5.15)

We may consider only the "worse" case, namely, when q is the projection of p onto $(\text{Ker} \ (\lambda h^2 V_3 - \mu W))^\perp$. Then in the process $h \to 0$ the coefficients λ_j stabilize and

$$\langle p, \sum_{j=1}^{m-1} \lambda_j \bar{q}^j \rangle \approx \sigma_0 \|p\| \|q\| \| \sum_{j=1}^{m-1} \lambda_j \bar{q}^j \|$$

for some fixed $\sigma_0 \in (-1, 1)$ due to the linear independence of $p, \bar{q}^1, \ldots, \bar{q}^m$. In the cases $\mu \sim \nu h$, $\nu \neq 0$, and $\mu \sim \text{const}$ the last term in (5.15) is dominant and we get $< p, q > \leq \sigma \|p\| \|q\|$ with $\sigma < 1$ (actually, $\sigma \to \sigma_0$).

Note that the case $\mu \sim \nu h^k$, $\nu \neq 0$, $k \geq 2$ needs additional analysis but similar arguments lead us also to the boundedness of M^n.

Summing up the results of presented reasonings and Proposition 5.3 we have

Proposition 5.6 The following holds

1. if $Q_m \neq 0$ then the method is stable,

2. if $Q_m = 0$ (and hence $Q_{m-1} \neq 0$) then for $c_1 + \ldots + c_m \geq m/2$ the method is stable, for $c_1 + \ldots + c_m < m/2$ unstable.

For example, let $m = 3$. We have $Q_3 = 2\lambda \alpha + \alpha^3$. For $2\lambda \alpha + \alpha^3 \neq 0$ the method is stable and for $2\lambda \alpha + \alpha^3 = 0$ the stability region is $c_1 + c_2 + c_3 \geq 3/2$.

Chapter 6

STABILITY OF THE SPLINE COLLOCATION METHOD FOR SECOND ORDER VIDE

In this chapter we will investigate stability conditions for second order VIDE. We will show that there is connection between stability conditions for 1st order VIDE and 2nd one. The treatment is similar to those in Chapter 4.

6.1 Method in the case of test equation

Consider the test equation

\[y''(t) = \alpha y(t) + \beta y'(t) + \lambda \int_0^t y(s)ds + f(t), \quad t \in [0,T], \quad (6.1) \]

where, in general, \(\alpha, \beta \) and \(\lambda \) may be any complex numbers. Similarly to Section 4.1, assume that the mesh sequence \(\{\Delta_N\} \) is uniform, i.e., \(h_n = h = T/N \) for all \(n \). We will use the representation (4.2) on \(\sigma_n \) and smoothness conditions (4.3).

The collocation conditions (2.5), applied to the test equation (6.1), give

\[u''(t_{nj}) = \alpha y(t_{nj}) + \beta u'(t_{nj}) + \lambda \int_0^{t_{nj}} u(s)ds + f(t_{nj}), \quad j = 1, \ldots, m, \]

\[n = 1, \ldots, N. \quad (6.2) \]

From (4.2) we get

\[u_n(t_{nj}) = \sum_{k=0}^{m+d} a_{nk} c_j^k. \]
\[u_n'(t_{nj}) = \frac{1}{h} \sum_{k=1}^{m+d} a_n k c_j^{k-1} \]

and

\[u_n''(t_{nj}) = \frac{1}{h^2} \sum_{k=2}^{m+d} k(k-1)a_n c_j^{k-2}. \]

Now the equation (6.2) becomes

\[
\begin{align*}
&\frac{1}{h^2} \sum_{k=0}^{m+d} k(k-1)a_n k c_j^{k-2} \\
&= \alpha \sum_{k=0}^{m+d} a_n k c_j^k + \beta \frac{1}{h} \sum_{k=0}^{m+d} k a_n k c_j^{k-1} + \sum_{r=1}^{n-1} \lambda \int_{t_{r-1}}^{t_r} u_r(s) \, ds \\
&+ \lambda \int_{t_{n-1}}^{t_{n,j}} u_n(s) \, ds + f(t_{nj}) \\
&= \alpha \sum_{k=0}^{m+d} a_n k c_j^k + \beta \frac{1}{h} \sum_{k=0}^{m+d} k a_n k c_j^{k-1} + \sum_{r=1}^{n-1} \lambda h \int_{0}^{1} \left(\sum_{k=0}^{m+d} a_r k \tau^k \right) d\tau \\
&+ \lambda h \int_{0}^{c_j} \left(\sum_{k=0}^{m+d} a_n k \tau^k \right) d\tau + f(t_{nj}) \\
&= \alpha \sum_{k=0}^{m+d} a_n k c_j^k + \beta \frac{1}{h} \sum_{k=0}^{m+d} k a_n k c_j^{k-1} + \sum_{r=1}^{n-1} \lambda h \left(\sum_{k=0}^{m+d} \frac{1}{k+1} a_r \right) \\
&+ \lambda h \sum_{k=0}^{m+d} a_n c_j^{k+1} + f(t_{nj}). \quad (6.3)
\end{align*}
\]

Using the notation \(\alpha_n = (a_{n0}, \ldots, a_{nm+d}) \), we write (6.3) as follows:

\[
\sum_{k=0}^{m+d} a_n k(k-1)c_j^{k-2} - \alpha h^2 \sum_{k=0}^{m+d} a_n k c_j^k - \beta h \sum_{k=0}^{m+d} a_n k k c_j^{k-1} \\
- \lambda h^3 \sum_{k=0}^{m+d} a_n c_j^{k+1} = \lambda h^3 \langle q, \sum_{r=1}^{n-1} \alpha_r \rangle + h^2 f(t_{nj}), \quad (6.4)
\]

47
where \(q = (1, 1/2, \ldots, 1/(m + d + 1)) \) and \(\langle \cdot, \cdot \rangle \) denotes the usual scalar product in \(\mathbb{R}^{m+d+1} \). The difference of the equations (6.4) with \(n \) and \(n + 1 \) yields

\[
\sum_{k=0}^{m+d} a_{n+1,k} k(k-1)c_j^{k-2} - \beta h \sum_{k=0}^{m+d} a_{n+1,k} k c_j^{k-1} - \alpha h^2 \sum_{k=0}^{m+d} a_{n+1,k} c_j^k - \lambda h^3 \sum_{k=0}^{m+d} a_{n+1,k} \frac{c_j^{k+1}}{k+1} = 0 \quad (m+1) \times (m+1)
\]

Now we may write together the equations (4.3) and (6.5) in the matrix form

\[
(\tilde{V} - \beta h \tilde{V}_1 - \alpha h^2 \tilde{V}_2 - \lambda h^3 \tilde{V}_3)\alpha_{n+1} = (\tilde{V}_0 - \beta h \tilde{V}_1 - \alpha h^2 \tilde{V}_2 - \lambda h^3(\tilde{V}_3 - \tilde{V}_4))\alpha_n + h^2 g_n, \quad n = 1, \ldots, N - 1
\]

with \((m + d + 1) \times (m + d + 1)\) matrices \(\tilde{V}, \tilde{V}_0, \tilde{V}_1, \tilde{V}_2, \tilde{V}_3, \tilde{V}_4 \) as follows:

\[
\tilde{V} = \begin{pmatrix} E \\ C \end{pmatrix}, \quad \tilde{V}_0 = \begin{pmatrix} A \\ C \end{pmatrix}, \quad E = (I \ 0)
\]

\(I \) being the \((d+1) \times (d+1)\) identity matrix, 0 is the \((d+1) \times m \) zero matrix, \(C \) is

\[
C = \begin{pmatrix}
0 & 0 & 2 & 6c_1 & \ldots & (m+d)(m+d-1)c_1^{m+d-2} \\
0 & 0 & 2 & 6c_2 & \ldots & (m+d)(m+d-1)c_2^{m+d-2} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 2 & 6c_m & \ldots & (m+d)(m+d-1)c_m^{m+d-2}
\end{pmatrix},
\]
A being a \((d + 1) \times (m + d + 1)\) matrix, defined in Section 3.1,

\[
\tilde{V}_1 = \begin{pmatrix}
0 & 1 & 2c_1 & \ldots & (m + d)c_1^{m+d-1} \\
0 & 1 & 2c_m & \ldots & (m + d)c_m^{m+d-1}
\end{pmatrix},
\]

\[
\tilde{V}_2 = \begin{pmatrix}
0 & 1 & c_1 & c_1^2 & \ldots & c_1^{m+d} \\
1 & c_m & c_m^2 & \ldots & c_m^{m+d}
\end{pmatrix},
\]

\[
\tilde{V}_3 = \begin{pmatrix}
0 & c_1 & c_1^2/2 & \ldots & c_1^{m+d+1}/(m + d + 1) \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
0 & c_m & c_m^2/2 & \ldots & c_m^{m+d+1}/(m + d + 1)
\end{pmatrix},
\]

\(\tilde{V}_3\) having the first \(d + 1\) rows equal to 0 and the last \(m\) rows the vector \(q\), and, the \(m + d + 1\) dimensional vector

\[g_n = (0, \ldots, 0, f(t_{n+1,1}) - f(t_{n1}), \ldots, f(t_{n+1,m}) - f(t_{nm})).\]

Thus \(g_n = O(h)\) for \(f \in C^1\).

Proposition 6.1 The matrix \(\tilde{V} - \beta h \tilde{V}_1 - \alpha h^2 \tilde{V}_2 - \lambda h^3 \tilde{V}_3\) is invertible for sufficiently small \(h\).

Proof. If \(d \geq 1\), we have

\[
\det \tilde{V} = \frac{(d + 1)dc_1^{d-1}}{(d + 1)dc_1^{d-1}} \ldots \frac{(m + d)(m + d - 1)c_1^{m+d-2}}{(m + d)(m + d - 1)c_1^{m+d-2}} \ldots \frac{(d + 1)dc_m^{d-1}}{(d + 1)dc_m^{d-1}} \ldots \frac{(m + d)(m + d - 1)c_m^{m+d-2}}{(m + d)(m + d - 1)c_m^{m+d-2}}
\]

\[= (d + 1)dc_1^{d-1} \ldots (m + d)(m + d - 1)c_m^{d-1}.\]

\[
\begin{vmatrix}
1 & c_1 & \ldots & c_1^{m-1} \\
\vdots & \ddots & \ddots & \ddots \\
1 & c_m & \ldots & c_m^{m-1}
\end{vmatrix} \neq 0,
\]

49
and the matrix \tilde{V} is invertible. Such is also $\tilde{V} - \beta h \tilde{V}_1 - \alpha h^2 \tilde{V}_2 - \lambda h^3 \tilde{V}_3$ for small h. Although we have supposed, in general, that $d \geq 1$, let us remark that in cases $d = 0$ and $d = -1$ we may argue similarly to the proof in Chapter 5, and show that $\det(\tilde{V} - \beta h \tilde{V}_1 - \alpha h^2 \tilde{V}_2 - \lambda h^3 \tilde{V}_3) \neq 0$, for small h.

Therefore, the equation (6.6) can be written in the form

$$\alpha_{n+1} = (\tilde{V}^{-1} \tilde{V}_0 + W)\alpha_n + r_n, \quad n = 1, \ldots, N - 1,$$

(6.7)

where $W = O(h)$ and $r_n = O(h^3)$ for $f \in C^1$.

6.2 Stability of the method

We have seen that the spline collocation method (2.5) for the test equation (6.1) leads to the recursion (6.7). Denote $\tilde{M} = \tilde{V}^{-1} \tilde{V}_0$.

We distinguish the method with initial values $u^{(i)}(0) = y^{(i)}(0)$, $j = 0, \ldots, d$, and another method which uses $u_1(0) = y(0), u'_1(0) = y'(0)$ and additional collocation points $t_{0j} = t_0 + c_0j h, \quad j = 1, \ldots, d - 1$, with fixed $c_0j \in (0, 1] \setminus \{c_1, \ldots, c_m\}$ on the first interval σ_1.

Denote, in addition, $d_0 = \max\{d - 2, 0\}$ for the method with initial values and $d_0 = 0$ for the method with additional initial collocation.

Definition 6.1 We say that the spline collocation method is stable if for any $\alpha, \beta, \lambda \in \mathbb{C}$ and any $f \in C^d_0[0, T]$ the approximate solution u of (6.1) remains bounded in $C[0, T]$ in the process $h \to 0$.

The principle of uniform boundedness allows us to establish

Proposition 6.2 The spline collocation method is stable if and only if

$$||u||_{C[0, T]} \leq \text{const} \||f||_{C^d_0[0, T]} \quad \forall f \in C^d_0[0, T],$$

(6.8)

where the constant may depend only on T, α, β, λ and on parameters c_j and c_0j.

Theorem 6.1 For fixed c_j the eigenvalues of \tilde{M} for 2nd order VIDE in the case m and $d + 2$ and eigenvalues of M for 1st order VIDE in the case m and $d + 1$ coincide and have the same algebraic and geometric multiplicities, except $\mu = 1$ whose algebraic multiplicity for 2nd order VIDE is greater by one than for 1st order VIDE.

Proof. The structure of the proof is similar to that of Theorem 4.1 in Chapter 4.

The eigenvalue problem for \tilde{M} is equivalent to the generalized eigenvalue problem for \tilde{V}_0 and \tilde{V}, i.e., $(\tilde{M} - \mu I) v = 0$ for $v \neq 0$ if and only if
\((\bar{V}_0 - \mu \bar{V})v = 0\) and \((\bar{M} - \mu I)w = v\) takes place if and only if \((\bar{V}_0 - \mu \bar{V})w = \bar{V}v\). Denote \(\nu = 1 - \mu\). Then for 2nd order VIDE with the parameters \(m\) and \(d+2\) we have

\[
\bar{V}_0 - \mu \bar{V} = \begin{vmatrix}
\nu & 1 & 1 & 1 & \ldots & \ldots & 1 \\
0 & \nu & 2 & 3 & \ldots & \ldots & m + d + 1 \\
0 & 0 & \nu & (3) & \ldots & \ldots & (m + d + 2) \\
0 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & \nu & 2 \nu \cdot 6c_1 & \ldots & \ldots & \nu(m + d + 2)(m + d + 1)c_1^{m+d} \\
0 & 0 & \nu & 2 \nu \cdot 6c_m & \ldots & \ldots & \nu(m + d + 2)(m + d + 1)c_m^{m+d} \\
\end{vmatrix}.
\]

(6.9)

Let \(I_{i,p}\) be the diagonal matrix obtained from identity matrix, replacing the \(i\)-th diagonal element by the number \(p\). Consider also the matrices \(V_0\) and \(V\) defined in Chapter 4, with the parameters \(m\) and \(d+1\). Now, using relation \(\binom{p}{q} \frac{q}{p} = \binom{p-1}{q-1}\), we get from (6.9)

\[
I_{d+3,d+2}I_{3,2}(\bar{V}_0 - \mu \bar{V})I_{3,1/2}I_{d+m+3,1/(m+d+2)}
\]

\[
= \begin{pmatrix}
\nu & \bar{q} \\
0 & \bar{V}_0 - \mu \bar{V} \\
\end{pmatrix}
\]

or

\[
S(\bar{V}_0 - \mu \bar{V})S^{-1} = R \begin{pmatrix}
\nu & \bar{q} \\
0 & \bar{V}_0 - \mu \bar{V} \\
\end{pmatrix},
\]

(6.10)

where

\[
S = I_{d+3,d+2} \cdots I_{3,2},
\]

\[
R = I_{d+m+3,d+m+2} \cdots I_{d+4,d+3}
\]

and

\[
\bar{q} = \left(1, \frac{1}{2}, \ldots, \frac{1}{m + d + 2}\right).
\]

51
Now the equation (6.10) gives us
\[
\det(\tilde{V}_0 - \mu \tilde{V}) = (d + 3) \ldots (d + m + 2) \nu \det(V_0 - \mu V),
\]
which permits to get the assertion about algebraic multiplicities of eigenvalues of \tilde{M} and M. Similarly to Propositions 4.3 or 3.1 we can prove that the eigenvalue $\mu = 1$ of \tilde{M} has geometric multiplicity m and similarly to proof of Theorem 4.1 that geometric multiplicities of $\mu \neq 1$ as an eigenvalue of \tilde{M} and M coincide. The proof is complete.

Proposition 6.3 If \tilde{M} has an eigenvalue outside of the closed unit disk, then the spline collocation method is not stable with possible exponential growth of approximate solution.

Proof. The structure of the proof is similar to that of Proposition 4.4 in Chapter 4 and we will deal only with main moments.

Consider an eigenvalue μ of $\tilde{M} + W$ such that $|\mu| \geq 1 + \delta$ with some fixed $\delta > 0$ for any sufficiently small h. For $\alpha_1 \neq 0$, being an eigenvector of $\tilde{M} + W$, we have here

\[
(\tilde{V} - \beta h \tilde{V}_1 - \alpha h^2 \tilde{V}_2 - \lambda h^3 \tilde{V}_3)\alpha_1 = h^2 g_0,
\]

where
\[
g_0 = (\alpha_{10}, \ldots, \alpha_{1d}, f(t_{11}), \ldots, f(t_{1m}))
\]
and
\[
\alpha_{1j} = h^j \frac{y^{(j)}(0)}{j!}, \quad j = 0, \ldots, d.
\]

Because of
\[
y''(0) = \alpha y(0) + \beta y'(0) + f(0),
\]
\[
y^{(j)}(0) = \alpha y^{(j-2)}(0) + \beta y^{(j-1)}(0) + \lambda y^{(j-3)}(0) + f^{(j-2)}(0),
\]

\[
j = 3, \ldots, d,
\]
the vector α_1 determines via (6.11) and (6.12) the values
\[
f^{(j)}(0), \quad j = 0, \ldots, d - 1, f(t_{11}), \ldots, f(t_{1m}).
\]

We take f on $[0, h]$ as the polynomial interpolating the values $f^{(j)}(0), \ j = 0, \ldots, d - 2, f(t_{1j}), \ j = 1, \ldots, m$, and $f^{(j)}(h) = 0, \ j = 0, \ldots, d_0$ (if $c_m = 1$, then $f^{(j)}(h) = 0, \ j = 1, \ldots, d_0$).

In the case of the method of additional knots let f be on $[0, h]$ the interpolating polynomial by the data $f(0), f(t_{0j}), \ j = 0, \ldots, d - 1, f(t_{1j})$, 52
$j = 1, \ldots, m$, and $f^{(j)}(h) = 0$ (here $d_0 = 0$ and if $c_m = 1$, then $f(t_{1m}) = f(h)$ is already given and we drop the requirement $f(h) = 0$).

In both cases we ask f to be on $[nh, (n + 1)h]$, $n \geq 1$, the interpolating polynomial by the values $f^{(j)}(nh) = 0$ and $f^{(j)}((n + 1)h) = 0$, $j = 0, \ldots, d_0$ (if $c_m = 1$, then for $j = 1, \ldots, d_0$), and also $f(t_{n+1,j}) = f(t_{1j})$, $j = 1, \ldots, m$. This guarantees that $f \in C^{d_0}[0,T]$ and $r_n = 0$, $n \geq 1$.

The interpolant f can be represented on $[t_n, t_{n+1}]$ by the formula:

$$
 f(t) = f(t_n + \tau h) = \sum_{i=0}^{\kappa} \left(\sum_{l=0}^{k_i} h^{s_l} p_{il} f^{(s_l)}(\xi_l) \right) \prod_{r=0}^{i-1} (\tau - b_r)
$$

with b_r being c_j or c_{0j}, ξ_l being t_{nj} or t_j, $0 \leq s_l \leq d_1$, $k_i \leq i$, constants p_{il} depending on c_j and c_{0j}.

In the case of initial conditions $\kappa = m + d + d_0 - 1 (\kappa = m + d + d_0 - 2$, if $c_m = 1$), in the case of additional knots $\kappa = m + d + 1 (\kappa = m + d + 1$, if $c_m = 1$) on the interval $[0, h]$ and $\kappa = m + 2d_0 + 1 (\kappa = m + 2d_0$ if $c_m = 1$) on the interval $[nh, (n + 1)h]$, $n \geq 1$.

Replacing h by h/k, $k = 1, 2, \ldots$, and keeping $||\alpha_1|| = h^2/k^2$, we have $||g_0||_\infty$ bounded which means that $f(t_{1j})$, $j = 1, \ldots, m$, and $h^2 y^{(j)}(0)/k^3$, $j = 0, \ldots, d$, or $h^3 f^{(j)}(0)/k^4$, $j = 0, \ldots, d_0$, are bounded too in the process $k \to \infty$. Thus (6.13) gives

$$
 ||f||_{C^{d_0}[0,T]} \leq const \cdot k^{d_0}.
$$

(6.14)

On the other hand,

$$
 ||\alpha_{n+1}|| \geq (1 + \delta)^n ||\alpha_1||
$$

yields

$$
 ||\alpha_{kN}|| \geq \frac{h}{k} (1 + \delta)^{kN-1}
$$

(6.15)

and (6.8) cannot be satisfied. The inequalities (6.14) and (6.15) mean also the exponential growth of approximate solution if we keep the norm of f bounded in C^{d_0}. The proof is complete.

6.3 Examples

Let us consider some special cases of d and m.

Case $d = 1$, $m \geq 1$.

We have

$$
 \tilde{V} = \begin{pmatrix} 10 & \ldots & 0 \\ C & \end{pmatrix}, \quad \widetilde{V} = \begin{pmatrix} 11 & \ldots & 1 \\ C & \end{pmatrix}
$$

and $\det(\tilde{V}_0 - \mu\widetilde{V}) = (1 - \mu)^{m+2} \det C_0$ where C_0 is obtained from C omitting first two columns. This means that the method is always stable.
Case $d = 2$, $m = 1$ (cubic splines).
The equation $\det(\tilde{V}_0 - \mu \tilde{V}) = 0$ besides $\mu = 1$ has the solution $\mu = 1 - 1/c_1$. The method is stable if and only if $1/2 \leq c_1 \leq 1$.

Case $d = 2$, $m = 2$. Now the equation $\det(\tilde{V}_0 - \mu \tilde{V}) = 0$ has the root $\mu = 1$ with geometric multiplicity 2. Similarly to the case $d = 1$, $m = 2$ for 1st order VIDE (see Section 4.3) we get that from the solution $\mu(c_1, c_2) = 1 - (c_1 + c_2 + 1)/c_1 c_2$ it follows that the method is stable if and only if $c_1 + c_2 \geq 1$.

54
Chapter 7

STABILITY OF THE SPLINE
COLLOCATION METHOD WITH
MULTIPLE NODES FOR FIRST
ORDER VIDE

In this chapter we will analyze the stability of collocation method when, on each subinterval, there is only one collocation point with multiplicity m.

7.1 Method in the case of test equation

Consider the test equation

$$y'(t) = \alpha y(t) + \lambda \int_0^t y(s)ds + f(t), \quad t \in [0, T],$$ \hspace{1cm} (7.1)

where, in general, λ and $\alpha \neq 0$ may be any complex numbers.

As in the previous chapters the smoothness conditions on uniform mesh (for any $u \in S^d_m(\Delta_N)$) give the equalities (4.3).

For given $c \in (0, 1]$ denote here $t_{nc} = t_{n-1} + ch$, $n = 1, \ldots, N$. From collocation conditions (2.3), applied to the test equation (7.1), we get

$$\sum_{k=0}^{m+d} a_{n+1,k} kc^{k-1} - \alpha h \sum_{k=0}^{m+d} a_{n+1,k} c^k - \lambda h^2 \sum_{k=0}^{m+d} a_{n+1,k} \frac{c^{k+1}}{k+1}$$

$$= \sum_{k=0}^{m+d} a_{nk} kc^{k-1} - \alpha h \sum_{k=0}^{m+d} a_{nk} c^k - \lambda h^2 \sum_{k=0}^{m+d} a_{nk} \frac{c^{k+1}}{k+1}$$

$$+ \lambda h^2 \sum_{k=0}^{m+d} \frac{1}{k+1} a_{nk} + h \left(f(t_{n+1,c}) - f(t_{nc}) \right), \quad n = 1, \ldots, N - 1. \hspace{1cm} (7.2)$$
In addition to (7.2) we have \(m - 1 \) equations

\[
y^{(i)}(t) = \alpha y^{(i-1)}(t) + \lambda y^{(i-2)}(t) + f^{(i-1)}(t), \quad i = 2, \ldots, m,
\]

which at collocation points can be written as follows

\[
u^{(i)}_n(t_{nc}) = \alpha u^{(i-1)}_n(t_{nc}) + \lambda u^{(i-2)}_n(t_{nc}) + f^{(i-1)}(t_{nc}), \quad i = 2, \ldots, m. \tag{7.3}
\]

Now using relations

\[
u_n(t_{nc}) = \sum_{k=0}^{m+d} a_{nk} c^k,
\]

\[
u'_n(t_{nc}) = \frac{1}{h} \sum_{k=1}^{m+d} k a_{nk} c^{k-1},
\]

and

\[
u^{(i)}_n(t_{nc}) = \frac{1}{h^i} \sum_{k=i}^{m+d} \frac{k!}{(k-i)!} a_{nk} c^{k-i}, \quad i = 2, \ldots, m. \tag{7.4}
\]

the equations (7.3) become

\[
\frac{1}{h^i} \sum_{k=i}^{m+d} \frac{k!}{(k-i)!} a_{nk} c^{k-i} = \frac{\alpha}{h^{i-1}} \sum_{k=i-1}^{m+d} \frac{k!}{(k-i+1)!} a_{nk} c^{k-i+1} + \frac{\lambda}{h^{i-2}} \sum_{k=i-2}^{m+d} \frac{k!}{(k-i+2)!} a_{nk} c^{k-i+2} + f^{(i-1)}(t_{nc}), \quad i = 2, \ldots, m,
\]

or, in the form

\[
\sum_{k=i}^{m+d} \frac{k!}{(k-i)!} a_{nk} c^{k-i} = \alpha h \sum_{k=i-1}^{m+d} \frac{k!}{(k-i+1)!} a_{nk} c^{k-i+1} + \lambda h^2 \sum_{k=i-2}^{m+d} \frac{k!}{(k-i+2)!} a_{nk} c^{k-i+2} + h^i f^{(i-1)}(t_{nc}), \quad i = 2, \ldots, m. \tag{7.5}
\]

Remark 7.1 Even though in general \(m > 0, \ d \geq -1 \) and \(c \in (0,1] \) can be any numbers, if \(c = 1 \) and \(m > d \) we should use one-sided derivate in (7.4). Therefore, it is natural to assume for \(c = 1 \) that \(m \leq d \).
The difference of the equations (7.5) with \(n \) and \(n + 1 \) yields

\[
\sum_{k=i}^{m+d} \frac{k!}{(k-i)!} a_{n+1,k} c^{k-i} - \alpha h \sum_{k=i-1}^{m+d} \frac{k!}{(k-i+1)!} a_{n+1,k} c^{k-i+1}
\]

\[
- \lambda h^2 \sum_{k=i-2}^{m+d} \frac{k!}{(k-i+2)!} a_{n+1,k} c^{k-i+2}
\]

\[
= \sum_{k=i}^{m+d} \frac{k!}{(k-i)!} a_{nk} c^{k-i} - \alpha h \sum_{k=i-1}^{m+d} \frac{k!}{(k-i+1)!} a_{nk} c^{k-i+1}
\]

\[
- \lambda h^2 \sum_{k=i-2}^{m+d} \frac{k!}{(k-i+2)!} a_{nk} c^{k-i+2}
\]

\[+ h \left(f^{(i-1)}(t_{n+1,c}) - f^{(i-1)}(t_{nc}) \right), \quad i = 2, \ldots, m. \quad (7.6)\]

Now we may write together the equations (4.3), (7.2) and (7.6) in matrix form

\[
(V - \alpha h V_1 - \lambda h^2 V_2) \alpha_{n+1}
\]

\[= (V_0 - \alpha h V_1 - \lambda h^2 (V_2 - V_3)) \alpha_n + g_n,
\]

\[n = 1, \ldots, N - 1, \quad (7.7)\]

with \((m + d + 1) \times (m + d + 1)\) matrices \(V, V_0, V_1, V_2, V_3 \) as follows:

\[
V = \begin{pmatrix} I & 0 \\ C \end{pmatrix}, \quad V_0 = \begin{pmatrix} A \\ C \end{pmatrix},
\]

\(I\) being the \((d+1) \times (d+1)\) identity matrix, \(0\) is the \((d+1) \times m\) zero matrix,

\[
C = \begin{pmatrix}
0 & 1 & 2c & 3c^2 & 4c^3 & \ldots & \ldots & (m+d)c^{m+d-1} \\
0 & 0 & 2! & 3!c & 4!c^2 & \ldots & \ldots & \frac{(m+d)!}{(m+d-2)!} c^{m+d-2} \\
0 & 0 & 0 & 3!c & 4!c & \ldots & \ldots & \frac{(m+d)!}{(m+d-3)!} c^{m+d-3} \\
\ldots & \frac{(m+d)!}{d!} c^d \\
0 & \ldots & \ldots & \ldots & m! & \ldots & \ldots & \frac{(m+d)!}{d!} c^d
\end{pmatrix}
\]

57
A being a $(d + 1) \times (m + d + 1)$ matrix, defined in Section 3.1,

\[
V_1 = \begin{pmatrix}
1 & c & c^2 & c^3 & \ldots & \ldots & \ldots & c^{m+d} \\
0 & 1 & 2c & 3c^2 & \ldots & \ldots & \ldots & (m + d)c^{m+d-1} \\
0 & 0 & 2! & 3!c & \ldots & \ldots & \ldots & \frac{(m + d)!}{(m + d - 2)!}c^{m+d-2} \\
0 & \ldots & \ldots & (m - 1)! & \ldots & \frac{(m + d)!}{(d + 1)!}c^{d+1} \\
\vdots & \vdots \\
0 & \ldots & \ldots & (m - 1)! & \ldots & \frac{(m + d)!}{(d + 1)!}c^{d+1} \\
\end{pmatrix}
\]

\[
V_2 = \begin{pmatrix}
0 \\
\frac{c}{2} & \frac{c^2}{3} & \frac{c^3}{4} & \ldots & \ldots & \ldots & \frac{c^{m+d+1}}{m + d + 1} \\
1 & c & c^2 & c^3 & \ldots & \ldots & \ldots & c^{m+d} \\
0 & 1 & 2c & 3c^2 & \ldots & \ldots & \ldots & (m + d)c^{m+d-1} \\
0 & 0 & 2! & 3!c & \ldots & \ldots & \ldots & \frac{(m + d)!}{(m + d - 2)!}c^{m+d-2} \\
0 & \ldots & \ldots & (m - 2)! & \ldots & \frac{(m + d)!}{(d + 2)!}c^{d+2} \\
\vdots & \vdots \\
0 & \ldots & \ldots & (m - 2)! & \ldots & \frac{(m + d)!}{(d + 2)!}c^{d+2} \\
\end{pmatrix}
\]

\[
V_3 = \begin{pmatrix}
0 \\
1 & 1/2 & 1/3 & \ldots & 1/(m + d + 1) \\
0 \\
\end{pmatrix}
\]

and the $m + d + 1$ dimensional vector

\[
g_n = (0, \ldots, 0, h(f(t_{n+1,c}) - f(t_{nc})), \ldots, h^m(f(t_{n+1,c}) - f(t_{nc}))).
\]

Alternative to the representation (7.7) is to write (7.5) for $n + 1$

\[
\sum_{k=i}^{m+d} \frac{k!}{(k-i)!} a_{n+1,k} c^{k-i} = ah \sum_{k=i-1}^{m+d} \frac{k!}{(k-i+1)!} a_{n+1,k} c^{k-i+1} \\
+ \lambda h^2 \sum_{k=i-2}^{m+d} \frac{k!}{(k-i+2)!} a_{n+1,k} c^{k-i+2} + h^i f^{(i-1)}(t_{n+1,c}),
\]

\[
i = 2, \ldots, m. \quad (7.8)
\]
Now equations (4.3), (7.2) and (7.1) give us

$$(V - \alpha hV_1 - \lambda h^2 V_2)\alpha_{n+1} = (\tilde{V}_0 - \alpha h\tilde{V}_1 - \lambda h^2 (\tilde{V}_2 - V_3))\alpha_n + \tilde{g}_n,$$

$$n = 1, \ldots, N - 1, \quad (7.9)$$

where $\tilde{V}_0, \tilde{V}_1, \tilde{V}_2$ are $(m + d + 1) \times (m + d + 1)$ matrices as follows:

$$\tilde{V}_0 = \begin{pmatrix} A \\ 0 & 1 & 2c & \ldots & (m + d)c^{m+d-1} \end{pmatrix},$$

$$\tilde{V}_1 = \begin{pmatrix} 1 & c & 0 & \ldots & c^{m+d} \end{pmatrix},$$

$$\tilde{V}_2 = \begin{pmatrix} c & \frac{c^2}{2} & \frac{c^3}{3} & \ldots & c^{m+d+1}/(m + d + 1) & 0 \end{pmatrix},$$

and, finally, the $m + d + 1$ dimensional vector

$$\tilde{g}_n = \begin{pmatrix} 0, \ldots, 0, h(f(t_{n+1,c}) - f(t_{nc})), h^2 f'(t_{n+1,c}), \ldots, h^m f^{(m-1)}(t_{n+1,c}) \end{pmatrix}.$$

Proposition 7.1 The matrix $V - \alpha hV_1 - \lambda h^2 V_2$ is invertible for sufficiently small h.

59
Proof. We have

\[\det V = \begin{vmatrix} (d + 1)c^d & \ldots & (m + d)c^{m+d-1} \\ (d + 1)!c^{d-1} & \ldots & (m + d)!(m + d - 2)!c^{m+d-2} \\ \vdots & & \vdots \\ (d + 1)!(d - (m - 1))!c^{d-(m-1)} & \ldots & (m + d)!d!c^d \end{vmatrix} = c^{md} \begin{vmatrix} (d + 1) & \ldots & (m + d) \\ (d + 1)! & \ldots & (m + d)!(m + d - 2)! \\ \vdots & & \vdots \\ (d + 1)!(d - (m - 1))! & \ldots & (m + d)!d! \end{vmatrix} = c^{md} \begin{vmatrix} (d + 1) & \ldots & (m + d) \\ (d + 1)(d + 2) & \ldots & (m + d)(m + d - 1) \\ \vdots & & \vdots \\ (d + 1)\ldots(d - (m - 2)) & \ldots & (m + d)\ldots(d + 1) \end{vmatrix} . \]

Transform the last determinant in the following way. Adding 1st row to 2nd one we get the squares in the 2nd row. But before, adding 2nd row twice to 3rd row and then, adding the obtained squares in the 2nd row to the new 3rd one, we will have cubes in 3rd row. This process could be extended also to get the powers in each row, thus, we get

\[\det V = c^{md} \begin{vmatrix} d + 1 & d + 2 & \ldots & m + d \\ (d + 1)^2 & (d + 2)^2 & \ldots & (m + d)^2 \\ \vdots & & \vdots & \vdots \\ (d + 1)^m & (d + 2)^m & \ldots & (m + d)^m \end{vmatrix} = c^{md}(d + 1)\ldots(m + d)V(d + 1, \ldots, m + d) , \]

where here and in the sequel \(V(x_1, \ldots, x_n) \) denotes Vandermonde’s determinant formed by the numbers \(x_1, \ldots, x_n \). So, the matrix \(V \) is invertible. Such is also \(V - \alpha h V_1 - \lambda h^2 V_2 \) for small \(h \).

60
7.2 Stability of the method

We have proved that for sufficiently small h the matrix $V - \alpha h V_1 - \lambda h^2 V_2$ is invertible. Therefore the equation (7.7) can be written as

$$\alpha_{n+1} = (V^{-1}V_0 + W)\alpha_n + r_n, \quad n = 1, \ldots, N - 1,$$ \hspace{1cm} (7.10)

with $W = O(h)$ and $r_n = O(h^2)$. Note that the equation (7.9) could be treated as we will do with the equation (7.7) and we could get the same results.

As in the previous sections we define stability as the boundedness of approximate solutions in uniform norm when the number of knots increases. It means that we need to valuate the roots of equation $\det(V_0 - \mu V) = 0$. Denote $\nu = 1 - \mu$. Based on results from Chapter 4, we already have the next result.

Proposition 7.2 For $m = 1$
1. If $d = 1$, then the method is stable if and only if $1/2 \leq c \leq 1$;
2. If $d = 2$, then the method is stable if and only if $c = 1$;
3. If $d \geq 3$, then the method is unstable for all $c \in (0, 1]$.

In the following we assume that $m \geq 2$ and $c = 1$. Recall that we assume $m \leq d$. Then

$$\det(V_0 - \mu V) =$$

$$\begin{vmatrix}
\nu & 1 & 1 & 1 & \ldots & 1 & 1 & \ldots & 1 \\
0 & \nu & 2 & 3 & \ldots & d & d + 1 & \ldots & m + d \\
0 & 0 & \nu & \binom{3}{2} & \ldots & \binom{d}{2} & \binom{d + 1}{2} & \ldots & \binom{m + d}{2} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \nu & \binom{d + 1}{d} & \ldots & \binom{m + d}{d} \\
\nu C & \binom{d + 1}{d} & \ldots & \binom{m + d}{d}
\end{vmatrix}.$$

First, we expand the determinant by the first column. Then, writing ν outside of the determinant we continue the transformation of $\det(V_0 - \mu V)$.
With

\[2! \ldots m! \nu^{m+1}. \]

\[
\begin{vmatrix}
\nu & 2 & 3 & \ldots & d & d+1 & \ldots & m+d \\
0 & \nu & \left(\frac{3}{2} \right) & \ldots & \left(\frac{d}{2} \right) & \left(\frac{d+1}{2} \right) & \ldots & \left(\frac{m+d}{2} \right) \\
\end{vmatrix}
\]

\[
\begin{vmatrix}
\nu & 1 & 2 & 3 & \ldots & d & d+1 & \ldots & m+d \\
0 & 1 & \left(\frac{3}{2} \right) & \ldots & \left(\frac{d}{2} \right) & \left(\frac{d+1}{2} \right) & \ldots & \left(\frac{m+d}{2} \right) \\
\end{vmatrix}
\]

\[= 2! \ldots m! \nu^{m+1}(\nu - 1)^m.\]

\[
\begin{vmatrix}
\nu & \left(\frac{m+2}{m+1} \right) & \ldots & \left(\frac{d}{m+1} \right) & \left(\frac{d+1}{m+1} \right) & \ldots & \left(\frac{m+d}{m+1} \right) \\
0 & \nu & \ldots & \left(\frac{d}{m+2} \right) & \left(\frac{d+1}{m+2} \right) & \ldots & \left(\frac{m+d}{m+2} \right) \\
\end{vmatrix}
\]

\[
\begin{vmatrix}
0 & \ldots & \ldots & \nu & \left(\frac{d+1}{d} \right) & \ldots & \left(\frac{m+d}{d} \right) \\
m+1 & m+2 & \ldots & d & d+1 & \ldots & m+d \\
\left(\frac{m+1}{2} \right) & \left(\frac{m+2}{2} \right) & \ldots & \left(\frac{d}{2} \right) & \left(\frac{d+1}{2} \right) & \ldots & \left(\frac{m+d}{2} \right) \\
\end{vmatrix}
\]

\[
\begin{vmatrix}
\left(\frac{m+1}{m} \right) & \left(\frac{m+2}{m} \right) & \ldots & \left(\frac{d}{m} \right) & \left(\frac{d+1}{m} \right) & \ldots & \left(\frac{m+d}{m} \right) \\
\end{vmatrix}
\]

\[= (-1)^{(d+2)} 2! \ldots m! \mu^m \nu^{m+1} \det \phi_{d,m}(\nu),\]
where
\[
\phi_{d,m}(\nu) = \begin{pmatrix}
\frac{m+1}{2} & \cdots & \frac{d}{2} & \frac{d+1}{2} & \cdots & \frac{m+d}{2} \\
\frac{m+1}{m} & \cdots & \frac{d}{m} & \frac{d+1}{m} & \cdots & \frac{m+d}{m} \\
\nu & \cdots & \frac{d}{m+1} & \frac{d+1}{m+1} & \cdots & \frac{m+d}{m+1} \\
0 & \cdots & \nu & \frac{d+1}{d} & \cdots & \frac{m+d}{d}
\end{pmatrix}.
\]

Denoting \(k = d - m \), write (7.11) as
\[
\phi_{m+k,m}(\nu) = a_{k,m}\nu^k + b_{k,m}\nu^{k-1} + \cdots + c_{k,m}. \tag{7.12}
\]

The transformations indicated in the proof of Proposition 7.1 allow to find the coefficient \(a_{k,m} \) from (7.11) as
\[
a_{k,m} = (-1)^{mk} \begin{vmatrix}
d + 1 & d + 2 & \cdots & m + d & \\
\frac{d+1}{2} & \frac{d+2}{2} & \cdots & \frac{m+d}{2} & \\
\frac{d+1}{m} & \frac{d+2}{m} & \cdots & \frac{m+d}{m} & \\
\frac{d+1}{d} & \frac{d+2}{d} & \cdots & \frac{m+d}{d} \\
\frac{d+1}{2!} \cdots \frac{m+d}{2!} & \frac{(d+1)^2}{2!} \cdots \frac{(m+d)^2}{2!} & \cdots & \frac{(m+d)^m}{2!} \cdots \frac{(m+d)^m}{2!} & \\
\end{vmatrix}
\]
\[
= (-1)^{mk} \frac{1}{2! \cdots m!} \begin{vmatrix}
d + 1 & d + 2 & \cdots & m + d \\
(d+1)^2 & (d+2)^2 & \cdots & (m+d)^2 \\
(d+1)^m & (d+2)^m & \cdots & (m+d)^m \\
\frac{d+1}{2!} \cdots \frac{m+d}{2!} & \frac{(d+1)^2}{2!} \cdots \frac{(m+d)^2}{2!} & \cdots & \frac{(m+d)^m}{2!} \cdots \frac{(m+d)^m}{2!} & \\
\end{vmatrix}
\]
\[
= (-1)^{mk} \left(\frac{d+1}{2!} \cdots \frac{m+d}{2!} \right) V(d+1, \ldots, m+d)
\]
\[
= (-1)^{mk} \left(\frac{d+1}{2!} \cdots \frac{m+d}{2!} \right) \frac{(m-1)! \cdots 2!}{2! \cdots m!}
\]
\[
= (-1)^{mk} \left(\frac{m+d}{m} \right) = (-1)^{mk} \left(\frac{m+d}{d} \right). \tag{7.13}
\]
Let us now discuss about the different choices of parameter m and d. First, assume that $d = m$. From (7.11) we have

\[
\phi_{m,m}(\nu) = \begin{vmatrix} m+1 & m+2 & \ldots & 2m \\ \binom{m+1}{2} & \binom{m+2}{2} & \ldots & \binom{2m}{2} \\ \cdots & \cdots & \cdots & \cdots \\ \binom{m+1}{m} & \binom{m+2}{m} & \ldots & \binom{2m}{m} \\ \nu & \binom{m+2}{m+1} & \ldots & \binom{2m+1}{m+1} \end{vmatrix}
\]

\[
= \frac{(m+1) \ldots 2m}{2! \ldots m!} V(m+1, \ldots, 2m) \neq 0.
\]

We see that the solutions of the equation $\text{det}(V_0 - \mu V) = 0$ are only $\nu = 0$ (i.e. $\mu = 1$) and $\mu = 0$. We have proved the following

Theorem 7.1 For $d = m$, the collocation method is stable.

Let us now look at the case $d = m + 1$. Here

\[
\phi_{m+1,m}(\nu) = \begin{vmatrix} m+1 & m+2 & \ldots & 2m+1 \\ \binom{m+1}{2} & \binom{m+2}{2} & \ldots & \binom{2m+1}{2} \\ \cdots & \cdots & \cdots & \cdots \\ \binom{m+1}{m} & \binom{m+2}{m} & \ldots & \binom{2m+1}{m} \\ \nu & \binom{m+2}{m+1} & \ldots & \binom{2m+1}{m+1} \end{vmatrix}
\]

\[
= a_{1,m} \nu + b_{1,m},
\]

with

\[
a_{1,m} = (-1)^m \binom{2m+1}{m}.
\]

Taking $\nu = 1 = \binom{m+1}{m+1}$ we get

\[
\phi_{m+1,m}(1) = \frac{(m+1) \ldots (2m+1)}{2! \ldots (m+1)!} V(m+1, \ldots, 2m+1)
\]

\[
= \binom{2m+1}{m+1} = (-1)^m a_{1,m}.
\]

On the other hand,

\[
\phi_{m+1,m}(1) = a_{1,m} + b_{1,m}.
\]
Thus,
\[b_{1,m} = (-1)^m a_{1,m} - a_{1,m} = ((-1)^m - 1) a_{1,m}. \]

Hence, the polynomial \(\phi_{m+1,m}(\nu) \) has the root \(\nu = 1 - (-1)^m \). This means that \(\det(V_0 - \mu V) = 0 \) has the corresponding root \(\mu = 1 \) or \(\mu = -1 \). We have proved

Theorem 7.2 For \(d = m + 1 \), the collocation method is stable.

In the next case we need an auxiliary result. Suppose \(q \leq p \). Let us consider

\[
W_{p,q,k}(\nu) = a\nu + b
\]

(7.14)

\[
\begin{vmatrix}
 p & p+1 & \ldots & p+k & p+k+2 & \ldots & p+q \\
 p & p+1 & \ldots & p+k & p+k+2 & \ldots & p+q \\
 \frac{p}{2} & \frac{p+1}{2} & \ldots & \frac{p+k}{2} & \frac{p+k+2}{2} & \ldots & \frac{p+q}{2} \\
 \nu & \frac{p+1}{q-1} & \ldots & \frac{p+k}{q-1} & \frac{p+k+2}{q-1} & \ldots & \frac{p+q}{q-1} \\
 \frac{p+1}{q-1} & \frac{p+1}{q-1} & \ldots & \frac{p+k}{q-1} & \frac{p+k+2}{q-1} & \ldots & \frac{p+q}{q-1} \\
 \frac{p+1}{q-1} & \frac{p+1}{q-1} & \ldots & \frac{p+k}{q-1} & \frac{p+k+2}{q-1} & \ldots & \frac{p+q}{q-1} \\
\end{vmatrix}
\]

Then

\[
a = (-1)^{q-1} \frac{(p+1) \ldots (p+k)(p+k+2) \ldots (p+q)}{2! \ldots (q-1)!} \
\cdot V(p+1, \ldots, p+k, p+k+2, \ldots, p+q).
\]

Similarly

\[
a \binom{p}{q} + b = \frac{p \ldots (p+k)(p+k+2) \ldots (p+q)}{2! \ldots q!} \
\cdot V(p, \ldots, p+k, p+k+2, \ldots, p+q).
\]
Note that
\[
V(p, \ldots, p + k, p + k + 2, \ldots, p + q) = \frac{q!}{k + 1} V(p + 1, \ldots, p + k, p + k + 2, \ldots, p + q).
\]

Thus,
\[
W_{p, q, k}(0) = b = a(p) + b - a(q)
\]
\[
= \frac{(p + 1) \ldots (p + k)(p + k + 2) \ldots (p + q)}{2! \ldots q!}
\]
\[
\cdot V(p + 1, \ldots, p + k, p + k + 2, \ldots, p + q)
\]
\[
\cdot \left[\frac{p}{k + 1} - (-1)^{q-1} \binom{p}{q}\right].
\]

(7.15)

Now for the case \(d = m + 2\) we have
\[
\phi_{m+2,m}(\nu) = a_{2,m} \nu^2 + b_{2,m} \nu + c_{2,m}.
\]

We will calculate explicitly the coefficients \(a_{2,m}, b_{2,m}\) and \(c_{2,m}\). Actually, the coefficient \(a_{2,m}\) is already found in (7.13) as
\[
a_{2,m} = \binom{2m + 2}{m + 2}.
\]

From the representations (7.11) and (7.12) we find

\[
c_{2,m} = \begin{vmatrix}
\binom{m + 1}{m} & \binom{m + 2}{m} & \binom{m + 3}{m} & \ldots & \binom{2m + 2}{m} \\
\binom{m + 1}{2} & \binom{m + 2}{2} & \binom{m + 3}{2} & \ldots & \binom{2m + 2}{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \binom{m + 2}{m + 1} & \binom{m + 3}{m + 1} & \ldots & \binom{2m + 2}{m + 1} \\
0 & 0 & \binom{m + 3}{m + 2} & \ldots & \binom{2m + 2}{m + 2}
\end{vmatrix}.
\]

(7.16)
Intending to develop the determinant (7.16) by last row, we see that the coefficient of the entry \(\binom{2m + 2}{m + 2} \) will be

\[
b_{1,m} = (1 - (-1)^m) \binom{2m + 1}{m}.
\]

The other minors occurring in the development are of kind \(W_{p,q,k}(0) \), where \(W_{p,q,k} \) is determined in (7.14), and they could be evaluated by the formula (7.15). The calculations, for \(m \) even, give

\[
c_{2,m} = \left(\frac{2m + 2}{m + 2} \right) \cdot 0 - \left(\frac{2m + 1}{m + 2} \right) \frac{1}{m} \frac{(2m + 2)!}{(m - 1)! (m + 1)! (2m + 1)}
\]

\[
+ \left(\frac{2m}{m + 2} \right) \frac{2}{m - 1} \frac{(2m + 2)!}{(m - 3)! (m + 1)! (2m) \cdot 2!}
\]

\[
- \left(\frac{2m - 1}{m + 2} \right) \frac{3}{m - 2} \frac{(2m + 2)!}{(m - 3)! (m + 1)! (2m - 1) \cdot 3!}
\]

\[
- \left(\frac{m + 3}{m + 2} \right) \frac{m - 1}{2} \frac{(2m + 2)!}{1! (m + 1)! (m + 3)(m - 1)!}
\]

\[
= \frac{(2m + 2)!}{(m + 2)!} \left[- \left(\frac{2m}{m + 1} \right) \frac{1}{m! 0!} + \left(\frac{2m - 1}{m + 1} \right) \frac{1}{(m - 1)! 1!}
\]

\[
- \left(\frac{2m - 2}{m + 1} \right) \frac{1}{(m - 2)! 2!} + \cdots - \left(\frac{m + 3}{m + 1} \right) \frac{1}{2! (m - 2)!} \right] \tag{7.17}
\]

and, for \(m \) odd, we have

\[
c_{2,m} = \frac{(2m + 2)!}{(m + 1)!} \left[\left(\frac{2m + 2}{m + 2} \right) \frac{1}{(m + 1)! 0!} - \left(\frac{2m + 1}{m + 2} \right) \frac{1}{m! 1!}
\]

\[
+ \left(\frac{2m}{m + 2} \right) \frac{1}{(m - 1)! 2!} \cdots + \left(\frac{m + 3}{m + 2} \right) \frac{1}{2! (m - 1)!} \right]. \tag{7.18}
\]

Denote by \(p_m \) the expression in brackets in (7.18). From (7.17) and (7.18) we get, for \(m \) odd,

\[
c_{2,m} = \frac{(2m + 2)!}{(m + 1)!} p_m
\]

67
and, for \(m + 1\) even (then \(m\) is odd),

\[
c_{2,m+1} = \frac{(2(m + 1) + 2)!}{(m + 1 + 2)!} (-p_m) = -\frac{(2m + 4)!}{(m + 3)!} p_m.
\]

Denote \(q_m = c_{2,m}/a_{2,m}\) and recalling that \(a_{2,m} = \binom{2m + 2}{m + 2}\), we have for \(m\) odd

\[
q_m = \frac{(2m + 2)!}{(m + 1)!} \frac{p_m (m + 2)! m!}{(2m + 2)!} = (m + 2) m! p_m.
\]

Similarly, for \(m + 1\) even,

\[
q_{m+1} = -(m + 1)! p_{m+1} = -\frac{m + 1}{m + 2} q_m.
\]

We have proved the following

Proposition 7.3 For \(m\) odd (then \(m + 1\) is even), it holds

\[
q_{m+1} = -\frac{m + 1}{m + 2} q_m.
\]

Next, for \(m\) even, we calculate \(q_m\). Using (7.17) we find

\[
q_m = \frac{c_{2,m}}{a_{2,m}} = \frac{1}{(m + 1)!} \left[-\binom{m}{0} \frac{(2m)!}{(m-1)!} + \binom{m}{1} \frac{(2m - 1)!}{(m-2)!}
- \binom{m}{2} \frac{(2m - 2)!}{(m-3)!} + \cdots - \binom{m}{m} \frac{(m + 2)!}{1!} \right].
\]

(7.19)

To give an explicit value to the right hand side of (7.19) we need following results.

Lemma 7.1 It holds

\[
\frac{d^m}{dx^m} \left(\frac{1}{x - 1} \right)^m \bigg|_{x=1} = (-1)^m m!.
\]

(7.20)

Proof. For \(m = 1\) we have

\[
\left(\frac{1}{x - 1} \right)' \bigg|_{x=1} = -\frac{1}{x^2} \bigg|_{x=1} = -1 = (-1)^1 \cdot 1!,
\]

which gives us the basis of induction. Assume that the formula (7.20) holds for \(m - 1\). We will show that then it holds for \(m\). Now, using the Leibniz formula

\[
(uv)^{(m)} = u^{(m)} v + \binom{m}{1} u^{(m-1)} v' + \binom{m}{2} u^{(m-2)} v'' + \cdots + u v^{(m)},
\]

68
we have
\[
\frac{d^m}{dx^m} \left(\frac{1}{x} - 1 \right)^m \bigg|_{x=1} = \frac{d^{m-1}}{dx^{m-1}} \left[m \left(\frac{1}{x} - 1 \right)^{m-1} \left(-\frac{1}{x^2} \right) \right] \bigg|_{x=1} = m \left[\frac{d^{m-1}}{dx^{m-1}} \left(\frac{1}{x} - 1 \right)^{m-1} \right] \left(-\frac{1}{x^2} \right) + (m-1) \left[\frac{d^{m-2}}{dx^{m-2}} \left(\frac{1}{x} - 1 \right)^{m-2} \right] \left[\frac{d}{dx} \left(-\frac{1}{x^2} \right) + \ldots \right] \bigg|_{x=1}.
\]
Except the first term, the derivatives from $1/x - 1$ will contain positive powers of it and, thus, give at $x = 1$ zero terms. Therefore, we get
\[
\frac{d^m}{dx^m} \left(\frac{1}{x} - 1 \right)^m \bigg|_{x=1} = m (-1)^{m-1} (m-1)!(-1) = (-1)^m m!,
\]
which completes the proof.

Lemma 7.2 It holds
\[
\frac{d^{m+1}}{dx^{m+1}} \left(\frac{1}{x} - 1 \right)^m \bigg|_{x=1} = (-1)^{m+1} m(m+1)!.
\tag{7.21}
\]

Proof. For $m = 1$ we have
\[
\left(\frac{1}{x} - 1 \right)'' \bigg|_{x=1} = \frac{2}{x^3} \bigg|_{x=1} = 2 = (-1)^2 \cdot 1 \cdot 2!
\]
as a basis of induction. Again, by Leibniz formula, we find
\[
\frac{d^{m+1}}{dx^{m+1}} \left(\frac{1}{x} - 1 \right)^m \bigg|_{x=1} = m \left[\frac{d^m}{dx^m} \left(\frac{1}{x} - 1 \right)^{m-1} \right] \left(-\frac{1}{x^2} \right) + \left(\frac{m}{1} \right) \left[\frac{d^{m-1}}{dx^{m-1}} \left(\frac{1}{x} - 1 \right)^{m-1} \left(-\frac{2}{x^3} \right) + \ldots \right] \bigg|_{x=1}.
\]
Now using (7.21) in the first term and Lemma 7.1 in the second one (other
terms are zero at \(x = 1 \), we get
\[
\left. \frac{d^{m+1}}{dx^{m+1}} \left(\frac{1}{x} - 1 \right) \right|_{x=1} = m((-1)^m(m-1)m!(-1)
\]
\[
+ m(-1)^{m-1}(m-1)! \cdot 2
\]
\[
= (-1)^{m+1}m(m+1)!
\]
The proof is complete.

Let us calculate, for \(m \) even, the left hand side of (7.21) otherwise:
\[
\left. \frac{d^{m+1}}{dx^{m+1}} \left(\frac{1}{x} - 1 \right) \right|_{x=1}
\]
\[
= \left. \frac{d^{m+1}}{dx^{m+1}} \left[\binom{m}{0} \left(\frac{1}{x} \right)^m - \binom{m}{1} \left(\frac{1}{x} \right)^{m-1} - \cdots - \binom{m}{m-1} \frac{1}{x} + \binom{m}{m} \right] \right|_{x=1}
\]
\[
= -\binom{m}{0} \frac{(2m)!}{(m-1)!} + \binom{m}{1} \frac{(2m-1)!}{(m-2)!} - \cdots + \binom{m}{m-1} \frac{(m+1)!}{0!}
\]
Taking into account the last result, Lemma 7.2 and (7.19), for \(m \) even, we get
\[
q_m = \frac{1}{(m+1)!} \left[\left. \frac{d^{m+1}}{dx^{m+1}} \left(\frac{1}{x} - 1 \right) \right|_{x=1} - \left(\frac{m}{m-1} \right)(m+1)! \right]
\]
\[
= \frac{1}{(m+1)!} \left[(-1)^{m+1}m(m+1)! - \frac{m!}{(m-1)!}(m+1)! \right]
\]
\[
= \frac{1}{(m+1)!} (m(m+1)! - m(m+1)!) = -2m.
\]
Now, for \(m \) odd (then \(m + 1 \) is even), by Proposition 7.3 we have
\[
q_m = -\frac{m+2}{m+1} q_{m+1} = -\frac{m+2}{m+1} (-2(m+1)) = 2(m+2).
\]
In consequence, we have proved the following

Proposition 7.4 For \(m \) even, \(q_m = -2m \) and, for \(m \) odd, \(q_m = 2(m+2) \).

Clearly, for \(m \geq 3 \), \(|q_m| > 4 \) and the collocation method is unstable. If \(m = 2 \), then \(q_m = -4 \), i.e., \(\nu_1\nu_2 = -4 \), \(\nu_1 \) and \(\nu_2 \) being the roots of the polynomial \(\phi_{4,2}(\nu) \). Therefore, it is not possible to have \(\nu_1 = \nu_2 = 2 \) and at least one of the solution of the equation \(\det(V_0 - \mu V) = 0 \) is located outside of the unit circle. Thus, we have proved the following

Theorem 7.3 For \(d = m + 2 \), the collocation method is unstable.

Although the knowledge of \(q_m = c_{2,m}/a_{2,m} \) has allowed to establish the instability of the method for \(d = m + 2 \), we may find explicitly the roots of \(\phi_{m+2,m}(\nu) \). These roots characterize quantitatively the unstable behaviour of the method. We have already \(a_{2,m} = \binom{2m + 2}{m + 2} \) and \(c_{2,m} = q_m a_{2,m} \). The coefficient \(b_{2,m} \) can be found as \(b_{2,m} = \phi_{m+2,m}(1) - a_{2,m} - c_{2,m} \). Developing the determinant

\[
\phi_{m+2,m}(1) = \begin{vmatrix}
 m + 1 & m + 2 & \ldots & 2m + 2 \\
 \binom{m + 1}{2} & \binom{m + 2}{2} & \ldots & \binom{2m + 2}{2} \\
 \ldots & \ldots & \ldots & \ldots \\
 \binom{m + 1}{m + 1} & \binom{m + 2}{m + 1} & \ldots & \binom{2m + 2}{m + 1} \\
 0 & \binom{m + 2}{m + 2} & \ldots & \binom{2m + 2}{m + 2}
\end{vmatrix}
\]

by the last row and using the technics indicated in the proof of Proposition 7.1, we obtain

\[
\phi_{m+2,m}(1) = \frac{(2m + 2)!}{m!(m + 2)!} \left[\binom{2m + 1}{m} - \binom{m}{1} \binom{2m}{m} + \binom{m}{2} \binom{2m - 1}{m} + \ldots + (-1)^m \binom{m}{m} \binom{m + 1}{m} \right]. \tag{7.22}
\]

Calculate the following derivative, using before the binomial expansion:

\[
\left. \frac{d^m}{dx^m} \left(\frac{1}{x - 1} \right)^m \frac{1}{x^2} \right|_{x=1} = (-1)^m m! \left[\binom{m}{0} \frac{(2m + 1)!}{(m + 1)! m!} - \binom{m}{1} \frac{(2m)!}{m! m!} + \binom{m}{2} \frac{(2m - 1)!}{(m - 1)! m!} - \ldots + (-1)^m \binom{m}{m} \frac{(m + 1)!}{1! m!} \right]. \tag{7.23}
\]

On the other hand,

\[
\left. \frac{d^m}{dx^m} \left(\frac{1}{x - 1} \right)^m \frac{1}{x^2} \right|_{x=1} = (-1)^m m!. \tag{7.24}
\]
Taking into account (7.22), (7.23) and (7.24), we obtain
\[
\phi_{m+2,m}(1) = \frac{(2m + 2)!}{m!(m+2)!} (-1)^{m+2} 1^{m+2} \left[\frac{d^{m+2}}{dx^{m+2}} \left(\frac{1}{x^2} \right) \right]_{x=1}
= \frac{(2m + 2)!}{m!(m+2)!} = a_{2,m}.
\]
Therefore,
\[
b_{2,m} = \phi_{m+2,m}(1) - a_{2,m} - c_{2,m} = -a_{2,m}q_m.
\]
and the roots of the polynomial \(\phi_{m+2,m}(\nu) = a_{2,m}(\nu^2 - q_m\nu + q_m) \) are
\[
\nu = \frac{q_m \pm \sqrt{q_m(q_m - 4)}}{2}.
\]
Thus, for \(m \) even, we get the roots
\[
\nu_{1,m} = -m + \sqrt{m(m+2)},
\nu_{2,m} = -m - \sqrt{m(m+2)}
\]
and, for \(m \) odd,
\[
\nu_{1,m} = m + 2 + \sqrt{m(m+2)},
\nu_{2,m} = m + 2 - \sqrt{m(m+2)}.
\]
The elementary analysis of the asymptotics implies

Proposition 7.5 In the case \(d = m + 2 \) it holds

- for \(m \) even, \(\nu_{1,m} \to -\infty \) and \(\nu_{2,m} \to -\infty \) as \(m \to \infty \);
- for \(m \) odd, \(\nu_{1,m} \to \infty \) and \(\nu_{2,m} \to 1 \) as \(m \to \infty \).

Let us now consider the general case \(d = m + k \). As we have seen, the polynomial \(\phi_{d,m}(\nu) = \psi_{m,k}(\nu) = a_{k,m}\nu^k + \ldots + c_{k,m} \) has the main coefficient
\[
a_{k,m} = (-1)^{mk} \binom{m + d}{m}.
\]
Denote here the maximal root by modulus of \(\psi_{m,k}(\nu) \) by \(\nu_{m,k} \). We have already proved that, for \(m \) even, \(\nu_{m,2} \to -\infty \) and, for \(m \) odd, \(\nu_{m,2} \to \infty \) as \(m \to \infty \). We state the following

Conjecture For all \(k \geq 2 \) it holds

- for \(m \) even, \(\nu_{m,k} \to -\infty \) as \(m \to \infty \);
- for \(m \) odd, \(\nu_{m,k} \to \infty \) as \(m \to \infty \).

This assertion could be proved, e.g., taking into account the behaviour of \(\psi_{m,k}(\nu) \) as \(\nu \to \infty \) or \(\nu \to -\infty \) and showing that, for \(k \) even, \(\psi_{m,k+1}(\nu_{m,k}) > 0 \), and, for \(k \) odd, \(\psi_{m,k+1}(\nu_{m,k}) < 0 \). In the following table we present some numerical results about the value of \(\psi_{m,3}(\nu_{m,2}) \) supporting the conjecture:
However, the validity of the conjecture yields the instability of the collocation method for all $k = d - m \geq 2$. This would be in complete accordance with the results by H. N. Mülthei about the convergence of step-by-step collocation for the Cauchy problem of ordinary differential equations (see Section 1.1).

Another way to prove the instability for $k \geq 2$ is to show that $c_{k,m}/a_{k,m} > 2^k$. But this would not characterize quantitatively the unstable behaviour of the method as well as the conjecture.

<table>
<thead>
<tr>
<th></th>
<th>$v_{m,2}$</th>
<th>$\psi_{m,3}(v_{m,2})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>$\nu_{m,2}$</td>
<td>-4.828</td>
<td>8.873</td>
</tr>
<tr>
<td>$\psi_{m,3}(\nu_{m,2})$</td>
<td>9.456 · 10³</td>
<td>1.364 · 10⁵</td>
</tr>
<tr>
<td>m</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>$\nu_{m,2}$</td>
<td>12.916</td>
<td>-12.928</td>
</tr>
<tr>
<td>$\psi_{m,3}(\nu_{m,2})$</td>
<td>1.172 · 10⁷</td>
<td>8.650 · 10⁷</td>
</tr>
</tbody>
</table>
8.1 First order VIDE

Consider the 1st order Volterra integro-differential equation

\[y'(t) = y(t) + \int_0^t y(s)ds - (\cos t - 3\sin t - e^t)/2 \] \hspace{1cm} (8.1)

with \(y(0) = 1 \). This equation has the exact solution \(y(t) = (\sin t + \cos t + e^t)/2 \). As an approximate value of \(||u||_\infty \) we actually calculate

\[\max_{1 \leq n \leq N} \max_{0 \leq k \leq 10} |u_n(t_{n-1} + kh/10)|. \]

The results are presented in following tables.

Case \(d = 0, m = 1 \) (linear splines)

<table>
<thead>
<tr>
<th>N</th>
<th>4</th>
<th>16</th>
<th>64</th>
<th>256</th>
<th>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_1 = 1.0)</td>
<td>2.105018</td>
<td>2.059782</td>
<td>2.052299</td>
<td>2.050586</td>
<td>2.050062</td>
</tr>
<tr>
<td>(c_1 = 0.5)</td>
<td>2.049933</td>
<td>2.050022</td>
<td>2.050027</td>
<td>2.050028</td>
<td>2.050028</td>
</tr>
</tbody>
</table>

Case \(d = 0, m = 2 \)

<table>
<thead>
<tr>
<th>N</th>
<th>4</th>
<th>16</th>
<th>64</th>
<th>256</th>
<th>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_1 = 0.7)</td>
<td>2.042611</td>
<td>2.049641</td>
<td>2.050004</td>
<td>2.050026</td>
<td>2.050028</td>
</tr>
<tr>
<td>(c_2 = 1.0)</td>
<td>2.049933</td>
<td>2.049933</td>
<td>2.050027</td>
<td>2.050028</td>
<td>2.050028</td>
</tr>
<tr>
<td>(c_1 = 0.4)</td>
<td>2.047681</td>
<td>2.049882</td>
<td>2.050018</td>
<td>2.050027</td>
<td>2.050028</td>
</tr>
<tr>
<td>(c_2 = 0.6)</td>
<td>2.049933</td>
<td>2.049933</td>
<td>2.050027</td>
<td>2.050028</td>
<td>2.050028</td>
</tr>
</tbody>
</table>
Case $d = 1$, $m = 1$ (quadratic splines)

<table>
<thead>
<tr>
<th>N</th>
<th>4</th>
<th>16</th>
<th>64</th>
<th>256</th>
<th>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c_1 = 1.0$</td>
<td>2.055503</td>
<td>2.050359</td>
<td>2.050048</td>
<td>2.050029</td>
<td>2.050028</td>
</tr>
<tr>
<td>$c_1 = 0.5$</td>
<td>2.047524</td>
<td>2.049863</td>
<td>2.050017</td>
<td>2.050027</td>
<td>2.050028</td>
</tr>
<tr>
<td>$c_1 = 0.4$</td>
<td>2.047418</td>
<td>2.049880</td>
<td>8.962233</td>
<td>2.69 · 10^3</td>
<td>1.83 · 10^{65}</td>
</tr>
</tbody>
</table>

Case $d = 1$, $m = 2$ (Hermite cubic splines)

<table>
<thead>
<tr>
<th>N</th>
<th>4</th>
<th>16</th>
<th>64</th>
<th>256</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c_1 = 0.5$, $c_2 = 1.0$</td>
<td>2.050006</td>
<td>2.050027</td>
<td>2.050028</td>
<td>2.050028</td>
</tr>
<tr>
<td>$c_1 = 0.3$, $c_2 = 0.7$</td>
<td>2.049615</td>
<td>2.050001</td>
<td>2.050026</td>
<td>2.050027</td>
</tr>
<tr>
<td>$c_1 = 0.2$, $c_2 = 0.5$</td>
<td>2.043332</td>
<td>$3.21 \cdot 10^2$</td>
<td>$9.21 \cdot 10^{28}$</td>
<td>$1.39 \cdot 10^{142}$</td>
</tr>
</tbody>
</table>

Case $d = 2$, $m = 1$ (cubic splines)

<table>
<thead>
<tr>
<th>N</th>
<th>4</th>
<th>16</th>
<th>64</th>
<th>256</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c_1 = 1.0$</td>
<td>2.050148</td>
<td>2.050028</td>
<td>2.050028</td>
<td>2.050028</td>
</tr>
<tr>
<td>$c_1 = 0.9$</td>
<td>2.049806</td>
<td>2.049992</td>
<td>5.773942</td>
<td>$1.60 \cdot 10^{29}$</td>
</tr>
<tr>
<td>$c_1 = 0.5$</td>
<td>2.054945</td>
<td>$3.30 \cdot 10^4$</td>
<td>$7.30 \cdot 10^{38}$</td>
<td>$2.77 \cdot 10^{183}$</td>
</tr>
</tbody>
</table>

For piecewise polynomial splines we look at the equation

$$y'(t) = \alpha y(t) + \lambda \int_0^t y(s) ds - (\cos t - 3 \sin t - e^t)/2 \quad (8.2)$$

with $y(0) = 1$, but with different choices of parameters α and λ. The results are presented in following tables.

Case $m = 2$

$\alpha = 1$, $\lambda = 1$

<table>
<thead>
<tr>
<th>N</th>
<th>4</th>
<th>16</th>
<th>64</th>
<th>256</th>
<th>1024</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c_1 = 0.1$, $c_2 = 0.2$</td>
<td>1.81554</td>
<td>1.77374</td>
<td>1.76551</td>
<td>1.76302</td>
<td>1.76254</td>
</tr>
<tr>
<td>$c_1 = 0.5$, $c_2 = 1.0$</td>
<td>1.78039</td>
<td>1.76705</td>
<td>1.76353</td>
<td>1.76264</td>
<td>1.76242</td>
</tr>
</tbody>
</table>

75
\[\alpha = 1, \lambda = -1 \]

<table>
<thead>
<tr>
<th>(c_1)</th>
<th>(c_2)</th>
<th>(N)</th>
<th>4</th>
<th>16</th>
<th>64</th>
<th>256</th>
<th>1024</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.5</td>
<td>5.01</td>
<td>12.76</td>
<td>(1.27 \cdot 10^{15})</td>
<td>(1.32 \cdot 10^{66})</td>
<td>(9.82 \cdot 10^{271})</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>0.7</td>
<td>3.71489</td>
<td>3.59568</td>
<td>3.56853</td>
<td>3.56193</td>
<td>3.56029</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>1.0</td>
<td>3.48369</td>
<td>3.52181</td>
<td>3.55030</td>
<td>3.55739</td>
<td>3.55916</td>
<td></td>
</tr>
</tbody>
</table>

Case \(m = 3 \)

\[\alpha = 1, \lambda = 1 \]

<table>
<thead>
<tr>
<th>(c_1)</th>
<th>(c_2)</th>
<th>(c_3)</th>
<th>(N)</th>
<th>4</th>
<th>16</th>
<th>64</th>
<th>256</th>
<th>1024</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>1.64625</td>
<td>1.66144</td>
<td>1.66684</td>
<td>1.66827</td>
<td>1.66863</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.5</td>
<td>0.9</td>
<td>1.65331</td>
<td>1.66493</td>
<td>1.66779</td>
<td>1.66851</td>
<td>1.66869</td>
<td></td>
</tr>
</tbody>
</table>

\[\alpha = 2, \lambda = -2 \]

<table>
<thead>
<tr>
<th>(c_1)</th>
<th>(c_2)</th>
<th>(c_3)</th>
<th>(N)</th>
<th>4</th>
<th>16</th>
<th>64</th>
<th>256</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>58.07</td>
<td>(9.08 \cdot 10^8)</td>
<td>(7.11 \cdot 10^{37})</td>
<td>(2.79 \cdot 10^{153})</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.5</td>
<td>0.8</td>
<td>3.82646</td>
<td>3.78772</td>
<td>3.77323</td>
<td>3.76931</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>0.6</td>
<td>0.9</td>
<td>3.02214</td>
<td>2.56511</td>
<td>2.56229</td>
<td>2.56247</td>
<td></td>
</tr>
</tbody>
</table>

We can see different dependence of the stability on the cases \(Q_m = 0 \) and \(Q_m \neq 0 \) (depending on the choice of \(\alpha \) and \(\lambda \)), as well as on different choices of \(c_i \).

8.2 Second order VIDE

We consider the 2nd order integro-differential equation

\[
y''(t) = y(t) + y'(t) + \int_0^t y(s)ds - \sin(t) - \cos(t) - e^t \tag{8.3}
\]
with \(y'(0) = 1, y'(0) = 1 \) on the interval \([0, 1]\). This equation has the exact solution
\[
y(t) = \frac{(\sin t + \cos t + e^t)}{2} \]
(which was also the solution of (8.1)). The results are presented in following tables.

Case \(d = 1, m = 1 \) (quadratic splines)

<table>
<thead>
<tr>
<th>N</th>
<th>4</th>
<th>16</th>
<th>64</th>
<th>256</th>
<th>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_1 = 0.5)</td>
<td>2.053593</td>
<td>2.050242</td>
<td>2.050041</td>
<td>2.050028</td>
<td>2.050028</td>
</tr>
<tr>
<td>(c_1 = 1.0)</td>
<td>2.112955</td>
<td>2.060136</td>
<td>2.052332</td>
<td>2.050591</td>
<td>2.050062</td>
</tr>
</tbody>
</table>

Case \(d = 1, m = 2 \) (Hermite cubic splines)

<table>
<thead>
<tr>
<th>N</th>
<th>4</th>
<th>16</th>
<th>64</th>
<th>256</th>
<th>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_1 = 0.4, c_2 = 0.6)</td>
<td>2.047625</td>
<td>2.049880</td>
<td>2.050018</td>
<td>2.050027</td>
<td>2.050028</td>
</tr>
<tr>
<td>(c_1 = 0.7, c_2 = 1.0)</td>
<td>2.042264</td>
<td>2.049630</td>
<td>2.050004</td>
<td>2.050026</td>
<td>2.050028</td>
</tr>
</tbody>
</table>

Case \(d = 2, m = 1 \) (cubic splines)

<table>
<thead>
<tr>
<th>N</th>
<th>4</th>
<th>16</th>
<th>64</th>
<th>256</th>
<th>512</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_1 = 0.2, c_2 = 0.5)</td>
<td>2.047252</td>
<td>2.049817</td>
<td>61.720406</td>
<td>1.60 \cdot 10^{45}</td>
<td>1.20 \cdot 10^{47}</td>
</tr>
<tr>
<td>(c_1 = 0.5, c_2 = 0.7)</td>
<td>2.047590</td>
<td>2.049861</td>
<td>2.050017</td>
<td>2.050027</td>
<td>2.050027</td>
</tr>
<tr>
<td>(c_1 = 1.0, c_2 = 1.0)</td>
<td>2.055555</td>
<td>2.050364</td>
<td>2.050048</td>
<td>2.050028</td>
<td>2.050028</td>
</tr>
</tbody>
</table>

Case \(d = 2, m = 2 \)

<table>
<thead>
<tr>
<th>N</th>
<th>4</th>
<th>64</th>
<th>256</th>
<th>512</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_1 = 0.2, c_2 = 0.5)</td>
<td>2.049254</td>
<td>7.65 \cdot 10^{26}</td>
<td>2.89 \cdot 10^{139}</td>
<td>1.21 \cdot 10^{292}</td>
</tr>
<tr>
<td>(c_1 = 0.3, c_2 = 0.7)</td>
<td>2.049935</td>
<td>2.050027</td>
<td>2.050028</td>
<td>2.050028</td>
</tr>
<tr>
<td>(c_1 = 0.5, c_2 = 1.0)</td>
<td>2.050015</td>
<td>2.050028</td>
<td>2.050028</td>
<td>2.050028</td>
</tr>
</tbody>
</table>

8.3 Collocation with multiple nodes for first order VIDE

We explore the equation

\[
y'(t) = y(t) + \int_0^t y(s)ds - (\cos t - 3 \sin t - e^t)/2 \]

(8.4)

with \(y(0) = 1 \). The results are presented in following tables.
From these numerical examples we can observe a good conformity in the preceding sections and corresponding results given in this section.
REFERENCES

KOKKUVÕTE
Splain-kollokatsioonimeetodi stabiilsus Volterra integro-diferentsiaalvõrrandi korral

Me ütleme, et splain-kollokatsioonimeetod on stabiilne, kui teatava testvõrrandi ligikaudne lahend on tõestatud protsessis, kus ühtlase võrgu sõlmide arv kasvab.

Käesolevas doktoritöös on vaatluse all nii esimest kui ka teist järku Volterra integro-diferentsiaalvõrrandi. Selgub, et kasutades splain-kollokatsioonimeetodit, tekib üleminekul ühest teatava funktsionaalmaatriksi ning stabiilsuse tingimused on leitavad vastava üleminekumaatriksi omavõrdsete abil.

Töö esimeses peatükis antakse lühikese ülevaade integraalvõrrandite teooria ajaloost. Näidatud on, kuidas saab esimest järku Volterra integro-diferentsiaalvõrrandi lahendamist taandada Volterra integraalvõrrandi lahendamisele ja teist järku integro-diferentsiaalvõrrandi lahendamist esimest järku võrrandi lahendamisele.

Selgub, et teatud konstantse tuumaga testvõrrand, mida kasutatakse stabiilsuse uurimisel, teisendub integraalvõrrandi ja seega tulemused, mis on saadud integraalvõrrandite korral, ei ole otseselt rakendatavad integro-diferentsiaalvõrranditele.

Teises peatükis on kirjeldatud kasutatavat splain-kollokatsioonimeetodi stabiilsuse uurimisel, teisendub taandamisel mittekonstantse tuumaga võrrandiks. Seejärel tulemused, mis on saadud integraalvõrrandite korral, ei ole otseselt rakendatavad integro-diferentsiaalvõrranditele.

Kolmas peatükis annab esmakordselt ülevaate tulemustest, mis on saadud Volterra integraalvõrrandi stabiilsuse uurimisel. Teise punktina on toodud vajalike tulemustest lineaaralgebrast.

Neljaspeatükis on kirjeldatud kasutatava splain-kollokatsioonimeetodi stabiilsuse ning stabiilsuse tingimuste vahelise seose esimest järku integro-diferentsiaalvõrrandi ja integraalvõrrandi korral. Mõningas juhul ei saa täpsed tulemused, mis näitavad stabiilsuse sõltuvust kollokatsiooniparametreid.

Viiendas peatükis on vaadeldud kollokatsioonimeetodi stabiilsust, kus kasutatakse polünomiaalse seos esimest järku integro-diferentsiaalvõrrandi ja integraalvõrrandi korral. Sellisel juhul sõltub meetodi stabiilsus polünomiaalse seos ja integraalvõrrandi parametreid.

Kuues peatükis käsitleb kollokatsioonimeetodi stabiilsust teist järku võr-

82
randi korral. Näidatud on stabiilsustingimuste vaheline seos esimest ja teist järku integro-diferentsiaalvörrandite korral.

Seitmendas peatükis uuritakse meetodi stabiilsust kordsete kollokatsioonisõlmide korral. Lähemalt on vaadeldud juhtu, kui meil on vaid üks kollokatsiooniparametre, mille kordsus on m.

Töö kaheksandas peatükis on toodud rida numbrilisi eksperimente, millest selgub, et numbrilised tulemused on täielikus kooskõlas teoreetiliste tulemustega.
ACKNOWLEDGEMENT

I wish to express my appreciation to my supervisor associated prof. Peeter Oja for his advises in all phases of this work.
I am also grateful to all my friends and family for their support and encouragement.
CURRICULUM VITAE

Mare Tarang

Born: January 1, 1975, Jõgeva, Estonia.
Nationality: Estonian.
Marital Status: single.
Address: Institute of Applied Mathematics, J. Liivi 2, 50409 Tartu, Estonia
Phone: +372 7376 426, e-mail: Mare.Tarang@ut.ee.

Education

1998 Faculty of Mathematics, University of Tartu.
1998-2000 Master student at the Institute of Applied Mathematics, University of Tartu.
June 2000 Magister Scientarium.
2000-2004 PhD student at the Institute of Applied Mathematics, University of Tartu.

Special courses

Professional employment

Scientific work

CURRICULUM VITAE

Mare Tarang

Kodakond: Eesti.
Perekonnaseis: vallaline.
Aadress: TÜ rakendusmatemaatika instituut, J. Liivi 2, 50409 Tartu, Eesti
Tel: +372 7376 426, e-post: Mare.Tarang@ut.ee.

Haridus

1998 Tartu Ülikooli matemaatikateaduskond.
juuni 2000 Magister Scientarium.

Erialane enesetäiendus

Erialane teenistuskäik

Teaduslik tegevus

LIST OF PUBLICATIONS

