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ABSTRACT

Scientific computing applies computational methods to solve problems in
genetics, biology, material science, chemistry etc., where complex real life
processes need to be modeled and simulated or where a large amount of
data needs to be analyzed. It is strongly associated with parallel program-
ming and high-performance computing (HPC) as it typically requires uti-
lization of a large amount of computer resources from local clusters and
grids to supercomputers.

Public clouds can provide these resources on-demand and in real-time
but they are often built on commodity hardware and it’s not simple to de-
sign applications that can efficiently utilize their resources en masse and in
fault tolerant manner. Frameworks based on distributed computing models
such as MapReduce can significantly simplify this work by providing near
automatic parallelization and fault recovery. Our first research task was to
investigate the suitability of Hadoop MapReduce for more complex scien-
tific computing algorithms and to identify what algorithm characteristics
affect the parallel efficiency of the results.

Hadoop MapReduce could easily handle more simple, embarrassingly
parallel algorithms, such as trial division or Monte Carlo methods. How-
ever, it had serious issues with more complex and especially iterative algo-
rithms, such as the conjugate gradient method. To be able to exploit Map-
Reduce advantages (such as near automatic parallelization and fault re-
covery) for more complex algorithms, we proposed and investigated three
different approaches.

The first approach was to reduce the number of iterations by restructur-
ing the algorithms or using alternative methods that might be less efficient,
but would suit the MapReduce model better. The second approach was
evaluating alternative MapReduce frameworks (such as Twister, HaLoop
or Spark) that are specifically designed for iterative algorithms and analyz-
ing whether they provide the same aforementioned advantages as Hadoop.



The third approach was investigating frameworks from an alternative, Bulk
Synchronous Parallel distributed computing model.

Our conclusions were that the first approach would require domain spe-
cific expert knowledge of the involved methods and Hadoop MapReduce
framework. The alternative distributed computing frameworks investigated
in the second and third approaches often produced better results than Ha-
doop MapReduce, but there is no single framework that suits all different
types of scientific computing algorithms.

The efficiency of the result can depend on algorithm characteristics
such as the size of data stored in memory or required communication pat-
terns and choosing the best suited distributed distributed computing frame-
works can be a very complicated task. One approach would be to choose
the most likely framework candidates, implement the algorithm on each of
them and perform benchmarking. But this would require relatively large
amount of programming and debugging effort and require studying each
of the chosen distributed computing frameworks in detail.

This process could be complicated further by the possibility that differ-
ent distributed computing frameworks might be more suitable for different
algorithms part of the same scientific computing application. Emerging
technologies (such as Hadoop Yarn or Aneka) can alleviate this issue by
enabling on—demand switching between different distributed computing
frameworks for different tasks. However, the actual choice between differ-
ent distributed computing models and their implementations is still left up
to the user, which can be a very difficult task when the number of available
frameworks is high.

We created a Dynamic Algorithm Modeling Application (DAMA) for
simulating the parallel structure of scientific computing algorithms and de-
fined a methodology which uses DAMA to identify the most suitable dis-
tributed computing framework for a given scientific computing algorithm.

DAMA is implemented on a number of distributed computing frame-
works and can be used to estimate the performance of modeled algorithms
by using it as a benchmark in real distributed computing environments.
The suitability of distributed computing frameworks and parallel program-
ming libraries can be evaluated without having to implement the given
algorithm to any of them and all the programming and debugging tasks
can be postponed until the final parallel programming solution has been
chosen.
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CHAPTER 1
INTRODUCTION

Computer resources that are required for large scale scientific computing
applications have historically been provided by supercomputers and com-
puter grids, but cloud computing [7] has risen as a competitor for these
types of distributed computing resources. Public cloud providers follow-
ing the Infrastructure as a Service (IaaS) model provide virtually unlimited
computing resources on demand and nearly in real-time.

Public clouds also provide a number of additional advantages to scien-
tific computing applications. Users do not have to wait in resource queues
like in grids and are not bound by the limits of their local resources. Clouds
provide users full access to virtual machines instead of giving limited ac-
cess to the underlying machine. Users are able to choose the operating
system, its configuration, software packages and libraries, allowing them
to fully configure the environment their applications run in.

When users are not interested in configuring the hardware and instead
want to directly deploy their applications in a pre-configured system (sim-
ilar to grid job submission systems), they can use the Platform as a Service
(PaaS) model of the cloud instead. In PaaS the cloud service provider sets
up and manages the platform for the users and users can simply deploy
and execute their applications or experiments there. Furthermore, it is also
possible to provide existing scientific computing applications using Soft-
ware as a Service (SaaS) cloud computing model, where applications are
deployed in cloud platforms and users can use them directly without any
installation or configuration required.

These advantages can be very useful for scientists who do not have con-
sistent access to computing resources or whose peak computing resource
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needs often greatly exceed their available resources. However, clouds also
have several disadvantages. In comparison to many collaborative research
grids, public clouds use the utility pricing model and the users have to pay
for the used resources. It has also been well documented [8, 9, 10] that the
virtualization layer, which is used to simplify and speed up cloud resource
provisioning, also increases the computation and communication latencies.

The first disadvantage can be a serious issue, but by providing easier
access to computing resources, clouds enable scientists to run larger scien-
tific computing experiments and help them keep up with the ever increasing
resource demands of the new advances in sciences. That is, only as long as
the users can budget the costs of the experiments. The second disadvantage
can’t be overcome easily, but the situation has improved steadily with the
advances in virtualization technologies and with cloud provides like Ama-
zon giving access to dedicated high performance computing instances that
have lower virtualization overheads.

Additionally, having more and more computing resources available
also means that the applications must be able to properly utilize these re-
sources. Typical approach is to create distributed applications using the
de-facto standard Message Passing Interface (MPI) [11] for synchronizing
the computations across a number of machines. However, designing, writ-
ing and debugging MPI applications is not a simple task. When using MPI
parallel programming library, programmers have full control over how the
distributed program is executed. They have to explicitly specify how the
input data is partitioned, how the data and processes are synchronized, how
to avoid communication deadlocks, etc. Furthermore, these tasks become
more complicated as the number of concurrent processes increases.

Another important factor when running resource hungry and poten-
tially very long running scientific applications is fault tolerance. When
running applications on hardware consisting of thousands or even hundreds
of thousands of processor cores, the likelihood of failures is significant.

MPI applications do not have good means to recover from machine
or network failures. There has been extensive work [12, 13, 14] done to
introduce fault tolerance and recovery to MPI implementations, but it has
not advanced to the stage where it has become a part of the MPI standard
or its widely used implementations. Failed MPI applications have to be
re-executed, which can become a costly venture in cloud where you have
to pay for the used resources whether the experiments were successful or
not.
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Moreover, when the quantity of computer resources is increased, the
frequency of failures also increases dramatically. It has become one of
the most important problems with the constant increase in computation
power requirements of modern science. In large supercomputers consisting
of hundreds of thousands of processor cores, it is not uncommon to have
failures every few minutes or even more often [15]. For these reasons,
creating reliable distributed applications is often a very complex and time
consuming task.

However, a number of distributed computing frameworks have been
created that advertise to greatly simplify creating distributed applications
by taking care of the most complex parallel processing tasks for the user.
This is typically achieved by forcing users to follow specific distributed
computing models when implementing algorithms. No longer having full
control over how the distributed applications are executed is the main dif-
ference between using distributed computing frameworks and parallel pro-
gramming libraries such as MPL.

One of the most widely used distributed computing frameworks is Map-
Reduce [16] which was first created by Google in 2004 for large scale data
processing. Google published in 2008 that they use it to daily process
more than 20 petabytes. While the Google MapReduce implementation is
proprietary, there exist a number of freely available alternatives of which
Hadoop [17] is the most popular in both industry and research.

The main advantages of the Hadoop MapReduce framework are fault
tolerance and near-automatic parallelization for algorithms adapted to the
MapReduce model. MapReduce input files are divided into smaller blocks,
are replicated (3 copies by default) and are divided between machines in
the cluster to provide fault tolerance for the data. When a MapReduce job
is started, the framework decides which machine processes which block,
executes computations in a distributed fashion and takes care of all task
and data synchronization issues. When some of the MapReduce tasks fail,
framework re-executes them on other machines, thus allowing applications
to survive occasional machine or network failures.

When writing MapReduce applications, user only has to define map
and reduce methods to specify how input data is parsed, processed, grouped
by and aggregated. Everything else is managed by the framework automat-
ically. Section 2.1.1 describes the MapReduce model in more detail.

While near-automatic parallelization and fault tolerance are definite ad-
vantages for distributed applications, the MapReduce model is mainly de-
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signed for relatively simple data processing algorithms (such as word count
or inverse term frequency in documents) which do not require much data
synchronization and are generally characterized as embarrassingly parallel
algorithms. While the scientific computing field uses a number of embar-
rassingly parallel algorithms [18, 19, 4], most of the scientific computing
algorithms are more complex and require many synchronization steps.

One MapReduce job consists of a single Map and a single Reduce
operation and the data synchronization is only performed between these
two operations, which makes adapting complex scientific computing algo-
rithms to MapReduce a non-trivial task. How to adapt scientific computing
algorithms to MapReduce is discussed in more detail in Chapter 3.

However, the advantages of MapReduce, like automatic parallelization
and fault tolerance, are very useful for any distributed application and the
scientific computing applications are no exceptions. For this reason we de-
cided to study in more detail what kind of algorithms MapReduce frame-
works are suitable for, and whether there are alternative frameworks which
are suitable for other types of algorithms.

There have been a number of studies that have examined using Map-
Reduce for solving scientific computing problems, but most often they do
not step further from the results of individual algorithms. While some of
them provide solutions for more complex scientific computing problems,
it is typically in the shape of specifically designed new implementations of
the MapReduce model. Examples of such frameworks are Twister [20] and
HaLoop [21], which are described in Section 2.1.1. However, these frame-
works often give up some of the original MapReduce advantages (such as
fault tolerance), which was one of the main reasons why we were interested
in this distributed computing model.

Furthermore, several technologies such as Hadoop Yarn [22] and Aneka
[23] distributed computing platforms have emerged in recent years which
separate the computer resource utilization, task scheduling and execution
from the actual computational engine that is used to execute the user de-
fined tasks and allow users to switch between different distributed comput-
ing frameworks on the fly. This gives us the freedom to choose different
distributed computing frameworks for different types of tasks.
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1.1 Problem Statement

Creating distributed applications using parallel programming libraries (such
as Message Passing Interface (MPI)) which are typically used in scientific
computing field can be a very difficult and time consuming task because
users have to explicitly take care of many of the parallelization tasks and
deal with any debugging issues.

Distributed computing frameworks (such as Hadoop MapReduce) have
potential to significantly simplify creating distributed applications by man-
aging some of the parallelization issues for the user. For example, Hadoop
MapReduce framework takes care of input data partitioning, replication
and distribution. It manages task delegation, computing resource alloca-
tion and re-execution of failed tasks. It also manages how intermediate
data is synchronized between concurrently running processes and avoids
any deadlocks and race conditions.

Utilizing such frameworks could greatly reduce the time and effort
needed to create distributed computing applications. However, distributed
computing frameworks typically put some restrictions on their applica-
tions, such as having to follow specific distributed computing model or
only supporting certain input data types or structures. Thus they can not
be expected to be suitable for all types of algorithms. In addition, perfor-
mance is very critical for scientific computing applications, so distributed
computing frameworks must be able to run scientific computing algorithms
in an efficient manner.

The main research question we want to answer in this work is: Can
the process of parallelizing scientific computing algorithms be significantly
simplified by adapting them to distributed computing frameworks, while
not reducing the parallel efficiency and scalability of the result?

The clarify, the specific expectations from adapting scientific comput-
ing algorithms to distributed computing frameworks are the following:

1. Ease of parallel programming - Distributed computing framework
should manage parallelization tasks for the user. User should be
able to concentrate more on the algorithm implementation and less
on how to utilize distributed computing resources.

2. Ease of debugging - framework should automatically manage the
task and data synchronization issues (such as race conditions and
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deadlocks) that arise from using multi-core and multi-machine com-
puting environments.

3. Automatic fault tolerance - Framework should automatically re-
cover from faults and manage fault tolerance related tasks of the ap-
plications.

4. Good parallel efficiency - The adapted algorithms should be able to
achieve good parallel efficiency. It is difficult to define what “good”
parallel efficiency is for different algorithms. Thus, to provide per-
spective, it should be evaluated in comparison to the parallel effi-
ciency which is achievable using MPI or other parallel programming
libraries which are typically used in scientific computing field.

5. Good scalability - Framework should be able to efficiently utilize
large number of cores. Again, to provide perspective, comparisons
should be made in relation to using parallel computing libraries such
as MPL

The main hypothesis of this work is: distributed computing frameworks
can simplify creating parallel scientific computing applications without
significantly losing the efficiency and scalability in comparison to using
Message Passing Interface (MPI) libraries.

To test this hypothesis we decided to study which distributed comput-
ing frameworks are suitable for parallelizing and scaling up different types
of scientific computing algorithms and how good parallel speedup they are
able to provide.

We define a suitable distributed computing framework as a framework
which fulfills the aforementioned expectations for a given scientific com-
puting algorithm. However, we consider the parallel efficiency to be the
most important factor when comparing the suitability of different distribu-
ted computing frameworks against each other as performance is very criti-
cal for scientific computing algorithms.

The study in this direction lead us to an additional research question
which we wanted to answer: How to choose which available distributed
computing framework is the most suitable for a given scientific computing
algorithm? To answer both research questions we defined the following
research tasks.

1. Identify what characteristics affect the parallel efficiency and scala-
bility of algorithms adapted to the MapReduce model.
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2. Provide alternatives for algorithms for which MapReduce is not suit-
able.

3. Create a methodology for deciding which of the available distributed
computing frameworks is the most suitable for a given scientific
computing algorithm.

We chose to initially focus on the Hadoop MapReduce distributed com-
puting framework because it was the most widely used and documented
distributed computing framework at the time and was constantly updated
with new features.

1.2 Contributions

The contributions of this thesis are the following.

* Scientific computing algorithm classification for MapReduce — A
classification for scientific computing algorithms was created, which
divides algorithms into different classes based on their structure after
being adapted to the Hadoop MapReduce framework and the parallel
efficiency of the result.

 Alternative approaches for scientific computing algorithms for which
MapReduce is not suitable — Three approaches were proposed and
evaluated:

1. Reducing the number of iterations in algorithms to make them
more adaptable for MapReduce.

2. Using alternative MapReduce frameworks that are specifically
designed for iterative algorithms.

3. Using Bulk Synchronous Parallel distributed computing model
as alternative to MapReduce.

* Dynamic Algorithm Modeling Application (DAMA) — A general
purpose algorithm simulation application DAMA was created to sim-
plify the process of choosing which distributed computing imple-
mentation is more suitable for a given algorithm. DAMA is imple-
mented on MPI, MapReduce, Hama and Spark and it can be used
to model the parallel implementations of scientific computing algo-
rithms.
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1.3 Outline

Chapter 2 summaries the state of the art and related work in adapting sci-
entific computing algorithms to distributed computing frameworks. First
section introduces distributed computing models together with their most
widely used implementations and describes their characteristics and de-
sign choices. Second section describes the related work in adapting algo-
rithms to distributed computing frameworks and measuring their perfor-
mance. Last section provides an overview of previous studies which have
classified scientific computing and data processing applications based on
their characteristics.

Chapter 3 describes the work of adapting scientific computing algo-
rithms to the MapReduce model. It introduces a classification for scientific
computing algorithms based on the number of iterations that are required
for running the algorithm. One algorithm is chosen from each of the algo-
rithm classes and they are each implemented in the Hadoop MapReduce
framework. Each implementation is benchmarked in a cluster environ-
ment with varying both the size of the cluster and the length of the exe-
cution. The results of these benchmarks are analyzed to find out how effi-
cient Hadoop MapReduce is for parallelizing algorithms from their repre-
sentative class. The issues that were encountered when adapting different
classes of scientific computing algorithms to Hadoop MapReduce are dis-
cussed in detail and three different approaches are outlined to solve the
aforementioned problems.

Chapter 4 discusses restructuring scientific computing algorithms for
MapReduce as the first proposed approach for solving the previously en-
countered problems. The main idea is to try to reduce the number of it-
erations or choose an alternative algorithm that solves the same task and
requires lower number of iterations. Two scenarios are looked at and an-
alyzed. First is using an embarrassingly parallel linear system solver in-
stead of the highly iterative Conjugate Gradient algorithm to solve systems
of linear equations. Second is changing the way PAM clustering is ap-
plied on data to cluster it by using parallel sampling of data in the CLARA
algorithm, significantly reducing the number of synchronization steps or
MapReduce job iterations.

Chapter 5 examines the second proposed approach which is using al-
ternative MapReduce frameworks that are specifically designed or mod-
ified for supporting iterative algorithms. The frameworks that we chose
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to investigate were Spark, Twister and HalLoop. These three frameworks
are compared against a MPI library and Hadoop MapReduce framework
— the expected best and worst case options for parallelizing iterative ap-
plications. Three algorithms (Conjugate Gradient, PAM and CLARA) are
implemented in each of these frameworks as benchmarks and executed
in a varying size cluster with different dataset sizes. The results of the
benchmark experiments are analyzed to find out how well these alternative
MapReduce frameworks perform in comparison to MPI and to investigate
which algorithm characteristics affect the parallel efficiency of the imple-
mented algorithms in each of the frameworks.

Chapter 6 looks at the third proposed approach which is using frame-
works based on the Bulk Synchronous Parallel model as an alternative to
MapReduce. The BSP implementations that we considered in this work are
BSPonMPI and HAMA. We investigate how suitable these BSP implemen-
tations are for parallelizing scientific computing algorithms in comparison
to MPI implementations for Java (MPJ Express and MpiJava) and Hadoop
MapReduce. To compare their performance we implement both CG and
PAM algorithms in each of the implementations and perform benchmark-
ing experiments in a varying size cluster with different dataset sizes. We
also investigate whether these implementations provide the same advan-
tages as most MapReduce frameworks do, such as automatic paralleliza-
tion and fault tolerance. In addition, we propose a new BSP framework —
NEWT - for the Hadoop Yarn platform that can be used as an alternative
to MapReduce in any existing cluster without reconfiguration. We analyze
the performance of the NEWT framework in comparison to BSPonMPI,
which we previously identified as the most suitable BSP implementation
among the ones that we investigated. We also measure how efficient the
NEWT fault tolerance and recovery mechanisms are and discuss what ad-
ditional features and improvements should be added to NEWT.

Chapter 7 introduces a methodology for choosing the most suitable
distributed computing framework for a given scientific computing algo-
rithm. A Dynamic Algorithm Modeling Application (DAMA) is proposed
which can model the characteristics of scientific computing algorithms and
can be used to estimate the performance of those algorithms when adapted
to a number of distributed computing frameworks without having to adapt,
implement and debug the algorithms. DAMA is implemented on a selec-
tion of the distributed computing frameworks or libraries that were inves-
tigated in previous chapters and which have shown to be well suited for
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scientific computing algorithms. We show how to analyze scientific com-
puting algorithms to identify what are their parallel characteristics, which
are needed to configure the benchmark to model them. We describe how to
use this benchmark to model scientific computing algorithms and illustrate
the process with a number of example algorithms. We also validate the re-
sults by applying this approach to model some of the scientific computing
algorithms we have investigated in previous chapters.

Chapter 8 concludes the thesis by discussing the contributions and im-
pact of this work and outlines what further work should be done to simplify
the process of adapting scientific computing algorithms to distributed com-
puting frameworks and to make the proposed approach more applicable in
general.
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CHAPTER 2
STATE OF THE ART

This chapter outlines the state of the art in adapting scientific computing
problems to distributed computing frameworks. In the first section we in-
troduce the most widely adopted distributed computing models, describe
their implementations and summarize what type of algorithms they are
designed for. Second section outlines related work in adapting scientific
computing algorithms to distributed computing frameworks. Third section
gives an overview of studies which have analyzed and classified scientific
computing algorithms based on their characteristics.

2.1 Distributed computing models

There exist a number of different distributed computing models but the
most widely used models are MapReduce [16], Bulk Synchronous Parallel
(BSP) [24] and Message Passing Interface (MPI) [11]. This section intro-
duces these models, outlines their differences and describes a number of
their implementations that are freely available for use.

2.1.1 MapReduce model

MapReduce [16] was developed by Google as a distributed computing
model and a framework for performing reliable computations on a large
number of commodity computers.

An application following the MapReduce model consists of two meth-
ods: map and reduce. Its input is a list of key and value pairs and each of
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Figure 2.1: MapReduce model

the pairs are processed separately by map tasks which output the result as
one or more key-value pairs.

map(key, value) = [(key, value)]

Map output is partitioned by keys into groups which are in turn divided
between different reduce tasks. Input to a reduce method is a key and a list
of all values assigned to this key.

reduce(key, [value]) = [(key, value)]

Reduce method aggregates the output of the map method. It gets a
key and a list of all values assigned to this key as an input, performs user
defined aggregation on it and outputs one or more key-value pairs.

Hadoop MapReduce

Hadoop MapReduce[16] is the most widely used implementation of the
MapReduce model. It was inspired by Google MapReduce implementa-
tion, which was first introduced by Google in 2004 [25], but it was not
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made publicly available for use. Hadoop is managed by Apache and its
development is backed by many well-known companies like Yahoo, Face-
Book and Twitter, but at the same time it is still open source and freely
usable by everyone.

In recent years it has overtaken many of it’s alternatives such as Mi-
crosoft Dryad [26] and even Google is using Hadoop to provide general
purpose large scale data processing service to it’s Google Cloud customers.
[27] This is likely because their own custom MapReduce implementation
is more specialized for specific tasks.

MapReduce framework takes care of everything else from data parti-
tioning, distribution and communication to task synchronization and fault
tolerance, greatly simplifying the writing of distributed applications as the
user only has to define the content of the Map and Reduce tasks. Near
automatic parallelization is achieved by executing map and reduce tasks
concurrently across machines in the cluster and partitioning the input data
between them.

Hadoop uses Hadoop Distributed File System (HDFS) [28] to store
and distribute data to be processed. Data stored in HDFS is automatically
divided into smaller blocks (64 Megabytes by default) and replicated on
a number (3 by default) of different physical locations in the cluster. The
map and reduce tasks in Hadoop are executed where the data is located in
HDFS to avoid unnecessary data transfer. Having multiple replicas allows
the framework to balance the workload of the machines in the cluster and
to achieve automatic fault recovery.

If a map task working on a specific data block fails, the framework
checks where are the other replicas of this block located and moves the
failed map tasks there. If a reduce task fails, it is re-executed on another
location and its input data is transfered again from previously finished map
tasks. However, machine or network failure in the reduce stage may also
require re-executing some of the map tasks if they were originally also
located on the failed node.

It has been shown [29] that Hadoop MapReduce is suitable for many
data processing applications from information retrieval and indexing to
solving graph problems, like finding graph components, barycentric clus-
tering, enumerating rectangles and triangles. Hadoop MapReduce has also
been tested for solving embarrassingly parallel scientific computing prob-
lems [30, 19, 4] and it performed well for algorithms such as Marsaglia
polar method, integer sort and Monte Carlo methods. However, it had sig-
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nificant problems with more complex applications and especially iterative
methods.

Because of Hadoop MapReduce problems with more complex algo-
rithms and other limitations and disadvantages which are covered in more
detail in chapter 3, Hadoop has slowly been redesigned to be more flexi-
ble. In Hadoop version 2.0, the computing resource management and task
scheduling was separated from the MapReduce job execution with the in-
troduction of YARN (Yet Another Resource Negotiator) cluster manage-
ment system. YARN transformed Hadoop into a higher level distributed
computing platform where it’s possible to use multiple distributed com-
puting frameworks at the same time and a number of projects have been
initiated to bring BSP or MPI implementations to Hadoop as alternatives
to MapReduce.

Figure 2.2 illustrates the YARN platform with a selection of distributed
computing frameworks which can be used in YARN. Such as Spark as a
MapReduce-like alternative, Tez as advanced MapReduce, NEWT [6] as
a BSP framework and Hamster and MPICH2 as MPI implementations.
It’s entirely possible to create a data processing workflow in a Hadoop
cluster which uses different distribute computing frameworks or parallel
programming libraries at different stages of the process.

However, while alternative distributed computing frameworks are a
step in the right direction, it is a complex task to start using completely dif-
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Figure 2.3: Job design - from MapReduce to Apache Tez

ferent parallel programming models and paradigms in existing applications
that already use MapReduce. Thus another Hadoop project was started to
create a more capable direct replacement for MapReduce - Apache Tez
[31], which does not require changing the existing applications.

Apache Tez

Apache Tez [32] is a MapReduce framework which became a part of the
Apache software foundation in 2014. It is designed to be a direct replace-
ment for Hadoop MapReduce for higher level frameworks that depend on
Hadoop to perform computational tasks, such as Pig and Hive. It moves
away from the restrictive MapReduce model consisting of a sequential ex-
ecution of map and reduce tasks and allows to create a arbitrary size Di-
rected Acyclic Graph (DAG) or user defined tasks. Execution of multiple
reduce tasks in a sequence is not efficient in Hadoop MapReduce, which
is required for tasks that require regrouping data multiple times. Reduce
tasks are required to write data to the HDFS and another reduce task can
not be executed without first executing a new Map task and then shuffling
and merging the data again.

Figure 2.3 illustrates the conceptual move from MapReduce to Tez.
Tez allows to create direct data flow links between sequentially executed
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tasks and does not restrict their execution order. Everything is executed as
a single Tez job with virtually unlimited number of internal tasks.

A Tez job consists of a Directed Acyclic Graph (DAG) of vertices and
edges. DAG defines the execution order of data processing tasks. Each
DAG vertex represents a single task and describes what data processing
operation is applied on the data. Each DAG edge defines how the data is
moved between vertices.

Edges have multiple properties that define the behavior of the Tez DAG.
A data-movement property defines how the data gets from the edge input
(data producer) vertex to the edge output (data consumer) vertex. Schedul-
ing properties define whether the consumer vertex can be executed before
the producer vertex is finished. Data-source properties defines how the pro-
duced data is stored. Whether it is persisted on disk in a reliable manner or
is it only kept in memory in a non fault tolerant manner. Data-movement
property can be used to define what data synchronization pattern is applied
to move the data, such as one-to-one, broadcast or scatter-gather.

While Tez does not solve all the disadvantages of Hadoop MapReduce
it should still significantly improve the efficiency of executing iterative ap-
plications in a Hadoop cluster.

Spark

Spark [33] is an open source framework for large scale data analytics. It
supports both in-memory and on-disk computations in a fault tolerant man-
ner by introducing resilient distributed datasets (RDD) that can be kept
either in memory or on disk. The data kept in the RDD is automatically
partitioned and distributed across machines in the cluster and can be repli-
cated to provide data recovery in case of failures.

A computation is defined by applying different Spark defined opera-
tions on the RDD’s such as map, group-by and reduce. Spark also supports
joins, unions, co-grouping and Cartesian products on RDD’s and thus ex-
tends the framework capabilities beyond the simple model of MapReduce.

Spark is not strictly a MapReduce framework, as it supports many
data processing operations other than map and reduce, such as join, filter,
cogroup and union. But considering that it’s main data processing opera-
tion is map, and reduce operation is often implemented using the combina-
tion of group—by and map operations, we consider it to be a MapReduce—
like framework.
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Fault tolerance is achieved by keeping track of operations applied to
RDD’s and in case of machine or network failures, lost RDD partitions
are reconstructed by backtracking the applied operations and rebuilding
the RDD partition from the latest intermediate partitions that still exist.
In contrast to fault recovery by checkpointing, there is no overhead when
there are no failures.

Spark is very actively developed and contains many additional features
that extend core Spark, such as Spark Steaming for processing streaming
data, SparkSQL for using SQL commands to process and analyze data,
SparkR for using Spark inside R applications and GraphX for graph pro-
cessing.

Twister

Jaliya Ekanayake et al. [20] have studied using MapReduce for data in-
tensive science. They presented their experience with implementing two
typical scientific analyzes: High Energy Physics data analysis and k-Means
clustering. They also presented CGL-MapReduce, a streaming-based Map-
Reduce implementation. They concluded that the use of iterative algo-
rithms by scientific applications limits the applicability of the existing (at
the time) MapReduce implementations like Hadoop.

However, they also strongly believe that MapReduce implementations
specifically designed to support such applications would be very valuable
tools. Thus they used the proposed CGL-MapReduce design to create a
new MapReduce framework for iterative scientific applications, Twister
[34]. Twister distinguishes between static data that does not change and
normal data that may change at each iteration. It also provides better sup-
port for iterative algorithm by enabling long running map and reduce tasks
which do not have to be terminated between MapReduce executions.

Twister uses no distributed file system and partitioning the input data is
a manual process. It also only guarantees restoring input data that can be
reloaded from the file system or static parameters inherited from the main
program and any transient information stored in Map and Reduce tasks will
be lost in case of failures. The lack of both a distributed file system and a
fully working fault recovery mechanism are significant disadvantages.
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HaLoop

HaLoop [21] is built on top of Hadoop version 0.20.0 and it directly ex-
tends the MapReduce framework by adding support for iterative execution
of Map and Reduce tasks, adding various data caching mechanisms and
making the task scheduler loop-aware. The authors separate HalLoop from
Twister by claiming that it is more suited for iterative algorithms because
using memory cache and long running MapReduce tasks makes Twister
more prone to failures.

Haloop can reuse existing Hadoop Map and Reduce code without
modifications by specifying how they are executed in iterative manner in
an encapsulating iterative job configuration. Users have to define a couple
of additional classes from distance measurement for loop ending condition
to caching configuration. While creating the applications themselves is not
difficult as long as the user has experience with Hadoop, debugging and
creating more complex job chains can be a daunting task as the documen-
tation is sparse and the framework itself is no longer in active development.

However, HaLLoop has not been updated since June 2012 and is only
compatible with Hadoop version 0.20.

Nephele

Daniel Warneke et al. introduced Nephele [35] as an alternative to Hadoop
MapReduce. It is a cloud based distributed computing framework for large
scale data processing. It is specifically designed to take advantage of cloud
characteristics from elasticity to dynamic resource allocation and real-time
provisioning.

Nephele uses the cloud computing services to provision computing re-
sources on-demand based on the resource requirements of the user tasks.
The authors have compared Nephele to Hadoop MapReduce using typical
data algorithms as benchmarks and showed it to be several times faster and
able to utilize the cloud infrastructure much more efficiently than Hadoop.

2.1.2 Bulk Synchronous Parallel model

Bulk Synchronous Parallel [24] (BSP) is a distributed computing model for
parallel iterative algorithms where the input data is divided between con-
currently working tasks and the computation process consists of a sequence
of iterative super-steps. Each super-step is divided into three smaller steps:
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Figure 2.4: Illustration of the BSP execution flow. [1]

local computation, synchronization and global barrier. In the local com-
putation step, a user defined function is applied to every sub-task concur-
rently, which effectively parallelizes the computation.

At the synchronization step, data which is needed by other sub-tasks is
sent to them. However, this data is not available for the destination sub-
tasks until the next super-step, which means there will be no deadlocks.
As the last step, sub-tasks notify that they have finished working and wait
till all other sub-tasks have also done so, before they continue to the next
super-step. This process is illustrated on Figure 2.4.

Bulk Synchronous Parallel model works well for iterative applications
where the whole computation is divided into sub-tasks of equal size which
are then executed concurrently. However, if the computations are divided
unequally, the efficiency of the algorithms drops, as the faster sub-tasks
have to wait for the slower tasks to finish their work before they can pro-
ceed. Choosing the right data partitioning is very important when creating
BSP applications.

A BSP algorithm is defined by how the whole computation is divided
into sub-tasks, how and what data is synchronized on every super-step and
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what is the user defined function that is applied to each sub-task at ev-
ery super-step. Some of the most widely used BSP implementations are
introduced in the following sections.

BSPIlib

Jonathan M. D. Hill et al. [36] introduced BSPlib as a MPI-like BSP li-
brary and demonstrated how it can be utilized for scientific and industrial
applications by implementing use cases like Fast Fourier Transform (FFT),
sorting, and molecular dynamics. However, the Oxford BSPIib can be con-
sidered a legacy implementation as its last update was in 1998. Using it
effectively on recent hardware and software platforms and especially on 64
bit systems is very complicated and it is certainly not optimized for them.

The BSPIib library API has been used as an interface in other BSP im-
plementations like BSPonMPI [37] and Paderborn University BSP Library
(PUB) [38].

BSPonMPI is a library for creating parallel programs using the BSP
model. It implements the BSPlib standard and uses Message Passing In-
terface (MPI) [11] for the underlying communication. BSPonMPI runs on
all the same platforms as MPI, which makes it more usable than Oxford
BSP toolset. It also has no fault tolerance and any failed jobs have to be
rerun from the beginning.

Paderborn University BSP is also a BSP implementation that follows
the BSPIlib API. It is written in C, supports on a number of different plat-
forms (PC, Cray T3E, IBM SP/2, Sun workstations) and communication
methods (MPI, TCP/IP, Parsytec Parix) but has not been updated since
2002.

Pregel

While the initial implementations of the BSP model (Oxford BSPIlib, BSP-
on MPI) were not taken into a wide spread use, a new wave of BSP frame-
works have been initiated recently after Google published using the BSP
model for their new large scale graph processing framework Pregel [39].
It was developed to address MapReduce’s inability of supporting iterative
graph processing algorithms.

Pregel uses checkpointing to provide implicit fault tolerance. It stores
the state of the application in persistent storage between supersteps at user
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configured intervals. Google’s implementation is proprietary and can only
be used in-house to solve various graph related problems but a number of
Pregel like frameworks have since been created, such as Apache Giraph
[40], Stanford GPS [41] and Hama [42].

Apache Giraph

Apache Giraph [40] is an iterative graph processing framework inspired
by Pregel. It leverages existing Hadoop infrastructure to run Hadoop Map-
Reduce like jobs that use the BSP model instead. In contrast to Hadoop
MapReduce, concurrent tasks are allowed to communicate between each
other and the computation is divided into a number of supersteps. Users
create a single BSP function which is repeated on each Vertex at every
iteration. Creating more dynamic BSP applications where different data
processing tasks are executed at different iterations can be difficult.

Giraph also provides fault-tolerance by using Zookeeper [43] as a dis-
tributed coordination service for the concurrently running tasks and per-
forming checkpointing with user specified frequency. Every z’th iteration
intermediate graph data is stored to HDFS and if any process fails, the
computation can be rolled back to the superstep when the latest checkpoint
was stored.

Stanford Graph Processing System

Stanford Graph Processing System (GPS) [41] is a Bulk Synchronous Par-
allel framework developed in Stanford University. It is open source and
supports several features not present in either Google Pregel or Apache
Giraph. These are support for algorithms that include global as well as
vertex-centric computations (whereas the Pregel API focuses only on ver-
tex.centric computations), the ability to repartition the graph during pro-
cessing and partitioning adjacency lists of high-degree vertices to reduce
the amount of communication. Stanford GPS also uses checkpointing to
achieve automatic fault recovery.

Pregel, Apache Giraph and Stanford GPS are specifically designed for
graph algorithms, and while it is almost always possible to represent other
types of distributed applications as graph computations by restructuring
them, it would also require extra effort from the programmer and may also
lower the parallel efficiency of the result.
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Hama

Hama [42] is a distributed computing framework that was initially devel-
oped to perform matrix operation in the Hadoop MapReduce framework.
However, they have since then moved away from the MapReduce model
and started utilizing the BSP model for general purpose computations in-
stead. It is also no longer specialized for matrix computations.

Hama follows the original BSP model relatively closely, yet at the same
time it tries to take advantage of the Hadoop framework, and HDFS in
particular. In Hadoop, the HDEFS is used for data storage, distribution, and
as an input and output destination for MapReduce applications. Thanks to
using file block replication, HDFS provides fault tolerance mechanism for
data.

Hama also exploits these advantages by using HDFS to distribute the
initial input of the BSP application and also for its output. However, in
comparison to executing MapReduce jobs in an iterative fashion, Hama
does not write all the intermediate data to HDFS and thus it does not pro-
vide full fault tolerance for running applications.

To write a Hama program, user has to define a bsp() method, which
reads input from HDFS and writes its output back. This method is not
executed in an iterative fashion as per BSP model. User has to implicitly
define how the supersets are executed by creating a custom loop inside the
method.

A Hama superstep is defined as any executed code that ends with a
barrier synchronization by using the method sync(). The bsp() method
is executed concurrently on all the machines in the cluster, on which the
Hama framework is set up. These concurrent tasks can send messages to
each other between the supersteps, however, these messages can only be
read after the next barrier synchronization. Input and Output formats and
the messages that are sent between concurrent tasks are identical by design
to Hadoop MapReduce W ritable objects, simplifying the work for users
who are familiar with writing MapReduce applications.

NEWT

NEWT [6] is an alternative BSP-inspired distributed computing framework
for the Hadoop YARN platform. It was created to support executing itera-
tive applications in Hadoop clusters while retaining automatic fault recov-
ery and achieve near-automatic parallelization. It also does not require any
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software installation or reconfiguration in the YARN clusters. This frame-
work is described in more detail in section 6.2 together with its modified
BSP model, design choices and performance measurements.

2.1.3 Message Passing Interface

Message Passing Interface (MPI) [11] is a language—independent commu-
nications protocol used to program parallel computers. It specifies an API
for sending messages between concurrently running processes in a clus-
ter. MPI does not restrict applications into a specific distributed computing
model, and can actually be used to implement libraries of frameworks for
most distributed computing models. MPI has greatly advanced the devel-
opment of a parallel software industry, and encouraged the development of
large-scale parallel applications.

It provides efficient communication between processes working on dif-
ferent physical machines, it gives programmers full control over paral-
lelization and has a number of predefined and optimized collective commu-
nication methods to deal with a large number of processes. Over the years
it has become the de facto library for communication among processes in
parallel applications for these reasons.

However, in comparison to MapReduce, MPI applications are not able
to handle machine or network failures by design. Extensive work has been
done to introduce fault recovery to MPI, but it has not become a part of the
MPI standard or its widely used implementations. [13, 14] Also, in com-
parison to using previously mentioned distributed computing frameworks
in this chapter, writing MPI applications requires very low level program-
ming. Programmers have to specifically take care of input data partitioning
& distribution, data & task synchronization, avoiding deadlocks & race
conditions, etc. In addition, validating and debugging MPI applications
can be as difficult as creating the application itself.

As most of the MapReduce and many of the BSP frameworks use Java
programming language and we are interested in comparing their perfor-
mance to MPI, we are mainly interested in MPI implementations for Java.
We chose MPJ Express [44] and MpiJava [45], because they are the two
most widely used MPI libraries for Java HPC applications and they both
use different underlying message passing implementations, as described in
the following subsections.
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MpiJava

MpiJava [45] provides an object oriented Java interface to MPI that can
work with any native MPI library written in C or C++ that implements the
MPI API, such as OpenMPI [46] or MPICH2 [47]. It uses Java Native
Interface (JNI) to execute MPI commands from the native MPI library and
to pass data between the native language and Java.

OpenMPI is an open source and freely available general purpose MPI
implementation which implements the full MPI-2 standard. It’s goal was to
combine advantages of the previously existing MPI implementations (FT-
MPI, LA-MPI, LAM/MPI) into a single consistent and stable open source
MPI framework.

MPICH is a high-performance implementation of the MPI standard. Its
main goal is to provide an MPI implementation that supports different soft-
ware and hardware platforms like commodity clusters (desktop systems,
shared-memory systems, multi core architectures), high-speed networks
(10 Gigabit Ethernet, InfiniBand, Myrinet) and proprietary high-end com-
puting systems (Blue Gene, Cray, SiCortex) [47].

MpiJava has no fault tolerance because the underlying OpenMPI and
MPICH?2 libraries do not provide any. When using MpiJava the algorithms
still run on Java and only the actual MPI messages are transfered through
the underlying native libraries. Thus, the performance of concurrent Java
tasks is not affected and it is possible to directly compare the performance
of the data synchronization and the parallelization process in general.

MPJ Express

MPJ Express [44] is a freely available open source Message Passing In-
terface (MPI) library written in Java that allows developers to write and
execute parallel Java applications on multi core processors, compute clus-
ters and clouds. MPJ Express implements the MpiJava 1.2 API and thus is
interchangeable with MpiJava for any Java application that uses this API.
In comparison to MpiJava, MPJ Express uses Java New I/O (NIO) for com-
munication instead of depending on JNI to utilize native MPI libraries like
MPICH2 or OpenMPI. Similarly with MpiJava, MPJ Express provides no
fault tolerance.
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2.1.4 Other distributed computing frameworks
Aneka

Aneka [23] is a distributed computing platform for developing and deploy-
ing parallel applications on cloud computing platforms. It is specifically
designed to provide users with a development platform for creating dis-
tributed applications that can automatically scale on demand. Aneka also
tries to take advantage of elasticity and scalability of cloud computing plat-
forms and allows the utilization of multiple different programming models
(MapReduce, distributed thread and independent bag of tasks) to provide
support for conceptually different application design scenarios from differ-
ent domains such as engineering, life sciences, and industry.

Another aim of Aneka is to simplify the creation of distributed cloud
computing applications by allowing to express the logic of distributed ap-
plications in multiple different ways and by providing a framework that
takes care of the distributed execution of applications. Users can create
static Aneka computing clusters using desktops, servers or even existing
clusters and are later able to extend these clusters using public cloud ser-
vices when the demand raises beyond configured thresholds creating a hy-
brid cloud.

2.1.5 Summary

Table 2.1 provides an overview of the distributed computing frameworks
and parallel programming libraries that were covered in this section. For
each of the frameworks, it describes what are their distributed program-
ming model, what algorithms they are specifically designed for, fault tol-
erance, data handling, limitations, unique features and programming lan-
guages.

Most of these solutions utilize HDFS for data storage, partitioning and
distribution because it simplifies both creating and using distributed com-
puting frameworks. For example, one of the biggest issues with using
Twister is that it does not use a distributed file system and partitioning and
distributing input data is a manual process. Users have to manually divide
input data into smaller files, and create a file distribution schema, which
describes where each block of the data should be located.

While many of the distributed computing frameworks are designed for
iterative algorithms, they can just as well be used for non-iterative algo-
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rithms, as we can simply set the number of iterations to be 1. However,
it is not easy to utilize Pregel based frameworks for anything other than
graph processing frameworks, as the Pregel model defines computations
using graph notations of vertices and edges. Hama and BSPIib follow the
original BSP model and can be used for any type of algorithms.

Apache Spark and Hadoop are the most actively developed distributed
computing frameworks in this table. Both have a large number of addi-
tional features that extend the core framework and both are constantly up-
date and improved. HalLoop and BSPIib in contrast have not been updated
in a significant amount of time.

The most important characteristics of the distributed computing frame-
works in the context of this work are support for iterative algorithms, fault
tolerance to support long running scientific computing applications and the
parallel speedup and efficiency of the adapted algorithms. While support
for iterative algorithms and fault tolerance can be evaluated by studying
documentation and reading published articles, third characteristic requires
more systematic study of the framework and any of its existing evaluation
studies. In addition, int the context of scientific computing where perfor-
mance is critical, it is important to compare the performance of distributed
computing frameworks to parallel programming libraries which are typi-
cally used in this field, such as MPI libraries.

Next section gives an overview of related work in adapting algorithms
to distributed computing frameworks and measuring their performance.

2.2 Adapting algorithms to distributed
computing frameworks

This section gives an overview of related work which have studied adapting
algorithms to different distributed computing frameworks or investigated
the performance of different distributed computing frameworks.

As previously mentioned in section 2.1.1, there are a number of studies
which have investigated applying MapReduce for solving embarrassingly
parallel scientific computing problems.

Chris Bunch et al. [30] investigated which scientific computing prob-
lems are adaptable to MapReduce and which are not. They adapted five
benchmarking algorithms from NAS Parallel Benchmarks (NPB) [48] to
MapReduce and measured their performance. NAS Parallel Benchmark
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consists of set of algorithms designed for evaluating the performance of
distributed systems and supercomputers.

These algorithms were embarrassingly parallel Marsaglia polar method
for generating random numbers, integer sort using linear time bucket sort-
ing algorithm, iterative Conjugate Gradient method for solving systems of
linear equations, Fast Fourier transform for solving three-dimensional par-
tial differential equations and block tridiagonal method for solving systems
of linear equations.

MapReduce performed well for the embarrassingly parallel algorithms:
Marsaglia polar method and integer sort. However, it performed very
poorly for Fast Fourier Transform, Block Tridiagonal and Conjugate Gra-
dient algorithms. Authors had to omit the numerical results of running
Conjugate Gradient algorithm in MapReduce stating that it took an unrea-
sonable amount of time to execute. The main conclusion of their work is
that MapReduce is not well suited for iterative algorithms. They propose
that increasing the computation to communication ratio in the adapted iter-
ative algorithms would improve their efficiency but they do not investigate
what exactly makes MapReduce unsuitable for iterative algorithms. Inves-
tigating these reasons in more detail was one of our main motivations for
creating a scientific computing algorithm classification for MapReduce.

Tolga Dalman et al. [19] investigated utilizing Hadoop MapReduce and
on-demand resources from Cloud for performing Metabolic Flux Analysis
(MFA). They implemented an embarrassingly parallel Monte Carlo simu-
lation method on MapReduce and used the Amazon Elastic MapReduce
(EMR) service [49] to execute computations on automatically scalable
cloud resources.

Their initial benchmarking experiments in an 64 core EMR cluster only
managed to obtain a parallel speedup of 17. Relative parallel speedup mea-
sures how many times faster is parallel execution of an application in com-
parison to running the same application using only a single processor core.
They identified that the low parallel speedup was a result of MapReduce
framework generating a high number of small files which in turn caused a
large number of I/O operations to be performed in the Reduce stage.

However, they managed to increase the parallel speedup from 17 to 48
by optimizing their MapReduce application to make better use of built-in
data data types and tuning the size of data split sizes to reduce the number
of individual files created by the framework. The result of this work con-
firm that it is possible to obtain reasonable parallel speedup by adapting
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embarrassingly parallel algorithms to MapReduce. However, it also indi-
cates that it is not sufficient to simply adapt an algorithm to MapReduce.
It is important to know what affects the parallel speedup and efficiency
of MapReduce applications and take it into account when adapting algo-
rithms.

Foto N. Afrati et al. [50] studied the trade—off between parallelism
and communication cost in MapReduce applications. They modeled the
performance of MapReduce applications that can be solved with a single
MapReduce job, such as finding triangles in graphs, matrix multiplication
and finding strings with a specific Hamming distance.

They identified that replication rate and reducer input size were the
main parameters that affected the balance between communication cost
and parallelism. Replication rate measures how many map task key-value
pair output’s are generated for each input key-value pair on average. Re-
ducer size reflects the maximum size of the input value list associated with
a unique reduce input key. Increasing replication rate can lower the reducer
size and increase the number of reduce tasks and increase the parallelism.
Reducing replication rate can increase the reducer size and lower the com-
munication cost. They model the balance between Replication rate and
Reducer size values and apply the model to lower the cost of running Map-
Reduce applications.

Their approach is only really applicable for a single MapReduce round
of computation and they state that applying their approach to iterative Map-
Reduce algorithms requires further work. While we also investigate algo-
rithms which can be adapted using only a single MapReduce job in this the-
sis, our main focus is on more complex iterative algorithms which would
require more MapReduce jobs to be executed.

Jaliya Ekanayake et al. [51] compared the performance of Hadoop
MapReduce to CGL-MapReduce [20], Microsoft Dryad [26] and MPI for a
number of typical scientific algorithms and showed that CGL-MapReduce
can greatly reduce the overhead of iterative MapReduce applications. CGL-
MapReduce was a framework created by the authors of this paper and was
later used as a basis for the Twister [34] iterative MapReduce framework.
It was specifically designed to be suitable for iterative applications.

The algorithms they used to compare these frameworks were iterative
k-means clustering, iterative matrix multiplication, High Energy Physics
(HEP) data analysis and Cap3 gene sequence assembler. MPI was used
only used for parallelizing the two iterative algorithms: k-means cluster-
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ing and iterative matrix multiplication. In both cases, it performed the
best in comparison to the three MapReduce implementations and CGL-
MapReduce was close second. Both Microsoft Dryad and Hadoop Map-
Reduce produced significantly worse result, especially in the case of the
iterative k-means algorithm, where they were more than 10 times slower
than CGL-MapReduce.

Hadoop MapReduce, CGL-MapReduce and Microsoft Dryad had a
very similar performance in the case of Cap3 algorithm, which a simple
algorithm only requiring a single map operation. In the case of High En-
ergy Physics (HEP) algorithm, CGL-MapReduce was clearly faster than
both Hadoop MapReduce and Microsoft Dryad with Hadoop MapReduce
being significantly slower than the other two.

The results show that CGL-MapReduce (a framework specifically de-
signed for iterative algorithms) can greatly reduce the overhead of iterative
MapReduce applications in comparison to Microsoft Dryad and Hadoop
MapReduce but it still has performance issues in comparison to MPI. These
results also confirm that it is important to compare the results of bench-
marking the performance of distributed computing frameworks to the per-
formance of MPIL. It helps to provide perspective for evaluating the perfor-
mance results, as a framework being faster than Hadoop or Dryad might
not indicate it is a good alternative if it itself is much slower than parallel
programming libraries like MPI.

Junbo Zhang et al. [52] proposed and adapted a rough set based method
for knowledge acquisition to MapReduce as a single MapReduce job and
compared its performance on three different MapReduce Frameworks: Ha-
doop MapReduce, Twister and Phoenix. Phoenix [53], is a shared-memory
MapReduce implementation for multi-core single machine systems.

They used the adapted algorithm to process datasets of different sizes
and measured runtime and parallel speedup for each of the frameworks.
Phoenix experiments were executed on a single machine with 64GB of
memory and 64 cores, while Hadoop and Twister experiments were ex-
ecuted in a cluster, which consists of 8 machines with 8GB to 16GB of
memory each. Hadoop was significantly (5 to 19 times) slower than both
Twister and Phoenix in all the experiments and Twister was faster than
Phoenix in most of these experiments.

Their results show that using Hadoop MapReduce can result in much
worse performance even in the case when the algorithm is not iterative.
Unfortunately the authors do not identify what exactly causes Hadoop
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MapReduce to be 5 to 19 times slower than Twister and Phoenix. This
means that it should not be assumed that MapReduce is suitable for all
types of non-iterative algorithms.

Yingyi Bu et al. [54] investigated using HalLoop instead of Hadoop for
large-scale iterative data analysis by implementing iterative PageRank, de-
scendant query and k-means algorithms in both frameworks and analyzing
the results on different datasets. HalLoop performed better than Hadoop in
each of their test cases showing that it is more suitable than Hadoop for
these types of application.

They conclude that Hal.oop greatly improves the overall performance
of iterative data analytics applications, however in the case of k-means the
difference was very small. They did not compare HalLoop to MPI or other
widely used lower level distributed computing libraries or frameworks, so
it is hard to put these results in perspective. Without comparing the ob-
tained results to lover level parallel programming libraries such as MPI,
it stays unclear how significant the HalLoop performance improvements
really are.

Benedikt Elser & Alberto Montresor [55] compared the performance of
Apache Hama to Hadoop MapReduce and a number of large scale graph
processing frameworks: GraphLab [56], Stratosphere [57] and Apache Gi-
raph [40]. They implement the k-core decomposition graph processing
algorithm on each of the frameworks. It is an iterative graph processing
algorithm which goal is find subgraphs of the original graph where the
minimal degree of vertices is k.

They found that Hama a close competition to GraphLab, generally per-
forms better than Stratosphere and was better than Giraph and Hadoop
MapReduce in all their experiments. This indicates that BSP frameworks
like Hama can be very potent competitors to MapReduce frameworks. In
addition, compared to Giraph and GraphLab, Hama does not enforce using
graphs as an input and can be used for more generic algorithms. However,
the authors only used a single algorithm as a benchmark to compare these
frameworks and did not look further from graph processing algorithms.

There are number of benchmarking suites which can be used to evalu-
ate the performance of distributed computing frameworks. HiBench [58]
is a Hadoop benchmarking suite consisting of a number of MapReduce
applications for evaluating the performance of a Hadoop clusters. It con-
tains benchmarks from four different categories. Micro benchmarks (Sort,
WorkCount, TeraSort), Web Search (Nutch Indexing and Page Rank), Ma-
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chine Learning (Bayesian Classification, k-means) and HDFS Benchmark
(EnhancedDFSIO).

HiBench was initially only implemented for Hadoop MapReduce, so
it could not be directly used to compare the performance of different dis-
tributed computing frameworks, but it has since been updated to also sup-
port Apache Spark. Still, the number of supported distributed computing
frameworks is small, there is no support for MPI and k-means is the only
iterative benchmark it contains.

Similarily, BigBench [59] is a benchmarking suite for Hadoop, Hive
and Spark. It aims to be a end-to-end big data analytics benchmark suite. It
consists of 30 data analytics queries which are executed on structured and
semi-structured data and they simulate a conceptual customer and sales
analysis software stack. BigBench is specifically designed and optimized
for online analytics and is less applicable than HiBench in the context of
scientific computing algorithms.

One of the most elaborate benchmarking suite for distributed comput-
ing frameworks is BigDataBench [60], which is an open source big data
benchmarking suite consisting of 33 different benchmarks and 6 datasets.
It contains benchmarks from 6 different domains: search engine (Grep,
WordCount, Sort, etc.), social networks (K-means, Triangle Count, etc.
), e-commerce (Bayes, Join, etc.), multimedia analytics (Face detection,
Speech Recognition, etc. ) andA bioinformatics (SAND, BLAST).

It supports several different parallel programming solutions (MPI, Map-
Reduce, Spark and Flink) and a number of online analytical processing
frameworks (Shark, Impala and Hive). However, not all benchmarks are
implemented on all the parallel programming solutions. For example, Mul-
timedia analytics benchmarks are almost exclusively implemented on MPI
library and E-commerce benchmarks are mostly implemented on online
analytical processing frameworks.

BigDataBench is a very versatile benchmark thanks to the large number
of different benchmarks and supported frameworks. However, having large
number of benchmarks also means that it takes a lot of effort to adapt the
whole suite to additional distributed computing frameworks as each of the
existing benchmarks would have to be individually implemented on the
new framework.

In addition, while BigDataBench contains some iterative algorithms
such as k-means, most of its benchmarks are not iterative. Also, many
of the available benchmarks are implemented on only a few frameworks,
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which makes it difficult to use this benchmarking suite to compare the
performance of different distributed computing frameworks to each other.

2.3 Analyzing the characteristics of scientific
computing algorithms

When adapting algorithms to distributed computing frameworks, it is im-
portant to know which algorithm characteristics can affect the efficiency of
their parallel implementations. In this section we give an overview of stud-
ies which have worked on classifying scientific computing or large scale
data processing application and algorithms based on their characteristics.
In 2006, the scientists from University of California, Berkeley stud-
ied the parallelization of scientific computing applications and published
a technical report [61] which maps the landscape of parallel computing
research at the time. Their most interesting contribution in the context of
this work was the classification of parallel applications into a number of
so called dwarfs. These dwarfs are described as algorithmic methods for
capturing the patterns of computation together with communication.

1. Dense Linear — Vector-vector, matrix-vector and matrix-matrix op-
erations (Sum, multiplication, dot—product, etc. ) on dense matrices.

2. Sparse Linear Algebra — Matrix and vector operations on sparse
matrices. Most of the values in sparse matrices or vectors are zeros.
Data is no longer stored in matrix like structure to avoid having to
store all zeros and thus needs different types of methods to perform
typical matrix operations.

3. Spectral Methods — A number of methods for solving differential
equations, where the data is usually from the frequency domain.

4. N-Body Methods Collection of methods solving the problem of pre-
dicting the movement of objects that are affected by the gravity of
other moving objects.

5. Structured Grids — Collections of methods that work on a struc-
tured grid of data points, where the distance between data points
are kept constant. All data—point values are updated together when a
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10.

11.

12.

function is applied on data and the resulting value of data—points typ-
ically depend on its own value and the values of its spatially located
neighbor data points.

Unstructured Grids — Collections of methods that work on a un-
structured grid of data points. All data—point values are updated to-
gether when a function is applied on data and the resulting value of
data—points typically depend on its own value and the values of its
spatially located neighboring data points. In comparison to struc-
tured grids, distances between data points can vary greatly, and the
shape of the grid is not predefined.

Monte Carlo — Computationally heavy and embarrassingly paral-
lel methods for estimating the value of numerical functions using
repeated randomized sampling.

Combinational Logic — Class of functions implemented using only
boolean circuits. Computations are stateless, meaning no previous
results can be recalled.

Graph traversal — Graph computing methods that require moving
through the graph structure using verities and edges when perform-
ing computations. The actual computations are not intensive. It may
require large number of data synchronization steps when directly
parallelizing such methods using data parallel approach. Especially
when the movement is spontaneous.

Dynamic Programming — Method for solving problems by divid-
ing it into a set of smaller problems and avoiding re-computations
of smaller problems by only computing them once and memorizing
their results.

Backtrack and Branch+Bound — Recursive methods for finding
optimal solutions for search or global optimization problems. They
divide the search space into smaller areas, find local optimum results
and combine the recursively found optimum results into a global op-
timal one.

Construct Graphical Models — Methods like Bayesian networks
and hidden Markov models which model the uncertainty and com-
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plexity of systems by constructing a graph of all possible states with
probabilistic transitions between such states.

13. Finite State Machine — Methods where the applied function is de-
fined as computational machine consisting of finite number of possi-
ble states and transitions for moving between such states depending
on input values.

First seven of these dwarfs (Dense Linear Algebra, Sparse Linear Alge-
bra, Spectral Methods, N-Body Methods, Structured Grids, Unstructured
Grids, Monte Carlo) are based on widely used numerical methods in scien-
tific computing. Last 6 dwarfs (Combinatorial Logic, Graph Traversal, Dy-
namic Programming, Backtrack and Branch+Bound, Construct Graphical
Models and Finite State Machine) were added to broaden the distributed
computing algorithm classification with a more widely applicable parallel
algorithm types.

Authors of this work provided a very insightful overview of algorithms
and programming models used in the parallel computing field but they did
not investigate the characteristics of algorithm classes in more detail.

In 2014, Berkeley classification was extended by scientists from Rut-
gers University and Indiana University to also cover more data intensive
applications by introducing Big Data Ogres. [62] Their goal was to com-
pare the two extremes of parallel computing field: data intensive Big Data
processing and computation intensive scientific computing applications.
They studied and analyzed 51 typical use cases that required processing
Big Data and designed a multifaceted classification for such applications.

They propose a set of Ogres - a classification of Data intensive core
analytics, kernels or skeletons and characterized them from four different
viewpoints (so called Ogre facets).

The first Ogre facet is the architecture of the problem after paralleliza-
tion. It consists of pleasingly parallel (Blast, Protein docking, imagery,
Monte Carlo methods), Local Machine Learning (ML or filtering pleas-
ingly parallel as in biological imagery, radar), Global Machine Learning
(Latent Dirichlet Allocation (LDA), Clustering etc. with parallel ML over
nodes of system) and fusion (Combination of other architectures).

The second Ogre Facet captures the source of data between Structured
Query Language (SQL), NOSQL based, other Enterprise data systems, set
of files, Internet of Things, streaming and HPC simulations.

52



The third Ogre Facet is the distinctive system features such as Agents
(for example in epidemiology or swarm approaches) and Geographical In-
formation Systems.

The fourth Ogre Facet captures the style of Big Data applications such
as are data points in metric or non-metric spaces, maximum Likelihood,
F2 minimizations, and expectation Maximization.

The fifth Facet is Ogres themselves classifying core analytic kernels.
These Ogres are:

1.

Recommender systems — Goal is to predict user preference in items
by analyzing behavior and pattens of many users. Main approaches
are collaborative filtering & content-based filtering methods.

Linear classifiers — Machine learning approach where objects are
classified by using a linear combination of their characteristics. For
example support vector machines, naive Bayes and random forests.

Outlier detection — Methods for detection of outliers in data. Often
dealing more with figuring out what to classify as outliers as there is
no fully accepted mathematical definition of what counts as outliers.

Clustering — There are many different clustering methods, such as
centroid based (k-means and k-medoid) density based (DBSCAN,
OPTICS and Mean-shift ) or hierarchical clustering. Many of them
are of iterative nature.

. PageRank — Well known ranking algorithm based on incoming links

to web cites.

Latent Dirichlet Allocation (LDA) — It is a generative statistical
method for modeling topics and their relations.

Probabilistic latent semantic indexing (PLSI) — Estimating the
probability of object co—occurrence.

Singular Value Decomposition (SVD) — A method for the factor-
ization of matrices.

Multidimensional Scaling — Information visualization technique for
illustrating the distances of objects in N—dimensional space for hu-
man eyes.
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10. Graph algorithms — Consists of many different graph processing
methods, which include finding communities, subgraphs or motifs,
diameter, maximal cliques, connected components, etc.

11. Neural networks — Family of computational methods inspired from
neural networks found in nature, such as nervous systems and brains
of animals. Recently more known as deep—learning.

12. Global optimization — Methods for finding the global maximum or
minimum value of functions over all possible input values. The most
well known problem of this type is traveling salesman problem.

13. Agents — Computational methods for simulating the behavior of a
community of individuals. Often used in epidemiology, social sci-
ences and financial simulation.

14. Geographical Information Systems — Many methods dealing with
geographical data with the aim to analyze, manipulate and visualize
such data.

They propose that these core analytic kernels or Ogres can serve as
standard benchmarks for evaluating applications from these two paradigms.

Their conclusion was that the two paradigms: (i) scientific computing
— having to deal with many more data intensive workflows; and (ii) Big
Data — trying to support more computation heavy tasks; are converging.
Scientific computing application are moving towards processing larger and
larger amount of data. Big Data applications are moving towards more
complex and non-embarrassingly parallel algorithms.

They also conclude that the current benchmarks do not cover all the
facets of these two paradigms and new benchmarks should be created to
cover them. In addition, it is also needed to agree on the type of datasets
with various sizes; correctness for each of the implementation and choos-
ing between written and source code specifications for benchmarks.

2.4 Summary
While there are a large number of distributed computing frameworks to

choose from, Hadoop MapReduce was the most widely used framework
for dealing with large amount of data when this work was started. While
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it was clear that the MapReduce model was designed for less complex and
easily parallelizable algorithms, there are many different types of scientific
computing algorithms and it was important to know more precisely which
types of scientific computing algorithms MapReduce is sufficient.

The related works include a number of studies which have investigated
the performance of Hadoop MapReduce for both simple and more com-
plex algorithms (including scientific computing algorithms), but there is
no clear way of deciding whether Hadoop MapReduce framework or for
the MapReduce model in general is suitable for a given algorithm. Differ-
ent studies of classifying scientific computing algorithms help us to divide
them into classes, but there is still no concrete methodology to follow for
choosing the most suitable distributed computing framework for a given
algorithm or class of algorithms.

The next chapter describes our work in investigating the performance
of Hadoop MapReduce framework and classifying scientific computing
algorithms based on how suitable Hadoop MapReduce is for parallelizing
them.
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CHAPTER 3

ADAPTING SCIENTIFIC
COMPUTING ALGORITHMS TO
MAPREDUCE

This chapter describes the work of adapting scientific computing algo-
rithms to the MapReduce model. While there are a large number of dis-
tributed computing frameworks to choose from (as shown in the state of
the art chapter) Hadoop MapReduce [17] was the most widely used large
scale distributed computing framework when this work was started.

While it was clear from the start that the MapReduce model was de-
signed for less complex and easily parallelizable algorithms, there are many
different types of distributed computing algorithms it could still be very
useful for. There are a number of related studies that have investigated
the performance of Hadoop MapReduce for both simple and more com-
plex algorithms (including scientific computing algorithms), but there is no
straightforward method for identifying whether the Hadoop MapReduce
framework is suitable for a given algorithm.

For these reasons, we decided to study [2] Hadoop MapReduce in more
detail and to try to create a classification for deciding the suitability of the
MapReduce model for different scientific computing algorithms. We stud-
ied number of typical scientific computing algorithms and adapted them
to the MapReduce model to investigate what affects their efficiency and
scalability.

The algorithm classes were designed based on the difficulty of adapt-
ing scientific computing algorithms to the MapReduce model and what is
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the resulting MapReduce job structure. The characteristic that clearly had
the most effect was identified as the number of iterations that need to be
executed. The division of algorithms into different classes is as follows:

1. Algorithms that require a single execution of a MapReduce job.

2. Algorithms that require a sequential execution of a constant number
of MapReduce jobs.

3. Iterative algorithms where each iteration consists of a single Map-
Reduce job.

4. Iterative algorithms where each iteration consists of multiple Map-
Reduce jobs.

We chose one algorithm from each of these classes to illustrate our
classification approach. These algorithms were factoring integers (first
class), Clustering Large Applications (CLARA, second class), Partitioning
Around Medoids (PAM third class) and Conjugate Gradient (CG, fourth
class). Each of these algorithms are described in the following section
together with how they were adapted to the MapReduce model and what
was their relative parallel speedup when executed in Hadoop MapReduce
cluster.

To measure the performance of the implemented algorithms we set up a
MapReduce cluster. The Hadoop cluster was created in a local University
of Tartu Cloud built on top of Eucalyptus cloud computing platform. It
was composed of one master and sixteen slave nodes. Only the slaves
acted as MapReduce task nodes, resulting in 16 parallel workers where the
MapReduce tasks could be executed on. Each node is a virtual machine
with 2.2 GHz CPU, 500 MB RAM and 10 GB disk space allocated for the
HDFS, making the total size of the HDFS 160 GB.

3.1 Algorithms

This section contains the description of the benchmarking algorithms that
were used to investigate the parallel efficiency of scientific computing al-
gorithms when adapted to Hadoop MapReduce. In addition to being from
a separate algorithm class based on our initial classification, each of these
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algorithms is also different based on a number of other parallelization char-
acteristics, such as the required number of iterations, size of the input and
intermediary data that needs to be kept in memory and the types of com-
munication patterns that need to be applied to synchronize data. These
algorithms are described in the reverse order to the previously shown clas-
sification, starting with an example for the fourth class.

3.1.1 Conjugate Gradient linear system solver (CG)

Solving systems of linear algebraic equations (SLAE) is a problem often
encountered in the fields like engineering, physics, chemistry, computer
science or economics. The main goal is different in each of these fields,
but the main challenge stays the same. How to efficiently solve systems
of linear equations with a huge number of unknowns? For extremely large
matrices, it is often unfeasible to find an exact solution for the system of
linear equations, either because of time or resource constraints, and an
approximation of the solution vector z is found instead.

Conjugate Gradient [63] is an iterative algorithm for solving algebraic
systems of linear equations. It solves linear systems using matrix and vec-
tor operations. Linear system is first transferred into the matrix form:

Az =b (3.1)

where A is a matrix consisting of the coefficients a1, ais, ..., Gy, Of the
system, b is a known vector consisting of constant terms of the system
by, ba, ..., b, and X is the solution vector, made up of the unknowns of the
system x1, Za, ..., Tp.

CG then performs an initial inaccurate guess of the solution = and then
iteratively improves its accuracy by applying gradient descent by using
the matrix A and vector b values to find the approximate vector x values,
if a solution exists at all. The accuracy of the Conjugate Gradient result
depends on the number of iterations that are executed.

The input matrices are generally large, but can typically fit into collec-
tive memory of computer clusters. The computational complexity of the
algorithm is not high and the performed task at every iteration is relatively
small which means the ratio between communication and computation is
unusually high, especially in comparison to CLARA and PAM. This makes
CG a good candidate as an additional benchmarking algorithm for iterative
MapReduce frameworks.
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Unknowns 24 500 1000 2000 4000 6000 8000
1 node 259 261 327 687 1938 3810 7619
2 nodes 255 259 298 507 1268 2495 4185
4 nodes 255 236 281 360 721 1374 2193
8 nodes 251 251 291 397 563 824 1246
l6 nodes 236 240 278 297 338 511 809

Table 3.1: Run times for the CG implementation in MapReduce under varying
cluster size. [2]

Adapting CG to MapReduce is relatively complex task as it is not pos-
sible to directly adapt the whole algorithm to the MapReduce model. The
matrix and vector operations used by CG at each iterations can be reduced
to the MapReduce model instead. Every time one of these operations is
used in the CG, a new MapReduce job is executed. As a result, multiple
MapReduce jobs are executed at every iteration. This is not efficient as it
takes time for the Hadoop framework to schedule, start up and finish Map-
Reduce jobs. It can be viewed as MapReduce job latency and executing
multiple jobs at each iteration adds up to a significant overhead.

Additionally, in Hadoop, the matrix A is stored on the HDFS and is
used as an input for the matrix-vector multiplication operation at every
iteration. In Hadoop MapReduce framework it is not possible to cache the
input between different executions of MapReduce jobs, so every time this
operation is executed, the input must be read again from the file system.
As the matrix A values never change between iterations, the exact same
work is repeated at every iteration. This adds up to a significant additional
overhead.

Experiments were run with different number of parallel nodes to be
able to calculate relative parallel speedup. Relative parallel speedup mea-
sures how many times the parallel execution is faster than running the same
MapReduce algorithm on single node. If it is larger than 1, it means there is
at least some gain from doing the work in parallel. Speedup which is equal
to the number of nodes is considered ideal and means that the algorithm
has a perfect scalability.

We also generated different sized input matrices to investigate the effect
of the problem size on the performance. While CG is typically used for
larger sparse matrices mostly consisting of zeros, we used dense matrices
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Figure 3.1: Speedup for Conjugate Gradient algorithm with different number of
nodes. [2]

to simplify the benchmarking process. Run times for the CG algorithm are
shown in Table 3.1 and calculated speedup is shown on Figure 3.1.

It took 220 seconds to solve a system with only 24 unknowns in a 16
node cluster, which is definitely very slow for solving a linear system with
such a small number of calculations needed. It indicates that most of the
time is spent on the background tasks and not on the actual calculations.

CG MapReduce algorithm is able to achieve much better parallel speed-
up when solving larger linear systems. It took almost 2 hours to solve a
linear system with 8000 unknowns on one node and 809 seconds on 16
nodes. While these results show that MapReduce is able to take advan-
tage of additional computing resources, it does not mean that the time is
efficiently spent on actual computations. To investigate this further, we de-
cided to also adapt CG to Twister, which is a MapReduce framework that
is designed for iterative applications and has previously been described in
in section 2.1.1. Results for these experiments are provided in section 3.2.
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3.1.2 Partitioning Around Medoids (PAM)

Partitioning Around Medoids [64] (PAM) is the naive version of the k-
medoid clustering method. The general idea of the k-medoid clustering
method is to represent each cluster with its most central element, the medoid,
and to reduce all comparisons between the clusters and other objects into
comparisons between the medoids of the clusters and the objects.

To cluster a set of objects into £ clusters, PAM first chooses random ob-
jects as the initial medoids. For each object in the dataset, it calculates the
distance from every medoid and assigns the object to the closest medoid,
dividing the dataset into k clusters. At the next step, the medoid positions
are recalculated for each of the clusters, choosing the most central object as
the new medoid. This two step process is repeated until there is no change
from the previous iteration. The whole iteration can be adapted as a single
MapReduce job:

* Map:

— Find the closest medoid and assign the object to it.
— Input: (cluster id, object)

— Output: (new cluster id, object)
* Reduce:

— Find which object is the most central and assign it as the new
medoid of the cluster.

— Input: (cluster id, (list of all objects in the cluster))

— Output: (cluster id, new medoid)

The resulting MapReduce job is repeated until medoid positions of the
clusters no longer change.

Similarly to Conjugate Gradient, PAM also has issues with job latency
and rereading the input from the file system at every iteration because a
new MapReduce job is executed at each time. Table 3.2 provides the run-
times and Figure 3.2 provides the calculated speedup for the adapted PAM
algorithm. These results show reasonable parallel speedups, but the run-
time is very long, it took almost two hours to cluster 100000 object on a
single node. To investigate how much time is actually spent on computa-
tions we also implemented PAM using Twister. Results for these experi-
ments are described in Section 3.2.
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Figure 3.2: Parallel speedup for PAM with different number of nodes. [2]

3.1.3 Clustering Large Applications (CLARA)

Clustering Large Applications [64] (CLARA) is also an iterative k-medoid
clustering algorithm, but in contrast to PAM, it only clusters small random
subsets of the dataset to find candidate medoids for the whole dataset. This
process is repeated multiple times and the best set of candidate medoids is
chosen as the final result.

To adapt CLARA to MapReduce, we first have to investigate how to
divide the work into parallel tasks that can be executed in concurrent map
or reduce tasks. Sampling a dataset S times and using the PAM algorithm
on each of the samples to cluster them can be divided into .S different tasks,
because these results are completely independent of each other and do not
have to be executed in a sequence.

The process of evaluating the candidate medoids (obtained by cluster-
ing each of the samples using PAM) on the whole data set can be divided
into any number of concurrent tasks by simply dividing the data between
the tasks. And then check each object one at a time, find the distance from
its closest medoid and repeat this for each candidate set of medoids. As a
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Objects 10000 25000 50000 75000 100000
1 node 1389 1347 2014 3620 6959
2 nodes 1133 1697 1826 2011 6130
4 nodes 803 782 1156 2562 2563
8 nodes 635 627 1513 1084 1851
16 nodes 297 497 432 761 1029

Table 3.2: Run times for the PAM algorithm. [2]

next step, we can simply group the distances by the candidate medoid sets
and calculate the sum of distances for each of them.

As a result, it is possible to ignore the iterative structure of the origi-
nal CLARA algorithm. Everything can be reduced into two MapReduce
jobs, both executing different tasks. First job chooses a number of random
subsets from the input data sets, clusters each of them concurrently using
PAM, and outputs the results. Structure for the first CLARA MapReduce
job would then be:

* Map:

— Assign a random key to each object.
— Input: (key, object)
— Output: (random key, object)

¢ Reduce:

— The order of the objects is random after sorting. Read first n
objects and perform PAM clustering on the n objects to find &k
different candidate medoids.

— Input: (key, list of objects)
— Output: (key, list of k medoids)

The second MapReduce job calculates the quality measure for each of
the results of the first job, by checking them on the whole data set con-
currently inside one MapReduce job. As a result of having only two Map-
Reduce jobs, the job latency stays minimal and the input data set is only
read twice.
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Objects (thousands) 25 50 100 500 1000 5000 10000

1 node 117 118 125 183 261 819 1517
2 nodes 79 84 89 150 215 476 832
4 nodes 61 66 72 120 127 316 486
8 nodes 52 56 61 114 124 218 320
16 nodes 4 50 58 99 98 104 156

Table 3.3: Run times for the CLARA algorithm. [2]

The second CLARA MapReduce job consists of the remainder of the
original CLARA algorithm and its structure is the following:

* Map:

— For each object, calculate the distance from the closest medoid.
This is calculated for each candidate sets, and one output is
generated for each of them.

— Input: (cluster, object)

— Output: (candidate set id, distance from the closest medoid)
[One output for each candidate set]

¢ Reduce:

— Sum the distances with the same candidate set id.
— Input: (candidate set id, list of distances)

— Output: (candidate set id, sum(list of distances))

The result of the second job is a list of calculated sums, each represent-
ing the total sum of distances from all objects and their closest medoids,
one for each candidate set. The candidate set of medoids with the smallest
sum of distances between objects and their closest medoids is chosen as
the best clustering.

From the experiment results (Tables 3.2, 3.3 and Figures 3.2, 3.3) it
is possible to see that CLARA MapReduce algorithm works much faster
than PAM, especially when the number of objects in the dataset increases.
PAM was not able to handle datasets larger than 100 000 objects while
CLARA could cluster datasets consisting of millions or even tens of mil-
lions of objects. It should also be noted that the time to cluster the smallest
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Figure 3.3: Parallel speedup for the CLARA algorithm with different number of
nodes. [2]

dataset is quite large for both CLARA and PAM. This is because the back-
ground tasks of MapReduce framework are relatively slow to start, so each
separate MapReduce job that is started slows down the algorithm. This
affects PAM more greatly than CLARA because PAM consists of many
MapReduce job iterations while in CLARA only uses two MapReduce
jobs.

3.1.4 Factoring integers

Factoring integers is a method for dividing an integer into a set of prime
numbers that make up the original number by multiplying them all. For
example the factors of a number 21 are 3 and 7. Factoring integers is used
for example to break RSA cryptographic system by calculating the secret
key value based on the public key.

In this case we chose the most basic method of factoring integers, the
trial division. This method is not used in practice, as there exist much faster

65



methods like general number field sieve [65]. But we chose this method
purely to illustrate adapting an embarrassingly parallel problem, belonging
to the first class, to the MapReduce model as comparison to the other three
algorithms.

To factor a number using trial division, all possible factors of the num-
ber are checked to see if they divide the number evenly. If one of them
does, then it is a factor. This can be adopted to the MapReduce model, by
dividing all possible factors into multiple subgroups and checking each of
them in a separate map or reduce task concurrently:

e Map:

— Gets a number to be factored as an input, finds the square root
of the number and divides the range from 2 to v number into
n smaller ranges, and outputs each of them.

— Input: (key, number)

— Output: (id, (start, end, number)) [one output for each range, n
total]

e Reduce:

— Gets a number and a range, in where to check for factors, as an
input and finds if any of the numbers in this range divide the
number evenly.

— Input: (id, (start, end, number))
— Output: (id, factor)

As aresult, in contrast to the previous algorithms, this algorithm is reduced
to a single MapReduce job, meaning there is no overhead from executing
multiple jobs in sequence and why this algorithm belongs to the first algo-
rithm class.

The run times for the integer factorization are given on the Table 3.4
and speedup is shown on Figure 3.4. From the Figure 3.4 it is possible to
see that when the factored number is small, there is only little advantage
of using multiple workers in parallel. The speedup is slightly above 1 for 2
node cluster and only reaches 2.22 in 16 node cluster. This is because the
number of calculations done was relatively small compared to the back-
ground tasks of the framework. However, with the increase of the size of
the input number, the speedup started to grow significantly. With the input
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Digits 17 18 19 20 21
1 node 51 142 361 2058 6767
2nodes 37 67 188 1117 3271
4nodes 30 50 120 512 1622
8nodes 27 36 70 299 887
16 nodes 27 38 59 215 566

Table 3.4: Run times for the integer factorization algorithm. [2]

size of 21 digits, the speedup for two and four node executions was 2.07
and 4.17, showing that there is an ideal gain from using multiple nodes
to find the factors when the size of the input is large enough. With larger
number of nodes the speedup does not reach the number of nodes, indicat-
ing that calculations were not long enough to get full benefit from using 16
nodes. The calculated speedup numbers suggest that this algorithm has a
good scalability and that Hadoop MapReduce framework is very suitable
for algorithms belonging to the first class.

3.2 Additional Twister experiments

While CG and PAM were able to achieve a reasonable speedup when run-
ning on Hadoop MapReduce, it was clear that MapReduce framework in-
troduced significant overhead and slowed down the whole process. To be
able to estimate how much it was slowed we decided to compare the per-
formance to other parallel programming solutions (either distributed com-
puting frameworks or parallel programming libraries).

We chose Twister [20] for this task because it is advertised as an iter-
ative MapReduce framework and thus should provide a good comparison
to Hadoop MapReduce for iterative algorithms. We implemented CG and
PAM for Twister, set up a Twister MapReduce cluster with the same vir-
tual hardware configuration as the Hadoop cluster and ran benchmarking
experiments. [2]

Comparing the Twister (Tables 3.5 and 3.6) and Hadoop (Tables 3.1
and 3.2) run times for these algorithms clearly shows that Twister is much
more efficient. Twister can solve larger problems in less time and for the
same size problems it is 50 to 100 times faster than Hadoop, when running
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Figure 3.4: Parallel speedup for the integer factorization with different number of
nodes. [2]

on 16 nodes. The algorithm structure, how it is adapted to the MapReduce
model stays exactly the same in both Twister and Hadoop, yet Twister is
much more efficient in handling background tasks for iterative MapReduce
applications.

The Hadoop job latency was around 19 to 20 seconds per iteration,
while in Twister it is below 3 seconds regardless of the number of itera-
tions. Twister also stores the bulk of the input to the memory and does
not need to read it again from the file system at every iteration. In CG,
it means being able to store the whole matrix into the collective memory
of the cluster and in PAM it means being able to store all the clustered
objects.

These results clearly confirm that Hadoop MapReduce is not able to
handle iterative algorithms well.
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Unknowns 500 1000 2000 4000 6000 8000 10000 20000
1 node 319 340 3.00 496 7.69 1127 1622 56.01
2 nodes 333 340 282 399 572 698 951 28.15
4 nodes 327 329 276 354 403 529 654 1633
8 nodes 338 330 281 356 379 476 544 1475
l6nodes 340 342 275 350 356 4.11 4.86 10.05

Table 3.5: Run times for the CG implementation in Twister [2]

Objects 10000 25000 50000 75000 100000 200000 300000
1 node 545 2055 25.00 96.61 20455 638.56 1888.71
2 nodes 293 10.06 2285 51.19 93.06 359.88 808.96
4 nodes 3.91 799 14.63 15.51 91.78 197.15 343.64
8 nodes 404 493 15.11 31.84 38.13 131.41 355.77
16 nodes 425 6.63 11.55 2226  24.87 85.76  237.43

Table 3.6: Run times for the PAM algorithm in Twister [2]

3.3 Discussion

The results [2] confirm that Hadoop performs very well for more sim-
ple algorithms that make up the first class, generally described as embar-
rassingly parallel algorithms, and also for algorithms belonging to second
class, when the number of MapReduce jobs is small. However, it per-
formed much worse for the more complex iterative algorithms belonging
to the third and fourth class, which require synchronization sub-steps at
every iteration.

Comparing Twister and Hadoop for algorithms belonging to the third
and fourth class has shown that Twister is much more suitable for these
classes. At the same time, Hadoop may be more suitable for the first class
of algorithms, thanks to the fault tolerance it provides, and also for data
intensive algorithms in general, when Twister has problems fitting the data
into the the collective memory of the cluster.

For less data intensive algorithms belonging to the second class the
results are not so clear. When the number of different MapReduce execu-
tions is not large, Hadoop can perform well and given the fault tolerance, it
should be considered to be more suitable. But because of the short running
tasks in Hadoop, which are terminated each time one MapReduce cycle
is over, Hadoop loses its efficiency as the number of MapReduce execu-
tions increase and Twister should be preferred instead. Thus, the choice of
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the framework for the second class of algorithms strongly depends on the
number of MapReduce steps needed and on how data intensive the task is.

However, Twister also has certain limitations for distributed applica-
tions. Significant advantage in using Twister comes from its ability to keep
static input data in memory across iterations. But it means that this static
data must fit into the collective memory of the machines Twister is con-
figured on. For data intensive tasks this may be quite an unreasonable
demand. For example, processing 1 TB of data with Twister would require
more than 128 machines with 8 GB of memory each just to store the data
into the memory, not to mention the memory needed for the rest of the
application, framework itself and operating system it runs in.

Twister also does not have a proper fault tolerance when compared
to the fault tolerance provided by Hadoop, which can be a very serious
problem when running twister on a public cloud where machines are prone
to relatively frequent failures.

The Hadoop MapReduce problems with iterative algorithm arise from
the fact that the map and reduce tasks are defined stateless in the Map-
Reduce model and the data flow is strictly one directional. In Hadoop,
each new map and reduce task pair requires a separate MapReduce job and
there are no means to keep the state of the tasks in memory across multiple
sequential MapReduce jobs. As a result, an iterative application consisting
of 10 MapReduce jobs must be configured 10 times, read input from the
HDFS 10 times, send intermediate data to Reduce 10 times and write any
changes back to the HDFS.

We measured the job configuring time to be at minimum of 17 seconds
for a typical MapReduce job, regardless of the amount of computations
involved. The extra HDFS operations that are required for iterative algo-
rithms also result in additional overhead from the slower I/O operations.
We decided to propose and investigate several possible solutions for algo-
rithms for which Hadoop MapReduce framework is not suitable.

One approach is to use alternative embarrassingly parallel algorithms
instead of the most efficient iterative algorithms and adapt those to Map-
Reduce instead [4]. For example, instead of using Conjugate Gradient
linear system solver, it is possible to use Monte Carlo method for finding
the inverse of the linear system‘s matrix form to solve it. This approach is
discussed in detail in chapter 4.

Another approach is to use MapReduce frameworks that are specif-
ically designed to provide better support for iterative applications, like
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Twister [34], Spark [33] and HaLLoop [21]. However, while they are more
suitable for complex algorithms, we have also seen in on our previous work
[66] that they give up some of the advantages (like fault tolerance as dis-
cussed in section 3.2) of MapReduce which are necessary for long running
scientific applications. The second approach is discussed in chapter 5.

A third approach is to use an alternative distributed computing model,
which are more suitable for large scale iterative scientific applications, and
at the same time provide the same advantages as MapReduce. It should
take care of most of the parallelization tasks and simplify the creation of
distributed applications for users who are not experts in parallel program-
ming. The distributed model that caught our attention is Bulk Synchronous
Parallel (BSP) [24] and we decided to evaluate whether the frameworks
based on this model are suitable for complex scientific algorithms. The
third approach is discussed in chapter 6.

3.4 Summary

In this chapter we investigated the performance of typical scientific com-
puting algorithms when adapted to the MapReduce model and executed in
Hadoop MapReduce framework. The results of the study described in this
chapter have previously been published in [2]. We documented a number
of issues Hadoop MapReduce and the MapReduce model in general has
with more complex algorithms and used this result to create a classifica-
tion of scientific algorithms for the MapReduce model.

While Hadoop MapReduce has definite advantages that are beneficial
for scientific computing algorithms it can not manage iterative algorithms
well and we proposed three different approaches to deal with such algo-
rithms. The following three chapters describe our work in investigating
each of these approaches in detail.
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CHAPTER 4

RESTRUCTURING SCIENTIFIC
COMPUTING ALGORITHMS FOR
MAPREDUCE

One approach for solving the problems MapReduce has with iterative al-
gorithms is to try to reduce the number of iterations, or to find alternative
algorithms which perform the same task, but which are more easily par-
allelizable. Such alternative algorithms might have lower performance in
comparison to the iterative algorithms, but it could result in a much bet-
ter performance in a MapReduce cluster if high parallel speedup can be
achieved.

One example of adapting an alternative algorithm for MapReduce is
directly using CLARA (Clustering Large Applications) instead of PAM
(Partitioning Around Medoids) when clustering objects. It was evident
from the previous chapter that the Hadoop MapReduce distributed com-
puting framework is more suitable for CLARA than PAM. However, its
clustering accuracy is not guaranteed because it uses random sampling.
We decided to investigate this scenario further by implementing CLARA
in MPI and run [3] additional experiments to analyze its performance in
more detail and to investigate how usable this approach is in general.

In addition, Conjugate Gradient (CG) was the algorithm with which
we have had most performance issues when adapting it to the MapReduce
model. We decided to look for alternative algorithms for solving systems
of linear algebraic equations (SLAE) which would be more easily paral-
lelizable.
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While there are many different methods for solving SLAE’s, we found
that there exists a Monte Carlo method for finding the inverse of the matrix
form of a linear system [67], which can be used to solve the original linear
system. We decided to adapt [4] the Monte Carlo based algorithm for
solving systems of linear algebraic equation to MapReduce to investigate
how it performs in comparison to CG when adapted to MapReduce and
how applicable can similar approaches be in general.

4.1 Medoid based clustering of objects

We were interested in investigating non-embarrassingly parallel algorithms
for which the MapReduce model is suitable and which would not be so
easy to parallelize. One of the algorithms we reduced to the MapReduce
model that matched this description was CLARA (Clustering LARge Ap-
plications) [64] k-medoid clustering algorithm. While the nature of CLA-
RA is a non-embarrassingly parallel algorithm that is relatively complex, it
was adaptable to the MapReduce model with little effect on the efficiency
and scalability of the result. While it required the restructuring of the al-
gorithm into several stages to change the iterative nature of the algorithm,
it did not require changing the core of the algorithm and thus it was rela-
tively easy to utilize MapReduce to achieve parallelism for CLARA. How
exactly to adapt CLARA to MapReduce is already described in detail in
section 3.1.3.

4.1.1 Analyzing CLARA MapReduce

We set up a 17 node cluster in our SciCloud testing environment to mea-
sure the parallel efficiency and scalability of the CLARA MapReduce im-
plementation. Apart from Hadoop we also used Message Passing Interface
(MPI) [11] to parallelize and implement the CLARA algorithm in Python
to investigate it’s performance in comparison to another parallel program-
ming solution.

The cluster is composed of one master and sixteen slave nodes. Each
node is a virtual machine with 2.2 GHz CPU, 500 MB RAM and 10 GB
disk space allocated for the HDFS. For MapReduce, only the slaves act
as task nodes, resulting in 16 parallel workers where the MapReduce tasks
can be executed on. For MPI, we used 16 of the 17 available machines. For
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Objects (10%) | 25 | 100 | 500 | 1000 | 5000 | 10 000
1 node 40| 62| 179 | 330 | 1537 3061
2 nodes 20| 33| 93 171 949 1582
4 nodes 11| 17| 48 87 398 784
8 nodes 6 91 25 44 | 202 397
16 nodes 4 50 13 23 107 206

Table 4.1: Run times (sec) for the CLARA using MPI. [3]

MPI, we used mpidpy python package, which provides a Python interface
to the MPI standard that can work with any native MPI library written in
C or C++. For the native MPI library we used OpenMPI [46]. For Hadoop
we used version 0.22.0.

We ran the tests with 1, 2, 4, 8 and 16 nodes with a varying size of the
input data, which were 25 000, 100 000, 500 000, 1 000 000, 5 000 000
and 10 000 000 objects. The data sets were generated randomly and were
clustered into 16 separate clusters. The number of samples was 24 and the
sample size was 240. The measured runtimes are shown in the Table 3.3 in
section 3.1.3.

These results show that for smaller datasets the MPI implementation
is performing better than Hadoop, but as the size of the input increases,
Hadoop starts to perform faster. When clustering 5 million objects, MPI
implementation is clearly slower than Hadoop and even more so when clus-
tering 10 million objects. However, the tests which are run using 16 nodes
are showing less difference and to investigate it, we decided to calculate
the parallel speedup for both cases, to be able to see how well the different
implementations scale in comparison to each other.

Speedup comparison for both MapReduce and MPI implementations
are illustrated on the Figure 4.1. MPI implementation has better speedup
numbers than MapReduce, showing that while MPI implementation is slow-
er in this case, it is able to use the resources of additional nodes more ef-
ficiently. One of the main reasons why MapReduce shows worse speedup
numbers is the job latency.

As discussed in section 3.3, the MapReduce job latency is one of the
main problems MapReduce has with iterative algorithms, because it slows
down the execution times for each iteration. Job latency when running
MapReduce in a cloud environment with multiple nodes has been mea-
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Figure 4.1: Parallel speedup for the CLARA algorithm, comparing MapReduce
and MPL. [3]

sured to be at least 15 seconds in our tests, regardless of the input size.
For CLARA algorithms, which uses two separate MapReduce jobs that
are executed in sequence, this adds at least 30 seconds to the runtime, 15
seconds for each of the executions, which directly affects the scalability of
this algorithm.

At the same time, these results show that MapReduce can handle larger
amount of objects better, and while the job latency affects the scalability
of the MapReduce CLARA implementation the effect is not large thanks
to only needing to execute two separate MapReduce jobs. Also, this effect
decreases as the input size grows, because the ratio between the job lag and
the whole runtime also decreases.

Because the implementations are written in two different programming
languages and the general program efficiency is quite different in Python
and Java, it is hard to directly compare the run-times of the two different
implementations. But, it still provides a useful comparison to judge the
scalability of the two different implementations.

However, this does not prove MapReduce is faster than MPI in gen-
eral. Domain specific solutions, specifically tailored for the problem/ap-
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plication can always be more efficient, but at least the automatically paral-
lelizable framework Hadoop can easily compete with scripting languages
like python which use MPI for data distribution and task parallelization.

4.2 Solving systems of linear equations

In section 3.1.1 we introduced Conjugate Gradient (CG) algorithm and
adapted it to the MapReduce model. Using the automatic parallelization
of the open source Hadoop MapReduce framework to scale the execution
of the algorithm on cloud infrastructure did not gave satisfying results [2].
The relative complexity and the iterative structure of the CG algorithm
makes it unsuited for Hadoop, which is designed for embarrassingly paral-
lel (i.e. when its trivial to divide the problem into a number of concurrent
tasks) data intensive tasks.

As described in previous chapter, CG belongs to the class 4 of algo-
rithms. Adapting CG to Hadoop MapReduce involves adapting each ma-
trix and vector operations to MapReduce separately. As a result, multiple
Hadoop MapReduce jobs are executed at every CG iteration. It means
that with increasing number of CG iterations, the implementation becomes
very inefficient, when taking account of the problems that Hadoop has with
chaining MapReduce jobs.

Some of the most widely used embarrassingly parallel algorithms are
algorithms based on the Monte Carlo method. Such algorithms are not
only almost trivial to parallelize, they are also very easily adaptable to
MapReduce model and have been shown [19] to achieve a very good effi-
ciency and scalability when executed in Hadoop framework.

We were interested to know how this approach would compare to both
Hadoop MapReduce and Twister CG implementations. For this reason, we
decided to study [4] Monte Carlo based linear system solvers, adapt them
to the MapReduce model, and compare the resulting parallel efficiency and
scalability to the CG implementation.

Branford et al. [67] describe a Monte Carlo based linear system solver
algorithm for diagonally dominant matrices. We adapted their proposed al-
gorithm to Hadoop MapReduce and compared its performance to our CG
MapReduce algorithm. During the process, we also introduced additional
improvements for handling memory usage and lowering the run time. The
following section introduces the Monte Carlo linear system solver algo-
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rithm for solving linear systems and how it was restructured in the process
of adapting it to the MapReduce model.

4.2.1 Monte Carlo SLAE algorithm

The following algorithm uses the matrix inverse method for solving SLAE.
Given SLAE as a matrix equation (Eq. 3.1), where A is a square matrix
of size n, the solution vector can be found as x = A~'b, since we can
transform equation 3.1 to A~* Az = A~'b, where A=A = I,,, hence x can
be found, should we manage to compute the inverse of A.

The algorithm for finding the matrix inverse presented herein is based
on the one described and used in [67, 68]. As with the referenced works
we consider only diagonally dominant matrices and use the following al-
gorithm for computing the matrix inverse (Algorithm 1).

Stochastic error of the algorithm

Parameter ¢ influences the number of Markov Chains N, which we com-
pute as shown in [67], the second parameter ) determines their length as
shown in step 4 of algorithm 1.

N is computed using the Formula 4.1

0.6745 \>
N=(—2) 4.1
(eu— HCID) @D

where ||C|| is the spectral norm of C, ¢ is the measure of accuracy when
solving SLAE and has the most effect of the running time of the algorithm
as its complexity is O(NN7) for a single element or row of the solution
matrix, where 7, being the chain’s length, is generally much smaller. How-
ever, when trying to solve SLAE we wish to find all the elements of the
solution vector as such the algorithm’s complexity becomes dependent on
the size of the matrix n. This makes parallelization all-important, since the
rate of convergence is nowhere close to CG and, as the wanted accuracy
increases, N value quickly becomes very large, as seen from Table 4.2,
showcasing the best case scenario of smallest possible matrix norm.
However, the Monte Carlo approach has a unique advantage: it is pos-
sible to find a single element or a row of the matrix inverse, allowing to
find a specific element of the SLAE solution vector. This process can be
parallelized by splitting the N chains needed for its computation among
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Algorithm 1 Monte Carlo algorithm for inverse of diagonally dominant
matrices [67, 68, 4]

Input: Diagonally dominant matrix D, parameters e andd
Output: Estimate of D~! computed via Monte Carlomethod
Step 1. Calculate intermediate matrices B; and Bs

1: split D = By — By, where By = diag(B) and By = By — D
Step 2. Calculatematrix C and ||C|]|

l: Compute matrix C = BleQ

2: Compute ||C|| and the number of Markov Chains <

2
_ (_o6745
N = (eu—ucu))
Step 3. Calculatematrix P

|aig]

I: Compute the probabilitymatrix P, where p;j = sn

> k=1 laik]
Step4.Calculatematrix M,byMCon C and P
l:Fori=1ton
l.I: Forj=1to N
1.1.1: Initialize j** chain set sumvector
1 itk=1
SUM[K] = { 0 otherwise
1.1.2: Set u = 1 and point =1
Markov Chain MC Computation
1.1.3: Wwhile |u| > §
1.1.3.1: Select a nextpoint, based on the transition <

probabilities in P
C|point][nextpoint]
Plpoint]|[nextpoint]

1.1.3.3: Set SUM [nextpoint] = SUM [nextpoint] + u and <=
point = nextpoint

1.1.3.2: Compute u = u

1.2: Assign M elements as my; = SUTMM, k=1,2,...,n

Step 5. Calculate D!
l: Compute the MC inverse D~ ! = Bl_l + ]\4B1_1
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€ N
1.00E-02 | 4.55E+03
1.00E-04 | 4.55E+07
1.00E-06 | 4.55E+11
1.00E-08 | 4.55E+15
1.00E-10 | 4.55E+19

Table 4.2: Values of N as error estimate lessens. [4]

parallel processes, being a very lucrative possibility for applications, that
would benefit from such an approach.

4.2.2 Hadoop MapReduce implementation of the
algorithm

The Monte Carlo Algorithm 1 is adapted to the MapReduce, resulting in
Algorithm 2. It describes four different execution stages in detail, prepro-
cessing, map method which carries most of the weight of the algorithm,
reduce which is just the identity function and the post-processing required
to finalize the output. To adapt the algorithm to the MapReduce model, we
considered several limiting factors that are imposed by the Hadoop frame-
work on prospective algorithm implementations. First is the job initializa-
tion overhead and scheduling latency, which can take up to 20 seconds.
The second factor is the large quantities of data needed to be transferred
between data nodes, since, unlike usual MapReduce operations; we expect
to receive the same amount of data as submitted for processing. Due to
the aforementioned reasons we divide computation among processes by
row blocks, since the output data will need to be retrieved only once as
well as having only a single job initialization process, keeping the effect of
framework overhead and I/O operations on run time to a minimum.

In parallel implementations, due to the nature of the algorithm, each
separate node needs a copy of matrices A and P in order to complete its
computations. As matrices grow large it may become unfeasible to satisfy
this requirement due to memory constraints on the aforementioned nodes.
Thus we consider data splitting approach as explained in [68]. Of the con-
cepts discussed in that work, we chose to use sequential row blocks with-
out supplying overlapping rows and no communication between nodes, as
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communication between map tasks is practically impossible with Hadoop.
It is worth noting from the results in [68] that the error gain introduced
by this approach becomes negligible for most matrices as their size grows
large.

We split the initial matrix into < key, value > pairs where key is the
starting row number in its accompanying matrix row block, which is the
value of the pair, which we provide as input for our MapReduce program.
The diagonal elements of the given matrix are stored for later use and steps
1 to 4 of the algorithm are executed as part of the map tasks, probability
matrix P elements corresponding to the supplied row block are computed
and summed for use of binary search in finding nextpoint, as suggested in
[67].

A row block elements are replaced by values of ﬁg; ZZZH {Zzzz ZEZH con-
currently to save on the number of operations in step 4. Map output is
retrieved skipping the reduce stage and compiled into M for the remain-
ing step of the algorithm, which is done by using M and previously stored
diagonal elements to compute the estimate of the inverse.

Once the algorithm was designed, it was analyzed for its performance.
Table 4.3 presents results of running the algorithm on a 16+1 cluster of
ml.large Amazon EC2 [69] instances with 7.5 GB of memory and 4 EC2
Compute Units (2 virtual cores with 2 EC2 Compute Units each) each, run-
ning Hadoop version 0.20.2. Tests were performed on randomly generated
matrices with algorithm arguments giving an accuracy comparable to the
one achieved by running about five iterations of CG.

Experiments were run with different number of parallel nodes to be
able to calculate parallel speedup. Run times for the algorithm are shown in
Table 4.3 and calculated speedup is shown on Figure 4.2. The results show
that the algorithm scales well and the speedup achieved through use of
parallelization is nearly ideal for sufficiently large matrices, where Hadoop
job initialization and scheduling delay no longer skews results, with data
transfer latency over the network being the only overhead, as expected
from any embarrassingly parallel algorithm.

To evaluate the real performance gain from using this algorithm we
should also compare these results to previous CG experiments with Hadoop
and Twister CG implementations. Tables 3.1 and 3.5 in section 3.2 show
the results for Hadoop and Twister CG implementations, respectively.

The Monte Carlo method, at the presented measure of accuracy, man-
ages to perform better than the Hadoop CG implementation and has seem-
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Algorithm 2 MapReduce Monte Carlo algorithm for matrix inverse. [4]

Preprocessing:
1. Store diagonal elements of thematrix as vector d
2.Splitmatrix D into sequential rowblocks
Map:
Input < key,value > where:
key — starting row index
value — sequential block of rows of D
Execute Steps 1 to4 of the original algorithm:
Calculate part of matrix C
Cij = —Dijdii;j =1,2,...,nt=1,2,... )k wherek is the +
length of the given row block and d the diagonal «
vector part inthisblock
Calculate part of matrix P
Pij = Zn|aij||a. |
k=1 1%k
Calculate part of matrix M,byMC on C and P
l:Fori=1torowblock length}
l.I:Forj=1to N

1.1.1: Initialize j* chain sets sum vector <
1 ifk=1
MIk| = .
SUM[#] { 0 otherwise
1.1.2: Set u =1 and point =1
1.1.3: While |u| > ¢

1.1.3.1: Select a nextpoint, based on the transition <
probabilities in P

Cpoint][nextpoint]
Plpoint][nextpoint]

1.1.3.3: set SUM [nextpoint] = SUM [nextpoint] + v and <
point = nextpoint

1.1.3.2: Compute u = u

SUMH | —1,2,...,n

1.2: Assign M elements as m;, =
Output < key,value > where:
value is the resulting row of M and
key is its index
Reduce: Identity Reducer is used by default
Postprocessing:
1. Compile map output into M

2.Step 50f original algorithm D%l = M;;+
J
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Unknowns | 1000 | 2000 | 4000 | 6000 | 8000 | 10000

1 node 35 64| 200 | 312 | 751 | 1643
2 nodes 34 36 91 | 201 | 424 870
4 nodes 31 35 69 | 120 | 227 358
8 nodes 23 27 44 62| 112 184

16 nodes 25 31 42 60 84 119

Table 4.3: Run times for Monte Carlo based Matrix Inversion using Hadoop
MapReduce.[4]

ingly better scalability. At the problem size of 8000 unknowns the Monte
Carlo method is almost 10 times faster than that of Hadoop CG imple-
mentation. Thus the analysis shows that Monte Carlo algorithm performs
better than the Hadoop CG implementation, when the desired accuracy is
low. CG implementation in Hadoop is inefficient because of the inherent
problems of Hadoop with iterative algorithms.

However, the slow rate of convergence of the Monte Carlo method,
due to rapid growth of the number of Markov Chains as one’s desired ac-
curacy for the solution grows, means it loses out to a CG implementa-
tion, which does not suffer from framework overhead, such as the Twister
MapReduce variant. Twister CG implementation does a much better job
with both larger problems and a higher resulting accuracy of the solution.
Monte Carlo solution is 20 times slower for solving a linear system with
8000 unknowns and at the same time achieves much lower accuracy.

However, to maintain its efficiency the Twister CG implementation has
to have the whole SLAE matrix in memory in the cluster’s collective mem-
ory at once, an unfortunate drawback, restricting its use for problems of
relatively small size. Monte Carlo solution also shares the same problem
but with comparatively lesser consequences. When the problem size is
huge the matrix is to be read in each iteration in Twister CG implementa-
tion, while the Monte Carlo method has to process each block at most just
once, making it a bit slow, however would win over Twister at some point.
We calculate that this would be achieved at a problem size of ~120000
unknowns, with the collective cluster size memory being 7.5 X 16 GB.

The results show that this algorithm performs better than the Hadoop
CG implementation, when the desired accuracy is low. However, the num-
ber of Markov chains needed to increase the accuracy grows in quadratic
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Figure 4.2: Speedup for Monte Carlo Matrix Inversion using Hadoop. [4]

rate and it is computationally very expensive to use the Monte Carlo algo-
rithms when very high precision is needed. CG implementation in Hadoop
is inefficient mainly because of the inherent problems of Hadoop with iter-
ative algorithms. CG implementation on an alternative MapReduce frame-
work, Twister, results in a more efficient linear system solver, which is
more than 80 times faster than Hadoop Implementation. Comparing the
Monte Carlo solver to Twister CG implementation shows that this solver
cannot compete with CG, being 20 times slower for solving a linear system
with 8000 unknowns and at the same time achieving much lower accuracy.

This algorithm is an example that achieving better performance by try-
ing to find algorithms from different classes for the same problem is possi-
ble. Embarrassingly parallel algorithms based on the Monte Carlo method
(class 1) are more suited for Hadoop MapReduce framework, thus the idea
of solving linear systems with a Monte Carlo method was very intriguing
for us. Unfortunately, the results showed that in this case, a CG implemen-
tation in an alternative MapReduce framework Twister gives much better
results than an alternative algorithm on Hadoop.
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4.3 Summary

We investigated an alternative approach for migrating iterative scientific
computing application to the distributed computing frameworks like Map-
Reduce. We ran [3] additional experiments to compare the performance
of CLARA when adapted to MPI and Hadoop and to investigate how suit-
able alternative it is to using PAM for the same task of clustering arbitrary
objects.

We also implemented a Monte Carlo based linear system solver to in-
vestigate whether we can achieve better performance by using alternative
algorithms for which MapReduce framework is more suitable. Embarrass-
ingly parallel algorithms based on the Monte Carlo method (Belonging to
the first class of our initial classification) are more suited for Hadoop Map-
Reduce framework, thus the idea of solving linear systems with a Monte
Carlo method was very intriguing for us.

Unfortunately, the results showed that in this case, a CG implemen-
tation in an alternative MapReduce framework Twister gives much better
results than an alternative algorithm on Hadoop. It greatly reduces the
overall efficiency of the solver [4] and thus is not a good distributed com-
puting framework when solving very large linear systems.

While the approach of using alternative algorithms has a potential to
produce very interesting results it can not be used in every case. It also
requires domain specific expert knowledge about parallel algorithm design
and the internals of the MapReduce framework to be able to optimize the
results. Thus our conclusion is that this approach is not a good alternative
to adapting scientific computing algorithms to MapReduce unless the user
is an expert in parallel programming.

The next chapter describes our work in investigating alternative Map-
Reduce frameworks that aim to solve some of the Hadoop MapReduce
problems with more complex and especially iterative algorithms.
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CHAPTER S

USING ALTERNATIVE
MAPREDUCE FRAMEWORKS

In this chapter we investigate the feasibility of utilizing alternative Map-
Reduce frameworks for solving resource hungry scientific computing prob-
lems. Alternative MapReduce frameworks, such as Spark [33], Twister
[34] or HaLLoop [21] are specifically designed to provide better support for
iterative applications. Each of these frameworks have their own way of ex-
tending the MapReduce model to support more complex algorithms. While
they may give up some advantages of Hadoop MapReduce to achieve this,
they have been shown to provide significant performance improvements
from Hadoop. Our goal is to evaluate how well they perform in compari-
son to both MPI and Hadoop.

We chose a number of typical scientific computing algorithms and
adapted [5] them to three alternative MapReduce frameworks. The chosen
algorithms were Partitioning Around Medoids (PAM), Clustering Large
Applications (CLARA) and Conjugate Gradient linear system solver (CG).
The chosen alternative MapReduce frameworks were HalLoop, Twister and
Spark. We also compared their performance to the assumed worst (Hadoop
MapReduce) and best case (MPI) implementations for iterative algorithms.

To be able to adequately measure the overhead of MapReduce imple-
mentations in comparison to MPI without comparing the programming
language specific overhead, we chose a Java based MPI implementation
MpiJava [45] with MPICH?2 [47] as the native MPI library. When using
MpiJava the algorithms still run on Java and only the actual MPI messages
are transfered through the underlying native libraries. Thus, the perfor-
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mance of concurrent Java tasks is not affected and we can directly compare
the performance of the data synchronization and the parallelization process
in general.

5.1 Experiment setup

All the experiments were performed in Amazon EC2 public cloud on 32+1
instances. The Amazon EC2 instance type was m1.large with 7.5 GB mem-
ory, 2 x 420 GB storage and 2 cores with 2 EC2 Compute Units each. EC2
computing unit represents the capacity of allocated processing power and
1 EC2 unit is considered to be equivalent to an early-2006 1.7 GHz Xeon
processor based on benchmarking results. Amazon Inc did not publish the
full details of the underlying hardware at the time of running the experi-
ments.

The experiments were conducted in the same Amazon EC2 availability
zone (us-east-1b) to affirm that the experiment results were affected as
little as possible. The software environment was set up in Ubuntu 12.04
server operating system. MPI tests were performed using MpiJava 1.2.7,
MapReduce tests were performed using Hadoop 1.0.3, Twister 0.9, Spark
0.8.0 and HaLoop revision 408. MpiJava internally used MPICH2 1.4.1p1
for the MPI communication and HalLoop used a modified Hadoop 0.20.0.

None of the framework configurations were optimized in detail to avoid
giving any of them an unfair advantage. Modifications were only per-
formed to assure that the algorithm executions were parallelized in a bal-
anced manner in each of the frameworks and that the number of working
processes was equal to the number of cores in the cluster. This included
lowering the HDFS block size to 12 MB, changing the number of input
files as needed to force computations in Map tasks to be of equal size and
specifying the number of reducers to be equal to the number of available
cores.

5.2 Evaluation results

5.2.1 Partitioning Around Medoids (PAM)

Table 5.1 provides the runtime results for the PAM k-Medoid algorithm
implementations. We ran all four implementations with data sets consist-
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Figure 5.1: PAM runtime comparison when clustering 80000 objects. [5]

ing of 13 333, 40 000 and 80 000 2-dimensional points with double value
type coordinates and measured their runtime. The maximum relative stan-
dard deviation of the runtime was 2.6% for MPI, 12% for HaLLoop, 13% for
Spark, 24.8% for Twister and 10% for Hadoop. MPI implementation was
the fastest in all cases being clearly the most efficient. Twister performed
the best among the four MapReduce frameworks and was rather close to
MPI.

Haloop and Spark clearly performed better than Hadoop in every test
case but were significantly slower than either MPI or Twister. For the first
two datasets, Spark was several times faster than HalLoop, but it achieved
better parallel speedup on the largest dataset and managed to achieve a
better runtime when executed on 16 and 32 nodes. Figure 5.1 provides a
comparison of PAM implementations when dealing with the largest dataset
to better illustrate the differences between them.
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5.2.2 Clustering Large Applications (CLARA)

Table 5.2 provides the runtime results for the CLARA k-Medoid cluster-
ing algorithm when the data sets consisted of 1 333 333, 2 666 666 and
4 000 000 2-dimensional points. The maximum relative standard devia-
tion was 0.5% for MPI, 11.2% for HalLoop, 13.4% for Spark, 10.4% for
Twister and 13.2% for Hadoop. Compared to PAM, these results show
how the implementations can manage a larger dataset when the algorithm
is not iterative. In all the MapReduce implementations CLARA required 2
MapReduce jobs, first to randomize the data and to apply sequential PAM
on smaller sampled datasets and second to choose the best clustering from
the ones generated in the previous step. MPI again showed the best results,
achieving almost perfect parallel speedup.

Both HalLoop and Twister also performed quite well, being constantly
better than Hadoop but it were still constantly slower than MPI. However,
Twister scaled much better than HalLoop and was twice as fast on 32 nodes
for the largest dataset. Spark was clearly inefficient in comparison to the
other four, being the only one slower than Hadoop. Already on a single
node cluster it was clearly slower than the other frameworks and also was
constantly the slowest framework on the biggest data set.

The main reason for this is that there are tens of millions of small Java
objects that are shuffled around in the CLARA randomization stage, where
a global random sorting of data is performed. Sparks RDD operations seem
to significantly slow down when that many objects are being moved around
even when the process is taking place on a single node.

The differences of the CLARA implementations when dealing with
largest dataset are illustrated on Figure 5.2.

5.2.3 Conjugate Gradient linear system solver (CG)

Table 5.3 provides the runtime results for the CG algorithm. The dataset
consisted of a dense matrix of 4 million, 16 million and 64 million non-zero
elements. While CG is typically used for sparse matrices, matrix-vector
operations with dense matrices were easier to implement and simplified
adapting the benchmark on different distributed computing frameworks.
In comparison to PAM and CLARA, most of the data does not have to
be repartitioned between nodes between iterations and can stay local to the
original processes. Of course, this does not apply to Hadoop MapReduce
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Figure 5.2: CLARA runtime comparison when clustering 3 million objects. [5]

as it has no way of keeping data in memory between iterations. The max-
imum relative standard deviation was 5.4% for MPI, 15.2% for Hal.oop,
20.6% for Spark, 12.5% for Twister and 18.2% for Hadoop.

MPI CG was the fastest implementation for the two smalled data set
sizes. Moreover, as long as the dataset fits into the memory of one machine,
there is actually no relative speedup from using MPI on multiple nodes as
sending messages between processes adds up to a significant overhead. As
the number of nodes was increased for the larger dataset, Twister actually
performed better than MPI. Considering it was still slower than the MPI’s
single node execution, it only shows that Twister has less communication
overhead and thus scales better. At the same time its runtime is degraded
by other framework issues, such as object serialization overhead.

Spark also performed well considering it takes additional time to con-
figure and start Spark processes in comparison to MPI. With first two
datasets there is actually no gain from using multiple nodes and most of
the total time was actually spent on configuring the Spark processes, load-
ing data to RDD, deploying them and cleaning up after computation was
done. Except for the last dataset where Spark actually achieved parallel
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Figure 5.3: CG runtime comparison with data set size of 64 million elements. [5]

speedup up to 8 nodes, after which the computational complexity of a sin-
gle task became too small.

HaLoop again performed constantly better than Hadoop, but compared
to MPI, Twister and Spark the results were still extremely slow, showing
that it gains little if any benefit from Hal.oop map input caching when
large amount of data still needs to processed in reduce tasks and thus need
to be transported across machines. The differences between the Conjugate
Gradient implementations when dealing with largest dataset are illustrated
on Figure 5.3.

5.3 Discussion

From the runtime experiments it is clear that Spark, Twister and Hal.oop
can deal with iterative algorithms better than Hadoop but not as well as
MPI, with Twister being clearly the fastest of them. While this is somewhat
expected, the difference is larger than we envisioned for both HalLoop and
Spark and it shows that they have great scope for improvements. Another
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important thing to note is that while the HalLoop results are constantly in
same relation with both MPI (always several times slower) and Hadoop
(always around 1.5 times faster), Spark results seem to be greatly affected
by the characteristics of the benchmarking algorithms and their dataset
composition.

In the case of PAM, there is little benefit from caching the input data
in memory in both Spark and HalLoop frameworks as the small objects are
constantly repartitioned between clusters, which involves regrouping and
transporting them between concurrently running tasks at every iteration.

In the case of CLARA, Spark has great difficulties, which can be at-
tributed to the peculiarities of the data set composition as CLARA dataset
consists of millions of very small objects (2D points) which are stored in
Spark RDD’s. It was the same in the case of PAM, but its dataset is much
smaller so the problem did not arise.

This problem is especially evident when considering that Spark already
has difficulties handling the CLARA dataset when running on a single node
and from the fact that is has no trouble with the CG algorithm which re-
quires even more memory in where to store the input data. In addition,
the CG objects themselves (matrices) are much larger. Our hypothesis is
that Spark RDD’s are inefficient when they consist of significantly large
number of very small objects. We will investigate it in detail in our future
work.

The Conjugate Gradient experiment was the closest Spark could get to
MPI results. When processing the largest dataset, Spark results are com-
parable to MPI results (11 vs 6.6 seconds) on 32 nodes if we take into
account that most of the time in Spark was actually spent on framework
overhead of scheduling Spark processes, initiation and cleanup, as is evi-
dent from the fact that runtime never falls below 9 seconds. Similarly, the
MPI runtime is also greatly affected by its communication overhead which
depends on the size of the messages and the number of processes, as seen
from the increase in MPI CG runtime in Table 5.3 for the largest dataset as
the cluster grows.

While Twister is the fastest of the investigated MapReduce frameworks,
it is not as usable as Spark when stability and fault tolerance are critical.
Twister had the most issues and crashes when running performance exper-
iments. These issues greatly complicated executing the performance tests
in an automated manner and its fault recovery system is not ideal for longer
running tasks, as only the Map input and data passed by the main program
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is recovered. Any data kept in memory across iterations would still be
unrecoverable.

We should also take into account that there are many advantages to
using MapReduce-like frameworks that can significantly simplify adapt-
ing algorithms for parallel processing. From the ease of partitioning and
distributing data through the Hadoop Distributed File System (HDFS) to
near automatic fault tolerance and parallelization. Still, the efficiency of
the result can not be ignored for scientific computing applications as per-
formance is one of the main goals when creating and optimizing parallel
scientific computing applications.

Executing long running scientific experiments and simulations requires
a large number of computing resources and whether we are using super-
computers, grids or cloud resources, the cost and limit of such resources
are crucial. Thus the chosen higher level distributed computing framework
should at least be comparable to MPI and not be a several times less effi-
cient.

All the chosen benchmarking algorithms were quite different based on
their iterative nature, dataset composition and size of input and intermedi-
ate data. It provided a good opportunity to compare the involved frame-
works from several different perspectives. It is evident from the results that
only Twister has a comparable performance to MPI for all the benchmarks
and thus is a good candidate for iterative applications when performance
1s important.

However, Twister loses many of the advantages typically attributed to
MapReduce frameworks because it does not use a distributed file system
and it is generally unstable. Spark’s results depended strongly on the algo-
rithm characteristics and thus Spark can only be used in some of the cases.
HaLoop results were only marginally improved over Hadoop in compari-
son to MPI and as it is in a prototype state, it is not really usable in real
situations.

5.4 Summary

This chapter covered the evaluation study of alternative MapReduce frame-
works for parallelizing and scaling up scientific computing algorithms. We
measured the performance of Twister, Spark and HalLoop in comparison to
Hadoop MapReduce and MPI and have shown that the performance of it-
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erative MapReduce frameworks can in some cases be close to MPI and be
much better than Hadoop MapReduce in most of the cases. Next chapter
investigates the performance of frameworks that use a different distributed
computing model, which is Bulk Synchronous Parallel model.
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CHAPTER 6

ADAPTING SCIENTIFIC
COMPUTING ALGORITHMS TO
BULK SYNCHRONOUS
PARALLEL MODEL

The first two approaches covered in the previous two chapters mainly con-
sidered adapting algorithms to distributed computing frameworks based on
the MapReduce model. In this chapter we investigate the third approach,
which is adapting scientific computing problems to Bulk Synchronous Par-
allel (BSP) distributed computing model [24]. BSP model and a number of
its implementations have already been described in more detail in section
2.1.2.

In the first section, we describe our work [1] in investigating Bulk
Synchronous Parallel (BSP) model to find how suitable this model and
its current implementations are for running more complex scientific com-
puting algorithms in comparison to MapReduce and MPI. We adapted
two scientific computing algorithms to two BSP implementations and two
MPI based implementations and performed benchmarking experiments in
a varying size cluster with different dataset sizes to evaluate whether the
BSP based implementations are able to achieve the same level of parallel
efficiency as MPI implementations. We were also interested to find out
whether these implementations provide the same advantages as most of
the MapReduce frameworks do, such as automatic parallelization and fault
tolerance.
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In the second section, we describe our proposal [6] for a new BSP-
inspired computation model and its proof of concept implementation for
the Hadoop Yarn platform which is called NEWT. It can be used as an
alternative to MapReduce in any existing cluster. We analyze the perfor-
mance of the proposed NEWT distributed computing framework in com-
parison to the most suitable BSP implementation among the ones that we
investigated previously. We measure the efficiency of the NEWT fault tol-
erance and recovery mechanisms and discuss what additional features and
improvements should be added to NEWT.

6.1 Performance evaluation of BSP
implementations

Bulk Synchronous Parallel (BSP) is a distributed computing model which
is designed for iterative algorithms. Most of its implementations (described
in section 2.1.2) target either graph processing (Pregel, Apache Giraph,
Stanford GPS) or iterative algorithms (Hama, BSPonMPI). Last ones are
the BSP-based frameworks that mainly interest us.

In BSP, computations are executed in a sequence of supersteps (or it-
erations) with communication operations performed between the super-
steps. BSP communication primitives usually consist of sending messages
between concurrently working processes. There is also a global barrier
between supersteps which means that the next iteration will not start be-
fore all concurrently working processes have finished previous superstep
and intermediate communication operations. These compulsory barriers
and the message-based data synchronization make BSP very similar to us-
ing MPI with only collective communication methods (such as All-to-All,
Gather and Scatter) which have barrier built into them.

While BSP applications are more structured in comparison to MPI,
there is little difference for applications that require this kind of strict struc-
ture anyway, such as iterative applications where a portion of data needs
to be synchronized between iterations. As a result, implementing iterative
algorithms using BSP is very similar to implementing them in MPI.

In addition, having compulsory barriers means that there are specific
periods in the algorithm execution process where some processes are wait-
ing for others to complete their tasks and these periods are located at gen-
erally predictive time intervals. These barrier moments provide an oppor-
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tunity to implement fault tolerance in a structured and transparent manner.
For example by using checkpointing after every N'th superstep. BSP im-
plementations have potential to provide some of the advantages that have
made MapReduce a widely adopted distributed computing framework in
large scale data processing field.

Another aspect is the parallel performance of BSP frameworks, which
in the case of dealing with resource hungry scientific computing applica-
tions is very important. It is important to study how suitable the current
implementations of BSP are for parallelizing iterative algorithms in com-
parison to MapReduce and MPI. We chose two iterative scientific com-
puting algorithms for benchmarking. These are Conjugate Gradient and
Partitioning Around Medoids, which are described in chapter 3.

We implemented these two algorithms on two BSP implementations
(BSPonMPI and Apache Hama) and on two Java MPI implementations
(MPJ Express and MpiJava MPI). All of these implementations were pre-
viously described in chapter 2. We used these algorithm implementations
as benchmarks and executed performance measuring experiments in the
Amazon EC2 cloud. Configuration of these experiments is described in
the next subsection.

6.1.1 Experiment configuration

Experiments were conducted in Amazon EC2 public cloud on 16+1 in-
stances. One extra instance was required for both Hama and Hadoop mas-
ter node, which did not take part in the actual calculations. The first exper-
iment used cl.medium (High CPU Medium) instances with 1.7 GB mem-
ory and 2 cores with 2.5 EC2 Compute Units each. The second one used
m1l.medium (Standard Medium) instances, each with 3.75 GB of memory
and 2 EC2 Compute Units (1 virtual core). Thus, each of the experiments
had 32 processor cores. EC2 computing unit represents the capacity of al-
located processing power and 1 EC2 unit is considered to be equivalent to
an early-2006 1.7 GHz Xeon processor.

All instances used Ubuntu 10.10 as the operating system. MPI tests
were performed using MPJ Express version 0.38 and MpiJava version
1.2.7, BSP tests were performed using Hama version 0.5 and BSPonMPI
version 0.3 and MapReduce test was performed using Hadoop version
0.20.2. Both MpiJava and BSPonMPI used MPICH?2 version 1.4.1p1 for
the underlying MPI communication.
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6.1.2 Partitioning Around Medoids (PAM) results

Nodes | BSPonMPI | MPJ Exp. | MpiJava | Hama | Hadoop
1 24.995 13.26 30.41 | 17.75 118.7

2 11.882 7.47 1519 | 9.92 72.3

4 6.050 3.87 7.37 | 5.66 49.2

8 2.942 2.15 3.64 | 3.34 38.6

16 1.593 1.52 1.88 | 2.37 34.8

Table 6.1: Running time (s) of clustering 80 000 objects with PAM. [1]

The first experiment we performed was PAM, which was parallelized
using 5 different distributed computing frameworks or parallel program-
ming libraries: Hadoop, Apache Hama, MPJ Express, MpiJava and BSPon-
MPI. Each test involved clustering 80,000 objects into 32 clusters and the
average time per iteration is shown in Table 6.1. For simplification, we
used 32 processes of either MPI or BSP and executed them on the chosen
number of machines. This allows us to take full advantage of the 32 vir-
tual cores when we utilize all 16 instances, but it means sending additional
messages when running on lower than 16 machines.

MPJ Express achieved the best performance, with BSPonMPI being
a close second. MpiJava performed worse than the first two and Hama
result was fourth, being more than 60% slower than MPJ Express. We are
mainly considering the results on 16 nodes as even on 1 node we still ran 32
MPI or BSP processes because we needed to cluster data into 32 clusters.
The results on the lower number of nodes illustrate how well the specific
implementations handle the communication between processes running on
the same virtual machines, and while this result is interesting and shows
the differences of the respective implementations, it does not often affect
running real life applications, as common practice is not to have more than
a small number of processes per core.

We also executed MapReduce experiments and included the results in
the same Table 6.1 as the last column to give a full picture. It is clear that
MapReduce performs much worse than any of the MPI or BSP implemen-
tations, being at least 14 times slower than any other implementation when
running on 16 nodes. It again confirms (as stated in the Chapter 3) that
MapReduce is not suitable for iterative applications.
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6.1.3 Conjugate Gradient (CG) results

p | MPJ Express | MpiJava | BSPonMPI | Hama
| 476.34 | 479.15 468.54 | 453.48
2 276.42 | 287.15 275.88 | 377.23
4 160.63 163.89 158.21 | 273.36
8 90.53 99.70 91.35 | 206.74
16 55.16 71.01 58.87 | 204.31

Table 6.2: 3D Heat simulation time (s) on p processes. [1]

Table 6.2 presents the 3D heat diffusion simulation (solving systems of
linear equations by applying parallelized Conjugate Gradient algorithm it-
eratively) runtimes using four different communication libraries - Apache
Hama, MPJ Express, MpiJava and BSPonMPI. The resolution of the sim-
ulation was kept fixed for all experiments, resulting in a system of linear
equations with 8,000,000 unknowns and a total memory consumption of
1 GB. Message size varied from just 8 bytes (dot product and error mar-
gin synchronization) to 0.3 MB (matrix vector multiplication synchroniza-
tion).

Hundred steps of the simulation were performed, each equivalent to
one invocation of CG. For the given problem size, 4 CG iterations were
necessary to achieve an error margin ! of 107, resulting in around 400
CG iterations in total. Superstep count for Hama was 1337 and quite a
bit higher for BSPonMPI, as it requires a synchronization step after each
DRMA (Direct Remote Memory Access) registration of an array. As dis-
cussed in previous section, running such a large number of Hadoop Map-
Reduce iterations is not feasible, and thus was not included in this case.

These results are similar to the results of the PAM experiment. How-
ever, as this experiment has a much higher number of supersteps, it empha-
sizes the differences between the separate MPI and BSP implementations.
They confirm that the BSPonMPI performs very closely to the fastest MPI
implementation MPJ Express. Hama performs worse than in the previous
experiment, indicating that it has troubles with a larger number of itera-
tions, as in the PAM experiment there was an average of 30 supersteps

'Counted as the maximum norm (||a|mex = max{|a;|}) of the residual vector used in
the CG algorithm.
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(two per PAM iteration), but in the case of this experiment there were at
least 1337 supersteps.

6.1.4 Apache Hama performance issues

The results in the Tables 6.1 and 6.2 show that Hama is performing worse
than BSPonMPI and both MPI implementations. The likely reason for
the slowdown is the object serialization Hama employs when transmit-
ting messages. JBSP [70] is one example of a BSP framework which has
been known to be affected by this problem. While Hama authors have
performed benchmarks [71] to investigate its performance, they have not
directly compared the results to MPI and other BSP implementations. To
investigate whether our assumptions are correct, we performed an addi-
tional experiment using the same software and cluster configuration as in
the CG benchmark.

Both Apache Hama and BSPonMPI were used to run a program that
simply performs 100 barrier synchronizations. Further tests transmitted
a single message to the master at each superstep, with the message size
increasing for consecutive tests. For synchronization times we considered
Hama’s own TIME_IN_SYNC_MS counter, divided by the number of pro-
cesses (one for each node in the cluster), and the cumulative duration of
each bsp_sync() invocation for BSPonMPI. The results of this experiment
are provided in Table 6.3.

Message | Hama | Hama | BSPonMPI | BSPonMPI
size time | sync time sync

N/A | 25.633 | 10.38 0.26 0.23
10000 | 31.58 | 16.03 1.71 1.45
100000 | 67.77 | 50.77 10.89 9.80
1000000 | 280.8 | 267.1 100.5 100.1

Table 6.3: Benchmark runtime and synchronization times (s) for BSPonMPI and
Hama. [1]

For the test case without any messages, in addition to the obvious
framework initialization overhead, Hama seems to spend a considerable
amount of time just performing the barrier synchronization, resulting in
synchronization that is 50 times slower than with BSPonMPI. When a
0.076 MB message (array of 10000 double numbers) is transmitted at each
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superstep, the advantage of BSPonMPI decreases to being 10-fold. At
message size of 0.76 MB, BSPonMPI is only 5 times slower, further de-
creasing to just 2.5 times at 7.6 MB messages.

While BSPonMPI demonstrates a clear linear increase in synchroniza-
tion time in relation to message size, Hama’s pattern seems to be more
erratic, showing a large overhead without a clearly distinguishable source,
which is further amplified with the increase to the number of messages
being transmitted. The serialization mechanism Hama employs is user de-
fined serialization sequence for all transmitted messages and objects.

It is generally the optimal approach to serialize objects in Java and the
additional source of overhead is likely caused by the use of Hadoop RPC
(for transfer of messages) and Zookeeper (for barrier synchronization).

6.1.5 Discussion of the evaluation results

Both the PAM (table 6.1) and CG (table 6.2) results show that the fastest
BSP implementation BSPonMPI performs only slightly worse than the
fastest MPI implementation MPJ Express, but the difference is negligi-
ble when the number of nodes in the cluster is 16. The comparison of
BSPonMPI and MpiJava is especially interesting for us because they both
use the same underlying MPICH2 MPI implementation and access its rou-
tines through Java Native Interface (JNI), yet BSPonMPI performs better
in both cases.

The slight advantage of BSPonMPI is most likely caused by certain
implementation decisions taken by authors of MpiJava, but since the dif-
ference in runtimes is in favor of BSPonMPI anyway, it is clear that the
BSP model does not impose any significant overhead (at least in case of
these algorithms).

The results show us that BSP implementations can be just as excellent
as MPI implementations for parallelizing these types of algorithms. As the
chosen benchmarking applications represent the typically used complex
scientific computing algorithms, this clearly shows that the BSP computing
model is a good choice for solving scientific computing problems. How-
ever, at the same time, the current BSP implementations are not perfect.
BSPIib is a legacy system which is not usable on new hardware.

Hama does not perform well in comparison to BSPonMPI. BSPonMPI
is as efficient as MPI in our experiments, but in comparison to MapReduce,
it does not provide fault tolerance and does not significantly simplify the
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creation of BSP applications, which are some of the reasons why we were
considering different distributed libraries and frameworks in the first place.

It is clear that the existing BSP frameworks and libraries either do not
provide the fault tolerance required by long running applications or are
designed for solving specific types of problems, such as graph processing
and thus require extra effort for adapting other kind of applications to them.
We decided to propose a BSP-inspired parallel programming model (not
unlike MapReduce) which enables transparent stateful fault-tolerance and
has better support for general-purpose iterative algorithms than currently
existing frameworks.

6.2 Fault tolerant BSP framework for Hadoop
YARN

NEWT [6] is an distributed computing framework for the Hadoop YARN
platform which was designed to replace the default MapReduce frame-
work. It uses a modified Bulk Synchronous Parallel (BSP) model and
strives to retain the advantages of MapReduce while supporting a wider
range of algorithms. Its goals are to provide automatic fault recovery, re-
tain the program state after fault recovery, provide a convenient program-
ming interface and to support iterative scientific computing applications.

NEWT parallel programming model adopts an approach similar to con-
tinuation passing for implementing parallel algorithms and facilitates fault
tolerance inherent in the BSP program structure. A NEWT application
consists of a number of BSP functions. Each NEWT function can be seen
as a standalone BSP function which returns the value of the next function
to be applied. One such BSP function is executed at each superstep and it
specifies what function will be applied on the next superstep. This allows
not only to iterate over multiple different BSP functions (which may be
needed for more complex algorithms), but also to dynamically decide the
program flow or to decide when an ending condition is met.

In addition to supporting cyclic execution of BSP functions, it also
allows to hide the fault tolerance operations from the user by executing
checkpoint creation and recovery operations between supersteps. This
means that users do not have to modify their NEWT applications (which
is often required in MPI) to enable or disable fault tolerance and the com-
plexity of the application is not affected.
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We can represent such BSP applications as finite state machines (FSM),
where the result of applying each superstep is equivalent to a state in FSM.
This leads us to view programs under the BSP model as suitable for an
abstract computer, consisting of:

* Memory - contains message queues and the mutable state of the pro-
gram.

» Label to instruction map - Specifies the relation between instruction
labels and instructions.

* Function pointer - holds the label of the next instruction to be exe-
cuted.

* Communicator - Mediates sending messages between concurrently
running BSP processes.

The instructions are user-defined BSP functions and the message queues
hold incoming and outgoing messages. Writing a NEWT program is sim-
ilar to using continuation-passing style from functional programming, ex-
cept that we allow sending messages as side effects. User writes a number
of BSP superstep functions which process received messages, performs lo-
cal computations to transform the current state, sends messages to other
processes and specifies what is the next BSP superstep function to be exe-
cuted.

The following pseudo code illustrates the inner workings of the de-
scribed FSM using high-level imperative programming concepts:

state < initial State
next < initial Label
while true do
next < execute(next, state, comm)

barrier(comm)
if next == none then
break
end if
end while

The execute call runs the BSP function defined by label next and re-
turns the label of the next BSP function to be executed. The modification of
the state and message transfer through communicator comm is achieved as
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a side-effect of BSP function calls. Typical communication primitives sim-
ilar to MPI team communication operations are defined to simplify deal-
ing with data synchronization. These primitives are accessible through the
communicator comm. As per BSP model, barrier initiates communica-
tion and synchronizes all the concurrently working NEW'T processes.

The state, next BSP function label and incoming messages can be
stored into a distributed file system or other non-local persistent storage be-
tween invocations of execute, so that the full state of the NEWT program
can be restored and restarted. This recovery can be achieved seamlessly.
When a failure is detected, NEWT processes that failed can be restarted on
other nodes and their state can be restored from the previous checkpoint. It
is also important to note, that processes that did not fail can simply rewrite
their current state from an earlier snapshot and then continue the execution
to complete the recovery.

Apart from creating BSP functions, user also has to define the state
and assign labels to each of the BSP functions. State of a NEWT program
can be defined as the data that is persisted in memory across different BSP
function executions. Each BSP function has to explicitly return the label of
the next BSP function to be executed. NEWT can be used to easily model
any MapReduce program by creating two BSP functions labeled *Map’
and 'Reduce’ and defining that the state is empty (statless). Data is passed
along only by sending messages at the end of the "Map’ stage and becomes
available for processing at the ’'Reduce’ stage.

Any number of such stages can be defined in NEWT and we can also
model iterative programs with an arbitrary number of iterations. Iterative
NEWT applications can be defined by BSP functions returning their own
labels while iterations are to be continued. In addition, instead of a single
BSP function returning its own label, a number of BSP functions could be
executed in a cycle to make up more complex iterative applications.

Once the iteration ending condition is achieved, a label for an ending
BSP function can be returned which would act as the exit from the iter-
ative cycle. At specific intervals, the current state of the application and
the current message queue would be stored to persistent storage. The fre-
quency of this process can be configured based on how long the application
is expected to run and how stable is the underlying hardware.

A reliable re-scheduling mechanism and a resilient storage environ-
ment are required for successful fault recovery and we chose the following
Hadoop components for this purpose. NEWT uses Yet Another Resource
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Negotiator (YARN) [22] to manage cluster computing resource allocation,
task management and re-executing failed tasks in case of machine or net-
work failures. It also allows to execute NEWT applications inside an exist-
ing Hadoop cluster. It also uses Hadoop Distributed File System (HDFS)
[28] to store input, output and checkpoint data of NEWT applications.
Data in HDFS is divided into smaller blocks and replicated across different
physical locations, which is very convenient for storing checkpoint data in
a reliable manner.

NEWT coordinator is implemented as a YARN Application-Master,
which can request and manage YARN containers [72]. YARN uses con-
tainers to separate processes running in Hadoop cluster, assign computing
resources to them and re-execute failed tasks. The concurrently working
NEWT BSP processes run inside these YARN containers.

Message passing is implemented using Apache MINA [73]. It is a
framework which simplifies developing high performance network appli-
cations by using Java NIO to provide an event-driven asynchronous mes-
saging API over TCP or UDP. Initially it was planned to use MPI for this,
but while there have been developments in making MPI run in a Hadoop
YARN cluster [74], there were no working and stable implementations
when NEWT was created.

There are three main interfaces that users interact with when creating
NEWT applications - Stage, BSPState and BSPComm. Stage represents a
BSP function in NEWT. A user defined state class, which extends BSPState
is used to define what data needs to be kept in memory between supersteps
and saved in checkpoints.

In this class, user has to define the execute method, which signature is:

» String execute(BSPComm comm, BSPState state)

The BSPComm class exposes message passing functionality and it sup-
ports the following functions:

» send(Writable message, int pid)
» send(Writable message, int pid, String tag)
* sendAll(Writable message)

» sendAll(Writable message, String tag)
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Messages are subclasses of the Hadoop Writable interface. Message
passing is race-free and messages can be safely retrieved from the receive
queue using the following functions:

* move()
* move(int pid)
» getReducedValue(String tag, ReduceOp<Writable> op)

The move function returns all messages that were received. These
messages are sorted by the sender process ID in the ascending order and
by sending order. When a process id is given as an argument, the move
function retrieves messages from only that process. The getReducedValue
method mimics the functionality of the MPI_Reduce function. It takes ad-
vantage of the optional tag parameter that can be specified when sending
messages by applying a ReduceOp aggregation function on all the received
messages which have the specified tag attached to them. The framework
includes a number of common reduction operations such as sum-of-floats
or maximum-of-integers.

Currently Java 1.7 closures are used to define program functions, but
the goal is to migrate to Java 1.8 closure syntax in the future as it is much
more convenient and natural to write Java 1.8 closures.

6.2.1 Adapting algorithms to NEWT

Parallelizing algorithms using NEWT is similar to parallelization in MPL.
In fact, the only significant difference is having to divide the normal ap-
plication flow into separate BSP functions. When migrating existing MPI
applications to NEWT, every communication operation in the original MPI
application would be a candidate for the dividing location into separate
BSP functions.

A number of single message and collective communication message
operations can be used to synchronize data between concurrent NEWT
processes. The available operations are identical to their Java MPI API
counterparts with the same name.

We describe the adoption of two algorithms to NEWT to illustrate this
process. These two algorithms are Conjugate Gradient (CG) linear system
solver and PAM clustering method, which were already described in more
detail in sections 3.1.1 and in section 3.1.2.
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CG is a rather complex iterative algorithm for solving sparse systems
of linear equations. The algorithm is typically parallelized using the Single
Program Multiple Data (SPMD) model, where all the data is split evenly
among the concurrently working processes.

To adapt CG to NEWT, each of the CG iterations need to be split into
several supersteps because there are three occasions when data needs to
be synchronized between processes. These include two dot product oper-
ations and one matrix-vector multiplication which requires synchronizing
overlapping portions of vectors between neighbors.

Dividing the algorithm into different stages is visualized on Figure 6.1

* Init - Initializes all needed state variables and performs the initial
guess for the linear system solution.

 Start of Loop - Defines the beginning of the iteration until the first
dot product operations and sends the partial dot product and error
value to all other processes.

* Check Ending Condition - Calculates the global dot product and er-
ror value. It uses the error value to decide whether the solution is
close enough or whether more iterations are required, returning ei-
ther the label of stop stage or the continue the loop stage.

* Continue Loop - Calculates local values for vector p and sends its
overlapping edges to two neighboring processes to prepare for global
matrix-vector multiplication.

* Do MatVec - Receives the overlapping p edges and computes the
matrix-vector multiplication. It also computes another partial dot
product and sends its result to all other processes.

* End of Loop - Calculates the global dot product, performs calcula-
tions at the end of CG iteration and returns the label of the ’Start of
Loop’ stage.

» Stop - This stage is executed when the error value gets below spec-
ified margin or the maximum iteration count is reached. It finalizes
the result computation and outputs it.
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Figure 6.1: Structure of CG under the proposed model. [6]

Apart from having to split each stage into a separate BSP function,
the resulting structure is very similar to programs written under common
message passing paradigms (such as BSPlib or MPI).

Partitioning Around Medoids (PAM) is an iterative clustering method
that divides a set of objects into % clusters using only pairwise distances
between objects. It has already been described in more detail in section
3.1.2.

Segregating PAM into NEWT stages is rather straightforward and does
not require any restructuring of the original algorithm. There are two main
methods in the original algorithm and we simply create a NEWT stage for
each of them. This is illustrated on Figure 6.2 and the resulting stages are:

* Init - Defines the global state variables and randomly selects & ob-
jects as the initial medoids for the clusters.

* Check Ending Condition - Checks whether the medoids changed
from the previous iteration. If they did not then move to ’Stop’,
otherwise continue to *Divide Points’.
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Figure 6.2: Structure of PAM under the proposed model. [6]

¢ Divide Points - Calculates which medoid is closest for each of the
objects in the data set and synchronizes objects that should be moved
between clusters.

» Recalculate Medoids - Calculates the new center element - medoid
for each of the clusters and each other process of the change.

* Stop - The final stage that completes the clustering process by writ-
ing the results to disk.

These examples demonstrate when to split sequential programs into
multiple NEWT stages. The most obvious reason is the synchronization
requirement. Every time data needs to be received from other concurrently
working processes, a barrier is required. In NEWT, communication barri-
ers are performed between stages and thus the original algorithm has to be
split into different methods every time that happens.

The second reason arises when the algorithm contains dynamic branch-
ing, such as iteration ending conditions, when there are multiple different
actions that can be taken that lead to different methods being executed.
Another case can be seen from the CG ’Start of Loop’ stage, which is exe-
cuted repeatedly and serves as a loop base for this algorithm. It is a sepa-
rated stage from 'End of Loop’ stage because it must initially be executed
separately.
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The barriers between NEWT functions are automatic and can cause un-
necessary overheads if no actual data synchronization is required. Thus, it
would be a straightforward optimization to combine stages when no mes-
sages are sent between them. For example, the PAM ’*Check Ending Con-
dition’ and ’Divide Points’ would be merged in this fashion.

6.2.2 Performance comparison

A series of performance measurements were performed on the framework
to verify that this approach works. The previously described algorithms
PAM and CG were chosen as use cases. Both algorithms were imple-
mented in NEWT and their performance was compared to their respective
BSPonMPI implementations. BSPonMPI was previously determined (sec-
tion 6.1.5) to perform as good as MPI for the given algorithms and thus
would provide a good comparison for BSP frameworks.

We used Amazon EC2 cloud for the benchmarking environment. A
cluster of 16 Amazon’s Standard Extra Large (m3.xlarge) instances was
created. Each node had 15 GB of memory and 8 EC2 Compute Units
(4 virtual cores) of computing power. They were running Ubuntu Server
12.04 operating system and Hadoop YARN 2.2.0 was installed.

Two types of performance experiments were performed. First we mea-
sured the scalability of the algorithm implementations and then we as-
sessed the overhead caused by the fault tolerance procedures of NEWT.
In the scalability trials, each of the algorithms was given a fixed input size.
A sparse system of 125 million linear equations for CG and 250 thousand
objects across 64 clusters for PAM. Only the number of processes p was
varied in these experiments to be able to calculate speedup. The results of
these experiments are provided in Table 6.4.

It is important to note that these results (table 6.4) also include an ap-
proximately 14 second overhead that is induced by YARN for initialization
and allocation of process containers, which can not be avoided when run-
ning applications in YARN clusters.

In the case of CG, the scaling of NEWT is initially (2-16 cores) bet-
ter, but starts to decline afterwards (32 and 64 cores). This is somewhat
expected because the communication part of the application starts to out-
weigh the computation part when the number of processes increases and
MPI (which BSPonMPI uses internally) is very well optimized for such
cases. It indicates that NEWT barrier synchronization should be improved.
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conjugate gradient

k-medoids clustering

p NEWT | BSPonMPI p NEWT | BSPonMPI
1 4476 4616 1 1889 1873
2 2225 2415 2 1248 1172
4 1245 1221 4 646 601
8 697 689 8 339 330
16 350 346 16 203 185
32 227 219 32 150 153
64 240 207 64 122 151

Table 6.4: Runtime (in seconds) comparison between NEWT and BSPonMPI. [6]

The sequential version (1 process) of CG structured according to the
NEWT’s model consistently outperformed the sequential MPI implemen-
tations. Our current working assumption is that it is related to the Java
Virtual Machine (JVM) being able to optimize the code better when cer-
tain algorithms are structured according to NEWT’s model.

The scaling of PAM NEWT implementation is quite close to the BSPon-
MPI implementation. It suggest that restructuring the algorithm for NEWT
does not impose a significant overhead. In addition, NEWT produced sig-
nificantly better result than BSPonMPI when the number of cores was in-
creased to 64.

6.2.3 Fault tolerance

Periodic checkpointing was enabled in the second performance experiment
to be able to measure the overhead of storing checkpoints in HDFS. The
Figures 6.3 and 6.4 show three different time lines of the implemented
algorithm execution, which are:

1. Default time line with checkpointing disabled
2. Time line when checkpointing is enabled but no faults happen

3. Time line when checkpointing is enabled and a critical fault happens
To be able to simulate machine or network failure in the third time line,

one of the Amazon virtual machines was shut down approximately in the
middle of the expected running time. An extra cloud instance was added
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Figure 6.3: PAM performance after enabling checkpointing and on node failure.

[6]

to the cluster where the failed task could be moved to. This experiment
was executed in a cluster consisting of 16+1 Amazon ml.medium (3.75
GB RAM and 1 virtual CPU core) instances.

Figure 6.3 displays the three different time lines for the PAM fault tol-
erance experiments. Creating PAM checkpoints every minute had a neg-
ligible effect on the whole runtime since the PAM state is very small and
storing it on HDFS takes only a fraction of the whole iteration runtime.
The PAM state consist of floating point coordinates of the points in each of
the clusters and all currently incoming messages. The size of a checkpoint
was under one megabyte on average, which was much less than the entire
address space of the program. It took approximately 30 millisecond on
average to store a single checkpoint to HDFS was.

In the third time line, there was approximately a 10 second period of
downtime after one of the nodes failed. It consists of the time it took for
YARN to recognize the failure and to allocate a replacement container. Af-
ter the container was made available, the failed NEWT process was started
in it. To restart the whole computing process, each of the process read
their current state from the latest checkpoint and all the communication
channels were reestablished between them. These last steps took under a
second in total.
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Figure 6.4: CG performance after enabling checkpointing and on node failure. [6]

Figure 6.4 shows the time lines for the three Conjugate Gradient fault
tolerance experiments. The size of the checkpoints was 400 megabytes,
which was significantly larger than PAM checkpoints. For this reason the
frequency of their creation was reduced to three and a half minutes. Storing
a 400 megabyte checkpoint took more than 30 seconds and reading them
from HDFS took approximately 15 seconds.

Table 6.5 contains the average times for the different types of overhead
the framework imposes for both CG and PAM.

CG | PAM
startup 12 12
checkpoint | 34.75 0.1
downtime 11 12
recovery 15 0.3
cleanup 2 2

Table 6.5: Average overhead times (in seconds) imposed by NEWT for CG and
PAM. [6]
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6.3 Discussion

To analyze the available BSP implementations we compared them to MPI
by applying two benchmarking applications, which parallelized using sev-
eral MPI and BSP implementations. The results of this analysis show that
BSP based implementations work at least as well as the MPI based ones
and much better than Hadoop MapReduce. As the chosen applications rep-
resent the typically used non embarrassingly parallel scientific computing
algorithms, it demonstrates that the BSP distributed computing model is
a good choice for solving scientific computing problems. We also believe
that BSP frameworks have strong potential to offer the same advantages
as MapReduce frameworks, like near-automatic parallelization and fault
tolerance.

However, the current BSP frameworks and libraries still leave much
to be desired. Hama, for example, has problems with performance and
BSPIib is outdated and very difficult to use on latest hardware. Libraries
such as BSPonMPI are efficient, but like MPI, they do not provide auto-
matic fault tolerance and do not significantly simplify the creation of BSP
applications.

BSP frameworks that are based on Google Pregel, like Apache Giraph
and Stanford GPS, are designed for graph computations, and while it is cer-
tainly possible to adapt non graph algorithms to them, it is not a straight-
forward task. Still, we have shown that BSP is a good choice for solving
scientific computing problems as the performance of the most used BSP
libraries is closely comparable to MPI libraries and much better than for
Hadoop MapReduce. [17]

These results demonstrates that the Bulk Synchronous Parallel dis-
tributed computing model is a good choice for solving iterative scien-
tific computing problems. We also believe that frameworks based on the
BSP model have strong potential to offer the same advantages as the Map-
Reduce model, like automatic parallelization and fault tolerance.

To counter these drawbacks we presented a BSP-inspired parallel pro-
gramming model that enables transparent stateful fault tolerance through
checkpointing. To validate the usefulness of the proposed model, we cre-
ated a distributed computed framework, called NEWT.

NEWT supports a larger range of applications than the current BSP
implementations and utilizes Hadoop YARN to perform automatic check-
point/-restart of programs. We implemented two very different computa-
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tion kernels on the framework and showed that it performs adequately for
coarse-grained algorithms.

However, our results also show that the current barrier synchronization
implementation could still be optimized for better support of very fine-
grained algorithms. We compared the NEWT checkpointing time require-
ments to Berkeley Lab Checkpoint/Restart (BLCR) [75] approach and de-
termined that writing NEWT checkpoints to HDFS is as fast as writing
BLCR checkpoints to local storage.

6.4 Summary

This chapter outlined our work in evaluating the approach of using Bulk
Synchronous Parallel distributed computing model as an alternative to the
MapReduce model. We measured the performance of current Java based
BSP implementations in comparison to both Hadoop MapReduce and MPI
and have shown that the performance of BSP based frameworks is close to
MPI, which we consider to be the de facto choice for parallel programming
when performance is the main goal.

We identified a number of problems with the current BSP implementa-
tions. To solve these issues we proposed a new fault tolerant BSP-inspired
parallel programming model and framework NEWT for iterative compu-
tations which can run in existing Hadoop Yarn clusters. We described its
programming model, illustrated how to adapt scientific computing algo-
rithms to it, and compared its parallel performance to BSPonMPI, which
showed the best performance among the pre-existing BSP implementa-
tions. Runtime experiments showed that the proposed NEWT framework
has similar performance to BSPonMPI.

Next chapter outlines our approach for choosing the most suitable dis-
tributed computing framework for a given algorithm when there are many
different choices available and more being created every year.
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CHAPTER 7

CHOOSING THE MOST
SUITABLE DISTRIBUTED
COMPUTING FRAMEWORK

We have described three different approaches for adapting scientific com-
puting algorithms to distributed computing frameworks in the previous
chapters. In the course of this work, we adapted algorithms to a num-
ber of different MapReduce and BSP frameworks, compared their perfor-
mance to the de-facto parallel programming library MPI to analyze how
suitable these frameworks are for solving computation intensive scientific
computing problems and evaluated whether they simplify the process of
parallelizing and scaling scientific computing algorithms.

We define suitable distributed computing framework as a framework
which fulfills our original expectations for adapting scientific computing
algorithms to distributed computing frameworks. These expectations (de-
scribed in Chapter 1.1) are ease of parallel programming, ease of debug-
ging, automatic fault tolerance, parallel efficiency and scalability. When
comparing the suitability of different distributed computing framework,
the most important factor for scientific computing algorithms is parallel
efficiency.

Our conclusion from all of this work is that there is no single approach
or distributed computing framework that is suitable for every type of scien-
tific computing algorithm. Hadoop MapReduce is generally more suitable
for embarrassingly parallel algorithms when the intermediate data does not
fit into the memory of the cluster. Because we have to use some kind of
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distributed file system to store the data in that case so there is no additional
overhead from using file based HDFS to store intermediate data.

Alternative MapReduce frameworks (such as Twister or Spark) are
more suitable for iterative algorithms when the intermediate data fits into
the total memory of the cluster. BSP based frameworks are designed for
either graph processing algorithms (Giraph, Stanford GPS) or also itera-
tive algorithms (HAMA, NEWT). MPI implementations are required for
more complex algorithms that require asynchronous or spontaneous com-
munication. Furthermore, existing distributed computing frameworks are
constantly updated and new frameworks are introduced every year, which
may solve some of the issues we face, but their suitability and parallel effi-
ciency should be evaluated in comparison to existing parallel programming
libraries or distributed computing frameworks).

In recent years, new distributed computing platforms (such as Hadoop
Yarn and Aneka [23]) have emerged which enable switching between dif-
ferent distribute computing frameworks on-demand. Hadoop YARN sep-
arates computer resource utilization, task scheduling and execution from
the default MapReduce framework and allows other distributed computing
frameworks to be used instead. Aneka allows to extend local clusters with
cloud computing resources and execute tasks on different distributed com-
puting frameworks depending on the characteristics of the tasks. Both of
these distributed computing platforms were described in chapter 2.

These platforms simplify using the most suitable distributed computing
framework for a given algorithm as it allows users to avoid having to set
up many distributed computing environments and moving data and tasks
between them. However, choosing between different distributed comput-
ing frameworks is still left up for the user to decide — which can be a very
difficult task. One would have to have an in-depth knowledge of the in-
volved algorithm, each of the available frameworks and the parallelization
methods used by those frameworks. Often it would require implementing
the given algorithm in a selection of those frameworks and comparing the
results and setting up and executing the implementations in a real cluster.

It might also be possible to use previously existing benchmarks to eval-
uate which of the frameworks would be more suitable for the algorithm
under investigation. But that would require finding a benchmark which is
very similar to the given algorithm and which is also implemented for each
of the distributed computing frameworks that are under consideration. But
it is possible that there are no such benchmarks, or that they are similar
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but use different data types, can not be used with larger amount of data,
or are implemented only in some of the available frameworks. It is a po-
tential approach, but we can not assume it is always available and directly
applicable.

We decided to make the process of choosing the most suitable dis-
tributed computing framework a more straightforward task, as there would
otherwise be little benefit from having all these different frameworks avail-
able. This approach should not require investigating all the available frame-
works in detail or extensive programming and debugging effort to adapt the
algorithm for each of them.

To achieve this, we decided to create a Dynamic Algorithm Model-
ing Application (DAMA) for simulating the parallel structure of scientific
computing algorithms and implemented it on a number of available dis-
tributed computing frameworks in the Hadoop ecosystem which are widely
used or which we have previously evaluated to have a reasonable parallel
efficiency in comparison to MPI. We propose a methodology which ap-
plies DAMA to simplify choosing the most suitable distributed computing
framework for a given algorithm.

The following sections describe DAMA and the proposed methodol-
ogy in more detail. We also verify that the modeling methodology cor-
rectly predicts which distributed computing model and its implementation
is more suited for a given algorithm.

7.1 Dynamic Algorithm Modeling Application

Dynamic Algorithm Modeling Application (DAMA) is a generic distribu-
ted computing application, which can be reconfigured to model the struc-
ture of different algorithms. DAMA follows the single program, multi-
ple data (SPMD) parallelism model and has been implemented using four
different parallel programming solutions: Apache Spark, Hadoop Map-
Reduce, Apache Hama and MP1Java.

After configuring DAMA to model the structure of a given algorithm,
it can be used directly as an approximate benchmark for this algorithm on
any of the supported frameworks or libraries. This process does not re-
quire any programming or code debugging steps and can thus significantly
simplify the process of estimating the performance of the algorithm on dif-
ferent frameworks as we can avoid implementing the given algorithm on
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each of the available frameworks and using the implementations as bench-
marks.

To be clear, all these steps are still going to be required once the target
distributed computing framework is chosen. The goal of DAMA is simply
to postpone these steps until it is known which specific framework should
give the best result and thus greatly decrease the scope of work that has to
be done.

We feel that this kind of approach is critical as the number of available
distributed computing frameworks continues to increase in the Hadoop
ecosystem and also outside of it. In addition, Santenu Jha et al. [62] also
concluded (as covered in the state of the art chapter in section 2.3) that
current benchmarks do not cover all facets of scientific computing and Big
Data algorithms and new benchmarks should be created to cover them. To
support additional frameworks, we need implement DAMA once on them
and then we can evaluate their performance for any scientific computing
algorithm which DAMA can model.

As previously mentioned, DAMA is a generic distributed computing
application, which parallel structure can be changed to model different al-
gorithms. In essence, it is an iterative application which executes a user
configured set of communication patterns and computational kernels at ev-
ery iteration. Communication patterns represent data synchronization tasks
and allow us to simulate their effect on the performance of parallel applica-
tions. Kernels represent computational operations and are used to simulate
the computational complexity of parallel applications. The ratio between
communication and computation is one of the most influential parameters
on the scalability of parallel applications so it is important to model both
of them as accurately as possible.

Almost everything in DAMA is fully configurable by the user, such as
the number of iterations, type size and amount of input data, what compu-
tational kernels are executed and how much data is synchronized at every
iteration. All the available configuration options are outlined in Table 7.2
and Section 7.2.1 describes how to specify these configuration values us-
ing four algorithms as examples. The execution flow of DAMA is outlined
using pseudo-code in Algorithm block 19

DAMA first checks what communication interface (representing differ-
ent distributed computing frameworks or parallel programming libraries)
to use, generates input data objects of specific size, type and amount and
starts the iterative execution process. At each iteration, DAMA checks
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Algorithm 3 Pseudo-code for the main operation cycle of DAMA.
init(COMMUNICATION_INTERFACE)
importCon figuration(CONF_FILFE)
data = genData(DATA_OBJECTS, DATA_TY PFE)
if | DATA_GENERATED_LOCALLY then

distributeData(data)
end if
1t =0
while it < iterations do
ifit >0& STORE_INTERMEDIATE_DAT A then
data = readIntermediate Data(it — 1)
end if
data = callComputationKernel(it, data)
data = syncData(data)
if STORE_INTERMEDIATE_DAT A then
storelntermediate Data(it, data)
end if
processResults(it)
=1t +1
end while

whether intermediate data should be stored and read from the disk, applies
computational kernel on the data and performs a set of data synchroniza-
tion operations which have been configured. Once the specified number
of iterations have been completed, the results are either stored in the file
system or a number of results are printed out to the standard output.

The currently implemented communication patterns and kernels are de-
scribed in the following subsections.

7.1.1 Communication patterns

Communication patterns allow us to simulate the effect of data synchro-
nization tasks on the performance of parallel applications. A good repre-
sentation for typical communication patterns in scientific computing appli-
cations are the communication methods defined in the MPI standard [11].
They cover most of the structured communication patterns used in parallel
applications when using the single program, multiple data (SPMD) paral-
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lelism model. To be clear, SPMD is the only parallelization model that
DAMA currently supports.
The data synchronization patterns that we decided to use in DAMA are:

1.

Single Message — One process sends data to a single other process.
This is the basic data synchronization primitive for synchronizing
data between concurrently working processes.

. Broadcast — One process sends data to all other processes. Every

process gets the same copy of the data.

. All-to-All — All concurrently working processes send data to all

other processes. Every process sends a different slice of the data
to different processes.

Scatter — One distributes data between all other processes. Every
process gets a different slice of the data.

. Gather — All processes send data to a single process to be col-

lected in one location. In addition there is All-Gather pattern, where
the results are communicated to all concurrently working processes.
Naive way would be to perform All-Gather as combining Gather
with Scatter or using All-to-All, but there are more efficient ways to
implement it as a separate pattern.

To-Neighbors — All processes send some of the data to a few of the
other processes. The processes which to send data to are decided
based on a neighborhood in an array, matrix, cube or higher dimen-
sional structured grid.

. Reduce — All processes send data to a single process to be col-

lected in one location. Data objects are aggregated based on a given
aggregation function. Similarly to All-Gather, there is also a All-
Reduce pattern, where the results are made available to all concur-
rently working processes.

There are other communication patterns that are utilized in parallel ap-
plications, but these are sufficient for a large portion of the scientific com-
puting applications. When configuring DAMA, user has to specify how
many times each of these synchronization patterns should be used at every
iteration. There are also additional configuration options (outlined in Table
7.2) for each patten to refine how they are applied.
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Figure 7.1: Applying computational kernels to data slices.

7.1.2 Kernels

In DAMA, kernels represent the computational operations that are per-
formed in parallel applications and allows us to simulate the computational
complexity of algorithms. Figure 7.1 illustrates how computational kernels
are applied in DAMA.

Input data of the application (which consists of a list of data objects)
is divided into S slices which in turn are divided between N concurrently
working processes. At each iteration, a kernel function Fj, is applied on
every slice, which takes a list of data objects as input and also returns a list
of objects. What specific function is applied on the data depends on the
kernel that is specified in DAMA configuration.

There are two kernel modes, block kernel mode, when kernel is applied
on a slice of data and the basic kernel mode, when kernel is applied on
every data object separately. In block kernel mode, b + n” operations are
performed where n is the number of data objects in a slice, p is kernel
power and b is kernel base. Table 7.2 illustrates how to specify kernel type,
base and power in the DAMA configuration.

The currently implemented kernels are:

1. Double Distance Kernel — Calculates Euclidean distance between
double numbers.
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2. String Distance Kernel — Calculates distance between strings.
3. Double Dot Kernel — Calculates dot function.

4. Double Random Kernel — Generates random double values.
5. String Random Kernel — Generates random strings.

It is relatively easy to add additional user defined kernels to DAMA
by extending ee.ut.scicloud.benchmark.kernel.Kernel class, implementing
Datatype[ | execute(Datatype[ ]) and Datatype execute( Datatype) functions
for the data types (such as Double, String, or Integer) that the kernel should
be applied on and specifying the name of the class as the computational
kernel in the DAMA configuration.

The next section describes our proposed methodology which outlines
how to apply DAMA for choosing the most suitable distributed computing
framework for a given algorithm.

7.2 Methodology

To model scientific computing algorithms we need to consider what algo-
rithm characteristics affect the performance of their parallel implementa-
tions. Examples of such characteristics are structure and size of the input
data, data synchronization patterns, the ratio between parallelism and com-
munication costs and memory intensity.

These characteristics are used to configure DAMA to model the paral-
lel structure of a given algorithm. DAMA can then be used directly as a
benchmark on each of the supported distributed computing frameworks to
estimate what would be the performance of the algorithm on each of them.

To clarify, DAMA does not simulate the performance of distributed
computing frameworks. User still needs to perform benchmarking exper-
iments in a distributed computing cluster which supports the respective
frameworks. The goal of the benchmarking is to calculate parallel effi-
ciency for each of the distributed computing frameworks under investiga-
tion and also MPI for comparison. At this point, we assume the user has
already filtered out frameworks which are not suitable for their needs based
on the other expectations (Ease of parallel programming, Ease of debug-
ging, Automatic fault tolerance) which were defined in Section 1.1 and
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can choose the most suitable framework based on the calculated parallel
efficiency values.

The methodology we propose for the process of choosing the most suit-
able distributed computing framework for a given algorithm consists of the
following steps.

1. Identifying algorithm characteristics.
2. Configuring DAMA to model the parallel structure of the algorithm.
3. Running benchmarking experiments in a cluster.

4. Choosing the most suitable distributed computing framework.

Each of these steps are described in detail in the following subsections.

7.2.1 ldentifying algorithm characteristics

The first step in the modeling process is to describe the structure and be-
havior of the algorithm using a set of pre-defined algorithm characteris-
tics. These characteristics are used as an input for the DAMA application
to simulate the parallel implementation of the algorithm on different dis-
tributed computing frameworks. The most important characteristics are
those that affect the parallel efficiency of the algorithm after it is adapted
to one of the distributed computing frameworks.

For example, the number of iterations that must be performed to get
the final result will directly affect the efficiency of the parallelization if any
amount of data must be synchronized between concurrently working pro-
cesses at every iteration. Our initial classification (Outlined in chapter 3)
only took the number of iterations into account because this was the most
influential parallel characteristic for Hadoop MapReduce applications.

But there are other characteristics that need to be taken into account
when other distributed computing frameworks are also considered. Such as
communication patterns, size of synchronized data, balance between com-
munication and computation, what computation methods are performed at
every iteration of the algorithm, etc. To be able to identify such character-
istics, the algorithm must be analyzed from the parallelization viewpoint,
which can be a challenge for users who are not experts in parallel program-
ming.
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Some characteristics are simple to identify, such as the average num-
ber of iterations. But specifying which type of synchronization methods
or communication patterns should be used inside each iteration can be a
complex task for users who are not proficient with parallel computing.

To retain the balance between communication and computations we
also need to model the computations that are performed by the algorithm.
We use kernels to define what computational functions that are applied on
data. To illustrate the process of analyzing algorithms to identify their char-
acteristics, we demonstrate how to analyze four algorithms in this manner
in the following subsections.

Integer Factorization

This algorithm applies trial division to find the set of prime number factors
for an integer. It has already been described in section 3.1.4, but here
we illustrate how to analyze this algorithm to find its distinctive parallel
characteristics.

First step of this process is to identify when data synchronization op-
erations need to be performed. This algorithm basically consists of a loop
where all possible factors of an integer /V are tested to see if they are its
divisors. It can easily be parallelized by dividing the range of potential di-
visors v/ N into K sub ranges, giving each subrange to different processes
and performing K loops concurrently. Once all the loops finish, we need to
collect the divisors together in one place and combine them together into a
sorted list of prime numbers. The computational complexity of finding the
prime factors is O(v/N) where N is the value of the number to be factored.

Figure 7.2 illustrates the computation steps of Integer Factorization
from this perspective. We can see that there are two moments when data
needs to be synchronized. First one is required to divide the subranges be-
tween concurrently working processes, so each of them know from which
range to check divisors from. When the computation is completed, all the
results have to be collected together into one location using a Gather data
synchronization pattern to be able to aggregate the results.

Depending on which framework this algorithm is adapted to, it may
be possible to avoid the first synchronization operation at the start of the
computation by providing the starting ranges information to each concur-
rent task in a more statical manner. For example, if the so called worker
tasks need to be spawned explicitly before the computations are started, it
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Figure 7.2: Identifying data synchronization breaks in the Integer Factorization
algorithm.

may be possible to directly pass on the range each one is supposed to pro-
cess. But whether this is possible depends on which distributed computing
framework is used.

The data that needs to be synchronized is very small, as it is limited
by the number of total prime divisors for the given number. Computations
consist of generating random number and finding the remainder after inte-
ger division. There are no iterations, everything can be computed in one
go. Algorithm is not memory intensive, as input is very small and interme-
diate results do not need to be kept in memory.

Partitioning Around Medoids (PAM)

Partitioning Around Medoids (PAM) [64] is a clustering algorithm which
has already been described in section 3.1.2. Its goal is to divide a set of
N objects into k different clusters. At the start, k¥ random objects are as-
signed as the initial medoids (center element) for clusters. An iterative loop
is started which consists of two separate tasks. First task looks through the
input dataset one object at a time, calculates its distance from each of the
medoids and assigns the object to the cluster of the closest medoid. Com-
putational complexity of this task is O(N x k).

Second task recalculates the medoid for each of the clusters by finding
the object with the least total distance from all the other objects in the same
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Figure 7.3: Identifying data synchronization breaks in PAM.

cluster. The computational complexity of this task is O(N?). While the
average size of the cluster is N/k, there is no guarantee, that the clusters are
of equal size, which would be the best case situation with a complexity of
O(k*(N/k)?) = O(N?/k) These two tasks are repeated until the medoids
of the clusters no longer change. It can take tens of iterations to converge,
depending on the size and number of clusters. Convergence may even fail
in rare cases.

Figure 7.3 illustrates the computation steps of PAM from this perspec-
tive. We can see that there are two moments inside each iteration when
data needs to be synchronized. After dividing objects between clusters, all
objects assigned to the same cluster must be located together to be able
to find the new cluster centers. Thus we need to group objects by their
closest medoid and synchronize objects that need to be moved between
clusters using All-to-All operation. It may require synchronizing almost
all the objects between processes at first, but the number of objects that
move between clusters is generally reduced by every successive iteration.
After medoids are recalculated for each of the clusters, they also need to be
communicated to all other processes using All-Gather operation, but there
are only k& medoids so the amount of synchronized data is not large here.

PAM is also computationally intensive algorithm mainly because of
the medoid recalculation task inside each iteration. It requires pairwise
comparison between every object in a cluster, which is performed for every
cluster at every iteration.
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All the input data needs to be kept in memory until the end, but because
PAM can not handle large amount of input data it should not really be
considered memory intensive. Adding more CPU resources is always more
important than adding more memory resources for PAM and thus it is more
computationally intensive algorithm.

The basic computational kernel of PAM consist of finding pairwise dis-
tances between objects. How exactly the distance is calculated depends on
the type of the object. Euclidean distance can be used for example when
dealing with points in 7 dimensional space. Hamming distance could be
used in case of strings.

Clustering LARge Applications (CLARA)

In comparison to PAM, Clustering Large Applications [64] (CLARA) only
clusters small random subsets of the dataset to find candidate medoids for
the whole dataset. CLARA is described in more detail in section 3.1.3.

CLARA algorithm consists of two main tasks and no iterations. First
task chooses ¢ random subsets of size s from the input data of size n as
samples, applies PAM on each of the sample, and outputs ¢ set of objects
as a candidate medoidsets, each consisting of k£ objects. The complexity of
this task is O(t * s?).

The second task finds the quality for each of the ¢ medoidsets, by calcu-
lating the sum of distances for every object (from the whole input dataset)
from its closest medoid for each of the ¢ medoidsets. The computational
complexity of this task is O(n ¢ x k).

The candidate set of medoids with the smallest sum of distances is
chosen as the best clustering. The computational complexity of this task is
O(t).

Figure 7.4 illustrates the structure of the CLARA algorithm. There
are three data synchronization steps. First involves All-To-All operation
to randomly shuffle all the data between all the computation nodes. This
shuffle together with the All-To-All operation can be avoided if it is known
beforehand that data is randomly distributed and randomly sorted. Oth-
erwise, the distributed sampling will not be able to produce samples that
represent the whole dataset.

The second step involves All-Gather operation to collect ¢ medoidsets
(total of ¢ * s values) on each of the computation nodes, which will then be
used to cluster each of the data object calculating the quality of each of the
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Figure 7.4: Identifying data synchronization breaks in CLARA.

medoidsets. The third synchronization step involves gathering ¢ quality
values together in one location and choosing the best result as the final
clustering configuration.

The ratio between computations and communication in quite balanced
in CLARA. The number of samples and their size affects the time it takes
to find candidate medoidsets. The quality of the medoidsets is evaluated
using all the input data objects.

All the input data needs to be kept in memory until the end of the work
and does not need to be modified or moved after the initial randomization.
The basic computational kernels are applying PAM on the sample datasets,
finding pairwise distances between objects and summing the final values
together when choosing the best medoidset. To simplify the modeling we
can replace the PAM kernel with applying pairwise distances as it is also
the main kernel of PAM.

Conjugate Gradient linear system solver (CG)

Conjugate Gradient algorithm has already been described in more detail in
section 3.1.1. It solves linear systems in the matrix form:

Az = b, (7.1)
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where A is a matrix consisting of the coefficients aq1, ai2, ..., Gy, Of the
system, b is a known vector consisting of constant terms of the system
by, bs, ..., b, and X is the solution vector, made up of the unknowns of the
system x1, Za, ..., Tp.

The input matrices are large but can typically be fit into the collective
memory of computer clusters. Most of the data does not need to be modi-
fied or moved across the iterations.

Figure 7.5 illustrates the computation steps of CG from this perspec-
tive. We can see that there are three moments inside each iteration of
CG when data needs to be synchronized. One requires synchronization
between neighbors (To-Neighbors) to distribute overlapping vector values
before the matrix-vector multiplication. Two others require data commu-
nication between all nodes in the cluster (using All-Reduce, All-Gather,
or All-to-All) to calculate dot product of distributed vectors. The amount
of data that needs to be synchronized is very small. The first operation
requires synchronizing a small overlap of a vector and the distributed Dot-
products require sending only a single value from each process.
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CG computational kernels are matrix-vector products and dot-products.
To simplify the modeling process, matrix-vector product can be replaced
with a number of dot-product operations as long as the number of basic
operations is kept the same (Number of dot product operations is equal
to the number of rows in the matrix) and the sparsity level of the input
matrix is taken into account. Matrix-vector multiplication has the most
influential computational complexity out of all the operations performed
each iteration, which is O(n), where n is the number of non-zero elements
in the input matrix.

The computational complexity of the algorithm is not high and the per-
formed task at every iteration is relatively small which means CG is not
computationally intensive. How many iterations are executed depends on
the required accuracy. Approximately 4 iterations would result in basic
accuracy and each following iteration improves it. Because there are three
different data synchronization operations every iteration, CG is considered
a communication intensive algorithm.

PAM CG CLARA Integer Factor-
ization
Balance between | Computation Communication Balanced Computation
Communication
and Computation
Number of itera- | ~ 10 — 40+ ~4—15+ 1 1
tions
Complexity (sin- | O(N?) O(n) - n: non-zero | O(n * t * k) n: ob- | O(r) r: Ran-
gle iteration) elements in A jects, t: samples, k: | dom trials
clusters

Communication All to All, All- | AllGather, All to All, All- | Scatter,
patterns Gather 1D Neighbors Gather, Gather Gather
Size  of syn- | Up to 100% (de- | nr_of_slices (All | 100% if randomize | Nr of factors
chronized  data | creasing in time), | Gather) and 25% | data, samples * k
between  itera- | k (1D Neighbors)
tions
Memory intensity | No Yes Balanced No
Computation Pair-vise distance | Dot-product Pair-vise distance & | Integer  divi-
Kernel Sum sion
Communication | Synchronous Synchronous Synchronous Synchronous
type
Dynamic or | Dynamic Static Dynamic & Static Static
Static intermedi-
ate data

Table 7.1:

Parallelization characteristics of the example algorithms.
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Summary of the algorithm identification

A selection of algorithm characteristics that were identified and their spe-
cific values for the four algorithms are provided in Table 7.1.

User has to identify what are the specific values of such characteristics
to model the parallel implementation of a given algorithm using DAMA. It
means that at least basic knowledge of algorithm parallelization process is
required to follow this methodology. As a result this approach is somewhat
limited, but it would still be easier and require much less actual effort in
comparison to implementing the given algorithm on each of the potentially
suitable distributed computing frameworks.

7.2.2 Configuring DAMA

Once the algorithm characteristics have been identified for an algorithm,
DAMA needs to be configured to model its structure. User has to specify
a number of configuration values in a configuration file and provide the
location of the configuration file as an argument to the DAMA program.

Some of these configuration values are directly related to the previ-
ously identified algorithm characteristics, such as the number of iterations,
communication patterns or kernels and their options. Other configuration
values more related to benchmarking, such as the size and type of the input
data. These configuration options are outlined in Table 7.2 with example
values for CG, PAM, CLARA and integer factorization algorithms.

Once DAMA has been configured, it can be used directly as a bench-
mark to estimate the parallel performance of the modeled algorithm on all
the supported distributed computing frameworks and MPI

7.2.3 Benchmarking

DAMA does not simulate the parallel efficiency of the modeled algorithm.
It is a generic benchmark which models the parallel structure and imple-
mentation of an algorithm. Its main advantage is that it can be used di-
rectly as a benchmark for the modeled algorithm on any of the supported
distributed computing frameworks (Spark, Hadoop, and Hama) and also
MPI. DAMA can also used as a sequential single process Java benchmark.

The benchmarking experiments must be performed in a real distributed
computing clusters to get meaningful results for estimating which of the
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distributed computing frameworks are the most suitable for the given al-
gorithm. Thus, access to a cluster where the distributed computing frame-
works are installed is required and the size of such cluster limits how large
benchmarking experiments can be performed.

The goal of the benchmarking is to measure the runtime of the config-
ured DAMA for each of the distributed computing frameworks and MPI
and use the measurements to calculate parallel speedup. Parallel speedup
of the respective distributed computing frameworks and MPI should be
calculated in relation to the Java sequential runtime of DAMA, as it would
clearly show how much faster the parallel execution is in comparison to a
non-parallel execution.

Even after accurately modeling the structure of an algorithm, some al-
gorithm characteristics and benchmarking variables can affect the parallel
efficiency of the result. For example, the size of the input and intermediate
data influences the suitability of some distributed computing frameworks,
especially depending on whether the intermediate can be fit into the collec-
tive memory of the cluster. Another factor which can significantly affect
the performance of distributed computing frameworks, is the number of
concurrent processes. Not all distributed computing frameworks handle
large number of concurrent processes with the same efficiency.

For these reasons, it is important to perform benchmarking experiments
under varying cluster configurations so that the user can see how the per-
formance of distributed computing frameworks is affected by these char-
acteristics and take it into account. At minimum, it is important to change
the size of the input dataset and the number of concurrent processes. This
is further complicated by the fact that benchmarking in a real cluster can be
costly in time and money, and thus users are often not interested in execut-
ing benchmarking experiments in large clusters with large amount of data.
However, when this issue arises later, DAMA can be used to run additional
experiments with different cluster configurations.

7.2.4 Choosing the best candidate

Once the performance benchmarking results have been collected, the most
suitable distributed computing framework can be chosen based on the cal-
culated runtime and parallel speedup values.

The calculated parallel speedup of a distributed computing framework
shows how much faster this framework was able to execute the modeled
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algorithm in comparison to a non-parallel algorithm. The framework with
the highest parallel speedup is more efficient in parallelizing the modeled
algorithm and requires less computing resources than other to achieve the
same result.

The best obtained parallel speedup of the distributed computing frame-
works should be compared to the parallel speedup of MPI in order to ana-
lyze whether there is actually any benefit from using distributed computing
frameworks. If the difference is large, it means that much more computing
resources are needed to achieve the same runtime. It is hard to concretely
qualify what should be the value of the best achieved speedup in compar-
ison to MPI, but the different speedup values can be used to estimate the
cost of computing resources needed to achieve the same result.

However, it is also possible that the results are not fully conclusive.
Even if one distributed computing framework is technically more suitable
based on the parallel speedup values, its actual benefit might be negligible
over another, which the user might already be proficient with. The size
of the input data can also be an issue. One framework may be more suit-
able when input data is smaller and not be suitable at all when it increases
significantly. In such cases DAMA configuration parameters should be
modified accordingly and benchmarking experiments can be repeated to
investigate their effect on the performance of the modeled algorithm.

The process of analyzing the benchmarking results is illustrated is Sec-
tion 7.3 using four example algorithms.

7.3 Validation

To validate the approach and to illustrate its benefits, we apply this ap-
proach on the previously analyzed algorithms and investigate the efficiency
of the results in comparison to results obtained in our previous work. To
be clear, we do not expect that the runtime is same both for simulated and
real implementation for each of the frameworks. However, their respective
parallel efficiencies should be correlated in the case of increasing the size
of the input data set and also the number of concurrent processes in the
cluster. Otherwise the modeled algorithm does not represent the behavior
of the original algorithm.

The modeled algorithms are Conjugate Gradient (CG), Partitioning
Around Medoids (PAM) and Clustering LARge Applications (CLARA)
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which were described in section 3.1 and which analyzed for DAMA in
section 7.2.1. We configured DAMA for each of the algorithms, per-
formed benchmarking experiments for all the supported distributed com-
puting framework (Spark, Hadoop, MpiJava, Hama), calculated parallel
speedup and compared the results to previous results obtained in earlier
work when implementing the same algorithms on the same frameworks.

7.3.1 Experiment configuration

We set up a Hadoop cluster for the performance experiment where all the
required distributed computing frameworks are installed. We chose Cloud-
era 5.7.0 CDH as the Hadoop distribution as it is easy to install and already
contains MapReduce and Spark. We had to install MPI and Hama sepa-
rately. We set up a cluster in local OpenStack based cloud. The Tartu
University OpenStack cluster consists of HP ProLiant DL.180 G6 servers,
each one has: two 4-core CPU’s (Xeon E5606, 2.13 GHz clock speed),
32 GB of RAM; 2x2 TB hard disks and two Gigabit NICs. The Hadoop
cluster was set up on top of 4 virtual machines, each containing 13 GB of
memory, 220 GB storage and 4 processor cores. Ubuntu 12.04 64 bit was
used as the operating system. MPI tests were performed using MpiJava
1.2.7, MapReduce tests were performed using Hadoop 1.0.3, Spark ver-
sion was 1.6.0 and Hama version was 0.7.0. MpiJava used MPICH?2 for
the MPI communication internally.

The modeling parameter configuration values for each of these experi-
ments were the same as defined in Table 7.2 except we changed the size of
the dataset.

7.3.2 Experiment results
PAM

Table 7.3 shows the benchmarking experiment results for the modeled
PAM algorithm and its parallel speedup is shown on Figure 7.6. Parallel
speedup is calculated in comparison to the sequential, single process Java
execution run time. MPI implementation achieves the best results for all
the dataset sizes. Apache Hama also performs well for the largest dataset,
but is significantly slower than MPI for the two smaller datasets.

Spark is only able to achieve scale-up in comparison to the single pro-
cess Java execution when using the largest dataset with 80000 objects. It
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Figure 7.6: Modeled PAM speedup in comparison to Java sequential runtime

achieves no scaling for the 13333 dataset and barely achieves small amount
of runtime increase for the 40000 dataset when running on 8 processes.
Hadoop results are extremely slow in comparison to all other results as is
expected when dealing with iterative algorithms. For the largest data set
with 80000 objects Hadoop was 17.8 times slower than Spark and 41.8
times slower than MPI.

In comparison to the previous results [5] provided in Table 5.1 where
different MapReduce frameworks were compared to MPI, the respective
difference between MPI and Spark is smaller and Spark is able to achieve
much better speedup. Modeled Hadoop is actually performing much worse
than in the previous results. While the modeled and previous results do not
align very well, the analysis of the modeling results would still lead to
the same conclusion that MPI is significantly more suitable for PAM than
Spark or Hadoop.

Table 6.1 provides the results from our previous work [1], where Apache
Hama PAM implementation was compared to Hadoop and MPI. In com-
parison to other tables, the values in this table are not total runtime but
rather the average runtime of iterations. When looking at the 8 process
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Figure 7.7: Modeled CLARA speedup in comparison to Java sequential runtime

runtime, we can see that Hama is actually performing better than Mpi-
Java, while in the modeled results MpiJava is a little more than 10% faster.
Hadoop is again significantly slower.

CLARA

Table 7.4 shows the benchmarking experiment results for the modeled
CLARA algorithm and its parallel speedup is shown on Figure 7.7. These
results show similar performance for both MPI and Spark. MPI is able
to outperform Spark when using 1-4 processes, but Spark achieves better
results when using 8 processes for data set sizes 2.7 million and 4 mil-
lion. Surprisingly, Hama consistently performs better than both MPI and
Spark in this case, and achieves significantly better speedup on 8 processes.
Hadoop results are again the slowest, but the difference is much less than
it was with the previous two algorithms. For the largest data set with 64
million objects Hadoop was 11.5 times slower than Spark and 11.1 times
slower than MPL.

The modeled results are quite different in comparison to the previous
results [5] provided in Table 5.2. The modeled CLARA is able to perform
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Figure 7.8: Modeled CG speedup in comparison to Java sequential runtime

much faster. Spark is able to achieve similar speedup but both MPI and
Hadoop are not able to achieve the same speedup. It indicates that we have
not modeled the computational complexity of CLARA well enough.

Conjugate Gradient

Table 7.5 shows the benchmarking experiment results for the modeled CG
algorithm and its parallel speedup is shown on Figure 7.8. We can see that
again MPI implementation achieves the best results and Hama is second.
Spark is not able to achieve any speed-up in comparison to the sequential,
single process Java execution even when using 8 processes instead of 1.
Hadoop results are again very slow. For the largest data set with 64 million
objects Hadoop was 464 times slower than Spark and 1724 times slower
than MPI.

When comparing these results to our previous [5] experiments (table
5.3), Spark is again not able to achieve as good speedup and Hadoop is
performing worse. In previous results it took almost no time to calculate
CG results even for 64 million elements on 1 node. There are a number of
causes that affects this, such as having a 100 ms sleep time in our model
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which counts to additional 1.2 seconds of runtime for CG and also the
fact that. Another likely cause is that we simplified the model of CG by
replacing matrix-vector multiplication with vector dot product operations.

It is clear that achieving the same runtime in comparison to the original
algorithm is extremely difficult, if not practically impossible. However, it
is not critical as long as the performance differences between the frame-
works stay the same.

Table 6.2 provides the results from our previous work [1], where Apache
Hama CG implementation was compared to MPI. When looking at the re-
sults of 8 processes, the difference between MpiJava and Apache Hama is
very similar to the modeled results. Hama is consistently approximately
twice slower than MpiJava.

7.3.3 Discussion of the results

MPI has the best performance for each of these algorithms as was our
expectation. Apache Hama performance is quite comparable to MPI. As
was the fact that Hadoop performance is horrible as long as there are many
iterations. But even in the case of CLARA, where there are only 2 data
synchronization operations, it can not compete with MPI and Spark as it
still needs to store intermediate data to HDFS and Spark and MPI both
perform all computations in memory. The differences between MPI and
Spark for the iterative algorithms PAM and CG indicate that Spark is not as
efficient as MPI when dealing with iterative computations, but the CLARA
results show that it can achieve a comparable performance and speedup
otherwise.

The PAM and CG performance comparison results show that the mod-
eled results behave reasonably close to the previous results. In the case of
CLARA, the results are quite different, which shows that we did not model
CLARA accurately enough. CLARA algorithm includes two completely
different computational tasks, first task is applying PAM on randomly sam-
pled smaller data to find s candidate cluster medoidsets and the second is
applying s medoidsets on all the input data to find the medoidset that gives
the best result.

The results show that we did not model the balance between these two
tasks correctly. Both of these tasks perform the same basic operation, but
first scales depending on how many samples are extracted and how big they
are and the second scales on the input size. Modeling the computational
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complexity was easier for both PAM and CG as PAM only has one com-
putationally heavy task which is recalculating cluster centers and CG is
not computationally demanding algorithm in comparison to the input size,
which makes modeling the data synchronization of CG more important.

Our approach worked well in the cases of PAM and CG as the differ-
ences in parallel speedup are similar when comparing the performances of
the different frameworks. However, CLARA results show that it is not easy
to verify that the algorithm has been modeled correctly. We are compar-
ing a manually modeled algorithm to custom implementations of the same
algorithms for different distributed computing frameworks.

In addition, the choice of CLARA parameter (such as the number and
the size of CLARA samples) values has significant affect on the balance of

computations versus communication effort, which is not straightforward to
model in DAMA.

7.4 Summary

We proposed a methodology for simplifying the process of choosing the
best suitable distributed computing framework for a given scientific com-
puting algorithm. It involves analyzing algorithms from the parallelization
viewpoint to identify characteristics that affect the efficiency of their paral-
lel implementations. The values of these characteristics are used to model
the parallel structure and execution of the algorithm which in turn is used
to estimate the performance of the original algorithm on different parallel
programming solutions.

We designed and implemented a Dynamic Algorithm Modeling Ap-
plication (DAMA) that simulates the parallel structure and behavior of al-
gorithms modeled using this methodology. It can be applied directly as
a benchmark to compare the performance of different distributed comput-
ing frameworks and libraries. The results of the benchmarking can then
be used to estimate which framework would give the best parallel perfor-
mance for the given algorithm.

There are still a number of issues with this approach. To take full ad-
vantage of our methodology, users must be able to analyze the algorithms
from the parallelization viewpoint. This requires at least basic knowledge
of parallel computing techniques and thus it is not easily approachable for
novices in parallelization. A real computing cluster is needed to perform
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benchmarks, where all the required distributed computing frameworks are
installed.

However, it should be clear from our initial results that this approach
has great potential to significantly reduce the actual amount of work that
is required from the user, such as programming and debugging effort. We
feel that it also enables users to consider additional available distributed
computing frameworks that they otherwise might ignore. Either because
of lack of knowledge about their existence, their apparent complexity or
simply because they are already familiar with other frameworks and can’t
afford to spend time investigating all the available ones.

In addition, it is evident from our own experience that a tool like DAMA
would have been extremely useful when we were comparing MapReduce
and BSP implementations. In the case of BSP model we implemented
2 algorithms a total of 9 times using 5 different distributed computing
frameworks and parallel programming libraries. In the case of MapReduce
model, we implemented 3 algorithms using 5 different parallel program-
ming solutions. While there were overlaps, as the algorithms implemen-
tations were mostly same for MPI library and Hadoop MapReduce frame-
work, it still required a lot of programming and debugging effort.

To redo the same work in DAMA, instead of implementing one al-
gorithm in a number of different frameworks, we only have to model it
once to create a configuration for DAMA. If DAMA does not support the
distributed computing framework we are interested in, we only have to im-
plement DAMA itself once for that framework. Furthermore, the frame-
work specific implementation of DAMA would be relatively straightfor-
ward, consisting mostly of data synchronization methods, how the kernel
is applied to the data slices in parallel and possibly having to implement
custom data structures specific to the used framework. The main structure
of DAMA would not have to be modified as long as long as it supports Java
programming language.

This approach can also be used to estimate whether to move to an al-
ternative distributed computing framework for already implemented algo-
rithms and whether it would give a significant performance gain. It would
require additional investment of time and effort, but knowing what is the
approximate performance gain may provide strong enough incentive.
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CHAPTER 8

CONCLUSIONS AND FUTURE
RESEARCH DIRECTIONS

The hypothesis of this work was that distributed computing frameworks
can simplify creating parallel scientific computing applications without
significantly losing the efficiency and scalability in comparison to using
Message Passing Interface (MPI) libraries.

It is well known that while distributed computing frameworks based
on the MapReduce model (such as Hadoop MapReduce) provide definite
advantages for certain types of algorithms, they are not designed to support
more complex algorithms. They are mainly designed for processing huge
amounts of textual data using embarrassingly parallel algorithms and they
store all intermediate data on disk instead of memory.

There are a number of alternative distributed computing frameworks
that are designed for specific types or algorithms, such as MapReduce
based frameworks for iterative algorithms like Twister and Hal.oop, or
BSP based graph processing frameworks like Pregel, GPS and Apache Gi-
raph. There are also general purpose frameworks based on these models
like Apache Spark and Apache Hama which try to support all types of al-
gorithms, but our experiments have shown that in comparison to MPI they
have difficulties with certain types of algorithms.

With the emergence of distributed computing platforms such as Aneka
and Hadoop Yarn which allow users to switch between different distributed
computing frameworks on-demand, users are able to choose a distributed
computing frameworks that best matches their domain specific algorithms
without having to switch between different computing clusters.
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However, choosing which specific distributed computing framework to
use 1s not an easy task unless the user has extensive knowledge in using
each of these frameworks and in creating parallel computing applications
in general.

First contribution of this thesis was a classification for scientific com-
puting algorithms for estimating whether Hadoop MapReduce is a suit-
able framework for parallelizing them. It divides algorithms into differ-
ent classes based on the their parallel structure when adapted to the Map-
Reduce model. This classification allowed us to partially answer the hy-
pothesis of this work as we could identify what types of scientific comput-
ing algorithms could exploit the advantages of Hadoop MapReduce (such
as automatic parallelization and fault tolerance) to significantly simplify
their parallelization.

Second contribution consisted of three different alternative approaches
for scientific computing algorithms for which Hadoop MapReduce is not
suitable (based on the classification in the first contribution). These ap-
proaches were (i) reducing the number of iterations in algorithms to make
them more adaptable for MapReduce; (ii) using alternative MapReduce
frameworks that are specifically designed for iterative algorithms; (iii) us-
ing the Bulk Synchronous Parallel distributed computing model as alterna-
tive to MapReduce.

After evaluating the first approach of this contribution, it was clear
that it requires significant expert knowledge of the involved algorithm and
MapReduce and could not be successfully applied in every case.

Second and third approaches provided significant advantages for scien-
tific computing algorithms which belonged to classes Hadoop MapReduce
has difficulties with. They showed that it is possible to use alternative Map-
Reduce or BSP frameworks for such algorithms to achieve a comparable
performance to MPI. However, both of these approaches involve investi-
gating a number of different distributed computing frameworks as potential
candidates and require to spend large amount of time and effort for each
new algorithm.

The first two contributions confirmed our hypothesis that distributed
computing frameworks can simplify creating parallel scientific computing
applications without significantly losing the efficiency and scalability in
comparison to using Message Passing Interface (MPI) libraries. However,
choosing which approach to apply for a given algorithm is not a simple
task and requires expert knowledge in parallel programming and in the
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involved distributed computing frameworks. This led us to an additional
research question: How to choose which available distributed computing
framework is the most suitable for a given scientific computing algorithm?
Which in turn led us to the final contribution of this thesis.

The third contribution was a Dynamic Algorithm Modeling Applica-
tion (DAMA) and a methodology which applies DAMA for choosing which
distributed computing implementation is more suitable for a given scien-
tific computing algorithm. DAMA allows to estimate the parallel efficiency
of algorithms on MPI, MapReduce, Hama and Spark without having to first
adapt the algorithm to any of these distributed computing solutions. The
proposed methodology was applied on a number of example algorithms to
validate it.

These contributions are important for computer scientists who need
to design complex distributed scientific computing applications and who
would like to know whether their algorithms could take advantage of the
latest distributed computing frameworks to simplify their creation, debug-
ging and scaling. It also allows them to estimate how efficient the results
would be in comparison to parallelizing the same algorithms using MPI.

8.1 Future Work

There are a number of improvements that we plan to introduce to the Dy-
namic Algorithm Modeling Application, such as adding support for addi-
tional distributed computing frameworks (NEWT, Tez, Twister, etc.). Sup-
porting the execution of multiple different kernels at each iteration would
also be important, but it’s already possible to create kernels that apply a
number of different kernels internally.

We also need to implement additional kernels which are typically used
in scientific computing applications. While the process of implementing
and adding new kernels to DAMA is not difficult, extending DAMA should
not be part of the normal use case.

Another potential future work is to simplify the process of identifying
algorithm parallelization characteristics by creating a repository consisting
of best practices and guided examples. It is also worth noting that while
we concentrate on scientific computing algorithms in this thesis, there is
no reason why our approach can not be used for other types of algorithms,
such as ones used in graph computing or data intensive applications.
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Apart from extending DAMA, we are also interested in collecting data
from the benchmarking experiments that users perform. Analyzing data
consisting of DAMA modeling configurations, benchmarking results, soft-
ware versions and cluster configurations could provide a lot of insight. It
might be possible to estimate what kind of performance can be expected
without running any actual benchmarking experiments, if enough data is
collected from users who have already ran similar experiments. We can
also analyze such data to find additional patterns between specific algo-
rithm parallelization characteristic values and the performance of different
distributed computing frameworks.

DAMA can also be used to analyze the performance of specific dis-
tributed computing frameworks more precisely, as it is possible to change
all the parallelization characteristics on-demand to execute parameterized
tests. Framework creators can use this approach to optimize their frame-
work in comparison to existing competitors.
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KOKKUVOTE
(SUMMARY IN ESTONIAN)

TEADUSARVUTUSE
ALGORITMIDE TAANDAMINE
HAJUSARVUTUSE
RAAMISTIKELE

Teadusarvutus rakendab arvutuslikke meetodeid, et lahendada probleeme
geneetikas, bioloogias, materjaliteaduses, keemias jne, kus on vaja mo-
delleerida ja simuleerida keerulisi reaalelu protsesse voi analiiiisida suurt
hulka andmeid. See on tugevalt seotud paralleelse programmeerimise ja
suuremahuliste arvutustega, sest see tavaliselt nduab suure hulga arvuti-
ressursside kasutamist kohalikes klastrites, arvutusvorkudes vOi superar-
vutites.

Avalikud pilved pakuvad neid ressursse ndudmisel ja reaalajas, kuid
need on sageli iiles ehitatud tarberiistvaral ja ei ole lihtne luua rakendusi,
mis saavad hakkama nende ressursside massilise kasutamisega torketa-
luval viisil. Hajusarvutusmudelitel baseeruvad raamistikud, nagu Hadoop
MapReduce voivad oluliselt lihtsustada seda t66d pakkudes pea automaat-
set paralleliseerimist ja rikete korvaldamist. Meie esimeseks teaduslikuks
tilesandeks oli uurida Hadoop MapReduce sobivust keerulisemate teadus-
arvutuse algoritmide jaoks ning teha kindlaks millised algoritmi omadused
mojutavad tulemuse paralleelselt efektiivsust.
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MapReduce suutis hakkama saada lihtsamate, piinlikult paralleelsete
algoritmidega, nagu niiteks katsemeetodil jagamine vdi Monte Carlo mee-
todid. Samaaegselt on sellel aga tosiseid probleeme keerulisemate ja eriti
just iteratiivsete algoritmidega, nagu niiteks kaasgradientide meetodiga. Et
MapReduce eeliseid (nagu peaaegu automaatset paralleliseerimist ja rike-
te korvaldamist) oleks voimalik utiliseerida ka keerulisemate algoritmide
jaoks, otsustasime vélja pakkuda ja uurida kolme erinevat ldhenemist.

Esimene ldhenemine oli iteratsioonide vihendamine algoritmides, kas
neid iimber struktureerides voi kasutades alternatiivseid meetodeid, mis on
vihem téhusad, kuid sobiksid paremini MapReduce mudelile. Teine lihe-
nemine oli alternatiivsete MapReduce raamistikke (nagu nditeks Twister,
Hal.oop ja Spark) vordlus, mis on loodud spetsiaalselt iteratiivsete algo-
ritmide jaoks, ja uurimine, kas nad pakuvad samu, varasemalt kirjelda-
tud eeliseid nagu Hadoop. Kolmas lihenemisviis uuris alternatiivseid Bulk
Synchronous Parallel hajusarvutuse mudelil baseeruvaid raamistikke.

Meie jareldusteks oli see, et esimene l1dhenemine nduaks liiga erialaspet-
siifilisi teadmisi seotud meetodite ja Hadoop MapReduce raamistiku kohta.
Teises ja kolmandas ldhenemises uuritud alternatiivsed hajusarvutusraa-
mistikud andsid sageli paremaid tulemusi kui Hadoop MapReduce, kuid ei
leidu iihte kindlat lahendust, mis sobiks koigile erinevat liiki teadusarvu-
tuse algoritmide jaoks.

Tulemuse efektiivsus voib sdltuda algoritmi omadustest, nagu milus
hoitavate andmete suurus vOi vajalikud kommunikatsiooni mustrid ning
kdige sobivama hajusarvutuse mudeli ja raamistiku valimine voib olla viga
keeruline iilesanne. Uks lahendus oleks valida kdige tdeniolisemad kandi-
daadid, implementeerida algoritm kdigile nendest ja teha vordlusuuringud.
Aga see eeldaks suhteliselt suurtes kogustes programmeerimist ja koodi si-
lumist, ning voib nduda ka iga valitud hajusarvutusraamistiku kasutamise
selgeks Oppimist.

Selle protsessi vOib keerulisemaks teha voimalus, et erinevad hajusar-
vutuse raamistikud on sobivad erinevatele algoritmidele, mis on osa iihest
ja samast teadusarvutuse rakendusest. Arenevad tehnoloogiad (nagu néi-
teks Hadoop YARN voi Aneka) voivad leevendada seda probleemi sellega,
et voimaldavad ndudlusel ja reaalaajas sujuvalt iile minna iihelt hajusarvu-
tuse raamistikult teisele. Kuid tegelik valik erinevate hajusarvutusmudelite
ja nende implementatsioonide vahel jaetakse siiski kasutaja otsustada, mis
voib olla vdga keeruline iilesanne, kui olemas olevate raamistike arv on
suur.
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Me 16ime Diinaamilise Algoritmide Modelleerimise Rakenduse (DA-
MR) teaduslike algoritmide paralleelse struktuuri modelleerimiseks ja de-
fineerisime metoodika mis kasutab DAMRI selleks, et identifitseerida koi-
ge sobivam hajusarvutuse raamistik ette antud teadusarvutuse algoritmi
jaoks. DAMR on implementeeritud mitmetel hajusarvutuse raamistikel ning
seda on voimalik kasutada modelleeritud algoritmide joudluse hindamiseks,
kasutades seda vordlusrakendusena reaalsetes hajusarvutuse klastrites. Ha-
jusarvutuse raamistike ja paralleelprogrameerimise teekide sobivust saab
hinnata ilma, et peaks algoritmi implementeerima nende kdigi peal. Ning
kdik programmeerimise ning silumise iilesanded saab edasi liikata kuni
16plik paralleelprogrameerimise lahendus on viljavalitud.
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