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INTRODUCTION 

Cancer is a complex disease characterized as a malignant neoplasm. It may arise 
in all tissues composed of potentially dividing cells. Cancer cells proliferate 
uncontrollably forming malignant tumors and metastases in different parts of 
the body. They have acquired self-sufficiency in growth, unlimited prolifera-
tive capacity, insensitivity to signals mediating growth arrest and programmed 
cell death as well as ability to invade surrounding tissues. Apparently, 
cancerogenesis is a multistep process; the transformation of a normal cell into a 
malignant one requires accumulation of several mutations in the same cell. 
Inactivation of tumor suppressor and stability genes, as well as aberrant activa-
tion of oncogenes is the main cause of tumor cell formation. Transmission of 
accumulated genetic defects by a dividing tumor cell to daughter cells further 
facilitates tumor formation with a possible progression to malignancy. Although 
the number of genes mutated in cancer continues to grow rapidly, the acqui-
sition of a transformed phenotype actually depends on alterations in several key 
signaling pathways that regulate cell proliferation and death. Proper under-
standing of the molecular mechanisms employed by cancer-associated proteins 
in the formation and development of the disease might be applied to the elabo-
ration of novel therapeutic strategies. 

In recent years, the glycoproteins of tumour cells gained significant atten-
tion in cancer research since they were found to be often abnormal, both in 
structure and in quantity. In particular, the O-linked oligosaccharides of mucins 
and mucin-type proteins have several cancer-associated features. In cancer cells, 
changes in the glycodynamics of mucins are common and result in new and 
unusual carbohydrate and peptide epitopes. Alterations in mucin structures have 
many biological and pathological consequences, because potential ligand-
receptor pairings responsible for interplay between cancer cells and their micro-
environment are changed. Aberrant interactions of the modified mucins with 
molecules on the surface of endothelium or of the immune system cells influ-
ence growth and survival of cancer cells, their ability to invade and metas-
tasize.  

In this thesis, the mucin-like glycoprotein CD43 was investigated, since 
CD43 was found to be aberrantly expressed in colorectal and several other types 
of cancer. Indeed, it has already been proposed in some works that this 
hematopoietic lineage-specific protein might be involved in formation of tumors 
of non-hematopoietic origin. However, the molecular mechanisms implicated in 
CD43-dependent tumorigenesis remain largely unknown. New insights into 
CD43 signaling in cancer cells are presented and evaluated in current study. 
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LITERATURE OVERVIEW 

1. Background 

Mucins are large glycoproteins with a “rod-like” conformation, which carry 
many clustered glycosylated serines and threonines in tandem repeat regions. 
The O-linked oligosaccharides (O-glycans) comprise 50–90 % of the mucin 
molecule by weight. The O-glycan cores are usually extended and substituted 
with other sugars and sulphate esters, resulting in many different structures. 
Secreted mucins function as a protective layer over the epithelium. The  
O-glycans of cell surface-bound mucins regulate antigenicity as well as 
interactions with the environment and binding to lectins. Depending on the 
structures of their O-glycan chains, mucins can be pro- or anti-adhesive. 
Membrane-bound mucins consist of a glycosylated extracellular domain, a 
hydrophobic transmembrane part and a cytoplasmatic tail which interacts with 
cytoskeletal adaptor proteins and signaling molecules indicating an involvement 
in cell adhesion and signaling.  

Overexpression of mucins in cancers of epithelial origin (carcinomas) has 
been known for many years. In the normal polarized epithelium, mucins are 
expressed exclusively on the apical domain, toward the lumen of a hollow organ 
(Fig. 1). Likewise, soluble mucins are secreted exclusively into the lumen. 
However, loss of correct topology in malignant epithelial cells allows mucins to 
be expressed on all aspects of the cells, and soluble mucins can then enter the 
extracellular space and body fluids such as the blood plasma (1). In carcinomas 
mucins appear to be the major carriers of altered glycosylation. The changes in 
carbohydrate structures can alter antigenic and adhesive properties of cancer 
cells, as well as its potential to migrate. Apart from specific interactions of the 
O-glycans with endogenous lectins, the extended structures of the mucins and 
their negative charge are thought to prevent intercellular interactions and 
sterically obstruct other adhesion molecules such as cadherins and integrins 
from carrying out their functions. Therefore, in some instances, the anti-
adhesive properties of mucins can promote displacement of a cell from the 
primary tumor during the initiation of metastasis. Evidence suggests that mucins 
might also physically block interactions with the host cytolytic cells such as 
natural killer cells. In addition, mucins may mask presentation of antigenic 
peptides by major histocompatibility complex molecules. 

There is a growing body of evidence showing aberrant expression of mucin-
like CD43 protein in human solid tumor cells (2–6). CD43 is a major 
glycoprotein on the surface of hematopoietic cells, and it was regarded as an 
exclusive leukocyte marker until the mid-’90s. The first evidence of CD43 
association with cancer was provided by the colon carcinoma cell line 
COLO205 expressing high amounts of a CD43 glycoform that was more 
extensively glycosylated than in blood cells (5). Later observations showed 
CD43 expression already at early stages of colorectal tumors, but it was not 
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detectable in normal colonic epithelium (2, 7). Among multiple functions 
attributed to CD43, its ability to impair apoptotic cell response has been 
reported and accounts for its potential role in tumorigenesis (8, 9).  
 

 
 
Figure 1. Role of mucins in cancers of epithelial origin. Altered mucin structures as 
well as loss of normal topology and polarization of epithelial cells in cancer results in 
secretion of mucins into the bloodstream and aberrant ligand-receptor interactions of the 
cells with each other and the microenvironment. Consequent alterations in adhesion 
allow displacement of cells from the primary tumor during the initiation of metastasis, 
transmigration and invasion of the tissues. Changes in mucin glycosylation also 
facilitate survival of cancer cells due to evasion of immune surveillance. Adopted from 
(1) with modifications. 
 
 

2. CD43 in hematopoietic cells  

CD43, also known as leukosialin, sialophorin, galactoglycoprotein, leukocyte 
sialoglycoprotein, gpL115, Ly-48, L-CanAg, is a mucin-like type I trans-
membrane protein. In humans it is ubiquitously expressed on cells of hemato-
poietic origin including T lymphocytes, monocytes, granulocytes, natural killer 
cells, platelets, and hematopoietic stem cells, but excluding mature erythrocytes 
and B cell subsets (10–16). 

CD43 is an important contributor to immune homeostasis regulating a wide 
variety of cellular processes, e.g. activation, differentiation and motility. 
Dysfunction of CD43 accounts for several pathological conditions including 
immunodeficiency diseases: Wiskott-Aldrich syndrome (17) and the acquired 
immunodeficiency syndrome (18, 19). Abnormal CD43 expression and glyco-
sylation also contribute to Alzheimer disease (20) and to formation of tumors of 
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hematopoietic and non-hematopoietic origin (2, 3, 6). However, CD43 knockout 
mice are reported to be fertile having almost normal development of T and B 
cells (mild anomalies of T cell activation and migration have been detected), 
which points to the existence of a compensatory mechanism (21, 22). 
 
 

2.1. SPN gene and its transcriptional regulation 

Human CD43 protein is encoded by a single gene on chromosome 16 (gene 
map locus 16p11.2). The CD43 gene (SPN, sialophorin) has an unusual 
genomic organization. Firstly, it consists of three exons, but the entire 
translation product is encoded by the third exon only (23, 24) (Fig. 2). 
Therefore no alternative splicing occurs (25). Secondly, the promoter region 
lacks canonical TATA or CAAT boxes, but contains only a degenerate CAAT 
box with the sequence CCACT (25). Moreover, the promoter is highly enriched 
(71 %) in G and C nucleotides and contains a number of short G- and C-rich 
repeats, which is typical of the promoter regions of ‘housekeeping’ genes (26). 
Thirdly, the unusually large number of Alu sequences associated with SPN 
suggests that retroposition may have played a role in the evolution of its 
structure: replacement of the bulk of an ancestral gene with a partially processed 
sialophorin transcript may account for the relative lack of introns (25). The lack 
of introns in the coding region, although unusual, is not unprecedented for 
integral membrane proteins (27). 
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Figure 2. Schematic representation of SPN gene. The promoter region and exons of 
SPN gene are shown. The striped box within the exon 3 box corresponds to the 
translated region. Locations of the binding sites for known regulatory factors are 
indicated using braces and given relative to the second transcription start site (+1 and 
bent arrow). The first transcription start site is marked as –55. 
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There are two transcription initiation sites separated by 55 bp (25). In this work 
we refer to the second initiation site as a transcription start site. The SPN 
genomic sequence from the nucleotide –53 to –40 is an essential promoter 
region (28) containing a binding site for the transcription factor SP1 (specificity 
protein 1) which is critical for the activation of CD43 expression (29). However, 
it is believed that CD43 expression is regulated by transcriptional repression 
rather than activation of the basal transcription level. The activity of SPN 
promoter is inhibited by DNA methylation. The promoter is methylated in 
CD43 non-expressing cells and non-methylated in CD43 expressing cells. 
Moreover, CD43 expression can be restored in non-expressing cells by 
introducing a DNA methyltransferase inhibitor, 5-azacytidine, into the cells (30). 
The transcriptional repressor MeCP2 (methyl CpG binding protein 2) bound to 
methylated SPN promoter has been shown to inhibit the transactivating 
properties of SP1 (31) presumably by displacing it and recruiting the co-
repressor SIN3A and histone deacetylases (HDAC) to the promoter (32, 33). In 
addition, transcriptional repression of SPN is achieved by binding and co-
operation of transcription factors Purα and hnRNP-K (heterogeneous nuclear 
ribonucleoprotein K) on the promoter (34, 35). SPN promoter also contains a 
nuclease S1 cleavage site and binding sites for the nuclear factors PyRo1 and 
PyRo2. SPN transcription is upregulated by PyRo1 and PyRo2 interaction with 
this region, which prevents the nuclease cleavage (36). 
 
 

2.2. Structure of CD43 protein  

Human CD43 protein consists of a 19-amino acid (aa) long signal peptide in its 
amino terminus (N-terminus), followed by 235 aa of an extracellular domain, a 
transmembrane domain of 23 aa, and an intracellular domain of 123 aa in the 
carboxy-terminus (C-terminus) (23, 24) (Fig. 3).  

The mucin-like extracellular domain has an unfolded structure and protrudes 
about 45 nm from the cell surface. This is due to a high content of proline, 
alanine and glycine residues that make it rigid and inflexible (37). The 
extracellular domain is also rich in serines and threonines, which enables 
extensive O-glycosylation (70–80 polysaccharide side chains). However, there 
is only one potential N-glycosylation site located close to the transmembrane 
domain at position N239 (38). The CD43 region between residues 135 and 224 
contains five imperfect repeating units of 18 aa of unknown function (23). The 
non-glycosylated precursor of CD43 is reported to migrate on SDS-PAGE at 
molecular weight of 54 kDa (10). The O-glycosylation pattern of CD43 varies 
between hematopoietic cell lines, which results in production of molecules with 
different sizes (5, 39). Two differentially glycosylated forms of CD43 have 
been described in hematopoietic cells. The 130 kDa isoform possesses mainly 
branched hexasaccharides, while the 115 kDa isoform contains almost 
exclusively tetrasaccharides (11). Resting T lymphocytes express mostly the 
115 kDa form of CD43, while activated T cells, monocytes, neutrophils and 

4
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platelets express the 130 kDa form (10, 40). Several isoforms of CD43 can be 
coexpressed on the surface of the same cell (41, 42), suggesting that they are 
functionally distinct. CD43 has a negative net charge due to the abundance of 
sialic acid residues in its O-glycan structures (23). 
 

 
 
Figure 3. Structure of CD43 protein. The protruding extracellular domain, primarily 
regulating cell adhesion, contains multiple O-glycosylation sites and a potential  
N-glycosylation site. The intracellular domain, involved in signal transduction, can be 
phosphorylated and interacts with ERM adaptor proteins that link it to the actin 
cytoskeleton. The intracellular domain also contains a nuclear localization signal (NLS) 
and a proline-rich SH3 binding sequence. 
 
 
The extracellular domain of CD43 is proteolytically cleaved from the cell 
surface and the soluble extracellular part can be detected in normal human sera 
(43). The shedding is mediated by metalloproteases and serine proteases in 
PMA (phorbol 12-myristate 13-acetate) stimulated granulocytes and lympho-
cytes (44), neutrophils (45), and mast cells (46). The cleavage site is suggested 
to be localized close to the transmembrane domain, between the residues F245 
and R246 (43). 

The relatively long intracellular domain of CD43 lacking catalytic activity 
is conserved among human, rat, and mouse species (38). It contains 6 threonines 
and 11 serines, which are potentially phosphorylated, but has no tyrosine 
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residues (23, 24). Five phosphorylation sites: S291 (47), T341 (48), S351 (49), 
S355 (50), and S368 (47) have been identified within the domain. At least 
protein kinase C (PKC) participates in CD43 phosphorylation (49); however, 
the involvement of protein kinase A and protein kinase G is also possible (50). 
A proline-rich region in the end of the C-terminus is homologous to SH3 (Src 
homology 3) binding domain (51). 
 
 

2.3. Functions of CD43 protein 

The functions attributed to CD43 remain contradictory, which reveals a 
complex nature underlying CD43 signaling. For example, CD43 has been 
shown to participate in both pro-adhesion and anti-adhesion, apoptosis and 
proliferation (52). Apart from regulating cell activation, differentiation, 
adhesion, and migration, CD43 is implicated in immune response by modu-
lating cell growth, survival and apoptosis. Early expression of CD43 on hESC-
derived hematopoietic progenitors may also indicate a possible role for CD43 in 
hematopoietic development (53).  
 
 

2.3.1. Adhesion and migration 

CD43 extends high above cell surface; therefore it is one of the first molecules 
that interact with the surface molecules of other cells. Moreover, it is abun-
dantly expressed in blood cells, suggesting that CD43 regulates contacts 
between cells either by preventing or promoting cell adhesion (54). Cell 
adhesion is imperative for normal functioning of immune system, e.g. inter-
actions between T cells and antigen presenting cells, leukocytes and endothelial 
cells, and between circulating blood cells.  

During immune and inflammatory responses circulating leukocytes need to 
extravasate from the vascular system into the lymphoid or other tissues. This 
requires a cascade of coordinated adhesion and signaling events that allow 
recruitment, rolling, and transmigration of leukocytes (55). Leukocytes from 
CD43 knockout mice showed a significant impairment in binding to 
endothelium and ability to exit the circulation and infiltrate tissues (56, 57). 
Ligation of CD43 with specific antibodies support the findings that CD43 is 
involved in the regulation of leukocyte activation and adhesion to endothelial 
and extracellular matrix (ECM) ligands (57, 58). It is considered that CD43 
promotes adhesion through the interactions with the lectins E-selectin (59), 
galectin-1 and galectin-3 (60), siglec-1 (61), M-ficolin (62), also integrins (63), 
cell surface nucleolin (64), and ICAM-1 (intercellular adhesion molecule  
type 1) (65). Interestingly, all ligands described for CD43 are ligands for other 
cell surface molecules, implying that by binding them, CD43 regulates their 
accessibility to their other cognate receptors (52). The interaction of CD43 with 
ICAM-1 and MHC (major histocompatibility complex) class I suggests that 
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CD43 induces association between T cells and antigen presenting cells and 
promotes T cell activation (65, 66).  

On the other hand, CD43 prevents leukocyte aggregation in the blood flow. 
The anti-adhesive properties of CD43 are further proved by in vivo experiments. 
In transgenic mice expressing CD43 in peripheral mature B cells, which 
normally have very low levels of CD43, the interactions between T and B cells 
were impaired (67). CD43-deficient leukocytes showed increased homotypic 
adhesion and capacity to bind to different ligands (21, 68, 69). Furthermore, 
studies of leukocyte-endothelial cell interactions demonstrated that leukocytes 
from CD43 knockout mice had enhanced adhesive and rolling properties 
compared to those of leukocytes from wild type mice (56). The controversy in 
adhesional behaviour of CD43 can be explained by its variable post-
translational modifications (e.g. glycosylation). It has been reported that among 
different CD43 isoforms on the surface of T lymphocytes only the 130 kDa 
protein displayed anti-adhesive properties (70). Besides, the bulky sialylated O-
glycans without additional modifications are known to exhibit anti-adhesive 
properties. In contrast, the N-acetyl-galactosamine residues of the O-glycans on 
CD43 may express the sialyl LewisX (SLeX) structure (i.e. a tetrasac-
charide carbohydrate) in a differentiation-dependent manner (71), favouring 
cell-cell interactions. Since different CD43 isoforms can be simultaneously 
expressed on the cell surface (41, 42), it is supposed that they regulate cell-cell 
interactions through a very delicate interplay (52). It is important to mention 
here that the anti-adhesive properties of CD43 only partly depend on the 
negative charge and the protruding structure of the extracellular domain. The 
interaction of the intracellular domain of CD43 with the cytoskeleton is also 
indispensable (72). 

The intracellular domain of CD43 participates in signal transduction and in 
relocalization of CD43 in the plasma membrane, e.g. during cell migration and 
immunological synapse (a tight and stable T cell/antigen presenting cell 
contact). It acts as a docking site for the ERM adapter proteins, ezrin, radixin, 
and moesin, which cross-link actin cytoskeleton with transmembrane proteins, 
such as CD43, CD44 and ICAM-2. The interaction region is proposed to be 
located within a cluster of positively charged amino acids in the juxta-
membrane region of these transmembrane proteins (73). The ERMs are impli-
cated in various functions that involve cytoskeletal and membrane remodelling, 
regulation of cell shape and migration. They favour CD43 redistribution on the 
cell surface in different cellular contexts. For example, CD43 was found to co-
localize with the ERM proteins in the cleavage furrow of dividing cells (74) and 
in microvilli (75) that aid in the migration of leukocytes. Furthermore, by the 
agency of the ERM proteins, CD43 participates in establishment and main-
tenance of cell polarity, which is essential for migration, activation, and 
apoptosis of leukocytes. During T cell activation the ERM proteins together 
with F-actin translocate CD43 from the contact area between an antigen 
presenting cell (macrophage, B lymphocyte, dendritic cell) and a T helper cell 
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to the opposite pole of the T cell (76–78). Also, neutrophil and T cell polari-
zation and locomotion were shown to be associated with the relocalization of 
CD43 by moesin to the uropod, i.e. an appendage at the posterior pole of a 
migrating cell that protrudes from the contact area with endothelial or ECM 
substrates (79, 80). Interestingly, the uropod is mostly involved in cell-to-cell 
interactions (in processes such as antigen transport, cytotoxicity, extravasation 
or in the foci of cell proliferation) and in such leukocyte activities as activation 
and apoptosis (81).  

 
 

2.3.2. Signal transduction 

Cumulative experimental evidence indicates that CD43 senses the extracellular 
environment through its interaction with a multitude of counter-receptors. 
Despite CD43 lacks an intrinsic catalytic activity, it transduces multiple signals 
to the intracytoplasmic milieu and regulates different aspects of immune and 
non-immune cells function. CD43-mediated signal transduction is studied using 
CD43-specific mAb since no CD43-specific ligand has been reported so far and 
the known ligands of CD43 interact with other receptors. CD43, as a co-
receptor of TCR (T cell receptor), activates most of the signaling cascades 
triggered by the TCR contributing to T cell activation (52) (Fig. 4). Ligation of 
CD43 on the surface of T cells induced association between CD43 and the Src 
family non-receptor protein tyrosine kinases (PTKs) Fyn and Lck (51, 82, 83). 
The interaction is presumably mediated by the SH3 domain of PTKs and the 
proline-rich SH3 binding sequence in the C-terminus of CD43. This caused 
activation of the PTKs and phosphorylation of ζ chain as well as of the tyrosine 
kinase ZAP70 (84), the guanine exchange factor (GEF) Vav and of the adaptor 
protein Shc. As a result, macromolecular complexes containing Shc-GRB2-Vav 
and Vav-SLP-76 were formed through tyrosine-phosphorylated sequences and 
SH2, i.e. phosphotyrosine binding domains (83). These events led to activation 
of mitogen-activated protein kinases (MAPKs): extracellular signal regulated 
kinase (ERK) 1 and 2, p38, and Jun N-terminal kinase (JNK) (83, 85, 86). It 
was shown that activation of ERK pathway resulted in recruitment of 
transcription factors AP-1 (activator protein 1), NF-κB (nuclear factor kappa B) 
and ELK1 (E twenty-six-like transcription factor 1), whereas NFAT (nuclear 
factor of activated T cells) activation was independent of ERK (87, 88). In 
immature hematopoietic cells CD43 signaling was also found to activate ERK1 
and ERK2 through a phosphorylation cascade starting from tyrosine kinases 
Syk and Lyn (89). The MAPK-dependent activation of transcription factors, in 
response to CD43 signaling, ultimately regulated gene expression (83, 87). 

In addition, phospholipases Cγ (PLCγ) contain SH2 domains allowing them 
to interact with phosphotyrosines. Engagement of CD43 is known to activate 
PLCγ2, which induces generation of diacylglycerol (DAG), inositol 1,4,5-
trisphosphate (IP3), and Ca2+ mobilization, leading to activation of the protein 
kinase C (PKC) and phosphatidylinositol 3-kinase (PI3K) (85, 88, 90). Opposed 
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to TCR-mediated signals, CD43 ligation results in the serine phosphorylation of 
the E3 ubiquitin ligase Cbl thus blocking Cbl negative effects on T cell 
activation. Cbl serine phosphorylation, MAPK activation, AP-1, NF-κB and 
NFAT activation, caused by CD43 ligation, are all PKCθ-mediated (52, 83, 88, 
91). CD43 itself can probably be phosphorylated by PKC (49).  

 

 
 
Figure 4. CD43-induced signaling pathways in T cells. The CD43 signaling pathways 
are complex and regulate important aspects of cell function such as cell growth, 
differentiation and apoptosis. The Src family of non-receptor protein tyrosine kinases, 
activated upon CD43 engagement by its ligand(s) on the APC, controls formation of the 
immunological synapse and T cells activation. Ligation of CD43 also triggers cell 
proliferation via PKC pathway. Presumably, CD43, as a TCR co-receptor, activates 
most of the signaling cascades triggered by the TCR, which provides a substantial 
amplification of the signal, sufficient to overcome the threshold for T cell activation 
(52). LAT – linker for activation of T-cells family member 1, IκB – inhibitor of nuclear 
factor kappa-B, IKK – inhibitor of nuclear factor kappa-B kinase, Calc – calcineurin. 
Reproduced by the permission of John Wiley & Sons, Inc. © 2007 WILEY-VCH 
Verlag GmbH & Co. KGaA, Weinheim 
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However, it is still unknown which small GTPase is activated in response to 
CD43 engagement and whether different CD43 ligands could activate different 
MAPK pathways by activating different GTPases. On the one hand, CD43 
signaling increases the levels of DAG. Further, Ras guanyl nucleotide-releasing 
proteins (RasGRP), containing DAG-responsive C1 domain, are capable of 
activating Ras and other small GTPases by facilitating the exchange of GDP for 
GTP via their GEF domain (92, 93). Notably, DAG not only exerts a direct role 
in RasGRP activation through the C1 domain, but it also functions as an indirect 
regulator of RasGRPs through PKC-mediated phosphorylation (94). On the 
other hand, it is shown that upon T cell activation the macromolecular 
complexes containing phosphorylated Shc and the adaptor molecule GRB2, 
which recruits the GEF Sos, induce the GTPase activity of Ras, leading to 
activation of the Ser/Thr kinase Raf as well as Raf phosphorylation on serine 
residues (95). Yet, no changes in either Sos or Raf mobility on SDS-PAGE 
resulting from their phosphorylation were detected following CD43 cross-
linking (83). Therefore, despite CD43 signaling induces cellular proliferation, a 
function that normally requires Ras activation, Shc-GRB2 complexes formed 
upon CD43 ligation are probably involved in the activation of other small 
GTPases. Alternatively, CD43 ligation favours cell proliferation by signaling 
downstream of Raf, e.g. through PKCθ-dependent Cbl serine phosphorylation, 
which prevents TCR-induced Cbl tyrosine phosphorylation, thereby allowing 
activation of MEK/ERK pathway (52, 96, 97). In addition, a yeast two-hybrid 
screen, identified the serine/threonine kinase HIPK2 (homeodomain-interacting 
protein kinase 2) as a molecule that interacts with the cytoplasmic domain of 
CD43. This kinase, localized to the cytoplasm and the nucleus of cells, is 
homologous to a yeast kinase regulator of the Ras pathway (98, 99). Finally, 
some reports indicate that Vav could be a GEF for Ras (100). Nonetheless, later 
studies provide evidence that Vav is most probably a GEF for Rac 1, another 
small GTPase that is also activated upon TCR cross-linking (101, 102). 
Differential activation of small GTPases may play a role in the different cellular 
responses mediated by CD43. 
 

2.3.2.1. Cell proliferation and apoptosis 

CD43 engagement results in production and secretion of cytokines, e.g. 
interleukin-2 (IL-2), which in turn stimulates proliferation and differentiation of 
cells (87, 103–105). However, in myeloid progenitors ligation of CD43 reduced 
DNA binding activity of AP-1 transcription factor, thereby causing down-
regulation of gene expression and initiation of the BAD-dependent apoptotic 
pathway (106). Notably, cross-linking of CD43 induces apoptosis of human 
hematopoietic progenitor cells but not stem cells, indicating that CD43 might 
have opposing functions in different cells (41, 107).  

The pro-apoptotic functions of CD43 are thought to be important for 
contraction of T cell-mediated immune response, once the infection is cleared. 
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FAS, a cell death receptor, the expression of which is upregulated by TCR-
dependent signals (108), is involved in killing activated T cells by inducing 
Caspase-8-dependent apoptosis (109). CD43 signaling promotes FAS 
expression and T cell death (41, 110, 111). Apoptosis of T cells upon CD43 
ligation was accompanied by repression of NF-κB activity (41, 110). In addition, 
galectin-1, a ligand for CD43, also upregulated during T cell activation (112), is 
involved in sensitizing T cells (particularly the ones bearing the 135 kDa CD43 
isoform) to apoptosis (113, 114) by causing CD43 segregation into membrane 
microdomains (115, 116). Moreover, macrophage cell surface-expressed 
nucleolin was shown to specifically interact with the carbohydrate residues of 
CD43 concentrated in caps on early apoptotic T cells resulting in phagocytosis 
(64, 117). 

In contrast, in activated B cells CD43-mediated signals contribute to cell 
division through a PKC-mediated mechanism (118, 119). In agreement with this, 
CD43 overexpression in mature B cells in vivo gave splenomegaly due to 
increased proliferation of these cells (120). CD43 also promoted survival of B 
cells as it reduced sensitivity to G1 arrest and apoptosis in vitro (121). Thus, 
uncontrolled proliferation and enhanced survival capacity, the two hallmarks of 
tumor cells, are positively regulated by CD43 in B cells. Moreover, expression 
of CD43 on B cell lymphomas correlates with a bad prognosis (122–124). 
Besides, tumor cells expressing abnormally high levels of CD43 have been 
proposed to escape FAS-mediated killing, thus providing a mechanism for 
better survival of cancer cells (9).  
 
 

3. CD43 is a mucin-like cancer-associated 
glycoprotein 

Mucins and mucin-like molecules are known to be expressed by many types of 
cancer, especially adenocarcinomas (epithelial cancers that originate in 
glandular tissue). Interestingly, these proteins are not often mutated in cancer 
cells, instead, alterations in mucin amounts and glycodynamics are commonly 
reported. Mucins contribute to cancer progression by modifying cell adhesion, 
migration, survival, proliferation and immune surveillance (125–127). The 
membrane-associated mucin MUC1 has been the focus of a considerable 
interest owing to its changing expression and glycosylation levels as well as 
modifications of O-glycans (often resulting in new and unusual carbohydrate 
and peptide epitopes) in different cancers (128). MUC1 expression has been 
reported to reduce cell adhesion due to the large and extended structure of its 
extracellular domain (129). On the other hand, MUC1 favours tumor cell 
adhesion to endothelium and subsequent invasion through the interactions with 
ICAM-1 (130), E-selectin (131) and sialic acid binding immunoglobulin-like 
lectins, siglecs (132). MUC1 carrying core 2 O-glycans has been shown to 
function as a molecular shield against natural killer cell attack, promoting 
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bladder tumor metastasis (133). Moreover, MUC1 participates in cell signaling 
via the Wnt pathway effector -catenin and the EGFR (epidermal growth factor 
receptor) family of receptor tyrosine kinases which activate Ras-MEK-ERK2 
pathway (134, 135). Therefore MUC1 plays an important role in tumor cell 
proliferation and differentiation. It is of note that the cytoplasmatic tail of 
MUC1 associates with -catenin in the nucleus and co-activates transcription of 
Wnt target genes (136). 

Another example of a cancer-related glycoprotein is the mucin-like type I 
transmembrane protein CD44. CD44 is a marker of “cancer stem” cells (137) 
being implicated, among others, in breast and colorectal cancers (138). The 
extracellular domain of CD44 binds numerous ECM components, including 
hyaluronan, and osteopontin, which affect cell motility and invasion (139, 140). 
Similar to CD43, CD44 has no intrinsic kinase activity; it induces signal 
transduction by recruiting intracellular kinases and adaptor proteins, e.g. ERMs 
(141). CD44 interacts with the EGF and HGF (hepatocyte growth factor) 
receptors and has been shown to activate a number of central signaling 
highways: Rho GTPases, the Ras-MAPK and the PI3K/AKT pathways which 
promote cell growth, survival, and invasion (138, 139, 142). In addition, CD44 
serves as a docking site for matrix metalloproteases that degrade basement 
membrane and promote tumor invasion (141). The cytoplasmic tail of CD44 
can be cleaved off and translocated to the nucleus where it mediates gene 
transcription (143). 

Although most of the work investigating CD43-mediated signaling has been 
done in the context of hematopoietic cells and CD43 has long been considered a 
specific marker of immune cells, strong evidence supporting CD43 involvement 
in tumorigenesis start to emerge. A number of studies demonstrate CD43 
expression in different tumors of non-hematopoietic origin, including lung, 
breast and colon, but not in normal tissues (2–4). CD43 expression is also 
detected in several cancer cell lines (5, 144, 145). Such an altered expression of 
CD43 has been associated with neoplastic transformation (3, 4, 7). CD43 
signaling in tumor cells is suggested to promote oncogenesis by activating  
β-catenin, NF-κB, NFAT and AP-1, which are prosurvival transcription factors 
and contribute to a tumor phenotype when deregulated (87, 146).  

Importantly, CD43 is glycosylated differently in cancer cells, e.g. in colon 
carcinoma cell line COLO205, the full length glycosylated CD43 possesses a 
molecular mass of over 200 kDa (5, 147). Moreover, tumor-specific glycoforms 
of CD43 are expressed in different carcinomas, but not in normal tissues from 
the same patients (148). Aberrant expression and glycosylation of CD43 are 
associated with immune deficiency (149, 150) and have been proposed to 
contribute to cancer progression (4, 125). Indeed, changes in the glycodynamics 
of CD43 might account for the oncogenic properties of the protein. It has been 
reported that abnormal expression level of certain O-glycan structures as well as 
occurrence of incomplete or truncated forms, precursors, or novel structures of 
O-glycans may affect ligand-receptor interactions (e.g. modulate binding to 
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alternative ligands) and thus interfere with regulation of adhesion, migration 
and signal transduction (127, 151). For example, the sialyl Lewis structures 
(present on CD43) are frequently overexpressed by cancer cells and could be 
found on both N- and O-glycans (152–155). Alterations in early branch points 
in the normal pathways of glycan biosynthesis can markedly affect the relative 
amount of one class of structure while allowing the dominance of another, 
promoting malignant transformation and tumor progression. Colon cancer cells 
simplify their O-glycan biosynthesis causing a relative increase of core 2  
O-glycan structures, which are the main carriers of SLeX. Moreover, in normal 
colonic mucosa, type 1 and type 2 carbohydrate chain extensions are formed, 
but only the terminal type 2 chain-repeat unit is the precursor for the 
SLeX antigen. In adenocarcinomas, and especially in high-grade and advanced 
human colorectal cancers, type 2 chains are produced. Notably, the activity of 
glycosyltransferases involved in their synthesis is upregulated, and the activity 
of glycosyltransferases that synthesise other types of chains is inhibited 
(127). The sialyl Lewis structures are ligands for selectins that normally 
participate in the attachment of leukocytes to the endothelium. Therefore, 
cancer cells might use the SLeX-selectin-binding mechanism during tumour 
invasion and metastasis (156). In fact, highly metastatic tumor cells have been 
reported to adhere more strongly to E-selectin than their poorly metastatic 
counterparts (157, 158). Also, CD43- and ICAM-1-mediated cell adhesion in 
several carcinomas was proposed to support metastasis (145). In addition, in 
human colon cancer metastasis, mucin-associated carbohydrate structures 
showed enhanced sialyation (159); and sialylated O-glycans were associated 
with an enhanced growth rate of mammary carcinoma cells in mice (160). 
Finally, proteolytic processing of certain proteins demonstrates a requirement 
for O-glycans at specific sites in order to prevent proteolytic cleavage which 
eliminates biological activity or prevents continued residence/activity of the 
intact protein at its designated subcellular location (161). Thus, abnormal 
glycosylation could modulate the proteolytic processing of CD43 and therefore 
interfere with CD43 functionality.  
 
 

3.1. Regulated intramembrane proteolysis  

The number of CD43 molecules expressed on the cell surface is tightly 
regulated by several mechanisms: changes in its transcription rate, redistribution 
on the plasma membrane or downregulation by proteolysis and shedding (52). 
Metalloproteases and serine proteases are known to be responsible for the 
proteolytical removal of the extracellular domain of CD43 from the plasma 
membrane (44–46, 162) thereby regulating its surface expression. On the other 
hand, the cleavage by metalloproteases in the extracellular domain of some 
transmembrane proteins has been shown to trigger a release of the intracellular 
domain, which is often mediated by γ-secretase complex. 
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While in blood cells CD43 is expressed predominantly in the cell membrane, 
in non-hematopoietic cancer cells, in contrast, CD43 is located primarily 
intracellularly and even nuclearly (7). Similarly to leukocytes, the cleavage in 
the extracellular domain of CD43 in cancer cells is well described (147) (Fig. 5). 
In addition, in several human carcinoma cell lines CD43 is known to be 
processed by γ-secretase proteins discharging its C-terminus (146). The 
resulting CD43 cytoplasmic tail (CD43ct) has been shown to localize into a 
subnuclear structure, known as PML (promyelocytic leukaemia) nuclear body, 
and is involved in the regulation of apoptosis (163). The cytoplasmic domain of 
CD43 contains a functional nuclear localization signal (NLS) and interacts with 
the nuclear transporter protein Ran, which offers an explanation for the nuclear 
localization of CD43 (164).  

 

 
 
Figure 5. Processing of CD43 in the regulated intramembrane proteolysis (RIP) 
pathway. The proteolytic processing of the full-length CD43 protein starts with the 
primary cleavage that can occur in ER compartments or at the cell surface. The 
subsequent secondary intramembrane cleavage of the CD43 cytoplasmic tail fragment 
(CD43-CTF) by presenilin-1/γ-secretase complex releases the cytoplasmic tail (CD43ct) 
into the cytoplasm. CD43ct contains a nuclear localization signal (NLS) directing it into 
the nucleus, which is probably facilitated by RanGTPase. Nuclear CD43ct is involved 
in regulation of apoptosis by interacting with the proteins in PML nuclear bodies (PML-
NB). Adopted from (164) with modifications. 
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Therefore, CD43 might be involved in the regulated intramembrane proteolysis 
(RIP) signaling pathway similarly to Notch-1 (neurogenic locus notch homolog 
protein 1) (165, 166), ERBB-4 (receptor tyrosine-protein kinase erbB-4) (167), 
CD44 (143, 168), E-cadherin (169), and amyloid precursor protein (170, 171). 
In RIP signaling the intramembrane cleavage does not take place until the bulk 
of the protein on the extracytosolic (luminal or extracellular) face has been 
removed by a primary cleavage. This primary cleavage can occur in the lumen 
of the ER, in a post-ER compartment, or at the cell surface. The secondary, 
intramembrane cleavage of type I transmembrane proteins, among which CD43 
belongs, requires presenilin-1 (an important component of γ-secretase complex) 
that cleaves off the cytoplasmic tail together with a few amino acids from the 
transmembrane region. The generated cytoplasmic fragment has in some cases 
been shown to translocate into the nucleus where it triggers gene activation, e.g. 
acting as a transcription factor (172–175). 

Interestingly, the NLS sequence of CD43 overlaps with the ERM-binding 
motif. For efficient nuclear transfer, CD43ct should be released from ERM 
proteins. Moreover, by structurally blocking the access of the protease complex 
to the cleavage site, the ERMs bound to the juxta-membrane region of CD43 
may repress the release of the cytoplasmic tail. In either case, it is an interesting 
viewpoint of CD43 regulation that activation of CD43 processing proteases may 
be coupled with regulation of ERM proteins (176).  
 
 

3.2. Interaction of CD43 with other signaling  
molecules and pathways 

In accordance with the hypothesis that CD43 is involved in the RIP pathway, 
the CD43ct was found to translocate to the nucleus and interact with β-catenin, 
resulting in the up-regulation of the β-catenin target genes MYC and cyclin D1 
in colon carcinoma cells (164). -catenin is a multifunctional protein involved 
in embryonic development and renewal of adult tissue. It is also a potent proto-
oncogene, the aberrant activation of which has been shown to play a critical role 
in the development of different cancers including colon (177, 178). -catenin 
has dual functions: it belongs to the cell-cell adhesion apparatus and mediates 
Wnt signal in the nucleus (Fig. 6). Upon Wnt signaling -catenin translocates to 
the nucleus where it interacts with T cell factor (TCF) and lymphocyte-enhan-
cing factor (LEF) family transcription factors and with other transcriptional 
cofactors to form transcriptionally active complexes that regulate genes impor-
tant for proliferation, differentiation, and apoptosis (177, 179). The functioning 
of -catenin is controlled by a large number of binding partners that affect its 
stability and localization (180). Thereby, -catenin is able to participate both in 
cell adhesion and in gene expression. The interaction between the cytoplasmatic 
domain of CD43 and -catenin links CD43 to the Wnt/β-catenin signaling 
pathway which is often activated in colon cancer. 
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Figure 6. Role of β-catenin in cancer. -catenin in adherens junctions links E-cadherin 
to α-catenin that interacts with the actin cytoskeleton. In normal cells the levels and 
localization of -catenin are regulated by a complex of proteins that includes adeno-
matous polyposis coli protein (APC), glycogen synthase kinase-3 beta (GSK-3β) and 
axin. This complex phosphorylates β-catenin, which directs it to the ubiquitin-
proteasome pathway. In most colorectal cancers the APC/GSK-3β/axin/-catenin 
complex is unable to form due to mutations in one of its components. This results in 
accumulation of free cytoplasmic -catenin and its translocation to the nucleus. Nuclear 
-catenin interacts with TCF/LEF transcription factors and other cofactors to activate 
transcription of genes important for cell growth, e.g. MYC, cyclin D1, JUN, CD44. 
Adopted from (181) with modifications. 
 
 
Furthermore, the proteolytically released CD43ct is shown to be SUMOylated 
and recruited into PML nuclear bodies (PML-NBs) (163) which increase in 
number during autoimmune and cancerous diseases (182). PML-NBs are 
implicated in key cellular processes such as transcriptional regulation, genome 
stability, response to viral infection, apoptosis, tumor suppression, senescence 
and stem cell self-renewal. PML-NBs are macromolecular substructures in the 
nucleus of mammalian cells organized by the PML protein that recruits various 
proteins including SP100, p53, DAXX, HIPK2, MDM2 (183). The only 
common feature of these proteins known to date is their ability to be 
SUMOylated (184). The CD43ct recruited into PML-NBs participates in cell 
homeostasis and apoptosis supposedly by interacting with PML-associated 
proteins (163). A yeast two-hybrid screening has revealed an interaction bet-
ween the apoptotic regulator DAXX (death-domain associated protein) and the 
cytoplasmic domain of CD43 (106). DAXX has been shown to play a role in 
cellular functioning in the cytoplasm and in the nucleus mediating both pro- and 
anti-apoptotic signals (185–187). In addition, the intracellular domain of CD43 
interacts with murine HIPK2 (alternative name STANK, sialophorin tail-
associated nuclear kinase), a serine/threonine kinase, which shuttles between the 
nucleus and the cytoplasm (99). Its human ortholog activates the tumor 
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suppressor protein p53 by phosphorylating it at Ser46 (188). PML-NBs are 
proposed to fine-tune cellular processes through facilitation of partner protein 
post-translational modifications resulting in partner sequestration, activation or 
degradation. Importantly, p53-modifying enzymes (CBP, MDM2, HIPK2, and 
HAUSP) are concentrated within these NBs. PML-enhanced acetylation, 
sumoylation, and phosphorylation occurring in PML-NBs all appear to activate 
p53 (183). The data previously reported by our group indicates that CD43 
overexpression in non-hematopoietic cancer cells leads to accumulation of 
active p53 (189). Therefore, one could speculate that CD43 is involved in these 
post-translational modifications of p53 via HIPK2. Alternatively, as provided 
by the example of hematopoietic cells, the membrane-bound CD43 might 
stabilize p53 through activating MAP kinases JNK, p38 and ERK, which have 
been shown to directly phosphorylate p53 at Ser15 (190). Supporting this 
hypothesis, an increase in the phosphorylation of p53 at Ser15 upon CD43 
overexpression has been detected in non-hematopoietic cells, as well as 
subsequent induction of apoptosis (189). Activated MAPKs, functioning as 
effector protein kinases, phosphorylate a variety of substrates and affect cell 
growth, differentiation and apoptosis. In addition, CD43 interacts with other 
proteins that modulate the activity of p53, e.g. β-catenin (191) and nucleolin 
(192). 

 
 

4. Tumor suppressor p53 

p53 is considered to be a tumor suppressor protein with the most wide-ranging 
functions. The significance of p53 is illustrated by the fact that TP53 gene is 
lost or contains inactivating mutations in about half of human cancers from 
different tissues (193, 194). It is worth mentioning that p53 was originally 
discovered in its mutated form and identified as a transformation associated 
protein (195–199). Since then p53 has become probably the most studied 
protein, and an immense amount of data concerning p53 has been gathered by 
now. According to the current understanding, p53 is a transcription factor that 
maintains genomic stability being involved in a wide range of cellular processes.  

 
 

4.1. Functions of p53 

p53 is the key player under stress conditions. It responds to various stress forms: 
genotoxic stress (UV and IR, cytotoxic drugs, carcinogens), non-genotoxic 
stress (hypoxia, temperature changes, nutrient deprivation) and oncogenic stress 
(193, 194). In order to prevent proliferation of damaged cells, p53 is capable of 
arresting the cell cycle or directing more injured cells to apoptosis (200–204). 
Being the “genome guardian” (205) p53 regulates DNA replication (206), DNA 
synthesis and repair (207–209), DNA damage response and gene expression. 
p53 is also implicated in cellular differentiation (210) and senescence (211).  
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Stress signals lead to the accumulation of p53 in the nucleus, where it 
modulates expression of its target genes acting as a transcriptional activator or 
repressor. For example, G2 arrest is mediated by p53-dependent transactivation 
of GADD45B (growth arrest and DNA damage-inducible, beta) and SFN 
(stratifin; also known as 14-3-3 sigma) genes and transrepression of cyclin B1, 
CDC25C (cell division cycle 25 homolog C) and CDK1 (cyclin-dependent 
kinase 1) (212–216). Likewise, p53-mediated apoptosis requires both the 
activation of pro-apoptotic genes and the repression of genes that promote cell 
growth and survival. The overexpression of BCL2 (B-cell CLL/lymphoma 2), 
BIRC5 (baculoviral IAP repeat containing 5; alternative name survivin), Mtap4 
(microtubule-associated protein 4; human ortholog MAP4) and Trp53bp1 
(tumor protein p53 binding protein 1) genes, which are transrepressed by p53, 
has been shown to inhibit induction of p53-dependent apoptosis (217–222). It is 
considered that p53-mediated transcriptional repression is first and foremost 
required for the normal progress of apoptosis. 

In addition to the regulation of gene expression, p53 is able to induce 
apoptosis in a transcription-independent manner. In damaged cells a fraction of 
p53 protein translocates to mitochondria, where direct p53 signaling promotes 
cytochrome c release and Caspase-3 activation (223, 224). It is possible that the 
induction of p53-mediated apoptosis involves both p53-dependent regulation of 
gene expression and direct protein signaling in mitochondria. 

  
  

4.1.1. Mechanisms of p53-mediated  
transcriptional activation and repression 

Both transcriptional activation and repression involve p53 binding to a specific 
DNA response element in the promoter region of a target gene or its proximity 
and direct interaction of p53 with the basal transcriptional machinery. The 
consensus DNA-binding site for p53-mediated transactivation contains two 
copies of a 10-bp motif 5'-PuPuPuC(A/T)(A/T)GPyPyPy-3', separated by a  
0-13-bp spacer region (Pu and Py are purine and pyrimidine base containing 
nucleotides, respectively) (225, 226). In addition to the p53 consensus sequence, 
binding sites required for p53-dependent repression have been described (219, 
227, 228), but p53 is also capable of transcriptional repression from the 
consensus binding site (228–230). 

During p53-mediated transcriptional activation tetrameric p53 recognizes 
its consensus binding site and interacts with basal co-activators – acetyltrans-
ferases p300/CBP (CREB-binding protein) and PCAF (p300/CBP-associated 
factor) that enhance the activity of p53 (231–233). p300/CBP increases the 
sequence-specific DNA-binding activity of p53 by acetylating its C-terminus 
(234). The histone acetylase PCAF modifies p53, similarly to p300/CBP, and 
histones. The latter helps to convert the chromatin structure into an open form 
that facilitates the access of the transcriptional machinery to DNA (235, 236). 
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These events enable p53 to bind the basal transcription factor TFIIH that 
belongs to the RNA polymerase II preinitiation complex (208). p53 also 
interacts with the components of the transcription factor TFIID complex, TBP-
associated factors dTAFII60, dTAFII40 and hTAFII31 (237, 238). 

Three molecular models of the transcriptional repression by p53 have been 
proposed to date. p53 can obstruct binding of transcriptional activators to DNA 
or inhibit their activity by direct interaction (1), prevent assembly of basal 
transcription factors (2) and remodel chromatin structure (3). 

Firstly, the binding of other transcriptional activators is obstructed by the 
interaction of p53 with their target sequences in DNA. For example, there is a 
partial overlap between p53 and transcription factor SP1 binding sites in the 
promoter of POLD1 (polymerase (DNA directed), delta 1, catalytic subunit 125 
kDa) gene (239). In the case of AFP (alpha-fetoprotein) gene p53 binds to its 
target sequence in AFP promoter region and prevents the binding of HNF-3 
(hepatocyte nuclear factor 3) transcription factor (240). Also, the functioning of 
transcription factors can be disrupted by direct association with p53 protein. p53 
is capable of interaction with SP1 bound to a promoter, which inhibits the 
transactivating properties of SP1. This mechanism is implicated in p53-depen-
dent repression of cyclin B1 promoter lacking the p53-binding site (241). It has 
been demonstrated that the regulation of SP1 activity provides for p53-mediated 
transrepression of several other genes, such as telomerase reverse transcriptase, 
insulin receptor, vascular endothelial growth factor A (242–244). In addition to 
SP1, p53 binds estrogen receptor, hepatocyte nuclear factor 4-alpha-1 and 
glucocorticoid receptor, which results in transcriptional repression of their 
target genes (245–247).  

Secondly, p53 specifically represses activity of promoters whose initiation 
is dependent on the presence of the TATA box, and the repression is mediated 
by an interaction of p53 with another component of the basal transcription 
factor TFIID complex, TBP (TATA-binding protein) (248–250). 

Thirdly, p53 represses transcription via chromatin remodeling. The proline-
rich domain of p53, which mediates p53-dependent apoptosis, is considered to 
be required for this phenomenon (251). The proline-rich domain recruits the co-
repressor SIN3A that binds HDAC1 complex and thereby promotes the 
deacetylation of histones in the promoters of target genes (252). By the same 
token, the HDAC inhibitor TSA (trichostatin A) abrogates the ability of p53 to 
repress the expression of its target genes like of Mtap4, stathmin 1, alpha-
tubulin and BIRC5 (220, 252, 253). p53 has been shown to decrease acetylation 
of histone H3 in the BIRC5 promoter (219, 220). In the case of Mtap4 and Myc 
(myelocytomatosis oncogene; human ortholog MYC, v-myc myelocytomatosis 
viral oncogene homolog (avian)) an interaction between p53 and HDAC 
through the intermediary of SIN3A has been detected (252, 254). It is also 
known that hypoxia which induces mostly p53-dependent transrepression leads 
to increased formation of p53-SIN3A complexes (253).  
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4.2. Tumor suppressor ARF responds to oncogenic stress 

The CDKN2A (cyclin-dependent kinase inhibitor 2A) locus encodes two tumor 
suppressor proteins, INK4a and ARF (alternate reading frame) that indirectly 
govern the activities of the retinoblastoma family proteins (RB, p107, and p130) 
and p53, respectively (255, 256). Since the inactivation of INK4a, ARF, RB, 
and p53 allows cells that sustain oncogenic insults to survive and proliferate, 
their loss of function is detected in most forms of human cancer. CDKN2A is 
the second most frequently inactivated gene in human cancers after TP53. Due 
to the organization of CDKN2A locus the two genes are induced by different 
stress signals and can be separately mutated, deleted or epigenetically silenced 
in tumor cells (257).  

INK4a is a negative regulator of Cyclin D1-CDK4 and CDK6, and there-
fore it prevents cell cycle progression through maintaining RB-family proteins 
in their active hypophosphorylated state (258). In contrast, ARF antagonizes the 
p53 negative regulator MDM2 (murine double minute 2) (259, 260) (Fig. 7). 
MDM2 is known to inhibit p53-mediated transactivation (261) and promote 
degradation of p53 via its ubiquitylation (262) and shuttling to cytoplasmic 
proteasomes (263). ARF binds directly to MDM2, sequestering it in the 
nucleolus (259, 260) and enabling a p53 response that can lead to premature 
senescence or apoptosis depending on the biological context (257). 

The ARF tumor suppressor acts as a sensor of hyperproliferative signals 
emanating from oncoproteins and inducers of S-phase entry, such as MYC 
(264), E1A (265), mutated Ras (266), E2F-1 (267), β-catenin (191) and viral 
ABL (268). Herewith, ARF is activated by abnormally elevated and sustained 
mitogenic signals triggered by oncogenes but not by physiologic signaling 
levels conveyed by their appropriately regulated proto-oncogenic counterparts 
(257). For example, ARF is not induced by MYC or Ras during normal cell 
cycle progression, but it is transcribed when proliferative signals are consti-
tutively enforced through MYC translocation or oncogenic Ras mutation. 
However, ARF induction is mediated not only at the level of transcription. ARF 
is very unstable in normal human cells due to ubiquitylation and subsequent 
degradation (which is inhibited in cancerous cells), revealing the dynamic 
feature of the ARF-p53 pathway (269).  

ARF serves as a fuse that gates mitogenic current, preventing abnormal cell 
proliferation in response to oncogene activation. However, the understanding 
how the promoter element of ARF distinguishes normal and abnormal signaling 
thresholds remains problematic. Arf is normally repressed by E2F complexes, 
but unlike many E2F-responsive genes that govern DNA synthesis and 
replication, Arf is not periodically expressed when cells enter S phase (271). Yet, 
when Arf is induced by oncogenes, transcription factors E2F 1, 2, and 3a 
replace repressive E2F complexes on the Arf promoter (272). Hence, other 
specificity factors must play a role in modulating this E2F response. An 
attractive candidate is the transcription factor DMTF1 (cyclin-D-binding Myb-
like transcription factor 1) (273), which binds adjacent to an E2F site in the 

8
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proximal Arf promoter to activate the gene (274). DMTF1 mediates oncogenic 
Ras signals to ARF via Raf/MEK/ERK pathway (275). Ras-driven MAP kinase 
pathway also induces MDM2 gene expression resulting in the degradation of 
p53, if ARF is absent (276). This reveals the mechanism how ARF protects p53 
from inactivation by Ras and enables p53 response (266). 

 

 

Figure 7. Activation of the ARF/p53 pathway in response to oncogenic stress. 
Abnormally elevated and sustained mitogenic signals induce transcription and stabili-
zation of the ARF tumor suppressor. ARF binds MDM2, which acts as an E3 ubiquitin 
ligase of p53, confines it in the nucleus and prevents MDM2-mediated degradation of 
p53. Accumulation of active p53 leads to cell cycle arrest or apoptosis depending on the 
biological context. The p53 transcriptional activity results in repression of genes that 
promote cell growth and survival as well as activation of growth suppressing and/or 
pro-apoptotic genes. Adopted from (270) with modifications. 
 
 
Although it is generally accepted that much of ARF tumor suppressor activity is 
mediated through p53, ARF also has p53-independent functions. Enforced 
expression of ARF can arrest the proliferation of p53-null cells, although much 
less efficiently than in cells that retain wild type p53 (277). Primary mouse 
fibroblasts and B lymphocytes lacking both ARF and p53 grow faster in culture 
than do cells lacking only one of the two genes (256, 278), and mice 
lacking ARF, MDM2, and p53 are much more prone to developing cancer than 
mice lacking MDM2 and p53 (279). ARF mediates p53-independent effects on 
gene expression by negatively regulating other transcription factors such as 
E2Fs (280–282), MYC (283, 284), and NF-κB (285). Surprisingly, the enforced 
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expression of ARF in mammalian cells promotes the sumoylation of several 
ARF-interacting proteins, e.g. MDM2, p53 (286, 287), implying that ARF has 
an associated catalytic activity. It has been suggested that the p53-independent 
effects of ARF on gene expression and tumor suppression might depend on 
ARF-induced sumoylation (273, 288). 
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AIMS OF THE STUDY 

In recent years, the significance of glycoproteins in cancerogenesis came to 
light. The contribution of the mucin-like leukocyte marker CD43 to this process 
has found support in several studies. Namely, pieces of evidence concerning its 
aberrant expression and glycosylation in solid tumors and cancer cell lines of 
non-hematopoietic origin as well as involvement in p53 and Wnt/β-catenin 
signaling pathways emerged. However, a better understanding of CD43 
functions in cancer cells is required to evaluate its role in the development of 
the disease.  

During the studies on the activity of CD43 in cancer cells, specific aspects 
made up the goals of different projects that gave the content for the present 
thesis. 

The precise aims of the study were as follows: 
 examine subcellular distribution and potential function of different CD43 

molecules described  
 investigate the interconnection between CD43 and β-catenin signaling 

pathways in respect to tumorigenesis 
 study the impact of CD43 overexpression on cell fate and means of 

CD43 action in the context of intact and disrupted tumor suppressor 
p53/ARF pathway 

 assess the involvement of β-catenin in CD43-induced p53 response  
 determine whether the expression of CD43, as a detrimental stimulus, is a 

subject to modulation by p53 and what could be the underlying molecular 
mechanism 
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RESULTS AND DISCUSSION 

1. CD43 overexpressing cells gain growth  
advantage in the absence of either p53 or ARF  

The tumor suppressor protein p53 has been found to accumulate in the early 
phases of different tumors, including colon adenomas (289, 290). According to 
our previous results CD43 overexpression in human cancer cells causes the 
accumulation of functionally active p53, which is dependent on the presence of 
the tumor suppressor protein ARF (189). To further investigate the potential 
role of CD43 in tumor development, the effect of CD43 overexpression on 
colony formation was tested in different mouse and human cell lines lacking 
either p53 or ARF tumor suppressors (Ref. I, Table 1). Initially, the cell lines 
express low levels of endogenous CD43 (Ref. I). To investigate the effect of 
increased CD43 expression on cellular response, we provoked the elevated 
levels of CD43 expression observed in colon adenomas by exogenous protein 
expression. In our experimental system, the overexpression of CD43 suppressed 
colony formation in all cell lines studied when both p53 and ARF proteins were 
present (Ref. I, Fig. 1, a–d). In contrast, in cells lacking either ARF or p53, 
CD43 overexpression increased colony formation compared to the control cells. 
This suggests that both p53 and ARF are required for the suppression of cell 
growth in response to CD43 overexpression. In addition, transient knockdown 
of CD43 by siRNA noticeably reduced colony formation confirming the 
involvement of CD43 in this process (Ref. I, Fig. 1, e and f). Furthermore, 
CD43 overexpression increased the growth rate of ARF-deficient (Ref. I, Fig. 3, 
a and c) and p53-deficient (Ref. I, Fig. 3, b and d) human and mouse cells. It 
appears that CD43 is capable of acting as a mitogenic stimulus and/or cell 
survival factor. Also, these observations provide the first evidence that aberrant 
CD43 expression in a certain cellular context may enhance the development of 
a transformed cell phenotype.  

 
 

1.1. CD43 overexpression inhibits FAS-mediated apoptosis  

Known oncogenes promote cell growth by affecting either cell cycle or 
apoptosis. Uncontrolled proliferation is nevertheless not sufficient for tumor 
formation, but it must be linked to impaired apoptotic signaling. This is 
confirmed by the observations that deregulated cell growth alone can lead to 
apoptosis (291). To study whether CD43 conveys proliferative signals, we 
performed cell cycle analysis by the bromodeoxyuridine incorporation assay. 
Upon CD43 overexpression in p53-defective or ARF-deficient cells there was 
no significant increase in the percentage of cells in S phase (Ref. I). Presumably, 
CD43 affects cell viability rather than proliferation, which is in good correlation 
with the published data. In transgenic mice the introduction of CD43 into 
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mature peripheral B lymphocytes (expressing very low levels of CD43 in 
normal physiological conditions) increased cell viability due to a reduced 
susceptibility to apoptosis (120, 121). It has also been speculated that tumor 
cells could escape FAS-mediated cell death by expressing CD43 (9). The FAS 
receptor is a transmembrane protein that belongs to the tumor necrosis factor 
(TNF) receptor family and mediates intracellular apoptosis signaling upon 
stimulation by its ligand, FASLG (292). The intracellular death domain of FAS 
interacts with the adaptor protein FADD (FAS-associated death domain), which 
recruits Caspase-8 and triggers the activation of caspase cascade (109). The 
FAS receptor is expressed at high levels in normal epithelial cells, e.g. in colon 
and breast, making these tissues sensitive to FAS-induced apoptosis. However, 
in colon cancer cells FAS expression is frequently downregulated leading to 
impaired FAS-mediated apoptosis, which has been shown to contribute to 
tumorigenesis (293–295). The decreased sensitivity to apoptosis triggered by 
FAS might provide for the ability of cancer cells to escape immune surveillance 
(294, 296). The mechanisms of acquiring resistance to FAS-mediated apoptosis 
by tumor cells are complex, and defects have been identified at several levels of 
FAS signal transduction.  

In the first instance, we explored whether CD43 expression helps cancer 
cells to escape apoptosis triggered by TNF receptor family and FAS in 
particular. CD43 was overexpressed in human breast and colon cancer cell lines 
susceptible to FAS-mediated apoptosis and lacking either functional p53 of 
ARF. Cell death was provoked by TNFα or anti-FAS antibody, which imitates 
the attachment of FASLG to FAS. As expected, incubation with the anti-FAS 
antibody caused increase in apoptosis in the cells with uninduced CD43 
expression (Ref. I, Fig. 4a). Importantly, after treatment with the antibody no 
induction of apoptosis was detected in the cells overexpressing CD43. TNFα 
treatment, however, did not cause elevated apoptosis in any of the cells. It was 
also observed that CD43 overexpressing cells were notably more viable when 
kept as non-adherent cells without anti-FAS antibody (Ref. I). In addition, 
CD43 slightly decreased the basal apoptotic level of the cells (Ref. I, Fig. 4b). 
Evidently, high expression levels of CD43 protect cancer cells from FAS-
mediated apoptosis and may contribute to the immune failure of tumor 
elimination. 

Secondly, we asked whether CD43 could affect the expression of FAS on 
cancer cells, since the downregulation of cell surface FAS is a common 
mechanism for cancer cells to decrease the sensitivity to FAS-induced apoptosis 
(297, 298). In the cancer cell lines that were used in previous experiments FAS 
receptor was found to be expressed on the surface of wild-type cells (Ref. I, Fig. 
5a). However, in the cells overexpressing CD43 the level of FAS expression on 
the cell surface was decreased (Ref. I, Fig. 5, b and c). Interestingly, the 
overexpression of the cytoplasmic tail of CD43, which participates in signal 
transduction, did not affect the cell surface expression of FAS (Ref. I, Fig. 5d), 
indicating that the full length glycosylated CD43 is required to reduce the level 
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of FAS receptor in the membrane. These results are in good correlation with the 
observations that CD43ct had no impact on cell growth and activation of ARF–
p53 pathway (Ref. I).  

To study the possibility that CD43 might have affected the expression of 
other cell surface proteins, we analysed the MUC1 mucin. This molecule is 
similar to CD43, but has a longer extended highly glycosylated extracellular 
domain. No alterations in the amounts of cell surface MUC1 were observed 
upon CD43 overexpression (Ref. I, Fig. 7a). Another possibility is that CD43 by 
its large extracellular domain shields smaller molecules like integrins. However, 
detection of the integrins α6 and β1 was not altered upon CD43 overexpression 
(Ref. I, Fig. 7, b and c). This indicates that the shielding effect of CD43 is not 
involved in the CD43-mediated interference with the cell surface FAS 
expression. 

The mechanism by which CD43 affects FAS-mediated apoptosis is cur-
rently unknown, but several speculations can be made. Firstly, CD43 over-
expression has been shown to inhibit DNA-binding activity and target gene 
expression of the NF-κB p65 (299), one of the transcription factors necessary 
for FAS expression (300, 301). Moreover, CD43 has been reported to interact 
with β-catenin (164), which suppresses activation of NF-κB and thereby reduces 
FAS expression in colon and breast tumors (302). This raises a possibility that 
CD43 could be involved in transcriptional regulation of FAS. However, in our 
experiments the overexpression of CD43 reduced the cell surface level of FAS, 
but the total amount of receptor was not altered (Ref. I, Fig. 6). Although the 
mRNA levels of FAS in CD43-overexpressing cells have not been assessed yet, 
it is more likely that CD43 interferes with FAS rather at the post-translational 
level. Secondly, CD43 possibly interferes with FAS signaling and modulates 
sensitivity to apoptosis through the interaction with DAXX protein (106) 
(Fig. 8). The FAS death domain is capable of binding DAXX instead of FADD, 
which activates the JNK pathway and induces apoptosis (185). Together, these 
results support the hypothesis that high CD43 expression levels, as found in 
cancer cells, may provide a mechanism for increased cell survival and enable 
the evasion of FAS-dependent apoptosis in cancers. 
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Figure 8. Potential role of CD43 in the FAS-mediated apoptotic pathway. 
Engagement of FAS receptor by FASLG triggers FAS trimerization and recruitment of 
FADD adaptor protein to its intracellular death domain. FADD in turn activates the 
cascade of caspases that cleave vital substances in cells resulting in apoptosis. Besides 
FADD, the FAS death domain is capable of binding DAXX that enhances FAS-driven 
apoptosis by inducing the JNK kinase cascade. In addition, DAXX, localizing both in 
the cytoplasm and in the nucleus, can act as a transcriptional repressor or operate within 
the PML nuclear bodies. Adopted from (270) with modifications. 
 
 

1.2. CD43 and β-catenin co-operate  
in promoting colony formation  

The growth-promoting properties of CD43 in human cancer cells indicate that 
CD43 may have a function in an oncogenic pathway. The understanding of 
signaling pathways activated by CD43 in cancer cells is rather poor. The 
cytoplasmic domain of CD43 was found to interact with the oncogene β-catenin 
and increase expression of proto-oncogenes MYC and Cyclin D1 that are 
activated by the β-catenin/TCF-4 complex (164). Therefore, it is possible that 
CD43 is involved in tumorigenesis via the Wnt/β-catenin pathway. Many works 
have shown that aberrant activation of -catenin signaling plays an important 
role in colon cancer development. Similarly to CD43 silencing, inhibition of  
-catenin expression reduces growth of colon cancer cells (303). We applied 
siRNA-mediated gene silencing to explore whether CD43 promotes colony 
formation via β-catenin signaling. The ability to form colonies was tested in 
ARF- or p53-deficient human cancer cells. CD43 and β-catenin overexpression 
increased the number of colonies, which is consistent with the previous results. 
However, the cell growth-promoting property of CD43 overexpression was 
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considerably reduced by the downregulation of β-catenin (Ref. II, Fig. 1). Also, 
the cells overexpressing β-catenin formed fewer colonies when CD43 expres-
sion was inhibited. These results suggest that CD43 promotes cell growth in  
co-operation with β-catenin. Therefore, CD43 has a potential role in Wnt/β-
catenin signaling pathway, which is often deregulated in human cancers. 
 
 

2. Full length CD43 localizes to the nucleus and  
binds chromatin 

By this moment we have already presented a few pieces of evidence indicating 
that the full length CD43, but not the cytoplasmic tail of CD43, facilitates 
malignant transformation. The CD43ct, as opposed to the full length CD43, was 
not able to affect cell growth, evade FAS-mediated apoptosis and activate  
ARF-p53 pathway. To further investigate the role CD43 plays in cancer 
formation we analysed different CD43 proteins in detail. A variety of CD43 
molecules have been described in the cell: the mature full length glycosylated 
CD43, the non-glycosylated CD43 precursor, the CD43-specific cytoplasmic 
tail fragment (denoted as the CD43-CTF), and the CD43 cytoplasmic tail 
(designated here as CD43ct). The CD43-CTF, which is suggested to be formed 
by the proteolytic removal of the ectodomain, includes a small part of the 
extracellular domain, the intact transmembrane and intracellular domains. The 
CD43ct is released as a result of the intramembrane γ-secretase cleavage that 
follows the cleavage in the extracellular domain (146).  

Since localization of a protein indicates its function to some extent, we 
studied distribution of CD43 molecules in different subcellular fractions. We 
used human colon cancer cell line COLO205 that expresses high levels of 
endogenous CD43. CD43 protein was visualized with the mAb anti-CD43-4D2 
which reacts with all CD43 molecules of interest because the epitope is located 
near the C-terminal end of CD43 intracellular domain (aa 337–343). Sur-
prisingly, the full length glycosylated CD43 was detected in the soluble nuclear 
fraction and even at a more significant level in the chromatin-bound nuclear 
fraction (Ref. II, Fig. 4A). The precursor CD43 was found in the both nuclear 
fractions as well. The membrane fraction contained the highest amount of the 
precursor CD43 and the mature CD43. The precursor CD43 was absent from 
the soluble cytoplasmic fraction, which indicates that it is compartmentalized in 
the cell apparently being incorporated into the endoplasmic reticulum (ER) and 
the Golgi apparatus for glycosylation. A considerable amount of the precursor 
and the mature CD43 proteins was detected in the cytoskeletal protein fraction. 
This is consistent with the previous findings showing that the cytoplasmic 
domain of CD43 associates with the cytoskeleton via ERM family adapter 
proteins (304). The CD43-CTF was observed in the soluble cytoplasmic 
fraction, in the membrane fraction and very poorly in the soluble nuclear 
fraction.  

10 
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When cells were treated with the proteasome inhibitor MG132, the amount 
of the CD43-CTF increased as previously described (146), and two shorter 
CD43 fragments became detectable in the soluble cytoplasmic fraction, in the 
membrane fraction and in the soluble nuclear fraction (Ref. II, Fig. 4B). We 
presume that the smallest fragment is the cytoplasmic tail of CD43, because it is 
an expected position for the CD43ct relative to the CD43-CTF (43, 146). Both 
of the fragments are produced from the cytoplasmic part of CD43 because the 
epitope of the anti-CD43-4D2 mAb used for detection is located in the distal  
C-terminus of CD43. In our experiments with MG132 proteasome inhibitor we 
have noticed that the intracellular domain of CD43 is cleaved in multiple sites 
(Ref. II), which explains the appearance of the other fragment, but the bio-
logical meaning of this phenomenon is still unclear. The effect of the pro-
teasome inhibitor implies that these CD43 molecules have a short protein half-
life and are quickly degraded in the proteasome pathway. It has also been 
previously proposed that CD43ct is quickly metabolized (146). None of these 
CD43 fragments was found in the chromatin-bound nuclear fraction, they 
appeared only in the fractions where CD43-CTF accumulated. This is somewhat 
contradictory to the published data indicating that CD43ct binds β-catenin to 
activate the expression of β-catenin target genes MYC and cyclin D1 (164). 
However, the role of CD43 in β-catenin-mediated transcriptional activation is 
not fully understood. Still, we do not know whether CD43 acts as nothing but a 
chaperone/stabilizer for β-catenin and this way contributes to its transcriptional 
activity, or CD43 belongs to the protein complex that binds to the promoter 
regions of β-catenin target genes (Fig. 9). For example, in human colorectal 
cancer cells, pp60, a Src family PTK, is responsible for β-catenin tyrosine 
phosphorylation and protein stabilization (305). By the same token, in chronic 
myeloid leukaemia cells, the PTK ABL activates β-catenin (306). In both cases, 
the tyrosine-phosphorylated β-catenin (and serine/threonine unphosphorylated) 
binds to the TCF-4 transcription factor, thus representing a transcriptionally 
active pool. Moreover, β-catenin tyrosine phosphorylation prevents its cyto-
solic/membranous retention as well as axin/GSK-3β binding to free β-catenin 
and subsequent β-catenin serine/threonine phosphorylation that leads to its 
degradation (305, 306). It can be proposed that the CD43ct is involved in  
β-catenin stabilization through the modulation of its post-translational 
modifications. The incorporation of the CD43ct into the PML-NBs is consistent 
with this hypothesis. Furthermore, it cannot be excluded that the mature CD43 
localizes to PML-NBs as it is also SUMOylated (discussed in Ref. I). Never-
theless, the presence of the mature CD43 in the chromatin-bound nuclear 
fraction and the failure of the CD43 cytoplasmic fragments to accumulate in 
this fraction correlate well with our results showing that the overexpression of 
the full length CD43, and not the CD43ct, helps the cells with defective  
ARF-p53 signaling to evade FAS-mediated apoptosis and promotes cell growth 
(8). Besides, -catenin is also known to inhibit FAS expression on the cell 
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surface (302). These results indicate that the mature CD43 might have a role in 
regulating gene expression in the nucleus together with -catenin.  

 

 
 
Figure 9. Potential role of CD43 in the nucleus. According to our hypothesis, the 
CD43ct and the mature CD43 could have distinct functionality in the nucleus. The 
CD43ct might participate in cell homeostasis primarily by interacting with PML-
associated proteins, which supposedly stabilize β-catenin by post-translational 
modifications, and this way contributes to β-catenin transcriptional activity. Whereas, 
the mature CD43, capable of binding chromatin and β-catenin, apparently belongs to the 
protein complexes on the promoters of β-catenin target genes. The translocation of the 
full-length CD43 into the nucleus might depend, in addition to NLS, on its 
glycosylation, which is often abnormal in cancer cells.  
 

 
The mechanism for the translocation of the full length glycosylated CD43 into 
the nucleus can be based on the presence of the NLS in the cytoplasmic domain 
of the protein (164) or on the reversible attachment of O-linked N-acetyl-
glucosamine (O-GlcNAc) which is known to play an important role in the 
modulation of the biological activity of intracellular proteins. Interestingly, it 
has been shown that only the glycosylated form of the cytoplasmic transcription 
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factor STAT5 (signal transducer and activator of transcription 5) could be found 
in the nucleus and bind co-activator CBP that is essential for the STAT5-
mediated gene transcription (307). The involvement of O-GlcNAc in the NLS-
independent nuclear transport of cytosolic proteins was first sustained by 
studies on bovine serum albumin showing that the protein could be actively 
carried to the nucleus when it was modified with sugars (308). One of the 
mechanisms through which O-GlcNAc might act as a nuclear localisation signal 
is by counteracting the function of phosphorylation (308, 309). Phosphorylation 
has been shown to affect nuclear translocation of cytosolic proteins (309, 310). 
The localization of CD43 might be regulated by the same mechanism because 
CD43 is phosphorylated and extensively O-glycosylated carrying core 2  
O-glycan structures which contain GlcNAc (161).  
 
 

2.1. Chromatin-bound CD43 interacts with β-catenin and 
enhances the reporter gene expression regulated by β-catenin 

Having established that the glycosylated CD43 is translocated to the nucleus 
(Ref. II, Fig. 4A) we were interested if the mature CD43, similarly to CD43ct 
(164), promotes transcriptional activity of β-catenin. First of all, we clarified 
whether the mature CD43 interacts with β-catenin in the chromatin-bound 
nuclear fraction. CD43 was immunoprecipitated using the mAb anti-CD43-
1G10 which recognizes only the full length glycosylated CD43 protein.  
β-catenin was found to be co-immunoprecipitated with CD43 from all fractions 
isolated (Ref. II, Fig. 4C). The interaction between the mature CD43 and  
β-catenin in the chromatin-bound nuclear fraction suggests that the full length 
CD43 might indeed modulate -catenin/TCF/LEF-mediated transcription and 
contribute to impaired Wnt signaling in colon cancer. 

The additional evidence supporting the role of the mature CD43 in  
-catenin-mediated signaling comes from our next finding obtained by the 
employment of the reporter assay. We used TOPflash luciferase reporter vector 
which reflects activation of TCF/LEF-sensitive transcription (311). The 
overexpression of the full length CD43 enhanced the reporter gene expression 
regulated by β-catenin but not as much as the overexpression of -catenin (Ref. 
II, Fig. 3A). The coexpression of both exogenous CD43 and -catenin showed 
more pronounced luciferase activity relative to exogenous -catenin alone (Ref. 
II, Fig. 3A). On the other hand, when CD43 expression was silenced, the 
overexpression of β-catenin did not increase the transcription level of its 
reporter gene, indicating important cross-talk between the CD43- and β-catenin-
dependent pathways (Ref. II, Fig. 3C). These results demonstrate that in our 
experimental system the presence of both mature CD43 and -catenin is 
required for the TCF/LEF-mediated transcription.  
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3. CD43 overexpression induces  
p53/ARF-dependent apoptosis  

Our observations indicate that CD43 promotes cell growth and survival upon 
the disruption of ARF/p53 tumor suppressor pathway. Induced ARF expression 
has been described in response to oncogenic stress. The main role of ARF 
activation is the stabilization of p53 by MDM2 inhibition and activation of p53-
dependent growth suppression. If cells lack ARF, they fail to inhibit oncogene-
induced hyperproliferation (312). As elevated CD43 expression led to an 
increase in the level of ARF and accumulation of transcriptionally active p53, it 
is clear that in our case p53 activation operates via ARF tumor suppressor 
protein (189). Moreover, CD43 overexpression in human cancer cells and 
mouse embryonic fibroblasts increases the ratio of apoptotic cells when both 
ARF and p53 are present (Ref. I, Fig. 2). Hence, the described reduction in 
colony formation upon CD43 overexpression in the cells expressing both p53 
and ARF occurs due to induction of apoptosis. Besides, CD43 not only co-
operates with -catenin in promoting colony formation but also requires  
-catenin to activate p53. In the cells with silenced -catenin, the induction of 
the transcriptional activity of p53 in response to CD43 overexpression was 
inhibited (Ref. II, Fig. 2, A and B). Thereby, the synergistic stimulatory effect 
of CD43 and -catenin on cell growth leads to the activation of tumor 
suppressors ARF and p53 that in turn results in cell death (Fig. 10).  
 

 
 

Figure 10. Role of CD43 in cell fate depending on the cellular context. Synergistic 
activity of CD43 and -catenin provides a pro-survival/mitogenic stimulus, which 
causes activation of ARF, subsequent stabilization of p53 and a p53-depended apoptotic 
response. In cells lacking either functional ARF or p53, CD43 enhances cell growth, 
presumably via Wnt/-catenin pathway, revealing its potential role in tumorigenesis.  
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4. p53 downregulates CD43 expression in cancer cells  

p53 is known to trigger ARF-dependent apoptosis in response to oncogene 
activation (257), and CD43 overexpression induces death in cells expressing 
p53 and ARF. Furthermore, p53-dependent downregulation of cell survival-
related genes is an important mechanism in apoptosis regulation (313). Thus, 
we proposed that p53 could negatively regulate CD43 expression in cancer cells. 
Indeed, p53 specifically suppresses CD43 expression both at the levels of 
mRNA and protein (Ref. III, Fig. 1 and Fig. 2). p53 reduces the expression of 
only endogenous and not exogenous SPN mRNA (Ref. III, Fig. 2B), therefore 
p53 does not affect the stability of SPN mRNA, and the observed effect is due 
to a downregulated SPN gene transcription. At the protein level wild type p53 
decreases the expression of both precursor and fully glycosylated CD43 (Ref. 
III, Fig. 1). We also confirmed that the lower levels of CD43 protein observed 
in p53-expressing cells were not caused by apoptosis during first 24 h (Ref. III), 
as p53 and CD43 coexpression might induce apoptosis of the cells (189). At the 
same time, ARF alone did not considerably affect neither mRNA nor protein 
levels of CD43 (Ref. III, Fig. 2C), despite the fact that ARF has both p53-
dependent and p53-independent tumor-suppressive activities (314). Our results 
confirm that SPN gene expression is regulated by the tumor suppressor p53 and 
that p53 affects CD43 expression at both transcriptional and protein levels. 

Similarly to CD43, p53 has been shown to negatively regulate transcription 
of presenilin-1 gene (315). Presenilin-1 (PS-1), as a part of the γ-secretase 
complex, mediates the intramembrane cleavage of type I transmembrane 
proteins (e.g. CD43 (146) and CD44 (168)). Interestingly, the downregulation 
of PS-1 expression resulted in cell death and tumor suppression, and the 
overexpression of PS-1, on the contrary, protected cells from apoptosis (315). 
One can speculate that the facilitated release of the CD43ct accounts for the 
described survival of PS-1 overexpressing cells. Therefore, p53 might indirectly 
inhibit the pro-survival functions of CD43ct (e.g. in PML-NBs) by decreasing 
PS-1 expression level.  

Since our previous studies demonstrate that CD43 overexpression activates 
p53 and leads to programmed cell death (189), we suggest the existence of a 
negative feedback loop between p53 and CD43, where the overexpression of 
CD43, as of an oncogene, induces p53 and results in the downregulation of 
CD43. 

 
 
4.1. p53-mediated transactivation and transrepression are 

required for the downregulation of CD43 

As a transcription factor, p53 regulates cell fate in response to cellular stress 
through activating and repressing the transcription of downstream target genes. 
Using various p53 mutants (Ref. III, Fig. 3A), we demonstrate that lower levels 
of CD43 protein correlate with DNA binding and transactivation abilities of p53 
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(Ref. III, Fig. 3, B and C). This suggests that p53-dependent downregulation of 
CD43 protein requires transactivation of a subset of target genes. Moreover, an 
examination of the CD43 turnover by the pulse-chase method revealed that p53 
significantly reduces the half-life of CD43 protein (data not shown) confirming 
that other proteins participate in p53-mediated post-translational regulation of 
CD43 expression. 

Data from several studies show that p53-mediated transrepression is mostly 
required for apoptosis induction. Since high levels of CD43 trigger p53-
dependent apoptosis, we explored whether p53 regulates CD43 expression by 
transrepression as well. The regions of p53 protein responsible for the down-
regulation of SPN mRNA are N-terminal transactivation domain, oligomeri-
zation domain, proline rich domain and DNA-binding domain (Ref. III, Fig. 4). 
A number of studies have described the domains of p53 required for its 
transrepression activity. Among these were the N-terminus, the proline-rich 
domain and the C-terminus (313). Moreover, it has been reported that tetrameric 
p53 binds DNA more efficiently than monomeric (316), while residues 339–346 
in the oligomerization domain are required for p53 transrepression activity 
(317). In our study, the p53 protein with the deletion of the proline-rich region 
failed to downregulate SPN mRNA level (Ref. III, Fig. 4). It has been shown 
that the proline-rich domain of p53 is important for transcriptional repression 
involving recruitment of histone deacetylases (HDAC) to target promoters (313). 
The proline-rich domain interacts with the co-repressor protein SIN3A (251, 
252, 318) which tethers p53 into a repressor complex containing histone 
deacetylases (252). In the presence of trichostatin A (TSA), an inhibitor of 
HDAC, the ability of wild type p53 to reduce SPN mRNA level was disrupted 
(Ref. III, Fig. 5, A and B), elucidating the molecular mechanism underlying 
p53-mediated repression of SPN transcription. In addition, p53-dependent 
acetylation of histone H3 is known to contribute to the promoter regulation of 
several genes (319). We ascertained that the repression of CD43 expression is 
accompanied by a reduced acetylation at histone H3 K14 in SPN gene promoter 
region (Ref. III, Fig. 5C). Our findings suggest that the ability of p53 to repress 
SPN mRNA level occurs via transrepression of the SPN gene itself. Obviously, 
the histone deacetylation mechanism is involved in p53-mediated transcrip-
tional repression of SPN, suggesting that CD43 expression is inhibited by the 
HDAC-SIN3A-p53 complex.  
 
 

4.2. The CD43 promoter region contains a p53 response 
element and the promoter activity is repressed by p53 

There are different mechanisms of p53-mediated transrepression. p53 can 
interfere with the functions of either basal transcriptional machinery or specific 
transcriptional factors, and it is capable of repressing promoters that lack p53-
binding site or act in a sequence-specific manner. Thus, our next goal was to 
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determine whether the promoter region of SPN gene contains p53-binding 
sequences. 

We identified three putative p53 response elements in proximity to SPN 
gene (Fig. 11). Two sites with a similarity to the consensus sequence (225) lie 
~1.5 kb upstream and 1.7 kb downstream of the transcription start site and one 
sequence for transrepression (227, 228), spanning –75 to –48 bp, is adjacent to 
the minimal promoter region of SPN. The SPN genomic sequence from –53 to –
40 bp is an essential promoter for the expression of human CD43, and it 
contains a binding site for the SP1 transcription factor which is indispensable 
for the transcriptional activation of SPN (28, 29). Notably, the p53-binding site 
for transrepression partially overlaps with the SP1- and Purα-binding sequences 
(–57 to –37 bp) and lies almost adjacent to hnRNP-K-binding site (–38 to  
–17 bp). The transcription factors Purα and hnRNP-K have been shown to 
repress transcription from the SPN promoter (34, 35). 
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Figure 11. Schematic representation of p53 response elements near SPN gene. The 
promoter region and exons of SPN gene are shown. The striped box within the exon 3 
box corresponds to the translated region. Three potential binding sites for p53 are 
indicated schematically and by underlined sequences. The black box represents the p53 
binding site known to be necessary for p53-mediated transrepression. p53 consensus 
sites are indicated with grey boxes. Mismatches to the consensus sequence are shown 
by lowercase letters. Locations of the p53-binding sequences are given relative to the 
second transcription start site (+1 and bent arrow). The first transcription start site is 
marked as –55. The locations of the binding sites for known regulatory factors are 
indicated using braces. 
 
 
A transient reporter gene assay revealed that the sequence from –91 to +439 bp 
is sufficient for p53-mediated repression of SPN promoter activity (Ref. III, 
Fig. 7, A and B). These facts imply that apart from the recruitment of histone 
deacetylases p53 regulates CD43 expression by other molecular mechanisms. 
One plausible explanation is that p53 physically displaces SP1 from its binding 
site as provided by the repression of POLD1 gene (239). Alternatively, p53 
could interact with SP1 bound to a promoter producing a complex that is 
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transcriptionally inactive. In this case the presence of a p53-binding site is not 
imperative (241). It is possible that p53-SP1 interaction interferes with the 
downstream recruitment of the TFIID general transcriptional machinery 
complex or other transcriptional modulators. In the latter case the p53-SP1 
complex could be a signal for the recruitment of repressor complexes to a 
promoter. Transcriptional repression of BIRC5 gene demonstrates that the p53-
SP1 complex acts as a platform for the engagement of transcriptional repressors 
such as DNA (cytosine-5-)-methyltransferase-1 (DNMT1), histone methyltrans-
ferase G9a and HDAC1 onto the promoter. Subsequent methylation of histone 
H3 and DNA enforces transcriptional silencing of the gene (320). Thus SP1, 
although believed to be a transcriptional activator, may act as a mediator of 
p53-driven transrepression in co-operation with other transacting protein factors 
(320). In the regulation of SPN gene the transactivating properties of SP1 are 
inhibited by the methylation-specific repressor MeCP2 (31). Transcriptional 
repressor MeCP2 bound to methylated DNA recruits the SIN3A co-repressor 
and histone deacetylases to repress transcription (32, 33). It is tempting to 
speculate that p53 is involved in this process, since p53 reduces acetylation at 
histone H3 K14 in SPN promoter and a repression complex including p53, 
DNMT1, HDAC1 and MeCP2 has been shown to silence gene expression in 
human cancer cells (321).  

Our reporter assay also revealed that along with the transactivation and the 
proline-rich domains, sequence-specific DNA-binding and oligomerization 
domains of p53 are required for exogenous CD43 promoter repression (Ref. III, 
Fig. 7C). C-terminal amino acids 321–363, which include the oligomerization 
domain of p53 protein, are required for the physical interactions with SP1 (322). 
Besides, there is a strong binding affinity between SP1 and p53 (323). These 
observations support the idea that p53 might interact with SP1 to suppress SPN 
promoter activity. Interestingly, the C-terminal regulatory domain was 
completely dispensable for inhibition of CD43 transcription. The C-terminal 
domain of p53 has been shown to bind DNA without sequence specificity, but 
truncation of this entire basic domain activates p53 binding to its consensus 
DNA (324). These data suggest that p53 directly binds to the SPN promoter. 
Additionally, in some cases the promoters of downregulated target genes 
contain one or more potential p53 response elements which do not participate in 
p53-mediated regulation, but functional DNA-binding domain of p53 is still 
required for the inhibition (325).  

12
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Figure 12. Mechanisms of p53-dependent regulation of CD43 expression. p53 
modulates CD43 expression at both transcriptional and protein levels. p53-dependent 
transcriptional activation of other genes is necessary for the downregulation of CD43 
protein. The p53-mediated decrease in SPN mRNA level occurs via direct trans-
repression of SPN gene. Possibly, p53 inhibits the transactivating action of the SP1 
transcription factor on SPN promoter. The histone deacetylation mechanism is involved 
in p53-mediated transcriptional repression of CD43, suggesting that p53 facilitates 
DNA binding by the transcriptional repressor MeCP2 which recruits the SIN3A co-
repressor and histone deacetylases to inactivate SPN promoter. 

 
 
Altogether, we demonstrate that CD43 expression is downregulated at 
transcriptional and protein level following activation of wild type p53 in human 
cancer cells and that p53 directly inhibits SPN transcription at least partly by 
initiating the deacetylation of histones near SPN promoter (Fig. 12). In the same 
manner, expression levels of the mucin-like protein CD44 are negatively 
regulated by p53 (326). Moreover, in breast tissue from p53-null mice CD44 
was expressed at high levels, and restoration of p53 expression to this tissue 
resulted in decreased CD44 expression. The loss of p53 affected CD44 at the 
mRNA level, suggesting transcriptional control. Using a luciferase reporter 
vector containing the CD44 promoter sequence the authors found that p53 
required a functional DNA binding domain to repress CD44 expression. Further, 
gel-shift assays and chromatin immunoprecipitation experiments showed that 
p53 is able to interact with the CD44 promoter both in vitro and in vivo by 
binding to a non-canonical p53 consensus sequence. This interaction of p53 
with the CD44 promoter enables an untransformed cell to respond to stress-
induced, p53-dependent cytostatic and apoptotic signals that would otherwise 
be blocked by the actions of CD44. In the absence of p53 function, the resulting 
derepressed CD44 expression is essential for the growth and tumor-initiating 
ability of mammary epithelial cells (326). Thus, the relations between p53 and 
CD43 provide another example of existing negative feedback loops between 
p53 and growth promoting proteins. 
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CONCLUSIONS 

Tumor suppressor protein p53 becomes activated in response to various detri-
mental stimuli, including inappropriate cell growth, followed by elimination of 
such cells. Proceeding from our previous studies demonstrating that CD43 
overexpression activates p53 and leads to programmed cell death, the existence 
of a negative feedback loop between p53 and CD43 was proposed. Particularly, 
the overexpression of CD43, representing elevated levels of CD43 in colon 
adenomas, induces p53, as does the oncogenic stress, and results in the down-
regulation of CD43 expression, displaying the tumor suppressive role of p53. 

The mechanisms underlying these reciprocal relations were studied in 
current thesis and the following conclusions can be drawn: 

 The full length glycosylated CD43 might have a role in regulating gene 
expression, because it binds chromatin, interacts with -catenin and 
affects the TCF/LEF-mediated transcription. The capacity of CD43 to 
promote cell growth in co-operation with β-catenin in the absence of the 
tumor suppressors p53 and ARF is a possible implication of the CD43-
driven changes in gene expression. In any case, we affirm the involve-
ment of CD43 in Wnt/β-catenin signaling pathway, which is often 
deregulated in human cancers. 

 Another aspect of the pro-oncogenic CD43 activity is the ability of the 
mature CD43 to protect cancer cells lacking the tumor suppressors from 
FAS-mediated apoptosis. This is achieved due to reduced cell surface 
expression of FAS receptor, which in turn may contribute to the failure 
of tumor immunosurveillance. We propose that CD43 interferes with 
FAS expression at the protein level.  

 The present work shows that the full length glycosylated CD43, as 
opposed to the CD43ct, is capable of binding chromatin, reducing the 
level of FAS receptor in the membrane and activating the ARF-p53 
pathway. This endows the mature CD43 protein with the tumor-pro-
moting properties which have so far been assigned to the cytoplasmic 
tail of CD43.  

 The synergistic stimulatory effect of CD43 and -catenin on cell growth 
leads to the activation of tumor suppressors ARF and p53 that in turn 
results in cell death.  

 p53 affects CD43 expression at both transcriptional and protein levels. 
p53-dependent downregulation of CD43 protein requires transactivation 
of a subset of target genes. p53-mediated decrease in SPN mRNA level 
occurs via direct transrepression of SPN gene. The histone deacetylation 
mechanism is involved in transcriptional repression of SPN by p53, 
suggesting that CD43 expression is inhibited by the HDAC-SIN3A-p53 
complex. Possibly, p53 inhibits the transactivating action of the SP1 
transcription factor on SPN promoter. 
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Taken together, these findings suggest that CD43 expression in a certain 
cellular context may enhance the development of a transformed cell phenotype. 
In accordance with this, the p53-dependent downregulation of CD43 expression 
is a part of the negative feedback loop we have determined between p53 and 
CD43. Our case provides another example of mutual asymmetrical relations 
existing between p53 and growth promoting proteins. 
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SUMMARY IN ESTONIAN 

Kasvajaseoselise mutsiini-sarnase leukosialiini (CD43) 
funktsioonidest inimese kasvajarakkudes 

Kasvajates on rakud kaotanud kontrolli jagunemise üle, paljunedes valel ajal ja 
vales kohas sõltumata välistest signaalidest. Kasvajarakkude piiramatu jagune-
mine on tingitud onkogeenide aktivatsioonist, mis põhjustavad liigseid kasvu-
signaale, ja samaaegsest tuumorsupressorite ja stabiilsusgeenide inaktivat-
sioonist. Vähkkasvaja tekke on mitmeastmeline protsess, mille käigus rakku-
desse kuhjuvad geneetilised muutused, ning lisaks kontrollimatule kasvule 
omandavad rakud metastaseerumise võime. Kasvajaseoseliste geenide hulk 
kasvab pidevalt, kuid normaalse raku transformeerumine kasvajarakuks toimub 
tänu muutustele peamistes signaaliülekande radades, mis vastutavad raku surma 
ja kasvu eest. Samas, kasvajaseoseliste valkude identifitseerimine ja nende 
funktsioonide uurimine on keskse tähtsusega vähivastaste ravistrateegiate välja-
töötamisel.  

Viimastel aastadel on vähkkasvate uuringutes palju tähelepanu pööratud 
mutsiinidele tänu nende muutunud ekspressiooni tasemele ja struktuurile vähi-
rakkudes. Need on jäiga konformatsiooniga kõrgelt O-glükosüleeritud valgud 
raku pinnal, mis vahendavad interakteerumist teiste rakkude pinnamolekulidega 
või ümbritseva keskonna komponentidega. Kasvajarakkudes on mutsiinide ja 
mutsiini-sarnaste molekulide glükodünaamika sageli ebanormaalne, mille tule-
musena muutub nende glükosüleerituse tase ning O-glükaanide struktuur. Sellel 
on palju bioloogilisi ja patoloogilisi tagajärgesid, kuna muutuvad potentsiaalsed 
ligand-retseptor paarid ning seega ka rakkudevahelised interaktsioonid. Tule-
museks võib olla kasvu ja ellujäämise soodustavate signaaliradade aktiveeri-
mine, invasiivsete omaduste ja metastaseerumise võime omandamine ning 
immuunsüsteemi kontrolli alt pääsemine. 

Järjest enam vihjeid koguneb selle kohta, et mutsiini-sarnane transmemb-
raanne valk CD43 võiks käituda soodustava faktorina mitte-verepäritolu kasva-
jate tekkes. CD43 peeti pikka aega leukotsüütide-spetsiifiliseks markeriks, kuid 
mitmed hilisemad tööd on näidanud kõrge tasemelist CD43 ekspressiooni erine-
vates kasvajarakuliinides ja -kudedes, sealhulgas käärsoole adenoomides, aga 
mitte normaalsetes kooloni rakkudes. Samuti on näidatud CD43 seost erinevate 
signaaliradade komponentidega, mis rakkude elulemust või kasvu mõjutavad. 
Näiteks lokaliseerub CD43 PML tuuma kehakestesse ning interakteerib β-kate-
niiniga soodustades tema sihtmärkgeenide MYC ja Cyclin D1 ekspressiooni. 
Paljude kasvajate nagu ka käärsoolekasvaja üheks peamiseks tekkepõhjuseks on 
häired β-kateniini signaalirajas, mille tulemusena β-kateniin stabiliseerub ja 
aktiveerib rakkude kasvu stimuleerivate geenide ekspressiooni. Need algsed 
andmed vaid vihjavad molekulaarsetele mehhanismidele, mis on CD43 kasvaja-
soodustavate omaduste aluseks. Seega, põhjalikumad teadmised CD43 funkt-

13 
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sioonidest kasvajarakkudes on vajalikud hindamaks CD43 rolli kasvajatekkel ja 
arengus.  

Normaalsetes rakkudes aktiveeritakse vastusena onkogeensele stressile 
tuumorsupressor ARF/p53 rada, mis on oluline kasvajate ärahoidmisel. p53 
käitub transkriptsioonifaktorina, reguleerides mitmete geenide ekspressiooni ja 
indutseerides seeläbi erinevaid nn stressi vastusprogramme, nende hulgas raku-
tsükli peatumist ja apoptoosi. Kuna meie varasemas töös leidsime, et vastusena 
CD43 üleekspressioonile aktiveeritakse ARF/p53-rada, siis oletasime nega-
tiivset tagasisidet CD43, kui potentsiaalse kasvu soodustava faktori, ja p53 
vahel, mis võiks omada tähtsust kasvajatekke ärahoidmisel. 

Nendest andmetest ja spekulatsioonidest tulenevalt vaadati käesolevas uuri-
mistöös, kuidas mõjutab CD43 rakkude jagunemist sõltuvalt ARF/p53 kon-
tekstist ning kas CD43 mõju rakkude jagunemisele võiks olla seotud onko-
geense β-kateniini-rajaga. Töö tulemused näitavad, et CD43 koostöös β-kate-
niiniga soodustab rakkude ellujäämist ja kasvu, mis indutseerib ARF/p53-
sõltuva apoptoosiraja, kui peamist mehhanismi kasvaja tekke takistamisel. 
Rakkudes, kus ARF/p53 rada on rikutud, võib CD43 kõrgendatud ekspressioon 
läbi β-kateniini signaaliraja viia rakkude kontrollimatu paljunemiseni, mis on 
aluseks kasvaja moodustumisele. Leidsime, et p53 on võimeline spetsiifiliselt 
vähendama CD43 valgu ja mRNA taset rakus. Eeldatavalt aktiveerib p53 
kolmandate geenide ekspressiooni, mis CD43 ekspressiooni valgu tasemel regu-
leerivad, kuna eksogeense CD43 valgu taseme alandamiseks oli vajalik p53 
transaktivatsioonivõime. CD43 mRNA tase alaneb p53-sõltuvalt tänu trans-
kriptsiooni vähenemisele CD43 geenilt. p53 takistab transkriptsiooni CD43 
geenilt kutsudes esile promootori läheduses olevate histoonide atsetüleerituse 
vähenemise. Võib arvata, et p53 mõjutab endogeense CD43 ekspressiooni nii 
transkriptsiooni reguleerimise kui ka valgu tasemel. Kokkuvõttes näitavad töö 
tulemused uusimaid aspekte seoses CD43 võimega rakukasvu soodustada ning 
seeläbi kasvajat tekitada ning varem kirjeldamata tagasisidet CD43 ja p53 poolt 
vahendatud signaaliradade vahel, mis võiks olla olulise tähtsusega kasvajate 
tekke vältimisel. 
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