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Option Pricing Using Stochastic Volatility Models
Master’s Thesis

Joseph Haske

Abstract. The purpose of this thesis is to explore stochastic volatility models to price

American and European options. The two methods used are both based on a quadrinomial

tree, but the first uses an Ornstein-Uhlenbeck process and the Monte Carlo method with

a quadrinomial recombining tree and the second uses the Heston model and a tree-based

approach that combines a grid and bilinear interpolation to estimate the option price. The

thesis is split into four chapters. In the first chapter, it gives an overview of options, option

pricing models, and numerical methods. The second chapter discusses the quadrinomial

recombining tree, and the third presents the tree-based approach that uses a grid and

bilinear interpolation. Finally the fourth, presents the results of both methods and then

compares their performance and flexibility.

CERCS research specialization: P160 Statistics, operations research, programming,

financial and actuarial mathematics.

Keywords: Options, option pricing, stochastic volatility models, recombining tree meth-

ods.
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Optsioonide hindamine stohhastilise volatiilsuse mudelite korral
Magistritöö

Joseph Haske

Lühikokkuvõte. Selle lõputöö eesmärk on uurida Euroopa ja Ameerika optsioonide hin-

damist stohhastilise volatiilsuse korral. Töös vaadeldakse kahte kirjanduses välja pakutud

meetodit optsioonide hindamiseks, kui volatiilsust kirjeldatakse Ornstein-Uhlenbecki ja

või selle erijuhu Hestoni mudeliga. Mõlemad meetodid kasutavad rekombineerivat nelja

haruga alusvara hinnapuud, kuid esimene meetod kasutab täiendavalt Monte Carlo mee-

todit ning teine meetod kasutab rekombineeruvuse tagamiseks bilineaarset interpolat-

siooni. Lõputöö on jagatud neljaks peatükiks. Esimeses peatükis antakse ülevaade opt-

sioonidest, standardsest Black-Scholesi mudelist, numbrilistest meetoditest optsiooni hin-

damiseks ning ülevaade stohhastilise volatiilsuse mudelitest. Töö teises ja kolmandas

peatükis vaadeldakse ülal nimetatud kahte meetodit optsiooni hinna leidmiseks stohhastilise

volatiilsuse korral. Töö neljandas peatükis tuuakse numbriliste eksperimentide tulemused

nende meetodite kohta ning võrreldakse meetodite ajamahukust ning täpsust.

CERCS teaduseriala: P160 Statistika, operatsioonianalüüs, programmeerimine, finants-

ja kindlustusmatemaatika.

Märksõnad: Optsioonid, optsioonide hindamine, stohhastilised volatiilsuse mudelid, rekom-

bineerivad hinnapuud.
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Introducton

Option pricing is a cornerstone of financial engineering. From the time that the publica-

tions by Black and Scholes (1973) and Merton (1973) were published, the Black-Scholes

option pricing model was widely used until the 1987 stock market crash when it was

noticed that volatility isn’t constant across the range of options. Since then, many av-

enues have been explored to improve model accuracy. Key among these are non-constant

volatility models. Some models use a deterministic function on stock price to determine

the volatility, however those explored in this thesis use a stochastic process to model

volatility.

A common class of processes used to model stochastic volatility are mean-reverting pro-

cesses. The volatility process used in this thesis is the Ornstein-Uhlenbeck process. One

specific case of this process is the Heston model, which is also used in this thesis. The

main idea of mean-reverting models is that the stochastic volatility process has a mean

level that it may deviate from; but, after the deviation, it will always trend back toward

its mean.

Since many of the non-constant and stochastic volatility models don’t have closed form

solutions or only have such solutions under certain payoff conditions, numerical methods

of computation must be used. The three major classes in financial engineering are the

Monte Carlo method, finite difference methods, and binomial recombining trees. This

thesis uses elements of all three to estimate option prices using two different calculation

methods.

The first method uses a quadrinomial recombining tree, or a tree with four successors

to each node, and the Monte Carlo method. It was originally presented by Florescu and

Viens (2008). In many methods involving stochastic volatility, the distribution of both

the stock price and volatility are assumed to be normally distributed. However, in this

method, the underlying volatility distribution is estimated using a genetic algorithm and

historical data. It then goes on to use this distribution to construct a quadrinomial tree,

which is used to calculate the price of the option.

The second method, uses only estimated parameters to construct a grid of values for
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price and volatility. Bilinear interpolation is to estimate option values anywhere within

the grid. Similarly to tree methods, the volatility and price may only go up or down when

calculating the successors of each grid point to find its value. This method was originally

presented by Vellekoop and Nieuwenhuis (2009) and is based on the Heston model (Heston

1993).

The thesis starts in chapter one with an overview of options, option pricing models and

numerical methods. It covers the main differences between constant, non-constant, and

stochastic volatility models and the motivations and for each. The models presented

are the Black-Scholes model, the constant elasticity of variance model, mean-reverting

stochastic volatility models. It also discusses the Heston model which is a special case of

the mean-reverting model. Additionally, gives a brief overview of the numerical simulation

methods mentioned above, the Monte Carlo method, finite difference methods, and the

binomial model.

The next two chapters discuss the two methods outlined above. They present a detailed

discussion of the parts of each model. The discussion includes the equations that make

up the foundation of the model, and build a description of how each method works from

that foundation. Each of these methods have been implemented using the C programming

language which was chosen due to its speed, low overhead, and simplicity.

The results of the numerical experiments are laid out in chapter four. This chapter dis-

cusses the main results for each method using the parameters presented in the respective

papers. Then, it finishes by presenting a direct comparison of the two models and their

relative flexibility, accuracy, and performance.
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1 Background on Options and Their Pricing

The purpose of this chapter is to provide a background of options and how they are priced.

As such, the papers by Black and Scholes (1973), Merton (1973), and Heston (1993) are

all heavily referenced since they provide the framework that the methods explored in this

thesis are based on. Since they provide a collection of results from various sources, the

textbooks by Baxter and Rennie (1996), and Bingham and Kiesel (2004) are also used.

1.1 Option Definitions

An option is a financial instrument giving the owner the right, but not the obligation, to

buy or sell an asset on or before a specified date at a specified price. The specified date

is called the expiration or maturity date, and the specified price is the exercise or

striking price. An option with the right to buy an asset is called a call option, and

one with the right to sell an asset is called a put option. An option which can only be

exercised on the expiration date is called a European option, whereas an option which

can be exercised on or before the expiration date is called an American option.

1.2 Option Price

In order to give the payoff of an option, first, remember that the owner of the option

has the right, but not the obligation to buy or sell an asset. Therefore, consider a call

option with exercise price E on a stock with price ST = S(T ) at time T . Note that

throughout this paper ST and S(T ) will be used interchangeably to clarify or simplify

notation as needed. If ST < E the owner would not exercise the option and the option

expires worthless, but if ST > E then the owner exercises the option and immediately

sells the stock the revenue is ST − E. And therefore, the payoff of a call option C with

exercise price E at its expiration date T is given by

C(ST , E) = max {ST − E, 0} .
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Through the same logic the payoff of a put option P with exercise price E at its expiration

date T can be obtained, and is

P (ST , E) = max {E − ST , 0} .

To price options for which the payoff depends only on one underlying asset, it is enough

to consider a model with two securities. The first, the underlying asset with price S(t),

and the second, a risk-free investment, such as a bond, with price B(t). In this model,

it is assumed that short-selling and borrowing of money is not limited. Normally assets,

in particular stocks, are bought at one price S(0) and sold at a later time T for another,

hopefully higher, price S(T ). Short selling a stock is the process of selling stock that isn’t

owned, but rather borrowed, by the investor. In this regard, they own negative shares of

the stock for which they immediately receive S(0), and which, they must later buy back

at a later time T for price S(T ).

In this model, the other important assumption is that arbitrage strategies do not exist.

Arbitrage is, in essence, a way to make money without any risk. To present this idea in

concrete terms the example from Bingham and Kiesel (2004) can be used. Take a simple

market with one bond with price B(t), one stock with price S(t), and one European call

option with exercise price E = 1 and price C(t) on the stock. In this simple example,

there are two tradeable time moments, time t = 0 and the expiration time of the option

t = T . The current prices of the instruments are B(0) = 1, S(0) = 1, C(0) = 0.2.

At time T , the stock may move up or down by a known amount from S(0), meaning

there are two possible values of S(T ). However, the bond appreciates at the risk-free rate

r = 0.25 regardless of what the market does. Therefore, at time T the value of the bond

is B(T ) = 1.25). The value of the stock and its option if the stock goes up in price is

Su(T ) = 1.75, and Cu(T ) = 0.75. However, if the stock price goes down down the prices

are Sd(T ) = 0.75 and Cd(T ) = 0. Consider the portfolio (1.8,−3, 4). This ordered triple

denotes the purchase of 1.8 bonds, the short sale of 3 stocks, and the purchase of 4 options.

A profit of −1.8+3−4(0.2) = 0.4 is obtained upon creation of this portfolio. At time T , if

the price of the stock goes up the value of the portfolio is 1.8(1.25)−3(1.75)+4(0.75) = 0,

and likewise if the price goes down the value is 1.8(1.25)−3(0.75)+0 = 0. This represents

an arbitrage opportunity, because the profit of 0.4 was obtained at t = 0 with no future
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risk to the investor.

To price the option, consider an arbitrage-free market model where it is not possible to

conduct an arbitrage strategy. It is well known that the model is arbitrage free, if there

exists a risk-neutral martingale measure Q so that

EQ(St′|St) = Ste
r(t′−t) (1.1)

for all t′ > t where r is the continuously compounded annual risk-free interest rate. Under

this martingale measure, a risk neutral investor will be indifferent between buying the

stock or investing the same amount at the risk-free rate. Then, the price V of a European

call option at time t is given by VC = e−r(T−t)EQ(C(ST , E) | St) and for a European

put option VP = e−r(T−t)EQ(P (ST , E) | St). It is worth noting that the value of an

American option is always at least as high as than that of a European option, meaning

VCA
(t) ≥ VCE

(t) and VPA
(t) ≥ VPE

(t). This difference in price is due to the ability to

exercise the American option before its expiration.

Another useful tool in option pricing is the put-call parity condition. This can be obtained

by making two hypothetical portfolios. The first is made by buying a call option and selling

a put option at prices VC(St, t) and VP (St, t). The payoffs at time T with exercise price

E are C(ST , E) = max{ST − E, 0} and P (ST , E) = max{E − St, 0}, so the value of the

portfolio at time T is CT − PT = ST − E. The second portfolio is made by buying one

share now at price St which will be worth ST at time T and selling E zero-coupon bonds

for price Bt now which will each be worth BT = 1 at time T . The value of the second

portfolio is also ST − E at time T . Therefore, the discounted present values of the two

portfolios at time t must be the same under the theory of rational pricing, and

VC(St, t)− VP (St, t) = St − EBt. (1.2)

1.3 Stock Price Behavior

In order to model stock price, the standard equation

dSt = µStdt+ σStdWt (1.3)
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is used; and in it, µ is the drift, σ is the volatility of the rate of return, and dWt is a

change in Brownian motion. The stochastic process W is a standard Brownian motion

(Wiener process) on probability space (Ω,F ,P) if:

• W0 = 0 with probability 1

• The increments of W are normally distributed as Wt+u −Wt ∼ N(0, u)

• The non-intersecting increments are independently distributed. That is Wt+u −Wt

and Ws+v −Ws independent random variables if [t, t+ u] ∩ [s, s+ v] = ∅

• The Brownian motion Wt is continuous at time t with probability 1

Using Ito’s lemma it can be shown that for the log-price then

d(ln(St)) =

(
µ− σ2

2

)
dt+ σdWt

holds. And denoting Xt = ln(St) yields

dXt =

(
µ− σ2

2

)
dt+ σdWt.

1.4 Black-Scholes Market Model

The Black-Scholes model was presented by Black and Scholes in 1973 gives an arbitrage

free price for European options; and it has the following assumptions:

• Price of the underlying stock follows the equation defined in (1.3),

• The short-term interest rate r(t) is known.

• The rate of return of the stock price has a known variance σ(t).

• The stock does not pay dividends.

• The option is a European option.

• There are no transaction costs associated with buying or selling the stock or option.

• It is possible to borrow any fraction of the price of the security at the short-term

interest rate.

• There aren’t any penalties to short selling.

Given the above assumptions, Black and Scholes (1973) proved, using Ito’s lemma, that if
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the price of the underlying asset is S(t) then the option price V (S(t), t) at time t satisfies

the second order partial differential equation

1

2
σ2S(t)2

∂2V (S(t), t)

∂S(t)2
+ rS(t)

∂V (S(t), t)

∂S(t)
− rV (S(t), t) +

∂V (S(t), t)

∂t
= 0. (1.4)

This partial differential equation has infinitely many solutions. In order to get a unique

solution, use the fact that the option price at time T is equal to the payoff. For example,

in the case of a European call option VC(ST , T ) = max{ST −E, 0} equation (1.4) has the

solution

VC(St, t) = StN(d1)− Ee−r(T−t)N(d2), (1.5)

where

d1 =
ln(St/E) + (r + 1

2
σ2)(T − t)

σ
√
T − t

and

d2 =
ln(St/E) + (r − 1

2
σ2)(T − t)

σ
√
T − t

.

In this set of equations, N is the standard normal distribution cumulative distribution

function. Similarly to the call option, for a put option with payoff VP (ST , T ) = max(E −

ST , 0),

VP (St, t) = Ee−r(T−t)N(−d2)− StN(−d1)

may be obtained, where the equations for d1 and d2 are the same as in (1.5).

1.5 Numerical Estimation Methods

The Black-Scholes model provides a nice closed-form solution for European options with

known functions r(t) and σ(t). However, for American and exotic options, and for models

with stochastic volatility, numerical methods must be used to obtain the price of the

option. In this section three of the most well known methods for numerical estimation are

presented as well as the advantages and drawbacks of each.
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1.5.1 Monte Carlo Method

For option pricing, the Monte Carlo method simulates a large number of paths N through

the stochastic differential equation for price and uses an average of the results to obtain

the price of the option. To do this, start by computing the price of the underlying asset

at time T using

(ST )n = S0e
(r+σ2

2
)T+σWT

for runs n = 1, 2, ..., N . The value of the option at time T is equal to the payoff, so for a

call option (VC(ST , T ))n = max{(ST )n −E, 0} for n = 1, 2, ..., N . This gives the estimate

for the risk-neutral expectation of

EQ(V (ST , T )) =
1

N

N∑
n=1

(VC((ST )n, T ))n.

Discounting this price to time t = 0, gives the price of the option,

V (S0, 0) = e−rTEQ(V (ST , T )).

The size of N is the main factor in determining the accuracy of this method. The Monte

Carlo method’s largest drawback is that it can be very computationally expensive for

processes which converge slowly. However, the method is very flexible and works well for

problems in high dimensions. (Glasserman, 2003).

1.5.2 Finite Difference Methods

The finite difference methods are based around the fact that

∂v(x, t)

∂x
= lim

∆x→0

v(x+∆x, t)− v(x, t)

∆x

and
∂2v(x, t)

∂x2
= lim

∆x→0

v(x+∆x, t)− 2v(x, t) + v(x−∆x, t)

∆x2
.

Using these formulas, alongside a set of initial boundary conditions, allows the estimation

v(x, t) within a range of values in the form of a grid. To get values between grid-points,
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interpolation is used. The choice of accurate boundary conditions and values, and small

enough values of ∆x and ∆t are required to obtain accurate estimates. Unlike with the

Monte Carlo method, determining the error is not straightforward and can only be esti-

mated. However, this type of method works for a range of situations and with appropriate

boundary conditions can be very accurate. (Thomas, 1995).

1.5.3 Binomial Model

The binomial model is a method of approximating the stochastic process of the stock

price by allowing it to move in two directions, up or down. In order to start take the time

period which starts at time t = 0 and ends at time t = T . Split that period up into M

pieces such that ∆t = T
M

. And now let tm = m∆t for m = 0, ...,M . At each tm, the asset

price Sm = S(tm) may move up by a factor of u or down by a factor of d. Take

Sm+1 =

uSm with probability q

dSm with probability 1− q

(1.6)

to be the formula for the price at Sm+1 given Sm. The model is arbitrage free if the risk-

neutral probability measure Q exists such that the return of the risky asset is the same

as the return of a risk-less asset at risk-free interest rate r. So,

EQ

[
Sm+1 − Sm

Sm

∣∣∣∣ Sm

]
= er∆t. (1.7)

Since EQ

[
Sm+1−Sm

Sm

∣∣ Sm

]
=

EQ[Sm+1 | Sm]−Sm

Sm
and

EQ [Sm+1 | Sm] = (qu+ (1− q)d)Sm, (1.8)

it follows that

qu+ (1− q)d = er∆t. (1.9)

From this q may be written as

q =
er∆t − d

u− d
.
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In order to guarantee that the variance of the rate of the return of the binomial model

corresponds to the actual, historical, rate of return of the risky asset,

V arQ

[
Sm+1 − Sm

Sm

∣∣∣∣ Sm

]
= σ2∆t+O(∆t) (1.10)

must hold. Here, O(∆t) means that as ∆t→ 0 then

O(∆t)

∆t
→ 0.

Using the property V ar(x) = Ex2 − (Ex)2 and equations (1.8) and (1.9) gives

V arQ

[
Sm+1 − Sm

Sm

∣∣∣∣ Sm

]
=

1

S2
m

V arQ [Sm+1 | Sm] (1.11)

and

V arQ [Sm+1 | Sm] = qu2S2
m + (1− q)d2S2

m − (quSm + (1− q)dSm)
2.

From these two equations and equation (1.10),

qu2 + (1− q)d2 = e2r∆t + σ2∆t+O(∆t) (1.12)

is obtained for determining u and d. Since there is only one equation with two unknowns,

u and d are not uniquely determined. However, one possibility is to take d = 1/u. Using

this additional condition it is possible to show that equation (1.12) is satisfied by

u = eσ
√
∆t.

This model makes it possible to find the value of the option with expiration T at time

t = 0. At time T , the price has M + 1 different values SM,j = S0u
jdM−j, j = 0, 1, ...,M .

Since the price at time T is equal to the payoff,

V (SM,j, tM) = P (SM,j, tM)

may be written. Now, the option price may be computed recursively for times tM−1, tM−2, ...t0,

and

V (Sm,j, tm) = e−r∆t (qV (Sm+1,j+1, tm+1) + (1− q)V (Sm+1,j, tm+1)) (1.13)
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Figure 1.1: The Implied Volatility for IBM Call Options Expiring 17Jun2022 on
16May2022 Courtesy of Thinkorswim® Desktop

holds in the case of European options. The price of the option at time t = 0 is V (0) =

V (S0, 0).

In the case of American options, for the same recursive time steps find W (Sm,j, tm) =

e−r∆t (qV (Sm+1,j+1, tm+1) + (1− q)V (Sm+1,j, tm+1)) for each node which corresponds to

holding this option until tm+1 as in equation (1.13). However, for American options, the

ability to exercise early must also be checked and therefore,

V (Sm,j, tm) = max{W (Sm,j, tm), P (Sm,j, tm)}.

And again, the price of the option at time t = 0 is V (0) = V (S0, 0).

1.6 Non-Constant Volatility and the Volatility Smile

The volatility smile is characterized by a skew in the implied volatility of options across a

range of strikes and is pictured in figure 1.1. The future volatility is not a known value and

therefore must be estimated. The Black-Scholes formula may be inverted using numerical

methods to calculate implied volatility which is often denoted as σimp, and so, the implied

volatility is the estimate of future volatility implied by current option prices. The book,

The Volatility Smile, by Derman and Miller (2016) provides an excellent reference to this

concept, and it is the main reference for this section. Up until this skew was noticed, the

16



Black-Scholes model provided a great way to value options as it provides an arbitrage

free method to find an option’s value with a closed form solution. Prior to the 1987 stock

market crash, the implied volatility of the market agreed. However, after the crash, it was

noticed that a U-shape was forming in the implied volatility graph, the volatility smile.

This was because the market in 1987 saw the first intra-day drop of >20% in market prices

since 1929. Meaning, it was the first major drop in the stock market since Black, Scholes,

and Merton published their papers in 1973, and so, this was the first test of their models

under dire market conditions. This crash showed that the constant volatility assumption

of the Black-Scholes model was insufficient as market volatility is asymmetric, that is

large downward swings are much more likely than upward ones. From this, firms realized

that low-strike puts should cost more than high-strike calls due to their higher probability.

This new insight was reflected in the formation of the volatility smile. There are several

ways to attempt to model this behavior, one is using heuristics and the experience of the

trader. This is the least quantitative of the methods. The next is to attempt to model

the changes to the implied volatility surface, rather than the underlying asset. However,

the method focused on in this thesis is to find a more complicated model which contains

more than a geometric Brownian motion to generate the price path of the underlying. One

class of models of this type are known as local volatility models. One that is well known

and studied is the constant elasticity of variance (CEV) model. These models consider

volatility to be a deterministic function on stock price, and retain much of the simplicity

of the Black-Scholes model. The CEV model will be discussed in the next section. The

next class of models are stochastic volatility models, the basis of this thesis. These model

volatility as a separate stochastic process from price, although the movement of the two

may be correlated. While there are other classes of models, such as jump-diffusion models,

they are left out for brevity. The main idea behind improved model accuracy is not to

determine whether or not the market price for high liquidity American or European style

options is correct and attempting to arbitrage against them, but rather for determining

the price of exotic options with low liquidity. Unlike high liquidity standard options these

lower liquidity options may not have a set market price, so it’s crucial for firms to be able to

accurately price them. Another need for models which better capture market dynamics is

to improve the accuracy of hedging. Hedging is the process of taking offsetting positions

to reduce the market risk of the main position, in this case selling or purchasing the
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underlying stock to reduce the market risk of the option position.

1.7 The Constant Elasticity of Variance Model

For non-constant volatility, a slight modification to equation (1.3) must be made to obtain

dSt = µStdt+ σ(St, t)StdWt. (1.14)

An example of such an equation is the CEV model was proposed by Cox in 1975 and

further explored by Beckers (1980). The model has σ(St, t) = σSβ/2−1 giving

dSt = µStdt+ σS
β/2
t dWt. (1.15)

The name comes from the fact that the elasticity of the volatility of the price ϵ = dσ2/σ2

dS/S

is constant and proportional to the elasticity parameter of the volatility β.

1.8 Stochastic Volatility Models

While non-constant volatility models do a good job of capturing the volatility smile, they

miss out on the fact that stock price tends to be bursty. That is, it has periods of a rela-

tively constant volatility followed by periods of higher or lower volatility. While stochastic

volatility models have more parameters to estimate than a non-constant volatility model,

the added parameters allow them to capture added complexity of this behavior.

1.9 Mean-Reverting Stochastic Volatility Models

For mean-reverting stochastic volatility models, the paper by Fouque, Papanicolaou, and

Sircar (2000) is used. The main features of this class of stochastic model are that volatility

is positive and mean-reverting, and volatility shocks are negatively correlated with asset

price shocks. For this class of models a mean-reverting Ornstein-Uhlenbeck (OU) process
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is used to model stock prices, and is given by

dSt = µStdt+ σ(Yt)StdWt,

dYt = α(ν − Yt)dt+ ψ(Yt)dẐt,

Ẑt := ρWt +
√

1− ρ2Zt.

The process Yt has several parameters, ν is the mean-level of Yt, α is the rate of mean-

reversion of this process, the function ψ(Yt) is the volatility of Yt, and ρ is the correlation

between the price and volatility shocks. The functions σ(Yt) and ψ(Yt) may be chosen in

a way that suits the specific problem. Additionally, it is common to let ψ(Yt) = β
√
Yt.

1.10 Heston Model

One specific type of mean-reverting stochastic volatility model explored in this thesis is

the Heston model. This volatility process is a special case of the volatility of the OU

process, and is given by
dSt = µStdt+

√
YtStdWt,

dYt = α (ν − Yt) dt+ β
√
YtdZt,

(1.16)

where the equivalents of the OU process are σ(Yt) =
√
Yt, and ψ(Yt) = β

√
Yt. In this

model the Brownian motions W and Z may be correlated by the correlation coefficient ρ.
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2 Quadrinomial Recombining Tree

This chapter is based on the work of Florescu and Viens (2008). They considered a mean-

reverting stochastic volatility model based on the OU process

dSt = µStdt+ σ(Yt)StdWt,

dYt = α(ν − Yt)dt+ ψ(Yt)dZt

(2.1)

to model price and volatility, and using the parameters they estimated. In this particular

case, the Brownian motions W and Z are uncorrelated. For the log-price Xt = ln(St),

dXt =

(
µ− σ2(Yt)

2

)
dt+ σ(Yt)dWt (2.2)

holds. The following algorithm is used to model stochastic volatility and estimate the

volatility distribution of the actual volatility process given a set of historical observations.

This portion of the method happens in two steps. First, a mutation step, where paths of

the model are simulated the objective, or market, probability measure P and discretized

versions of equations (2.1) and (2.2). And second, from those simulated paths, it assigns

probabilities of occurring to each of the paths using their relative closeness to the realized

historical price.

Using the output of the density function, it then samples values of Y to use in a quadri-

nomial recombining tree to model the price process. At each time t, four successors to the

current price of the stock are calculated, from each of these four successors, and so on.

Each of these nodes is assigned a probability and so at the end, expected present value

can be calculated. The tree is recombining by construction in order to limit the total

number of nodes and calculations. The Monte Carlo method calculates the price of the

option using N quadrinomial trees.

2.1 Estimating the Filtered Stochastic Volatility Distribution

For this section, it is assumed that the coefficients µ, ν, and α and the functions σ(y)

and ψ(y) are already known or have been estimated. Additionally, the functions σ(y) and
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ψ(y) must twice differentiable with bounded derivatives of all orders up to two. Here,

the formulas are taken from those in the paper by Florescu and Viens (2008), and so,

σ(y) = e−|y| and ψ(y) = β.

To estimate the density function of the stochastic volatility process, assume the historical

log-prices xt1 , ..., xtK are known. From these, the probabilities are estimated as

pk (dy) = P [Ytk ∈ dy|Xt1 = xt1 , ..., Xtk = xtk ]

for k = 1, 2, ..., K where P is the objective probability measure. This is a filtered stochastic

volatility process. The distribution estimation is done by a genetic-type algorithm with

a two-step iteration: a mutation step and a selection step. For the historical data, let

h = tk+1 − tk.

Step 1: Let Xt0 = x0 and Yt0 = ν, where x0 is the initial historical stock price at t0

and ν is the long run average variance of the volatility process Yt. Let n be the number

of paths being simulated and M be the number of steps simulated in each path between

any two times t and t+ h.

Mutation Step: Each mutation step generates an (X ′
t1
, Y ′

t1
) pair performed by iterating

through discretizations of the OU process in (2.1) and (2.2),

dXt =

(
r − σ2(Yt)

2

)
dt+ σ(Yt)dWt,

dYt = α(ν − Yt)dt+ ψ(Yt)dZt.

(2.3)

The discretized functions are obtained using the Euler Method, which is a common and

straightforward way to do this. Taking the general equation

dXt = a(Xt)dt+ b(Xt)dWt,

the Euler Method’s time-discretized approximation with M steps between times t and

t+ h is

Xi+1 = Xi + a(Xi)
h

M
+ b(Xi)

√
h

M
Ui+1
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where a and b are functions of Xm and i = 0, ...,M − 1 and Ui+1 ∼ N(0, 1). The error for

this method of the drift term is of the order O( h
M
) and the error of the diffusion term is of

the order O(
√

h
M
) (Glasserman, 2003). Starting with X ′

t0,0
= x0 and Y ′

t0,0
= ν, applying

the Euler method to equation (2.3) yields

X ′
t0,i+1 = X ′

t0,i
+

h

M

(
µ−

σ2(Y ′
t0,i

)

2

)
+

√
h

M
σ(Y ′

t0,i
)Ui,

Y ′
t0,i+1 = Y ′

t0,i
+

h

M
α(ν − Y ′

t0,i
) +

√
h

M
ψ(Y ′

t0,i
)U ′

i .

(2.4)

Here, U and U ′ are iid standard normally distributed random numbers. Let X ′
t1
:= X ′

t0,M

and Y ′
t1

:= Y ′
t0,M

. The mutation step is performed n times to obtain, {
(
X ′j

t1 , Y
′j
t1

)
}, j =

1, ..., n.

Selection Step: Start by letting ϕn be a function in L1 (R). Here, the same formula as

given by Florescu and Viens (2008) is used,

ϕn(x) =


3
√
n(1− |x 3

√
n|) if − 1

3√n
< x < 1

3√n

0 otherwise.

Each selection step creates a discrete probability measure for the set of Y ′j
t1 , j ∈ {1, ..., n}

by using the following procedure. Let C =
∑n

j=1 ϕn(X
′j
t1 − x1). If C > 0 then

Φn
1 (Y ) =


1
C

∑n
j=1 ϕn(X

′j
t1 − x1) if Y = Y ′j

t1

0 otherwise.

(2.5)

The value of C is chosen such that Φn
1 is a discrete probability measure for Y ′

t1
giving

an estimation of the distribution of Yt1 from which values {Y j
t1}j=1,n can be sampled. If

C = 0, then none of the values of X ′j
t1 are sufficiently close to x1 to occur with a positive

probability. Therefore, the value of n will need to be reduced to increase the distance

between X ′j
t1 and x1 that gives a positive probability.

Steps 2 to K: For k = 2, 3, ..., K and starting with the distribution Φn
k−1 generated at

the end of the last selection step, generate n values of Y j
tk−1

, j = 1, ..., n. Using the ordered

pair
(
Xtk−1

, Y j
tk−1

)
apply formula (2.4) to obtain the Euler method estimation of n pairs,
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{
(
X ′j

tk
, Y ′j

tk

)
}j=1,...,n. Using these pairs, apply the selection step to obtain the estimated

probability distribution for Ytk ,

Φn
k(Y ) =


1
C

∑n
j=1 ϕn(X

′j
tk
− xk) if Y = Y ′j

tk

0 otherwise,

(2.6)

and again, C =
∑n

j=1 ϕn

(
X ′j

ti − xi
)
. As in k = 1, Φn

k is a probability measure for Y ′
tk

giving

an estimation of the distribution of Ytk from which values {Y j
tk
}j=1,n can be sampled.

Output: The output of the algorithm is the last estimated discrete probability distribu-

tion Φn
K . This probability distribution is the estimate of pk(dy), which is the distribution

of the process Yt given the historical log-prices xt1 , ..., xtK . In order to create the quadri-

nomial tree, only Φn
K is used. So, given equation (2.6),

p̂j =
1

C
ϕn(X

′j
tK

− xtK ) (2.7)

and

Ŷj = Y ′j
tK

(2.8)

are defined.

2.2 Option Valuation With a Quadrinomial Tree

To create the quadrinomial tree, first split the time interval [0, T ] into N subintervals,

such that ∆t = T
N

. Then, using the final filtered stochastic volatility distribution Φn
K with

the properties defined in (2.7) and (2.8) from the output of Section 2.1, for each time

period i∆t, sample values of Yi, i = 1, ..., N . Thus, in each time step i∆t the value Yi is

used to construct the successors of each node. Begin with price x = ln(S0) as the base

node of the tree. For this section, it is assumed that appropriate value of the short-term

interest rate r and the desired exercise price of the option E have been chosen. Starting

with x, find its four successors x1, x2, x3, and x4 as depicted in figure 2.1.

In order to construct the successors, consider a grid of points of the form lσ(Yi)
√
∆t were

l is an integer value. This means that the value of the current node x will fall somewhere

23



Figure 2.1: The successors of each point an their risk-neutral probabilities

in this grid. Since the values of l limits the number of values the successors may take,

this will also make the tree recombining. In order to guarantee that x falls between the

successors x2 and x3, let j be the smallest value which makes x2 > x, that is

j = inf{l ∈ N | lσ(Yi)
√
∆t ≥ x}.

The value of j may be calculated using the inequality x ≤ jσ(Yi)
√
∆t. Since σ(Yi) and

√
∆t are known, the smallest j ∈ N that satisfies this inequality is found using the ceiling

function,

j =

⌈
x

σ(Yi)
√
∆t

⌉
.

Now, let δ be the distance from the node x and its closest successor on the grid and b be

its standardized value. Therefore, if jσ(Yi)
√
∆t is closer to x then δ = x−jσ(Yi)

√
∆t. But

if (j− 1)σ(Yi)
√
∆t is closer, then δ = x− (j− 1)σ(Yi)

√
∆t. Now, let b = δ/

(
σ (Yi)

√
∆t

)
.

From here, the algorithm may take one of two paths, the first being if x is closer to

jσ(Yi)
√
∆t and the second if x is closer to (j − 1)σ(Yi)

√
∆t.
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If x2 is closer: That is x2 − x ≤ x− x3, then we define δ = x− jσ (Yi)
√
∆t. In order

to solve for the range of values of δ, start with the maximum. By definition x ≤ x2 and

the definition δ, it is clear that δ ≤ 0. For the minimum value start with the inequality

x2 − x ≤ x− x3 and expand the terms x2 and x3 to get

x ≥ jσ (Yi)∆t+ (j − 1)σ (Yi)∆t

2
.

With a small amount of algebra

x ≥ jσ (Yi)∆t−
σ (Yi)∆t

2

may be reached. Now using the definition of δ,

δ ≥ −σ (Yi)∆t
2

is obtained. So, δ ∈
[
−σ(Yi)∆t

2
, 0
]
. Substituting the endpoint values of δ into the equation

for b directly yields b ∈
[
−1

2
, 0
]
. The formulation of the tree given in figure 2.1 provides

a good starting point, but it doesn’t account for the drift of the process. So, in order to

obtain the convergence of the mean of the increment to the drift of the process Xt, add

the drift quantity to each of the successors giving the set of equations



x1 = (j + 1)σ(Yi)
√
∆t+

(
r − σ2(Yi)

2

)
∆t

x2 = jσ(Yi)
√
∆t+

(
r − σ2(Yi)

2

)
∆t

x3 = (j − 1)σ(Yi)
√
∆t+

(
r − σ2(Yi)

2

)
∆t

x4 = (j − 2)σ(Yi)
√
∆t+

(
r − σ2(Yi)

2

)
∆t.

(2.9)

Now that values have been obtained for each of the successors x1, x2, x3, and x4, their

risk-neutral probabilities q1, q2, q3, and q4 must be calculated. These probabilities have

the properties

0 ≤ qi ≤ 1, i = 1, 2, 3, 4 (2.10)

and
4∑

i=1

qi = 1. (2.11)
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Notice that δ = x− jσ(Yi)
√
∆t and therefore jσ(Yi)

√
∆t = x− δ so the set of equations

in (2.9) can be rewritten as



x1 − x = σ(Yi)
√
∆t− δ +

(
r − σ2(Yi)

2

)
∆t

x2 − x = −δ +
(
r − σ2(Yi)

2

)
∆t

x3 − x = −σ(Yi)
√
∆t− δ +

(
r − σ2(Yi)

2

)
∆t

x4 − x = −2σ(Yi)
√
∆t− δ +

(
r − σ2(Yi)

2

)
∆t.

According to (2.3), define ∆x = xi − x, i = 1, 2, 3, 4 with expected value

EQ [∆x|Yi] =
(
r − σ2(Yi)

2

)
∆t. (2.12)

From this, and given

∆x′ = ∆x−
(
r − σ2(Yi)

2

)
∆t,

it follows that EQ [∆x′ | Yi] = 0. Therefore terms of the form

(
r − σ2(Yi)

2

)
∆t,

can be ignored. Now, expanding the expected value of ∆x′ to include the probabilities q1,

q2, q3, and q4 yields

(
σ(Yi)

√
∆t− δ

)
q1+(−δ)q2+

(
−σ(Yi)

√
∆t− δ

)
q3+

(
−2σ(Yi)

√
∆t− δ

)
q4 = 0. (2.13)

This simplifies to

σ(Yi)
√
∆t(q1 − q3 − 2q4)− δ(q1 + q2 + q3 + q4) = 0.

Which, by utilizing equation (2.11), the above may be rewritten as

σ(Yi)
√
∆t (q1 − q3 − 2q4)− δ = 0, (2.14)
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or, with the q terms isolated on the left hand side

q1 − q3 − 2q4 =
δ

σ(Yi)
√
∆t
. (2.15)

Next, switching focus to the variance of ∆x and ∆x′,

V arQ [∆x | Yi] = V arQ [∆x′ | Yi] = σ2(Yi)∆t.

Utilizing the property V ar(X) = EX2 − (EX)2,

(
σ(Yi)

√
∆t− δ

)2

q1 + (−δ)2q2 +
(
−σ(Yi)

√
∆t− δ

)2

q3 +
(
−2σ(Yi)

√
∆t− δ

)2

q4

−E [∆x′|Yi]2 = σ2(Yi)∆t

(2.16)

is obtained. Substituting for E [∆x′ | Yi] using (2.14) yields

σ2(Yi)∆t = (σ2(Yi)∆t)(q1 + q3 + 4q4) + (2δσ(Yi)
√
∆t)(−q1 + q3 + 2q4)+

δ2(q1 + q3 + q4) + δ2q2 −
[
σ(Yi)

√
∆t(q1 − q3 − 2q4)− δ

]2
.

By expanding the last term of the above equation and utilizing (2.11), it becomes:

σ2(Yi)∆t = (σ2(Yi)∆t)(q1 + q3 + 4q4) + (2δσ(Yi)
√
∆t)(−q1 + q3 + 2q4)+

δ2 −
[
σ2(Yi)∆t(q1 − q3 − 2q4)

2 + (2δσ(Yi)
√
∆t)(−q1 + q3 + 2q4) + δ2

]
.

Canceling like terms yields

σ2(Yi)∆t(q1 + q3 + 4q4)− σ2(Yi)∆t(q1 − q3 − 2q4)
2 = σ2(Yi)∆t.

Continue by dividing by σ2(Yi)∆t to obtain

(q1 + q3 + 4q4)− (q1 − q3 − 2q4)
2 = 1.

Substituting (2.15) in for the second term on the left hand side, this simplifies to

q1 + q2 + 4q3 = 1 +
δ2

σ2(Yi)∆t
. (2.17)
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Taking into consideration equations (2.10), (2.11), (2.15), and (2.17) the following system

of equations for determining the risk-neutral probabilities appears as
q1 + q2 + q3 + q4 = 1

q1 − q3 − 2q4 =
δ

σ(Yi)
√
∆t

= b

q1 + q3 + 4q4 = 1 + δ2

σ2(Yi)∆t
= 1 + b2.

This system of equations has three equations and four unknowns. Therefore, it has in-

finitely many solutions and the risk-neutral probabilities are not unique. Let q := q4 be a

fixed value and solve for q1, q2, and q3 with respect to q and b. This gives:
q1 + q2 + q3 = 1− q

q1 − q3 = b+ 2q

q1 + q3 = 1 + b2 − 4q.

Adding together the second and third equations gives

q1 =
1

2
(1 + b+ b2)− q,

and by subtracting them

q3 =
1

2
(1− b+ b2)− 3q

is obtained. Rearranging the first equation in the system gives

q2 = 1− q − q1 − q3,

into which the values of q1 and q3 may be substituted which yields

q2 = 1− q −
(
1

2
(1 + b+ b2)− q

)
−

(
1

2
(1− b+ b2)− 3q

)
.

By simplifying this expression,

q2 = 3q − b2
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is obtained. Taking together the results of q1, q2, and q3 gives:
q1 =

1
2
(1 + b+ b2)− q

q2 = 3q − b2

q3 =
1
2
(1− b+ b2)− 3q.

(2.18)

All that remains is to determine the valid values of q which satisfy (2.10), (2.11), and

(2.18). It is known that q, q1, q2, and q3 must be between 0 and 1, so for the first equation

of (2.18), begin with the inequality

0 ≤ 1

2
(1 + b+ b2)− q ≤ 1.

Next, isolate q to obtain

−1

2
(1− b− b2) ≤ q ≤ 1

2
(1 + b+ b2).

To find the maximum and minimum over the range b ∈
[
−1

2
, 0
]
, start with dq

db
= 1

2
+ b and

d2q
db2

= 1. Therefore, both functions have an absolute minimum at b = −1
2
. For b > −1

2
,

dq
db
> 0, therefore the function has a strictly positive slope and is strictly increasing over

the range of b ∈
(
−1

2
, 0
]
. Therefore, the maximum over this range will be at b = 0 and

the maximum and minimum points in the range may be taken from the endpoints. So,

given b ∈
[
−1

2
, 0
]
, with b = 0 gives −1

2
≤ q ≤ 1

2
and for b = −1

2
, −5

8
≤ q ≤ 3

8
. Taking the

most limiting conditions from these inequalities and (2.10) gives 0 ≤ q ≤ 3
8
. Now, taking

the second equation of (2.18) the inequality,

0 ≤ 3q − b2 ≤ 1

may be built. And, a quick simplification yields

b2

3
≤ q ≤ 1 + b2

3
.

Using similar reasoning as before, dq
db

= 2
3
b for both equations. From this it is easy to see

that the absolute minimum of this function occurs at b = 0. Using this minimum and dq
db

,

it follows that the function is strictly decreasing over the range of b ∈
[
−1

2
, 0
)
. Therefore
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over this range, the maximum occurs at b = −1
2
. Solving for b = 0 gives 0 ≤ q ≤ 1

3
,

and b = −1
2

yields 1
12

≤ q ≤ 5
12

. Taking these inequalities with the previously obtained

0 ≤ q ≤ 3
8

gives 1
12

≤ q ≤ 3
8
. Finally, take the third equation of (2.18) and it is clear that

0 ≤ 1

2
(1− b+ b2)− 3q ≤ 1.

With some algebra, this yields

1

6
(−1− b+ b2) ≤ q ≤ 1

6
(1− b+ b2).

From dq
db

= 1
3
b − 1

6
, the absolute minimum of the function is at b = 1

2
. Since dq

db
< 0 for

b ∈
[
−1

2
, 1
2

)
, it is clear that the function is strictly decreasing over the range b ∈

[
−1

2
, 0
]
,

and so, the maximum and minimum values occur at the endpoints, b = −1
2

and b = 0

respectively. Solving for b = 0 gives −1
6
≤ q ≤ 1

6
, and b = −1

2
gives − 1

24
≤ q ≤ 7

24
. From

these and 1
12

≤ q ≤ 3
8
, it’s easy to see that q ∈

[
1
12
, 1
6

]
.

If x3 is closer: That is x2 − x > x− x3, define δ = x− (j − 1)σ (Yi)
√
∆t. In order to

solve for the bounds of δ, start with similar logic as in the previous section, it is easy to

see that δ ≥ 0. For the maximum value start with the inequality x2 − x ≥ x− x3, isolate

x and expand the terms x2 and x3 to get

x ≤ [(j − 1) + 1]σ (Yi)∆t+ (j − 1)σ (Yi)∆t

2
.

Now, move x− (j − 1)σ(Yi)∆t to the left hand side of the equation and

x− (j − 1)σ (Yi)∆t ≤
σ (Yi)∆t

2

is obtained. Using the definition of δ, this may be rewritten as

δ ≤ σ (Yi)∆t

2
.

So, δ ∈
[
0, σ(Yi)∆t

2

]
. Substituting δ into the equation for b directly yields b ∈

[
0, 1

2

]
.

As before, in order to simplify the convergence of the mean of the increment to the drift

of the process Xt, add the drift quantity to each of the successors giving equation (2.9). In
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order to calculate the probabilities of the successors notice that δ = x− (j − 1)σ(Yi)
√
∆t

and therefore (j− 1)σ(Yi)
√
∆t = x− δ so the set of equations in (2.9) can be rewritten as



x1 − x = 2σ(Yi)
√
∆t− δ +

(
r − σ2(Yi)

2

)
∆t

x2 − x = σ(Yi)
√
∆t− δ +

(
r − σ2(Yi)

2

)
∆t

x3 − x = −δ +
(
r − σ2(Yi)

2

)
∆t

x4 − x = −σ(Yi)
√
∆t− δ +

(
r − σ2(Yi)

2

)
∆t.

(2.19)

Using equation (2.12), similarly to (2.13),

(
2σ(Yi)

√
∆t− δ

)
q1 + (σ(Yi)

√
∆t− δ)q2 + (−δ) q3 +

(
−σ(Yi)

√
∆t− δ

)
q4 = 0

may be written. This simplifies to

σ(Yi)
√
∆t(2q1 + q2 − q4)− δ(q1 + q2 + q3 + q4) = 0,

which, by the property q1 + q2 + q3 + q4 = 1 and with some rearrangement of terms, can

be written as

2q1 + q2 − q4 =
δ

σ(Yi)
√
∆t
. (2.20)

Now for variance similarly to (2.16), but using (2.19),

(
2σ(Yi)

√
∆t− δ

)2

q1 + (σ(Yi)
√
∆t− δ)2q2 + (−δ)2 q3 +

(
−σ(Yi)

√
∆t− δ

)2

q4

−E [∆x′|Yi]2 = σ2(Yi)∆t

is written. By substituting for and expanding the EQ [∆x′|Yi]2 term, this becomes

σ2(Yi)∆t = (σ2(Yi)∆t)(4q1 + q2 + q4)− (2δσ(Yi)
√
∆t)(2q1 + q2 − q4)+

δ2 −
[
σ2(Yi)∆t(2q1 + q2 − q4)

2 − (2δσ(Yi)
√
∆t)(2q1 + q2 − q4) + δ2

]
.

Performing the same cancellations as in the previous section yields

(4q1 + q2 + q4)− (2q1 + q2 − q4)
2 = 1.
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After some algebra and substituting in δ,

4q1 + q2 + q4 = 1 +
δ2

σ2(Yi)∆t
(2.21)

is reached. Taking the definition of b and equations (2.20) and (2.21) the following system

of equations appears as 
q1 + q2 + q3 + q4 = 1

2q1 + q2 − q4 =
δ

σ(Yi)
√
∆t

= b

4q1 + q2 + q4 = 1 + δ2

σ2(Yi)∆t
= 1 + b2.

There are four unknowns and three equations and therefore an infinite number of solutions

exist. Now denote q := q1 and solve for the other probabilities with respect to q and b,
q2 =

1
2
(1 + b+ b2)− 3q

q3 = 3q − b2

q4 =
1
2
(1− b+ b2)− q.

(2.22)

To determine the possible values of q, the same method as before is used. And as before,

an inspection of the first and second order derivatives will show that the functions are

strictly increasing or strictly decreasing for b ∈
[
0, 1

2

]
. So, the endpoints of b may be used

to determine the maximum and minimum values of q. For the first equation,

0 ≤ 1

2
(1 + b+ b2)− 3q ≤ 1

is obtained. A small amount of algebra yields

1

6
(−1 + b+ b2) ≤ q ≤ 1

6
(1 + b+ b2).

Given b ∈
[
0, 1

2

]
, with b = 0 gives −1

2
≤ q ≤ 1

2
and for b = 1

2
, −5

8
≤ p ≤ 3

8
. Now taking

the second equation of (2.22),

0 ≤ 3q − b2 ≤ 1
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is built. From this isolate q to obtain

b2

3
≤ q ≤ 1 + b2

3
.

Solving for b = 0 gives 0 ≤ q ≤ 1
3
, and b = 1

2
yields 1

12
≤ q ≤ 5

12
. Finally, take the third

equation of (2.22) and write

0 ≤ 1

2
(1− b+ b2)− q ≤ 1.

Using a similar process as earlier, this may be rewritten as

1

2
(−1− b+ b2) ≤ q ≤ 1

2
(1− b+ b2).

Solving for b = 0 gives −1
6
≤ q ≤ 1

6
, and b = 1

2
gives − 1

24
≤ q ≤ 7

24
. Once again, from

these six inequalities, it’s easy to see that q ∈
[

1
12
, 1
6

]
.

In order to calculate the price of an option, q is chosen such that q ∈
[

1
12
, 1
6

]
. For each

discrete time moment i = 0, 1, ...N such that ti = i∆t there are mi values of x and each

may be denoted xi,k for k = 1, 2, ...mi. Starting with time t0, m0 = 1 and x0,1 = x0 with

four successors belonging to the grid defined by jσ(Yi)
√
∆t at time t1, x1,1, x1,2, x1,3, and

x1,4. Each of which has four successors belonging to the grid defined by jσ(Yi)
√
∆t at

time t2, and so on. Since the four successors of each point xi,k are defined on a grid, they

may be shared between parent nodes and this property makes the tree recombining and

limits its growth rate. The probabilities of the successor nodes given the parent node are

given by (2.18) and (2.22). At time tN , value of the option is equal to the payoff of each

call option at xN,k is calculated,

P (xN,k, N) = max{exN,k − E, 0}.

From here, backwards induction is used for each time step i = N − 1, ..., 0 and the price

of the option at each node x is V (x, i) is given according to the values of its successors

V (xj, i+ 1) for j = 1, 2, 3, 4. For European options, V E(x, i) = e−r∆t
∑4

j=1 V (xj, i+ 1)qj.

However, for American options, the option to exercise early must also be checked, so,

V A(x, i) = max{e−r∆t
∑4

j=1 V (xj, i+1)qj,max{ex−E, 0}}. In the case of both European
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and American options the price of the option is given at time i = 0 by V E(x, 0) and

V A(x, 0) respectively.

The tree valuation is done M times, after which the results are averaged to obtain the

Monte-Carlo estimation of the value of the option. In order to show that the tree con-

structed by this section converges to the process for dXt in (2.3) with the values of Y

being sampled from the estimated probability distribution generated from section 2.1, the

following theorem was proved by Florescu and Viens (2008).

THEOREM 2.2.1. Consider the quadrinomial tree, with nodes indexed by the log values

of a stock, defined by the successors x1, x2, x3, and x4 of a value x as in (2.9), with

probabilities q1, q2, q3, and q4 given by the relations (2.18) (resp. (2.22)), with q = q4

(resp. q = q1) when x4 is furthest from the parent value x (resp. x1 is furthest). For any

fixed q ∈
[

1
12
, 1
6

]
, these probabilities define a martingale measure on the paths of the tree.

Furthermore, the Markov chain defined on the vertices of the tree under any such measure

on the tree, defined by the relations (2.18) and (2.22), converges in distribution to the

continuous process (2.3) as the time interval h = ∆t → 0 and the number of filtering

particles n→ ∞.
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3 Tree-Based Method Using the Heston Model

This chapter is based on the work of Vellekoop and Nieuwenhuis (2009). Starting with the

Heston model for a logarithmic stock price process Xt = ln(St) and a squared volatility

process Y under the risk-neutral probability measure Q, this method creates a tree-like

grid of possible values and then uses bilinear interpolation and backwards induction to

estimate the price of the option. The specific version of the Heston model used in this

chapter is

dXt = (r − 1

2
Yt)dt+

√
YtdWt,

dYt = α(ν − Yt)dt+ β
√
YtdZt

(3.1)

and allows for correlated Brownian motions Wt and Zt. The correlation coefficient in

this model is ρ. Due to the fact that ν is the long term mean of the volatility process

Y and σ =
√
Yt, unlike in the previous method, ν must be positive in order to have a

real solution. For each time moment, the method estimates the maximum and minimum

possible values or Xt and Yt, and then creates a grid of values. After the grid is created,

an expected value for each node is calculated in a method using themes from both finite

difference and tree methods. Using this method both the price of American and European

options can be found.

3.1 Grid Setup

In this section the main parameters of the grid used to calculate the option price are

calculated. Starting with the Heston model in (3.1), split the time period t = 0, ..., T into

m ∈ {N > 0} pieces so that ∆t = T
m

. Now, using the Euler method, define the discrete

time stochastic process

Xk+1 = Xk + (r − 1

2
Yk)∆t+ z1k+1

√
Y +
k ∆t,

Yk+1 = Yk + α(ν − Y +
k )∆t+ z2k+1β

√
Y +
k ∆t,

(3.2)
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where k represents the index of eachXk and Yk for k = 0, 1, 2, ...,m−1 and z1k, z2k ∈ {−1, 1}

are iid random variables distributed according to

Q(z1k = i, z2k = j) =
1

4
(1 + ijρ), i, j ∈ {−1, 1}. (3.3)

Here, Y +
k is the non-negative portion of Yk, or Y +

k = max{Yk, 0}. In an unconstrained

model, the number of calculations is 4m. So, in order to limit the number of calculations,

a grid is defined. Start by obtaining the maximum and minimum values of xk and yk at

each time k by taking
xmax
k = max{x | Q(Xk = x) > 0},

xmin
k = min{x | Q(Xk = x) > 0},

ymax
k = max{y | Q(Yk = y) > 0},

and

ymin
k = min{y | Q(Yk = y) > 0}.

Now, choose a number of points in the price and volatility directions at each time step to

be mx and my ∈ {N > 0}, then define

∆xk =
(xmax

k − xmin
k )

mx

and

∆yk =
(ymax

k − ymin
k )

my

.

Using the two previous sets of equations define a set of ordered pairs for x and y,

Ŝ = {(xmin
k + i∆xk, y

min
k + j∆yk) | i = 0, ...,mx, j = 0, ...,my}. (3.4)

In order to obtain option prices between grid points bilinear interpolation is needed. The

linear interpolation formula for a function f(x) is defined as

f(x) = c0f(x0) + c1f(x1),

where

c0 := 1− x− x0
x1 − x0
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and

c1 :=
x− x0
x1 − x0

.

From their definitions it is easy to see that restricting x0 ≤ x ≤ x1 that 0 ≤ ci ≤ 1, i ∈

{0, 1}. It is also clear that c0+c1 = 1. Now consider bilinear interpolation for the function

f(x, y). First, interpolation is done in the x-direction for y0,

f(x, y0) =

(
1− x− x0

x1 − x0

)
f(x0, y0) +

x− x0
x1 − x0

f(x1, y0),

and then for y1,

f(x, y1) =

(
1− x− x0

x1 − x0

)
f(x0, y1) +

x− x0
x1 − x0

f(x1, y1).

Next, using the same definitions for c0 and c1, interpolate these formulas in the y-direction,

f(x, y) =

(
1− y − y0

y1 − y0

)
[c0f(x0, y0) + c1f(x1, y0)] +

y − y0
y1 − y0

[c0f(x0, y1) + c1f(x1, y1)] .

Now, let ci,0 = (1− y−y0
y1−y0

)ci and ci,1 = y−y0
y1−y0

ci for i ∈ {0, 1}, and

f(x, y) = c0,0f(x0, y0) + c1,0f(x1, y0) + c0,1f(x0, y1) + c1,1f(x1, y1) (3.5)

is obtained. Given that 0 ≤ ci ≤ 1, i ∈ {0, 1} is the result of restricting x0 ≤ x ≤ x1,

placing the additional restriction of y0 ≤ y ≤ y1 guarantees that 0 ≤ ci,j ≤ 1, i, j ∈ {0, 1}.

Calculating the sum of ci,j for i, j ∈ {0, 1} is done by first writing

(
1− y − y0

y1 − y0

)(
1− x− x0

x1 − x0

)
+

(
1− y − y0

y1 − y0

)(
x− x0
x1 − x0

)
+

(
y − y0
y1 − y0

)(
1− x− x0

x1 − x0

)
+

(
y − y0
y1 − y0

)(
x− x0
x1 − x0

)
.

Next, factor out the terms containing y to obtain

(
1− y − y0

y1 − y0

)[(
1− x− x0

x1 − x0

)
+

(
x− x0
x1 − x0

)]
+

(
y − y0
y1 − y0

)[(
1− x− x0

x1 − x0

)
+

(
x− x0
x1 − x0

)]
.
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From before, it is known that c0 + c1 = 1, so

(
1− y − y0

y1 − y0

)
+

(
y − y0
y1 − y0

)

may be written, and is clearly equal to 1. Therefore c0,0 + c1,0 + c0,1 + c1,1 = 1, allowing

these to be considered as probabilities.

3.2 Grid Calculation

Now that the mathematical background and grid setup has been given, the grid used for

calculating the discounted expected value of the option needs to be set up. First, the

number of time steps m ∈ {N > 0} and the mesh sizes for price and volatility are chosen

such that mx,my ∈ {N > 0} are chosen. Given starting values for volatility squared

Y 2
0 = σ2 and log-price of the stock X0 = ln(S0) iterate over equation (3.2) so that for

each discrete time k the maximum and minimum values of Xk+1 and Yk+1 are denoted

xmax
k+1 , xmin

k+1, ymax
k+1 , and ymin

k+1 . In order to define the grid of prices and volatilities Ŝk, first

the values of ∆xk and ∆yk are calculated as

∆xk =
xmax
k − xmin

k

mx

and

∆yk =
ymax
k − ymin

k

my

.

Using these values, the grid

Ŝk = {(xmin
k + i∆xk, y

min
k + j∆yk) | i = 0, ...,mx, j = 0, ...,my}

may be built.

3.3 Calculate Option Value

Calculate the option values during the final time step for either a call or put option with

either

VC(ST , T ) = max{ST − E, 0}
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Figure 3.1: The successors of a point within the grid

or

VP (ST , T ) = max{E − ST , 0}.

Now work backwards through the grid starting at k = m − 1. From each node in Ŝk at

time step k calculate the four successors for each grid point, Ŝk(x, y). This is done using

equation (3.2), and the four successors are denoted (xz1k+1, y
z2
k+1) for z1, z2 ∈ {−1, 1}.

Note that here the superscripts z1 and z2 representing the values of z1k+1 and z2k+1 used

in equation (3.2).

For each of the four successors, (xz1k+1, y
z2
k+1), find the four grid points in Ŝk+1 which

surround it. For example, for (x−1
k+1, y

−1
k+1), the point x0 is the largest point xSk+1, where

the superscript S represents that the point is aligned with the grid, which is smaller than

x1k+1, which may be written as

x0 = max{x−1
k+1 ≥ xSk+1}.

Similarly,

y0 = max{y−1
k+1 ≥ ySk+1}.
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The points above (x−1
k+1, y

−1
k+1) are x1 and y1 and are written similarly. That is,

x1 = min{x−1
k+1 ≤ xSk+1}

and

y1 = min{y−1
k+1 ≤ ySk+1}.

And so, each of the four successors (xz1t+1, y
z2
t+1) has four points around it, Ŝt+1(x0, y0),

Ŝt+1(x1, y0), Ŝt+1(x0, y1), and Ŝt+1(x1, y1).

So, instead of the initial discrete process (Xk, Yk) given by (3.2) with 4 successors for

each point, consider the new process (X̃k, Ỹk) with 16 successors for each point. The

probabilities of the successors are given by

ck,lQ(z1 = i, z2 = j)

for k, l ∈ {0, 1} and i, j ∈ {−1, 1}. In order to show that the new process can be used

to price the option, the following theorem was proved in the paper by Vellekoop and

Nieuwenhuis (2009).

THEOREM 3.3.1. Assume that:

lim
m→∞

∆tm = 0, lim
m→∞

max
k=1,...,m−1

∆ymk
∆tm

= 0, lim
m→∞

max
k=1,...,m−1

∆xmk
∆tm

= 0,

where ∆tm = T
m

. Then the process (X̃k, Ỹk) converges in distribution to the continuous

process (X, Y ) defined in (3.1).

For each point (xz1t+1, y
z2
t+1), use bilinear interpolation as defined in equation (3.5) on the

option values of the surrounding grid points V (Ŝt+1(x0, y0), t+1), V (Ŝt+1(x1, y0), t+1),

V (Ŝt+1(x0, y1), t+ 1), and V (Ŝt+1(x1, y1), t+ 1) to get an estimation of the value of the

option V ((xz1t+1, y
z2
t+1), t + 1). This gives an estimation of the value of the option at the

points (xz1t+1, y
z2
t+1) of

V ((xz1t+1, y
z2
t+1), t+ 1) =c0,0V (Ŝt+1(x0, y0), t+ 1) + c1,0V (Ŝt+1(x1, y0), t+ 1)+

c0,1V (Ŝt+1(x0, y1), t+ 1) + c1,1V (Ŝt+1(x1, y1), t+ 1).
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In order to calculate the value of the option of the grid point V(Ŝ(xt, yt), t), each bilinear

interpolated successor option value V ((xz1t+1, y
z2
t+1), t + 1) happens with the probability

defined in equation (3.3), and the value of the option at point Ŝ(xt, yt) is

V (Ŝ(xt, yt), t) = e−r∆t
∑

i∈{−1,1}

∑
j∈{−1,1}

V ((xit+1, y
j
t+1), t+ 1)Q(z1 = i, z2 = j). (3.6)

Iterate from time t = T − ∆t to t = 0, and at time t = 0, the price of a European call

option is given by V (Ŝ(x0, y0), 0). An American option may be exercised early, and so

first find

W (Ŝ(xt, yt), t) =
∑

i∈{−1,1}

∑
j∈{−1,1}

V ((xit+1, y
j
t+1), t+ 1)Q(z1 = i, z2 = j). (3.7)

And to find the price of an American option,

V A
C (Ŝ(xt, yt), t) = max{e−r∆tW (Ŝ(xt, yt), t), max(ext − E, 0)}

is used. Iterate from time t = T−∆t to t = 0, and at time t = 0, the price of the American

call option is V A
C (Ŝ(x0, y0), 0).
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4 Numerical Experiments

In this chapter the results of the numerical experiments performed are presented. All

times are generated on a system with a Core i7-4500U processor and 8 GB of RAM.

The algorithms were implemented first in Python, then due to their slow performance,

converted to C. The performance of the Python code, for larger numbers of calculations,

was on the order of minutes instead of seconds. Since performance accurately measured

on the scale of seconds, all times presented will be in seconds. Since C only has the ability

to generate uniformly distributed random numbers, generation of normally distributed

numbers W1 and W2 was done using the Box-Muller Transform (Muller 1959). Therefore,

W1 =
√

−2ln(U1)cos(2πU2),

W2 =
√

−2ln(U1)sin(2πU2),

where U1 and U2 ∼ U(0, 1) are independent uniformly distributed random variables be-

tween 0 and 1. The compilation was done using GCC for a Linux system. The generation

of Black-Scholes prices was done in Python using the NumPy library. In this chapter,

when referring to accuracy, this means accurate to the Black-Scholes model or exact val-

ues given in the respective original paper. A useful quote to keep in mind is, "Just as we

have only language to describe language’s flaws, so we have become accustomed to using

the BSM [Black-Scholes-Merton] language to describe the violations of BSM." (Derman

and Miller, 2016) This means that even though the constant volatility assumption of the

Black-Scholes model has its shortcomings, it still provides a good baseline for comparison

and for this reason it is used as a marker of relative accuracy.

4.1 Quadrinomial Recombining Tree

In order to check the performance of each part of the algorithm, the validation must be

performed in two steps. First, the performance of the second step independent of the first

step, and then the algorithm as a whole. In this method, the quadrinomial tree portion

produces a similar value as the Black-Scholes price for the same volatility. It will be shown
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that the parameters given by Florescu and Viens (2008) do not produce the correct result.

The average volatility in this section are calculated for the estimated filtered stochastic

volatility distribution as

σ̄ =
∑
y∈Y

e−|y|p(y) (4.1)

where the set Y is the set of volatility values estimated during the first part of the

algorithm and p(y) is the probability of that value of y ∈ Y occurring in the estimated

distribution. In each subsection, an alternate set of parameters are given which give a

more accurate result. As in the paper, 100 simulations are done using the Monte Carlo

method for each result. In some tables, the bid and ask prices of the options from Florescu

and Veins (2008) are given. The bid is the highest price an investor is willing to pay to

buy the option. The ask is the lowest price an investor is willing to sell the option at.

4.1.1 IBM Stock

For the IBM data start with The starting stock value is S0 = 83.70, the price of the

stock on July 19, 2005, and T = 42/252. Table 4.1 gives an overview of the results for

the options expiring in September 2005. In the column QT Const Vol, volatility wasn’t

estimated from the probability distribution, but held constant at σ = 0.234, the value

given in Florescu and Viens (2008) which they based on historical data. The risk-neutral

probability q of the furthest node from x in figure 2.1 is chosen as 0.135. The choice of

0.135 is based on the paper by Florescu and Veins(2008). However, it will be shown later

that the method is agnostic to the value of q within the range defined in section 2.2,

q ∈
[

1
12
, 1
6

]
.

Strike Bid Ask BS Price QT Const Vol FV Price Run 1 Run 2
60 23.8 24.0 24.0424 24.0431 24.1654 24.0424 24.0454
70 13.9 14.1 14.1733 14.1532 14.1654 14.1750 14.2857
75 9.0 9.2 9.5431 9.5220 9.1700 9.5424 9.8385
80 4.6 4.8 5.6188 5.6068 5.5738 5.6112 6.1152
85 1.6 1.65 2.8130 2.8232 1.0571 2.8019 3.3854
90 0.35 0.4 1.1809 1.2085 0.1123 1.1727 1.6632
95 0.1 0.15 0.4154 0.4426 0.0040 0.4138 0.7278

Table 4.1: IBM: Initial Quadrinomial Tree Results

In the columns Run 1 and Run 2, the estimation of the filtered stochastic probability
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Strike Bid Ask BS Price Mod ν 1 Mod ν 2 Mod ν, β 1 Mod ν, β 2
60 23.8 24.0 24.0424 24.0420 24.0420 24.0421 24.0422
70 13.9 14.1 14.1733 14.1136 14.1251 14.1454 14.1639
75 9.0 9.2 9.5431 9.2858 9.3502 9.4465 9.5130
80 4.6 4.8 5.6188 5.0452 5.2106 5.4309 5.5624
85 1.6 1.65 2.8130 2.1043 2.3134 2.5889 2.7465
90 0.35 0.4 1.1809 0.6492 0.7981 1.0025 1.1264
95 0.1 0.15 0.4154 0.1498 0.2148 0.3142 0.3835

Table 4.2: IBM: Quadrinomial Tree Results with Modified Parameters

Original Parameters Mod ν Mod ν, β
q E=60 80 95 E=60 80 95 E=60 80 95

1/12 24.0430 5.7858 0.5156 24.0420 5.1847 0.2001 24.0421 5.4687 0.3332
17/192 24.0430 5.7857 0.5156 24.0420 5.1846 0.2002 24.0421 5.4686 0.3333
3/32 24.0430 5.7856 0.5157 24.0420 5.1845 0.2003 24.0421 5.4686 0.3333

19/192 24.0430 5.7855 0.5158 24.0420 5.1845 0.2004 24.0421 5.4686 0.3333
5/48 24.0430 5.7853 0.5159 24.0420 5.1844 0.2004 24.0421 5.4684 0.3333
7/64 24.0430 5.7852 0.5160 24.0420 5.1844 0.2005 24.0421 5.4685 0.3333
11/96 24.0431 5.7851 0.5161 24.0420 5.1843 0.2006 24.0421 5.4685 0.3333
23/192 24.0431 5.7850 0.5162 24.0420 5.1843 0.2007 24.0421 5.4684 0.3333

1/8 24.0431 5.7849 0.5163 24.0420 5.1843 0.2007 24.0421 5.4684 0.3333
25/192 24.0431 5.7848 0.5164 24.0420 5.1842 0.2008 24.0421 5.4683 0.3333
13/96 24.0431 5.7847 0.5165 24.0420 5.1842 0.2009 24.0421 5.4683 0.3333
9/64 24.0431 5.78496 0.5166 24.0420 5.1841 0.2010 24.0421 5.4683 0.3333
7/48 24.0431 5.7845 0.5167 24.0420 5.1841 0.2010 24.0421 5.4682 0.3333

29/192 24.0431 5.7843 0.5168 24.0420 5.1840 0.2011 24.0421 5.4682 0.3333
5/32 24.0431 5.7842 0.5169 24.0420 5.1840 0.2012 24.0421 5.4682 0.3333

31/192 24.0431 5.7841 0.5170 24.0420 5.1839 0.2013 24.0421 5.4681 0.3333
1/6 24.0431 5.7840 0.5171 24.0420 5.1839 0.2014 24.0421 5.4681 0.3333

Table 4.3: IBM: Quadrinomial Tree Results with Different Values of q

distribution was done with historical daily data from April 18, 2004 to July 18, 2005 and

the parameters presented in Florescu and Veins (2008). That is the parameters for the

model are α = 11.85566, ν = 0.9345938, β = 4.13415, µ = 0.04588, and r = 0.0343

with M = 300 discrete time steps and n = 1000 paths for stock price and volatility. The

Run 1 column gives the estimation of the price for the whole algorithm for one run. The

average volatility given by equation (4.1) for this run was 0.1996. The estimation of the

filtered stochastic volatility distribution took 2.6969 seconds and starts at the beginning

of the program, including the time it takes to calculate Xt = ln(St), and ends once the

distribution is estimated. The Monte-Carlo method took 0.6303 seconds and starts with

the allocation of the memory for the calculations, including the generation of Y values for
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each run, and ends once the sum of the runs is completed for all strikes, the division by

the number of runs is done inline with the print statement. The set of Y values for each

run is used across the range of strikes. While the results of this run look promising, they

don’t show the whole picture. The results vary quite widely. For another run, the values

were as given in the column Run 2 where the average volatility was 0.2307. They also

don’t match the results from the paper by Florescu and Viens (2008) which are shown in

the FV Price column.

As the article had inconsistent parameter notations when giving the values of the paraeme-

ters, and the average volatility in the case of run 1 differs quite a bit from 0.234, the

constant rate used in the Black Scholes calculation, consider the following two cases. In

the first case, ν = ln(0.234), and in the second ν = ln(0.234) and β = 1. This is done

to analyze how the results change as a result of changing these parameters. In the first

case, the volatility lowers to between 0.1462 and 0.1604 and the results are closer to the

market prices. Changing β as well brings the results back up toward the Black-Scholes

price. The average volatilities for these runs were 0.2144 and 0.2249. In both cases, the

difference in average volatility between the runs was smaller, 0.0142 and 0.0105, than the

original parameters, which had a difference of 0.0311 between the two runs.

In table 4.3, evenly spaced values of q ∈
[

1
12
, 1
6

]
in increments of 1

192
were checked for

E = 60, 80, 95. It is clear that for the case of the available data, that the choice of q given

the same set of volatilities makes a difference of less than one cent across the range of

strike prices.

4.1.2 S&P 500 Index

For the S&P 500, a similar result to the IBM results is obtained. That is, the parameters

given in the paper by Florescu and Viens (2008) do not give accurate results, however,

by changing ν to ln(0.13), the constant volatility of the stock, accurate results can be

reached. And again, the performance of the algorithm is relatively independent from the

choice of q. Here, the tables give a brief overview of these facts, but they also investigate

the how the model changes with different amounts of historical data.

In table 4.4 there is an overview of several results. The first is the BS Price, which is

the Black-Scholes price with σ = 0.13. The Est Price column uses ν = −4.38, the value
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Strike Bid Ask BS Price FV Price Est Price Mod ν 3 Mo Est 1 Mo Est
700 435.9 437.9 440.7351 440.8361 440.7351 440.7351 440.7351 440.7351
1005 131.9 133.9 136.1130 135.8376 136.0859 136.1148 136.1149 136.1127
1100 42.4 44.4 46.7735 43.8620 41.1951 46.8897 46.8958 46.7981
1135 17.1 18.6 23.2710 19.1077 6.4631 23.4432 23.4509 23.3099
1140 14.3 15.8 20.6695 16.4364 2.6238 20.8421 20.8514 20.7119
1175 2.7 3.0 7.7807 4.6066 0.0000 7.9166 7.9261 7.8108
1225 0.15 0.2 1.1934 0.3398 0.0000 1.2375 1.2411 1.1989

Table 4.4: S&P 500: Comparison of Parameters and Amount of Historical Data

Original Parameters Modified ν
q E=700 1140 1225 E=700 1140 1225

1/12 440.7351 2.6458 0.0000 440.7351 20.6894 1.1922
17/192 440.7351 2.6458 0.0000 440.7351 20.6893 1.1923
3/32 440.7351 2.6457 0.0000 440.7351 20.6892 1.1925

19/192 440.7351 2.6457 0.0000 440.7351 20.6891 1.1927
5/48 440.7351 2.6457 0.0000 440.7351 20.6890 1.1928
7/64 440.7351 2.6457 0.0000 440.7351 20.6889 1.1930
11/96 440.7351 2.6457 0.0000 440.7351 20.6888 1.1931
23/192 440.7351 2.6456 0.0000 440.7351 20.6886 1.1933

1/8 440.7351 2.6456 0.0000 440.7351 20.6885 1.1935
25/192 440.7351 2.6456 0.0000 440.7351 20.6884 1.1936
13/96 440.7351 2.6456 0.0000 440.7351 20.6883 1.1938
9/64 440.7351 2.6456 0.0000 440.7351 20.6882 1.1940
7/48 440.7351 2.6455 0.0000 440.7351 20.6881 1.1942

29/192 440.7351 2.6455 0.0000 440.7351 20.6880 1.1943
5/32 440.7351 2.6455 0.0000 440.7351 20.6878 1.1945

31/192 440.7351 2.6455 0.0000 440.7351 20.6877 1.1947
1/6 440.7351 2.6455 0.0000 440.7351 20.6876 1.1948

Table 4.5: S&P: Quadrinomial Tree Results with Different Values of q

provided in Florescu and Viens (2008). With this the model underestimates the average

volatility of the S&P 500 when compared to the constant volatility of 0.13. The typical

average volatility for the original parameters is between 0.013 and 0.014. For this estimate

and the rest of the subsection the rest of the parameters were: S0 = 1139.93, T = 29/252,

α = 50, β = 1, µ = 0.04, and r = 0.01. And again, for this subsection M = 300

and n = 1000. To generate the values using daily data from January 1st, 1999 to April

21st, 2004 took 55.1945 seconds for the estimation of the filtered stochastic volatility

distribution.

In the Mod ν column, ν = ln(0.13) = −2.040221, or the logarithm of the constant

volatility. This corrects the severe underestimation of the volatility and brings the average
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to approximately 0.13. As expected, the time it took to get the values was similar to the

previous result, taking 55.3296 seconds for the volatility distribution estimation.

The 3 Mo Est column continues using ν = −2.040221, but also uses only historical data

from January 21st, 2004 to April 21st, 2004 to estimate the filtered stochastic probabil-

ity distribution, and the 1 Mo Est column reduces that further to March 21st, 2004 to

April 21st, 2004. The times to generate the distributions are 2.5985 and 0.8655 seconds

respectively. When annualized volatilities were calculated on the data starting January

1st, 1999 using

σ =

√√√√ 252

n− 1

n∑
i=1

(xi − x̄)2,

σ = 0.2082 was obtained. For the data starting January 21st, 2004, σ = 0.1242. And

finally that beginning February 21st, 2004, σ = 0.1272. From this, it seems as though it

is logical to say that, in this case, the genetic algorithm doesn’t need more than a month

of daily data to be accurate. As seen by the differences in the choice of ν it is clear that it

is what drives the average volatility of the distribution and therefore the estimated prices

of the options.

The last thing to evaluate is the stability of q as it relates to the S&P 500, and this is

done in table 4.5. The first thing to notice is that the value of q affects the value of the

option at the deep in-the-money strike of 700 by less than 1/100 of a cent. Once again,

the choice of q makes a difference of less than one cent in the valuation of the option

across the range of strikes.

From these results, it has been shown that the quadrinomial tree method works well. But,

since the parameters from the original paper were unclear due to some confusion with

the notation, it is difficult to give an exact estimate of how accurate the parameters and

results are.

4.1.3 Implementation Comparison

The tree model is unique in the fact that European options present an interesting imple-

mentation option, which is, instead of calculating all of the probabilities and then working

backward through time, using the law of total probability to carry the probabilities for-

ward through the tree and using the conditional probabilities of the final nodes with their
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values to calculate the price. So for, an option with maturity date T split into M periods,

discrete time m is t = m∆t, m = 0, 1, ...,M . If there are N nodes in the tree at discrete

time step m and K nodes at m− 1,

Q(xnm) =
∑

s∈{xk
m−1}

Q(xnm | s)Q(s)

for each node xnm in m = 1, 2, ...,M , k = 1, ..., K, and n = 1..., N .

In calculating the successor values, it is possible to calculate only those that are needed,

however, another consideration with this approach is calculating all values of j ∈ [jmin, jmax]

between its maximum and minimum values at the current time step, recall that j =

inf{l ∈ N|lσ(Yi)
√
∆t ≥ x}. So,

jmax =

⌈
xmax

σ(Yi)
√
∆t

⌉
+ 1

and

jmin =

⌈
xmin

σ(Yi)
√
∆t

⌉
− 2

where xmin = min{xnm} and xmax = max{xnm}.

Version Unoptimized Optimized 10000 MC Sims N=1000 N=2000
Minimum 1.4981 0.5774 56.2485 71.0865 322.7444

Brute Force 1.3886 0.5504 54.8037 71.7764 284.8044
Amer Comp 1.6995 0.5881 61.5190 70.0989 268.8641

Table 4.6: Algorithm Implementation Comparison

This means that there are three main ideas to test, a European option only method which

calculates only the needed values, a European option only method which calculates for

all possible values of j, and using the traditional tree approach which is compatible with

American options as well. Here they’ll be called the minimal method, the brute-force

method, and the American option compatible method. Table 4.6 shows a comparison

of the times, in seconds, between the algorithms. The Unoptimized column shows the

times with no compiler optimizations, the optimized column uses the standard compiler

optimizations, and the 10000 MC Sims column uses 10000 Monte Carlo simulations instead

of the previous 100, as in the first two. The times gathered in this subsection are based

on the original parameters for the IBM stock, and while using the modified parameters
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make execution time faster, the same relationships between the times hold.

The final two columns of table 4.6 show how the methods compare when increasing the

size of the tree, when the number of time steps in the tree increased to 1000 and then

to 2000. The American option compatible method is the slowest when the depth of the

tree is small because of the overhead of setting up the tree and extra logic. Even when

the number of Monte Carlo simulations is increased, the time difference is still there

due to the tree needing to be set up each time. However, when the depth of the tree is

increased, the difference in the number of calculations for the expected value goes up. The

effect of those extra calculations are seen in the minimum method since it contains the

added logic of the tree to calculate only the required values and the extra calculations

of carrying the probabilities forward. The brute force method, in contrast, saves time

by avoiding many of the logical statements needed by the other two methods. In terms

of memory overhead, the minimal and brute-force methods require 16 bytes represent

each node. Since past nodes aren’t required, they may be ignored and so the maximum

memory required depends only on the time moment with the highest number of nodes.

The American option compatible method requires the most memory requiring 80 bytes for

each node, and requiring that they are persistent throughout the generation of the tree.

The American option compatible method may be able to be improved by adding features

and ideas from the brute-force method, but this is beyond the scope of this thesis.

4.2 Tree-Based Method Using the Heston Model

This method works for both American and European options, and the accuracy of the

results from Vellekoop and Nieuwenhuis (2009) were able to be duplicated. The values

obtained in this thesis and those in the original paper, at most, differ by three cents for

European options and four cents for American options. But, the magnitude of error (the

absolute difference between the calculated an exact price) is approximately the same as in

the original paper, and the values seem to converge to the same numbers. The results are

shown in tables 4.7 and 4.8. The average times are calculated using the run times of the

five starting prices of the underlying, S0 = {8, 9, 10, 11, 12} with each set of parameters

mx, my, and m, where m is the number of discrete time points between t = 0 and t = T .

Additionally, mx is the number of price points in the grid at time t and my is the number
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of volatility points. In this case the parameters E = 10, α = 5, ν = 0.16, β = 0.9, ρ = 0.1,

and r = 0.1 are taken from Vellekoop and Nieuwenhuis (2009). The exact values are also

taken from the paper and are known solutions to the Heston model with these parameters.

The average times are taken by running the simulations for one set of values mx, my, and

m, and dividing by five, the number of starting values, to obtain an average time required

to calculate one price with that set of parameters. In the tables, as expected, as mx, my,

mx my m S0 = 8 9 10 11 12 Avg Time
125 6 25 1.8435 1.0382 0.4838 0.2011 0.0823 0.0013
250 12 35 1.8420 1.0417 0.4893 0.2024 0.0813 0.0074
500 24 50 1.8410 1.0440 0.4927 0.2041 0.0810 0.0405
1000 48 71 1.8403 1.0454 0.4954 0.2055 0.0806 0.2254
Exact 1.8389 1.0483 0.5015 0.2082 0.0804

Table 4.7: European Put Option

mx my m S0 = 8 9 10 11 12 Avg Time
125 6 25 1.9925 1.0934 0.5010 0.2060 0.0839 0.0017
250 12 35 1.9946 1.0977 0.5076 0.2076 0.0829 0.0091
500 24 50 1.9963 1.1007 0.5106 0.2094 0.0826 0.0518
1000 48 71 1.9974 1.1028 0.5136 0.2109 0.0822 0.2914

Table 4.8: American Put Option

and m are increased, the estimation by the model seems to converge to the exact price of

the options.

4.3 Model Comparison

Now that the models’ individual results have been presented, a comparison is in order.

First, the volatility of the quadrinomial tree method is

σ1(Yt) = e−|Yt|.

for And, for the tree-based method,

σ2(yt) =
√
yt.

It is clear that σ1 and σ2 are not equivalent and therefore the stochastic processes for

Yt and yt are not interchangeable. Therefore, a transformation is needed. Starting with
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σ1(Yt) = σ2(yt), from which

|Yt| = ln

(
1

√
yt

)
(4.2)

and

yt = e−2|Yt| (4.3)

may be obtained. Since the tree-based method is based on a squared volatility and the

quadrinomial tree isn’t, equation (4.3) is quite intuitive. It also shows how easy it is to

substitute any OU process into this model. On the other hand, equation (4.2) provides

some interesting challenges. In order for the value to be defined under the square root

and to avoid dividing by zero, 0 < yt must be true and for the logarithm to be positive

as required by the absolute value, yt ≤ 1 must be met. However, these conditions are

not guaranteed by the process yt. Even if a formula could be found such that these

restrictions could be relaxed and historical data for the underlying was available, two

parameters present problems. First, a non-zero correlation coefficient ρ is not allowed in

the quadrinomial tree model. And second, µ isn’t used in the tree-based model so it would

need to be first estimated. This means that the tree-based model parameters cannot be

used in the quadrinomial tree method. Since it is only possible to use the quadrinomial

tree parameters in the tree-based method, but not the other way around, the results of

this investigation will be explored.

mx = 125 250 500 1000
my = 6 12 24 48

Strike BS Price QT Price m = 25 35 50 71
60 24.024 24.0422 24.0420 24.0396 24.0402 24.0411
70 14.1733 14.1632 14.2311 14.2019 14.1964 14.1950
75 9.5431 9.5103 9.6617 9.6102 9.5964 9.6913
80 5.5188 5.5572 5.7906 5.7176 5.6961 5.6863
85 2.8130 2.7401 3.0058 2.9230 2.8969 2.8874
90 1.1809 1.1219 1.3571 1.2813 1.2588 1.2500
95 0.4154 0.3805 0.5493 0.4909 0.4757 0.4691
Est Vol Time 2.5794

MC Time 0.3951
Total Time 3.1218 0.0125 0.0679 0.3858 2.2003

Table 4.9: IBM: Comparison Results

Using the discussion above the models can be directly compared using the IBM parameters

α = 11.85566, ν = ln(0.234), β = 1, T = 42/252, r = 0.0343, and ρ = 0 the results are

in table 4.9. The BS Price column contains the Black-Scholes price for comparison. The
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mx = 125 250 500 1000
my = 6 12 24 48

Strike BS Price QT Price m = 25 35 50 71
700 440.7351 440.7351 440.7174 440.7200 440.7235 440.7264
1005 136.1130 136.1183 136.0783 136.0859 136.0944 136.1009
1100 46.7735 47.0392 46.7645 46.7606 46.7908 46.8163
1135 23.2710 23.6549 23.3007 23.2832 23.3042 23.3392
1140 20.6695 21.0575 20.6918 20.6676 20.7169 20.7320
1175 7.7807 8.0954 7.8034 7.7788 7.8079 7.8365
1225 1.1934 1.3020 1.1770 1.1819 1.1990 1.2148

Table 4.10: S&P Quadrinomal Tree Model

next column, QT Price, shows the prices generated using the quadrinomial tree method,

and the last four columns give the tree-based prices with the given values of mx, my, and

m.

For the S&P the parameters α = 50, ν = ln(0.13), β = 1, T = 29/252, r = 0.01, and

ρ = 0 are used. The results are in table 4.10 and the layout is the same as the table for

IBM.

From these two sets of results it is possible to conclude that given the proper transfor-

mation of the volatility process, it is possible to use the parameters of the quadrinomial

tree in the tree-based method. Therefore, the tree-based method is more flexible, in that

it can more easily take in parameters of different volatility models, it doesn’t require the

estimation of µ, and it also allows for the correlation coefficient ρ of the Brownian motions

of price and volatility to be non-zero.

From a time perspective, the quadrinomial tree performs slower than the tree-based

method. However, if it is assumed that the situation allows the filtered stochastic volatility

distribution may be estimated in advance, then the methods are approximately even, if

the tree-based method uses mx = 500, my = 24, and m = 50. As shown in table 4.7, the

difference between the accuracy of those values and the next are less than 0.004 with the

error from the exact answer being on the same order of magnitude, it is safe to say that

either method may be used with approximately the same execution time. However, if the

distribution may not be calculated in advance, it is clear that the tree-based method is

faster.

52



Conclusion

Option pricing will continue to play an important role in financial engineering. Stochastic

volatility models have been and remain a popular method for pricing all types of options.

The goal of this thesis was to implement and conduct numerical experiments with two

stochastic volatility models and compare their performance. In this regard, it was found

that the tree-based model performed faster than the quadrinomial tree. It was found

that the quadrinomial tree seemed to be more accurate than the tree-based method for

the IBM stock, but for the S&P 500 index the tree-based method seemed to be more

accurate. Even though the accuracy of the parameters used in the quadrinomial tree was

under question, it seems that if the two methods are given the same set of parameters,

they give comparable results.

The main issue with the results section of this thesis is that the results of the quadrinomial

tree method do not match the results of the paper by Florescu and Viens (2008). However,

there was some doubt about the accuracy of their parameters, as the notation in the

original paper was inconsistent the associated section. Additionally, the sources used for

historical data may not have been the same, and so, the historical prices may have been

different.

For the quadrinomial tree method, it was shown that the way the tree is implemented has

a significant effect on the speed of the algorithm, and that for certain grids, it may be

faster to calculate all of the possible values within the grid instead of only those that are

necessary. The thesis was also able to show that, for some models, it is possible to use the

estimated parameters of another model with the correct transformation on the volatility

process Y . Using this the accuracy and speed of the models can be directly compared.

Similarly to the three implementations of the quadrinomial tree that were discussed,

future research could investigate how to optimize these methods for different types of

exotic options which leverage the restrictions on their payoffs.
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