
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Carlos Paniagua

Discovery and Push Notification
Mechanisms for Mobile Cloud

Services

Master Thesis (30 EAP)

Supervisor: Satish Narayana Srirama, PhD

Author: .. ”....” May 2012

Supervisor: .. ”....” May 2012

Professor: .. ”....” May 2012

TARTU, 2012

Abstract

In the last lustrum the mobile devices such as laptops, PDAs, smart phones,

tablets, etc. have pervaded almost all the environments where people per-

form their day-to-day activities. Further, the extensive R&D in mobile

technologies has led to significant improvements in hardware, software and

transmission. Similarly, there are significant developments and standard-

ization efforts in web services domain and basic web services have been

widely accessed from smart phones. This has lead to the logical next step

of providing web services from the smart phones. The concept of the web

service provisioning from smart phones is not new and has been extensively

explored by Srirama who proposed the concept of Mobile Host. However,

the original implementation considered aged technologies such as JMEE,

PersonalJava, SOAP architecture among others. This work updates the

Mobile Host to the latest technologies like Android OS and REST archi-

tecture and proposes a service engine based on Apache Felix, and OSGI

implementation for resource constraint devices.

Moreover, the astonishing speed in developments in mobile computing en-

able the new generation of applications from domains such as context-

awareness, social network, collaborative tools, location based services, etc.,

which benefit from the Mobile Host service provisioning capabilities. As a

result the clients have access to a huge number of services available; there-

fore, an efficient and effective service discovery mechanism is required. The

thesis proposes a directory-based with network overlay support discovery

mechanism for large networks with high mobility. The proposed discovery

mechanism relies in OWL-S, an ontology for service discovery, invocation,

composition, and monitoring of web resources. The work also considers

the original service discovery mechanism proposed by Srirama relying in

peer-to-peer networks and Apache Lucene, a keyword search engine. The

study updates the service search to Apache Solr, the latest development

for Apache Lucene. The service discovery was extensively tested and the

results are summarized in this work.

Mobile technologies are looking into the clouds for extending their capa-

bilities in storage and processing by offloading data and process intensive

tasks. This fosters the development of more complex and rich mobile appli-

cations. However, due to the time-consuming nature of the tasks delegated

to the clouds, an asynchronous mechanism is necessary for notifying the user

when the intensive tasks are completed. Mobile cloud service providers and

Middleware solutions might benefit from Mobile Host and its asynchronous

notification capabilities. The study presents four push notification mecha-

nisms being AC2DM, APNS, IBM MQTT and Mobile Host based push no-

tification. The work summarizes the results of a quantitative analysis and

highlights the strengths and weakness of the four notifications approaches.

In addition, it explains CroudSTag realization, a mobile application that

aims the social group formation by means of facial recognition that relies

in mobile cloud services and Mobile Host to provide its functionality to the

user.

iv

Contents

List of Figures vii

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 4

1.3 Outline . 5

2 State of the Art 7

2.1 Mobile Web Service Provisioning . 8

2.2 Mobile Enterprise . 11

2.2.1 Challenges for establishing Mobile Enterprise 11

2.2.2 QoS aspects of the Mobile Host 12

2.2.3 Discovery aspects of the Mobile Enterprise 13

2.2.4 Mobile Web Services Mediation Framework 14

2.3 Cloud Computing . 16

2.4 Semantics in Web Service Provisioning 18

2.5 Summary . 19

3 Mobile Host in Android 21

3.1 Mobile Host Architecture and Realization 22

3.2 Mobile Host Services . 23

3.3 Sample Web Services Provided by Mobile Host 25

3.3.1 Location (GPS) Data Provisioning Service (Location Information

Service) . 26

3.3.2 Push Notification Service . 26

3.3.3 File Browsing Service . 27

v

CONTENTS

3.4 Summary . 28

4 Mobile Web and Mobile Cloud Service Discovery 31

4.1 Mobile Host Service Discovery Mechanism 32

4.1.1 Mobile Host Directory-less with Overlay Support Discovery Mech-

anism for Mobile Ad Hoc Networks 33

4.1.2 Mobile Host in Wide Area Networks 35

4.2 Peer-to-Peer Service Discovery in Android 37

4.3 Keyword-Based Service Search with Solr 39

4.4 Semantic Search for Discovery of Mobile Web Services 40

4.4.1 OWL-S for Mobile Web Service Discovery 41

4.5 Summary . 49

5 Push Notification aided by Mobile Host 51

5.1 Push Notification Providers . 51

5.1.1 APNS . 52

5.1.2 Mobile Host aided push notification 53

5.1.3 Android Cloud to Device Message Framework 55

5.1.4 IBM MQ Telemetry Transport Protocol 57

5.2 Quantitative Analysis . 59

5.2.1 Description of the experiments 59

5.2.1.1 Summary of the push notification mechanisms 65

5.3 Mobile cloud service invocation aided by Mobile Host 67

5.3.1 Mobile Host and Mobile Cloud Middleware 67

5.3.2 Social Group Formation with Facial Recognition and Mobile Cloud

Services . 69

5.4 Summary . 70

6 Conclusions 73

7 Future Research Directions 77

8 Sisukokkuvõte 79

Bibliography 81

vi

List of Figures

3.1 Architecture of Mobile Host for Android 22

3.2 Activator Class - GPS Service . 24

3.3 SroidService Interface . 24

3.4 Class Diagram for a GPS Mobile Host Service 25

3.5 File Browsing Service - Simultaneous connections serve by Mobile Host 28

4.1 Discovery Mechanism in Mobile Ad-hoc Networks 35

4.2 DNS-SD Records . 36

4.3 Discovery Mechanism in Wide Area Networks 37

4.4 JXTA Advertisement - Mobile Host . 42

4.5 WSDL for the Notification SroidService using REST architecture 43

4.6 OWL-S representation for the Notification SroidService 45

4.7 Service Discovery - Publishing Sequence Diagram 47

4.8 Service Discovery Sequence Diagram . 47

4.9 Service Discovery Cycle - Activities and Timestamps 48

4.10 Service Semantic Search Times . 49

5.1 APNS - General Flow . 52

5.2 Notification Service Implementation in Mobile Host 55

5.3 Google AC2DM - General Flow . 57

5.4 Battery Consumption - Push Notification Services 62

5.5 Battery Consumption of Push Notification Services for 2 hour duration 63

5.6 Delivery Times and Patters - Apple Push Notification Services 63

5.7 Delivery Times and Patters - Mobile Host 63

5.8 Delivery Times and Patters - AC2DM 64

vii

LIST OF FIGURES

5.9 Mobile Host and MCM . 68

5.10 Screenshots of the CroudSTag usage scenario 71

viii

1

Introduction

In the last lustrum the mobile devices such as laptops, PDAs, smart phones, tablets,

etc. have pervaded almost all the environments where people perform their day-to-day

activities. Moreover, nowadays 80% of the world population owns a cell phone and by

2011 there were approximately 5.6 billion wireless subscribers worldwide, almost thrice

more than what was expected in 2008. In 2008 the number of subscribers was expected

to reach the two billions figure by 2011. Such popularity demands an astonishing speed

in the developments for mobile technologies in terms of software and hardware. As a

result, extensive R&D in mobile technologies have been carried on by the producers,

which have led to significant improvements in hardware, software and transmission.

Mobile devices are equipped with embedded sensors, camera, touchscreen, more mem-

ory and processing capabilities as well as more efficient power consumption mechanisms.

Moreover, due to the release of the iOS and Android OS the mobile applications have

increased in number and the complexity of providing more numerous and sophisticated

applications also has increased. In addition, transmission rates have increased thanks

to 3G and 4G technologies as well as WiFi enabling the mobile devices to access the

Internet almost ubiquitously. Altogether those improvements enable the mobile devices

to perform tasks that normally run in personal computers. Moreover, such enhance-

ments enabled the next generation of services which can be provided not only from

dedicated servers but also from mobile devices paving a broad road of possibilities for

mobile web service applications.

In mobile web services domain, the resource constrained smart phones are used

as both web service clients and providers (1). Some interesting mobile web service

1

1. INTRODUCTION

client applications are the provisioning of services like information search, language

translation, company news etc. for employees who travel regularly. There are also

many public web services like the weather forecast, stock quotes etc. accessible from

smart phones. Similarly, with the advent of cloud computing, the mobile applications

also started using cloud services, which most often have web service interfaces.

Similarly, the concept of mobile web service provisioning is not new and has been in

the ground for some time. Srirama et al. proposed the concept of Mobile Host (1) where

the mobile device acts as a service provider. Mobile Host enables seamless integration

of user specific services to the enterprise by following web service standards, also on

the radio link and via resource constrained smart phones (2). Moreover, Mobile Host

fosters the new generation of ubiquitous and context-aware applications enabling the

consumption of web services anywhere at any time from the handset. Applications

from several domains, such as location based services (3), m-banking, collaboration

and content sharing, benefit from such Mobile Host. Furthermore, Mobile Host suits

well for the consumption and orchestration of mobile-cloud-services.

Cloud computing (4) is a promising emerging technology in which, typically, the

resources scalable on demand are provided ”as a service (aaS)” over the Internet to

the users who need not have knowledge of, expertise in, or control over the cloud

infrastructure that supports them. The provisioning of cloud services occurs at the

Infrastructural level (IaaS) or Platform level (PaaS) or at the Software level (SaaS).

Mobile technologies are recently drawing their attention to the cloud computing due to

the increasing demand of the mobile applications for processing power, storage space

and energy.

1.1 Motivation

The increasing demand of mobile devices to reap the benefits from the developments

in the web services domain required to shift the scope of mobile terminals from acting

as simple service consumer to act as service providers. Moreover, the recent improve-

ments and updates in web services domain propose new architectures and protocols

for enabling the communication between the clients and providers. For instance, the

Representational State Transfer (REST) (5) architecture has emerged as an alterna-

tive to the Simple Object Access Protoco (SOAP) enabling the design of web services

2

1.1 Motivation

that focus on system’s resources. REST is a lightweight, human readable results and

easy to build architecture for the provisioning of web services. Despite both, SOAP

and REST architectures are widely used, REST seems to fit better for mobile web

service provisioning due the network and resource constrains. Nevertheless mobile web

services have manifold opportunities to mobile operators, wireless equipment vendors,

third-party application developers, and end users. These services need to be provided

according to the standards focusing not only for services but also for resources.

Moreover, the release of Android OS and iOS revolutionized the mobile software

domain. It is estimated that by 2011 Android and iOS own the 51% and 24% of

the market respectively. As a result of such popularity, mobile software creators and

developers have drawn their attention to these platforms to reach a higher number of

potential customers and users. Therefore, it is logical to consider those platforms for

mobile web service provisioning and client applications.

Meanwhile, due to the popularity of mobile web services and cloud services for

mobiles a great amount of applications are available and this number is constantly

increasing. The Play Store (Android) and App Store (iOS) provide around 450,000

and 500,000 applications respectively. A large amount of those applications rely their

functionality on either mobile web or mobile cloud services. However, these services

demand an efficient and effective discovery mechanism to reduce the bottlenecks and to

proceed with the mobile web service provisioning and invocation with success. More-

over, the traditional centralized registry mechanisms for web services do not suit for the

mobile nature of smart phones. Therefore, the search for an appropriate mechanism

for the mobile web service and mobile cloud service discovery is required.

In addition, a key requirement of pervasive mobile applications is that changes

occur asynchronously and that it is important that when they occur, mobile users are

notified in a timely fashion. Without infrastructure for handling the dispatching of

asynchronous events, mobile application developers need to code this as part of their

applications. This presents developers with extra complexity above and beyond the

core application functionality. Usually implementing such asynchronous behavior in

mobile applications is not trivial and it requires developing the same functionality again

and again for each application. Furthermore, with the emerging mobile cloud domain,

where the services are, typically, very time consuming, an asynchronous behavior for

notifications is demanded. As an alternative, Push Notification mechanisms can be

3

1. INTRODUCTION

used for including asynchronous behavior in the invocation and provisioning of web

services and cloud services.

1.2 Contributions

Extensive research has been done in the web service and mobile web service domain

in terms of service provisioning and discovery. The thesis contributes to this work

by migrating the concepts of Mobile Host and mobile web service provisioning to the

current generation technologies. Early implementations of Mobile Host were available

for Java 2 Platform, Micro Edition (J2ME) and Personal Java and rely on SOAP

architecture for the service invocation. The thesis introduces an implementation of

Mobile Host for Android and iOS for the provisioning of RESTful web services through

Hypertext Transfer Protocol (HTTP).

The recent improvements in mobile technologies foster the next generation of perva-

sive applications. Application domains such as context-awareness, collaboration, social

networks, social media and smart environments among others are being explored by

researchers. The thesis contributes to this work by providing a scalable and efficient

push notification mechanism for mobile devices. The thesis adapts the concept of Mo-

bile Host for the asynchronous behavior required in pervasive mobile applications and

the invocation of cloud-based services. In addition, the thesis presents an extensive

analysis of four push notification mechanisms in different platforms and architectures.

The thesis contributes by providing a comprehensive overview governing underlying

concept for push, key players and their future sets, as well as a quantitative perfor-

mance evaluation of the mechanism.

The study also presents how the Mobile Host based asynchronous mechanism is

used in the Mobile Cloud Middleware (MCM) (6), which eases the invocation of cloud

services from multiple cloud providers, in building mobile mashup applications. In this

context, the thesis also presents the CroudSTag (7) application, which helps in social

group formation from mobiles. CroudSTag recognizes the people who appear in media

content such as pictures or videos and joins them together into a social group.

This work also addresses the issues associated with the discovery of mobile web and

mobile cloud services. Srirama et al. have studied that a Mobile Enterprise (8) can

be established in a cellular network by participating Mobile Hosts and their clients,

4

1.3 Outline

where the hosts provide user-specific services to the clients as per the web services

(WS) standards. However the major problems associated in establishing such a Mo-

bile Enterprise will be the quality of service (QoS) and discovery issues, which were

extensively studied. This thesis extends the study and introduces a mobile web and

cloud service discovery mechanism. The study proposes a directory-based with overlay

support discovery mechanism for large networks with high mobility.

1.3 Outline

Chapter 2: discusses the state of the art addressed by this thesis. The chapter first

introduces the web services and cloud services technologies along with associated stan-

dards, protocols and architectural updates. Later, the chapter discusses the nomadic

mobile services and mobile web services. Here, the supported device and platforms,

standardization efforts and implementations, RESTful transmission mechanisms for

mobile web services are discusses in detail.

Chapter 3: introduces the mobile service provisioning mechanism and the associated

challenges. First, it discusses the mobile service provisioning concept. Later it ad-

dresses the service provisioning from resource constraint devices such as smart phones.

Here, the developed Mobile Host is explained in detail, describing the architecture

and technological choices for iOS and Android OS. Finally, it provides a description

of how Mobile Host takes care of the QoS issues associated with the service provisioning.

Chapter 4: discusses the presence of Mobile Host in peer-to-peer (P2P) networks.

It first describes the concept of mobile services provisioning in P2P networks and the

advantages associated in terms of accessibility and discovery. The chapter especially

concentrates at the discovery mechanisms and discusses the mobile web services dis-

covery mechanism, proposed by the thesis. Here the discovery approach, its context

awareness issues and evaluation results are addressed in detail. Further, the chapter

explains how the discovery mechanism can be easily extended not only for mobile ser-

vice discovery but also for discovery of cloud services in P2P networks.

5

1. INTRODUCTION

Chapter 5: describes how cloud service provisioning benefits from Mobile Host for

delivering asynchronous notifications to mobile devices. It explains the concept of push

notification in pervasive mobile applications. Later it describes the most popular push

notification providers from the industry such as Google and Apple. Further, it summa-

rizes the results of an extensive analysis of four push notification mechanisms in terms

of resource consumptions and QoS, over 3G and Wi-Fi networks.

Chapter 6: provides the conclusions about the findings of the thesis.

Chapter 7: describes the future research directions such as the integration of Mo-

bile Host in the Mobile Web Service Mediation Framework (MWSMF) (9) and other

middleware solutions for the web and cloud service provisioning and push notification

services. The chapter also proposes extensions for the service discovery mechanism

proposed in the thesis to support discovery for cloud-based and dynamic services.

6

2

State of the Art

In the last decade extensive research has been conducted in enterprise service integra-

tion. Similarly, the developments in mobile devices enable the provisioning of mobile

web services. Furthermore, the enterprise service integration benefits from such mobile

web service provisioning giving place to the Mobile Enterprise. A Mobile Enterprise

can be established in a cellular network by participating Mobile Hosts, acting as web

service providers, and their clients. In addition, Mobile Host enables seamless integra-

tion of specific services to the enterprise, by following web service standards, on the

radio link and provided by resource constrains smart phones. However, establishing

such a Mobile Enterprise arises several challenges, like the quality of service (QoS)

and discovery aspects, not only from the network perspective but also from the mobile

devices users.

In mobile web services domain, the resource constrained smart devices are used

as both web service clients and providers (Mobile Host). Mobile terminals accessing

the web services cater for anytime and anywhere access to services. Some interesting

mobile web service applications are the provisioning of services like information search,

language translation, company news, weather forecast, stock quotes etc., accessible

from smart phones. Mobile web service clients are also significant in the geospatial

and location based services. While mobile web service clients are common, the scope

of mobile web service provisioning (MWSP) was studied at RWTH Aachen University

since 2003, where Mobile Hosts were developed, capable of providing basic web services

from smart phones.

7

2. STATE OF THE ART

Services provided by the Mobile Host can be integrated with larger enterprise ser-

vices bringing added value to these services. For example, services can be provided to

the mobile user based on his current context. Context details like device and network

capabilities, location details etc. can be obtained from the mobile at runtime and can

be used in providing most relevant services like maps specific to devices and location

information.

While service delivery and management from Mobile Host were thus shown tech-

nically feasible, the ability to provide proper quality of service (QoS), especially in

terms of security and reasonable scalability, for the Mobile Host is observed to be

very critical (10). Similarly, huge number of web services possible, with each Mobile

Host providing some services in the wireless network, makes the discovery of these ser-

vices quite complex. Proper QoS and discovery mechanisms are required for successful

adoption of mobile web services into commercial environments. Moreover, the QoS

and discovery analysis of mobile web services has raised the necessity for intermediary

nodes helping in the integration of Mobile Hosts with the enterprise. Srirama et al.

introduced, based on these requirements, a Mobile Web Services Mediation Framework

(MWSMF) designed as an intermediary between the web service clients and the Mobile

Hosts within the Mobile Enterprise, using the Enterprise Service Bus (ESB) technology.

The scale of the Mobile Enterprise has led the research to the new utility computing

paradigm, cloud computing. It has been also observed that load balancing is the

key in successful deployment of Mobile Enterprise in commercial environments. A

MWSMF was established on a public cloud infrastructure so that the framework can

adapt itself to the loads of the mobile operator proprietary networks, thus mainly

helping in horizontal scaling and load balancing the MWSMF and its components and

consequently the Mobile Enterprise (11).

2.1 Mobile Web Service Provisioning

The quest for enabling open Extensible Markup Language (XML) web service inter-

faces and standardized protocols also on the radio link, with the latest developments in

cellular domain, lead to a new domain of applications, mobile web services. The devel-

opments in cellular world are two folded; firstly there is a significant improvement in

8

2.1 Mobile Web Service Provisioning

device capabilities like better memory and processing power and secondly with the lat-

est developments in mobile communication technologies with 3G and 4G technologies,

higher data transmission rates were achieved. In the mobile web services domain, the

resource constrained mobile devices are used as both web service clients and providers,

still preserving the basic web services architecture in the wireless environments. While

mobile web service clients are quite common these days, the research with providing

web services from smart phones is still sparse.

The main benefit with Mobile Host is the achieved integration and interoperabil-

ity for the mobile devices. It allows applications written in different languages and

deployed on different platforms to communicate with Mobile Hosts over the cellular

network. Moreover, the paradigm shift of smart phones from the role of service con-

sumer to the service provider is a step toward practical realization of various computing

paradigms such as pervasive computing, ubiquitous computing, ambient computing and

context-aware computing. For example, the applications hosted on a mobile device pro-

vide information about the user as well as his/her context. Moreover, mobile devices

also support multiple embedded devices such as dual-camera and Global Position Sys-

tem (GPS). For the hosted services, they provide a gateway to make available their

functionality to the outside world. In the absence of such provisioning functionality

the mobile user has to regularly update the contents to a standard server, with each

update of the device’s state and adds extra loads in the networks.

Mobile Host is a light weight web service provider built for resource constrained

devices such as mobile devices. It has been developed as a web service handler built

on top of a normal Web server. The SOAP based web service requests sent by HTTP

tunneling are diverted and handled by the web service handler component. The Mobile

Host was preliminarily developed in Personal Java on a Sony Ericsson P800 smart

phone with a small footprint close to the 100KB. The Mobile Host relies on Open

source kSOAP2 for creating and handling the SOAP messages. The key challenges

addressed in Mobile Host’s development are threefold: to keep the Mobile Host fully

compatible with the usual web service interfaces such that clients will not notice the

difference; to design the Mobile Host with a very small footprint that is acceptable

in the smart phone world; and to limit the performance overhead of the web service

functionality such that neither the services themselves nor the normal functioning of

the smart phone for the user is seriously impeded.

9

2. STATE OF THE ART

In (1), it is shown that the Mobile Host can handle the service delivery as well

as service administration can be done with reasonable ergonomic quality by normal

mobile phone users. It was observed that the processing time is considerably small in

comparison with the total response time and rest all being transmission delays. Conse-

quently, the performance of the Mobile Host seems to be directly proportional to data

transmission rates. However, nowadays the data transmission rates in mobile devices

have achieved considerable improvements with similar or even better transmission rates

than domestic networks between 20MB and 100MB. In the same study it is showed that

the Mobile Host is capable to handling up to eight concurrent requests for reasonable

services of messages sizes (≈2Kb) (2). The implementation also had an extension in

J2ME.

Besides to Mobile Host, several other works tried to tackle the challenges involved

in the mobile web service provisioning. Farley et al. (12) proposes an architecture for

the deployment of mobile web services, highlighting the components for web services to

provide a personalized mobile service. However, it does not provide any implementation

or evaluation of mobile web services provided from smart phones. Similarly, Ravi, N.

et al. (13) explores the integration of Bluetooth service discovery protocol and General

Packet Radio Service (GPRS) Internet connectivity into phones, proposing a protocol

for provisioning services on smart phones. The SDIPP protocol proposed in this study

augments Bluetooth SDP with Web access and personalization. Nevertheless, they

claim to extend the Bluetooth capabilities with Web access. The issues inherited by

Bluetooth communication persist such as the classes at the discovery time and the short

coverage-range. Moreover, with the nowadays developments Wi-Fi communication is

most often the technology chosen for short and long coverage-ranges. Similarly, Schall,

D. et al. (14) explores the feasibility of web service provisioning from resource constraint

devices. This work is more a study of the available toolkits for embedded devices

available at that time. Even though, they propose to use Web services from embedded

devices to solve interoperability issues in distributed mobile systems they concentrate

more in providing performance estimations and design guidelines more than a concrete

implementation or architecture.

Asif, M. et al. (15) proposed a light weight Web service provider toolkit. This

toolkit supports SOAP messages received through HTTP protocol. Moreover, provides

security capabilities for web service provisioning in mobile devices. Finally, this work

10

2.2 Mobile Enterprise

claims to support up to 12 users. Likewise, Yeon-Seok Kim (16) proposed a light weight

framework for mobile web services. The proposed framework supports processing of

SOAP messages, execution and migration of services among devices, the management

of context and service directory, and the publishing and discovery of services. Nev-

ertheless, the study provides a proper usability and feasibility test, however, it lacks

the scalability testing thus scalability is uncertain. Most of the approaches provide

lightweight mechanism for mobile web service provisioning, besides security capabili-

ties. Moreover, they support SOAP messages through HTTP protocol. In addition, the

communication is established using wireless communication, Wi-Fi or Bluetooth. How-

ever, these works only support the SOAP architecture, losing the focus on resources.

Moreover, SOAP is a heavy architecture which does not suit the requirements of re-

source constraints devices. On the other hand, REST, considered in Mobile Host, is a

light weight architecture focused on resource description which fits better the mobile

web services requirements. Finally, most of the solutions work in LANs or PANs lacking

the capabilities for providing web services in the Wide Area Network.

2.2 Mobile Enterprise

As mentioned before, a Mobile Enterprise is established in the cellular network when

Mobile Hosts and their clients interact among each other, the host providing user-

specific services to the clients using WS standards. However, such Mobile Enterprise

poses many technical challenges, to the service providers as well as to the mobile oper-

ators.

2.2.1 Challenges for establishing Mobile Enterprise

As the Mobile Host provides services to the Internet, devices should be safe from

malicious attacks. For this, the Mobile Host has to provide only secure and reliable

communication in the vulnerable and volatile mobile ad-hoc topologies. In terms of

scalability, the Mobile Host has to process reasonable number of clients, over long

durations, without failure and without seriously impeding normal functioning of the

smart phone for the user.

Similarly, huge number of available web services, with each Mobile Host providing

some service in the Internet, makes the discovery of the most relevant service quite

11

2. STATE OF THE ART

complex. Proper discovery mechanisms are required for successfully adoption of such

Mobile Enterprise. However, the creation of such discovery mechanism poses critical

questions such as where and how the services are going to be published. Whether to use

or not to use a service directory support such as the centralized Universal Description,

Discovery, and Integration (UDDI). This also raises the question whether centralized

nodes can withstand such high loads or new alternatives need to be explored. Moreover,

from the mobile operator’s perspective a Mobile Enterprise questions what services are

expected by the mobile users to be delivered by the operator, if the operator is capable to

monitor the communication and have a complete view of the network in such a way that

business scenarios can be recognized out of such view, if the operator’s infrastructure

is capable to scale and adapt itself to such huge oscillating requirements?

2.2.2 QoS aspects of the Mobile Host

Providing proper QoS, especially, appropriate security and reasonable scalability, for

mobile web service provisioning domain was observed to be very critical. The security

analysis of the Mobile Host studied the adaptability of WS Security specification to

the MWSP domain and concludes that not all of the specification can be applied to

the Mobile Host, mainly because of resource limitations (2). The results of the analysis

suggest that the mobile web service messages of reasonable size, approximately 2-5kb,

can be secured with web service security standard specifications. The security delays

caused are approximately 3-5 seconds. We could also conclude from the analysis that

the best way of securing messages in a Mobile Enterprise is to use Advanced Encryption

Standard (AES) symmetric encryption with 256 bit key, and to exchange the keys with

RSA 1024 bit asymmetric key exchange mechanism and signing the messages with

RSA with SHA1. But there are still high performance penalties when messages are

both encrypted and signed. Therefore, it is suggested to encrypt only the parts of

the message, which are critical in terms of security and signing the message. The

signing on top of the encryption can completely be avoided in specific applications

with lower security requirements. In terms of scalability, the layered model of web

service communication, introduces a lot of message overhead to the exchanged verbose

XML based SOAP messages. This consumes a lot of resources, since all this additional

information has to be exchanged over the radio link. Thus for improving scalability

the messages are to be compressed without effecting the interoperability of the mobile

12

2.2 Mobile Enterprise

web services. Message compression also improves the energy efficiency of the devices

as there will be less data to transmit.

2.2.3 Discovery aspects of the Mobile Enterprise

In a commercial Mobile Enterprise with Mobile Hosts, and with each Mobile Host

providing some services for the Internet, expected number of services to be published

could be quite high. Generally web services are published by advertising WSDL (Web

Services Description Language) descriptions in a UDDI registry. But with huge number

of services possible with Mobile Hosts, a centralized solution is not the best idea, as

they can have bottle necks and can introduce single points of failure. Besides, mobile

networks are quite dynamic due to the node movement. Devices can join or leave

network at any time and can switch from one operator to another operator. This

makes the binding information in the WSDL documents, inappropriate. Hence the

services are to be republished every time the Mobile Host changes the network.

Dynamic service discovery is one of the most extensively explored research top-

ics in the recent times. Most of these service discovery protocols are based on the

announce-listen model like in Jini. In this model periodic multicast mechanism is used

for service announcement and discovery. But these mechanisms assume a service proxy

object that acts as the registry and it is always available. For instance, Berger, S.

et al. (17) claims to expand web services to mobile devices while exploring the issues

that arise due the mobility of devices hosting web services, such as service discovery,

device disambiguation and software footprint. This work claims to provide mobile web

services from smart phones relying in UUID for publishing the services and its dis-

covery mechanism is rather simple without any consideration of the device context or

preferences. Similarly, Steele, R. et al. (18) presents an architecture for discovery and

invocation of mobile web services through automatically generated abstract multimodal

user interface. This work presents a prototype indented to auto-generate user interfaces

based on XForms and VoiceXml from WSDL files. However, this work focuses on the

discovery and relies in the UUID mechanism for discovering the mobile web services

but lacks the provisioning of services from the devices. Capra, L. et al. (19) presents

Q-CALI, a resource discovery framework that claims to enable pervasive application to

discover and select the resource that best satisfy the users’ needs, taking into account

the current execution context and QoS requirements. It introduces its own resource

13

2. STATE OF THE ART

description protocol. However, it lacks of technical details about the discovery protocol

and does not addresses the mobility and scalability issues associated to mobile devices.

Moreover, since they propose their own resource description protocol integration issues

arise when trying to connect with other services such as web services and cloud ser-

vices. Furthermore, for dynamic ad hoc networks, assuming the existence of devices

that are stable and powerful enough to play the role of the central service registries is

inappropriate. Hence services distributed in the ad-hoc networks must be discovered

without a centralized registry and should be able to support spontaneous peer to peer

connectivity.

Considering these developments and the need for distributed registry and dynamic

discovery, Srirama et al. (20) studied alternative means of mobile web service discovery

and realized a discovery mechanism in the P2P network. In this solution, the virtual

P2P network also called the mobile P2P network is established in the mobile operator

network with one of the nodes in operator proprietary network, acting as a JXTA

super peer. JXTA (Juxtapose) is an open source P2P protocol specification. Once the

virtual P2P network is established, the services deployed on Mobile Host in the JXME

virtual P2P network are to be published as JXTA advertisements, so that they can

be sensed as JXTA services among other peers. JXTA specifies Modules as a generic

abstraction that allows peers to describe and instantiate any type of implementation of

behavior representing any piece of c̈odëın the JXTA world. So the mobile web services

are published as JXTA modules in the virtual P2P network. Once published to the

mobile P2P network, the services can later be discovered by using the keyword based

search provided by JXTA. This approach also considered categorizing the services and

the advanced features like context aware service discovery. We address the discovery

solution as mobile P2P discovery mechanism. The evaluation of the discovery approach

suggested that the smart phones are successful in identifying the services in the P2P

network, with reasonable performance penalties for the Mobile Host.

2.2.4 Mobile Web Services Mediation Framework

Mobile Hosts with proper QoS and discovery mechanisms, enable seamless integration

of user-specific services to the Mobile Enterprise. Moreover services provided by the

Mobile Host can be integrated with larger enterprise services bringing added value to

these services. However, enterprise networks deploy disparate applications, platforms,

14

2.2 Mobile Enterprise

and business processes that need to communicate or exchange data with each other

or with the Mobile Hosts. The applications, platforms and processes of enterprise net-

works generally have non-compatible data formats and non-compatible communications

protocols. Besides, the QoS and discovery study of the Mobile Host offered solutions in

disparate technologies like JXTA. This leads to serious integration problems within the

networks. The integration problem extends further if two or more of such enterprise

networks have to communicate among themselves. We generally address this research

scope and domain, as the Enterprise Service Integration.

The mobile web services mediation framework (MWSMF), introduced by Srirama

et al. (9) is established as an intermediary between the web service clients and the

Mobile Hosts in mobile enterprise. Enterprise Service Bus (EBS) is used as the back-

ground technology in realizing the mediation framework. MWSMF relies on EBS for

provisioning services from resource constrained devices.

The mediation framework proposed by Srirama, relied on ServiceMix (21), an

open source implementation of ESB, based on the Java Business Integration speci-

fication (22). JBI architecture supports two types of components Service Engines and

Binding Components. Service engines are components responsible for implementing

business logic and they can be service providers/consumers. Service engine components

support content-based routing, orchestration, rules, data transformations etc. Service

engines communicate with the system by exchanging normalized messages across the

normalized message router (NMR). The normalized messaging model is based on WSDL

specification. Binding components are used to send and receive messages across specific

protocols and transports. The binding components marshal and un-marshal messages

to and from protocol-specific data formats to normalized messages.

The HttpReceiver component of the MWSMF receives the web service requests

(SOAP over HTTP) over a specific port and forwards them to the Broker component

via NMR. The main integration logic of the mediation framework is maintained at the

Broker component. For example, in case of the scalability maintenance, the messages

received by Broker are verified for mobile web service messages. If the messages are

normal Http requests, they are handled by the HttpInvoker binding component. If they

comprise mobile web service messages, the Broker component further ensures the QoS of

the mobile web service messages and transforms them as and when necessary, using the

QoS Verifier service engine component, and routes the messages, based on their content,

15

2. STATE OF THE ART

to the respective Mobile Hosts. The framework also ensures that once the mobile P2P

network is established, the web service clients can discover the services using mobile

P2P discovery mechanism and can access deployed services across MWSMF and JXTA

network.

Apart from security and improvements to the scalability, QoS provisioning features

of the MWSMF also include message persistence, guaranteed delivery, failure handling

and transaction support. External web service clients, that do not participate in the

mobile P2P network, can also directly access the services deployed on the Mobile Hosts

via MWSMF, as long as the web services are published with any public UDDI registry

or the registry deployed at the mediation framework and the Mobile Hosts are provided

with public IPs. This approach evades the JXME network completely. Thus the me-

diation framework acts as an external gateway from Internet to the Mobile Hosts and

mobile P2P network. The framework also provides a bird view of the mobile enterprise

to the cellular operator, so that business scenarios can be drawn out of it.

Other work which considers the provisioning of web and cloud services is VOLARE (23),

proposed by Papakos, P. VOLARE is a middleware approach that enables dynamic

adaptation of cloud service discovery and binding according to the context of a mobile

device. The work claims to guarantee QoS level supported by the context, efficient

resource utilization and savings in monetary provision cost. It enables the service

discovery by intercepting the application requests, monitoring of the client’s context,

dynamic adaptation to the current QoS levels achievable, binding among the context

of the device and the QoS levels required as described by declarative adaption policies.

This work focuses in the discovery of cloud services from mobile devices and tries to

guarantee QoS levels taking into account the user’s context, which is likely volatile in

mobile devices. Notwithstanding, it does not consider the provisioning of services from

mobile devices neither its interaction with cloud services which might lead to interesting

application scenarios.

2.3 Cloud Computing

While the MWSMF was successful in achieving the integrational requirements of the

Mobile Host and the Mobile Enterprise, a standalone framework still faces the troubles

with heavy loads. The problems with scalability are quite relevant in such scenarios and

16

2.3 Cloud Computing

the system should scale on demand. For example number of Mobile Hosts providing

the services and the number of services provided by the Mobile Hosts can explode while

some events are underway such as the football Euro cup, or the Japanese Earthquakes

in 2011. This increases the number of MWS clients the framework has to support.

Elasticity of the framework can be defined as its ability to adjust according to the

varying number of requests it has to support. The MWSMF considers public clouds

to address issues in scalability of mobile operator proprietary networks, to achieve

elasticity, horizontal scaling (scaling by adding more nodes to the cluster, rather than

increasing performance of a single node) and load balancing (11).

Cloud computing is a style of computing in which, typically, resources scalable

on demand are provided as a service (aaS) over the Internet to users who need not

have knowledge of, expertise in, or control over the cloud infrastructure that supports

them. Cloud computing mainly forwards the idea of utility computing along with

virtualization. In the utility computing model, consumers pay based on their usage

of computing resources, just like the traditional utility services e.g. water, electricity,

gas etc. Just like any utility services model cloud computing benefits from economies

of scale. On the other hand, virtualization technologies partition hardware and thus

provide flexible and scalable computing platforms. Servers in the cloud can be physical

machines or virtual machines. A cloud computing platform dynamically provisions,

configures, reconfigures, and de-provisions servers as requested (24). Cloud services

are provided on demand and at different levels.

The provisioning of services can be at the Infrastructural level (IaaS) or Platform

level (PaaS) or at the Software level (SaaS). In the IaaS, commodity computers, dis-

tributed across Internet, are used to perform parallel processing, distributed storage,

indexing and mining of data. IaaS provides complete control over the operating system

and the clients benefit from the computing resources like processing power and storage,

e.g. Amazon Elastic Cloud Computing (EC2) (25). Virtualization is the key technol-

ogy behind realization of these services. PaaS mainly provides hosting environments

for other applications. Clients can deploy the domain specific applications on these

platforms, e.g. Google App Engine (26). These applications are in turn provided to

the users as SaaS. SaaS are generally accessible from web browsers, e.g. facebook. Web

2.0 is the main technology behind the realization of SaaS. However, the abstraction

17

2. STATE OF THE ART

between the layers is not concrete and several of the examples can be argued for other

layers.

There are several public clouds on the market such as Google Apps, Google App

Engine and Amazon EC2. Elastic Java Virtual Machine on Google App Engine allows

developers to concentrate on creating functionality rather than bother about mainte-

nance and system setup. However, such sandboxing places some restrictions on the

allowed functionality. Amazon EC2 on the other hand allows full control over virtual

machine, starting from the operating system. It is possible to select a suitable operat-

ing system, and platform (32 and 64 bit) from many available Amazon Machine Images

(AMI) and several possible virtual machines, which differ in CPU power, memory and

disk space. This functionality allows to freely selecting suitable technologies for any

particular task. In case of EC2, price for the service depends on machine size, its time

up, and used bandwidth in and out of the cloud. Moreover, there are free implementa-

tions of EC2 compatible cloud infrastructure e.g. Eucalyptus (27), that help in creating

private clouds. Thus the cloud computing application scan initially be developed at

the private clouds and later can be scaled to the public clouds. The setup is of great

help for the research and academic communities, as the initial expenses of experiments

can be reduced by great extent.

To achieve the scalability for the mediation framework, the MWSMF was installed

on the Amazon EC2 cloud. Once the Amazon Machine Images (AMI) are configured,

stateless nature of the MWSMF allows, fairly easy horizontal scaling by adding more

MWSMF nodes and distributing the load among them with the load balancer.

2.4 Semantics in Web Service Provisioning

Web Services have been in the ground for the last decade and have been widely em-

braced by the industry. Moreover, as a result of the extensive research conducted in

the field, extensions to composition of web services and semantic support have been

included. In the matter of semantics support, McIlraith S.A. et al (28) proposed the

markup of Web services in the DARPA Agent Markup Language (DAML) family of

Semantic Web markup languages. This markup enables a wide variety of agent tech-

nologies for automated Web service discovery, execution, composition and interopera-

tion. The authors present one such technology for automated Web service composition.

18

2.5 Summary

Further, Ankolekar A. et al. (29) introduced DAML-S, a DAML+OIL ontology for de-

scribing the properties and capabilities of Web Services. DAML-S provides Web Service

descriptions at the application layer, describing what a service can do, and not just how

it does it. Ankolekar describes three aspects of the ontology: the service profile, the

process model, and the service grounding. The work focuses on the grounding, which

connects the ontology with low-level XML-based descriptions of Web Services.

Further, Sivashanmugam, K. et al. (30) proposed to develop semantic Web services

where by the Web Services are annotated based on shared ontologies, and use these

annotations for semantic-based discovery of relevant Web services. However, this work

just describes how the services are annotated but does not propose any architecture

for the service provisioning. Further, Verma, K. (31) introduced METEOR-S Web Ser-

vice Discovery Infrastructure. In this work, they present a scalable, high performance

environment for Web service publication and discovery among multiple registries. It or-

ganizes registries into domains, enabling domain based classification of all Web services

by means of a ontology-based approach. METEOR-S enables semantic discovery by

adding semantic annotations to Web service specifications either in registries or service

descriptions. Moreover, it relies on SAWS algorithm (32) to automate the mapping

between WSDL concepts and the domain specific ontologies. The search of services is

carried on using templates constructed using ontological concepts. Finally, they pro-

vide peer-to-peer support by means of JXTA protocols. Nevertheless this work provides

semantic discovery and publications in peer-to-peer networks they do not provide any

study or extension to resource constraint devices such as smart phones.

2.5 Summary

The developments in the web services domain, the improved device capabilities of the

smart phones and the improved transmission capabilities of the cellular networks have

lead to the mobile web services provisioning domain. This chapter summarized the

challenges and research associated in this domain and establishing the Mobile Enter-

prise. The QoS aspects of the developed Mobile Host, like providing proper security

and scalability, and the discovery of the provided services are described briefly. Fur-

ther, the QoS and discovery demands of the Mobile Host have raised the necessity for a

19

2. STATE OF THE ART

middleware framework and the features and realization details of the MWSMF were dis-

cussed. However to scale of Mobile Enterprise to the loads possible in mobile networks,

MWSMF was shifted to the cloud and the overall description of such implementation

is addressed. It also described how MWSMF is horizontally scalable, thus allowing to

utilize cloud’s elasticity to meet load requirements in an easy and quick manner. The

chapter also discussed the study and research around semantic web services.

20

3

Mobile Host in Android

Smart phones are generally used for accessing different types of services like the location

based services, mobile web services, mobile cloud services etc. from different providers.

However, one can envision providing services from the smart phone with the latest

developments in the mobile devices in hardware (embedded sensors, memory, power

consumption, touch screen, better ergonomic design, etc.), in software (more numerous

and more sophisticated applications due to the release of iOS and Android platforms), in

transmission (higher data transmission rates achieved with 3G and 4G technologies) and

in Wi-Fi networks ubiquity. Mobile web service provisioning was studied extensively

and Mobile Host’s QoS issues in terms of security and scalability, discovery issues

and integration aspects are addressed thoroughly at (8), as already mentioned in the

previous section.

As the popularity of Android rose and with the upcoming of standards like Open

Services Gateway initiative (OSGi) framework, we have upgraded the research to the

current generation mobile devices and technologies. The OSGi framework is a mod-

ule system and service platform for the Java programming language. With OSGi,

applications or components can be remotely installed, started, stopped, updated and

uninstalled without requiring a reboot. Application life cycle management (start, stop,

install, etc.) is done via APIs that allow for remote downloading of management poli-

cies. Mobile Host for Android is realized using Apache Felix, an OSGI implementation

for Android. The services run as bundles within Felix and the invocation of the ser-

vices is through REST protocol. So the services are considered as resources that can

be accessed via HTTP requests. Android Software Development Kit (SDK) provides

21

3. MOBILE HOST IN ANDROID

Figure 3.1: Architecture of Mobile Host for Android

a mechanism to establish Server Sockets communication between the device and the

clients; consequently, the HTTP request can be handled from the device.

3.1 Mobile Host Architecture and Realization

Nevertheless, smart phones are equipped with the hardware for the provisioning of

services; several issues arise when providing web services. For instance, from the devel-

opment perspective the services should be maintainable, easy to install, and most often

focus on resources more than in services. In addition, from the provisioning perspec-

tive, the mobile nature of smart phones brings challenges such as the addressability,

reachability and reliability. The upgrades in Mobile Host address these issues relying

in several technologies such as OSGI and ZeroConf. The architecture of Mobile Host

for Android is shown in the figure 3.1.

Mobile Host accepts connections through HTTP or Extensible Messaging and Pres-

ence Protocol (XMPP). Mobile Host for Android is designed to follow the RESTful

architecture. REST is an architecture in which the key resources (entities, collections,

services, etc.) are identified by its own URI. The standard methods are mapped to

resource-specific semantics. All resources implement the same uniform interface. In

this way, for example: the picture ”logo.png” requested by the client can be accessed

through a GET HTTP request to the URI ”/logos/logo.png”. Once a request is re-

ceived, it is passed to the REST handler which parses the request to know the resource

requested by the client. After, the REST handler passes the request to the Request Re-

solver which accesses the OSGI engine for resolving the request. The Request Resolver

gets the instance of the service which is running in the OSGi Engine. As mentioned

22

3.2 Mobile Host Services

before, the OSGI Framework runs a pool of services, named OSGI Services, which can

be managed remotely and easily deployed. Each OSGI Service deployed in the OSGI

Engine implements a Java Interface enforcing the service to handle the HTTP method

such as GET, POST, DELETE, etc. Once the Request Resolver acquired the service

instance it invokes the method corresponding to the HTTP requests. For example, if

the HTTP Request was sent as a GET then the Request Resolver will invoke the doGet

method of the service. The control is passed to the OSGI Service. The OSGI Service

implements the service logic like retrieving pictures, contacts, accessing the GPS loca-

tion, etc. The OSGI Service also prepares the response which is later delivered to the

client. The response can be in any format (XML, JSON, plain text, etc.) or a mime

type based on the logic of the service. Finally the OSGI Service writes the response to

the socket according to HTTP or XMPP protocol.

3.2 Mobile Host Services

The OSGI Services are deployed as bundles and each bundle needs to be registered in the

OSGI framework to make the service available for invocation. During the registration

process the OSGI Service provides to the OSGI Engine information about itself such

as the name of service. This name is later used by the Request Resolver for invocation

purposes. From a developer perspective an OSGI Service needs to implement two Java

Interfaces named BundleActivator and SroidService. The BundleActivator contains

the methods required for the registration of the service in the OSGI Engine. The

figure 3.2 illustrates an Activator for a GPS Service. In this activator the method

Start (1) registers the service with the name of ”AndroidGPS” to be searchable in

the engine. Similarly, the SroidService contains the methods required for the service

provisioning. The SroidService interface, shown in the figure 3.3, guarantees that the

OSGI Services handle the HTTP methods GET, PUT, DELETE and POST . In this

interface the method doCreate has the function of the constructor in a normal class in

object oriented programming, and can be used for any variable or process initialization.

Nevertheless Mobile Host is based on REST architecture, the services might need

to receive GET or POST parameters sent along with the HTTP request or write infor-

mation to the socket established between the clients and Mobile Host. For addressing

these needs Mobile Host provides of two Java Classes, SroidRequest and SroidResponse

23

3. MOBILE HOST IN ANDROID

Figure 3.2: Activator Class - GPS Service

Figure 3.3: SroidService Interface

24

3.3 Sample Web Services Provided by Mobile Host

Figure 3.4: Class Diagram for a GPS Mobile Host Service

respectively. The SroidRequest Class encapsulates the logic for parsing the HTTP re-

quest and maps the parameters, if any, to a HashMap accessible from the OSGI Services.

Similarly, the SroidResponse Class encapsulates the logic for writing information to the

socket previously established by the client with Mobile Host. The Class diagram shown

in the figure 3.4 describes the classes and relationships needed to create a Mobile Web

Service for Mobile Host in Android.

The OSGi services can be deployed as Java Archive (JAR) files containing the

implementation of both interfaces, Activator and SroidService. When Mobile Host

starts, it takes each JAR file from the folder SroidServices, in the Android File System,

and deploys the services in the OSGI Engine. Once the services are registered in the

OSGI Engine they are ready to be invoking from the Request Resolver.

3.3 Sample Web Services Provided by Mobile Host

Mobile Host fosters the next generation of applications that rely in context-awareness

and ubiquitous information. The implementation of Mobile Host for Android intro-

duces, as samples, a Location GPS Data Provisioning Service and the Push Notifica-

tion Messages. Both services can be widely used for ubiquitous and context-awareness

scenarios.

25

3. MOBILE HOST IN ANDROID

3.3.1 Location (GPS) Data Provisioning Service (Location Informa-

tion Service)

This web service provides the location information of the mobile device by using the

GPS embedded in the mobile device. As mentioned before, nowadays smart phones

are equipped with sensors such as GPS. The GPS is a Department of Defense (DoD)

developed, worldwide, satellite-based radio navigation system. The constellation con-

sists of 31 operational satellites and is fully operational since 1995. GPS provides two

levels of service, Standard Positioning Service and the Precise Positioning Service. The

Standard Positioning Service is a positioning and timing service which will be available

to all GPS users on a continuous, worldwide basis with no direct charge. The Precise

Positioning Service is a highly accurate military positioning, velocity and timing ser-

vice which will be available on a continuous, worldwide basis to users authorized by the

U.S. However, the standard positioning service, available for common purposes, lacks

of accuracy when the receiver device is indoors. As an alternative smart phones can

also determine the device location by using Wi-Fi network.

The service developed for Mobile Host supports both location mechanisms and re-

turns the latitude and longitude of the current position of the device in the globe

in JavaScript Object Notation (JSON) format. There are several scenarios that can

benefit from such service. For instance, we can envision a pro-active service for recom-

mendations. Typically, recommendation services such as foursquare (33) are reactive,

it means the mobile user should ask for recommendations to the provider and send

its location along with the recommendation request. With the GPS service in Mobile

Host the provider can shift to a proactive approach, asking to the device for its current

location and then push the recommendations to the device.

3.3.2 Push Notification Service

Mobile applications have improved significantly in the last lustrum. They provide more

sophisticated functionality to the user but also they demand more resources in hard-

ware and software to support such functionality. Therefore, mobile technologies are

looking into the emerging cloud computing domain to satisfy the increasing demand

from mobile applications for processing power, storage space and energy. Nevertheless,

26

3.3 Sample Web Services Provided by Mobile Host

mobile applications that rely in the clouds provide more sophisticated and rich func-

tionality to the users, they happen to take a long time to provide those functionalities.

Extensive research is being carried on in the cloud-based service provisioning. Mobile

Cloud Middleware (MCM) and MWSMF are two middleware solutions that enable mo-

bile devices access web services and cloud services from smart phones. However, MCM

and MWSMF required an asynchronous mechanism for the communication between

the middleware and the mobile devices, mainly but not only for notifications. We have

developed a Push Notification Service mechanism that runs on Mobile Host enabling

the asynchronous communication between the middleware solutions and the device.

One application developed by means of MCM and Mobile Host is CroudSTag (34).

It takes a set of pictures and videos from the cloud and processes them with the aim of

social group formation by means of facial recognition technologies. CroudSTag takes

approximately 35 minutes to process a three-minute video recorded with a mobile phone

in high definition. Such waiting time is not tolerable for the user and mobile application

usability perspective. Moreover, the operating system kills a process when it is running

out of memory (Android case). CroudSTag relies in the MCM for the mobile cloud

services invocation and MCM relies in Mobile Host for notify asynchronously to the

device about the CroudSTag’s results. The Push Notification Mechanism is discussed in

detail in Chapter 5 along with a detailed analysis of other Push Notification approaches.

3.3.3 File Browsing Service

This web service enables to access the files such as pictures and documents in the public

folder in the mobile device. Following the REST philosophy each files is a resource and

can be accessed through its corresponding URL. This service was used for testing the

performance of the Mobile Host implementation. The experiments consider a GET

request for downloading a picture of 1.5MB size. Tsung, a load testing tool, was used

for conducting the experiments. In addition, a Samsung Galaxy SII phone (35), with

8 megapixel color camera with auto focus and flash was considered for the analysis.

The phone has a Dual-Core 1.2GHz Cortes-A9 CPU, 1GB of RAM, 16GB for storage.

The services and applications were developed based on Android platform, compatible

with Android 2.2 API or higher. The experiments were conducted under Wi-Fi and

3G networks. So the tests were taken in a network with upload rate of ≈ 4393 kbps

27

3. MOBILE HOST IN ANDROID

Figure 3.5: File Browsing Service - Simultaneous connections serve by Mobile Host

and download rate of ≈ 5648 kbps, respectively and a 3G network with upload rate of

≈ 1487 kbps and download rate of ≈ 4597kbps.

From the graphic in the figure 3.5 we can observe that Mobile Host for Android

can handle ≈ 20 concurrent users with a response time of ≈ 31 seconds (in the worst

case) in Wi-Fi networks, and ≈ 6 concurrent connections with a response time of ≈ 57

seconds in 3G networks. In this case we are assuming that a waiting time of 30 seconds

is reasonable from the user perspective. One should observe that the timestamps are

for the slowest invocation in a set of n concurrent requests. Similarly, assuming that

the user is whiling to wait 60 seconds for the results, Mobile Host is capable of handling

≈ 40 concurrent connections in Wi-Fi and ≈ 15 connections in 3G.

3.4 Summary

The chapter describes the new developments in the realization of Mobile Host. Mobile

Host has been updated to the latest technologies such as Android and iOS. Moreover,

the Mobile Host architecture for Android considers Open Service Gateway initiative

(OSGi) for the service management, and ZeroConf for publishing and advertising the

services. The clients can access the Mobile Host services via HTTP or XMPP protocol

using REST philosophy in which services are abstracted as resources. Furthermore,

28

3.4 Summary

the chapter addresses the technical details for developing services for Mobile Host. It

explains in detail the technical aspects for developing mobile web services capable to

access the device resources. As examples, the chapter presents three services developed

using such approach. Finally, the chapter summarizes the performance testing results

showing that the Mobile Host for Android presents reasonable performance when pro-

viding mobile web services.

29

3. MOBILE HOST IN ANDROID

30

4

Mobile Web and Mobile Cloud

Service Discovery

Mobile Host can also provide its services through P2P networks. P2P is a set of dis-

tributed computing model systems and applications used to perform a critical function

in a decentralized manner. P2P takes advantage of resources of individual peers like

storage space, processing power, content, which are all critical for smart phones, and

achieves scalability, cost sharing and anonymity, thereby enabling ad-hoc communica-

tion and collaboration. In order to reap the benefits of P2P, by achieving increased

application scope, and targeting efficient utilization of resources of individual mobile

peers, we tried to adapt Mobile Host into P2P networks.

Moreover, mobile applications are increasing in number and complexity and a signif-

icant number of those applications rely on mobile web services. This popularity of the

mobile web services demands an efficient and effective discovery mechanism to reduce

the bottlenecks and to proceed with the mobile web service provisioning and invocation

with success. Furthermore, the traditional centralized registry mechanism for web ser-

vices does not suit for the mobile nature of smart phones. Therefore, the search for an

appropriate mechanism for the mobile web service and mobile cloud service discovery

is required.

The service discovery requirements associated to the mobile web service provision-

ing are highly dependent of the size of the network and the mobility of the nodes.

Mian et al. (36) characterized the service discovery protocols in the basis of the size

of the network and mobility of the nodes. Moreover, for the analysis Mian takes into

31

4. MOBILE WEB AND MOBILE CLOUD SERVICE DISCOVERY

consideration if the discovery mechanism keeps a directory of the services and if the

discovery mechanisms build overlay-networks for routing purposes. Furthermore, Mian

defines three levels of mobility (low, medium and high) and three sizes of networks

(small, medium and large). Small networks (up to 10 nodes) with low mobility (up

to five km per hour, such as in a building) bring different requirements than a large

network (greater than 100 nodes) with high mobility (greater than 50 km per hour,

such as highway traffic speeds). For example, in large networks and low mobility, over-

lay networks provide an efficient routing mechanism for searching. Moreover, the low

mobility does not bring any issues in terms of maintenance. However, if the mobility

turns to be high, the maintenance of the overlay networks becomes an issue. One more

example is the small networks with high mobility where the maintenance of directory

service is unfeasible and the overlay networks are not necessary. Consequently, the

decision to whether include a service directory or whether to build overlay networks

is driven by the mobility and size of the mobile networks. Mobile Host supports two

discovery mechanisms: a directory-based with overlay support discovery mechanism for

large networks with high mobility; and a directory-less with overlay support discovery

mechanism for small networks with low mobility.

4.1 Mobile Host Service Discovery Mechanism

Considering the need for distributed registry and dynamic discovery in mobile web

service provisioning domain, Srirama et al. (37) studied alternative means of mobile

web service discovery and realized a discovery mechanism in the P2P network. In this

solution, the virtual P2P network also called the mobile P2P network is established in

the mobile operator network with one of the nodes in operator proprietary network,

acting as a JXTA super peer. JXTA (Juxtapose) is an open source P2P protocol spec-

ification. Once the virtual P2P network is established, the services deployed on Mobile

Host in the JXME virtual P2P network are to be published as JXTA advertisements,

so that they can be sensed as JXTA services among other peers. JXTA specifies Mod-

ules as a generic abstraction that allows peers to describe and instantiate any type of

implementation of behavior representing any piece of c̈odëın the JXTA world. So the

mobile web services are published as JXTA modules in the virtual P2P network. Once

published to the mobile P2P network, the services can later be discovered by using

32

4.1 Mobile Host Service Discovery Mechanism

the keyword based search provided by JXTA. This approach also considered categoriz-

ing the services and the advanced features like context aware service discovery. This

thesis extended the idea by incorporating the latest technologies, updates in mobile

invocation, better semantic discovery mechanism etc.

4.1.1 Mobile Host Directory-less with Overlay Support Discovery Mech-

anism for Mobile Ad Hoc Networks

Mobile Ad Hoc Networks, MANET, are self-configuring infrastructure less networks

of mobile devices which are connected by wireless links. Each device in a MANET is

able to move independently in any direction, and therefore changes its links to other

devices periodically. Moreover, each device forwards the traffic unrelated to its own

use acting as a router in the network. These networks can be connected to a larger link

such as the Internet. However, several challenges arise in this type of networks such

as addressing, naming, and service discovery. Most often, MANETs are networks of

small size with medium or low mobility. Mobile Host considers ZeroConf for exposing

itself and its services to external devices in MANETs. It consists of a set of techniques

for automatic configuration and creation of a usable local Internet protocol network.

ZeroConf dynamically configures the host in the network assigning them an IP address

and also a domain name. Furthermore, ZeroConf provides a mechanism for service

discovery and domain resolution. Network users no longer have to assign IP addresses,

assign host names, or even type in names to access services on the network. Users simply

query what network services are available, and decide from the list. Applications can

automatically detect services they need or other applications they can interact with,

allowing automatic connection, communication, and data exchange, without requiring

user intervention. Mobile Host uses JmDNS, a service discovery protocol which is an

implementation of ZeroConf. JmDNS assigns a local domain name to Mobile Host

which can be used by other devices to access the services exposed by the host. JmDNS

is also totally compatible with other implementations of ZeroConf for other platforms

such as Bonjour for Apple.

ZeroConf tackles the Addressing issue by self-assigned link-local addressing. This

addressing approach uses a range of addresses reserved for the local network, typically

a small LAN or a single LAN segment. The self-assigned addressing simply picks a

random IP address in the link-local range and tests it. If the address is not already

33

4. MOBILE WEB AND MOBILE CLOUD SERVICE DISCOVERY

used, the device is assigned with that name, otherwise it picks another address and

checks again whether the name is in used or not. Furthermore, the name-to-address

translation capabilities of ZeroConf rely on Multicast DNS (mDNS). In Multicast DNS

the DNS-format queries are sent over the local network using IP multicast, therefore

no single DNS server with global knowledge is required to answer the queries. Each

service or device can provide its own DNS capabilities in such a way that if a query

is received asking for its own name the device provides a DNS response with its own

address. This name-to-address translation mechanism requires the service names to be

unique in the network. Implementations of ZeroConf such as JmDNS (Android) and

Bonjour (Apple) automatically rename the service in case of collisions. The service

name convention follows a DNS-format which includes the service type, transport pro-

tocol, and the domain where the service is exposed. In case of MANETs the domain

happens to be ”local.” and the type should follows the DNS SRV (RFC 2782) Service

Types standards (38). For example, the service name http. tcp.local. corresponds to

a Mobile Host service of type http, for web services, provided through tcp protocol in

the local network.

The final element of ZeroConf is the service discovery. This service discovery enables

to other devices to find all the available instances of a particular type of service and to

maintain the service directory. Once a device has discovered a service then it resolves

the service name to an IP address and port number which can be used later on for

the service invocation. The service directory provides a layer for indirection between

a service and its current IP address and port. Furthermore, this indirection enables

the application to keep a persistent list of available services and resolve an actual

network addresses just prior to using a service. The service directory can be relocated

dynamically with low network traffic penalties. This dynamical updating capability of

the service directory addresses the mobility of the devices which can enter and leave

the MANETs at any time. The service discovery is accomplished by sending an mDNS

query for a given type a domain. Later, all the matching services reply with their

names. The service names received are listed in the local service directory.

ZeroConf is a service-oriented discovery mechanism. The devices query for service

not for host providing the services. The service directory stores service names instead

of addresses. If, due to the mobility of smart phones, the IP address, port number, or

34

4.1 Mobile Host Service Discovery Mechanism

Figure 4.1: Discovery Mechanism in Mobile Ad-hoc Networks

host name changes, the devices can still invoke the mobile web services. The figure 4.1

illustrates the discovery mechanism in MANETs.

4.1.2 Mobile Host in Wide Area Networks

Mobile Host can easily scale in large networks with high mobility nodes by including

Wide Area Bonjour support based on DNS Service Discovery. The DNS Service Dis-

covery enables the service discovery via DNS records in the wide area network and also

the self-configuration of devices in order to be accessible from other devices.

The Wide-Area DNS Service Discovery automatically advertises a set of services

by simply adding a few records to a DNS server. The first set of records aims the

domain enumeration records, inviting the clients to browse the domain. The second

set of records is meant to list the services entities. Finally, the third set of records

describe each named service, previously defined in the second set of records, with SRV

and TXT records. The TXT and SRV records describe the service end point and port.

The figure 4.2 illustrates the DNS records necessary for advertising a web service in

DNS-SD. From the figure, the record (1) enables the DNS dynamic updates, in this case

the updates come from Mobile Host when it updates its information such as services or

current address. (2) and (3) enables the domain to be discovered. (4) Set the domain

35

4. MOBILE WEB AND MOBILE CLOUD SERVICE DISCOVERY

Figure 4.2: DNS-SD Records

to be chosen as the default. (5) For this domain to show up in the list of potential

registration domains and (6) to be chosen as the default registration domain. Finally,

(7) is used to enable clients, that do empty-string domain requests, to browse not only

the ”local.” zone.

When a client tries to discover a service, it needs to determine whether to use

Wide-Area DNS-SD to browse for services. To do so, it first pre-appends the text

lb. dns− sd. udp to the default DNS domain and then does a query for PTR records.

The client should receive as response the domain it is trying to browse for services. For

example, if the client tries to discover mobile web services in the domain mcrlabs.net

the query for PTR records (lb. dns − sd. udp.mcrlabs.net) should return the same

mcrlabs.net domain. After confirming that the domain is browsable for services the

client can discover all the services registered under that domain. The client receives

updates about the services via multicast packages sent through the network. Moreover,

a client can browse several domains at a time, discovering a wide spectrum of services

in the Internet.

Mobile Host discovery mechanism relies in DNS-SD for maintaining a directory of

the mobile web services available in the Internet. Consequently, the clients just need to

browse service domains and discover the registered services. Nevertheless Mobile Host

registers its services in the DNS-SD once when it starts, the mobility nature of the

devices require that Mobile Host updates its IP in the DNS Service Discovery records

every time it moves from one wireless network to another. When a request comes, the

DNS routes it to the most recent address updated by the mobile device. This way the

dynamic nature of the devices is addressed and the services can be invoked from other

devices in the network. The figure 4.3 illustrates such a scenario.

36

4.2 Peer-to-Peer Service Discovery in Android

Figure 4.3: Discovery Mechanism in Wide Area Networks

4.2 Peer-to-Peer Service Discovery in Android

Previous implementations of Mobile Host rely in JXTA networks for advertising, index-

ing and addressing the services provided by the device. JXTA (Juxtapose) is an open

source P2P protocol specification. JXTA defines two main categories of peers named

edge peers and super-peers. Further the super-peers can be divided into rendezvous

and relay peers. JXTA (Juxtapose) is an open source P2P protocol specification which

supports different types of peers to be connected to the network. The general peers are

called edge peers. An edge peer registers itself with a rendezvous peer to connect to

the JXTA network. Rendezvous peers cache and maintain an index of advertisements

published by other peers in the P2P network. Rendezvous peers also participate in for-

warding the discovery requests across the P2P network. A relay peer maintains route

information and routes messages to peers behind the firewalls. A super peer has the

functionality of both relay and rendezvous peers.

In the mobile P2P network, the super peer can exist at Base Transceiver Station

(BTS) and can be connected to other base stations, thus extending the JXTA network

into the mobile operator network. Alternatively, super peer can exist in nodes with

capabilities to act as relay and rendezvoud peers. Any Mobile Host or mobile web

37

4. MOBILE WEB AND MOBILE CLOUD SERVICE DISCOVERY

service client in the wireless network can connect to the P2P network using the node

at base station as the rendezvous peer. The super peer can also relay requests to and

from JXTA network, to the smart phones. Standalone systems can also participate in

such a network as both rendezvous and relay peers, if the operator network allows such

functionality, further extending the mobile P2P network (37). This study does not

discard this approach but instead we update it to the latest Android developments and

extend it by adding ZeroConf and DNS-SD support. Once the virtual P2P network is

established, the services deployed on Mobile Host are to be published as JXTA adver-

tisements, so that they can be sensed as JXTA services among other peers, specifically

by rendezvous peers. Each mobile web service, deployed in Mobile Host, shares its

JXTA advertisement containing the WSDL file of the service.

Generally web services are published by advertising WSDL descriptions in a UDDI

registry. However, due to the huge number of services possible with Mobile Host and

the dynamics of the mobile networks, a centralized solution for publishing and indexing

of services is not the best approach since such centralized solutions can have bottlenecks

and can make single points of failure. In JXTA the decentralization is achieved with

the advertisements. All resources like peers, peer groups and the services provided

by peers in JXTA network are described using Advertisements. Advertisements are

language-neutral metadata structures represented as XML documents. Peers discover

each other, the resources available in the network and the services provided by peers

and peer groups, by searching for their corresponding advertisements. Peers may cache

any of the discovered advertisements locally.

Every advertisement exists with a lifetime that specifies the availability of that

resource. Lifetimes give the opportunity to control out of date resources without the

need for any centralized control mechanism. To extend the life time of an advertisement,

the advertisements are to be republished. Later, the services can be discovered by using

the keyword based search mechanism provided by JXTA. However, this search happens

to be basic and thus returning a large number of services that match the keyword.

Moreover, the discovery client in mobile web services scenario is a smart phone. So the

result should be rather small and meaningful so that the user can scroll through a list

of services and can select the service that fits the best to her/his needs. To tackle this

problem this work considers the original Lucene filter mechanism of Mobile Host and

proposes a Semantic Service Search.

38

4.3 Keyword-Based Service Search with Solr

4.3 Keyword-Based Service Search with Solr

Mobile Host extends the search criteria to WSDL level. This means that search param-

eters are not restricted to the JXTA advertisement details. The search also extends by

looking up the WSDL tags and information. This approach assumes that people usually

express their opinion by using frequently used words and the frequency of a keyword

in WSDL description is also relevant. Hence the basic JXTA search is improved by

means of Solr (39). Solr is an open source search platform based on Apache Lucene

Project (40). Solr supports full-text search, hit highlighting, faceted search, dynamic

clustering, database integration, rich documents handling such as Word and Pdf files,

geospatial search among others. Solr is written in Java and runs as a standalone full-

text search server within a servlet container such as Tomcat. Moreover, Solr provides

a REST-like HTTP/XML and JSON APIs to access the index data.

The keyword service search mechanism proposed in this work utilizes WSDL for

indexing the services discovered in the peer-to-peer JXTA networks. When a new

mobile web service advertisement is discovered by the rendezvous peers, the WSDL

description extracted from the advertisement is indexed in Solr. In similar fashion,

when an advertisement expires, its corresponding WSDL description is removed from

the Solr indexes. When a client tries to discover the mobile services, it sends a query to

the rendezvous peers in the network along with its service preferences (e.g. environment

and context information). The query is sent via HTTP GET on the select URL with

the query string in the q parameter. The query string contains the keywords to filter

the services. For example, the URL http : //rendezvous : 8983/solr/select/?q =

notification + in + android&rows = 10&indent = on queries for the services which

contain the keywords notification and android. The list of services that matched the

search keywords are sent to the client in XML format. The application parses the XML

response and displays the list of services to the user who can select the service which

fits the best his/her requirements.

In terms of performance this mechanism shows reasonable time responses. From

the table 4.1 we can observe that the highest time response (≈ 3.01 seconds) occurs

under 3G networks. Moreover, the time responses under Wi-Fi networks are below 0.4

seconds. The experiment considered a mobile client application in Android querying

an index of 1000 services in Solr. Nevertheless this mechanism performs well and

39

4. MOBILE WEB AND MOBILE CLOUD SERVICE DISCOVERY

Table 4.1: Semantic and keyword service search performance in seconds

Mechanism Wi-Fi LAN Wi-Fi WAN 3G

Solr 0.1947 0.3502 3.0132

Semantics, OWL-S 7.0653 6.9986 7.4729

provides short time responses, it lacks the accuracy in the results. For example, when

querying for notification services in android the results included all the services that

contain at least one of the keywords thus returning a large list of services that include

services for android, not necessarily notification services, and also notification services

for other operating systems. The expected result for such a query is the list of services

that contains both keywords in their descriptions. Solr prov ides a high performance

keyword-based service search but lacks semantics capabilities to enrich the meaning

of the results. By adding semantics to the service search mechanism it is possible to

improve the quality of the list of services retrieved during the discovery. For example,

Solr does not connect the keywords notification and android in anyway and its search

mechanism is limited to find keywords in the service description. In contrast, with

semantics it is possible to create the association notifications for android thus the

search mechanism is able to find notification services specifically for Android, by means

of reasoners and semantic rules.

4.4 Semantic Search for Discovery of Mobile Web Services

Mobile Host considers ZeroConf and Wide-Area DNS-SD for tackling the naming, ad-

dressing and service discovery challenges in the mobile web service provisioning in local

and global networks. However, the number of mobile web services is constantly increas-

ing and demands a mechanism for filtering the services in order to provide the service

that suit the best for the user requirements in terms of context, resources and func-

tionality. To address this issue we propose a Semantic Search for Discovery of Mobile

Web Services.

As it was mentioned before, Mobile Host supports JXTA networks for advertising,

indexing and addressing the services. Each mobile web service in Mobile Host shares its

40

4.4 Semantic Search for Discovery of Mobile Web Services

JXTA advertisement which includes the WSDL file of the service. WSDL is an XML

language to formally describe a Web service. The WSDL description specifies the ad-

dress, allowable communication mechanisms, interface, and message types of a Web

service. In short, a WSDL description provides all the information a client needs to use

a Web service. WSDL 2.0 was declared a W3C recommendation in June 2007. This

second version of WSDL was created to address issues with WSDL 1.1, many of which

had been identified by the Web Services Interoperability (WS-I) organization (41). In

addition, WSDL 2.0 has good support for HTTP bindings. Consequently, WSDL is

suitable not only for SOAP architecture but also for RESTful architecture. A WSDL

description contains all the details of a Web Service such as the service’s URL, commu-

nication mechanism it understands, what operations can be performed, among other.

This information is used by the clients in order to invoke and consume the services.

When Mobile Host enters the JXTA network it advertises its services along with

their WSDL specification. The rendezvous peers discover the new edge-peer in the net-

work and stores the advertisements received from the edge-peer. Later, the rendezvous

peer parses the JXTA advertisement of the service and extracts the embedded WSDL.

Further, the rendezvous peer passes the WSDL to the Semantic Search Engine (SSE).

The Semantic Search Engine transforms the service WSDL to its corresponding OWL-S

representation. The Semantic Search Engine maintains ontology of mobile and cloud

based services for discovery. When the rendezvous peer registers a new service a new

instance of the service class is created by the SSE. In similar fashion, when the mobile

web service is no longer available, the rendezvous peer senses such event and informs

the Semantic Search Engine, which deletes the service instance from the ontology. The

details of the Semantic Search mechanism are explained in the next section.

4.4.1 OWL-S for Mobile Web Service Discovery

Early implementations of Mobile Host rely in text search and contextualization tech-

niques for reducing the service list sent to the user during a service discovery request.

Srirama et al. (42) considered JXTA networks for advertising, naming, addressing and

discovering the mobile web services. Hence the JXTA search resulted services are or-

dered according to their relevancy using Apache Lucene tool. Lucene is an open source

project that provides a Java based high performance, full-featured text search engine

41

4. MOBILE WEB AND MOBILE CLOUD SERVICE DISCOVERY

Figure 4.4: JXTA Advertisement - Mobile Host

library. Lucene adds indexing and searching capabilities to user applications. In addi-

tion, Lucene can index and search any data that can be mapped to a textual format.

Using the tool and its index mechanism the search results are ordered/filtered and the

advanced matched services are returned to the discovery client.

In this work we try to shift the discovery mechanism to do not only feature text

search but also semantic search. We extend the rendezvous peer functionality by adding

semantic support. As mentioned before, when the rendezvous peer discovers a new

service provider in the network it stores the corresponding advertisement. The figure

4.4 illustrates the advertisement structure of a sample ”Notification” service spread out

through the JXTA network. Further, the rendezvous peer extracts the WSDL from the

advertisement and passes it to the Semantic Search Engine. Later, the Semantic Search

Engine transforms it into OWL-S representation. The figure 4.6 shows the OWL-S

representation corresponding to the WSDL of the Notification Service introduced in

the figure 4.5.

OWL-S is an ontology, within the OWL-based framework of the semantic web, for

describing web services. It will enable users and software agents to automatically dis-

cover, invoke, compose, and monitor web resources offering services, under specified

constraints (43). OWL-S aims three tasks Automatic Web service discovery, invoca-

tion, and composition and interoperation. The Semantic Search Engine utilizes the

OWL-S API to map the WSDL to OWL-S format. OWL-S API provides a Java API

for programmatic access to create, read, write, and execute OWL-S described atomic

as well as composite services. As a result of this process the service is registered in

the JXTA service directory in the form of advertisement but also it is included into

the Mobile Web Service Ontology maintained by the Semantic Search Engine. This

42

4.4 Semantic Search for Discovery of Mobile Web Services

Figure 4.5: WSDL for the Notification SroidService using REST architecture

43

4. MOBILE WEB AND MOBILE CLOUD SERVICE DISCOVERY

Mobile Web Service Ontology is further used when a client queries for a specific type

of services to filter the list of services returned in the basis of semantic relevancy and

context.

Mobile Host’s Semantic Search Engine considers Jena (44) and OWL-S API to

support the Service Ontology and to resolve the queries for services from the clients.

Jena is a Java framework for building Semantic Web applications. Jena provides a

collection of tools and Java libraries for developing semantic web and linked-data apps,

tools and servers. When a client needs to discover a service it sends the query through

the local network via mDNS to other peers and to the rendezvous peer. The request

contains the required service, context information of the client such as geographical

location, weather, bandwidth connection, if it is connected through Wi-Fi or 3G, among

other, user preferences such as whether to automatically download the content or to be

notified about the service availability, the maximum size of downloaded content, etc.

It is logical that the services which are in the same radio-link are discovered faster

than those services in the global network. Consequently, the client receives first a

list of services published via ZeroConf in the local radio link. Since the number of

services in the local networks is most often low these services are filtering using the

text-based search provided by framework. Nevertheless, the list of services provided in

the local network can be discovered faster, they might not suit the client’s requirements

and therefore it is necessary to extend the discovery to the services in the wide area

network. The wide area network service search is handled by the rendezvous peer. The

rendezvous peer receives the service search request and passes it to the Semantic Search

Engine (SSE). The SSE keeps an ontology of a large number of services registered in the

set of rendezvous peers available in the network. After the query is received, first the

services are filtered using the keyword search feature provided by Solr which returns

a reduced, but still large, list of services (e.g. 50 out of 1000 services). Later, the

SSE performs a SPARQL query over the OWL-S description of the services returned

by Solr, retrieving the services that semantically match the client’s preferences and

needs. SPARQL is a query language initially thought for RDF (Resource Description

Framework), a directed, labeled graph data format for representing information in

the web. However, Jena and OWL-S API include extensions to support SPARQL

queries over ontologies in OWL format. SPARQL can be used to express queries across

diverse data sources. SPARQL contains capabilities for querying required and optional

44

4.4 Semantic Search for Discovery of Mobile Web Services

Figure 4.6: OWL-S representation for the Notification SroidService

45

4. MOBILE WEB AND MOBILE CLOUD SERVICE DISCOVERY

graph patterns along with their conjunctions and disjunctions. SPARQL also supports

extensible value testing and constraining queries by source graph. In general, the results

of SPARQL queries are result sets of RDF graphs.

However, semantic applications are resource demanding and time consuming. There-

fore, ontology maintenance and execution of the semantic query is delegated to the

rendezvous peers and not to the resource constrained devices. In short, a SPARQL

query consist of two parts, the SELECT clause that identifies the variables to appear

in the query result set and the WHERE clause that provides the basic graph pattern

to match against the data graph. For example, a SPARQL query for service discovery

contains the SELECT clause which includes the service and its preferences (?service

and ?preference) and the graph pattern consist of a triple pattern with the associa-

tion ?hasPreference in the object position. The service list, result of the semantic

search, is sent asynchronously to the device containing the WSDL of each service. For

delivering the results to the device, the Notification Service embedded in Mobile Host

is considered. After the results are received by Mobile Host, the service list is shown

in the display so the user can decide which service suits better his/her needs. The user

can select a service from the service list for invocation. The service WSDL lets the

mobile device know about the service invocation details such as the end point, port,

and parameters, among others. For example in the WSDL introduced before 4.5 the

end point ”android.server.mcrlabs.net and port ”9999” shall be used for the invoking

the service. The invocation process relies in the DNS-SD for addressing the service

in such a way that for invoking a service the client application does a simple HTTP

request to the corresponding DNS/IP Address and port. The figure 4.7 illustrates the

flow of the service publishing process meanwhile the figure 4.8 illustrates how the query

and discovery process happens.

The semantic service discovery enriches the service discovery by adding semantics

and context-awareness support (service provider and client preferences) to the discovery

mechanism, with reasonable performance penalties. The total service query time Tt is:

Tt
∼= Ttr + Tk +

n∑
i=1

(Ttoi) + Tq + Tn (4.1)

Where, Ttr is the transmission time taken across the radio link for the service query

delegation between the mobile phone and the SSE. The value includes the time taken

46

4.4 Semantic Search for Discovery of Mobile Web Services

Figure 4.7: Service Discovery - Publishing Sequence Diagram

Figure 4.8: Service Discovery Sequence Diagram

47

4. MOBILE WEB AND MOBILE CLOUD SERVICE DISCOVERY

Figure 4.9: Service Discovery Cycle - Activities and Timestamps

to transmit the request to the cloud and the time taken to send the response back to

the mobile. Apart from these values, several parameters also affect the transmission

delays like the TCP packet loss, TCP acknowledgements, TCP congestion control etc.

So a true estimate of the transmission delays is not always possible. Alternatively, one

can take the values several times and can consider the mean values for the analysis. Tk

is the time taken for the keyword text search by Solr. Ts is the sum of the time taken

by the SSE to load each OWL-S description in the list of services returned by Solr

plus the time taken by the reasoner to query the ontology Tq. ∼= is considered in the

equation as there are also other timestamps involved, like the client processing at the

mobile phone, as shown in the figure 4.9. Tpn, represents the notification time, which

is the time taken to send the response of the mobile service discovery to the device.

From the figure 4.10, it can be observed that the mechanism retrieves the list

of services in ≈ 21 seconds. Most of this time is consumed by the reasoner when

querying ontology (Ts) after the services are first filtered by Solr (Tk), and a little

fraction of the total response time (Tt) is spent in the network transmission (Tr) and

the asynchronous notification (Tn). On one side Solr presents short time responses but

low quality in the list of service retrieved. On the other, the semantic service discovery

48

4.5 Summary

Figure 4.10: Service Semantic Search Times

improves the quality of the service search but with some performance penalties. So

applying both the mechanisms in tandem would return ideal results. The mechanism

was tested using a pool of 1000 service advertisements in the JXTA network. In terms

of quality of the results Solr retrieved 50 services out of the 1000 services presented in

the index and the semantic search engine returns 5 services out of the 50 returned by

Solr, thus improving the quality of the results delivered to the user, fitting better in

the mobile devices’ screen. In addition, the final list of services is assumed to fulfill

the user’s requirements better since the search was enriched by means of semantics

relationships among the user’s context and preferences and the services’ description

and preferences. However, due to the performance penalties in the semantic service

search the asynchronous notification mechanism is required for delivering the query

results to the mobile user. The push notification mechanism is discussed in detail in

the next chapter.

4.5 Summary

This chapter describes the mobile web service discovery mechanism proposed by the

thesis. The discovery is a directory-less with overlay support discovery mechanism. It

49

4. MOBILE WEB AND MOBILE CLOUD SERVICE DISCOVERY

considers peer-to-peer networks for publishing and advertising of services by means of

JXTA and ZeroConf protocols and standards. The chapter describes the early peer-to-

peer service discovery mechanism based on JXTA peer-to-peer networks and Lucene

Framework (as the service search engine) and extends it to a Semantic Mobile Web

Services Discovery also over JXTA networks for the discovery but also over ZeroConf

networks for the local discovery and global addressing. The approach supports the

service discovery in small and medium size networks with low and medium mobility,

with the aid of ZeroConf and by supporting the service discovery in large networks

such as the wide area network with high mobility of devices, with the aid of JXTA

and ZeroConf technologies. The chapter also mentions the realization details of the

discovery approach and summarizes the results of the performance analysis, along with

the performance model.

50

5

Push Notification aided by

Mobile Host

A key requirement of pervasive mobile applications is that changes occur asynchronously

and that it is important that when they occur mobile users are notified in a timely fash-

ion. Without infrastructure for handling the dispatching of asynchronous events, mobile

application developers need to code this as part of their applications. This presents

developers with extra complexity above and beyond the core application functionality.

Most often, the developers need to create again and again the same content delivery

mechanism for each application. An alternative is to use a push notification technology

that takes care of event notification.

5.1 Push Notification Providers

This section describes two commercial push notification offerings: Android Cloud to

Device Messaging (AC2DM) and Apple Push Notification Service (APNS), the two

widely used push notification mechanisms. In addition, we describe Mobile Host and

its role in the push notification mechanism. Moreover, we performed a quantitative

performance evaluation of four notification mechanisms (AC2DM, APNS, Mobile Host,

and IBM MQTT) and the results are summarized in here.

51

5. PUSH NOTIFICATION AIDED BY MOBILE HOST

Figure 5.1: APNS - General Flow

5.1.1 APNS

Apple Push Notification Service is a robust and efficient mechanism which enables

the provisioning for remote push notification in devices running iOS. The notifications

are delivered by APNS to the devices via a persistent accredited and encrypted IP

connection. APNS is a simple and high-capacity transport service including a quality-

of-service component providing store-and-forward capabilities. Apple Push Notification

service transports notifications from software developers to a given device. The figure

5.1 describes the overall process from the provider until the client application.

During the notification process the service providers, APNS and mobile devices

interact with each other through secure communication channels enforced by SSL cer-

tificates and keys. When a mobile device connects to APNs it first authenticates and

registers itself for the notification service. If the authentication process is successful

then APNS sends to the mobile a device token. Each combination of device-application

has its own device token that has to be shared with the provider. Further, this device

token is used by the providers and APNS for routing the notification to the target

device-application. The providers or software developers are the ones who originate

52

5.1 Push Notification Providers

the notifications in their server software. When the providers need to notify to the mo-

bile application about the existence of new content or the result of a time-consuming

task, they first connect to APNS and send the notification in a JSON format including

the device token of the target application-device. Once APNS receives the notification

request from the provider it routes the notification to the right device and application

based on the device token included in the request, and pass the payload which describes

the notification behavior.

The payload specifies how the users are to be alerted when a notification is received.

This payload can be up to 256 bytes. Moreover, the payload consists of a JSON

dictionary object which adheres to RFC 4627. The dictionary describes how the user is

alerted when the notification arrives. Properties such as the message to be displayed,

a number to badge the application icon, a sound to play among others are described in

the properties dictionary. The payload is deliberately short since it has been designed

to notify about the existence of new content in the server, by delivering a short text

message and alerting the user through a dialog and sound. The application can parse

the text in the notification following its own rules and semantics and start a new task if

it is necessary. For instance, when a new Facebook notification arrives, the notification

is displayed and the OS launches the Facebook App but the logic and rules for pulling

the new content from Facebook are included inside the Facebook app. Consequently,

the mobile application needs to do extra calls to the content provider interface in order

to pull the new content available.

5.1.2 Mobile Host aided push notification

Smart phones are generally used for accessing different types of services like the location

based services, mobile web services, mobile cloud services etc. from different providers.

However, one can envision providing services from the smart phone with the latest

developments in the mobile devices in hardware (embedded sensors, memory, power

consumption, touch screen, better ergonomic design, etc.), in software (more numerous

and more sophisticated applications due to the release of iOS and Android platforms),

in transmission (higher data transmission rates achieved with 3G and 4G technologies)

and in Wi-Fi networks ubiquity. In this thesis we propose updates and extensions to

the Mobile Host developed by Srirama et al.

53

5. PUSH NOTIFICATION AIDED BY MOBILE HOST

As the popularity of Android rose and with the upcoming of standards like Open

Services Gateway initiative (OSGi) framework, we have upgraded the research to the

current generation mobile devices and technologies. The OSGi framework is a mod-

ule system and service platform for the Java programming language. With OSGi,

applications or components can be remotely installed, started, stopped, updated and

uninstalled without requiring a reboot. Application life cycle management (start, stop,

install, etc.) is done via APIs that allow for remote downloading of management poli-

cies. Mobile Host for Android is realized using Apache Felix, an OSGI implementation

for Android. The services run as bundles within Felix and the invocation of the ser-

vices is through REST protocol. So the services are considered as resources that can be

accessed via HTTP requests. Android SDK provides a mechanism to establish Server

Sockets communication between the device and the clients; consequently, the HTTP

request can be handled from the device. Mobile Host exposes itself and its services

to external devices through ZeroConf. It consists of a set of techniques for automatic

configuration and creation of a usable local Internet protocol network. ZeroConf dy-

namically configures the host in the network assigning them an IP address and also

a domain name. Furthermore, ZeroConf provides a mechanism for service discovery

and domain resolution. Mobile Host uses JmDNS, a service discovery protocol which is

an implementation of ZeroConf. JmDNS assigns a local domain name to Mobile Host

which can be used by other devices to access the services exposed by the host. JmDNS

is also totally compatible with other implementations of ZeroConf for other platforms

such as Bonjour for Apple. In addition, Mobile Host also includes Wide Area Bonjour

support based on DNS Service Discovery. The DNS Service Discovery enables the ser-

vice discovery via DNS records in the wide area network and also the self-configuration

of devices in order to be accessible from other devices. The mobile device updates its IP

in the DNS Service Discovery records every time it moves from one wireless network to

another. When a request comes the DNS routes it to the most recent address updated

by the mobile device. This way the dynamic nature of the devices is addressed and the

services can be invoked from other devices in the network.

Push notification can be offered using the feature of the Mobile Host and as a service

from the device. Since the Mobile Host is directly accessible from external devices via

JmDNS and offers services, the external applications can directly send notification

messages to the device. The applications send the complete message payload as part

54

5.1 Push Notification Providers

Figure 5.2: Notification Service Implementation in Mobile Host

of the request to the notification service on the Mobile Host. With this approach

there is no limit to the payload delivered to the device. The figure 5.2 illustrates an

implementation of a notification service in Mobile Host.

5.1.3 Android Cloud to Device Message Framework

Android Cloud to Device Messaging (AC2DM) is a service that aids developers to

send small data from servers to their mobile application on Android devices. AC2DM

provides a simple and lightweight mechanism that servers can utilize to tell mobile

application to contact the server directly in order to fetch new data available. Moreover,

55

5. PUSH NOTIFICATION AIDED BY MOBILE HOST

AC2DM handles all the aspects of queuing the messages and delivery to the target

application running in the target device.

AC2DM allows third-party application services to send lightweight messages to

their Android applications. It is not designed for sending heavy content rather it

is intended to notify the Android applications about new data on the server so the

application can fetch it following its own logic. The application does not need to be

running in order to receive messages. When the notification arrives the OS wakes up the

application via Intent Broadcasts. However, the application needs to be configured in

development time with the proper broadcast receivers and permissions. Further, when

the notification is received AC2DM passes the raw message data straight to the target

application. Later the application has full control and can handle it according to its

own logic and semantics. For example, the target application can trigger an alert and

start synchronization data process. AC2DM is available for devices with the Android

2.2 and the Market Application installed. The service uses an existing connection for

Google services; therefore, it also requires the users to set up their Google account on

the mobile device.

As mentioned before, the mobile application needs to be set up in development time

for receiving notifications. In short, the developer needs to implement a Broadcast Re-

ceiver and set up the proper permission in the AndroidManifest of the application. The

Broadcast Receiver is meant to handle the Broadcast Intent fired by the OS when the

notifications arrive. In addition, Internet, com.google.android.c2dm.intent.RECEIVE,

and com.google.android.c2dm.intent.REGISTER permissions are required, when the

application starts to register itself to AC2DM. As a result of the registration process

the device receives an authorization TOKEN from AC2DM. The device must share its

token with the service provider. Later, the service provider includes the token to tell

AC2DM to what device the notification is to be sent.

The process to send a notification to mobile devices is as follows. First, the service

provider requires a ClientLogin authorization token provided by Google for accessing

the notification service. The ClientLogin token authorizes the service provider to send

messages to a particular Android application. Consequently, the service provider re-

quires its own ClientLogin token, to access the messaging service, and the registration

ID’s (Tokens) from its clients, to route the messages to the right target device. Further,

the application sends a message to the AC2DM servers which queues are used to store

56

5.1 Push Notification Providers

Figure 5.3: Google AC2DM - General Flow

the messages in case the device is not accessible. As soon as the device is reachable

Google sends the message to the device. When the notification is received in the phone,

the OS extracts the raw key/value pairs from the message’s payload and passes them

to the targeted Android application in a com.google.android.c2dm.intent.RECEIVE In-

tent as a set of extras. The application receives the notification through the Broadcast

Receiver. From this point, the application can handle the notification following its own

rules and logic. Finally, AC2DM message size limits itself to 1024 bytes and currently

the quota of the service is limited to approximately 200,000 messages per day. The

figure 5.3 illustrates the overall process and architecture.

5.1.4 IBM MQ Telemetry Transport Protocol

MQTT is a lightweight messaging protocol designed for devices with limited resources

and low-bandwidth, high-latency or unreliable networks. The protocol attempts to min-

imize network bandwidth and device resources. It guarantees different levels of delivery

assurance. Some of the main features in this mechanism include the publish/subscribe

messaging model for one-to-many message distribution, agnostic of message content

when transporting payload, communicate between clients using TCP/IP network pro-

tocol, few networks overheads, ”Last Will and Testament” publication mechanism for

alerting when a client disconnects unexpectedly. Moreover, this mechanism provides

three Quality of Service levels. The first level of QoS, ”At most once”, where mes-

sages are delivered with the best effort of the underlying TCP/IP network. In this

level messages can be lost or duplicated. Moreover, this level suits well in scenarios

where the lost or duplication of a single value is not critical. For example, in a mobile

57

5. PUSH NOTIFICATION AIDED BY MOBILE HOST

application that gathers accelerometer data every second during the entire day the loss

of a single value or some values do not impact the final results. The second level of

quality of service, ”At least once”, guarantees that the messages are delivered at least

once. However, duplicate messages can occur. The last level of QoS, ”Exactly once”,

guarantees the messages to be delivered exactly once.

MQTT has an intermediary-based architecture comprising of two main components,

a single Broker and the clients that exchange messages. The broker is an intermediary

that is aware of all the clients in the network. The clients rely in the Broker for the

message delivery. Moreover, MQTT follows a ẗopicsb̈ased publish/subscribe model. A

topic is a hierarchical namespace that defines the taxonomy of information sources.

Later, the clients can subscribe to the topics of their interest. Further, when a message

is published under a topic all the subscribers of that topic receive the message. In

addition, MQTT utilizes a keep-alive protocol to monitor the clients’ connectivity and

accounts for unreliable network connectivity.

The mobile devices register with the Broker before they are able to publish or

receive messages. The device sends its clientID, which is a 23 characters long string

that is unique across all the clients handled by the Broker. When a client tries to

connect with an existing clientID, the current client is disconnected before the new

client is reconnected. Once the device is registered with the Broker, the client is able

to subscribe to one or more topics. If a mobile device wants to broadcast a message,

it sends the message to the broker with its corresponding topic. The Broker then

broadcast the message to all the devices subscribed to the message topic. Moreover,

the devices need to notify periodically to the Broker about their presence in the network.

Therefore, the handset sends PINGREQ (pings) messages to the Broker as part of the

keep-alive protocol. If the Broker stops receiving the PINGREQ messages from the

client it assumes that the devices is no longer present in the network and disconnects

it. It is the client’s responsibility to send the messages before the keep-alive period

expires. Finally, the messages are not guaranteed to be delivered in order and the

delivery order depends on several factors such as the utilization of multi-threads from

the client.

58

5.2 Quantitative Analysis

5.2 Quantitative Analysis

Nevertheless APNS and AC2DM are the most widely used push notification mecha-

nisms. However, they happen to be inappropriate under some scenarios. For example,

when real-time notifications are required the AC2DM’s reliability does not fulfill the

time constraints. On the other hand, APNS’ reliability fulfills soft-real time constrains

but under high resource consumption penalties; therefore, it is not suitable under high

resource constrained scenarios. Consequently, alternative solutions need to be explored

such as IBM MQTT and Mobile Host. This section describes and summarizes the

quantitative performance evaluation process of four notification mechanisms, AC2DM,

APNS, Mobile Host, and IBM MQTT.

5.2.1 Description of the experiments

The study is a result of the cooperation between the University of Tartu, Estonia, and

University of Auckland, New Zealand. During the last months we have been working

together to perform a complete study and compare the performance of several push

notification mechanisms in Europe and Australasia. The evaluation considers param-

eters such as battery consumption, reliability, bandwidth consumption, and latency.

The push notification mechanisms evaluated include APNS, AC2DM, IBM MQTT and

Mobile Host.

The mobile devices considered in the experiments include an iPhone 4, capable

for UMTS/HSDPA/HSUPA networks, with Wi-Fi support (802.11n 2.4GHz only),

equipped with assisted GPS and GLONASS, digital compass, 8-megapixel iSight cam-

era, built-in rechargeable lithium-ion battery, three-axis gyro and accelerometer sensor,

16GB storage, 512 MB RAM, 1 GHz Cortex-A8 CPU and PowerVR SGX535 GPU,

running iOS 5.1. Also, a Samsung Galaxy SII phone, capable for HSDPA networks,

with Wi-Fi support (802.11 bgn), equipped with GPS, digital compass, 8-megapixel

camera, standard battery lithium-ion 1650 mAh, three-axis gyro and accelerometer

sensor, 16GB storage, 1GB RAM, Dual-core 1.2 GHz Cortex-A9 CPU and PowerVR

SGX540 GPU, running Android 4.0 is considered for the experiments.

In case of iOS/APNS the test harness software consists of a set of scripts that run in

a server which acts as the service provider. Also, the harness software includes a client

iPhone application that receives the notifications and acts as the client. For the server

59

5. PUSH NOTIFICATION AIDED BY MOBILE HOST

side the gem library jpoz/APNS (45) written in Ruby on Rails (46) was considered.

jpoz/APNS is a library that enables to send push notifications from Ruby scripts. The

scripts running in the service providing node receives three parameters, the device

token, the frequency of messages per minute, and the duration of the experiment in

minutes. From the client application perspective, when a notification arrives, it parses

the notification’s JSON content and extracts the message and the server Timestamp.

Right after, the application creates a new entry in a Sqlite database embedded in the

application, storing the server Timestamp (when the notification was sent), the client

application Timestamp (when the notification was received) and the message received

(only for logs).

The AC2DM and Mobile Host harness software follow the same architecture. A

server which acts as the service provider runs a set of scripts written in python for

sending the notification through the AC2DM service or directly to Mobile Host. In case

of AC2DM the scripts receive the registration token assigned by AC2DM to the device,

the frequency of messages per minute, and the duration of the experiment. Similarly,

the scripts that send notification to Mobile Host, receive the Mobile Host DNS name

assigned by the DNS-SD, the frequency of the notifications and the duration of the

experiment. There is just one application for receiving messages either from AC2DM

or Mobile Host. When the application receives the message, it parses the payload (in

JSON format) and extracts the server Timestamp (when the notification was sent) and

stores it in a Sqlite databases along with the device Timestamp (when the notification

was received) and the messages for archiving purposes.

The harness software for IBM MQTT was developed by the team in New Zealand.

The architecture includes a small broker provided by IBM, an Android application and

a Java application that runs in the server which acts as the service provider, both

developed by the University of Auckland.

The experiments regarding latency, reliability and bandwidth consumption were

run five times for a period of two hours each. Moreover, the experiments were run

at different times in the day. It tries to improve the fairness of the experiment by

not stressing the service provider’s networks at a specific time every day. The push

notification messages were sent at a rate of three messages per minute. Each message

contains a payload of 256 bytes which includes the server Timestamp of when the

notification was sent. In addition, the experiments were run through Wi-Fi and 3G

60

5.2 Quantitative Analysis

networks. The payload is fixed at 256 bytes, as it is the lowest common denominator

of the allowed message sizes of the considered approaches. The maximum allowed

payloads of APNS, AC2DM, MQTT and Mobile Host are 256 bytes, 1024 bytes, 256

bytes and “unlimited size”, respectively.

The experiments regarding the battery life required a different approach due to

the nature of the resource usage of the approaches. The experiments ran for a period

of two-hours sending notifications period and had one-hour relaxing-period after that.

The one-hour-relaxing-period aims to avoid overloading the push notification service

provider. For example, it has been observed that AC2DM stops sending messages after

a long period of continuous activity. Third-party applications were used to measure the

battery level during the experiments. The experiments were run for a 24-hour period

or until the battery was totally drained.

The table 5.1 summarizes the results. As can be seen from the graphic in figure

5.4 the IBM MQTT mechanism seems to be the most efficient one in the battery

consumption under Wi-Fi networks. Similarly, Mobile Host also shows to perform

well under Wi-Fi networks, draining all its battery only after 20 hours of conducting

continuous experiments. However, Mobile Host suffers some performance penalties

when the connection happens through 3G networks, draining the battery to zero after

16 hours of continuously receiving notifications. In contrast, iOS shows the poorest

performance in Wi-Fi since after 12 hours of receiving notifications, the device runs

out of the battery. Also, iOS presents the poorest performance under 3G networks

since, as shown in the table 5.1, iOS devices drains all the energy after 8 hours of

receiving notifications. This is by reason of the keep-alive mechanism that keeps a

constant secure connection between the service and the device. AC2DM is a special

case, since it is not possible to send notification for long periods of time. We have

observed that after one hour of sending the notifications, the AC2DM delivery time

grows up exponentially, even taking hours to receive the notification in certain cases.

Moreover significant percentages of the messages are also lost after the first hour of

sending the messages. Therefore, it is not possible to perform such experiments in

AC2DM case. However, a two hours-experiment was performed using AC2DM and

the results are shown in the figure 5.5. From the picture it can be observed that the

performance of AC2DM is similar to Mobile Host and IBM for short periods of time.

61

5. PUSH NOTIFICATION AIDED BY MOBILE HOST

Table 5.1: Battery Consumption - Push Notification Mechanism

Hours MH / 3G MH/Wi-Fi MQTT/Wi-Fi iOS/Wi-Fi iOS/3G AC2DM

0 99 99 99 99 99 99

2 87 89 90 81 70 93

4 75 84 85 62 39 -

6 62 76 78 43 9 -

8 51 69 72 29 0 -

10 38 61 65 2 - -

12 25 53 60 0 - -

14 12 41 53 - - -

15 2 33 45 - - -

16 0 22 37 - - -

18 - 10 30 - - -

20 - 0 26 - - -

22 - - 15 - - -

24 - - 6 - - -

Figure 5.4: Battery Consumption - Push Notification Services

62

5.2 Quantitative Analysis

Figure 5.5: Battery Consumption of Push Notification Services for 2 hour duration

Figure 5.6: Delivery Times and Patters - Apple Push Notification Services

Figure 5.7: Delivery Times and Patters - Mobile Host

63

5. PUSH NOTIFICATION AIDED BY MOBILE HOST

Figure 5.8: Delivery Times and Patters - AC2DM

Nevertheless, APNS suffers serious penalties in the battery consumption, it is the

most reliable of the services with rate of 100% of messages received. From the graphic

in the figure 5.6 (a) it can be observed that the delivery times and patterns when

the notifications are sent to iOS devices through Wi-Fi network. The delivery times

oscillate between 4 and 5 seconds. Moreover, figure 5.6 (b) illustrates the delivery times

and pattern when the notifications are sent through 3G networks to iOS devices. From

the graphic, we assume that the queue APNS mechanism prioritizes the notifications

based on the number of notifications sent to the device. The more notifications the

device receives the lowest priority it gets in the queue. When the device reaches the

lowest priority, its priority is reset and the device gets a high priority in the queue

for receiving notifications. On the other hand, Mobile Host and IBM MQTT show

similar performance in terms of reliability, delivering 98.6% (3G)/99.72%(Wi-Fi) and

97.5%(Wi-Fi) of the notifications respectively. From the graphic in the figure 5.7(c) it

can be observed the delivery patterns of Mobile Host in 3G(a) and Wi-Fi(b) networks.

The delivery times for Mobile Host oscillate between 1 and 5 seconds in Wi-Fi and up

to 10 seconds in 3G networks, performing better than all other mechanisms in terms

of delivery times. In terms of bandwidth all the approaches have similar performance.

Mobile Host is the mechanism with the highest bandwidth consumption.

Each of the notification mechanisms has strengths and weaknesses and thus are

suitable for different scenarios. For example, in scenarios where high reliability is re-

64

5.2 Quantitative Analysis

Table 5.2: Reliability - Push Notification Mechanism

Mechanism Messages Sent Messages Received Rate

AC2DM 360 200 0.555555556

Mobile Host 3G 360 355 0.986111111

Mobile Host Wi-Fi 360 359 0.997222222

APNS 3G 360 360 1

APNS 360 360 1

IBM MQTT 360 351 0.975

quired APNS emerges as the most suitable solution. However, APNS is not a suitable

for devices with high power consumption constraints. Moreover, APNS software devel-

opment model is quite restrictive and complex which, from the developer’s perspective,

makes it unfeasible in most of the cases. In contrast, Mobile Host provides reasonable

delivery rate (99.72%), battery consumption performance and not so aggressive usage

of the network bandwidth. Even though, IBM MQTT presents similar performance

characteristics as that of Mobile Host its programming model lacks the Mobile Host’s

simplicity. IBM MQTT requires including in the mobile application the libraries and

jar files that enable the notification handling, thus increasing the footprint of the mo-

bile application. On the other hand, the Mobile Host mechanism is rather light and

only requires the creation of one class for handling the notifications. Finally, AC2DM

performs well in terms of battery and bandwidth consumption; however, it lacks the

reliability. As mentioned before, it has been observed that after longer periods of ac-

tivity the delivery times increase exponentially and it stops sending the notifications.

In addition, AC2DM latencies are bigger than 50 minutes, which are unacceptable un-

der scenarios where soft-real time responses are required. The tables 5.2 and 5.3

summarize the results concerning to latency, bandwidth consumption and reliability.

5.2.1.1 Summary of the push notification mechanisms

To summarize the study, most of the mobile OS providers have their own push noti-

fication mechanisms. Most often they rely on the Push Access Protocol (PAP) from

Open Mobile Alliance (OMA). The providers also maintain standard set of servers and

services, helping the mobile applications in receiving the push notification messages.

65

5. PUSH NOTIFICATION AIDED BY MOBILE HOST

Table 5.3: Battery Consumption and Latency - Push Notification Mechanism

Mechanism Bandwidth(MB) Avg. TT Max TT Min TT Battery

AC2DM 3.80 49.38185 3152.683 3.474 93%

Mobile Host 3G 3.564935211 37.579 0.406 86%

Mobile Host WiFi 5.28 1.21435376 16.398 0.631 89%

APNS 3G 36.00320381 36.37824769 35.9854941 70%

APNS 4.48 0.501263574 0.66 0.436 79%

IBM 90%

While most of the relevant mobile platforms are providing asynchronous mechanisms

(aka notification services) for dealing with remote executions, the mechanisms have

certain constraints and limitations such as being platform specific (e.g. AC2DM for

Android, APNS for iOS etc.), the size of the message that can be pushed into the

device (e.g. 1024 bytes for Android, 256 bytes for iOS, etc.) and the number of the

messages that can be sent to a single handset (e.g. 200,000 for AC2DM). Moreover,

such mechanisms are considered to be moderately reliable, and thus are not recom-

mended in scenarios that require high scalability and quality of service. For example:

AC2DM simply stops retrying after some delivery attempts.

Moreover, by following these approaches the applications are actually competing

with the community. Thus the scalability of the applications is at trouble in certain

cases. This is what is exhibited by the behavior of AC2DM as the community relying on

these services is significantly huge. Alternatively one can rely on his own infrastructure

and can establish his own Push Proxy Gateway (PPG), with the IBM MQTT approach.

This way, the mobile applications delivered by an enterprise can rely on their own push

notification infrastructure. This is certainly possible in most of the cases, depending

on the popularity of the applications. Moreover the enterprise can rely on the elasticity

of the cloud to vary the scale of the notification services provided for the applications,

vertically or horizontally scaling up the PPG when required and scaling down when

the revenue from the applications decreases.

Alternatively, this thesis proposes the usage of Mobile Host concept for the push

notification services. Mobile Host concept and the Mobile Host aided push notification

service have been explained in detail. The push notification mechanism is reliable, fast

66

5.3 Mobile cloud service invocation aided by Mobile Host

and reasonable in terms of battery usage. Moreover, this approach pushes the cost of

the push notification to the service provider and the client rather than the application

provider. For example; envision a mobile application is developed and deployed which

uses the push notification and has become very popular. Since both the mobile phone

users (user of Mobile Host and client) are aware of the resource (load on battery) and

monitory (price of network transmission) costs they are incurring, they can always

decide how long to use the application and when to turn down the application. It

would also be ideal approach to market a beta applications and applications from

startup companies, with the best possible reliability and speed, as one do not have

to rely on third party severs and loose reliability or start their own PPG and start

incurring costs from the beginning.

5.3 Mobile cloud service invocation aided by Mobile Host

Mobile Host and Mobile Host aided push notification are also of significant use in

designing architectures for proper invocation of cloud services from mobile devices. The

approach can also be applied in several mobile domain related middleware technologies.

This section describes how the approach is applied for the Mobile Cloud Middleware

(MCM).

5.3.1 Mobile Host and Mobile Cloud Middleware

Middleware solutions such as the Mobile Cloud Middleware (MCM) benefit a lot from

asynchronous notification capabilities of Mobile Host. In short, MCM tries to counter

the problems concerned with the interoperability across multiple clouds, to perform

data-intensive processing invocation from the handset and to introduce the platform

independence feature for the mobile cloud applications. The middleware provides a

unique interface for mobile connection and multiple internal interfaces and adapters,

which manage the connection and communication between different clouds. Due to the

time and resource consuming nature of the services provided by MCM, it requires the

asynchronous notification features. To have a generalized solution, one can make the

mobile check for the status of the service regularly. However, this puts a lot of load on

the mobile networks. Alternatively, we can make the mobile device a service provider,

which was studied in mobile web service provisioning project and this thesis. The study

67

5. PUSH NOTIFICATION AIDED BY MOBILE HOST

Figure 5.9: Mobile Host and MCM

developed a Mobile Host which can be used in providing web services from the smart

phones. When the smart phone acts as a server, the mobile cloud service response can

be sent directly to the device. Mobile Host for Android is based on REST protocol,

where the services are considered as resources that can be accessed through HTTP

requests. The services exposed by Mobile Host can be categorized in OSGI Services

and Messaging Services for notifications. The Messaging Services interact with the

applications installed in the device, passing data between the Mobile Host and the

applications. MCM utilizes Messaging Services for reactivating the application as it is

waiting for the cloud results.

Figure 5.9 illustrates the invocation process. When a mobile application sends a

request to the middleware (MCM), the handset immediately gets a response that the

transaction has been delegated to remote execution in the cloud, while the status of

the mobile application is sent to local background. Now the mobile device can con-

tinue with other activities. Once the process is finished at the cloud, MCM sends a

HTTP POST request for the resource http://mobilehost/notification (Messaging Ser-

vice), with two parameters, application and message, where application corresponds

to the mobile application that needs to be notified about the results and message is

a JSON string with the results of the invocation. Mobile Host resolves the request,

reactivates the application running in the background by sending a message through a

Broadcast Intent, and thus the user can continue the activity. The approach can also

be used to concurrently execute several tasks in multiple clouds.

MCM and the resource intensive tasks performed on the cloud can easily be envi-

sioned in several scenarios. For example, CroudSTag (34), consists of the formation

of a social group by recognizing people in a set of media files stored in the cloud by

means of facial recognition technologies and Hadoop MapReduce (47). The application

68

5.3 Mobile cloud service invocation aided by Mobile Host

is explained in detail in the next section.

5.3.2 Social Group Formation with Facial Recognition and Mobile

Cloud Services

CroudSTag facilitates a very interesting scenario as it tries to form social groups of

people with common interest. Social networks (48) have become quite popular these

days and the creation of social groups, results in sharing and collaboration relationships

among the members. CroudSTag is a mobile application developed for Android devices,

with the aim of aiding in the social group formation by means of facial recognition

technologies and MapReduce (47) video processing. CroudSTag recognizes the people

who appear in media content such as pictures or videos and joins them together into

a social group. For example, consider a researcher who attends conferences around the

world and has a set of media content (pictures and video files) of the people with whom

he/she had interacted at the event. The media files are probably taken from his/her

mobile itself and are stored on the cloud. The researcher later wants to create and keep

connections with his acquaintances on the social network. He/She also wants to group

them according to specific interests and would like to follow the groups directly from

his/her mobile phone. The scenario can also be envisioned with any other type of the

event or community that wants to keep its members in contact, something like alumni.

Figure 5.10 shows the screenshots of the CroudSTag usage scenario which is an

extension of the original CroudSTag application presented in our previous work (34).

With the help of CroudSTag application the user can upload pictures and videos to the

cloud and store them in Amazon Simple Storage Services (S3) (25), as shown in the

top cycle of the figure. When the user starts the application, three buttons are shown:

facebook Login, Take Picture and Take Video, as shown in screenshot 1. The facebook

login goes directly to facebook and authenticates the user getting an authorization

token which is used for accessing the facebook graph and also for accessing the user’s

tags during the facial recognition process. This authentication token is also needed to

send the invitation to people, to join the social group. The Take Picture and Take

Video buttons are used to take a picture/video respectively, and upload the file to S3.

The camera embedded in the device is used to take the media content (screenshot 2)

and when the user is finished and taps the save button, he/she is asked to select the

cloud provider where the files are going to be stored (screenshot 3). Multiple clouds

69

5. PUSH NOTIFICATION AIDED BY MOBILE HOST

are considered for keeping the files, as the researcher may store the pictures in his

private cloud (something like our SciCloud (49), a private cloud based on Eucalyptus

technology with Walrus storage) when in Europe and while traveling through US or

Japan he/she may upload them to public clouds like S3 or GoGrid (50). Once the

image/video is saved in the cloud, the application comes back to the main menu from

where the user can take a new video/picture or start the social group formation process.

The social group formation process starts with facebook login, as explained in above

paragraph (screenshot 4). Once the user is logged-in, the application enables a new

button ”CroudSTag” on the main screen (screenshot 5). Once the user taps the button,

the social group formation process is initiated and he/she is asked to select the cloud

provider where the media files to be processed are stored (screenshot 6). The media

content stored in the cloud is used to detect and recognize user’s acquaintances and

contact them in facebook. The device sends to the cloud, this time via the Mobile Cloud

Middleware (MCM), a request for the social group formation service along with the

authorization token from facebook, the mobile host address and port for notifications,

and the folder and cloud where the media files are. Moreover, face recognition is

performed based on SaaS from face.com. Right after the request is received by MCM,

it sends an acknowledgement back to the mobile, notifying that the process has been

started. Then the device is free to start other applications or a new process at the

cloud. When MCM finishes with the facial recognition process, it sends the list of

people recognized, asynchronously to the device via Mobile Host. Once this list is

received, the application displays it to the user (screenshot 7), who decides whom to

send the invitation to join the social group in facebook. Each invitation is sent in the

form of a private message containing a link to accept the invitation and join the social

group in the facebook (screenshot 8). The invitees will later join the social group based

on their interests. The entire scenario is illustrated in detail in figure 5.10. More details

of the application are available at (7).

5.4 Summary

The chapter starts introducing the concept of push notifications and its relevance in

pervasive mobile applications. In such applications changes occur asynchronously and

require the mobile users to be notified in a timely fashion when the changes happen.

70

5.4 Summary

Figure 5.10: Screenshots of the CroudSTag usage scenario

71

5. PUSH NOTIFICATION AIDED BY MOBILE HOST

Later the chapter describes two popular notification mechanisms which have high pres-

ence in the industry (APNS and AC2DM) and two alternative notification mechanisms

for resource constraint devices (IBM MQTT and Mobile Host). The four notification

mechanisms were extensively tested considering quantitative metrics such as battery

consumption, latency and bandwidth consumption. The chapter describes the exper-

iments and summarizes the results. The study identified that the Mobile Host aided

push notification mechanism is reliable, fast and reasonable in terms of battery us-

age. Middleware solutions such as the Mobile Cloud Middleware (MCM) also benefit

a lot from the asynchronous notification capabilities of Mobile Host. The scenario is

demonstrated with an application.

72

6

Conclusions

The emerging mobile computing domain has enabled the next generation of rich mobile

applications that benefit from the mobile and ubiquitous nature of the mobile devices

but at the same time also benefit from the vast amount of resources available in the

clouds. This synergy among clouds and mobiles opens the possibility for creating more

powerful and rich applications fostering context-awareness and ubiquitous scenarios.

However, for the cloud computing domain to penetrate the mobile computing domain it

requires proper mechanism of communication between the clouds and the smart phones.

Middleware approaches such as the MWSMF and MCM support the provisioning of

web services and cloud services, respectively, to the mobile devices.

While invocation of cloud and web services is feasible from mobiles, provisioning

of services from mobiles is also of significant interest in cases such as extracting the

context and preferences from mobiles, mobile P2P, direct invocation of services on

devices, push notifications to send alerts to mobiles etc. The Mobile Host realized by

Srirama et al. addressed this issue of service provisioning from mobiles and further

provided proper discovery and QoS mechanisms. This work has developed a Mobile

Host for Android, updating the earlier implementations of Mobile Host to the current

technologies and platforms. Moreover, it was extended to be easy to integrate with other

middleware solutions such as MCM for clouds. In terms of web service provisioning

from smart phones, this work also proposed a new Mobile Host architecture which relies

in Apache Felix, OSGi Framework for Android, and REST protocol. The proposed

architecture is based on REST protocol instead of the traditional SOAP, as it improves

the performance of Mobile Host by reducing the overloads in the traffic, removing

73

6. CONCLUSIONS

the necessity for compressing algorithms, and replacing the necessity of encryption

mechanisms for security with the utilization of HTTPS connections. Moreover, the new

developments bring the concept of Mobile Host to the nowadays mobile applications

market since it has been developed for Android; the most widely used mobile operating

system.

The popularity of web services, mobile web services and cloud services results in

a massive pool of services available for mobile devices. This massive pool of services

demands a proper discovery mechanism which is efficient in terms of resource consump-

tion from the mobile devices and provides the most relevant services available to the

user taking into account his/her preferences and current context. This work extended

the previous discovery mechanism based on JXTA peer-to-peer networks and Lucene

Framework (as the service search engine) to a Semantic Mobile Web Services Discovery

also over JXTA networks for the discovery but also over ZeroConf networks for the local

discovery and global addressing. The current discovery mechanism considers challenges

such as the mobility of the networks and the size of the networks. The thesis addresses

these issues by supporting the service discovery in small and medium size networks

with low and medium mobility, with the aid of ZeroConf and by supporting the service

discovery in large networks such as the wide area network with high mobility of devices,

with the aid of JXTA and ZeroConf technologies. The thesis proves that it is feasible to

provide such service discovery mechanism with the aid of cloud services, peer-to-peer

networks and OWL-S standards.

The work also developed a Push Notification service for mobiles, using the Mo-

bile Host feature of the device. The Mobile Host based Push Notification service was

extensively tested and compared with other approaches for push notifications such as

APNS and AC2DM. The study realized that the Push Notification services are a key

requirement of pervasive mobile applications where changes occur asynchronously and

it is important that when they occur mobile users are to be notified in a timely fashion.

Similarly, when developing rich mobile applications that require offloading of informa-

tion to be processed by more power appliances, as in the case of the mobile cloud

services where mobile devices offload, most often sensor data, for data mining and pat-

tern discovery. Moreover, the push notification services are also a critical component

for context-awareness applications where the mobility of the devices demands to up-

date the user’s context frequently. Therefore, we decided to perform a quality analysis

74

of the most widely used push notification mechanisms in the market. The study con-

sidered the Apple Notification Services (APNS), Android Cloud to Device Messaging

Framework (AC2DM), Mobile Host based Push Notification and IBM MQTT. The

thesis summarized the results of the analysis highlighting strengths and weaknesses of

each mechanism in terms of resource consumption, reliability and latency. The study

identified that the Mobile Host aided push notification mechanism is reliable, fast and

reasonable in terms of battery usage. Middleware solutions such as the Mobile Cloud

Middleware (MCM) also benefit a lot from the asynchronous notification capabilities

of Mobile Host. The scenario is demonstrated with the CroudSTag application.

75

6. CONCLUSIONS

76

7

Future Research Directions

This work has developed a Mobile Host for Android, updating the earlier implementa-

tions of Mobile Host to the recent technologies and platforms. As part of the future

research directions, we are interested in extending the architecture to other common

mobile platforms in the market like the Apple iOS and Windows Phone7. We are also

interested in developing an eclipse plugin for easing the development of new services

for the Mobile Host. The plugin should ease the adoption of Mobile Host and services

in different application domains and by wider community.

The thesis also has shown the feasibility of a P2P based service discovery mechanism

for mobile web services that can also be applied for mobile cloud services. The study

leaves significant scope for improvements in several areas and offers new research oppor-

tunities. For example, the current service discovery takes into account the users’ context

and preferences. However, the service discovery and provisioning can be extended to

dynamically adapt itself to the dynamics in the context due to the mobile nature of

the devices. Similarly, the emerging mobile cloud computing domain demands that

web services provided from smart phones and cloud services provided in the clouds

can be abstracted under the same WSDL description, fostering the integration and

composition of cloud based services with mobile web services. This composition aids

in scenarios such as the Mobile Enterprise envisioned by Srirama (8) where the easy

integration among enterprise services, cloud services and mobile web services enables

the creation of rich and meaningful applications to the users. We are interested in

integrating the updates and new developments of Mobile Host to the Mobile Enter-

prise proposed by Srirama. This integration also includes the adaptation of the service

77

7. FUTURE RESEARCH DIRECTIONS

discovery mechanisms proposed in this work.

However, enterprise networks deploy disparate applications, platforms, and busi-

ness processes that need to communicate or exchange data with each other or with the

Mobile Hosts. The applications, platforms and processes of enterprise networks gener-

ally have non-compatible data formats and non-compatible communications protocols.

Besides, the discovery approach of the mobile cloud and web services offered solutions

in disparate technologies such as JXTA. This leads to serious integration problems

within the networks. The integration problem extends further if two or more of such

enterprise networks have to communicate among themselves. The mobile web services

mediation framework (MWSMF), introduced by Srirama et al. (51) tried to address this

enterprise service integration problem. ESB is used as the background technology in

realizing the mediation framework. We are interested in adding the Mobile Host based

push notification technology and upgrading the integration of the discovery mechanism

to the mediation framework.

Moreover, the composition of mobile services and cloud services fosters the real-

ization of context-aware applications and technologies that benefit different domains

such as wearable computing, smart environments, smart cities, location based services,

analysis of data gathered by body sensors, among others. We are interested in realizing

some of these applications, demonstrating the feasibility and applicability of Mobile

Host and Enterprise.

78

8

Sisukokkuvõte

Viimase viie aasta jooksul on mobiilsed seadmed nagu sülearvutid, pihuarvutid, nu-

titelefonid jmt. tunginud peaaegu kõigisse inimeste igapäevaelu tegevustesse. Samuti

on põhjalik teadus- ja arendustegevus mobiilsete tehnoloogiate vallas viinud märkimisväärsete

täiustusteni riistvara, tarkvara ja andmeedastuse alal. Tänapäeval on mobiilsed seadmed

varustatud sisseehitatud sensorite, kaamera, puutetundliku ekraani, suurema hulga

mäluga, kuid ka tõhusamate energiatarbemehhanismidega. Lisaks on iOS ja Android

operatsioonisüsteemide väljalaske tõttu suurenenud nii mobiilirakenduste arv kui keerukus,

pakkudes arvukamalt kõrgetasemelisi rakendusi.

Sarnaselt on toimunud olulised arengud ja standardiseerimisele suunatud jõupingutused

veebiteenusete valdkonnas ja elementaarsetele veebiteenuste ligipääsu kasutatakse la-

ialdaselt nutitelefonidest. See on viinud loogilise järgmise sammuna veebiteenuste

pakkumiseni nutitelefonidest. Telefonidest veebiteenuste pakkumise kontseptsioon ei

ole uus ning seda on põhjalikult uurinud Srirama, kes pakkus välja Mobile Host (Mo-

biilne Veebiteenuse Pakkuja) kontseptsiooni. Algne realisatsioon kasutas aga aegunud

tehnoloogiaid nagu JMEE, PersonalJava, SOAP arhitektuur jne. See töö uuendab Mo-

bile Host’i kasutades uusimaid tehnoloogiad, nagu Android OS ja REST arhitektuur,

ning pakub välja teenusemootori, mis põhineb Apache Felix’il - OSGi platvormi real-

isatsioonil piiratud ressurssidega seadmetele.

Hämmastava kiirusega toimunud arengud mobiilsete arvutuste vallas võimaldavad

uue põlvkonna veebirakenduste loomist valdkondades nagu keskkonnateadlikkus, sot-

siaalvõrgustikud, koostöövahendid, asukohapõhised teenused jne. Sellised rakendused

saavad ära kasutada Mobile Host’i võimalusi. Selle tulemusena on klientidel ligipääs

79

8. SISUKOKKUVÕTE

väga suurele hulgale teenustele, mistõttu tekib vajadus efektiivse teenuste avastamise

mehhanismi järele. See töö pakub välja kataloogipõhise avastusmehhanismi võrgu

ülekatte toega suurtele, kõrge liikuvusega võrgustikele. See mehhanism toetub OWL-

S’le, mis on ontoloogia veebiteenuseid pakkuvate ressursside avastamiseks, väljakut-

seks, koostamiseks ja jälgimiseks. Töö kirjeldab ka Srirama välja pakutud algupärast

teenuste avastamise mehhanismi, mis toetub peer-to-peer võrkudele ja Apache Lucene

võtmesõna otsingumootorile. Uurimuse käigus uuendatakse teenuseotsing kasutama

Apache Solr’i, Apache Lucene’i viimast versiooni. Teenuste avastust testiti põhjalikult

ja tulemused on töös kokkuvõtvalt välja toodud.

Mobiilsete tehnoloogiate vallas uuritakse ka võimalust kasutada pilvetehnolologiat

laiendamaks mobiilseadmete salvestusmahtu ja töökoormust edastades pilve andme- ja

arvutusmahukad ülesanded. See soodustab keerulisemate ja võimalusrohkemate mo-

biilirakenduste arendust. Pilve delegeeritavate toimingute aeganõudva iseloomu tõttu

aga on vajalik asünkroonne mehhanism teavitamaks kasutajat, millal töömahukad tege-

vused on lõpetatud. Mobiilsete pilveteenuste pakkujad ja vahevara lahendused võivad

kasu saada Mobile Host’ist ja selle asünkroonsete teavituste võimekusest. Uurimus es-

itleb nelja teavitusmehhanismi: AC2DM, APNS, IBM MQTT ja Mobile Host’i põhine

teavitus. Töö võtab kokku kvantitatiivse analüüsi tulemused ja toob välja nelja teavita-

mise lähenemise tugevused ja nõrkused. Lisaks kirjeldatakse CroudSTag rakenduse re-

alisatsiooni - CroudSTag on mobiilirakendus, mille eesmärgiks on sotsiaalsete gruppide

moodustamine kasutades näotuvastustehnoloogiat. CroudSTag-i realisatsioon kasutab

mobiilseid pilveteenuseid ja Mobile Host’i, et pakkuda oma funktsionaalsust kasutajale.

80

Bibliography

[1] S. N. Srirama, M. Jarke, W. Prinz, Mobile web service

provisioning, in: AICT-ICIW ’06: Advanced Int. Conf.

on Telecommunications and Int. Conf. on Internet and

Web Applications and Services, IEEE Computer Society,

2006, p. 120. 1, 2, 10

[2] S. Srirama, M. Jarke, W. Prinz, Mobile host: A feasibil-

ity analysis of mobile web service provisioning, in: 4th

International Workshop on Ubiquitous Mobile Informa-

tion and Collaboration Systems, UMICS, Citeseer, 2006,

pp. 942–953. 2, 10, 12

[3] J. Schiller, A. Voisard, Location-based services, Morgan

Kaufmann, 2004. 2

[4] M. Armbrust et al., Above the clouds, a berkeley view

of cloud computing, Tech. rep., University of California

(Feb 2009). 2

[5] R. Fielding, Architectural styles and the design of

network-based software architectures, Ph.D. thesis

(2000). 2

[6] H. Flores, S. Srirama, C. Paniagua, A generic middle-

ware framework for handling process intensive hybrid

cloud services from mobiles, in: Proceedings of the 9th

International Conference on Advances in Mobile Com-

puting and Multimedia, ACM, 2011, pp. 87–94. 4

[7] H. F. S. N. Srirama, C. Paniagua, Social group formation

with mobile cloud services, Service Oriented Computing

and Applications Journaldoi:10.1007/s11761-012-0111-5.

4, 70

[8] S. N. Srirama, M. Jarke, Mobile hosts in enterprise ser-

vice integration, International Journal of Web Engineer-

ing and Technology (IJWET) 5 (2) (2009) 187–213. 4,

21, 77

[9] S. N. Srirama, M. Jarke, W. Prinz, Mobile web services

mediation framework, in: Middleware for Service Ori-

ented Computing (MW4SOC) Workshop @ 8th Int. Mid-

dleware Conf. 2007, ACM Press, 2007. 6, 15

[10] S. Srirama, M. Jarke, W. Prinz, K. Pendyala, Security

aware mobile web service provisioning. 8

[11] S. Srirama, E. Vainikko, V. Sor, M. Jarke, Scalable mo-

bile web services mediation framework, in: Internet and

Web Applications and Services (ICIW), 2010 Fifth In-

ternational Conference on, IEEE, 2010, pp. 315–320. 8,

17

[12] P. Farley, M. Capp, Mobile web services, BT Technology

Journal 23 (3) (2005) 202–213. 10

[13] N. Ravi, P. Stern, N. Desai, L. Iftode, Accessing ubiq-

uitous services using smart phones, in: Pervasive Com-

puting and Communications, 2005. PerCom 2005. Third

IEEE International Conference on, IEEE, 2005, pp. 383–

393. 10

[14] D. Schall, M. Aiello, S. Dustdar, Web services on embed-

ded devices, International Journal of Web Information

Systems 2 (1) (2006) 45–50. 10

[15] M. Asif, S. Majumdar, R. Dragnea, Hosting web services

on resource constrained devices, in: Web Services, 2007.

ICWS 2007. IEEE International Conference on, IEEE,

2007, pp. 583–590. 10

[16] Y. Kim, K. Lee, A lightweight framework for mobile web

services, Computer Science-Research and Development

24 (4) (2009) 199–209. 11

[17] S. Berger, S. McFaddin, C. Narayanaswami, M. Raghu-

nath, Web services on mobile devices-implementation

and experience, in: Mobile Computing Systems and Ap-

plications, 2003. Proceedings. Fifth IEEE Workshop on,

IEEE, 2003, pp. 100–109. 13

[18] R. Steele, K. Khankan, T. Dillon, Mobile web services

discovery and invocation through auto-generation of ab-

stract multimodal interface, in: Information Technology:

Coding and Computing, 2005. ITCC 2005. International

Conference on, Vol. 2, IEEE, 2005, pp. 35–41. 13

[19] L. Capra, S. Zachariadis, C. Mascolo, Q-cad: Qos and

context aware discovery framework for mobile systems,

in: Pervasive Services, 2005. ICPS’05. Proceedings. In-

ternational Conference on, IEEE, 2005, pp. 453–456. 13

[20] G. Lecture Notes in Informatics (Ed.), Publishing and

Discovery of Mobile Web Services in Peer to Peer

Networks, Proceedings of First International Work-

shop on Mobile Services and Personalized Environments

(MSPE’06), November 16-17, 2006. 14

[21] A. S. Mix, http://servicemix.apache.org/. 15

[22] O. I. Java Business Integration,

http://java.sun.com/developer/earlyAccess/jbi/. 15

[23] P. Papakos, L. Capra, D. Rosenblum, Volare: context-

aware adaptive cloud service discovery for mobile sys-

tems, in: Proceedings of the 9th International Workshop

on Adaptive and Reflective Middleware, ACM, 2010, pp.

32–38. 16

[24] M. Armbrust et al., Above the clouds, a berkeley view

of cloud computing, Tech. rep., University of California

(Feb 2009). 17

[25] Amazon, Inc, Amazon - Amazon Web Services,

http://aws.amazon.com/. 17, 69

[26] Google Inc., Google Code - google application engine,

http://code.google.com/appengine/ (2011). 17

[27] D. Nurmi, R. Wolski, C. G. G. Obertelli, S. Soman,

L. Youseff, D. Zagorodnov, The Eucalyptus Open-source

Cloud-computing System, 2011. 18

[28] S. McIlraith, T. Son, H. Zeng, Semantic web services,

Intelligent Systems, IEEE 16 (2) (2001) 46–53. 18

81

http://dx.doi.org/10.1007/s11761-012-0111-5

BIBLIOGRAPHY

[29] A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila,

D. Martin, D. McDermott, S. McIlraith, S. Narayanan,

M. Paolucci, T. Payne, et al., Daml-s: Web service de-

scription for the semantic web, The Semantic WebISWC

2002 (2002) 348–363. 19

[30] K. Sivashanmugam, K. Verma, A. Sheth, J. Miller,

Adding semantics to web services standards, in: Pro-

ceedings of the International Conference on Web Ser-

vices, 2003, pp. 395–401. 19

[31] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil,

S. Oundhakar, J. Miller, Meteor-s wsdi: A scalable p2p

infrastructure of registries for semantic publication and

discovery of web services, Information Technology and

Management 6 (1) (2005) 17–39. 19

[32] A. Patil, S. Oundhakar, A. Sheth, K. Verma, Meteor-s

web service annotation framework, in: Proceedings of

the 13th international conference on World Wide Web,

ACM, 2004, pp. 553–562. 19

[33] foursquare Inc., https://foursquare.com/. 26

[34] S. Srirama, C. Paniagua, H. Flores, Croudstag: Social

group formation with facial recognition and mobile cloud

services, Procedia Computer Science 5 (2011) 633–640.

27, 68, 69

[35] S. E. C. LTD., Samsung galaxy sii,

http://www.samsung.com/global/ mi-

crosite/galaxys2/html/feature.html. 27

[36] A. Mian, R. Baldoni, R. Beraldi, A survey of service

discovery protocols in multihop mobile ad hoc networks,

Pervasive Computing, IEEE 8 (1) (2009) 66–74. 31

[37] S. Srirama, M. Jarke, H. Zhu, W. Prinz, Scalable mobile

web service discovery in peer to peer networks, in: Inter-

net and Web Applications and Services, 2008. ICIW’08.

Third International Conference on, IEEE, 2008, pp. 668–

674. 32, 38

[38] A. Gulbrandsen, A dns rr for specifying the location of

services (dns srv). 34

[39] A. Solr, Apache solr, http://lucene.apache.org/solr/. 39

[40] A. Lucene, Apache lucene,

http://lucene.apache.org/core/. 39

[41] W.-S. Interoperability, http://www.ws-i.org/. 41

[42] S. Srirama, M. Jarke, W. Prinz., Mobile web service dis-

covery in peer to peer networks. 41

[43] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDer-

mott, S. McIlraith, S. Narayanan, M. Paolucci, B. Par-

sia, T. Payne, et al., Owl-s: Semantic markup for web

services, W3C Member submission 22 (2004) 2007–04.

42

[44] B. McBride, Jena: A semantic web toolkit, Internet

Computing, IEEE 6 (6) (2002) 55–59. 44

[45] J. Pozdena, An apple push notification service gem,

https://github.com/jpoz/APNS. 60

[46] . S. Inc., Ruby and rails, http://rubyonrails.org/. 60

[47] J. Dean, S. Ghemawat, Mapreduce: Simplified data pro-

cessing on large clusters, Communications of the ACM

51 (1) (2008) 107–113. 68, 69

[48] D. M. Boyd, N. B. Ellison, Social network sites: Def-

inition, history, and scholarship, Journal of Computer-

Mediated Communication 13 (2008) 210–230. doi:10.

1111/j.1083-6101.2007.00393.x. 69

[49] S. N. Srirama, O. Batrashev, E. Vainikko, SciCloud:

Scientific Computing on the Cloud, in: The 10th

IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing(CCGrid 2010), 2010, p. 579. 70

[50] GoGrid, GoGrid - Complex Infrastructure Made Easy,

http://www.gogrid.com/. 70

[51] S. Srirama, Mwsmf: a mediation framework for mobile

hosts and enterprise on cloud, International Journal of

Pervasive Computing and Communications 7 (4) (2011)

316–338. 78

82

http://dx.doi.org/10.1111/j.1083-6101.2007.00393.x
http://dx.doi.org/10.1111/j.1083-6101.2007.00393.x

	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Outline

	2 State of the Art
	2.1 Mobile Web Service Provisioning
	2.2 Mobile Enterprise
	2.2.1 Challenges for establishing Mobile Enterprise
	2.2.2 QoS aspects of the Mobile Host
	2.2.3 Discovery aspects of the Mobile Enterprise
	2.2.4 Mobile Web Services Mediation Framework

	2.3 Cloud Computing
	2.4 Semantics in Web Service Provisioning
	2.5 Summary

	3 Mobile Host in Android
	3.1 Mobile Host Architecture and Realization
	3.2 Mobile Host Services
	3.3 Sample Web Services Provided by Mobile Host
	3.3.1 Location (GPS) Data Provisioning Service (Location Information Service)
	3.3.2 Push Notification Service
	3.3.3 File Browsing Service

	3.4 Summary

	4 Mobile Web and Mobile Cloud Service Discovery
	4.1 Mobile Host Service Discovery Mechanism
	4.1.1 Mobile Host Directory-less with Overlay Support Discovery Mechanism for Mobile Ad Hoc Networks
	4.1.2 Mobile Host in Wide Area Networks

	4.2 Peer-to-Peer Service Discovery in Android
	4.3 Keyword-Based Service Search with Solr
	4.4 Semantic Search for Discovery of Mobile Web Services
	4.4.1 OWL-S for Mobile Web Service Discovery

	4.5 Summary

	5 Push Notification aided by Mobile Host
	5.1 Push Notification Providers
	5.1.1 APNS
	5.1.2 Mobile Host aided push notification
	5.1.3 Android Cloud to Device Message Framework
	5.1.4 IBM MQ Telemetry Transport Protocol

	5.2 Quantitative Analysis
	5.2.1 Description of the experiments
	5.2.1.1 Summary of the push notification mechanisms

	5.3 Mobile cloud service invocation aided by Mobile Host
	5.3.1 Mobile Host and Mobile Cloud Middleware
	5.3.2 Social Group Formation with Facial Recognition and Mobile Cloud Services

	5.4 Summary

	6 Conclusions
	7 Future Research Directions
	8 Sisukokkuvõte
	Bibliography

