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Disease Comorbidity Analysis 

Abstract: 

Personalised medicine is a new approach to health care, in which the focus is on the 

individuality of patients, and disease prediction and prevention are emphasised, as opposed to 

only reacting to the consequences of medical disorders. As much data about the patients and 

diseases as possible, as well as other medical information, is taken into account while 

attempting to find if and how they are linked to each other. The main objective of personalised 

medicine is to offer more effective treatment to every patient in a shorter period of time at a 

lower cost in the future. 

The aim of this thesis is to study and analyse disease comorbidity in the Estonian population. 

2x2 contingency tables are constructed about every pair of co-occurring ICD-10 diagnose codes 

in epicrises gathered by the Estonian E-Health Foundation in the years 2012-2013. The potential 

correlation between diseases is measured with Fisher’s exact test and diagnose pairs with a 

stronger association are filtered. The results are visualised using heat maps. Disease 

comorbidity analysis is a prerequisite for future research about disease episode mining. 

Keywords: 

bioinformatics, personalised medicine, epidemiology, disease comorbidity, ICD-10,  

2x2 contingency tables, Fisher’s exact test 
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Haiguste komorbiidsusanalüüs 

Lühikokkuvõte: 

Personaalmeditsiin on uus lähenemine tervisekaitsele, milles tuuakse esile patsientide 

individuaalsus ja asetatakse rõhku haiguste ennetamisele nendest tekkinud tagajärgedele 

reageerimise asemel. Sealjuures võetakse arvesse võimalikult palju nii patsientide kui haiguste 

kohta teadaolevast ja ka muust meditsiinilisest teabest ning üritatakse nende vahel seoseid leida. 

Personaalmeditsiini üldeesmärgid on pakkuda tulevikus kõigile senisest lühema aja jooksul 

efektiivsemat ravi madalate kuludega. 

Käesoleva töö eesmärgiks on uurida haiguste komorbiidsust Eesti populatsioonis. Töös 

koostatakse Eesti E-tervise Sihtasutuse 2012.-2013. aasta epikriiside andmete põhjal kõigi sama 

patsiendi puhul koosesinevate RHK-10 registri haiguste paaride kohta 2x2 sõltuvustabelid. 

Haigustevahelist võimalikku seost hinnatakse Fisheri täpse testiga, filtreeritakse välja 

tugevamini assotsieeritud paarid ja visualiseeritakse tulemusi nn kuumuskaartide abil. Haiguste 

koosesinemise uurimine on eelduseks tulevases teadustöös haigusepisoodide kaevandamisele. 

Võtmesõnad: 

bioinformaatika, personaalmeditsiin, epidemioloogia, haiguste komorbiidsus, RHK-10, 

2x2 sõltuvustabelid, Fisheri täpne test  
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1. Introduction 

1.1. Introduction 

Personalised medicine is mainly described as a new approach to healthcare taking into account 

all of the individual differences of patients in all stages of the medical process, consisting of 

disease prevention, its diagnosis, and the treatment of health issues [1]. Its aim is to tailor 

everything used in healthcare to the exact needs of specific patients, thus improving the 

prevention and treatment of as many diseases as possible. 

Even though throughout history, medicine has often included the patients’ age and gender as 

risk factors for certain diseases, the way their medical history is considered is mostly generic 

and abstract, and does not involve exact statistical measurements. Intricate risk analysis taking 

into account all possible aspects of patients has been difficult as there has not been a lot of 

analysable data collected until recently and it has not had a high enough quality or good enough 

characterisation for studying [1]. Complex e-health systems with distinctly specified data 

collected in real time are in the process of solving the issue with data gathering, and data science 

is being employed in the analysis process as the amount of data collected is enormous. 

In Estonia, there is a widespread political and social consensus on the need for a more individual 

approach in health care systems referring not only to genetic analysis and data usage but to the 

usage of all kinds of complex medical data gathered about the patients, including their genetic 

information, their behaviour and the effect of the environment. The development of 

personalised medicine is increasingly prioritised all over the world, however, in Estonia, there 

is already an initial nationwide e-health system in use, providing the data needed for extensive 

medical analysis and research [2]. 

One of personalised medicine’s aims is to be able to predict diseases instead of reacting to their 

consequences [2]. Research into the medical history of patients could serve that exact purpose 

as previous health issues could be the causes or at least risk factors for the appearance of other 

disease cases. This thesis aims to contribute to that field of bioinformatics. 

1.2. Motivation 

Healthcare data gathering has proved the need to use big data analytics in order to sufficiently 

analyse medical data and to pave the road towards personalised medicine. There are tools 

available for use to analyse genetic data and to find the correct ways to treat diseases connected 

to genetic data [3]. Similarly, data mining techniques can be used to analyse not only one 
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patient’s medical history at a time but aggregately all of the patients’ data in an attempt to find 

new information about connections and comorbidities between medical issues. 

Even though there have been some articles on specific disease comorbidity in Estonia, for 

example between migraine and epilepsy and other neurological and psychiatric problems, such 

as depression, panic attacks and essential tremor [4],  there has not yet been an extensive 

research of disease comorbidity conducted on the Estonian population. As e-health systems 

have already been applied in Estonian medicine from 2008 [5], and medical personnel are 

obligated to forward medical documents into the Estonian National Health Information System 

[6], it is about time the data is used in extensive comorbidity analysis. 

Even in global bioinformatics research, comorbidity analysis on a whole population considering 

all of the possible disease cases is rare. Comorbidity is mostly researched taking a specific index 

disease into consideration [7] but approaching the problem this way evidentially takes too much 

time – the widely used International Classification of Diseases (ICD-10) allows more than 

14,400 different diagnose codes to be specified [8]. Thus, there has been some research into the 

comorbidity of all of these diseases, for example in Denmark [9] [10]. This thesis mostly 

considers the research in those articles. 

1.3. Contributions 

The main aim of this thesis is to apply the comorbidity analysis methods employed on the 

Denmark population [9] [10] on the Estonian population to find any similarities and differences 

between those two datasets and to present a basis for further comorbidity research in Estonia. 

The thesis will provide exact measurements and numerical results for the connections between 

disease cases in the Estonian population and could thus serve as a way to analyse the overall 

medical state of the population as well as the main causes of diseases. The thesis contributes to 

the increasingly active field of personalised medicine in Estonia and is necessary for the 

development of systems capable of temporal disease prediction for specific patients. 

1.4. Outline 

The thesis and the current state of personalised medicine are described in the first, introductory 

chapter. The motivation for the thesis and the author’s contributions to the subject are expressed 

in detail. A short review is also given about the outline of the thesis. 

Chapter 2 discusses comorbidity analysis. In it, comorbidity, multimorbidity, disease 

trajectories and contingency tables are defined and the scoring methods used in this thesis to 
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rate data in contingency tables are also specified. The methods used for data visualisation and 

clustering are also detailed in this chapter. Furthermore, the Simpson’s paradox is explained. 

In Chapter 3, the data used in this thesis is described in detail. In this chapter, the initial dataset 

is described and the way it was extracted, filtered and read is detailed. The errors that appeared 

in the process, are also discussed. In order to better describe data, some analysis on it is also 

described. 

The implementation of the analysis described in Chapter 3 executed on the data described in 

Chapter 3 is specified in detail in Chapter 4. Flow diagrams and other details about the 

implementation of the analysis are presented. An automatic analyser built for quicker testing 

and studying is also detailed. 

Chapter 5 outlines the results of the analysis performed in the previous chapter. The chapter 

provides an analysis and interpretation of the outcome of this research. The reasoning behind 

the results is in no way conclusive as it could be further studied and even more definitive rules 

could be found, however, it attempts to cover and construe all of the main points. 

Conclusions and the summary of the thesis are presented in Chapter 6, the last chapter of the 

thesis. The main directions for further research in the field are also described in this chapter. 
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2. Comorbidity Analysis 

Chapter 2 focuses on setting the background on comorbidity analysis. In this chapter, the terms 

of comorbidity, multimorbidity, disease trajectories, contingency tables are defined and the 

main methods for scoring and measuring the association of diseases are also detailed. The 

visualisation and clustering of data resulting from comorbidity analysis is also discussed in this 

chapter. 

2.1. Comorbidity 

In different kinds of clinical research, the term of comorbidity has had very different ambiguous 

definitions. The nature and importance of the conditions in question, chronological factors such 

as the time span and sequence of the conditions, and the burden of disease are usually the 

parameters used to differentiate between definitions of comorbidity. Other non-health-related 

characteristics of the patient, such as socioeconomic, cultural, environmental and behavioural 

data, have proved to be significant, as well. The overall term of comorbidity refers to the 

presence of multiple specific conditions in an individual. However, in epidemiology, a field 

that involves identifying the causal relationships between medical disorders, and public health 

research, comorbidity is usually defined as the coexistence of distinct diseases. In such analysis, 

an index disease is emphasised [7]. 

Sometimes, temporal parameters are also taken into account while analysing comorbidity, such 

as the sequence in which diseases or their comorbidities appear or their simultaneous co-

appearance in the same exact time period to some extent [7]. It is possible that a patient suffers 

from a disease their whole life and it could affect the appearance of other diseases, however, it 

is diagnosed only once. For example, myopia, the most commonly diagnosed eye condition, 

has been proved to cause serious visual impairment, such as optic nerve crescent, white-

without-pressure, lattice degeneration, microcystoid degeneration and pigmentary degeneration 

[11]. On the other hand, some disease cases only appear discretely and do not always affect the 

patient their whole life. Smaller accidents fall into this category. 

Comorbidity analysis of diseases is used to identify the relationship between these diseases. 

There could, for example, be no cause between the diseases and their co-occurrence in certain 

patients could only be a chance [7] but with a sufficiently large set of patients, the random cases 

could be eliminated through cut-off values as it was done in the research in Denmark [9]. The 

association between two specific diseases could be described as either a direct causation, 

associated risk factors between the diseases, heterogeneity or independence [7]. 
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2.2. Multimorbidity 

The presence of multiple distinct disease conditions within one individual is referred to as 

multimorbidity. Multimorbidity analysis does not refer to a specific index condition, or usually 

take into account the order of the conditions in question [7], however, some research also 

considers the disease trajectories. Multimorbidity is a commonplace medical problem, yet there 

still appears to be an insufficiency of exhaustive analysis with conclusive results. [12] 

As multimorbidity refers to the co-occurrence of multiple disease cases in a patient and 

comorbidity to the co-occurrence of only two diseases at once, multimorbidity could be 

described through multiple comorbid relationships between all of the possible pairs of the 

diseases in question. Doing so, the multimorbidity of diseases in patients can be analysed more 

thoroughly as there are more comprehensive measurements between the pairs of specific 

diagnoses. As the comorbidity between all of those pairs is taken into account concurrently 

during the same analysis, the multimorbidity does not affect the results too much and the 

description of the relationships between all of the diseases in question can be versatile and 

complex. 

2.3. Inverse comorbidity 

Sometimes, a patient who has suffered from one illness, could have a lower chance of catching 

some other disease than a patient who has not suffered from the first disease. This phenomenon 

is called inverse comorbidity. For example, certain central nervous system (CNS) disorders, 

such as Down’s syndrome, Alzheimer’s disease, Parkinson’s disease, multiple sclerosis and 

Huntington’s disease, could cause inverse cancer comorbidity in certain types of cancers [13]. 

This thesis does not focus on the explicit analysis of inverse comorbidity but creates the 

necessary utilities to perform such analysis in further work, described in Section 6.2.  

2.4. Disease Trajectories 

In order to analyse the comorbidity of diseases in patients, their disease trajectories are to be 

identified. A disease trajectory is identified as a temporal disease progression and describes the 

sequence diseases have followed for a patient [10]. These disease trajectories can be used to 

simplify the counting of comorbid disease cases. 

If data used for research covers a long enough time span, these disease trajectories could be 

used to identify more discrete time-critical relationships between diseases and thus, to predict 

and prevent future diseases. Clustering significant disease trajectories could, in turn, refer to 

even more associations between disease groups [10]. In Denmark, researchers had 14.9 years 



13 

 

of registry data on 6.2 million patients and could provide substantial results in disease trajectory 

analysis [10] but in the Estonian dataset, there was only 2 years of medical data currently 

available for research, described in Chapter 3, and thus, exhaustive temporal disease 

progression analysis was left for future work, described in Section 6.2. 

2.5. Contingency Tables 

A table in which a sample of some population is parted or categorised by two or more discrete 

qualitative variables, is widely referred to as a contingency table. Contingency tables denote 

frequencies at which certain parts of the population fall into these categories. They are used for 

frequency analysis in population groups to find associations between the groups and between 

the qualitative variables used [14]. 

A 2x2 contingency table or, in other words, a two-dimensional contingency table is the simplest 

form of a contingency table [14], and is defined as a table which compares two distinct groups 

with each other; each of them is further parted into groups either with a certain attribute or 

character or without it [15].   

Table 1: Description of an abstract 2x2 contingency table [15] 

Group With attribute Without attribute Total 

1 a A – a A 

2 b B – b B 

Total r = a + b N – r N = A + B 

 

In Table 1, group 1 consists of A people out of which a people have the specified attribute. 

Similarly, group 2 consists of B people, b of which have the same attribute. In total, there are N 

= A + B people in the groups, out of which r = a + b have the specified attribute. 

Table 2: An alternate description of an abstract 2x2 contingency table 

Group With attribute Without attribute Total 

1 a b a + b 

2 c d c + d 

Total a + c b + d N = a + b + c + d 
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Often, as is the case in Table 2, the variables denoting the values in the fields of the contingency 

table are changed into a, b, c and d in order to simplify the notation of formulae applied on 

contingency tables. Such formulae are further described in Section 2.6. 

A 2x2 contingency table is the most frequently used contingency table. It usually appears when 

two different independent variables are compared to each other on the basis of the same 

population [14]. The patient corpus used in this thesis can be divided and counted into four 

different fields in the two-dimensional contingency table with respect to whether or not they 

have suffered from some disease X and whether or not they have suffered from some disease 

Y. The same approach was used in research conducted in Denmark [9].  

Table 3: Description of a 2x2 contingency table in the context of comorbidity between diagnoses 

A and B 

 With Y Without Y Total 

With X a b a + b 

Without X c d c + d 

Total a + c b + d N = a + b + c + d 

 

Here, in Table 3, the description of the table is exactly the same as for the abstract 2x2 

contingency table with the exception that in place of the usual groups, people are divided into 

them based on whether they have been diagnosed with X or not, and the attribute studied is 

having been diagnosed with Y. 

This kind of contingency tables can be constructed about all possible pairs of diagnoses. In this 

thesis, if there are N diagnoses accounted for, we construct an NxN matrix with a 2x2 

contingency table on some two diseases in all of the fields of the matrix. For those cases where 

those two diagnoses happen to be the same diagnosis X, 0 is written into the upper left field, 

the amount of patients that have suffered from diagnosis X in the data set in total is written into 

the upper right and lower left fields, and the amount of patients who have never suffered from 

diagnosis X into the lower right field of the two-dimensional contingency table. Similar analysis 

was done in Denmark [9]. The way diagnoses are chosen for analysis is further described in 

Chapter 3. 

2.6. Scoring Methods 

There are many possible ways to evaluate the data set constructed in Section 2.5. A 

straightforward way would be to just compare all of the frequencies of diagnose co-associations 
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with each other but that method would not provide much additional information. A test or 

scoring method needs to be chosen to evaluate the independence of the diagnoses in a pair. 

Common ways to measure the contents of 2x2 contingency tables include absolute risk 

reduction, relative risk, relative risk reduction and odds ratio. These are, however, usually used 

specifically in treatment risk analysis [16]. There are better scoring methods available for 

testing the independence of two variables in a contingency table – for example, the chi-squared 

test, further described in Section 2.6.1, and Fisher’s exact test, detailed in Section 2.6.2. 

2.6.1. Chi-Squared Test 

A chi-squared test is often used to test the independence of two variables. The test relies on 

investigating the validity of the null hypothesis that 𝑝𝑖𝑗 = 𝑝𝑖. ∙ 𝑝.𝑗, where “𝑝𝑖𝑗 represents the 

probability of an observation belonging to the i-th category of the row variable and to the j-th 

category of the column variable” – thus “𝑝𝑖. represents the probability of any observation 

belonging to the i-th category of the row variable” and “𝑝.𝑗 the probability of any observation 

belonging to the j-th category of the column variable” [14]. 

Pearson’s chi-squared test is defined as the statistic 

𝜒2 = ∑ ∑
(𝑛𝑖𝑗 − 𝐸𝑖𝑗)

2

𝐸𝑖𝑗

𝑐

𝑗=1

𝑟

𝑖=1

 

where r denotes the number of rows and c the number of columns in the contingency table, and 

𝐸𝑖𝑗 is the estimate of the population observation frequency in the i-th category of the row 

variable and the j-th category of the column variable in the contingency table, given by 

𝐸𝑖𝑗 = 𝑁𝑝𝑖.̂𝑝.𝑗̂ = 𝑁
𝑝𝑖.

𝑁

𝑝.𝑗

𝑁
=

𝑝𝑖. ∙ 𝑝.𝑗

𝑁
 

where 𝑝𝑖.̂ and 𝑝.𝑗̂ are estimates of the probabilities 𝑝𝑖. and 𝑝.𝑗, and N is the size of the 

population [14]. 

If the variables being compared are independent, the difference between 𝑛𝑖𝑗 and 𝐸𝑖𝑗 is minimal 

and the statistic 𝜒2 will be smaller than that of associated variables. The statistic should be 

compared to the corresponding value from the chi-squared distribution of the same degree of 

freedom as the initial contingency table, calculated as (𝑐 − 1) ∙ (𝑟 − 1) [14]. Usually, 0.01 or 

0.05 are used as the significance level. 
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For 2x2 contingency tables, this statistic can be described as [14] 

𝜒2 =
𝑁 ∙ (𝑎𝑑 − 𝑏𝑐)2

(𝑎 + 𝑏)(𝑐 + 𝑑)(𝑎 + 𝑐)(𝑏 + 𝑑)
 

where the variables a, b, c, d and N = a + b + c + d are the same as described in Section 2.5, 

Table 2. 

2.6.2. Fisher’s Exact Test 

The chi-squared test can be replaced by Fisher’s exact test. While using the chi-squared test, 

corrections sometimes have to be applied because it uses the chi-squared approximation [17]. 

Fisher’s exact test uses the exact probability distribution of the observed frequencies instead 

and corrections need not be applied. Because of its computational complexity, Fisher’s exact 

test has usually only been applied to contingency tables where the expected frequencies are 

small [14]. 

With the availability of bigger computational power becoming more prevalent, Fisher’s exact 

test can be applied to data sets with larger expected frequencies, too. Whenever possible, an 

exact test without approximations or corrections should be used [17]. This thesis mostly relies 

on Fisher’s exact test as used in research conducted in Denmark [9]. 

Fisher’s exact test is usually only used for 2x2 contingency tables, however, it can also be used 

for larger contingency tables [17]. Under the null hypothesis 𝑝1 = 𝑝2 where 𝑝1 and 𝑝2 represent 

respective population proportions having a characteristic, Fisher’s exact test is identified by the 

hypergeometric distribution 

𝑓(𝑎|𝑟) =
(𝐴

𝑎
)(𝐵

𝑏
)

(𝑁
𝑟

)
=

(𝐴
𝑎

)( 𝐵
𝑟−𝑎

)

(𝑁
𝑟

)
 

where the variables a, b, A, B and r are the same as described in Section 2.5, Table 1, and r, A 

and B as marginal are fixed [15]. This distribution can also be identified as  

𝑃 =
(𝑎+𝑏

𝑎
)(𝑐+𝑑

𝑐
)

( 𝑁
𝑎+𝑐

)
=

(𝑎 + 𝑏)! (𝑐 + 𝑑)! (𝑎 + 𝑐)! (𝑏 + 𝑑)!

𝑎! 𝑏! 𝑐! 𝑑! 𝑁!
 

in terms of the variables a, b, c, d and N described in Section 2.5, Table 2 [14]. One-sided 

alternatives to the two-sided Fisher’s exact test above can also be used with alternative 

hypotheses 𝑝1 > 𝑝2 or 𝑝1 < 𝑝2 [15]. 
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2.6.3. Filtering Interesting Pairs 

When using the NxN matrix of contingency tables constructed at the end of Section 2.5 where 

N denotes the amount of diagnoses in the data set, Fisher’s exact test could be conducted on all 

of the contingency tables in the matrix. A cut-off can be imposed to filter the list of p-values 

returned from Fisher’s exact test in order to find interesting pairs [9]. 

In the aforementioned Danish analysis, the measure used for choosing interesting pairs was 

defined as 

𝑠𝑋𝑌 = log2 (
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 + 1

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 + 1
) 

where the observed value is the observed number of diagnosis co-associations, and the expected 

value was defined as 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 =
𝑛𝑋 ∙ 𝑛𝑌

𝑛𝑡𝑜𝑡𝑎𝑙
 

where X and Y denote the diagnoses in question [9]. The value defined in the previous formulae 

can be expressed as 

𝑠𝑋𝑌 = log2 (
𝑎 + 1

(𝑎 + 𝑏) ∙ (𝑎 + 𝑐)
𝑛 + 1

) 

using the variables a, b, c and n as described in Section 2.5, Table 3. As in Denmark, 1 was 

added to the nominator and the denominator of the measure in order to lower the presence of 

lower associated pairs in the final data set. A cut-off value of 1.0 was used in this thesis to 

“restrict our focus to pairs with a higher than two-fold (approximately) over co-association” 

[9]. 

In Denmark, the Benjamini-Hochberg false discovery rate method was also used on the data set 

to correct for multiple testing [9], however, this thesis does not rely on multiple testing and the 

false discovery rate method was not applied. For each pair of a patient and diagnosis, only one 

instance is used, as described in Chapter 3. 

2.7. Heat Maps 

A heat map is a method of visualising data sets in a matrix on the screen in a compact way by 

conveying the information in the matrix as a clustered coloured rectangular tiling with 

hierarchical cluster trees or, in other words, dendrograms attached to its sides. Heat maps are 
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used because they are an effective way to depict moderately large data sets on the screen for a 

quick overview of data in matrices. They are, perhaps, one of the most used visualising tools 

used in biological sciences [18]. 

A heat map is practically worthless without first clustering the data set to group similar values 

together. When clustered, associations between different values can be taken note of and used 

in research. Clustering is further described in Section 2.8. 

As Fisher’s exact test described in Section 2.6. returns values between 0 and 1, those 

measurements can be used for the heat map’s colour scale. 0 might be depicted as a blue 

rectangle in the heat map, and 1 as red. That way, after hierarchically clustering the data set and 

then depicting it as a heat map, red areas can be looked for on the plot and conclusions deducted 

from their appearance. 

Heat maps can be plotted with the help of the Python library Matplotlib in the SciPy Stack [19]. 

The implementation is further discussed in Section 4.4.4. 

2.8. Hierarchical Clustering 

Clustering is a method of categorising data into similar groups, otherwise known as clusters. Its 

aim is to divide measurements in such a way that similar values are positioned closer to each 

other, in the same cluster, and dissimilar values farther away from each other, in separate 

clusters [20]. Clustering is used whenever there appears a need for comparative analysis on big 

data sets. 

Hierarchical clustering is one of two most used methods of clustering – the other being 

partitioning –, in which each cluster is divided into subclusters, altogether forming a tree-shaped 

structure known as a dendrogram. One of the most usual algorithms used for hierarchical 

clustering, agglomerative clustering, is implemented by iteratively joining the closest items or 

clusters into larger clusters until every item belongs to one final supercluster consisting of all 

of the initial items [20]. 

Hierarchical clustering can be divided into several submethods based on different definitions 

for the distance between clusters, often referred to as the linkage function. Some of the different 

linkage functions include single linkage, which focuses on the shortest distance between cluster 

members, complete linkage, which uses the largest distance between items in clusters, average 

distance, which uses the arithmetic averages of distances, and centroid linkage, which uses the 

distance between cluster centroids [20]. 
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Hierarchical clustering and the dendrograms resulted from performing hierarchical clustering 

on a data set can be used to plot comprehensible heat maps in order to better visualise the data 

set under investigation, as described in Section 2.7. They could also be used in other fields, for 

example, in temporal analysis to find similarities between different diagnoses by clustering 

them by periodicity. This falls out of the scope of this thesis but is briefly outlined in Section 6.2. 

In this thesis, the complete linkage function is used for hierarchical clustering performed on the 

NxN 2x2 contingency table score matrix before visualising the data on a heat map. Hierarchical 

clustering can be performed in Python with the help of the SciPy Stack [19]. The 

implementation is further discussed in Section 4.4.4. 

2.9. The Simpson’s Paradox 

The Simpson’s paradox, also referred to as reversal paradox, describes the reasoning behind a 

phenomenon in contingency tables in which association trends observed in some independent 

population groups might reverse or disappear when those groups are combined [21]. In 

medicine, the Simpson’s Paradox has mainly been observed in treatment analysis [22] and 

clinical trials [23]. The paradox has also appeared in epidemiology [24]. 

As comorbidity analysis relies heavily on information in 2x2 contingency tables, the Simpson’s 

Paradox might appear in the results of the research conducted in this thesis when the population 

under investigation is split into multiple different groups before comorbidity analysis. Such 

groups may be constructed by splitting the patients either by their gender, by their specific age 

groups, or both. The implementation of data slicing in this thesis is further discussed in Section 

4.5.2. Other parameters may also be incorporated into data splitting operations in the future, as 

described in Section 6.2. 
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3. Data 

Chapter 3 describes the data used in this thesis in detail. In this chapter, the initial data sets are 

defined, their extraction, slicing and usage is explained, and the errors occurring in the database 

used are also described. Methods used to further illustrate the data used in this research are also 

detailed in this chapter. 

3.1. Description 

The data used in this thesis was gathered from the Estonian E-Health Foundation’s system. 

Permission to use it for research purposes was granted to the Software Technology and 

Applications Competence Center (STACC). The complete dataset consists of ambulatory and 

stationary epicrises in the years 2012 and 2013. All of the data is anonymised and can hence be 

used for all kinds of medical analysis. The size of the dataset is detailed in Table 4. 

Table 4: Description of the complete dataset 

 2012 2013 Total 

Stationary epicrises 214,754 211,355 426,109 

Ambulatory epicrises 1,156,732 2,090,043 3,246,775 

Space requirements 49 GB 61 GB 110 GB 

 

The dataset used during analysis in this particular thesis consists of data about over 900,000 

distinct patients in the Estonian population during the years 2012 and 2013. In total, there are 

about 15,000 different diagnose codes in that data set. Since the original data contained missing 

or erroneous values in important fields, all of the data could not be taken into account. The 

errors in question are described in detail in Section 3.2. 

The set of patients is described by an unique identification number, their birth year and gender. 

All other data about the patients must be gathered from medical documents in the database. 

However, as the documents are used in real life and doctors need to manage their time 

effectively, all of the data is not categorised into different types of fields. Most of the data is 

hidden in raw text and data mining has to be used in order to gain access to the knowledge 

hidden there. 

The epicrises consist of raw text, structured fields filled in the epicrisis documents and data 

mined specifically from the text. There is all kinds of data saved, for example, medical visits, 
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different epicrises, patients’ complaints, blood pressure measurements, drugs prescribed, death 

cases, etc. The diagnose codes in all of the epicrisis documents are marked as ICD-10 codes. 

The International Classification of Diseases (ICD) allows for diagnoses to be categorised into 

different groups by two or three parts of each code, altogether consisting of more than 14,400 

different possible health issues. Using ICD-10 codes is mandatory for health-related documents 

[8]. In the ICD-10 code “H40.1”, the H stands for “diseases of the eye and adnexa”, H40 stands 

for “glaucoma” and H40.1 stands for “primary open-angle glaucoma” [25]. A reference to the 

ICD-10 can be found on the World Health Organization’s web page [25]. 

In STACC, the raw data and data mined from it are kept separately. The “work” database 

consists of either data collected from structured fields in the e-health system or already mined 

data. However, the initial information is kept in the “original” and “original_2013” databases 

in order for it to not get mixed up. These contain epicrises from the years 2012 and 2013 

correspondingly.  

In this thesis, all of the patients’ gender and birth years are used. From the epicrises’ data, the 

main diagnosis codes and epicrises types are used. In addition, in order to get the correct dates 

of medical disorders, a date field is used from the “original” and “original_2013” databases. 

The reasoning behind this is discussed in Section 3.2.  

Not all of the raw data has, yet, been mined, analysed or verified. Only about a third of the 

original data about the years 2012 and 2013 has been successfully analysed and transferred into 

the “work” database. Nonetheless, it is still enough for a comprehensive comorbidity analysis. 

3.2. Errors 

Even though some of the fields, such as the diagnosis codes, are filled in by doctors in structured 

fields, some of the data has still been gathered by using data mining methods on the raw text 

data in the medical epicrises – for example, the actual date of illness. There are bound to be 

errors in the dataset. Causes of errors in the dataset can vary. Mostly, they can be caused by 

mistyping or spelling errors in the epicrisis documents’ text, or by misanalysis of borderline 

cases during the extraction process while data mining. 

In order for the analysis in this thesis to be as exact and useful for future research as possible, 

filtering is needed to clean the data. Different kinds of errors must be categorised and taken out 

of the initial dataset, as false data could seriously affect the outcome of the research. If one field 
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in a database row is erroneous, no field of that row should be trusted until the cause of the error 

is found and fixed. 

Some of the patients’ identification codes are non-numeric and contain falsely mined data. In 

this thesis, these data rows from the patients’ data table are not taken into account. All of the 

patients’ gender fields are consistent but some of the patients do not have birth years marked. 

In addition, some of the birth years are illogical – some of the patients seem to be either born 

hundreds of years before their epicrises or later than their corresponding epicrises. Thus, only 

the patients with existing birth years ranging from 1912 to 2013 are considered in this thesis. 

In the diagnoses database table, the diagnosis codes could, sometimes, be faulty. They might 

not always correspond with the ICD-10 code syntax or not be filled at all. Sometimes, the date 

of the diagnosis is either erroneous or falls out of the specified 2012 – 2013 year range. The 

explicit date fields in the “work” database document the date of the epicrisis – however, the 

date of the actual illness is mined in the “original” and “original_2013” databases. Only rows 

where none of the previously mentioned errors existed and that could be linked with specific 

patients and initial epicrises’ data were used in this research. 

3.3. Extraction 

In order to perform specific scientific analysis, input data should have an appropriate format. 

In this thesis, it is easiest if we denote information about diagnoses for all of the patients 

grouped by the patient identificator, as opposed to epicrises saved as separate rows in the 

database. Information about the patients could then be stored about each patient separately. This 

kind of data notation would make it easy to slice data by patients’ biological background 

information to perform analysis on different kinds of data subsets. 

In order for the analysis to be as fast as possible and for it to not need a continuously running 

database connection, the large data sets were first extracted from the database, and then the data 

that is useful for this thesis, saved into three different text files – “diagnoses.txt”, “epicrises.txt” 

and “patients.txt”. 

The diagnoses file contains a list of all of the diagnoses in the complete dataset along with their 

frequency. It is used to identify the most often diagnosed disorders in order to plot them on 

comorbidity heat maps. Each row consists of an ICD-10 code and its frequency, in that order. 

The epicrises file contains the medical conditions each patient has been diagnosed with. Each 

row consists of a patient’s identification code and their diagnose history. Each element of the 
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diagnose history is made up of the time of the diagnose, its ICD-10 code, the epicrisis type and 

the diagnosis type. The epicrisis types are described as “1 – main diagnosis”, “2 – by-illness”, 

“3 – outer cause”, or “4 – complication”. The diagnosis types can either be “S” or “A”, 

indicating a stationary or an ambulatory epicrisis. 

The patients’ file contains their biological background information. Each row in the file 

contains a patient’s anonymised identification code, their gender and their birth year, in that 

specific order. The patients’ file can be used to split the epicrises’ dataset into smaller subgroups 

by the patients’ biological background information. 

SQL queries are used to read the appropriate data from the database. Queries can be constructed 

for all of the data files separately as per the data description above but as the data in different 

files has to fit together, joins have to be used. Where clauses are used to filter all possible 

erroneous fields. The SQL queries used in this thesis are implementation specific and can be 

seen from the code in Appendix B. 

In case data files already exist, data does not usually need to be re-read from the database and 

the same already existing data files could be used for analysis instead. Granted, the need to 

retain the same structure the data was in before saving it into text files needs to be taken into 

account. The implementation of data extraction, storing and reading is further described in 

Section 4.2. 

3.4. Slicing 

As can be seen from Section 3.1, Table 4, only about 12% of all of the epicrises recorded in the 

national e-health system were stationary epicrises. Moreover, while most of the stationary 

epicrises are taken into account in the database, only about half of all of the ambulatory epicrises 

are analysed. If the complete dataset is analysed only as a whole, explicit results might not 

emerge from the data gathered from stationary epicrises. As in Denmark [10], data was split by 

either stationary (inpatient) or ambulatory (outpatient) epicrises.  

In order to find whether comorbidity relationships differ between different age groups or 

genders, the complete population could also be split by the patients’ gender and birth year data. 

The same analysis can then be carried out on all of the different data slices. The implementation 

of an abstract data slicer is discussed in Section 4.5.2. 
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3.5. Disease Frequency 

In order to better illustrate the dataset under investigation, disease frequencies could be plotted 

to emphasize the differences in the most frequent diseases different age groups suffer from. As 

the complete dataset consists of about 15,000 different diagnoses, as described in Section 3.1,  

diseases have to be grouped so the plots would be able to portray actual information. Each 

ICD-10 code can be reduced into a corresponding disease class chapter, as can be seen from the 

ICD-10 codes register [25]. 

When grouped by the amount of people of a certain age who have suffered from disorders in a 

certain ICD-10 chapter, a stacked plot can be made to illustrate disease class frequency in 

certain age groups. Each disease chapter could then be depicted with a different colour. Similar 

graphs were plotted in research conducted in Denmark [10]. This thesis will refer to such a plot 

as the absolute disease frequency plot. Its method of plotting is further discussed in Section 

4.3.2. 

As the female population usually exceeds the male population by numbers, and as there are 

more people in some age groups than in others, the absolute disease frequency plot might not 

depict information on which substantial conclusions could be made. To eliminate the effects of 

population differences in different population groups, the absolute disease frequency plot 

values could be divided with their corresponding values in the datasets population pyramid. 

Such a method to retrieve a relative disease frequency plot is also discussed in Section 4.3.2. 
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4. Implementation 

Chapter 4 describes the implementation of the analysis specified in Chapter 2 performed on the 

data detailed in Chapter 3. In Chapter 4, the tools and technologies used to perform the analysis 

in this thesis are specified, and the reasoning behind the code provided in Appendix B is 

explained in detail. 

4.1. Technologies Used 

The main programming language for the implementation phase of the research in this thesis 

was Python 2.7. Python is an open source multi-platform fast easy to learn powerful general 

purpose programming language [19] [26], which was chosen for its portability, ease of use and 

the ability to quickly prototype code. Python was written in the PyCharm Community Edition 

4.0.5, which is considered as one of the best IDE-s for Python for its intelligent code assistance, 

refactoring, debugging and testing features [27]. 

Scientific calculations and graph plotting were implemented with the help of SciPy, an open 

source Python library used for scientific calculations and programming, consisting of multiple 

different packages, namely NumPy, the package used for numerical calculations, pandas, the 

package providing easy to use data structures, and Matplotlib, a high-quality plotting 

software [19]. 

For confidentiality reasons, all of the work had to be stored on the official server the data 

described in Chapter 3 was stored in. Access to the server was gained through an SSH 

connection [28] in an encrypted partition of a VMware Player [29] virtual machine running the 

Debian operating system [30]. 

For database access, SQL was used. The database was running on MySQL, the most popular 

open source database used for its speed, reliability and easy handling [31], and access to the 

database through Python was acquired through the usage of the Python Database API 

MySQLdb [32]. Access into the database out of the Python application was obtained through 

MySQL Workbench 5.2.40, a visual tool providing easier and more intuitive ways of designing, 

modelling, generating and managing databases used by database architects, developers and 

administrators [33]. 
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4.2. Data Extraction and Storing 

4.2.1. Database Operations 

As previously described in Section 3.3, there are 3  main data files used in this thesis – 

“diagnoses.txt”, “epicrises.txt” and “patients.txt”. These files describe directly what is stored in 

the actual SQL database, hence the data should be extracted and saved using similar methods. 

For this reason, the classes DataFilesCreator, QueryConstructor and DataFileReader were 

created. The latter will be discussed in Section 4.2.2, the two first, however, are used during the 

data extraction process from the database. 

 

Figure 1: DataFilesCreator flow diagram 

As can be seen from Figure 1, the data file creator takes care of linearly extracting all of the 

data corresponding to the specified three text files separately. The preceding initialisation 

consists of reading parameters, generating corresponding file names and ensuring the specified 

data file directory exists, as can be seen from the DataFilesCreator class. 

 

Figure 2: The data extraction process flow diagram 

Start End Initialisation 

Extract epicrises 

Extract patients

Extract diagnoses

Start 

End 

Initialisation 
Force 

overwriting? 

File exists? 

Display error 
message 

Query data

Save into file 

Format data 

Yes 

No 

No 

Yes 

Return data 
Read data 
from file 



27 

 

As depicted on Figure 2, for each of the three files, the data extraction process consists of initial 

checks of whether the data needs to be extracted at all – if extraction is not necessary because 

the user chooses for it to not be overwritten and it already exists in the specified file, the data is 

read and returned from the file, as described in Section 4.2.2. If it is extracted from the database, 

however, the process consists of self-explanatory steps – initialisation, data querying, data 

formatting, saving it into a text file and returning it to the user. 

In order to get the data out of the database, SQL queries are needed to be constructed. However, 

as the queries changed a lot during research and needed to accommodate complex uses, a class 

capable of constructing SQL queries was made. The QueryConstructor class is a simple 

implementation for that purpose which allows to provide the table the data is being queried 

from, the fields that are to be queried, the where clauses, grouping and ordering clauses and 

limits. It is also possible to add inner joins to the query and to use unions. Values for the queries 

are provided as separate arguments and are only equipped to the query in the last phase, either 

query output or its execution. 

As the databases used in this thesis are very specific, the exact data extraction code described 

in this section is probably not suitable for research in any other facilities than that of STACC. 

For that reason, the code is not meant for out of the box usage and no comprehensive user 

interface was built, as described in Section 4.6. 

4.2.2. File Operations 

As discussed in Section 3.3, data is saved into text files, and in order to assure consistency 

throughout this project, should also be retrieved into the same format as it was in before saving 

it into a file. The implementation of the code for the saving process can be seen in the 

DataFilesCreator class and for the reading process in the DataFileReader class. 

Each patient can be described as a tuple of their identification code, their gender and their birth 

year. If all of the patients are listed into text files on separate lines, they can easily be retrieved 

back into the same format they were used as in the program – as a Python dictionary mapping 

patients’ identification codes to the corresponding lists containing their gender and birth year, 

in that specific order. 

The diagnoses file is only used for quick reference to the most popular diseases patients have 

been diagnosed with. Each row of the diagnoses file contains the diagnosis’ ICD-10 code and 

its frequency in the database. In the program, the data is referred to through a Python dictionary 

mapping diagnosis codes to their corresponding frequencies. 
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The most important file used in the research conducted in this thesis is the epicrises file. The 

epicrises file lists all of the patients, and for each patient, the chronological list of the main 

diagnoses they have been attributed. For each diagnose, its date, ICD-10 code and the epicrisis 

and diagnosis types are saved. In order to save space and improve data reading speed, the dates 

are referenced as the number of days passed from the start of the query period, 1 January 2012. 

The diagnosis type is defined as either 1 – main diagnosis, 2 – by-illness, 3 – outer cause, or 

4 – complication. The epicrisis type can be “stationary” or “ambulatory”, referenced 

correspondingly as “S” and “A”. 

When the text file is read, the data is formatted as a Python dictionary mapping patients’ 

anonymised patient identification codes to the corresponding lists containing their diagnoses’ 

times, diagnosis codes and the epicrisis and diagnosis types. This list is essentially the same as 

a disease trajectory – only with additional information. 

4.3. Data Analysis 

4.3.1. Matrix Creation and Retrieval 

 

Figure 3: The abstract matrix creation and retrieval process flow diagram 
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Similarly to the data extraction process flow diagram depicted in Figure 2, the matrix creation 

process first relies on initial checks whether the file the matrix is saved into for later usage 

needs to be created or rewritten before returning the corresponding data, or the data could just 

be read and returned immediately without any changes to the file containing the data in the 

matrix. 

4.3.2. Disease Frequency 

For disease frequency analysis, compound graphs consisting of 4 different population groups 

are plotted. The population groups are split based on the patients’ gender and whether their 

diagnoses originate from stationary or ambulatory epicrises. 

The DiseaseAgeMatrixCreator is responsible for formatting the data for plotting. Disease 

frequency is formatted as a Python dictionary mapping ICD-10 diagnose code chapters to 

Python dictionaries mapping age periods to the frequencies of diagnoses belonging to that 

chapter counted in people of that age period. In this thesis, 1 year is used as the age period and 

patient ages range from 0 to 100. 

Population groups might differ by size based on the patients’ gender or age group. Relative 

disease frequencies can be plotted when the initial absolute disease frequencies are divided by 

the corresponding population amount value. National population pyramid matrices are 

constructed using the NationalPyramidMatrixCreator which functions very similarly to the 

DiseaseAgeMatrix creator, creating Python dictionaries mapping patients’ genders to Python 

dictionaries mapping age periods to the amount of patients belonging to that age group. 

Disease frequencies are depicted as stacked plots using the Matplotlib Python library from the 

SciPy Stack [19]. In order for the plots to be comparable to similar research conducted in 

Denmark, exactly the same colours were chosen to denote ICD-10 chapters. 

4.4. Comorbidity Analysis 

4.4.1. Overall Multimorbidity 

Multimorbidity is not explicitly the topic of this thesis. However, to further illustrate the need 

to investigate the co-occurrence of diseases, a graph can be plotted to depict the amount of 

co-occurring discrete diagnoses patients have suffered from during the 2-year-period used in 

this thesis. 

The method used to depict the frequency of multimorbid patients is very similar to the one used 

in plotting disease frequencies. The MultimorbidityMatrixCreator returns Python dictionaries 
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mapping different amounts of different co-occurring diagnoses to Python dictionaries mapping 

age periods to the actual percentages of patients in that age group that have suffered from that 

many medical disorders during the 2-year-period used in this thesis. 

As with other plots in this thesis, the overall multimorbidity frequency plots are graphed as 

stacked plots using the Matplotlib Python library from the SciPy Stack [19]. As in similar 

analysis conducted in Scotland [34], 8 different levels of co-occurrence counts were included 

in this thesis, each depicted darker than the one before it in increasing order. 

4.4.2. Contingency Tables 

As discussed in Section 2.5, in order to investigate comorbidity, contingency tables first have 

to be constructed for each existing pair of co-occurring ICD-10 diagnosis code in the dataset. 

The ComorbidityMatrixCreator is intended for creating 2x2 contingency tables. 

The ComorbidityMatrixCreator converts a Python dictionary mapping patients’ anonymised 

identification codes to their diagnosis trajectories to a NxN Python dictionary mapping all of 

the pairs of diagnoses to their corresponding 2x2 lists containing the amounts of diagnoses in 

each of the 4 groups in a 2x2 contingency table, as discussed in Section 2.5. The co-occurrences 

of diseases X and Y are counted as well as their separate appearances in the matrix. All of the 

values in the contingency table are derived from those. 

ICD-10 chapters XXI and XIX concerning “factors influencing health status and contact with 

health services” and “injury, poisoning and certain other consequences of external causes” were 

not used in the comorbidity analysis. 

4.4.3. Scoring 

All NxN of the 2x2 contingency tables are scored, using Fisher’s exact test, as described in 

Section 2.6.2. The scipy.stats.fisher_exact function in the SciPy Stack [19] is used to calculate 

the p-value of Fisher’s exact test. To save time, the cut-off is applied straight away, before even 

saving the value into the scoring file. If the value needs to be filtered out, the actual value is 

substituted with 0. The implementation of the ScoreCalculator allows the usage of other 

contingency scoring methods, as well. The MatrixSorter sorts all of the scores calculated in 

descending order so they would be conveniently readable for human eyes. 

4.4.4. Heat Maps 

Heat maps of the NxN matrices of scored contingency tables are plotted using the SciPy, pandas 

and Matplotlib libraries in the SciPy Stack [19]. The code in the heat map plotter was 
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constructed by basing it on DeBoever’s tutorial in IPython [35]. As Fisher’s test returns values 

between 0 and 1, 0 was chosen to be depicted as blue and 1 as red on the heat maps. 

In the implementation, the NxN matrix is first converted into a pandas library structure. It is 

then hierarchically clustered, using the scipy.cluster.hierarchy.linkage function. The heat map 

is then plotted in a file, labels added to two sides of the plot and dendrograms attached to the 

other sides of the plot. A colormap is attached into one of its corners. 

4.5. Automatic Analyser 

4.5.1. Necessity 

Database queries usually do not take much time in practice but as there are millions of epicrises 

in the database, as described in Section 3.1, and as joining large tables takes even more time, 

database queries can be very time-consuming. Saving data into text files solves that problem 

because that way, it does not have to be queried multiple times – only when the initial test data 

needs to be changed – but slicing the data into different groups based on patients’ biological 

background still takes a lot of time. Moreover, as there are almost a million patients taken into 

account in the analysis, conducting Fisher’s exact test as described in Section 2.6. can take 

hours because of factorial calculations on contingency table matrices with more than 10,000 

diagnoses in both rows and columns. 

The research in this thesis consists of several different tests on several different sliced data sets.  

In order to save time testing, an automatic analyser was built to integrate all of the previously 

described data extractors, readers, writers, analysers and plotters, as the process of typing in 

commands one by one is aggravating and time-consuming for a human and recalculating the 

same initial states in order to perform different types of tests on the same test sets is redundant. 

4.5.2. Design 

The main points taken into consideration while constructing the automatic analyser were quick 

development and fast execution. As such, there are some hacks used in the code but overall, its 

purpose of providing quicker research into comorbidity was served. The code can be reused but 

needs to be refactored before applying to critical systems. 
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Figure 4: The automatic analyser process flow diagram 

In the initialisation phase, all of the arguments and parameters used in all of the analyses in this 

thesis are set, using code implemented in the Arguments class. Then, the user is connected to 

the research database based on the username and password entered from the command line, 

using the code presented in the Database class. Data is then extracted from either the database 

or text files, as described in Section 4.2, and the dataset gathered is split into multiple parts 

based on the parameters set in the initialisation phase. From there on, as can be seen from Figure 

4, all of the different analyses are carried out – the population analysis, disease periodicity 

analysis for future research purposes, disease frequency analysis, multimorbidity analysis and 

comorbidity analysis.  

4.5.3. User Interface 

The code written during the research conducted in this thesis is intended for very specific tasks. 

Currently, this kind of analysis can mostly only be used by data scientists. Further research, as 

described in Section 6.2, is needed, in order to make the results usable for actual doctors. This, 

however, falls out of the scope of this thesis. 

As data scientist are used to code, no effort was made to develop a graphical user interface. For 

programmers, a command line interface is usually enough. Should the need for a graphical user 

interface arise, each user of this code can manipulate it to fit for their purposes. 

Several functions are left for the user to modify in the code. Initial test sets and their usage is 

defined in the code and can not be modified from the command line interface. SQL queries, as 

discussed in Section 4.2.1, are very implementation-specific and should be modified, should 

the code be used. The code also somewhat relies on the implication that only the years 2012 
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and 2013 are analysed. If data from other years is included in the analysis, code should be 

modified. 

4.6. Guidelines for Usage 

In order for the implementation of the research conducted in this thesis to be installed on another 

system, certain software needs to be installed. As described in Section 4.1, the implementation 

uses Python 2.7 [26], SciPy [19] and MySQLdb [32]. The system used in this thesis ran on the 

Linux operating system, however, Python and the specified Python libraries are multi-platform 

and can be used elsewhere. Access to the server and database used in this thesis can, however, 

not be granted for public access, so data to be used in similar research has to be gathered by 

other means. 

The code itself is research-specific only meant for data miners who already know how to 

program, and thus, no graphical user interface or simple usability instructions were constructed 

– in order to incorporate it into other research, the code itself has to be refactored and 

reformatted. If the code was abstract enough for it to suit for every type of similar research, it 

would be too general, would not be able to provide out of the box usage, and would need to be 

modified to fit for the purpose of other research anyway. The development of personalised 

medicine is still at the very beginning of its course and a lot of future research, some of it 

described in Section 6.2, has to be performed before it can be used in real time by actual 

healthcare personnel. 

The code itself should provide the necessary information to use it, to learn how it was built, and 

if need be, refactor it for usage elsewhere. 
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5. Results 

Chapter 5 describes the results of the comorbidity analysis conducted on the epicrises gathered 

from the Estonian E-Health Foundation’s system. This chapter provides an abstract analysis 

and interpretation of the outcome of this research. The reasoning behind the results outlined in 

this chapter is in no way conclusive, however, it attempts to cover all of the main points found 

from the results. 

5.1. Data Analysis  

5.1.1. Absolute Frequency of Diseases 

An absolute frequency plot retrieved from the analysis can be seen from Figure 6 in 

Appendix A.2.1. It would, of course, be possible to dissect it in many ways, however, the main 

findings seem to be that in the Estonian population: 

1. most childbirths occur when the mother is 20 to 40 years old; 

2. neoplasms appear to occur earlier and more frequently in women than in men; 

3. diseases of the genitourinary system also appear to occur earlier and more frequently in 

women than in men; 

4. diseases of the circulatory system and diseases of the musculoskeletal system and 

connective tissue appear to be the main medical issues for older people; 

5. younger people seem to suffer more from diseases of the respiratory system. 

The same analysis conducted in Denmark [10] can be seen from Figure 7 in Appendix A.2.2. 

As these results are formatted in the same way, they can be compared to each other. The results 

seem to match quite well, however, in Denmark, diseases of the blood and blood-forming 

organs and certain disorders involving the immune mechanisms seem to be a greater issue for 

older people than in Estonia. Conclusions 2, 3 and 4 do not seem to be as apparent in Denmark, 

either. 

5.1.2. Relative Frequency of Diseases 

As can be seen from the absolute frequency of diseases from Figure 6 in Appendix A.2.1, there 

seem to appear more diseases in women than in men. Also, there is a gap in the graphs for 20-

year-olds and 70-year-olds. This does not mean that women are more prone to illnesses or that 

some specific marginal age groups are safer from diseases than others. The effect is caused by 

differences in the Estonian population, either between men and women, or between different 

age groups. 
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The same relationship can, indeed, be seen from the Estonian national population pyramid 

depicted in Figure 5 in Appendix A.1. There are less 20-year-olds because of a crisis in 

population growth, and there are less 70-year-olds because of World War II. 

When divided by the national population pyramid of the patients taken into account in this 

analysis, a relative disease frequency plot is constructed. This can be seen in Figure 8 in 

Appendix A.2.3. The main findings seem to be that in the Estonian population: 

1. as a person ages, the amount of disorders they are diagnosed with rises rapidly; 

2. the relationships between different age groups in the same disease category mostly 

demonstrate stability; 

3. old age is usually accompanied with 

a. diseases of the circulatory system, 

b. diseases of the blood and blood-forming organs and certain disorders involving 

the immune mechanisms (as was seen to be the case in Denmark in 

Section 5.1.1),  

c. diseases of the musculoskeletal system and connective tissue, 

d. neoplasms; 

4. middle-aged and older people suffer the most from diseases of the musculoskeletal 

system and connective tissue – men earlier than women; 

5. women suffer more and earlier from diseases of the genitourinary system; 

6. women also suffer earlier from neoplasms, however, relatively more men are diagnosed 

with neoplasms in old age. 

7. younger people suffer more from diseases of the respiratory system; 

8. injury, poisoning and certain other consequences of external causes mostly affect young 

people, especially children. For women, these issues disappear when they become 

adults, however, men continue to get into accidents. These disorders start to reappear in 

old age; 

9. people are also diagnosed with many different disorders before becoming an adult, 

probably because of regular health check-ups; 

10. during younger ears, people go to check-ups more often than in old age, however, in old 

age, more disorders are discovered and diagnosed than in younger years; 
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5.2. Comorbidity Analysis 

5.2.1. Overall Multimorbidity 

It can be seen from Figure 9 in Appendix A.3 that in the Estonian population, most of the people 

suffer from multiple disorders. It is worth noting that as age increases, the amount of 

multimorbidity in diagnoses from stationary epicrises increases, too. However, ambulatory 

epicrises can consist of injuries, too, so some of the younger people have an increased chance 

of multimorbidity as well. 

5.2.2. Comorbid Diseases 

As can be seen from the results of the comorbidity analysis, most often, disorders of the same 

ICD-10 diagnose class are clustered together. Diseases of the respiratory system often appear 

together, and viral infections cluster with these diagnoses. 

Another frequently occurring disease cluster is associated with overweight and old age. This 

does not necessarily mean that old people are overweight but it means that there is a connection 

between the disorders overweight people and older people usually suffer from. Overweight 

often causes asthma or endocrine, nutritional and metabolic diseases, which in turn cause 

diseases of the circulatory system. The latter are often also associated with old age and as such, 

other types of diseases often occurring in old age, such as disorders of the eye, appear in the 

same cluster as well.  

The comorbidity plots are accompanied with this thesis in Appendix A.4, and the complete 

sorted lists of the analysis’ results are provided in Appendix C. 
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6. Conclusions 

6.1. Summary 

Personalised medicine is certainly a goal to be achieved. It could provide much more effective 

treatment to patients, lower its costs and improve the overall healthcare of the society. It is, 

however, a complex area which still needs a great deal of research. 

One way to make way towards personalised medicine is to analyse the comorbidity of diseases 

subject to different parameters in the population. This thesis focuses on the analysis of 

co-occurring diseases in the Estonian population in the years 2012-2013 based on epicrises 

gathered by the Estonian E-Health Foundation’s system. 

Disease comorbidity can effectively be investigated by using 2x2 contingency tables. Fisher’s 

test turned out to be a very good measure to find associations between ICD-10 diagnose codes, 

and interesting pairs can be filtered using a logarithmic measure. The results are best depicted 

as heat maps, however, sorted association lists work, too. 

Results from this thesis identify overall relationships of ICD-10 diagnose classes in the Estonian 

population based on the disease frequency analysis. The comorbidity analysis resulted in a large 

number of co-associations, as well, illustrated in the plots in Appendix A.4, and in the sorted 

comorbidity lists in Appendix C. 

6.2. Further Work 

In science, there is always more work to be done. This research contributes to the development 

of personalised medicine, however, to achieve substantial improvement of personalised 

medicine systems, extensive further analysis is needed. There are many fields left to be 

explored. 

First of all, this thesis analysed comorbidity only based on the patients’ gender and age groups. 

In future analysis, more biological background information could be integrated into similar 

comorbidity analysis to gain insight into other causal epidemiological association rules between 

illnesses patients have suffered from and other risk factors. For example, people who smoke, 

could be more prone to coronary artery disease [36]. 

Diseases’ characteristics could also be factored in. This thesis does not separate contagious and 

noncontagious diseases but in theory, their comorbidity could be different, especially when the 

epicrises are looked at geographically. Chronic and non-chronic illnesses could have 

differences on how long it takes until the effect of comorbidity wears down. 
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Inverse comorbidity, discussed in Section 2.3, could be further analysed in the same data set to 

find relationships similar to the example of some CNS disorders causing a lesser probability of 

certain cancers [13]. Inverse comorbidity could also be analysed in relation to different patient 

subgroups acquired through data slicing. 

Temporal disease trajectories could also be investigated, as has been done in Denmark [10]. 

Epidemiological knowledge on which diseases usually follow which could lead to better 

methods for disease prediction and prevention in the future. This kind of research can, however, 

only be conducted when the dataset under investigation is large enough, as discussed in 

Section 2.4. 

Diagnoses that appear together in patients could often appear at the same time periods. Thus, 

by investigating when diseases have been diagnosed the most, similarities could be found 

between diseases after performing cluster analysis. This kind of disease periodicity analysis 

could be used to identify epidemics, and if applied in real time, prevent them. 

Comorbidity and other types of analysis could be used to investigate possible associations 

between drugs and illnesses. It could be used to find which drugs are the most effective for 

which population groups to counter which illnesses, and could also better illustrate how the 

treatment process affects patients. Relationships between medications and their side-effects 

could be better countered if it were known which population groups are most probable to suffer 

from them. 

It has been predicted that by 2020, about 5 million individuals in the world will have had their 

full genome sequenced [37]. Furthermore, while the cost for genome sequencing was once 

measured in millions of dollars per genome, by now, it has dropped to only thousands of dollars 

and will continue to drop as technology evolves [3]. The rapid decline in prices will create a 

golden opportunity to investigate the relationship between the human genome and illnesses. 

One of the final goals of personalised medicine would be to be able to predict diseases that 

could occur in the future. Episode mining, while using as much data about the patients as 

possible, would provide insight into what could happen with specific patients as time moves 

on. Temporal predictions for the time period in which a disease is most probable to occur for a 

certain patient could also be made to make the predictions more precise. 
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All of the above and more could be used in research towards effective personalised medicine. 

The author intends to move towards these aims in the future, and to contribute to the field as 

much as he can. 
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Appendices 

A. Graphs 

A.1. Population Pyramid of Estonia 2013 

 

Figure 5: The population pyramid projection of Estonia in 2013 [38] 
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A.2. Disease Frequency 

A.2.1. Absolute Disease Frequency in Estonia 

 

Figure 6: Absolute disease frequency in the Estonian population in 2012-2013 
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A.2.2. Absolute Disease Frequency in Denmark 1996-2010 

 

Figure 7: Absolute disease frequency in Denmark in 1996-2010 [10] 
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A.2.3. Relative Disease Frequency 

 

Figure 8: Relative disease frequency in the Estonian population in 2012-2013 
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A.3. Overall Multimorbidity 

 

Figure 9: Overall frequency of diseases in the Estonian population in 2012-2013 

 

A.4. Comorbidity 

The comorbidity plots are accompanied separately. 

B. Code 

The actual code used in the implementation phase of this thesis is accompanied separately. 

C. Sorted Comorbidity Lists 

The lists are accompanied separately.  
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