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Abstract

Electronics design and testing for ESTCube-2 on-board computer system with sensors for
attitude determination

ESTCube-2 will be a 3U picosatellite planned to launch in 2019 to perform experiments in
low Earth orbit. On-board computer system is required to control the satellite while powered
up and has to provide computational power and reliable storage for other subsystems. Atti-
tude and orbit control system is responsible for satellite’s detumbling, pointing, spin-up and
for controlling thrusters. This thesis presents a prototype electronics board developed for both
systems. On-board computer system features STMicroelectronics Cortex-M7 microcontroller
with common bus interfaces and point-to-point signaling lines for all other systems planned for
ESTCube-2. Data and programs are stored in three types of external non-volatile memories -
QSPI NOR flash, FRAM and MRAM. For attitude determination sensors a dedicated connec-
tor and a demonstration prototype expansion board were developed featuring magnetometer,
accelerometer and two gyroscopes. To test the developed boards simple firmware was written
using manufacturer’s provided hardware abstraction layer and an initialization source code gen-
erator.

CERCS: T170 Electronics, T320 Space technology

Keywords: miniaturized satellite, on-board computer system, attitude and orbit control sys-
tem, electronics, ESTCube-2, Cortex-M7, MRAM, FRAM, QSPI flash



Resiimee

Elektroonika projekteerimine ja testimine ESTCube-2 pardaarvutile koos asendi méairamise
sensoritega

ESTCube-2 saab olema 3U suurune kuupsatelliit, mis saadetakse Maa orbiidile 2019. aastal.
Pardaarvuti on vajalik, et juhtida satelliidi t66d ja pakkuda arvutusjoudlust ja usaldusviirset
andmete sdilitamist teistele alamsiisteemidele ja eksperimendimoodulitele. Asendi ja orbi-
idi juhtimise siisteem peab suutma stabiliseerida ja suunata satelliiti ettendhtud suunas ning
samuti panna satelliit poorlema ning orbiiti muutma tditurite abil. Selle t60 eesmérk oli vilja
tootada pardaarvuti prototiiiibi elektroonika koos asendi méddramise sensoritega. Pardaarvuti
jaoks kasutati STMicroelectronics Cortex-M7 mikrokontrollerit ja seda kasutades loodi andme-
sidelihendused teiste satelliidi alamsiisteemidega. Andmete talletamiseks kasutati kolme vélist
sdilmélu - QSPI NOR vilkmélu, FRAM ja MRAM. Asendi mididramise sensorite jaoks aren-
dati eraldi elektroonika laiendusplaat, mille peal on magnetomeeter, kiirendusandur ja kaks
giiroskoopi. Elektroonika testimiseks kirjutati piisivara, milleks kasutati mikrokontrolleri tootja
poolt pakutavat riistvara abstraktsioonikihti ja lihtekoodi generaatorit.

CERCS: T170 Elektroonika, T320 Kosmosetehnoloogia

Keywords: kuupsatelliit, pardaarvuti, asendi ja orbiidi juhtimise siisteem, elektroonika, ESTCube-
2, Cortex-M7, MRAM, FRAM, QSPI vilkmilu
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1 Introduction

Space technology is a fast growing industry with advancements going on in areas like space
mining and solar system exploration. Since distances in space are vast and traveling from one
place to another takes a lot of time and fuel for conventional propulsion engines, a better way
is needed. The electric solar wind sail offers a possible solution [1]. It uses solar wind ions and
long, thin electrically charged wires to generate thrust. To test the technical solution ESTCube-
1 mission was launched, but since it was not able to conduct the experiment [2], a new one is
planned. ESTCube-2 will be a one part of the next two missions to test Coulomb drag propul-
sion and plasma brake [3]. In the case of ESTCube-2 the experiment will be conducted in low
Earth orbit while ESTCube-3 is planned to perform the experiment in solar wind intersecting
orbit. ESTCube-2 will be a miniaturized satellite of 3U defined in "CubeSat Design Specifica-
tion” [4]. Its dimensions will be around 10 x 10 x 30 cm and it will weigh less than 4 kg. This
confined space will host the following systems: electrical power system (EPS), communications
system (COM), scientific payloads, on-board control system (OBCS) and attitude and orbit con-
trol system (AOCS) [5]. All of them have a specific purpose and must communicate with each
other for a successful mission. The goal of this thesis is to develop prototype electronics board
for OBCS and AOCS. The main focus will be on on-board computer system which is used
scheduling, distribution and handling of telecommands, satellite health monitoring, hosting al-
gorithms for attitude determination and control, providing compression and storage of mission
data for most of the payloads. Since the selection of the attitude determination sensors is not
final, the sensors would be implemented on expansion boards to aid in the characterization of
new sensors. Finally hardware functionality testing must be performed.

1.1 Thesis goals

Develop schematics for on-board computer system.
Develop schematics for attitude determination sensors.
Create PCB design for on-board computer system.

el e

Create PCB design featuring attitude determination sensors for attitude and orbit control
system.

Assemble first prototype boards.

o v

. Write firmware for hardware functionality testing.

10



1.2 Space environment

Satellites in low Earth orbit and in outer space are not protected from radiation - without the
atmosphere they are affected by trapped particles in Earth’s magnetic field, particles from solar
events and cosmic rays [6]. With the ESTCube-2 mission taking place in low Earth orbit, it
will be mainly susceptible to trapped protons and electrons, galactic cosmic ray ions, interplan-
etary solar flare protons and alpha particles, heavy ions [7]. In circuits three different kinds of
damages can be caused by these particles.

* Total ionizing doze (TID) damage
* Single event upset (SEU)
* Single event latch-up (SEL)

Accumulating TID causes rapid aging of electronic components. In low Earth orbit, a few years
may be enough to cause commercial off-the-shelf (COTS) components to fail completely. For
example, the effects may be permanently increased leakage currents, drifts in voltage levels and
clock frequencies. If special radiation hardened components are used, mean time to failure will
typically be well over 10 years. [8] For a short mission taking place only for two years, COTS
components can successfully be used. Compared to the space grade components, they have a
lot lower price, weigh less and are smaller. COTS components are widely available and have
good documentation and good support for software development.

Single event upsets and single event latch-ups can be caused by particles with high kinetic
energy. Single event upsets are non-destructive and create soft errors including volatile bit
flips in memory and registers. These sorts of errors can be detected and corrected by software
using error correction algorithms. More concerning from electronics point of view are single
event latch-up events, where charged particles create high current paths in CMOS substrate
that can permanently damage components. Latch-up protection should be implemented in the
electronics design to power off the component with internal short circuit and allow for the
charges to dissipate before switching it back on. [8]

1.3 Other on-board computer systems

During normal operations ESTCube-1 was controlled by the command and data handling sys-
tem (CDHS). It stored mission and housekeeping data from all subsystems. CDHS also ran all
the processes for the attitude determination and control system. It featured two STM32F103
microcontrollers in cold redundancy. This means that the electrical power system powered up
only one of the microcontrollers at a time and if one failed the other could still be used. Bus
switches were used to disconnect unused microcontroller from all the lines to make sure it would
not interfere with the other one. For redundancy all the connections between subsystems were
point-to-point with forwarding. CDHS stored data in three SPI flash memories, total of 48 MB,
five FRAM memories, total of 1280 KB, and in microcontroller’s internal memory, 768 KB of
flash and 96 KB of SRAM. [9] During ESTCube-1 mission command and data handling system
was improved with additional functionality enabled by in-orbit firmware updates [2].

The AAU-Cubesat was launched into space in 2003 and its on-board computer system used
Siemens C161 16-bit 16 MHz microcontroller. It only featured one camera payload and all
the communication was done over I°C bus. It featured PROM for original software and flash
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memory for updated software. [10] Today there are already commercially available on-board
computer systems. One of those is Innovative Solutions In Space on-board computer 1IOBC).
It 1s flight qualified and uses ARM9 processor, 64 MB of SDRAM, 1 MB NOR flash for code
storage and 256 kB FRAM for critical data. For mass storage it has two 2 GB SD cards with
fail safe file system. They also optionally offer software for faster development. [11] A lot of
research has been done on fault tolerant on-board computer systems. STSAT-3 was designed
using FPGA with a triple modular redundancy scheme which was immune to proton energies
up to 20.3 MeV during testing. Two flash memories were used to hold the original and updated
version of the FPGA configuration. [12]

12



2 Hardware
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Figure 2.1: Block diagram of ESTCube-2 with communication buses from on-board computer
system’s view.

ESTCube-2 is divided into multiple subsystems, each with a specific purpose. The subsys-
tems are listed on figure 2.1. Electrical power system is responsible for energy storage, power
distribution and monitoring, as well as performing high-level current limiting. EPS also acts as
the central timekeeper since it is always powered. Another subsystem, that is always powered,
is the communications system, which is responsible for receiving and transmitting data between
satellite and ground stations. Side panels are responsible for tracking Sun’s position and col-
lecting energy with maximum power point tracking (MPPT). ESTCube-2 will also feature a
star tracker that allows increased accuracy in measuring satellite’s orientation. ESTCube-2 will
have at least three payloads - optical payload, E-sail payload and high-speed communications
payload. On-board computer system controls satellite during nominal operations by receiv-
ing commands from the ground station through COM to schedule and handle them, possibly
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when the satellite is out of range from the ground stations. It keeps log of the satellite’s oper-
ations, compresses and stores recorded data and programs in memory while supporting other
systems where needed. ICP, RS485, RS232, USB, CAN, SPI and I’C communication buses
are used to achieve maximum performance and to accommodate different development teams
(Figure 2.1). [5] This sets a list of requirements that the on-board computer system and attitude
determination sensors must comply to, described in section 2.1.

2.1 Requirements

1.

First prototype must include at least the following interfaces for testing and debugging
purposes: JTAG or SWD and UART with USB serial adapter.

Electronics board must support at least two power sources - USB and EPS.

. On-board computer system and attitude determination sensors must work from 3.3 V

supply.
All the components must have industrial temperature range of at least -40 to 85 °C.

Commercially off-the-self components must be used that are widely available for lower
cost.

Printed circuit board design must not use blind or buried vias, traces thinner than 0.2 mm
nor vias smaller than 0.2 mm.

On-board computer system specific requirements

1.

Microcontroller must be able to control the power of the on-board computer system’s
subcomponents such as memories, communication drivers and sensors.

On-board computer system must not source current from other systems other then elec-
trical power system.

On-board computer system must feature current consumption measurement capability for
on-board memories, communication drivers and attitude determination sensors.

Temperature measurement must be available near memories and communication inter-
faces.

On-board computer system must include on-board mass storage for data logging, firmware
images and custom functions.

On-board computer system must include dedicated low-power memory for storing mis-
sion critical data such as bootloader command list, configuration tables, error logs.

On-board computer system must include additional non-volatile high speed random-access
memory for attitude and orbit control system algorithms and data compression.

. Radiation tolerant memory should be used where possible.

14



AQOCS sensor board specific requirements

1.

Attitude and orbit control system sensors must be on an expansion board since final sensor
selection is not available.

On-board computer system must be able to power cycle attitude determination sensors.
I°C should be avoided if possible. [5]

Sensors must be redundant, in order to enable averaging between measurements or to
have a backup in the case that a sensor fails permanently.

Same type of sensors must be on different buses to mitigate the failure of a communication
bus.

Temperature sensors are required as close as possible to all the sensors for calibration
purposes.

15



STM32F76711 [13] | ATSAME70Q21 [14] | STM32F401VE [15]
Clock 216 MHz 300 MHz 84 MHz
Core Cortex-M7 Cortex-M7 Cortex-M4
FPU Double precision Double precision Single precision
Flash 2 MB 2 MB 512 KB
SRAM 512 KB 384 KB 96 KB
GPIO 132 114 81
UART/USART 4/4 5/3 0/3
SPI 6 2 4
QSPI 2 1 0
I°C 4 3 3
Other L1-cache 2x16 KB | L1-cache 2x16 KB
JPEG codec
Package LQFP-176 LQFP-144 LQFP-100
Current consumption | 440 nA/MHz 300 nA/MHz 146 nA/MHz
Performance 1082 CoreMark 1512 CoreMark 285 CoreMark
462 DMIPS 645 DMIPS 105 DMIPS
at 216 MHz at 300 MHz at 84 MHz

Table 2.1: Comparison between different microcontrollers considered for the on-board com-
puter system.

2.2 On-board computer system

Microcontroller

At the center of the on-board computer system (Figure 4.46), there is a microcontroller to com-
municate with and to perform computation intensive tasks for other systems on the satellite.
Compression of mission logs and experiment data will use an FFT based algorithm. For this,
Cortex-M7 has digital signal processing (DSP) instructions that would speed up calculations.
AOCS will be implementing Kalman and Particle filters that would greatly benefit from dou-
ble precision floating point unit and tightly coupled memory. Different microcontrollers were
considered (Table 2.1), but in the end STM32F7671IT6 was chosen. There were mainly three
reasons:

1. ESTCube’s team familiarity with the STMicroelectronics microcontrollers and the stan-
dardization that sees only two microcontroller types being used - one for computation
intensive systems and the other for always on subsystems that must have low power con-
sumption [2].

2. The second reason was that this particular microcontroller had one of the best CoreMark
scores, standardized benchmark indicating execution of simple code [17], and had just
become available.

3. The third reason was the number of pins and peripherals required to implement all the
required communication, memory and AOCS sensor interfaces. STM32F7 family also
supports bigger packages (Table 2.1) with more pins to extend the on-board computer
system capabilities for the next design iterations if needed.

16



With previous electronics designs done with STM32F4 series and its pin-to-pin compatibility
with STM32F7 family - the transition to the new and better microcontroller was easy. Although
400 MHz STM32H7 family with 2020 CoreMark has been announced, it is not yet available
and has smaller transistors (40 nm technology) which might make it more susceptible to single
event effects [16].

One of the biggest shortcomings that the STM32F7 microcontroller family has for the on-board
computer system is its external interrupt/event controller (EXTI) that support only 16 exter-
nal interrupt lines at any single given time [13]. With the current design the total number of
available interrupt lines is more than 32 as demonstrated in table 2.3. Although many of the
AOCS interrupts may never be used, they still are needed while software is being developed
in case they become relevant in later phases of the project. To handle less frequent interrupts,
an external input/output extender MCP23S17 was used as a workaround. It has two 8-bit ports
that can be configured as external interrupt input lines. On a single port all the interrupts can
be OR’ed or AND’ed together and a single line can be used to signal microcontrollers EXTI
so that the software can read through SPI on which line the interrupt occurred. In the current
prototype the I/O expander added support for 14 additional interrupts. [18] Some of the possi-
ble interrupt lines were left out because of the design constraints and low importance. If those
interrupts become necessary, test points can be used to connect them to pin headers for software
development purposes on the first prototype board.

Memories

On-board computer system in ESTCube-2 has to keep logs of the satellite operations, hold con-
figuration data for sensors and algorithms, store several firmware images, custom functions and
their metadata, as well as offer storage for other systems. All of these tasks require different
types of memory which is additionally made even more challenging by the space environment.
Bit flips are quite serious in registers when entering or returning from an interrupt, function
call or when looping. They can also cause serious issues in attitude or orbit control system
algorithms. For example, a single bit flip might cause thrusters to go off with maximum thrust.
Thus, it would make sense to have these algorithms keep their variables in radiation tolerant
memory. Another layer of security will be provided by implementing error correction and data
scrubbing.

High speed parallel magneto-resistive random-access memory (MRAM) was selected because
it is non-volatile and radiation tolerant by design which makes it less susceptible to single
event effects. It can still be affected during read and write operations due to being based on
CMOS technology. [19] Everspin Technologies 16 Mb parallel MRAM MR4A16B was used in
54-TSOP2 package for its availability and user-friendly package. It uses 20-bit address bus and
16-bit data bus with dedicated access to the upper and lower byte through signaling pins (Figure
4.13). The parallel communication bus is compatible with the bus used in most parallel static
random-access memories. [20] This made it possible to connect MR4A16B to the STM32F767
using flexible memory controller and SRAM controller to hide the actual signaling from the
programmer. MRAM is used to keep the data of running programs which can be recovered
if power is lost abruptly thanks to its non-volatile nature. MRAM will be used to run AOCS
algorithms and data compression.

Since ferroelectric random-access memory (FRAM) is low density and uses serial interface, it’s
best to use it for configuration tables, error logs, on-board statistics, for data that don’t need to

17
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Figure 2.2: Block diagram of the memories used in the on-board computer system and their
communication buses.

be accessed very often and data without strict latency restrictions. It has been tested in labora-
tory environment to have radiation tolerance against single event upsets [21] but its interfacing
electronics uses CMOS technology which is still susceptible to all the radiation effects [22]. [24]
On-board computer system uses FRAM for its low power consumption - 300 pA active current
at 1 MHz. Cypress CY15B104Q was chosen since it offers the highest capacity currently avail-
able - 4 Mb. For communication, it uses SPI - this allowed to put this memory on different buses
used for other purposes for redundancy. [23] Three memory modules are distributed around on-
board computer system. The first FRAM module is on the same bus with the I/O expander and
real time clock (Figures 4.3, 4.11, 4.15 and 4.16). Two other memory modules are on the same
bus with the two attitude and orbit control system’s sensor groups as demonstrated on figure
2.2. Maximum communication speed is limited by the CY15B104Q which support SPI clock
up to 40 MHz [23].

Availability of COTS radiation tolerant memories is limited and their capacity is not very big.
For mass storage NOR flash memory was used to keep data and segments of firmware. One of
the communication protocols used to transfer data between memories is quad serial peripheral
interface (QSPI). It can either be used as a single SPI bus or as four bidirectional lines for im-

18



MRAM (MR4A16B) | FRAM (CY15B104Q) | Flash (MT25QL256)
Capacity 16 Mb 4 Mb 256 Mb
Interface Parallel SPI Quad SPI
Data bus width 16 1 4(8h
Clock 28 MHz 40 MHz 108(90°) MHz
Standby current S mA 100 pA 30 nA
Read current 60 mA 300 uA/MHz (12 mA) | 28 mA
Write current 152 mA 300 uA/MHz (12 mA) | 35 mA
Volatility Non-volatile Non-volatile Non-volatile
Radiation tolerance | Yes’ Yes® No
Package used 54-TSOP2 TDEN W-PDFEN-8

1. Dual bank mode.
2. Double transfer rate mode.
3. Read/write electronics not radiation tolerant.

Table 2.2: On-board computer system’s external memory comparison (ordered by clock rate).

proved throughput. Two MT25QL256ABA1EW0O [25] are used, resulting in 64 MB for mass
storage (Figures 4.7 and 4.14). Both STM32F767 and the flash memory support execute-in-
place (XIP) which makes it easier to load program instructions directly from memory without
writing additional signaling software. In dual bank mode, both flash memories are accessed si-
multaneously. With double transfer rate mode and dual bank mode throughput up to 180 MB/s
can be reached [13,25]. Flash memory is used to keep different versions of firmware, as well as
to store on-board measurements and payload data except for camera images that are stored by
the payload.

Other memories available in on-board computer system are flash and SRAM inside the micro-
controller. STM32F7671I has 2 MB of flash memory organized in two banks allowing read-
while-write, 512 KB of SRAM and 4 KB SRAM for backup to use in low-power modes. It also
supports tightly coupled memory interface which allows the CPU to access parts of the SRAM
at clock speed. [13]

All the external memories used have standard package and communication protocol, which
makes it easy to replace them if the need arises or higher memory capacity versions become
available. QSPI flash has multiple alternatives available. Up to 1 Gb memory module is avail-
able - it was not used because it stacks memory layers on top of each other and possibly makes
it more susceptible to single event effects [26].

Communication interfaces

Different systems in the ESTCube-2 will have to communicate with each other. The control
systems will use the internal communication protocol (ICP) to interact with each other. This
bus will be implemented using half duplex RS485 and two signaling lines (Figures 4.4, 4.10,
4.22 and 4.26). STM32F767’s UART/USART modules support RS485 by implementing driver
enable signal in hardware. To drive the RS485 lines using UART/USART, LTC2850 by Linear
Technology was used. It supports maximum of 20 Mbps data rate with a low operating cur-
rent [27]. These data rates are probably never reached since other microcontrollers on the line
are low power MSP430FR’s running at 16 MHz. To conserve the pins needed from the on-
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board computer’s microcontroller, the driver enable (DE) and receiver enable (RE) pins were
connected together so that only read or write operation can be done at a time (Figure 4.22).
RS485 differential lines also require terminating resistors at both ends of the bus which were
added and will be soldered based on the location the on-board computer system ends up at
the time of testing. Two signaling lines that ICP supports are SHUTUP and ACCESS (Fig-
ure 4.3) [28]. SHUTUP is used for stopping the communication on the bus in case there is a
rogue subsystem keeping the bus busy by repetitively transmitting packets. It is a bidirectional
open-drain line with interrupt capability. For both the main and backup ICP bus an EXTI pin
was used. ACCESS line is a means to minimize the probability of packet collisions, as well as
to wake systems on packet reception. Wakeup capable pins were used to bring microcontroller
out of sleep modes. On the main ICP bus there will be on-board computer system, electrical
power system, communications system and side panels. On the backup ICP bus there will be
OBCS, EPS and COM but no side panels, as these would need too many interconnections and
are not mission critical (Figure 2.1). Additionally there is one open-drain bidirectional interrupt
line reserved for low latency signaling and synchronization between each system - OBCS and
EPS, OBCS and COM, OBCS and side panels. There are also additional interrupt lines between
other systems that are not shown in the figure 2.1. All the communication lines make sure that if
one of those fails there is a backup. All the connections are brought out on the prototype board
by the IDC pin header named "SYSTEM BUS” (Figure 4.2).

For star tracker there is a dedicated point-to-point RS232 communication bus and one bidirec-
tional interrupt line (Figure 2.1). RS232 bus is driven by the STM32F767’s internal UART and
interrupt line is connected directly to EXTI. Star tracker can interface with on-board computer
system using IDC pin header named "STAR TRACKER BUS” on the prototype board (Figure
4.2).

ESTCube-2 will have multiple payloads by different suppliers with different control interfaces.
For this reason RS485 and CAN (Figures 4.21 and 4.22) were implemented on the prototype
board. RS485 driver is controlled by the microcontroller’s UART and can support data rates
up to 27 Mb/s with a compatible RS485 driver for increased data rates and throughput. For
CAN there is a dedicated peripheral in the STM32F767 named basic extended controller area
network (bxCAN). Bit rates go up to 1 Mb/s and support both 2.0A and 2.0B Active standards.
CAN is used for high reliability messaging. The current prototype board also supports three
unidirectional interrupt lines connected directly to microcontrollers EXTI and three output sig-
naling lines for the payloads.

All the signaling and interrupt lines are disconnected from the microcontroller using bus switches
whenever the entire system or a part of it is powered down. This guarantees that other systems
can’t drain power from on-board computer system nor can they supply current while it might
be powered down. If bus switches are not used, then injected current might damage the mi-
crocontroller or cause undefined behavior. Also, any system connected but powered off might
enter an undefined state due to draining power from the OBCS via ESD protection diodes.
2-bit SN74CB3Q3306A and 8-bit SN74CB3Q3245 FET bus switches were used for this pur-
pose. Both of them have an I circuitry that prevents current backflow while they are powered
down [29,30].
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Figure 2.3: Onboard computer system’s power configuration options.

Power distribution

The current on-board computer system design assumes that the electrical power system deliv-
ering three 3.3 V power rails each capable of supplying up to 300 mA. This is necessary so that
overcurrent events can be averted with a minimal amount of component overhead. Biggest
power consumers on the on-board computer system are microcontroller and magnetoresis-
tive random-access memory. STM32F767IIT6 has a maximum current consumption rated at
293 mA [13] and MRAM has a maximum current consumption rated at 180 mA [20]. Third
power rail is dedicated for external peripherals that have their own power switches. These are
in the design so that on-board computer system can power down parts of the system to consume
less power and to reset them if needed. These power switches also provide additional overcur-
rent protection for parts of the OBCS which can happen in various circumstances. One of those
possible events is caused by the radiation’s single event latch-up. In this case, when the tran-
sistor is hit by a particle, its state may change and create a high current path which can only be
removed by powering down. In on-board computer system latch-off power switches are used
that cut the power if an overcurrent event is detected. After this, they signal microcontroller
through fault line which is connected to the EXTI through I/O expander.

Two different power switches were used for the prototype design. One for power domains that
require less than 40 mA and one for those requiring more. TPS22943 (Figure 4.18) was used
to supply power to attitude and orbit control system sensors and to temperature sensors. It can
supply up to 40 mA and has a low resistance of 0.5 €2 at 3.3 V. If the current limit is exceeded
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Component Number of interrupts | Assignment

Attitude and orbit control system sensors | 10 4 EXTL + 4 VO ex-
pander

Real time clock 2 1 I/O expander

Power switch faults 6 6 I/0 Expander

ICP interrupts 4 2 EXTI + 2 Wakeup

Electic and power system 1 MCU EXTI

Communications system 1 EXTI

Star tracker 1 1 EXTI

Side panels 1 1 EXTI

Payloads 3+ 3 EXTI

Temperature alert 3

Table 2.3: On-board computer system interrupt lines and their assignment with the current
design.

the power switch will cut the power and raise a fault signaling line after which the application
can decide what to do next. [31] The other power switch was TPS2553-1 (Figure 4.19) that
works similarly to the previously described power switch except its current latch-off level can
be set by an external resistor. [32] This was used for ICP bus, payload interfaces and QSPI
memories. The current latch-off threshold Ipsyom can be found by the equation 2.1 where Ry v

is the external resistor connected between the ILIM pin on the power switch and ground (Figure
4.19). [32]

23950 V
IOSnom - R0'977 kO

ILIM

The current prototype board has three connectors for power supply where one is config-
urable header to select the actual power source. Since USB gives out a 5 V power rail, then it’s
necessary to convert it to 3.3 V. For this purpose a step-down DC/DC switching regulator was
used. For the situations where power supplying USB host doesn’t have a current limiting or
other protection capability, a resettable 0.75 A fuse is used between the power regulator and the
USB connector. To allow supplying power from multiple sources a power source multiplexer
was used. It is set up so that USB power is secondary and used only in cases when no other
power supply is present (Figure 4.9). For the first prototype there is an EPS power header that
supplies power to the entire OBCS from a single rail and also power rail for reaction wheels
used by the AOCS. To select the power source, there is a header which allows selecting differ-
ent power configurations. Figure 2.3 shows some possible combinations to supply power to the
on-board computer system where the red and blue rectangle represents jumpers.

(2.1)

Sensors

Over the spacecraft’s lifetime, both radiation as well as temperature can affect current con-
sumption, voltage level and clock rate. Radiation dose is measured externally by dosimeters
connected to the side panels. Both current consumption and temperature are measured by OBCS
components. Current sense amplifiers were put after each power switch which measures voltage
drop on a shunt resistor (Figure 4.20). Linear Technology LT6105 was used for this purpose.
It has a 1 % gain accuracy and low operating current at 150 uA. The output voltage which is
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measured by the microcontroller’s analog to digital converter follows equation 2.2 where Royr
is 10 k2 and Ryy is 100 2 (Figure 4.20). [33] This gives a 100 time amplification to the output
voltage compared to the voltage drop on the shunt. The actual current that goes through the
shunt is then calculated using Ohm’s law and taking into account ADC reference voltage and
temperature variations.

Rour
Ry

For temperature measurements near flash memories, MRAM and CAN driver, MCP9808
(Figure 4.17) was used which has a typical accuracy of 0.25 °C over the whole operating tem-
perature. It is available in a small 2 x 3 mm package and consumes only 200 uA while operat-
ing. Communication with the microcontroller is over I>C bus. To support multiple temperature
sensors on the same bus MCP9808 has three address configuration pins supporting up to eight
or sixteen sensors at the time. Temperature sensor address configurations are shown in the fig-
ure 4.8. Current prototype features power switch and a resistor to bypass it. This is for initial
testing to see if the temperature sensors could be powered through current limiting resistor to
lower the component count and pins required from the microcontroller. The disadvantage of
using resistors is that if a short circuit event happens then it can only be mitigated by powering
down the entire on-board computer system. Power consumption of the temperature sensors is
very low and for that reason its current consumption is not measured separately.

Vour = Vsense * (2.2)

Debugging and programming

Software development often runs into issues which require dedicated tools to debug. To pro-
gram and debug the microcontroller a 2x10 IDC header is available that works with tools like
J-Link and ST-LINK/V2 [36]. It supports SWD that is used to program Cortex-M microcon-
trollers and SWO that can be used to send trace data to the development environment. SWD
uses four lines - SWDIO for data transfer and SWDIO for clock, nRST to reset the micro-
controller and a power pin to detect if the microcontroller is powered up. SWO uses single
asynchronous line to send trace data (Figure 4.10). [37] USB to UART interface was imple-
mented on the prototype board through which software developers could send and receive data.
FTDI FT230XS was used which supports transfer rates from 300 bps to 3 Mbps [34]. It is only
turned on when the microcontroller has been powered up and USB cable is connected. Since
this was not the default configuration for the chip, it had to be reprogrammed using FTDI’s
FT Prog software. Figure 4.9 shows that CBUSO is used as a voltage sense pin which had to be
set as a VBUS _Sense in the FT_Prog [35].

For visual feedback there are nine LEDs - two LEDs for USB and microcontroller power indi-
cation, two LEDs for indicating USB receiving and transmitting data, one LED to indicate boot
pin status, two LEDs that are directly connected to the microcontrollers GPIO and two LEDs
that programmers can manipulate but share a pin on microcontroller with push button and I/O
expander’s port B interrupt (Figure 4.10). There are two pushbuttons: one for resetting the mi-
crocontroller, the other for triggering user events. In order to select whether the microcontroller
boots its internal bootloader or firmware in Flash, a boot pin is used. The state of the boot pin
can be changed with a slide switch (Figure 4.10). Testing pin header can be used to measure
current sense amplifier outputs (Figure 4.2). Test points were added for OBCS board to measure
voltage levels in different power domains and capture signals on QSPI, CAN and UART buses.
The actual number of debugging and testing interfaces were limited by the number of pins on

23



the microcontroller and available space on the prototype board. For this reason only the most
important debugging and programming interfaces were implemented.

2.3 Attitude determination sensors

Attitude and orbit control system is responsible for moving the satellite into the correct ori-
entation and spinning the satellite to perform the E-Sail experiment. For this, AOCS requires
sensors to measure the satellite’s movement. These sensors will be placed on the same PCB
with on-board computer system. This is done to save space for other systems in ESTCube-2.
Because final sensor selection is not yet finished and algorithm development requires unre-
stricted movement of sensors, the expansion board was developed. Component free areas on
the OBCS PCB makes it possible to easily integrate the content of the expansion boards into
the main PCB later. The sensor selection was based on Georgi OlentSenko’s thesis “Prototype
design of ESTCube-2 attitude and orbit control system” [38].

Current Attitude and orbit control system's expansion PCB
> Power
Enable switch ] sense >
amplifier
Sense
t £S5 »|  Gyroscope Gyroscope |€ cs2
FRAM Temperature Temperature
sensor sensor
A I
0
%]
( O SPI and signaling lines
Microcontroller l
110 Temperature Temperature Temperature
R Expander sensor sensor sensor
Y V
— > %} Analog to
——» 3-to-8 decoder |- Magnetometer Accelerometer T) digital
> —=>» converter
L cssd sk A
| Voltage
reference
Part of onboard computer system's PCB

Figure 2.4: Block diagram with one of two attitude determination sensor groups and its connec-
tions to the on-board computer system.

Two identical sensor groups are used for attitude and orbit control system to provide re-
dundancy in case of failure. A single sensor group has two digital gyroscopes, one analog
accelerometer with analog to digital converter, one digital magnetometer and an FRAM. Each
sensor and analog to digital converter has its own analog temperature sensor to allow for temper-
ature compensation. Each AOCS sensor group (Figures 4.3 and 4.5) has its own power switch
and current sense amplifier. If a particular sensor group is not used, then it can be powered
off. Also, if some error has been detected, then power switch can reset all the sensors. Current
sense amplifier is used to measure current consumption for diagnostic and testing purposes. To
keep calibration data, each AOCS sensor group has its own memory module. FRAM was used
to keep power consumption low, to have better protection against radiation effects and to make
accessing the memory similar to sensor communication. All the devices communicate through
SPI (Figure 4.34) and the device used can be selected through a 3-to-8 decoder (Figure 4.24).
This only requires three pins from the microcontroller and supports up to seven SPI devices on
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a single bus.

Analog to digital converter used for attitude determination sensor board is Texas Instruments
ADS8332 (Figure 4.35). It has 8-channels and uses 16-bit successive approximation ADC
with sampling rate up to 500 ksps. Power consumption at maximum sample rate is typically
5.2 mA. [39] Voltage supplied by the electrical power system will most likely be too unsta-
ble for accurate ADC measurement. For this reason a 3 V high accuracy voltage reference
ADR3430 (Figure 4.35) by Analog Devices was used [40]. ADC measures accelerometer’s all
three axes outputs and temperature sensors (Figure 2.4). The ADS8332 has pins MUXOUT and
ADCIN which can be used to implement a single low pass filter for all the input channels. To
support this feature a pin header was added to expansion board. If no filter circuitry is connected
to these pins a jumper must be connected so that the ADC can function properly (Figure 4.35).

Attitude determination sensors selected for the expansion board were based on their perfor-
mance and communication interface. Since there were problems with I2C interface in the
ESTCube-1 [2], decision was made to only use SPI for ESTCube-2. Analog accelerometer
KXRB5-2050 (Figure 4.36) [41] was chosen for the prototype board for its low noise den-
sity [38]. It has three analog outputs that indicate acceleration and all of them are connected
to the analog to digital converter (Figure 4.34). All the digital magnetometers tested for AOCS
satisfied the requirements [38], LIS3BMDL (Figure 4.37) [42] was chosen for its availability at
the time as was MPU-6000 (Figure 4.38) [43] that was used for gyroscope.

On-board computer system’s electronics board features a pin header (Figure 4.23) that is used to
connect with attitude and orbit control system’s sensor board (Figure 4.33). The connector was
designed to allow different boards to be connected. This enables quick replacement of AOCS
sensors without redesigning the OBCS board. The connector features two communication in-
terfaces: an SPI and an IC bus. To lower pin count on the microcontroller 3-to-8 decoder was
used to select between SPI devices. Four select lines are connected to the connector while one
select line is connected to the FRAM. The connector has three general input/output pins directly
connected to the microcontroller out of which two can be used with EXTI. Four other pins are
routed through I/O expander which can be configured to generate interrupt for the microcon-
troller. If SPI or I2C is not used, then three or two pins respectively are available for signaling.
Connector is designed so that connecting it in the wrong way would not power up the sensor
board. Each attitude sensor board features a single LED to indicate that the board is powered
up by the on-board computer system.

On the on-board computer system prototype board there are three connectors dedicated for re-
action wheels which are used to rotate the satellite in space by attitude and orbit control system.
The connectors provide an I?C bus and are powered up from the electrical power system’s con-
nector. Current prototype design shares I°C bus with temperature sensors. This is not ideal,
but there is one available I>C interface on the microcontroller currently used for debugging
purposes. In the next design reaction wheels will get a dedicated bus for communication.
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3 Software

3.1 Development tools

EIEd EC2_OBCS_vi.PrjPch *
B Source Documents
B EC2_0BCS_v1.PcbDoc
El = OBCs.5chDoc
Bl = OBCS_HL.SchDoc
L= FRAM_CL.5chDoc
=L = MRAM_CLSchDoc
L= currentSense_CL.5chDoc
L= 3V _Reference_AQ_CL.5chDoc
L= 5TM32Foolx_CL.SchDoc
ElL = AQCs_MLSchDoc
L= FRAM_CL.5chDoc
L= currentSense_CL.5chDoc
L= powerSwitch_40-100mA_AH_CL.SchDoc
L= ADCS Connector_CL5chDoc
L= 3-to-8 Decoder_CL.SchDoc
L= 10_Expander_CL.5chDoc
=L = QSPI_MLSchDoc
L= powerswitch_1_5A_CL.5chDoc
L= currentsense_CLASchDoc
L= Q5PI_CL5chDoc

Figure 3.1: Part of the Altium Designer project tree with hierarchical structure.

For on-board computer system’s hardware development three software tools were used.
PCB design was performed using Altium Designer 16, which offered feature rich schematic
and layout tools that sped up the development. For schematics design, hierarchical structure
was used, meaning that schematics could add other schematics as components (Figure 3.1).
This allowed designing complex electrical circuits while keeping actual details about specifics
in separate sheets and making designs more readable. Schematic design was supported by the
STM32CubeMX software developed by STMicroelectronics. It allowed to set up microcon-
troller pins, peripherals, clocks which provided additional confidence that all the connections
were made correctly and no hidden features were overlooked. To make sure that all the hard-
ware functions correctly, software had to be written. Since ESTCube-2 OBCS team develops its
own hardware abstraction layer which was not ready for hardware testing, STM32F7 HAL was
used. It hid most of the hardware registers and supplied high level functions that were easy to
use for validating the hardware design. For software development Atollic TrueStudio was used.
It is an integrated development environment built on eclipse to develop software specifically for
ARM microcontrollers. STM32CubeMX directly supports TrueStudio, making it possible to
generate project files without the need for any additional configuration.
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3.2 Hardware validation and testing firmware

Software generated initialization code was used for hardware testing. All the possible initial
configurations could be set from the STM32CubeMX software. For debugging, USART6, con-
nected to UART to USB converter, was configured with a baud rate of 115200 bps, word length
8-bits, no parity and one stop bit. After the code was generated only two functions and one struc-
ture were needed to make a simple command and response interface that made the software easy
to extend while maintaining repeatability. Listing 3.1 shows a simple command parser used for
testing the hardware. It allowed sending commands that were separated by newline characters.
To regenerate new source code and to keep user code, all the source code had to be written be-
tween comments ~/* USER CODE BEGIN x */” and ”/* USER CODE END x */”. This made
possible validating hardware functionality at low communication bit rates and test the hardware
later using maximum possible configurations supported by the hardware. Most of the testing
performed was sending bytes between communication interfaces and reading out device identi-
fication strings.

While developing firmware for the electronics, care must be taken that microcontroller does not
source current to devices that are powered down. This may create undefined states on different
lines that can affect other systems. All the pins that are connected to the external devices with
dedicated power switch must be configured as inputs on two conditions, either the power switch
is about to be turned off or a fault is detected on the power switch fault signaling line.

/% Infinite loop =/
/+* USER CODE BEGIN WHILE =/
while (1)

uint8_t data;
if (HAL_UART_Receive(&huart6 , &data, 1, 0) == HAL.OK)

if (data == ’\n’ && counter > 0)
command[ counter++] = *\0’;
run_command () ;
counter = 0;

}

else if (data == ’\n’)

{
counter = 0;

}

else

{
command|[ counter++] = data;

}

}
/% USER CODE END WHILE =/
/% USER CODE BEGIN 3 =/

}
/% USER CODE END 3 x/

Listing 3.1: Simple USB debugging interface that supports commands separated by the newline
character in main function.
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4 Results

Two prototype PCBs were developed (Figure 4.1) - one for on-board computer system (a, c)
and one for attitude determination sensors (b, ¢) used by the attitude and orbit control system.
Prototype board dimensions for OBCS were 130 x 130 mm which exceeds the dimensions of
the final engineering model that would not have that many debugging, programming interfaces
and test pads. IDC connectors were used which take more space on the PCB, but they make it
easier to connect cables between different systems. Both electronics boards use six layer PCB’s.
One layer is used only for ground plane (Figures 4.28 and 4.41) and one layer is dedicated for
power distribution (Figures 4.31 and 4.44). All other layers were used for component placement
and for traces (Figures 4.27, 4.29, 4.30, 4.32, 4.40, 4.42, 4.43 and 4.45). For development only
COTS components (Tables 4.1 and 4.3) were used that met the required industrial temperature
range of at least -40 to 85 °C. Developed boards works from 3.3 V power source and it can be
supplied through USB or from external source. Microcontroller can power down parts of the
on-board computer system and bus switches are used to make sure that no current is injected
into the system while powered down. Three different memory types were used - low power
FRAM, high speed parallel MRAM and QSPI flash for mass storage. Both the FRAM and
MRAM are radiation tolerant by design. For attitude determination only SPI devices were used
but also I°C was added to the connector if needed for future design. For redundancy two sensor
groups were implemented, each featuring a magnetometer, an accelerometer, two gyroscopes
and an FRAM.

The only shortcoming for the selected microcontroller was its limited support for external inter-
rupts. As a workaround I/O expander was used to extend the support for up to 30 interrupt lines.
During initial testing a couple of problems with the first prototype came out. There are missing
pull-up resistors on the MRAM schematic on figure 4.13. All the signaling lines require them.
If the microcontroller is in the reset state it has all the pins configured as inputs. This causes
an undefined state on the signaling lines used to control the MRAM. During testing, memory
corruption was encountered. The other problem occurred with I*C. Also, considerable crosstalk
was witnessed between the [2C SCL and SDA lines at 400 kHz clock. It did not have any ef-
fect on the communication but it could damage components that can’t handle negative spikes of
around 0.9 V.

A potential improvement for the current prototype boards is to add LEDs and improve PCB silk
screen. On-board computer system can power up different parts of the system and LEDs should
have been used to indicate their statuses. LEDs on interrupt line would also make firmware
debugging easier. With multiple schematic design iterations, some of the names given for the
components do not describe their actual function. Also, there are missing silk screen labels for
buttons and connector pins. Currently their names have to be checked from the documentation
every time an external connection needs to be made.
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Figure 4.1: 3D PCB models and assembled PCB image of on-board computer system prototype
board and attitude determination sensor expansion board.

29



Conclusion

The purpose of this thesis was to develop an electronics prototype board for ESTCube-2 on-
board computer system with attitude determination sensors. STM32F767 was chosen to be the
microcontroller that runs the system. Different communication interfaces were implemented to
communicate with other systems in the satellite. ICP bus is used to communicate with EPS,
COM and side panels. RS232 is used for star tracker and for payloads RS485 and CAN were
implemented. For data storage three different types of memory were used out of which FRAM
and MRAM have increased radiation tolerance against SEU. FRAM can be accessed over SPI
supporting low power consumption while MRAM uses parallel interface and offers high speed
random-access memory to the microcontroller. For mass storage two QSPI NOR flash memo-
ries were used that feature dual bank and double transfer rate modes to achieve high throughput
and execute programs directly from it. Latch-off power switches were used for three reasons - to
mitigate possible damage caused by a single event latch-up, to reset and to power down for low
power consumption. Current sense amplifiers and temperature sensors are used to monitor and
diagnose the on-board computer system. SWD bus with asynchronous SWO was implemented
to program and debug the microcontroller. Additionally, UART to USB converter was added
to easily exchange data between development PC and microcontroller. The PCB features test
points for probing the traces of on-board communication buses, if needed. Attitude determina-
tion sensor board was developed for initial software and algorithm testing. The sensor board
connector provides SPI, I?°C and multiple interrupt and signaling lines which would allow for
the testing of different sensors without requiring a redesign of the OBCS board. The attitude
determination board features an analog accelerometer, analog temperature sensors, an analog to
digital converter, a digital magnetometer and two gyroscope. Simple firmware was developed
for functionality testing of the hardware. For this, STM32CubeMX initialization source code
generator was used for. All the requirements set at the beginning of the thesis were fulfilled. At
the time of writing most of the hardware has been successfully tested. Communication inter-
faces like RS485, RS232, SPI, I>C and USB can send and receive data. Interrupts are triggered
in the EXTTI and signaling pins can be manipulated. Current consumption can be measured us-
ing testing bus and microcontroller’s ADC. Communication with FRAM and MRAM has been
established and sensor registers have been accessed.
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Annexes

Value/Name Description Designator Quantity

100nF Ceramic capacitor ClA, C1B, CIC, C2A, C2B, | 63
C2C, C3A, C3B, C3C, C4A,
C4B, C4C, C5A, C5B, C5C,
C6A, C6B, C8, C11A, C11B,
Cl11C, C11D, Cl11E, CI11F,
CI12A, C12B, C12C, CI12D,
CI2E, CI2F, Cl14, CIl5,
C18A, C18B, Cl18C, Cl19,
C26, C29, C30, C31, C32,
C33, C34, C35, C36, C37,
C38, C39, C40, C41, C42,
C43, C44, C45, C54, C55,
C59, C63A, C63B, C63C,
Co64, C64_2, C69

1uF Ceramic capacitor C7,C17A, C17B, C17C,C27 | 5

10uF Ceramic capacitor C9A, (C9B, C10A, CI10B, | 7
C13, Cl16,C53

2.2uF Ceramic capacitor C20, C21 2

InF Ceramic capacitor C22 1

2.2pF Ceramic capacitor C23,C24 2

100 nF Feed-Through Capaci- | C25, C46, C47, C67 4

tor

4.7TuF Ceramic capacitor C28 1

10uF Ceramic capacitor C48, C49, C50, C51, Co65, | 6
Co66

22uF Ceramic capacitor C56, C57 2

200nF Ceramic capacitor C60 |

47pF Ceramic capacitor Col, C62 2

100nF Ceramic capacitor C68A, C68B, C71, C72, |9
C76A, C76B, C76C, C76D,
Cc77

10nF Ceramic capacitor C70 1

10uF Ceramic capacitor C73, C74, C75 3

LED Light Emitting Diode D1, D2, D7, MCU_LED, | 9
RX_LED, STM_PWR_LED,
SW_LED, TX_LED,
USB_PWR
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MINISMDCO075F Resettable fuse F1 1
2508056017Y2 Ferrite bead FB1, FB2 2
*nH Inductor L1 1
6.2 uH Inductor L2 1
100k Resistor R1A, R1B, RIC, R3A, R3B, | 56
R3C, R6A, R6B, R6C, R7A,
R7B, R7C, R8A, R8B, R9A,
R9B, RI10A, R10B, RI5A,
R15B, R15C, R16A, R16B,
R16C, R41A, R41B, R41C,
R42, R43, R44, R50A, R50B,
R51, R52, R53, R54, RS5S,
R81A, R81B, R81C, R81D,
R82A, R82B, R82C, R82D,
R83A, R83B, R83C, R83D,
R84, R85, R86, R87, R8S,
R89, R90
120R Resistor R2A, R2B, R2C 3
10k 0.1% Resistor R11A, R11B, R11C, R11D, | 6
RI11E, R11F
100R 0.1% Resistor R12A, R12B, R12C, R12D, | 12
RI12E, R12F, R13A, R13B,
R13C, R13D, R13E, R13F
ORxx Shunt R14A, R14B, R14C, R14D, | 6
R14E, R14F
10k Resistor R17, R20, R30, R33, R34, | 6
R39
OR Resistor R18, R19, R21, R55 4
270R Resistor R22, R23, R24, R35, R36, | 8
R80, R91, R92
3.9k Resistor R25A, R25B, R26A, R26B 4
1k Resistor R29 1
500R Resistor R31 1
560R Resistor R32 1
4.7k Resistor R37, R46, R47 3
27R Resistor R38, R40 2
100R Resistor R45 1
109k Resistor R48 1
75k Resistor R49 1
60R Resistor R56, R57 2
*R Resistor R59 1
JS202011SCQN 2-position slide switch | S1 1
EVQQ Push buttob S2,S3 2
CY15B104Q-LHXI | FRAM 4Mb UlA, U1B, U1C 3
LTC2850IMS8 RS485 driver U2A, U2B, U2C 3
TPS2553DBVR-1 Power switch U3A, U3B, U3C 3
SN74HC138PW 3-8 line decoder U4A, U4B 2
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ADR3430ARJZ-R7

Voltage reference

U5

LT6105

Current sense amplifier

U6A, U6B, U6C, U6D, UGE,
U6F

O\| =—

MR4A16BCYS35 MRAM 16Mb u7 1
TPS22943DCKR Power switch US8A, U8B, U8C 3
STM32F767IIT6 Microcontroller U9 1
7A-24.000MAAJ-T | Crystal Ul10 1
TPS2111PW Power distribution | Ul1 1
switch
TPS62046DGQ Step-down converter Ul2 1
FT230XS-R USB to UART IC Ul13 1
MCP9808T-E/MC Temperature sensor U14A, U14B, U14C 3
MCP23S17T-E/ML | 16-bit I/O Expander Ul5 1
MT25QL512ABB QSPI flash memory Ul6A, U16B 2
RV-3049-C3 RTC ul17 1
TCAN337GDCNT | CAN bus transeiver Ul8 1
SN74CB3Q3306A 2-bit bus switch UI9A, U19B, U19C, U19D 4
SN74CB3Q3245 8-bit bus switch U20 1

Table 4.1: Onboard computer system’s bill of materials.
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Value/Name Description Designator Quantity
100nF Ceramic capacitor Cl, C5, C7, C9A, (C9B, | 18
Cl11A, C11B, C12A, CI2B,
C12C, CI12D, CI2E, CI18,
C19, C23, C25, C31,C32
3.9nF Ceramic capacitor C2,C3,C4 3
1uF Ceramic capacitor Ceo, C17 2
2.2nF Ceramic capacitor C10A, C10B 2
1nF Ceramic capacitor C13A, C13B, C13C, C13D, | 5
CI13E
100uF Ceramic capacitor C22 1
10uF Ceramic capacitor C30, C37 2
100 nF Feed-Through Capaci- | C38 1
tor
LED Light Emitting Diode D1 1
*nH Inductor L1 1
100k Resistor R1, R2, R3A, R3B, R4A, | 13
R4B, R4C, R4D, R4E, RO,
R11,R12,R13
270R Resistor R10 1
KXRB5-2050 Accelerometer Ul 1
LIS3MDL Magnetometer U2 1
MPU-6000 Gyroscope U4A, U4B 2
LMT86DCK Analog  Temperature | U6A, U6B, U6C, U6D, U6E | 5
Sensor
ADSS8332IRGET 16-Bit, 500-kSPS, 8- | U7 1
Channel ADC
ADR3430ARJZ-R7 | Voltage reference Us 1

Table 4.3: Attitude and orbit control system’s expansion board bill of materials.
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Figure 4.2: On-board computer system connectors with system’s high level overview.
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Figure 4.3: On-board computer system’s bus schematic between different parts.
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Figure 4.4: On-board computer system’

ICP schematic.
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Figure 4.5: Attitude and orbit control system’s component connection schematic on on-board computer system.
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Figure 4.6: On-board computer systems payload interfaces schematic.
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Figure 4.7: QSPI flash memory components schematic.
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Figure 4.8: Temperature sensor components schematic.
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Figure 4.9: USB debug interface and power source selection schematic.
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Figure 4.10: Microcontroller’s connections and support peripherals schematic.
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Figure 4.11: I/O expander schematic.
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Figure 4.12: 3 V reference schematic.
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Figure 4.13: Magnetoresistive random-access memory schematic.
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Figure 4.14: QSPI NOR flash schematic.
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Figure 4.15: FRAM schematic.
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Figure 4.16: Real time clock schematic.
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Figure 4.17: Temperature sensor schematic.
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Figure 4.18: 40 mA current limit power switch schematic.
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Figure 4.19: Adjustable current limit power switch schematic.
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Figure 4.20: Current sense amplifier schematic.
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Figure 4.21: CAN bus driver schematic.
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Figure 4.22: Half duplex RS485 driver schematic.
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Figure 4.23: On-board computer system’s AOCS connector schematic.
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Figure 4.24: 3-to-8 decoder schematic.
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Figure 4.25: 2-channel bus switch schematic.
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Figure 4.26: 8-channel bus switch schematic.
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Figure 4.27: On-board computer system’s printed circuit board layer 1 - component and signal plane.
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Figure 4.28: On-board computer system’s printed circuit board layer 2 - ground plane.
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Figure 4.30: On-board computer system’s printed circuit board layer 4 - signal plane.
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Figure 4.33: Attitude and orbit control system and its connector schematic.
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Figure 4.34: Attitude and orbit control system’s connections schematic.



€L

1 2 8 i
vee |
c25
c38
c22 - ’_“_“hGND
100uF *F CO603FT 100nF
0603 C0603
u7
= GND 13 2 Al
4 e w e
*H L0805 = A
—cn P2 N Z] Al
o o ADCIN IN4 -
L MUXOUT IN5 A
vee us ND ADC_FILTER N6 Al
oy . TR IN7
vce VIN VouT 2 = REF+ .
L3 o] en veen 24 _L REF- CLK L
SDI
o1 =om avosase |2 i o
GND cs TS
C0603 C0603 C0603 1 DGND
1 1 ADR3I0ARIZRT  _|_ 1 0 of CONVET CONVST
= = = = AGND  EOC/INT/CDI <
GND GND GND ND S PAD RESET
ADS8332IRGET
13
00k
R0603

ADC-AOCS.SchDoc

Project: EC2-AOCS_v1.PrjPch

University of Tartu

| Subsystem: _ AOCS P

Drawn by: Hannes Haljaste Ravila 14c - D601 -’ +

Modifie 15.05.2017 Tartu 50411 .

Checked by: _Indrek Siinter Tartumaa .

Checked on: _15/12/2016 Estonia ESTCUBE

Approved by: n/a estcube@estcube.eu

Approved on:_n/a Revision: A Sheet: 3 of 7
2 3 4

Figure 4.35: Analog to digital converter’s schematic.
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Figure 4.36: Accelerometer schematic.
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Figure 4.37: Magnetometer schematic.
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Figure 4.38: Gyroscope schematic.
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Figure 4.39: Attitude and orbit control system’s temperature sensor schematic.
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Figure 4.40: Attitude and orbit control system’s printed circuit board layer 1 - component and signal plane.
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Figure 4.41: Attitude and orbit control system’s printed circuit board layer 2 - ground plane.
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Figure 4.42: Attitude and orbit control system’s printed circuit board layer 3 - signal plane.
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Figure 4.43: Attitude and orbit control system’s printed circuit board layer 4 - signal plane.
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Figure 4.44: Attitude and orbit control system’s printed circuit board layer 5 - power plane.
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Figure 4.45: Attitude and orbit control system’s printed circuit board layer 6 - component and signal plane.
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Figure 4.46: On-board computer system block diagram.
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