
1
Tartu 2017

ISSN 1024-4212
ISBN 978-9949-77-473-9 

DISSERTATIONES 
MATHEMATICAE

UNIVERSITATIS  
TARTUENSIS

120

	

RAUNI LILLEMETS

Generating Systems of Sets and
Sequences



DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS 

120 



 
 
 
 
 
 
 
 
 

DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS 

120 
 

RAUNI LILLEMETS 
 
 

Generating Systems of Sets and  
Sequences



Institute of Mathematics and Statistics, Faculty of Science and Technology, Uni-
versity of Tartu, Estonia

Dissertation has been accepted for the commencement of the degree of Doctor
of Philosophy (Mathematics) on June 12, 2017 by the Council of the Institute
of Mathematics and Statistics, Faculty of Science and Technology, University of
Tartu.

Supervisors:

Prof. Eve Oja, Cand. Sc.
University of Tartu
Tartu, Estonia

Research Fellow Aleksei Lissitsin, Ph.D.
University of Tartu
Tartu, Estonia

Opponents:

University Lecturer Hans-Olav Tylli, Ph. D., Docent
University of Helsinki
Helsinki, Finland

Prof. Dirk Werner, Dr. rer. nat.
Freie Universität Berlin
Berlin, Germany

Commencement will take place on August 30, 2017, at 14.15 in J. Liivi 2 - 403.

Publication of this dissertation has been granted by Institute of Mathematics and
Statistics, University of Tartu.

ISSN 1024-4212
ISBN 978-9949-77-488-3 (print)
ISBN 978-9949-77-489-0 (pdf)

Copyright: Rauni Lillemets, 2017

University of Tartu Press
http://www.tyk.ee



Contents

Acknowledgments 9

1 Introduction 11

1.1 Background and summary of the thesis . . . . . . . . . . . . . . . . 11

1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Operator ideals and generating systems of sets and sequences 17

2.1 Galois connections . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Operator ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Galois connection between operator ideals and generating systems
of sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Generating systems of sequences . . . . . . . . . . . . . . . . . . . . 27

2.5 Saturated systems of sequences . . . . . . . . . . . . . . . . . . . . 30

2.6 Galois connection between generating systems of sets and sequences 33

3 Lattice structures of operators, sets, and sequences 37

3.1 Smallest operator ideals, systems of sets and sequences . . . . . . . 37

3.2 Complete lattices related to operator ideals . . . . . . . . . . . . . . 39

3.3 Complete lattices related to systems of sets and sequences . . . . . 43

3.4 Remarks about systems of sets and sequences . . . . . . . . . . . . 48

4 The notion of (p, r)-compactness 51

4.1 The system of relatively (p, r)-compact sets . . . . . . . . . . . . . . 51

5



6 CONTENTS

4.2 Description of K(p, r) as an s-Banach operator ideal . . . . . . . . . 55

5 Sequentially generated subclasses of the system K 65

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Sequentially generated subsystems of K . . . . . . . . . . . . . . . . 66

5.3 A system of hereditarily almost autoapproximable sequences . . . . 69

6 Representing completely continuous operators through weakly∞-
compact operators 91

6.1 The Banach operator ideal W∞ of weakly ∞-compact operators . . 91

6.2 Representing completely continuous operators through weakly ∞-
compact operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7 Constructing quasi-Banach operator ideals from sequence spaces
and systems of sequences 103

7.1 Summary of this chapter . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 Sequence spaces and their Köthe-duals . . . . . . . . . . . . . . . . 105

7.3 Normed systems of sequences . . . . . . . . . . . . . . . . . . . . . 109

7.4 Constructing systems of sets . . . . . . . . . . . . . . . . . . . . . . 114

7.5 Constructing quasi-normed operator ideals . . . . . . . . . . . . . . 118

7.6 Constructing quasi-Banach operator ideals . . . . . . . . . . . . . . 121

7.7 Examples of the construction . . . . . . . . . . . . . . . . . . . . . 130

7.8 A comparison with λ-compact operators . . . . . . . . . . . . . . . 133

8 Approximable sets and sequences 137

8.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . 137

8.2 Criterion for approximable sets . . . . . . . . . . . . . . . . . . . . 141

8.3 A characterization of approximable sequences . . . . . . . . . . . . 144

8.4 Non-approximable sequences arising from in�nite matrices . . . . . 149

8.5 Are approximable sets a generating system of sets? . . . . . . . . . 151



CONTENTS 7

8.6 Approximable sequences and sets which are not boundedly approx-
imable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Bibliography 159

Kokkuvõte (Summary in Estonian) 164

Index 169

Index of symbols 171

Curriculum vitae 173

List of original publications 175





Acknowledgments

First and foremost, I would like to thank my supervisors Eve Oja and Aleksei
Lissitsin for their unwavering support. They have shown enormous patience and
diligence in reviewing my various ideas, drafts and papers. It has been a privilege
to be able to work with them and to utilize their vast knowledge of various areas
of functional analysis.

I would like to thank my co-authors Kati Ain and William B. Johnson for the
opportunity to work with and learn from them.

I thank both Rainis Haller and Eve Oja for providing feedback on a presentation,
which was based on a preliminary version of Chapter 5, and pointing my atten-
tion to the theory of the hypercomplete sequences, which has been a source of
inspiration for developing the aforementioned chapter.

I am grateful to Toivo Leiger for providing literature about sequence spaces, BK-
spaces and their Köthe duals. Also, I am grateful to Kalle Kaarli for providing
literature about lattices and Galois connections.

I would like to express thanks to Raido Paas, whose passion for Galois connections
has inspired me to seek and �nd Galois connections in various structures.

I am thankful for the company and support of my friends and colleagues from our
faculty. I am also grateful to the secretaries of the institute and the faculty, who
have always been willing to provide help and assistance.

And over all, I would like to express my love and gratitude to my wife Alisa for
believing in me and supporting me, and to my daughters Melissa and Amelia for
continuously inspiring me.

The research of the thesis was partially supported by Estonian Science Founda-
tion Grant 8976 and by institutional research funding IUT20-57 of the Estonian
Ministry of Education and Research.

9





Chapter 1

Introduction

1.1 Background and summary of the thesis

A. Pietsch created the theory of operator ideals in [Pi1], which has been widely
adopted and permeates the contemporary �eld of Banach spaces. I. Stephani
introduced the related notions of a generating system of sets and a generating
system of sequences in [S]. Namely, given two generating systems of sets, one
obtains an operator ideal by considering all of the operators that map the sets of
the �rst system to the sets of the second system. Generating systems of sequences
can be used to obtain generating systems of sets. In comparison to the theory
of operator ideals, the notions of generating systems of sets and sequences have
received considerably less attention.

One of the aims of this thesis is to study the classes of generating systems of sets
and sequences and the relations between them; in particular, to show that there is
a Galois connection between the former and a certain quotient class of the latter.

In [Pi1, 1.11.1], Pietsch remarks that �the collection of all operator ideals is some-
thing like a complete lattice with respect to the natural ordering�. One of our
objectives in this thesis is to study the lattice structure of various classes of oper-
ator ideals, generating systems of sets, and generating systems of sequences.

In [S], Stephani showed how one obtains operator ideals from generating systems
of sets and vice versa, how one obtains generating systems of sets from operator
ideals. From that study, the following notions emerged: the notion of a surjective
operator ideal and of an ideal system of sets. We show that some of the results
from [S] can also be seen through the lenses of a Galois connection between the
classes of operator ideals and generating systems of sets.

11



12 1. INTRODUCTION

A well-known example of a generating system of sets is the system of relatively
compact sets, which is obtained from the system of convergent sequences in a
certain way. Correspondingly, the operator ideal of compact operators consists of
operators mapping bounded sets to relatively compacts sets. As sources of exam-
ples, we additionally consider several alternative notions of relative compactness.
These notions have been inspired by a result proved by A. Grothendieck in his
famous Memoir [G2]: a subset of a Banach space is relatively compact if and only
if it is contained in the closed convex hull of a norm null sequence. Nowadays, this
result is known as the Grothendieck compactness principle.

Let 1 ≤ p < ∞. If one replaces null sequences with p-summable sequences in
the Grothendieck compactness principle, then one obtains a stronger form of rel-
ative compactness. This form of compactness was occasionally considered in the
1980s by O. Reinov [Re1] and J. Bourgain and O. Reinov [BR] in the study of
approximation properties of order s ≤ 1. In this thesis, such sets are said to be
relatively p-compact in the sense of Bourgain�Reinov. In 2002, D. P. Sinha and A.
K. Karn de�ned and studied in [SK1] another form of relative compactness, which
lays �between� the aforementioned types of relative compactness. They required
the set to belong to the so-called p-convex hull of a p-summable sequence. In the
present thesis, sets of this type are said to be relatively p-compact in the sense of
Sinha�Karn.

Let 1 ≤ p ≤ ∞ and 1 ≤ r ≤ p∗, where p∗ is the conjugate index of p. In this
thesis, we study the notion of relatively (p, r)-compact sets, which encompasses the
notions of relative p-compactness in the sense of Bourgain�Reinov (for r = 1) and
in the sense of Sinha�Karn (for r = p∗). We observe that the system of relatively
(p, r)-compact sets is a generating system of sets. By considering the operators
which map bounded sets to relatively (p, r)-compact sets, the operator ideal of
(p, r)-compact operators is obtained. Relatively p-compact operators in the sense
of Bourgain�Reinov (for r = 1) and Sinha�Karn (for r = p∗) are special cases of
this construction.

It was proven in [SK1] that the collection of all p-compact operators (in the sense
of Sinha�Karn) is a Banach operator ideal. We describe the operator ideal K(p,r)

of all (p, r)-compact operators as the surjective hull of the operator ideal N(p,1,r∗).
This allows us to equip K(p,r) with the corresponding s-norm of N sur

(p,1,r∗) and to
prove that K(p,r) is an s-Banach operator ideal.

In [SK1], the notion of relatively weakly p-compact sets was also studied. A more
general notion of relatively weakly (p, r)-compact sets was introduced in [AO2],
encompassing the weakly p-compact sets for r = p∗. Additionally, the notion of un-
conditionally weakly (p, r)-compact sets was introduced in [AO2], residing between
the relatively (p, r)-compact sets and relatively weakly (p, r)-compact sets. The
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weakly p-compact, weakly (p, r)-compact operators, and unconditionally (p, r)-
compact operators are de�ned in the obvious manner. Denote by W(p,r) and U(p,r)

the operator ideals of all weakly (p, r)-compact operators and all unconditionally
(p, r)-compact operators. It was proven in [SK1], that if 1 ≤ p < ∞, the oper-
ator ideal Wp = W(p,p∗) of all weakly p-compact operators is a Banach operator
ideal. We prove that W(p,1) and U(p,1) are quasi-Banach operator ideals, where
1 ≤ p <∞. We do so by proposing a general method for constructing generating
systems of sets and operator ideals from a BK-space g and a normed system of
sequences h. We prove that the constructed operator ideal is always quasi-Banach
provided that g and h satisfying certain assumptions.

We show that W∞ = W(∞,1) is a Banach operator ideal. We prove that the
operator ideal V of completely continuous operators can be expressed as a right-
hand quotient V = W∞ ◦ W−1. From this, the result [DFLORT, Theorem 1]
follows: a weak version of the Grothendieck compactness principle holds only in
Schur spaces.

Recall that a Banach space is said to have the approximation property if the
identity operator can be approximated uniformly on compact sets by �nite rank
operators. In the spirit of this thesis, we study the approximation property by con-
sidering the system of all approximable sets, where an approximable set is de�ned
as a bounded set on which the identity operator may be approximated uniformly.
Similarly, we de�ne an approximable sequence as a null sequence on which the
identity operator may be approximated uniformly, and study the system of ap-
proximable sequences. Clearly, a Banach space has the approximation property
if and only if the relatively compact sets are exactly the approximable sets. We
prove a result reminiscent of the Grothendieck compactness principle: a subset of a
Banach space is approximable if and only if it is contained in the closed convex hull
of an approximable sequence. We also prove that there exists a non-approximable
sequence which can be represented as a sum of three approximable sequences.

The thesis has been organized as follows.

Chapter 1 introduces the historical background of the relevant notions, provides a
summary of the thesis and describes the notation used throughout the thesis.

In Chapter 2, we study the class OI of all operator ideals, the class GSet of all
generating systems of sets, the class GSeq of all generating systems of sequences,
and various relations between these classes. Stephani considered a domination
relation on the class GSeq, which we denote as .. This relation is a preorder,
which induces an equivalence relation ∼. Using a standard procedure, the class
GSeq/∼ becomes an ordered class with the order induced from the preorder.. One
of the main results of this thesis states that there is a Galois connection between
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the ordered classes GSet and GSeq/∼ (the order on the class GSet is de�ned in a
natural way via inclusion). We say that a generating system of sets is sequentially
generatable if it can be obtained from a generating systems of sequences. The
Galois connection provides a useful characterization for sequentially generatable
systems of sets. This chapter is mainly based on [Lil1].

In Chapter 3, we study the lattice structure on the class of operator ideals, the
classes of generating systems of sets and sequences, and related classes. We then
study the order properties of the various mappings between these classes. This
chapter is mainly based on [Lil1].

In Chapter 4, we study the generating system K(p,r) of all relatively (p, r)-compact
sets and the operator ideal K(p,r) of all (p, r)-compact operators. Relying on Chap-
ter 2, we show that the system K(p,r) is sequentially generatable if and only if
p = ∞ and r = 1, in which case K(p,r) coincides with the system of all relatively
compact sets K. In turn, the system K(p,r) provides answers and counterexamples
to certain questions posed in the general context of Chapter 2. We prove that
K(p,r) = N sur

(p,1,r∗). This allows us to equip K(p,r) with the corresponding s-norm of
N sur

(p,1,r∗) and to prove that K(p,r) is an s-Banach operator ideal. This chapter is
based on [ALO] and [Lil1].

In Chapter 5, we study sequentially generatable systems of sets G, which satisfy
G ≤ K. We introduce the notion of a hereditarily almost autoapproximable
sequence. Using this notion, we prove that the latter inequality G ≤ K is strict if
and only if the system G is obtained from a generating system of sets g consisting
entirely of hereditarily almost autoapproximable sequences. We also provide an
example of such a system of sequences g.

In Chapter 6, we study the generating system W∞ of all relatively weakly ∞-
compact sets and the operator ideal W∞ of all weakly ∞-compact operators. We
show that the operator ideal W∞ is a Banach operator ideal. We prove that the
equality V = W∞ ◦ W−1 holds (even in the context of Banach operator ideals).
As a consequence, this provides an alternative proof for the following result from
[DFLORT, Theorem 1]: the weak Grothendieck compactness principle holds only
in Schur spaces. This chapter is based on [JLO] and [Lil2].

In Chapter 7, we propose a general method for constructing generating systems of
sets and quasi-Banach operator ideals. This method is inspired by the construction
of generating systems of sets K(p,r) and W∞, and the corresponding operator ideals
K(p,r) and W∞. This construction produces a quasi-Banach operator ideal from a
BK-space g and a normed system of sequences h, provided that g and h satisfy
certain criteria. Among other examples, we prove that the operator ideals W(p,1)

and U(p,1) are quasi-Banach operator ideals (for 1 ≤ p <∞).
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Chapter 8 begins with an overview about some of the known results concerning
the approximation property. After this, we give the de�nitions of an approximable
set and an approximable sequence. We prove a Grothendieck-like criterion for
describing the approximable sets in a Banach space via the approximable sequences
in this space. We also prove that there exists a non-approximable sequence, which
can be represented as a sum of three approximable sequences.

1.2 Notation

We always consider X and Y to be Banach spaces over the same �eld K, where
K is either R or C. Denote by L(X, Y ) the Banach space of all bounded linear
operators acting from X to Y ; if X = Y , we use the notation L(X) instead. An
operator T ∈ L(X, Y ) is of �nite rank if its range is �nite-dimensional. Denote by
F(X, Y ) the space of �nite rank operators acting from X to Y ; if X = Y , we use
the notation F(X) instead. For an operator T : X → Y , we denote by kerT and
ranT its kernel and range, respectively.

The closed unit ball and the unit sphere of X are denoted by BX and SX , re-
spectively. The identity operator of X is denoted by IX and the dual space of
X is denoted by X∗. The closure of a set K is denoted by K, its linear span by
spanK, and its absolutely convex hull by absconvK. The norm closures of the
two latter sets are denoted by spanK and absconvK, respectively. A closure of K
with respect to a topology τ is denoted by K

τ
.

By using the term �sequence�, we implicitly assume that we are dealing with an
in�nite sequence. In the rare cases when we need to consider �nite sequences, we
state this explicitly. Denote by ek the unit sequence (δjk), where δjk is Kronecker's
symbol. We use the shorthand {xk} = {xk | k ∈ N} for any sequence (xk). For
brevity, we also put x = (xk), y = (yk), etc., and α = (αk), β = (βk), etc. We use
the notation N0 = N ∪ {0}.

For 1 ≤ p ≤ ∞, let p∗ denote the conjugate index of p (i.e., 1/p + 1/p∗ = 1 with
the convention 1/∞ = 0).

Let I be any set. A family of numbers (λx)x∈I (de�ned on the set I) is said to
be summable if the directed system of all �nite partial sums converges (see [Pi1,
A.4.6]). In that case, the limit is denoted by

∑
x∈I λx. A family of numbers

(λx)x∈I is said to be absolutely summable if the family (|λx|)x∈I is summable (see
[Pi1, A.4.7]). Let us denote by `1[I] the Banach space of all absolutely summable
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families of numbers (λx)x∈I with the norm

‖(λx)x∈I‖ =
∑
x∈I

|λx|.

Note that in [Pi1], notation `1(I) is used instead of `1[I] (see [Pi1, C.1.3]). The
natural surjection QX : `1[BX ]→ X is de�ned by

QX

(
(λx)x∈BX

)
=
∑
x∈BX

λxx.

A functional f ∈ X∗, where X is a topological vector space, is said to vanish on
a set A if f(x) = 0 for all x ∈ A. A functional f is said to vanish on a sequence
(xk) if f(xk) = 0 for all k ∈ N.

If τ1 and τ2 are topologies on a set X so that τ1 ⊂ τ2, then τ2 is said to be stronger
than τ1; likewise, τ1 is said to be weaker than τ2.

We consider the following set-theoretical structures, in addition to the sets them-
selves:

(i) 1st order classes, which consist of sets (e.g., a generating system of se-
quences);

(ii) 2nd order classes, which consist of 1st order classes (e.g., the class GSeq);

(iii) 3rd order classes, which consist of 2nd order classes (e.g., the quotient
GSeq/∼).

In the following we refer to all of them simply as classes.

A relation �≤� (on a set or a class) is said to be an order if it is re�exive, anti-
symmetric, and transitive. If (A,≤) is an ordered class, then A∂ denotes the class
ordered by the reverse order ≥.

We assume that the reader is familiar with well-known basic notions and results
from the theory of Banach spaces and topological vector spaces (such as Auerbach's
lemma, Schauder's theorem, Gantmacher's theorem, the bipolar theorem, the
Eberlein��mulian theorem, the Banach�Alaoglu theorem, and the Hahn�Banach
theorem and its corollaries (e.g., the Tukey�Klee separation theorem)).



Chapter 2

Operator ideals and generating

systems of sets and sequences

In this chapter, we study the class OI of all operator ideals, the class GSet
of all generating systems of sets, the class GSeq of all generating systems of
sequences, and various relations between these classes. Stephani considered
a domination relation on the class GSeq, which we denote as .. This
relation is a preorder, which induces an equivalence relation ∼. Using
a standard procedure, the class GSeq/∼ becomes an ordered class with
the order induced from the preorder .. One of the main results of this
thesis states that there is a Galois connection between the ordered classes
GSet and GSeq/∼ (the order on the class GSet is de�ned in a natural way
via inclusion). We say that a generating system of sets is sequentially
generatable if it can be obtained from a generating systems of sequences.
The Galois connection provides a useful characterization for sequentially
generatable systems of sets. This chapter is mainly based on [Lil1].

2.1 Galois connections

In this section, we recall the de�nition and several results about Galois connections.
The results about complete lattices and Galois connections are taken from the
book [DP] and they are easily provable without prior knowledge about Galois
connections. Although these results are stated in the context of sets in [DP], it
can be veri�ed that they hold also in the context of classes.

De�nition 2.1.1 (see [DP, 7.23]). Let A and B be ordered classes. A pair (R, S)

17



18 2. OPERATOR IDEALS AND SYSTEMS OF SETS AND SEQUENCES

of operators R : A → B and S : B → A is a Galois connection between A and B
if, for all a ∈ A and b ∈ B,

R(a) ≤ b⇔ a ≤ S(b).

Lemma 2.1.2 (see [DP, Lemma 7.26]). Assume that the pair (R, S) is a Galois
connection between ordered classes A and B. Let a, a1, a2 ∈ A and b, b1, b2 ∈ B.
Then

(Gal1) a ≤ SR(a) and RS(b) ≤ b;

(Gal2) a1 ≤ a2 ⇒ R(a1) ≤ R(a2) and b1 ≤ b2 ⇒ S(b1) ≤ S(b2);

(Gal3) R(a) = RSR(a) and S(b) = SRS(b).

Conversely, a pair of maps R : A → B and S : B → A satisfying (Gal1) and
(Gal2) for all a, a1, a2 ∈ A and b, b1, b2 ∈ B sets up a Galois connection between
A and B.

Let (A,≤) be an ordered class. Recall that the symbol A∂ denotes the class A
equipped with the reverse order ≥.

De�nition 2.1.3 (see [DP, 7.1]). Let A be an ordered class. An operator T :
A→ A is called a closure operator if, for all a, a1, a2 ∈ A,

(i) a ≤ T (a);

(ii) a1 ≤ a2 ⇒ T (a1) ≤ T (a2);

(iii) T (T (a)) = T (a).

An element a ∈ A is said to be closed (with respect to the closure operator T ) if
T (a) = a.

De�nition 2.1.4 (see [DP, 1.34]). Let A and B ordered classes. An operator
T : A → B is said to be an order-embedding provided that a ≤ b if and only if
T (a) ≤ T (b). T is said to be an order-isomorphism if it is an order-embedding
which maps A onto B.

Proposition 2.1.5 (see [DP, 7.27]). Assume that the pair (R, S) is a Galois
connection between ordered classes A and B. Denote A = {a ∈ A | a = SR(a)}
and B = {b ∈ B | b = RS(b)}. Then
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(i) operators SR : A→ A and RS : B∂ → B∂ are closure operators;

(ii) operators R : A→ B and S : B → A are mutually inverse order-isomorphisms.

The next lemma follows directly from the property (Gal3).

Lemma 2.1.6. Let (R, S) be a Galois connection between ordered classes A and
B. Let a ∈ A, b ∈ B. Then the following are equivalent:

(i) a ∈ A;

(ii) ∃b1 ∈ B such that a = S(b1).

Similarly, the following are equivalent:

(i) b ∈ B;

(ii) ∃a1 ∈ A such that b = R(a1).

2.2 Operator ideals

In this section, we recall some basic facts and properties about operator ideals. We
also recall some of the classical examples. Denote by L the class of all bounded
linear operators between arbitrary Banach spaces.

De�nition 2.2.1 (see [Pi2, 2.6.6.1]). An operator ideal A is a subclass of L such
that the components

A(X, Y ) := A ∩ L(X, Y )

satisfy the following conditions:

(OI0) IK ∈ A, where K denotes the 1-dimensional Banach space;

(OI1) S + T ∈ A(X, Y ) for any S, T ∈ A(X, Y );

(OI2) if T ∈ L(X, Y ), S ∈ A(Y, Z), and R ∈ L(Z,W ), then RST ∈ A(X,W ).

We denote the class of all operator ideals by OI.

Recall (see, e.g. [Pi2, 3.2.5.1]) that a map from a linear space X to non-negative
numbers is a quasi-norm if the following conditions are satis�ed.
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(QN0) ‖x‖ = 0 implies x = 0;

(QN1) there exists κ ≥ 1 such that ‖x+ y‖ ≤ κ (‖x‖+ ‖y‖), where x, y ∈ X;

(QN2) ‖λx‖ = |λ| ‖x‖, where x ∈ X and λ ∈ K.

A quasi-norm is called a p-norm if (QN1) is replaced with the p-triangle inequality

‖x+ y‖p ≤ ‖x‖p + ‖y‖p .

(see, e.g. [Pi2, 3.2.5.2]). The following facts are well-known.

Remark 2.2.2. A 1-norm is just a norm, and an s-norm is also a t-norm if 0 < t <

s ≤ 1. Every s-norm is a quasi-norm, since the constant κ := 2
1
p
−1 can be used

to satisfy condition (QN1). To see this, start from the p-triangle inequality and
apply the generalized mean inequality (see, e.g., [HLP, (2.9.1)]) for the exponents
p and 1.

An s-norm induces a metric on X de�ned by d(x, y) = ‖x− y‖s. A space X
is said to be s-Banach if it is complete for this metric (see, e.g., [Kal]). In the
case of a quasi-norm, X is endowed with a metrizable topology with the base of
neighborhoods consisting of the sets

{x ∈ X | ‖x‖ ≤ ε},

where ε > 0. A complete quasi-normed space is called a quasi-Banach space.

De�nition 2.2.3 (see [DF, 9.3]). A quasi-normed operator ideal (A, ‖·‖A) is an
operator ideal A together with a function ‖·‖A : A → [0,∞) such that

(QOI0) ‖IK‖A = 1;

(QOI1) there exists a constant κ ≥ 1 such that

‖S1 + S2‖A ≤ κ (‖S1‖A + ‖S2‖A) .

(QOI2) If T ∈ L(X0, X), S ∈ A(X, Y ), and R ∈ L(Y, Y0), then

‖RST‖A ≤ ‖R‖ ‖S‖A ‖T‖ .

If all of the components A(X, Y ) are quasi-Banach spaces (with respect to the
quasi-norm ‖·‖A), then (A, ‖·‖A) is called a quasi-Banach operator ideal.

As shown by the following theorem, it su�ces to show that all of the components
A(X, Y ) are sequentially complete in order to show that they are complete.
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Theorem 2.2.4 (see [KA, Part III, Theorem 3]). A Hausdor� topological vector
space X, which is sequentially complete and has a countable base of neighborhoods
of 0, is complete.

Proposition 2.2.5 (see [DF, Proposition(1), p. 109]). Let (A, ‖·‖A) be a quasi-
normed operator ideal. Then ‖T‖ ≤ ‖T‖A for every T ∈ A(X, Y ), where X and
Y are arbitrary Banach spaces.

De�nition 2.2.6 (see [DF, p. 109]). A quasi-normed operator ideal (A, ‖·‖A) is
a p-normed operator ideal (where 0 < p ≤ 1) if the p-triangle inequality holds:

(p-OI) ‖S1 + S2‖pA ≤ ‖S1‖pA + ‖S2‖pA for S1, S2 ∈ A(X, Y ).

If p = 1, then (A, ‖·‖A) is called a normed operator ideal.

Remark 2.2.2 immediately yields the following observation.

Proposition 2.2.7 (see Remark after [Pi1, 6.2.1]). Let (A, ‖·‖A) be a p-normed
operator ideal (where 0 < p ≤ 1). Then it is a quasi-normed operator ideal, where

the constant κ := 2
1
p
−1 can be used to satisfy condition (QOI1).

De�nition 2.2.8 (see [DF, p. 109]). A p-normed operator ideal (where 0 < p ≤ 1)
is said to be a p-Banach operator ideal if all components A(X, Y ) are p-Banach
spaces. If p = 1, then (A, ‖·‖A) is called a Banach operator ideal.

De�nition 2.2.9 (see [DF, p. 110]). An operator ideal A is said to be closed if it
is a Banach operator ideal when equipped with the operator norm ‖·‖.

Recall that an operator T ∈ L(X, Y ) is said to be (weakly) compact if it maps
bounded subsets of X to relatively (weakly) compact subsets of Y . An operator
T ∈ L(X, Y ) is said to be completely continuous if it maps weakly null sequences
in X to null sequences in Y . The following operator ideals are well known and
studied.

(i) The operator ideal F of �nite rank operators [Pi1, 1.2.1];

(ii) the operator ideal K of compact operators [Pi1, 1.4.2];

(iii) the operator ideal W of weakly compact operators [Pi1, 1.5.2];

(iv) the operator ideal V of completely continuous operators [Pi1, 1.6.2];

(v) the operator ideal L of bounded linear operators.
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In [Pi1], the notations F, K, W, V, and L are used, respectively. It is proven in
[Pi1, 4.2.5] that the operator ideals K, W , V , and L are closed.

Let A,B ∈ OI. Recall that the inclusion A ⊂ B means that A(X, Y ) ⊂ B(X, Y )
for all Banach spaces X and Y . The equality of A and B is denoted as A = B and
means that A ⊂ B and B ⊂ A. It is a well-known and easily veri�able that the
class OI is an ordered class with respect to the relation �⊂�.

Similar terminology is used for a quasi-Banach operator ideals (A, ‖·‖A) and
(B, ‖·‖B). The inclusion is denoted by (A, ‖·‖A) ⊂ (B, ‖·‖B), or shortly, A ⊂ B, if
A ⊂ B as operator ideals, and additionally, ‖T‖A ≥ ‖T‖B for all Banach spaces X
and Y , and for all T ∈ A(X, Y ). Two quasi-Banach operator ideals (A, ‖·‖A) and
(B, ‖·‖B) are equal, i.e., they are equal as operator ideals and their quasi-norms
coincide, if and only if A ⊂ B and B ⊂ A as quasi-Banach operator ideals.

The components of Asur, the surjective hull of A are de�ned by

Asur(X, Y ) = {T ∈ L(X, Y ) | TQX ∈ A(`1[BX ], Y )}.

If A = Asur, then A is surjective. If (A, ‖·‖A) is a quasi-Banach operator ideal,
then Asur is also a quasi-Banach operator ideal with ‖T‖Asur = ‖TQX‖A for T ∈
Asur(X, Y ) (see, e.g., [Pi2, 6.3.2.7]). Clearly, A ⊂ Asur, and if A is a quasi-Banach
operator ideal, then this inclusion holds in the sense of quasi-Banach operator
ideals [Pi1, 8.5.3].

Proposition 2.2.10 (see [Pi1, 8.5.3]). Let A,B be (quasi-Banach) operator ideals
with A ⊂ B. Then Asur sur = Asur and Asur ⊂ Bsur as (quasi-Banach) operator
ideals.

Recall that the right-hand quotient A ◦ B−1 of two operator ideals A and B is the
operator ideal that consists of all operators T ∈ L(X, Y ) such that TS ∈ A(X0, Y )
whenever S ∈ B(X0, X) for some Banach space X0 (see [Pi1, 3.1.1]).

Let (A, ‖·‖A) and (B, ‖·‖B) be quasi-Banach operator ideals. The quotient A◦B−1

becomes a quasi-Banach operator ideal if for every operator T ∈ A ◦ B−1(X, Y )
one puts

‖T‖A◦B−1 = sup{‖TS‖A | S ∈ B(X0, X), ‖S‖B ≤ 1},

where the supremum is taken over all Banach spaces X0 (see [Pi1, 7.2.1]).

The inclusion A ⊂ A ◦ B−1 holds for any two (quasi-Banach) operator ideals A
and B.
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2.3 Galois connection between operator ideals and

generating systems of sets

In this section, we recall the basic de�nition of a generating system of sets. We
prove that there is a Galois connection between the classes of all operator ideals
and all generating systems of sets. We observe how this Galois connection relates
to the classical notions of surjective operator ideals and ideal systems of sets (see
Propositions 2.3.3 and 2.3.7). The results in this section are not really new, as
the essential parts of most of the proofs are from [S]; rather, we provide a new
perspective for seeing the known results.

We remark that our notation for generating systems of sets and sequences di�ers
from Stephani's for certain convenience reasons.

By a system of sets G we mean a rule which for every Banach space X �xes a
family G(X) of subsets of X. The latter family is called a component of G (in
X). We denote the class of all systems of sets by SSet.

By B, we denote the system of all bounded sets in all Banach spaces (notations
B and b are used in [S] and [AO2], respectively).

De�nition 2.3.1 (see [S, De�nition 1.1]). System of sets G is called a generating
system of sets if for every Banach space X the following conditions are satis�ed:

(G0) G(X) ⊂ B(X);

(G1) the component G(K) contains the unit ball BK of the space K;

(G2) G(X) is closed under algebraic operations: if G,H ∈ G(X) and a ∈ K, then
aG+H ∈ G(X);

(G3) G(X) is closed under taking subsets: if G ∈ G(X) and H ⊂ G, then
H ∈ G(X);

(G4) if G ∈ G(X) and T ∈ L(X, Y ), then T (G) ∈ G(Y ).

We denote the class of all generating systems of sets by GSet.

Let G,H ∈ SSet. De�ne G ≤ H if G(X) ⊂ H(X) for every Banach space X.
Clearly, the relation �≤� is an order on the classes SSet and GSet.

It is easy to see that the following are examples of generating systems of sets:

(i) the system B;
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(ii) the system W of all relatively weakly compact sets in all Banach spaces
(notations Mwc and w are used in [S] and [AO2], respectively);

(iii) the system K of all relatively compact sets in all Banach spaces (notations
Mc and k are used in [S] and [AO2], respectively);

(iv) the system F such that its component F(X) consists of all bounded subsets
of �nite-dimensional subspaces of X.

For more examples of generating systems of sets, consult [S, Section 1].

It was proven by Stephani that an operator ideal A is surjective if and only if
T (BX) ⊂ S(BZ) implies T ∈ A(X, Y ) for every S ∈ A(Z, Y ) and T ∈ L(X, Y )
(see [S, Section 0]).

In [S, Section 1], Stephani showed that given systems G,H ∈ GSet such that
H ≤ G, one obtains an operator ideal [G→ H] by considering all of the operators
which map sets from the system G to sets of the system H. In other words, an
operator T ∈ L(X, Y ) belongs to the component

[G→ H](X, Y )

if T (G) ∈ H(Y ) whenever G ∈ G(X). Notice that Stephani used the notation
A[H/G] instead of [G→ H].

In the given thesis, we use this de�nition mostly in the special case G := B. Put

Θ(H) = [B→ H].

It is easy to see that T ∈ Θ(H)(X, Y ) if and only if T (BX) ∈ H(Y ). Stephani
remarked that the operator ideal Θ(H) is always surjective. Classical examples
are F = Θ(F), K = Θ(K), W = Θ(W), and L = Θ(B).

Let G ∈ GSet and A ∈ OI. Stephani gave in [S, Section 2] a method for con-
structing a new generating system of sets as a product A ◦G, which is de�ned in
the following way:

A ◦G(Y ) = {G ⊂ Y | G ⊂ T (H), where H ∈ G(X) and T ∈ A(X, Y )}.

This means that the component A◦G(Y ) consists of those sets that are contained
in the image T (H) of a set from the class G, where T is an appropriate operator
from A. In the given thesis we only consider symbols of the form A◦B, which we
denote by Γ(A).

To summarize, we have a mapping Θ from operator ideals to generating systems
of sets, and vice versa, a mapping Γ from generating systems of sets to operator
ideals. The following proposition demonstrates how the classes OI and GSet are
related to each other via those mappings.
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Proposition 2.3.2. The pair (Γ,Θ) is a Galois connection between the classes OI
and GSet.

Proof. We need to show that given A ∈ OI and G ∈ GSet, it holds that Γ(A) ≤ G
if and only if A ⊂ Θ(G). By de�nitions, it is easy to see that both the former and
the latter statement mean that an operator T ∈ A(X, Y ) maps each bounded set
G in X to a set T (G) ∈ G(Y ).

Denote the class of all surjective operator ideals by surOI. According to Propo-
sition 2.1.5, the operator Θ ◦ Γ: OI → OI is a closure operator. We have the
following proposition, which describes the corresponding class of closed elements.

Proposition 2.3.3. The following classes coincide.

(i) The class surOI of all surjective operator ideals;

(ii) the class OI of operator ideals that are mapped to themselves by the closure
operator Θ ◦ Γ of the class OI;

(iii) the class Θ(GSet).

Proof. It is straightforward to verify from the de�nitions that A = Θ ◦ Γ(A) for
every surjective operator ideal A. Thus (i)⇒ (ii).

Clearly (iii)⇒ (i), since every operator ideal of the form A = Θ(G) is surjective.

The equivalence (ii)⇔ (iii) follows from Lemma 2.1.6.

Note that Θ ◦ Γ(A) corresponds to the smallest surjective operator ideal which
contains A. Stephani used the notation AS in [S] for this concept; however, the
notation Asur from [Pi1] seems to be prevalent in the literature.

Recall that V 6∈ surOI, since Vsur = L (see [Pi1, 4.7.13]).

According to Proposition 2.1.5, the operator Γ ◦ Θ: GSet∂ → GSet∂ is a closure
operator. Let us denote by GSet

OI
the corresponding class of closed systems of

sets. In order to describe elements of this class, we need the following de�nitions.

De�nition 2.3.4 (see [S, Section 2]). Let G ⊂ X be a bounded set. The
σ-absolutely convex hull of G is de�ned by

σ-conv(G) =

{
x ∈ X

∣∣x =
∞∑
k=1

akxk, where (xk) ⊂ G and (ak) ∈ B`1

}
.
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De�nition 2.3.5 (see [S, Section 2]). Let G ∈ GSet. System G is said to be an
ideal system of sets if it ful�lls an additional property (G5) saying that

(G5) G ∈ G(X) implies σ-conv(G) ∈ G(X).

We denote the class of all ideal systems of sets by idGSet.

De�nition 2.3.6 (see [S, Section 2]). Let G be a bounded set in X. Consider the
operator

RG

(
(λx)x∈G

)
=
∑
x∈G

λxx

of `1[G] into X.

In [S], notation QG is used instead of RG. We have avoided using the notation QG

to avoid confusion with the notation QX from [Pi1], which was de�ned earlier.

The proof of the next result is essentially due to Stephani.

Proposition 2.3.7 (cf. [S, Section 2]). The following classes coincide.

(i) The class idGSet;

(ii) the class GSet
OI
;

(iii) the class Γ(OI).

Proof. The equivalence (ii)⇔ (iii) follows from Lemma 2.1.6.

To show (i) ⇒ (ii), let G ∈ GSet satisfy (G5), let X be a Banach space, and let
G ∈ G(X). Observe that σ-conv(G) = RG(B`1[G]). Therefore RG ∈ Θ(G) and
thus G ∈ Γ ◦Θ(G)(X). We have shown that G = Γ ◦Θ(G).

To show (iii) ⇒ (i), let a system of sets Γ(A) be given, let X be a Banach space
and let G ∈ Γ(A)(X). We verify that σ-conv(G) ∈ Γ(A)(X). There exists a
Banach space Y and an operator T ∈ A(Y,X) such that G ⊂ T (BY ). Observe
that

σ-conv(G) ⊂ σ-conv(T (BY )) = T (BY ).

Since T (BY ) ∈ Γ(A)(X), we conclude that σ-conv(G) ∈ Γ(A)(X).

As a consequence of Propositions 2.1.5, 2.3.3, and 2.3.7, we have the following:

Corollary 2.3.8. The following classes are order-isomorphic to each other:

(i) class surOI of surjective operator ideals;

(ii) class idGSet of ideal systems of sets.
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2.4 Generating systems of sequences

In this section we recall the basic de�nition and provide several examples of gen-
erating systems of sequences. We consider certain mappings between the classes
of generating systems of sets and sequences and prove preliminary results about
these classes and mappings.

By a system of sequences g we mean a rule which for every Banach space X �xes
a family g(X) of sequences in X. The latter family is called a component of g (in
X). By SSeq, we denote the class of all systems of sequences.

By m, we denote the system of all bounded sequences in all Banach spaces (in [S],
notation B is used).

De�nition 2.4.1 (see [S, De�nition 1.2]). A system of sequences g is said to
be a generating system of sequences if for every Banach space X the following
conditions are satis�ed:

(S0) g(X) ⊂m(X);

(S1) every sequence x = (xk) ⊂ BK contains a subsequence y of x such that
y ∈ g(K);

(S2) g(X) is a linear subspace of m(X);

(S3) g(X) is closed under passing to subsequences;

(S4) if x = (xk) ∈ g(X) and T ∈ L(X, Y ), then (Txk) ∈ g(Y ).

We denote the class of all generating systems of sequences by GSeq.

It is easy to see that the following are examples of generating systems of sequences:

(i) the system m;

(ii) the system c of all convergent sequences in all Banach spaces (in [S], notation
Φc is used);

(iii) the system f whose every component f(X) consists of all bounded sequences
which span a �nite-dimensional subspace of X;

(iv) the system fc whose every component fc(X) consists of all convergent se-
quences which span a �nite-dimensional subspace of X.
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For more examples of generating systems of sequences, consult [S, Section 1].

Let 1 ≤ p < ∞. Recall that a sequence (xk) in X is said to be absolutely p-
summable if the scalar sequence (‖xk‖) belongs to `p. Consider the following
well-known systems of sequences.

(i) the system c0 of all null (i.e., zero-convergent) sequences in all Banach spaces;

(ii) the system `p of all absolutely p-summable sequences in all Banach spaces.

Note that both of the aforementioned systems of sequences fail the property (S1),
since their components in the space K do not contain the constant scalar sequences.

In the following we view the classical spaces `p, c0, and m respectively as compo-
nents `p(K), c0(K), and m(K), where it is convenient. For notational purposes,
we sometimes use the symbol `∞ instead of m, and more generally, `∞(X) instead
of m(X).

De�nition 2.4.2 (see [S, De�nition 1.3]). Let g,h ∈ GSeq. The system h is
said to dominate the system g, written g . h, if every sequence from g(X) has a
subsequence in h(X). (In [S], the symbol ≺ is used instead of ..)

It is easy to verify that the relation . is a preorder on the class GSeq. However, it
is not an order. Consider, for example, the systems fc and f . It is straightforward
to verify that fc . f and f . fc, yet f 6= fc.

We now follow a standard process to make this preorder into an order. Given
g,h ∈ GSeq, we write g ∼ h if g . h and h . g. It is easy to see that this is an
equivalence relation on GSeq, and that the preorder on GSeq induces an order on
GSeq/∼ via [g] ≤ [h] whenever g . h.

Stephani showed in [S, Section 1] that given a system g ∈ GSeq, one may de�ne a
generating system of sets Ψ (g) in the following way: every component Ψ (g) (X)
contains all subsets G of X such that each sequence (xj) ⊂ G contains a subse-
quence (xjk) ∈ g(X). This construction gives us an operator Ψ: GSeq → GSet
(Stephani used the notation Mg instead of Ψ (g)).

Conversely, we de�ne an operator Φ: GSet→ GSeq as follows.

De�nition 2.4.3. Let G ∈ GSet. De�ne Φ (G) to be the system of all sequences
that are contained in the sets of G. That is, a sequence is in the component
Φ (G) (X) if and only if it is contained in G for some G ∈ G(X).

It is easy to verify that Φ (G) indeed is a generating system of sequences.
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De�nition 2.4.4. We say that a system G ∈ GSet is sequentially generatable if
there exists a system g ∈ GSeq such that Ψ (g) = G. Denote the class of all
sequentially generatable systems of sets by seqGSet.

As Corollary 4.1.10 below shows, the class seqGSet is strictly smaller than GSet.
Since Ψ (f) = F,Ψ (c) = K, and Ψ (m) = B, we have F,K,B ∈ seqGSet. Note
that, in general, the operator Ψ is not one-to-one. Indeed, Ψ (f) = Ψ (fc) = F,
yet, as mentioned before, f 6= fc.

Corollary 2.4.7 below demonstrates the relation between the operator Ψ and the
equivalence relation �∼�. To prove it, we use the following lemma from [S], for
which we have included a proof for completeness.

Lemma 2.4.5 (see [S, Lemma 1.1]). Let g ∈ GSeq and let (xk) ∈ g(X). Then
{xk} ∈ Ψ (g) (X).

Proof. In order to show that {xk} ∈ Ψ (g) (X), let a sequence (xnk) be given. We
need to prove that it contains a subsequence belonging to g(X).

Assume that the sequence (nk) contains an increasing subsequence (mk). Then
(xmk) is the needed subsequence of (xnk), since (xmk) ∈ g(X) by property (S3).

On the other hand, if the sequence (nk) does not contain any increasing subse-
quences, then it must contain a constant subsequence (rk). Then (xrk) is the
needed subsequence of (xnk), since (xrk) ∈ g(X) by properties (S1) and (S4).

Lemma 2.4.6. Let g,h ∈ GSeq. Then g . h if and only if Ψ (g) ≤ Ψ (h).

Proof. Let g . h. Take a set G ∈ Ψ (g) (X). By de�nition, for every sequence
x = (xk) ⊂ G there exists a subsequence y of x such that y ∈ g(X). According to
the assumption, there exists a subsequence z of y such that z ∈ h(X). This proves
that G ∈ Ψ (h) (X).

Conversely, let Ψ (g) ≤ Ψ (h) and take a sequence x ∈ g(X). By Lemma 2.4.5,

{xk} ∈ Ψ (g) (X) ⊂ Ψ (h) (X).

Therefore the sequence x contains a subsequence y ∈ h(X).

Corollary 2.4.7. Let g,h ∈ GSeq. Then g ∼ h if and only if Ψ (g) = Ψ (h).

Stephani also considered the following way to construct operator ideals from two
given systems of sequences.
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De�nition 2.4.8 (see [S, Section 1]). Let g,h ∈ GSeq be such that h . g.
Denote by [g → h] the class of operators T ∈ L(X, Y ), which map each sequence
(xk) ∈ g(X) onto a sequence (yk) := (Txk) having a subsequence (yjk) ∈ h(Y ).
(Stephani used the notation A[h/g] instead of [g→ h].)

Proposition 2.4.9 (see [S, Theorem 1.1]). Let g,h ∈ GSeq be such that h . g.
Then

[g→ h] = [Ψ (g)→ Ψ (h)] .

Proposition 2.4.10. Let G,H ∈ GSet be such that H ≤ G. Then

[G→ H] ⊂ [Φ (G)→ Φ (H)] .

Proof. Let T ∈ [G → H](X, Y ) and let (xk) ∈ Φ (G) (X). This means that
(xk) ⊂ G ∈ G(X) and we may conclude that (Txk) ⊂ T (G) ∈ H(Y ).

Remark 2.4.11. In contrast with Proposition 2.4.9, it does not always hold that

[G→ H] = [Φ (G)→ Φ (H)] .

For a counterexample, see Proposition 4.1.13 below.

2.5 Saturated systems of sequences

We say that a system g ∈ GSeq is saturated if for every system h ∈ GSeq that
satis�es h ∼ g it holds that h(X) ⊂ g(X) for every Banach space X. Denote the
class of all saturated systems of sequences by satGSeq. As Corollary 2.5.2 below
shows, the class satGSeq coincides with Φ ◦Ψ(GSeq). For the sake of an example,
we show that the system c is not saturated (see Proposition 2.5.6 below). We
conclude this section by proving that the relation . is an order when restricted to
satGSeq (see Proposition 2.5.8 below).

Proposition 2.5.1. Let g ∈ GSeq. Then

(i) g ∼ Φ (Ψ (g));

(ii) the system Φ (Ψ (g)) is saturated;

(iii) if g is saturated, then g = Φ (Ψ (g)).
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Proof. Let g ∈ GSeq and let X be a Banach space. We prove that g(X) ⊂
Φ (Ψ (g)) (X). Take a sequence x ∈ g(X). By Lemma 2.4.5, {xk} ∈ Ψ (g) (X) and
therefore x ∈ Φ (Ψ (g)) (X).

(i). Let x ∈ g(X). Since x is a subsequence of itself and x ∈ Φ (Ψ (g)) (X), we
have g . Φ (Ψ (g)). Let x ∈ Φ (Ψ (g)) (X). By de�nition, {xk} ∈ Ψ (g) (X).
Consequently, there exists a subsequence y of x such that y ∈ g(X) and therefore
Φ (Ψ (g)) . g.

(ii). Let h ∈ GSeq be such that h ∼ g. Since Ψ (h) = Ψ (g) by Corollary 2.4.7,
we have Φ (Ψ (h)) = Φ (Ψ (g)). Therefore h(X) ⊂ Φ (Ψ (h)) (X) = Φ (Ψ (g)) (X)
for every Banach space X.

(iii). Let X be a Banach space. On the one hand, Φ (Ψ (g)) (X) ⊂ g(X) because
g is saturated. Conversely, g(X) ⊂ Φ (Ψ (g)) (X) by (ii).

Corollary 2.5.2. It holds that satGSeq = Φ ◦Ψ(GSeq).

To see that satGSeq is strictly smaller than GSeq, observe that Φ(Ψ(fc)) = f and
therefore fc 6∈ satGSeq, but f ∈ satGSeq according to Proposition 2.5.1(ii). An-
other example is provided by Proposition 2.5.6 below. The next two propositions
further characterize saturated systems of sequences.

Proposition 2.5.3. Let g ∈ GSeq, let X be a Banach space, and let x ∈ m(X).
Then x ∈ Φ (Ψ (g)) (X) if and only if every subsequence y of x contains a subse-
quence z of y such that z ∈ g(X).

Proof. By de�nition, (xk) ∈ Φ (Ψ (g)) (X) if and only if for every sequence (yk) ⊂
{xk} there exists a subsequence (zk) of (yk) such that (zk) ∈ g(X).

For necessity, let (yk) be a subsequence of (xk). Since (yk) ⊂ {xk}, there exists a
subsequence (zk) of (yk) such that (zk) ∈ g(X).

For su�ciency, let (yk) ⊂ {xk}. If the set {yk} contains only �nitely many di�erent
elements, then there exists a constant subsequence (zk) of (yk), in which case
(zk) ∈ g(X) because of properties (S1) and (S4). On the other hand, let us
assume that the set {yk} contains in�nitely many di�erent elements from the set
{xk}. Let (jk) ⊂ N be a sequence of indices such that yk = xjk for all k ∈ N.
It is easy to see that there exists an increasing subsequence (hk) of (jk). De�ne
zk = xhk for all k ∈ N and observe that the sequence (zk) is a subsequence of both
sequences (yk) and (xk). By assumption, there exists a subsequence (wk) of (zk)
such that (wk) ∈ g(X).

Proposition 2.5.4. Let g,h ∈ GSeq. Then g . h if and only if

Φ (Ψ (g)) (X) ⊂ Φ (Ψ (h)) (X)
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for every Banach space X.

Proof. Let g . h. Take x ∈ Φ (Ψ (g)) (X) and let y be a subsequence of x. Since
Φ (Ψ (g)) ∼ g . h, there exists a subsequence z of y such that z ∈ h(X). Thus
x ∈ Φ (Ψ (h)) (X) by the �if� part of Proposition 2.5.3.

Conversely, let Φ (Ψ (g)) (X) ⊂ Φ (Ψ (h)) (X) for a Banach space X. Take x ∈
g(X) ⊂ Φ (Ψ (g)) (X) ⊂ Φ (Ψ (h)) (X). By the �only if� part of Proposition 2.5.3,
there exists a subsequence y of x such that y ∈ h(X).

Corollary 2.5.5. Let g,h ∈ GSeq. Then g ∼ h if and only if Φ (Ψ (g)) =
Φ (Ψ (h)).

If follows from the next result that the system of sequences c is not saturated
(because that would be a contradiction with Proposition 2.5.1(ii)).

Proposition 2.5.6. It holds that c(K) 6= Φ (Ψ (c)) (K).

Proof. Consider an alternating sequence α = (1, 0, 1, 0, . . .) ⊂ K. This sequence
does not converge, and therefore α 6∈ c(K), but α ∈ Φ (Ψ (c)) (K) by Proposi-
tion 2.5.3.

Alternatively, observe that the set {0, 1} is relatively compact and that Φ (Ψ (c)) =
Φ (K), i.e., the latter system consists of all sequences that are contained in a
relatively compact set.

Remark 2.5.7. Saturated systems of sequences can be alternatively characterized
as being of the form Φ (G), where G ∈ seqGSet. As Corollary 4.1.12 below shows,
a system of the form Φ (G) may fail to be saturated if G 6∈ seqGSet.

The following proposition shows that the class satGSeq is ordered. This result
is of critical importance because it enables us to prove below that satGSeq and
GSeq/∼ are order-isomorphic to each other (see Corollary 2.6.10).

Proposition 2.5.8. The restriction of the relation . to satGSeq is an order.

Proof. We only need to show that the relation . is antisymmetric on satGSeq.
Let g,h ∈ satGSeq be such that g ∼ h. By Proposition 2.5.1(iii) and Corollary
2.5.5, g = Φ (Ψ (g)) = Φ (Ψ (h)) = h.

Remark 2.5.9. A relation Î was introduced in [S, De�nition 1.4]. We do not use
this relation in the given thesis, but for the sake of completeness, let us observe
that it can be characterized in the following way. Let g,h ∈ GSeq. Then g Î h
if and only if g . h and

Φ (Ψ (g)) (X) ∩ h(X) ⊂ g(X)

for every Banach space X.
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2.6 Galois connection between generating systems

of sets and sequences

We begin this section by proving one of the main results of this chapter: there
is a Galois connection between the ordered classes GSet and GSeq/∼ (see Theo-
rem 2.6.4). Corollary 2.6.5 shows that a generating system of sets G is sequentially
generatable if and only if G = Ψ (Φ (G)). We prove that the operator Ψ ◦ Φ is
a closure operator on GSet (see Theorem 2.6.6) and conclude this chapter with
the result that the classes GSeq/∼, satGSeq, and seqGSet are order-isomorphic to
each other (see Theorems 2.6.6 and 2.6.9).

De�nition 2.6.1. De�ne the operator φ : GSet→ GSeq/∼ by

φ (G) =
[
Φ (G)

]
, where G ∈ GSet.

De�ne the operator ψ : GSeq/∼ → GSet by

ψ ([g]) = Ψ (g) , where [g] ∈ GSeq/∼.

The correctness of the above de�nition is clear from Corollary 2.4.7.

The following two corollaries are due to Lemma 2.4.6 and Proposition 2.5.1, re-
spectively.

Corollary 2.6.2. Let [g], [h] ∈ GSeq/∼. Then [g] ≤ [h] if and only if ψ ([g]) ≤
ψ ([h]).

Corollary 2.6.3. Let [g] ∈ GSeq/∼. Then φ (ψ ([g])) = [g].

Theorem 2.6.4. The pair (φ, ψ) is a Galois connection between the ordered classes
GSet and GSeq/∼.

Proof. Let G ∈ GSet and [g] ∈ GSeq/∼. We need to prove that φ (G) ≤ [g] if and
only if G ≤ ψ ([g]).

By de�nition, φ (G) ≤ [g] if for every Banach space X and for every sequence
x ∈ m(X) which satis�es the condition {xk} ∈ G(X) there exists a subsequence
y of x such that y ∈ g(X).

On the other hand, G ≤ ψ ([g]) if for every Banach space X, set K ∈ G(X), and
sequence x = (xk) ⊂ K there exists a subsequence y of x such that y ∈ g(X).

It is straightforward to verify that the two statements are equivalent.
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The existence of a Galois connection provides us with the following two results.
The �rst one is immediate from Lemmas 2.1.2 and 2.1.6.

Corollary 2.6.5. Let G,H ∈ GSet and let [g] ∈ GSeq/∼. Then

(i) G ≤ ψ (φ (G)) = Ψ (Φ (G));

(ii) G ≤ H⇒ φ (G) ≤ φ (H)⇔ Φ (G) . Φ (H);

(iii) φ (G) = φ (ψ (φ (G))) and ψ ([g]) = ψ (φ (ψ ([g]))).

Let G ∈ GSet. Then G ∈ seqGSet if and only if G = ψ (φ (G)) (equivalently,
G = Ψ (Φ (G))). To put it another way, seqGSet = Ψ ◦ Φ(GSet).

Notice that condition (iii) above also follows from Corollary 2.6.3.

We de�ne the operators ψ : GSeq/∼ → seqGSet and φ : seqGSet → GSeq/∼ in a
natural way (by restriction). The next theorem follows immediately from Propo-
sition 2.1.5.

Theorem 2.6.6. The following holds:

(i) The operator ψ ◦ φ (which equals Ψ ◦ Φ) is a closure operator on GSet and
the class Ψ ◦ Φ(GSet) is the corresponding subclass of closed elements;

(ii) The operator ψ : GSeq/∼ → seqGSet is an order-isomorphism and the oper-
ator φ : seqGSet→ GSeq/∼ is its inverse.

At �rst sight, Proposition 2.1.5 seems to yield more than we formulated in the
previous theorem: it additionally asserts that the operator φ ◦ψ is a closure oper-
ator on (GSeq/∼)∂. However, this does not provide any new information since we
already know from Corollary 2.6.3 that operator φ ◦ ψ is the identity operator of
GSeq/∼.

Corollary 2.6.5(iii) yields the following result.

Corollary 2.6.7. Let g ∈ GSeq. Then Ψ (g) = Ψ (Φ (Ψ (g))).

Proof. Observe that Ψ (g) = ψ ([g]) = ψ (φ (ψ ([g]))) = Ψ (Φ (Ψ (g))).

Remark 2.6.8. Let G ∈ GSet. In contrast with the above corollary, it does not
always hold that Φ (G) = Φ (Ψ (Φ (G))), although Proposition 2.5.1 guarantees
the inclusion Φ (G) (X) ⊂ Φ (Ψ (Φ (G))) (X) for every Banach space X. For a
counterexample, see Proposition 4.1.11 below.
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We de�ne the operators Φ: seqGSet → satGSeq and Ψ: satGSeq → seqGSet
in a natural way (by restriction). Observe that Proposition 2.5.1(ii) shows the
correctness of the former de�nition.

Theorem 2.6.9. The operator Φ: seqGSet → satGSeq is an order-isomorphism
and Ψ: satGSeq→ seqGSet is its inverse.

Proof. In order to show that the operator Φ: seqGSet → satGSeq is an order-
isomorphism it su�ces to show that it is a surjective order-embedding. Surjectivity
follows from Proposition 2.5.1(iii). Let Ψ (g) ,Ψ (h) ∈ seqGSet. Let us show that
Ψ (g) ≤ Ψ (h) if and only if Φ (Ψ (g)) . Φ (Ψ (h)). According to Lemma 2.4.6,
Ψ (g) ≤ Ψ (h) if and only if g . h. Since g ∼ Φ (Ψ (g)), h ∼ Φ (Ψ (h)), and the
relation . is a preorder, we have g . h if and only if Φ (Ψ (g)) . Φ (Ψ (h)).

Corollary 2.6.7 shows that Ψ ◦ Φ is the identity on seqGSet. To see that Φ ◦Ψ is
the identity on the class satGSeq, take Φ (Ψ (g)) ∈ satGSeq and apply Corollary
2.6.7 to observe that Φ (Ψ (Φ (Ψ (g)))) = Φ (Ψ (g)).

Combining Theorems 2.6.6 and 2.6.9, we obtain the following corollary.

Corollary 2.6.10. The operator

Φ ◦ ψ : GSeq/∼ → satGSeq

is an order-isomorphism.





Chapter 3

Lattice structures of operators, sets,

and sequences

In this chapter, we study the lattice structure on the class of operator ideals,
the classes of generating systems of sets and sequences, and related classes.
We then study the order properties of the various mappings between these
classes. This chapter is mainly based on [Lil1].

3.1 Smallest operator ideals, systems of sets and

sequences

It is a well-known fact that F is the smallest operator ideal (see [Pi1, 1.2.2]).
Similarly, we prove that the systems F and [f ] are the least elements of the classes
GSet and GSeq/∼, respectively (see Proposition 3.1.2). To do so, we need the
following lemma.

Lemma 3.1.1. Let h1, . . . ,hn ∈ GSeq. Let sequences yj = (yjk)k∈N be given for
each j ∈ {1, . . . , n} such that every subsequence z of yj contains a subsequence
w of z such that w ∈ hj(X). Then there exists a subsequence N of N such that
(yjk)k∈N ∈ hj(X) for each j ∈ {1, . . . , n}.

Proof. The sequence (y1
k)k∈N contains a subsequence (y1

k)k∈N1 ∈ h1(X). We con-
tinue inductively. On the j-th step (where j ∈ {2, . . . , n}) we use property (S3)
and the assumption to show that the sequence (yjk)k∈Nj−1

contains a subsequence

37
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(yjk)k∈Nj ∈ hj(X). It follows from property (S3) that (yjk)k∈Nn ∈ hj(X) for each
j ∈ {1, . . . , n}. The sequence N := Nn is the needed subsequence of N.
Proposition 3.1.2. Let G ∈ GSet and g ∈ GSeq. Then

(i) F ≤ G;

(ii) f . g (equivalently, [f ] ≤ [g]).

Proof. Let X be a Banach space. Take G ∈ F(X) and take a sequence (xk) ⊂ G
(i.e., x ∈ f(X)). We prove the �rst statement by showing that G ∈ G(X); then
we show that there exists a subsequence z of x such that z ∈ g(X), which proves
the second statement.

By assumption, G is a bounded subset of an n-dimensional subspace of X, where
n ∈ N. Since G is bounded and the �nite-dimensional spaces spanG and mn are
isomorphic, there exist elements e1, . . . , en, and a constant c > 0 such that

G ⊂ c

{
n∑
k=1

αkek | (αk)nk=1 ∈ Bmn

}
.

De�ne operators Tk ∈ L(K, X) by

Tk(a) = caek,

where k ∈ {1, . . . , n} and a ∈ K. Then

G ⊂
n∑
k=1

Tk(BK)

and G ∈ G(X) by properties (G1) � (G4).

Since (xk) ⊂ G, we have

xk =
n∑
j=1

Tj(α
j
k)

with αjk ∈ BK for each j ∈ {1, . . . , n} and k ∈ N. Let us de�ne the sequence
yj = (αjk)k∈N for each j ∈ {1, . . . , n} and apply Lemma 3.1.1 to the sequences
y1, . . . , yn (we put hj := g for each j ∈ {1, . . . , n}). Note that the assumptions of
the lemma are satis�ed because of property (S1). By Lemma 3.1.1, there exists a
subsequence N of N such that (αjk)k∈N ∈ g(K) for each j ∈ {1, . . . , n}. According
to properties (S2) and (S4),

z :=
n∑
j=1

(
Tjα

j
k

)
k∈N = (xk)k∈N ∈ g(X).

We have shown that there exists a subsequence z of x such that z ∈ g(X).
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Let us also prove the following (easy) characterization.

Proposition 3.1.3. Every sequence (xk) ∈ f(X) can be expressed as a sum
(xk) = (y1

k) + . . .+ (ynk ), where n ∈ N and each of the sequences (y1
k), . . . , (y

n
k )

is bounded in X and spans a 1-dimensional subspace of X.

Proof. Obviously, every sequence of the form (xk) = (y1
k) + . . . + (ynk ) belongs to

the component f(X).

For the converse, let (xk) ∈ f(X). By the proof of Proposition 3.1.2,

xk =
n∑
j=1

Tj(α
j
k)

with Tj ∈ L(K, X) and (αjk) ⊂ BK for each j ∈ {1, . . . , n}. It remains to put

(yjk)k∈N =
(
Tj(α

j
k)
)
k∈N

for each j ∈ {1, . . . , n}.

3.2 Complete lattices related to operator ideals

In this section, we study the lattice structures of the classes OI, surOI,GSet, and
idGSet. Pietsch mentions in [Pi1, 1.11.1] that �the collection of all operator ideals
is something like a complete lattice with respect to the natural ordering�. We
add to this by showing that the classes surOI,GSet, and idGSet are also complete
lattices (see Theorems 3.2.4, 3.2.9, and 3.2.10).

In this chapter, we repeatedly use the following two results from [DP]. Although
these results have been proven for sets, it can be veri�ed that they hold in the
context of classes.

In the remainder of this chapter, let I be a non-empty class of indices.

Proposition 3.2.1 (cf. [DP, Theorem 2.31; Lemma 2.30]). Let G be an ordered
class with a greatest element, where

∧
α∈I gα exists for every subclass {gα | α ∈ I}

of G. Then G is a complete lattice, where∨
α∈I

gα =
∧
{g ∈ G | g ≥ gα ∀α ∈ I}.

Proposition 3.2.2 (see [DP, Proposition 7.2]). Let G be a complete lattice and let
a closure operator T : G → G be given. Then for every x ∈ G and every subclass
S of T (G) it holds that



40 3. LATTICE STRUCTURES OF OPERATORS, SETS, AND SEQUENCES

(i) T (G) is a complete lattice under the order inherited from G;

(ii) in�ma
∧
S coincide in lattices T (G) and G;

(iii)
∨
S = T (

∨
S), where the former supremum is taken in T (G) and the latter

in G;

(iv) T (x) =
∧
{y ∈ T (G) | y ≥ x}.

The following result is well known; we include a proof for completeness.

Theorem 3.2.3 (cf. [Pi1, 1.11.1]). The ordered class OI is a complete lattice with
the least element F and the greatest element L. Let {Aα | α ∈ I} ⊂ OI. Then∧

α∈I

Aα =
⋂
α∈I

Aα.

Proof. It is easy to check that
⋂
α∈I Aα ∈ OI and

∧
α∈I Aα =

⋂
α∈I Aα. Therefore

OI is a complete lattice according to Proposition 3.2.1.

Recall that Θ ◦ Γ is a closure operator on A and the corresponding class of closed
operator ideals coincides with the class surOI of all surjective operator ideals (see
Proposition 2.3.3). Proposition 3.2.2 yields the following result.

Theorem 3.2.4. The ordered class surOI is a complete lattice with the least ele-
ment F and the greatest element L. Let A ∈ GSet and let {Aα | α ∈ I} ⊂ surOI.
Then

Asur = Θ ◦ Γ(A) =
⋂
{B ∈ surOI | B ⊃ A} ,∧

α∈I

Aα =
⋂
α∈I

Aα.

Although Proposition 3.2.1 provides a formula for �nding suprema in the classes
OI and surOI, it might be rather cumbersome for practical usage. Propositions
3.2.6 and 3.2.7 below give a direct way for �nding suprema instead.

De�nition 3.2.5. Let {Aα | α ∈ I} ⊂ OI. We de�ne the collection of operators∑
α∈I Aα by letting T ∈

∑
α∈I Aα(X, Y ) whenever T can be expressed as a �nite

sum of operators from any of the components Aα(X, Y ).

Proposition 3.2.6. Let {Aα | α ∈ I} ⊂ OI. Then
∑

α∈I Aα ∈ OI and∨
α∈I

Aα =
∑
α∈I

Aα.
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Proof. It is easy to see that
∑

α∈I Aα satis�es (OI0) and (OI1). To show (OI2),
let T ∈ L(X, Y ), S ∈

∑
α∈I Aα(Y, Z), and R ∈ L(Z,W ). Then S = S1 + . . .+ Sn,

where Sj ∈ Aβj(X, Y ), βj ∈ I, and j ∈ {1, . . . , n}. It holds that

RST = R(S1 + . . .+ Sn)T = RS1T + . . .+RSnT ∈
∑
α∈I

Aα(X,W ).

By (OI1),
∨
α∈I Aα ⊃

∑
α∈I Aα. Since Aα ⊂

∑
α∈I Aα for every α ∈ I, we see that∨

α∈I Aα =
∑

α∈I Aα.

Proposition 3.2.7. Let {Aα | α ∈ I} ⊂ surOI. Then

∨
α∈I

Aα = Θ ◦ Γ

(∑
α∈I

Aα

)
.

Proof. According to Proposition 3.2.2(iii), the supremum
∨
α∈I Aα in lattice surOI

is equal to Θ ◦ Γ
(∑

α∈I Aα
)
.

Let us examine the structure of the class GSet.

De�nition 3.2.8. Let {Gα | α ∈ I} ⊂ SSet. De�ne
⋂
α∈I Gα ∈ SSet by(⋂

α∈I

Gα

)
(X) :=

⋂
α∈I

(Gα(X)).

Theorem 3.2.9. The class GSet is a complete lattice with the least element F
and the greatest element B. Let {Gα | α ∈ I} ⊂ GSet. Then∧

α∈I

Gα =
⋂
α∈I

Gα.

Proof. It is easy to check that
⋂
α∈I Gα ∈ GSet and

∧
α∈I Gα =

⋂
α∈I Gα. There-

fore GSet is a complete lattice according to Proposition 3.2.1.

Theorem 3.2.10. The class idGSet is a complete lattice with the least element F
and the greatest element B. Let G ∈ GSet and let {Gα | α ∈ I} ⊂ idGSet. Then

Γ ◦Θ(G) =
∨
{H ∈ idGSet |H ≤ G} ,∧

α∈I

Gα =
⋂
α∈I

Gα.
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Proof. Recall that Γ ◦ Θ is a closure operator on the class GSet∂ (see Proposi-
tion 2.1.5). According to Proposition 3.2.2, Γ ◦ Θ(GSet∂) = (Γ ◦ Θ(GSet))∂ =
idGSet∂ is a complete lattice. But this means that idGSet is also a complete lat-
tice. Applying Proposition 3.2.2(iv) for the class idGSet∂ and re-writing it for the
class idGSet gives that

Γ ◦Θ(G) =
∨
{H ∈ idGSet |H ≤ G} .

Proposition 3.2.2(iii) proves that the in�mum
∧
α∈I Gα in the class idGSet is equal

to Γ ◦ Θ(
⋂
α∈I Gα). It remains to prove that

⋂
α∈I Gα is an ideal system of sets,

i.e., belongs to the class Γ ◦Θ(GSet).

We need to prove that
⋂
α∈I Gα satis�es the property (G5) from De�nition 2.3.5.

Let G ∈
⋂
α∈I Gα(X). To show that σ-conv(G) ∈

⋂
α∈I Gα(X), it su�ces to

observe that each of the systems Gα is an ideal system of sets by assumption and
therefore contains the set σ-conv(G).

Propositions 3.2.12 and 3.2.13 below give a direct way for �nding suprema in the
classes GSet and idGSet.

De�nition 3.2.11. Let {Gα | α ∈ I} ⊂ SSet. De�ne Sub
∑

α∈I Gα ∈ SSet by(
Sub

∑
α∈I

Gα

)
(X) = {H ⊂ X | ∃n ∈ N, ∃β1, . . . , βn ∈ I,

∃G1 ∈ Gβ1(X), . . . , Gn ∈ Gβn(X), H ⊂ G1 + . . .+Gn}.

Notice that if I is �nite, then the above formula simpli�es to(
Sub

∑
1≤j≤n

Gj

)
(X) = {H ⊂ X | ∃G1 ∈ G1(X), . . . , Gn ∈ Gn(X), H ⊂ G1+. . .+Gn}.

Proposition 3.2.12. Let {Gα | α ∈ I} ⊂ GSet. Then Sub
∑

α∈I Gα ∈ GSet and∨
α∈I

Gα = Sub
∑

α∈I

Gα.

Proof. It is easy to see that the system Sub
∑

α∈I Gα satis�es (G1) and (G3). To
show properties (G2) and (G4), let a ∈ K, let X, Y be Banach spaces, let G,H ∈
Sub

∑
α∈I Gα(X), and let T ∈ L(X, Y ). Then G ⊂

∑m
k=1 Gk and H ⊂

∑n
k=1Hk,

where G1 ∈ Gβ1(X), . . . , Gm ∈ Gβm(X) and H1 ∈ Gγ1(X), . . . , Hn ∈ Gγn(X).

(G2) We have aG+H ⊂ aG1 + . . .+ aGm +H1 + . . .+Hn ∈ Sub
∑

α∈I Gα(X).
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(G4) It holds that T (G) ⊂ T (
∑m

k=1 Gk) =
∑m

k=1 T (Gk) ∈ Sub
∑

α∈I Gα(Y ).

We apply properties (G2) and (G3) to see that
∨
α∈I Gα ≥ Sub

∑
α∈I Gα. Since

Gα ≤ Sub
∑

α∈I Gα for every α ∈ I, we get that
∨
α∈I Gα = Sub

∑
α∈I Gα.

Proposition 3.2.13. Let {Gα | α ∈ I} ⊂ idGSet. Then∨
α∈I

Gα = Sub
∑

α∈I

Gα.

Proof. Recall that Γ◦Θ is a closure operator on the class GSet∂. Applying Proposi-
tion 3.2.2(ii) for the class idGSet∂ and reversing the order proves that the suprema∨
α∈I Gα coincide in the lattices GSet and idGSet.

We propose the following question. A�rmative answer to it would help to simplify
Proposition 3.2.7.

Question 3.2.14. Let {Aα | α ∈ I} ⊂ surOI. Is it always true that the operator
ideal ∑

α∈I

Aα

is surjective?

Currently, we do not even know if this is so for any �nite collection of operator
ideals {A1, . . . ,An}.

3.3 Complete lattices related to systems of sets

and sequences

In this section, we show that the classes seqGSet, satGSeq, and GSeq/∼ are com-
plete lattices (see Theorems, 3.3.1, 3.3.5, and 3.3.6). We provide a simpler formula
for �nding in�ma over �nite sets in the class GSeq/∼ (see Proposition 3.3.7). We
then prove explicit formulas for �nding suprema in the classes seqGSet, satGSeq,
and GSeq/∼ (see Propositions 3.3.8, 3.3.11, and 3.3.12).

Let us begin by examining the structure of the class seqGSet.

Theorem 3.3.1. The ordered class seqGSet is a complete lattice with the least
element F and the greatest element B. Let {Gα | α ∈ I} ⊂ seqGSet and let
G ∈ GSet. Then

ψ (φ (G)) =
⋂
{H ∈ seqGSet |H ≥ G} ,
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α∈I

Gα =
⋂
α∈I

Gα.

Proof. As Theorem 2.6.6 shows, the operator ψ ◦ φ : GSet → GSet is a closure
operator. Proposition 3.2.2 yields that ψ ◦ φ(GSet) is a complete lattice and that
the above formulas hold (note that ψ◦φ(GSet) = seqGSet by Corollary 2.6.5).

Let us investigate the structure of the class satGSeq.

Proposition 3.3.2. Let g ∈ satGSeq. Then inclusion f(X) ⊂ g(X) holds for
every Banach space X.

Proof. According to Proposition 3.1.2, f . g. Since f ,g ∈ satGSeq, Proposi-
tion 2.5.4 yields that

f(X) = Φ (Ψ (f)) (X) ⊂ Φ (Ψ (g)) (X) = g(X).

De�nition 3.3.3. Let {gα | α ∈ I} ⊂ SSeq. De�ne
⋂
α∈I gα ∈ SSeq by(⋂

α∈I

gα

)
(X) :=

⋂
α∈I

(gα(X)).

Proposition 3.3.4. Let {gα | α ∈ I} ⊂ satGSeq. Then
⋂
α∈I gα ∈ satGSeq.

Proof. To prove that
⋂
α∈I gα ∈ GSeq, observe that property (S1) follows from

Proposition 3.3.2, because every sequence x = (xk) ⊂ BK satis�es x ∈ f(K).
Other properties are trivial to check.

By Proposition 2.5.1
⋂
α∈I gα ∈ satGSeq if

⋂
α∈I

gα = Φ

(
Ψ

(⋂
α∈I

gα

))
.

Let X be a Banach space and let x ∈ Φ
(
Ψ
(⋂

α∈I gα
))

(X). Applying Proposi-
tion 2.5.3 to the system

⋂
α∈I gα, we �nd that for every subsequence y of x there

exists a subsequence z of y such that z ∈
⋂
α∈I gα(X). Once more, we apply

Proposition 2.5.3 to the systems gα and conclude that x ∈ Φ (Ψ (gα)) (X) for
every α ∈ I. We have shown that

x ∈
⋂
α∈I

Φ (Ψ (gα))(X) =
⋂
α∈I

gα(X).
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Theorem 3.3.5. The class satGSeq is a complete lattice with the least element f
and the greatest element m. Let {gα | α ∈ I} ⊂ satGSeq. Then∧

α∈I

gα =
⋂
α∈I

gα.

Proof. Since
⋂
α∈I gα ∈ satGSeq, we have

∧
α∈I gα =

⋂
α∈I gα. Therefore satGSeq

is a complete lattice according to Proposition 3.2.1. Since Φ (Ψ (f)) = f and
Φ (Ψ (m)) = m, it holds that f and m are the least element and the greatest
element of the class satGSeq, respectively.

Using Corollary 2.6.10 and Theorem 3.3.5, we obtain the following result.

Theorem 3.3.6. The class GSeq/∼ is a complete lattice with the least element [f ]
and the greatest element [m]. Let {[gα] | α ∈ I} ⊂ GSeq/∼. Then

∧
α∈I

[gα] =

[⋂
α∈I

Φ (Ψ (gα))

]

and ∨
α∈I

[gα] =
[⋂
{h ∈ satGSeq | ∀α ∈ I h ≥ Φ (Ψ (gα))}

]
.

The next proposition improves the previous theorem in the case when the family
I is �nite.

Proposition 3.3.7. Let {[gj] | 1 ≤ j ≤ n} ⊂ GSeq/∼, where n ∈ N. Then

∧
1≤j≤n

[gj] =

[ ⋂
1≤j≤n

gj

]

Proof. By Theorem 3.3.6, it su�ces to prove that
⋂

1≤j≤n gj ∼
⋂

1≤j≤n Φ (Ψ (gj)).
It is easy to see that the �.� part of the above equivalence holds. We show that⋂

1≤j≤n

gj &
⋂

1≤j≤n

Φ (Ψ (gj)).

Let x ∈
⋂

1≤j≤n Φ (Ψ (gj))(X). Then for each j ∈ {1, . . . , n} and every subsequence
y of x there exists a subsequence z of y such that z ∈ gj(X). We apply Lemma 3.1.1
(we put yj := x and hj := gj for each j ∈ {1, . . . , n}) to �nd a subsequence N of
N such that (xk)k∈N ∈ gj(X) for each j ∈ {1, . . . , n}.
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Let us prove explicit formulas for �nding suprema in the classes seqGSet, satGSeq,
and GSeq/∼ (see Propositions 3.3.8, 3.3.11, and 3.3.12).

Proposition 3.3.8. Let {Gα | α ∈ I} ⊂ seqGSet. Then

∨
α∈I

Gα = ψ

(
φ

(
Sub

∑
α∈I

Gα

))
.

Proof. Recall that ψ ◦ φ(GSet) = seqGSet and that the operator ψ ◦ φ : GSet →
GSet is a closure operator. By Proposition 3.2.2(iii),

∨
α∈I

Gα = ψ

(
φ

(∨
α∈I

Gα

))
,

where the former supremum is taken in seqGSet and the latter in GSet.

De�nition 3.3.9. Let {gα | α ∈ I} ⊂ SSeq. De�ne the system of sequences∑
α∈I gα by letting x ∈

∑
α∈I gα(X) whenever x can be expressed as a �nite sum

of sequences from any of the components gα(X).

Proposition 3.3.10. Let {gα | α ∈ I} ⊂ GSeq. Then
∑

α∈I gα ∈ GSeq.

Proof. It is easy to verify properties (S0) and (S1). Properties (S2) and (S4) are
proved similarly to properties (G2) and (G4) in the proof of Proposition 3.2.12.

(S3) Take a sequence x ∈
∑

α∈I gα(X). Then x = y1 + . . . + yn, where yj =

(yjk)k∈N ∈ gαj(X) for each j ∈ {1, . . . , n}. Take a subsequence (xpk) of (xk). Since
(yjpk)k∈N ∈ gαj(X) for each j ∈ {1, . . . , n},

(xpk) = (y1
pk

) + . . .+ (ynpk) ∈
∑
α∈I

gα(X).

Proposition 3.3.11. Let {[gα] | α ∈ I} ⊂ GSeq/∼. Then

∨
α∈I

[gα] =

[∑
α∈I

gα

]
.

Proof. Let us �rst prove that the formula
[∑

α∈I gα
]
does not depend on the choice

of representatives. Take systems gα,hα ∈ GSeq such that gα ∼ hα for every α ∈ I.
We need to show that ∑

α∈I

gα ∼
∑
α∈I

hα.
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Let x ∈
∑

α∈I gα(X). Then x = y1 + . . .+ yn, where

y1 = (y1
k) ∈ gβ1(X), . . . , yn = (ynk ) ∈ gβn(X).

Applying Lemma 3.1.1 to the sequences y1 ∈ gβ1(X), . . . , yn ∈ gβn(X) (put hj :=
hβj), we �nd a subsequence N of N such that (yjk)k∈N ∈ hβj for each j ∈ {1, . . . , n}.
Therefore

(xk)k∈N =
n∑
j=1

(yjk)k∈N ∈
∑
α∈I

hα(X).

This proves that
∑

α∈I gα .
∑

α∈I hα. The opposite relation is proven by swapping
the systems gα and hα.

It remains to show that ∨
α∈I

[gα] =

[∑
α∈I

gα

]
.

Obviously [gα] ≤
[∑

α∈I gα
]
for every α ∈ I. Let [h] ∈ GSeq/∼ be such that

[gα] ≤ [h] for every α ∈ I. We need to show that[∑
α∈I

gα

]
≤ [h].

Let x = y1 + . . .+ yn, where

y1 = (y1
k)k∈N ∈ gβ1(X), . . . , yn = (ynk )k∈N ∈ gβn(X).

Applying Lemma 3.1.1 to the sequences y1 ∈ gβ1(X), . . . , yn ∈ gβn(X) (put hj :=
h), we �nd a subsequence N of N such that (xk)k∈N =

∑n
j=1 (yjk)k∈N ∈ h(X).

Therefore
∑

α∈I gα . h and
∨
α∈I [gα] =

[∑
α∈I gα

]
.

Proposition 3.3.12. Let {gα | α ∈ I} ⊂ satGSeq. Then

∨
α∈I

gα = Φ

(
Ψ

(∑
α∈I

gα

))
.

Proof. By using isomorphism between the classes satGSeq and GSeq/∼ and ap-
plying Proposition 3.3.11, we obtain that

∨
α∈I

gα = Φ

(
ψ

(∨
α∈I

[gα]

))
= Φ

(
ψ

([∑
α∈I

gα

]))
= Φ

(
Ψ

(∑
α∈I

gα

))
.
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3.4 Remarks about systems of sets and sequences

In Section 2.6, we proved that the operator ψ : GSeq/∼ → seqGSet is an order
isomorphism and therefore it preserves in�ma and suprema. The next proposition
shows that although the operator ψ : GSeq/∼ → GSet preserves in�ma, it preserves
suprema if and only if the class seqGSet = ψ ◦ φ(GSet) is closed with respect to
the operation

∨
of GSet.

Proposition 3.4.1. Let {[gα] | α ∈ I} ⊂ GSeq/∼. Then

(i) ψ
(∧

α∈I [gα]
)

=
∧
α∈I ψ ([gα]),

(ii) ψ
(∨

α∈I [gα]
)

= ψ
(
φ
(∨

α∈I ψ ([gα])
))
.

Proof. (i). Using the order-isomorphism between GSeq/∼ and seqGSet, we get
that ψ

(∧
α∈I [gα]

)
=
∧
α∈I ψ ([gα]), where the latter in�mum is taken in seqGSet.

Comparison of Theorem 3.2.9 and Theorem 3.3.1 reveals that the formulas for
calculating in�ma in GSet and seqGSet coincide.

(ii). Since GSeq/∼ and seqGSet are order-isomorphic, it holds that ψ
(∨

α∈I [gα]
)

=∨
α∈I ψ ([gα]), where the latter supremum is taken in seqGSet. Propositions 3.3.8

and 3.2.12 show that

∨
α∈I

ψ ([gα]) = ψ

(
φ

(
Sub

∑
α∈I

ψ ([gα])

))
= ψ

(
φ

(∨
α∈I

ψ ([gα])

))
,

where the former supremum is taken in seqGSet and the latter in GSet.

The next proposition shows that the operator φ : GSet→ GSeq/∼ always preserves
suprema and that it preserves in�ma if the in�mum is taken over a �nite family.

Proposition 3.4.2. Let {Gα | α ∈ I} ⊂ GSet. Then

(i) φ
(∧

α∈I Gα

)
≤
∧
α∈I φ (Gα); if I is �nite, then φ

(∧
α∈I Gα

)
=
∧
α∈I φ (Gα);

(ii) φ
(∨

α∈I Gα

)
=
∨
α∈I φ (Gα).

Proof. (i). According to Theorems 3.2.9 and 3.3.6, it su�ces to show

Φ

(⋂
α∈I

Gα

)
.
⋂
α∈I

Φ (Ψ (Φ (Gα)))
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to prove that φ
(∧

α∈I Gα

)
≤
∧
α∈I φ (Gα). Let x ∈ Φ

(⋂
α∈I Gα

)
. By de�nition,

{xk} ⊂ Gα(X) for every α ∈ I . Therefore

x ∈ Φ (Gα) (X) ⊂ Φ (Ψ (Φ (Gα))) (X)

for every α ∈ I and x ∈
⋂
α∈I Φ (Ψ (Φ (Gα))).

Assume that I is �nite. It is easy to see that

Φ

(⋂
α∈I

Gα

)
&
⋂
α∈I

Φ (Gα).

Theorem 3.2.9 and Proposition 3.3.7 yield that φ
(∧

α∈I Gα

)
≥
∧
α∈I φ (Gα).

(ii). It su�ces to prove that Φ
(
Sub

∑
α∈I Gα

)
∼
∑

α∈I Φ (Gα) by Propositions
3.2.12 and 3.3.11. In fact, we even prove that

Φ

(
Sub

∑
α∈I

Gα

)
=
∑
α∈I

Φ (Gα).

By de�nition, x ∈ Φ
(
Sub

∑
α∈I Gα

)
(X) if and only if there exist sets G1 ∈

Gα1(X), . . . , Gn ∈ Gαn(X) such that {xk} ⊂ G1 + . . .+Gn.

On the other hand, x ∈
∑

α∈I Φ (Gα)(X) if and only if there exist sequences
yj = (yjk)k∈N such that x = y1 + . . .+ yn and the property {yjk | k ∈ N} ∈ Gαj(X)
is satis�ed for each j ∈ {1, . . . , n}.

Let (xk) ∈ Φ
(
Sub

∑
α∈I Gα

)
(X). Take k ∈ N. Since xk ∈ G1 + . . . + Gn, we get

that xk = y1
k + . . . + ynk , where y

j
k ∈ Gj for each j ∈ {1, . . . , n}. Put yj = (yjk)k∈N

and observe that {yjk | k ∈ N} ∈ Gαj(X). Therefore (xk) ∈
∑

α∈I Φ (Gα)(X).

Let x ∈
∑

α∈I Φ (Gα)(X) and x = y1 + . . .+ yn, where the sequences yj = (yjk)k∈N
satisfy {yjk | k ∈ N} ∈ Gαj(X) for each j ∈ {1, . . . , n}. Put Gj = {yjk | k ∈ N}.
Then {xk} ⊂ G1 + . . .+Gn, which proves that x ∈ Φ

(
Sub

∑
α∈I Gα

)
(X).

If the family I is �nite, then Proposition 3.3.7 gives a simpler formula for calcu-
lating in�ma than Theorem 3.3.6. Although the same proof technique does not
work if I is in�nite, we do not know of a counterexample to show that the simpler
formula does not hold in the in�nite case. This raises the following question.

Question 3.4.3. Do there exist systems {gα | α ∈ I} ⊂ GSeq, where I is in�nite,
such that ⋂

α∈I

Φ (Ψ (gα)) 6∼
⋂
α∈I

gα?
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The next question concerns Proposition 3.4.1. If for every collection of systems
{gα | α ∈ I} ⊂ GSeq it were true that

∨
α∈I ψ ([gα]) ∈ ψ ◦ φ(GSet) = seqGSet,

then it would mean that the operator ψ : GSeq/∼ → GSet preserves both in�ma
and suprema. Currently, we do not even know if it preserves suprema of �nite
collections.

Question 3.4.4. Do there exist systems {[gα] | α ∈ I} ⊂ GSeq/∼ such that∨
α∈I

ψ ([gα]) 6∈ seqGSet?



Chapter 4

The notion of (p, r)-compactness

In this chapter, we study the generating system K(p,r) of all relatively (p, r)-
compact sets and the operator ideal K(p,r) of all (p, r)-compact operators.
Relying on Chapter 2, we show that the system K(p,r) is sequentially gener-
atable if and only if p =∞ and r = 1, in which case K(p,r) coincides with the
system of all relatively compact sets K. In turn, the system K(p,r) provides
answers and counterexamples to certain questions posed in the general con-
text of Chapter 2. We prove that K(p,r) = N sur

(p,1,r∗). This allows us to equip
K(p,r) with the corresponding s-norm of N sur

(p,1,r∗) and to prove that K(p,r) is

an s-Banach operator ideal. This chapter is based on [ALO] and [Lil1].

4.1 The system of relatively (p, r)-compact sets

A. Grothendieck proved in 1955 in his famous Memoir [G2], among other results,
the following result (see, e.g. [LiT, p. 30]). Following [DFLORT], we call this
result the Grothendieck compactness principle.

Theorem 4.1.1 (Grothendieck compactness principle). Let X be a Banach space
and let K ⊂ X. Then K is relatively compact if and only if there exists a sequence
(xk) ∈ c0(X) such that

K ⊂

{
∞∑
k=1

αkxk | (αk) ∈ B`1

}
.

If one replaces c0(X) with `p(X), for some �xed p ≥ 1, then one obtains a stronger
form of relative compactness. This form of compactness was occasionally consid-
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ered in the 1980s by Reinov [Re1] and Bourgain and Reinov [BR] in the study
of approximation properties of order s ≤ 1. Let us say, in this case, that K is
relatively p-compact in the sense of Bourgain�Reinov.

In 2002, another strong form of compactness (but weaker than the Bourgain�
Reinov one) was introduced by Sinha and Karn [SK1] through the requirement
that

K ⊂

{
∞∑
k=1

αkxk | (αk) ∈ B`p∗

}
for some (xk) ∈ `p(X), where 1 ≤ p < ∞. In this case, let us say that K is
relatively p-compact in the sense of Sinha�Karn.

Let 1 ≤ p ≤ ∞ and 1 ≤ r ≤ p∗. In [ALO], we introduced the notion of relatively
(p, r)-compact sets. A subset K of X is called relatively (p, r)-compact if

K ⊂

{
∞∑
k=1

αkxk | (αk) ∈ B`r

}

for some (xk) ∈ `p(X) (where (xk) ∈ c0(X) if p = ∞). As for the �extremal�
cases, the (p, 1)-compactness is precisely the Bourgain�Reinov p-compactness, and
the (p, p∗)-compactness is precisely the Sinha�Karn p-compactness. We denote the
system of all relatively (p, r)-compact sets by K(p,r) (in [AO2], notation k(p,r) is
used). Note that K(∞,1) = K according to the Grothendieck compactness principle.

In this section, we show that the system K(p,r) is sequentially generatable only
in the case when p = ∞ and r = 1 (see Corollary 4.1.10). Relying on [DPS1,
Theorem 3.14], we also provide several counterexamples (see Propositions 4.1.11,
Corollary 4.1.12, and Proposition 4.1.13) to various remarks from Chapter 2 (see
Remarks 2.6.8, 2.5.7, and 2.4.9).

Let us begin with the following de�nition.

De�nition 4.1.2. Let 1 ≤ p ≤ ∞ and 1 ≤ r ≤ p∗. For every x = (xk) ∈ `p(X),
de�ne an operator Ex ∈ L(`r, X) by

Ex(α) =
∞∑
k=1

αkxk, α ∈ `r.

In [ALO], [JLO], and [Lil2], we used the notation Φ(xk) instead of Ex.

Proposition 4.1.3 (see, e.g., [A, Section 2.5]). Let 1 ≤ p ≤ ∞ and 1 ≤ r ≤ p∗.
Let X be a Banach space and let x ∈ `p(X) (where x ∈ c0(X) if p = ∞). Then
the operator Ex ∈ L(`r, X) is compact.
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Clearly, a subset K of X is relatively (p, r)-compact if and only if K ⊂ Ex(B`r)
for some x ∈ `p(X) (where x ∈ c0(X) if p =∞).

Remark 4.1.4. In the literature, the de�nition of relatively (1,∞)-compact set K is
sometimes given by the requirement that K ⊂ Ex(Bc0), where x ∈ `1(X) (instead
of the requirement K ⊂ Ex(B`∞)). However, as shown by the line of thought
given below, these notions are equivalent; we have adopted the latter variant for
notational purposes.

Proof. Clearly, the former notion implies the latter. For the converse, let a set K
satisfy K ⊂ Ex(B`∞), where x ∈ `1(X). It is a well-known fact that there exists a
scalar sequence (λk) tending to in�nity so that

(λkxk) ∈ `1(X)

and λk ≥ 1 for each k ∈ N. Therefore we may conclude that

K ⊂ E(λkxk)(Bc0).

The next lemma is well known (see, e.g., [FHHMPZ, pp. 22, 33]).

Lemma 4.1.5. Let x ∈ c0(X). Then Ex(B`1) = absconv{xk | k ∈ N}.

Proposition 4.1.6. Let 1 ≤ p ≤ ∞ and let 1 ≤ r ≤ p∗. Then K(p,r) ∈ GSet and
K(p,r) ≤ K.

Proof. We may assume that p 6=∞, because there is nothing to prove for the case
K(∞,1) = K. Let G,H ∈ K(p,r)(X) be such that G ⊂ Ex(B`r) and H ⊂ Ey(B`r)
for some x and y in `p(X). Since Ex is a compact operator, we have G ∈ K(X)
and therefore K(p,r) ≤ K. Let us verify the conditions of De�nition 2.3.1.

(G0) This follows from the fact that any set Ex(B`r) is norm bounded by ‖Ex‖.

(G1) Let β = (1, 0, 0, . . .). Then BK ⊂ Eβ(B`r).

(G2) Let a ∈ K. Put

zk =

{
21/rax(k+1)/2 if k is odd,
21/ryk/2 if k is even.

We have (zk) ∈ `p(X) and aG+H ⊂ Ez(B`r). Therefore aG+H ∈ K(p,r)(X).

(G3) This is obvious from the de�nition of a relatively (p, r)-compact set.

(G4) Let T ∈ L(X, Y ). Put (yk) = (Txk) ∈ `p(Y ). Then T (G) ⊂ Ey(B`r).
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The following result describes the relations between the various forms of the rela-
tive (p, r)-compactness.

Proposition 4.1.7 (see [A, Theorem 3.6]). Let X be a Banach space. Let 1 ≤
p ≤ q ≤ ∞, 1 ≤ r ≤ p∗, and 1 ≤ s ≤ q∗. Assume that

1

q
+

1

s
≤ 1

p
+

1

r
.

Then every relatively (p, r)-compact subset of X is relatively (q, s)-compact. Put
another way, K(p,r) ≤ K(q,s).

The next result is rather immediate from [DPS1, Theorem 3.14].

Proposition 4.1.8. Let 1 ≤ p < ∞ and 1 ≤ r ≤ p∗ and let X be an in�nite-
dimensional Banach space X. Then there exists a compact set K ⊂ X such that
K 6∈ K(p,r)(X).

Proof. According to [DPS1, Theorem 3.14], there exists a compact set K ⊂ X
such that K 6∈ K(p,p∗)(X). But then K 6∈ K(p,r)(X), because K(p,r) ≤ K(p,p∗).

Proposition 4.1.9. Let 1 ≤ p ≤ ∞ and let 1 ≤ r ≤ p∗. Then Ψ
(
Φ
(
K(p,r)

))
= K.

Proof. According to Corollary 2.4.7, it su�ces to show that Φ
(
K(p,r)

)
∼ c. We

may assume that p 6= ∞, because Φ
(
K(∞,1)

)
= Φ (K) = Φ (Ψ (c)) ∼ c. Since

K(p,r) ≤ K, we get from Corollary 2.6.5(ii) that Φ
(
K(p,r)

)
. Φ (K) ∼ c. It

remains to show that Φ
(
K(p,r)

)
& c.

Let X be a Banach space and let (xk) ∈ c(X) with limk→∞ xk = z. Then (xk−z) ∈
c0(X) and there exists a subsequence (yk) of (xk − z) such that (yk) ∈ `p(X).
Obviously then {yk} ∈ K(p,r)(X). According to properties (G1), (G2), and (G4), it
holds that {yk + z | k ∈ N} ∈ K(p,r)(X). Therefore we have found a subsequence
(yk + z) of (xk), which satis�es

(yk + z) ∈ Φ
(
K(p,r)

)
(X).

The following result is immediate from Corollary 2.6.5 and Propositions 4.1.8 and
4.1.9.

Corollary 4.1.10. Let 1 ≤ p ≤ ∞ and let 1 ≤ r ≤ p∗. Then K(p,r) ∈ seqGSet if
and only if p =∞ and r = 1.

Proposition 4.1.11. Let X be an in�nite-dimensional Banach space. Let 1 ≤
p < ∞. Then there exists a sequence x ∈ Φ

(
Ψ
(
Φ
(
K(p,1)

)))
(X), but such that

x 6∈ Φ
(
K(p,1)

)
(X).



4.2. DESCRIPTION OF K(p, r) AS AN s-BANACH OPERATOR IDEAL 55

Proof. According to Proposition 4.1.8, there exists a compact set K ⊂ X such
that K 6∈ K(p,1)(X). Since K is compact, there exists a sequence x ∈ c0(X) such
that K ⊂ Ex(B`1). Since c0(X) ⊂ Φ (Ψ (c)) (X), it follows from Proposition 4.1.9
that

x ∈ Φ (Ψ (c)) (X) = Φ (K) (X) = Φ
(
Ψ
(
Φ
(
K(p,1)

)))
(X).

Assume to the contrary that x ∈ Φ
(
K(p,1)

)
(X). Then

{xk} ∈ K(p,1)(X).

This yields a sequence y ∈ `p(X) such that

{xk} ⊂ Ey(B`1).

But then

K ⊂ Ex(B`1) = absconv{xk | k ∈ N} ⊂ absconv(Ey(B`1)) = Ey(B`1),

which is a contradiction because Ey(B`1) ∈ K(p,1)(X).

Corollary 4.1.12. Let 1 ≤ p <∞. Then Φ
(
K(p,1)

)
6∈ satGSeq.

Proof. Assume to the contrary that the system Φ
(
K(p,1)

)
is saturated. Then,

by Proposition 2.5.1(iii), we have Φ
(
K(p,1)

)
= Φ

(
Ψ
(
Φ
(
K(p,1)

)))
, which is in

contradiction with Proposition 4.1.11.

Proposition 4.1.13. Let 1 ≤ p <∞ and 1 ≤ r ≤ p∗. Then

[B→ K(p,r)] 6= [Φ (B)→ Φ
(
K(p,r)

)
].

Proof. We have [B → K(p,r)] = K(p,r). According to Proposition 2.4.9, it holds
that [

Φ (B)→ Φ
(
K(p,r)

)]
=
[
Ψ (Φ (B))→ Ψ

(
Φ
(
K(p,r)

))]
= [B→ K] = K.

4.2 Description of K(p, r) as an s-Banach operator

ideal

Let 1 ≤ p ≤ ∞. Recall that K = Θ(K), since a linear operator T : X → Y is
said to be compact if T (BX) is a relatively compact subset of Y . Using relatively
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p-compact subsets of Y instead of relatively compact ones, Sinha and Karn [SK1]
obtained the concept of p-compact operators. If one uses relatively p-compact
subsets of Y in the sense of Bourgain�Reinov instead of relatively compact ones,
then one obtains the notion of p-compact operators in the sense of Bourgain�
Reinov.

Following [SK1], denote the class of all p-compact operators (in the sense of Sinha�
Karn) by Kp. Properties of Kp were studied in [SK1] and, e.g., in the papers
[DOPS], [DPS1], [DPS2], [GLT], [LiT], [O2], [Pi3], and [SK2].

Let 1 ≤ p ≤ ∞ and 1 ≤ r ≤ p∗. De�ne the operator ideal K(p,r) of (p, r)-compact
operators by K(p,r) = Θ(K(p,r)). The �extremal� cases, Kp = K(p,p∗) and K(p,1)

coincide with the classes of p-compact operators in the sense of Sinha�Karn and
Bourgain�Reinov, respectively.

The main objective of this section is to prove that the operator ideal K(p,r) is equal
to N sur

(p,1,r∗) (see Theorem 4.2.10). Note that the de�nition of the operator ideal
N(t,u,v) is recalled in De�nition 4.2.7 below. In this section, we use the conventions
1∞ =∞1 = 1 +∞ =∞+ 1 =∞ and ∞/∞ = 1.

Proposition 4.1.7 immediately yields the following corollary.

Corollary 4.2.1. Let X be a Banach space. Let 1 ≤ p ≤ q ≤ ∞, 1 ≤ r ≤ p∗, and
1 ≤ s ≤ q∗. Assume that

1

q
+

1

s
≤ 1

p
+

1

r
.

Then K(p,r) ⊂ K(q,s) as operator ideals.

Let us start with the following (well-known) notions.

De�nition 4.2.2. Let 1 ≤ p <∞ and let X be a Banach space. The space `p(X)
becomes a Banach space with respect to the norm

‖x‖p =

(
∞∑
k=1

‖xk‖p
)1/p

.

De�nition 4.2.3. Let X be a Banach space. The space m(X) = `∞(X) becomes
a Banach space with respect to the norm

‖x‖∞ = sup
k∈N
‖xk‖ .

The space c0(X) becomes a Banach space with respect to the norm of `∞(X).
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De�nition 4.2.4 (see, e.g., [DJT, pp. 32-33]). Let 1 ≤ p < ∞ and let X be a
Banach space. A sequence x = (xk) in X is said to be weakly p-summable if

∞∑
k=1

|x∗(xk)|p <∞

for every x∗ ∈ X∗.

The space `wp (X) of weakly p-summable sequences in X becomes a Banach space
when equipped with the norm

‖x‖wp = sup
x∗∈BX∗

∥∥(x∗(xk))∥∥p.
We mention that the �niteness of the norm ‖x‖wp follows from the closed graph
theorem (for details, see, e.g., [DJT, p. 32]). We denote the system of all weakly
p-summable sequences in all Banach spaces by `wp .

Consider the analogue of the previous de�nition for the case p = ∞. Then the
space `w∞(X) of �weakly bounded� sequences would coincide with the space `∞(X)
and the norm

‖x‖w∞ = sup
x∗∈BX∗

sup
k∈N
|x∗(xk)|

would coincide with the norm ‖x‖`∞(X) (see, e.g., [DJT, p. 33]). Therefore we use
the notations `w∞(X) and `∞(X) interchangeably in the sequel.

De�nition 4.2.5 (see, e.g., [DJT, p. 33]). Let X be a Banach space. A sequence
x in X is said to be weakly null if

lim
k→∞

x∗(xk) = 0

for every x∗ ∈ X∗.

The space cw0 (X) of weakly null sequences in X is a closed subspace of `∞(X);
therefore it is a Banach space with the supremum norm of `∞(X).

Denote the system of all weakly null sequences in all Banach spaces by cw0 . The
following lemma is well known and straightforward to verify.

Lemma 4.2.6. Let 1 ≤ p < ∞ and let X be a Banach space. Then `wp (X) ⊂
cw0 (X) and

‖x‖`wp (X) ≥ ‖x‖cw0 (X)

for every sequence x ∈ `wp (X).
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Let us recall the de�nition of the s-Banach operator ideal N(t,u,v) of (t, u, v)-nuclear
operators.

De�nition 4.2.7 (see [Pi1, 18.1.1]). Let 0 < t ≤ ∞, 1 ≤ u, v ≤ ∞, and 1/u +
1/v ≤ 1 + 1/t. An operator T ∈ L(X, Y ) is called (t, u, v)-nuclear if

T =
∞∑
n=1

δnx
∗
n ⊗ yn (4.1)

with (δn) ∈ `t, (x∗n) ∈ `wv∗(X
∗), and (yn) ∈ `wu∗(Y ). Denote

‖T‖N(t,u,v)
= inf ‖(δn)‖t ‖(x

∗
n)‖wv∗ ‖(yn)‖wu∗ ,

where the in�mum is taken over all (t, u, v)-nuclear representations (4.1) of T .

Set 1/s = 1/t + 1/u∗ + 1/v∗. Then s ∈ (0, 1]. It is well known (see [Pi1, 18.1.2]),
that (N(t,u,v), ‖·‖N(t,u,v)

) is an s-Banach operator ideal.

The proof of the next result follows [ALO, p. 149]. For a more detailed version of
the same proof, see [A, Proposition 2.16].

Proposition 4.2.8. Let 1 ≤ p ≤ ∞ and 1 ≤ r ≤ p∗. Let x ∈ `p(X). Then
Ex ∈ N(p,1,r∗)(`r, X).

Proof. Clearly, for Ex ∈ K(`r, X), we have

Ex =
∞∑
n=1

en ⊗ xn,

where the unit vectors en ∈ `r∗ ⊂ (`r)
∗ are considered as coordinate functionals

for `r. It is well known and easy to verify that (en) ∈ S`wr (`∗r). Therefore, from
en ⊗ xn = ‖xn‖en ⊗ (‖xn‖−1xn), it is clear that

Ex ∈ N(p,1,r∗)(`r, X)

and
‖Ex‖N(p,1,r∗)

≤ ‖x‖p .

The key observation for our approach to the study of K(p,r) is that the injective
associate of Ex belongs to N sur

(p,1,r∗). Let us denote it by Ex and recall that

Ex = Exq,

where q : `r → Z := `r/ kerEx is the quotient mapping.



4.2. DESCRIPTION OF K(p, r) AS AN s-BANACH OPERATOR IDEAL 59

Proposition 4.2.9. Let 1 ≤ p ≤ ∞ and 1 ≤ r ≤ p∗. Let x ∈ `p(X). Then
Ex ∈ N sur

(p,1,r∗)(Z,X), where Z = `r/ kerEx, and
∥∥Ex

∥∥
N sur

(p,1,r∗)
≤ ‖x‖p.

Proof. Let ε > 0 be arbitrary. For every z ∈ BZ choose αz ∈ `r with ‖αz‖ ≤ 1 + ε
such that qαz = z. De�ne Q̂ : `1[BZ ] → `r by Q̂((λz)z∈BZ ) =

∑
z∈BZ λzαz. Then

Q̂ ∈ L(`1[BZ ], `r), ‖Q̂‖ ≤ 1 + ε, and qQ̂ = QZ :

`r
Ex //

q

��>>>>>>>> X

`1[BZ ]

Q̂
<<yyyyyyyyy
QZ // Z

Ex

@@��������

In fact, we have here explicitly written down the lifting property of `1[BZ ] (see
[Pi1, C.3.5, C.3.6]). Therefore,

ExQZ = ExqQ̂ = ExQ̂ ∈ N(p,1,r∗)(`1[BZ ], X),

meaning that Ex ∈ N sur
(p,1,r∗)(Z,X). Moreover,

‖Ex‖N sur
(p,1,r∗)

= ‖ExQ̂‖N(p,1,r∗) ≤ ‖Ex‖N(p,1,r∗)‖Q̂‖
≤ (1 + ε)‖Ex‖N(p,1,r∗) ≤ (1 + ε)‖x‖p.

Since this holds for every ε > 0, we have ‖Ex‖N sur
(p,1,r∗)

≤ ‖x‖p, as desired.

Let X and Y be Banach spaces, and let T ∈ K(p,r)(X, Y ). Similarly to the case
of Kp = K(p,p∗) (see [SK1, pp. 20�21]), we have the natural factorization of T as
follows.

Let y ∈ `p(Y ) such that T (BX) ⊂ Ey(B`r). Denote, as before, Z = `r/ kerEy.
Then

Ey = Eyq,

where q : `r → Z is the quotient mapping and Ey : Z → Y is the injective associate
of Ey. Let x ∈ BX and let α ∈ B`r satisfy Tx = Eyα. If Tx = Eyβ for some
(other) β ∈ `r, then clearly α − β ∈ kerEy. Therefore one can de�ne Ty : X → Z
by Tyx = qα, x ∈ X, where α ∈ `r satis�es ‖α‖ ≤ ‖x‖ and Tx = Eyα:

`r
Ey //

q

��??????? Y

Z

??��������

Ey

X
Tyoo

T

``AAAAAAAA
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Since Ey = Eyq, one immediately obtains the factorization

T = EyTy,

with Ty ∈ L(X,Z), ‖Ty‖ ≤ 1, and kerTy = kerT .

Theorem 4.2.10. Let 1 ≤ p ≤ ∞ and 1 ≤ r ≤ p∗. Then the operator ideal K(p,r)

is equal to N sur
(p,1,r∗).

Proof. Let T ∈ K(p,r)(X, Y ). Since, by the natural factorization, T = EyTy, and
Ey ∈ N sur

(p,1,r∗)(Z, Y ), we have T ∈ N sur
(p,1,r∗)(X, Y ).

Conversely, to see that N sur
(p,1,r∗) ⊂ K(p,r), it su�ces to prove that N(p,1,r∗) ⊂

K(p,r), because K(p,r) is surjective and Asur ⊂ Bsur whenever A ⊂ B (see Proposi-
tion 2.2.10).

Consider T ∈ N(p,1,r∗)(X, Y ). Then T =
∑∞

n=1 σnx
∗
n ⊗ yn, where (σn) ∈ `p, (x∗n) ∈

`wr (X∗), (yn) ∈ `∞(Y ). We clearly may assume that ‖(x∗n)‖wr = 1. Indeed,

σnx
∗
n ⊗ yn = σn

x∗n
‖(x∗n)‖wr

⊗ ‖(x∗n)‖wr yn

and (‖(x∗n)‖wr yn) ∈ `∞(Y ). Observe that (σnyn) ∈ `p(Y ). Together with the
assumption ‖(x∗n)‖wr = 1, we have

Tx =
∞∑
n=1

x∗n(x)σnyn ∈ E(σnyn)(B`r)

for every x ∈ BX . Thus we have shown that T ∈ K(p,r)(X, Y ).

Since K(p,r) = N sur
(p,1,r∗) as operator ideals, de�ning

‖·‖K(p,r)
:= ‖·‖N sur

(p,1,r∗)
,

we immediately get that (K(p,r), ‖·‖K(p,r)
) is an s-Banach operator ideal where

1

s
=

1

p
+

1

r
,

i.e., s = pr/(p + r). Note that 1
2
≤ s ≤ 1, since 1

s
= 1

p
+ 1

r
≤ 2. The only case

when s = pr/(p + r) = 1 is precisely when r = p∗. This suggests that from the
whole family of s-Banach operator ideals K(p,r), only K(p,p∗) is a Banach operator
ideal. As was mentioned earlier, K(p,p∗) = Kp is the ideal of p-compact operators
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introduced in [SK1] by Sinha and Karn. For the other extreme, s = 1
2
if and only

if p = r = 1. In the language of quasi-norms, this means that Kp,r is a quasi-norm
with the quasi-constant κ = 2

1
s
−1 satisfying 1 ≤ κ ≤ 2 (recall Proposition 2.2.7).

Since Asur ⊂ Bsur whenever A ⊂ B (see Proposition 2.2.10), Theorem 4.2.10
together with the inclusion theorem for (t, u, v)-nuclear operators [Pi1, 18.1.5]
immediately yield the following result.

Corollary 4.2.11. Let 1 ≤ p ≤ q ≤ ∞, 1 ≤ r ≤ p∗, and 1 ≤ s ≤ q∗. Assume that
s ≤ r and

1

q
+

1

s
≤ 1

p
+

1

r
.

Then

(K(p,r), ‖·‖K(p,r)
) ⊂ (K(q,s), ‖·‖K(q,s)

).

In particular, (Kp, ‖·‖Kp) ⊂ (Kq, ‖·‖Kq) and (K(p,1), ‖·‖K(p,1)
) ⊂ (K(q,1), ‖·‖K(q,1)

) if
1 ≤ p ≤ q ≤ ∞.

It is important that we can explicitly calculate the s-norm ‖·‖K(p,r)
as follows.

Among other uses, this shows that the norm ‖·‖Kp coincides with the norms intro-
duced in [SK1] and [DPS1] (see Remarks 4.2.14 and 4.2.15 below).

Theorem 4.2.12 (see [ALO, Theorem 3.4]). Let T ∈ K(p,r)(X, Y ). Then

‖T‖K(p,r)
= inf ‖Ty‖‖y‖ = inf ‖y‖,

where both in�ma are taken over all sequences y ∈ `p(Y ) such that

T (BX) ⊂

{
∞∑
n=1

αnyn | α ∈ B`r

}
.

Proof. Let y ∈ `p(Y ) be such that T (BX) ⊂ Ey(B`r). We know that T = EyTy,
‖Ty‖ ≤ 1, and ‖Ey‖N sur

(p,1,r∗)
≤ ‖y‖. Hence,

‖T‖K(p,r)
= ‖T‖N sur

(p,1,r∗)
≤ ‖Ey‖N sur

(p,1,r∗)
‖Ty‖

≤ ‖Ty‖‖y‖ ≤ ‖y‖.

Consequently,
‖T‖K(p,r)

≤ inf ‖Ty‖‖y‖ ≤ inf ‖y‖.
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On the other hand, from the factorization theorem of (t, u, v)-nuclear operators
(see [Pi1, 18.1.3]), we know that the (p, 1, r∗)-nuclear operator TQX factorizes as
follows:

Z := `1[BX ]

A
��

QX // X T // Y

`r
∆ // `1

B

OO

where ∆ ∈ L(`r, `1) is a diagonal operator of the form ∆(α) = (σnan) with σ ∈ `p,
A ∈ L(Z, `r), B ∈ L(`1, Y ), and

‖TQX‖N(p,1,r∗) = inf ‖B‖‖σ‖‖A‖,

where the in�mum is taken over the all possible factorizations.

Let ε > 0. Choose A, σ, and B as above so that

ε+ ‖T‖K(p,r)
= ε+ ‖TQX‖N(p,1,r∗) ≥ ‖B‖‖σ‖‖A‖ = ‖σ‖,

because we clearly may assume that ‖A‖ = ‖B‖ = 1. Since BX ⊂ QX(BZ), we
have

T (BX) ⊂ (B∆A)(BZ) ⊂ (B∆)(B`r) =

{
∞∑
n=1

αnσnBen | α ∈ B`r

}
,

where en, n ∈ N, are the unit vectors of `r. Put yn = σnBen. Then y ∈ `p(Y ),
T (BX) ⊂ Ey(B`r), and ‖y‖ ≤ ‖σ‖. Therefore,

‖T‖K(p,r)
≥ inf ‖y‖.

This concludes the proof.

Let us spell out the immediate special case of Theorems 4.2.10 and 4.2.12 which
characterizes the p-compact operators K(p,1) in the Bourgain�Reinov sense. Con-
cerning the p-compact operators in the Sinha�Karn sense, see Remarks 4.2.14�
4.2.16 below.

Theorem 4.2.13. The operator ideal K(p,1) = N sur
(p,1,∞) is a

p
p+1

-Banach operator

ideal. The p
p+1

-norm of T ∈ K(p,1)(X, Y ) is calculated as follows:

‖T‖K(p,1)
= inf ‖Ty‖‖y‖ = inf ‖y‖,

where both in�ma are taken over all sequences y ∈ `p(Y ) such that

T (BX) ⊂

{
∞∑
n=1

anyn | α ∈ B`1

}
.
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Remark 4.2.14. In [SK1, Theorem 4.2], the Banach operator ideal norm was in-
troduced on the operator ideal Kp through the formula ‖T‖κp := inf ‖T(yn)‖‖yn‖,
which is the special case with r = p∗ of the �rst equality in Theorem 4.2.12. Thus
Corollary 4.2.11 extends the inclusion result [SK1, Proposition 4.3] for Banach
operator ideals Kp.
Remark 4.2.15. Delgado, Piñero, and Serrano [DPS1] made a thorough study of the
operator ideal Kp, but they de�ned the Banach operator ideal norm in Kp through
the formula ‖T‖kp := inf ‖yn‖, which is the special case (with r = p∗) of the second
equality in Theorem 4.2.12. They proved (see [DPS1, Proposition 3.15]) that the
Banach operator ideal norms from [SK1] and [DPS1] coincide: ‖T‖kp = ‖T‖κp
whenever T ∈ Kp(X, Y ); this equality is also contained in Theorem 4.2.12.

Remark 4.2.16. One of the main results of [DPS1](see [DPS1, Proposition 3.11])
is that (Kp, ‖·‖kp) = (N p, ‖·‖N p)sur, the Banach operator ideal of right p-nuclear
operators. Since, by de�nition, (N p, ‖·‖N p) = (N(p,1,p), ‖·‖N(p,1,p)

) (cf. [Pi1, 18.1.1]
and, e.g., [Ry, p. 140]), this result is contained as the special case with r = p∗ in
Theorems 4.2.10 and 4.2.12. In [DPS1], to prove this result, the authors used a
roundabout approach, �rst describing Kdual

p , and relied on Reinov's recent study
[Re2] on operators with p-nuclear adjoints.





Chapter 5

Sequentially generated subclasses of

the system K

In this chapter, we study sequentially generatable systems of sets Ψ (g),
which satisfy F ≤ Ψ (g) ≤ K. We introduce the notion of a hereditarily
almost autoapproximable sequence. Using this notion, we prove that the
latter inequality Ψ (g) ≤ K is strict if and only if the system g consists
entirely of hereditarily almost autoapproximable sequences. We also provide
an example of such a system of sequences g.

5.1 Motivation

In Section 2.6, we proved that a system G ∈ GSet is sequentially generatable if and
only if Ψ (Φ (G)) = G (see Corollary 2.6.5). Proposition 4.1.9 and Corollary 4.1.10
demonstrated that the systems K(p,r), where 1 ≤ p < ∞ and 1 ≤ r ≤ p∗, satisfy
Ψ
(
Φ
(
K(p,r)

))
= K, and therefore fail to be sequentially generatable. These ex-

amples, together with the proof of Proposition 4.1.9, leave the impression that it
is somewhat di�cult for a sequentially generatable system G ∈ seqGSet to satisfy
simultaneously F < G and G < K.

This chapter is devoted to investigating such systems G ∈ seqGSet, which indeed
satisfy F < G < K. For this, we introduce the notion of hereditarily almost
autoapproximable sequences (see De�nition 5.2.5) and prove the following charac-
terization (see Theorem 5.2.6): a system Ψ (g) ∈ seqGSet satisfying Ψ (g) ≤ K is
strictly smaller than K if and only if every sequence in every component g(X) is
hereditarily almost autoapproximable.

65
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However, this does not answer the question whether such systems G ∈ seqGSet
exist (other than the trivial example F). Section 5.3 is devoted to constructing such
a system. The construction utilizes the notion and an example of a hypercomplete
sequence, taken from [GL].

5.2 Sequentially generated subsystems of K

We begin this section by proving the following result, which uses essentially the
same idea as Proposition 4.1.9.

Proposition 5.2.1. Let g ∈ GSeq and let the component g(`1) contain a sequence
of the form (αkek), where |αk| > 0 for each k ∈ N. Then Ψ (g) ≥ K.

Proof. Take a sequence (αkek) ∈ g(`1), where |αk| > 0 for each k ∈ N. Let
K be any relatively compact set in any Banach space X. We aim to show that
K ∈ Ψ (g) (X).

Since K is relatively compact, every sequence (xk) ⊂ K contains a convergent
subsequence (yk). Put x = limk→∞ yk and zk = yk − x. Fix an index k1 such
that ‖zk1‖ ≤ |α1|. As a next step, �x an index k2 > k1 such that ‖zk2‖ ≤ |α2|.
Continuing like this, we obtain a sequence (wj), where wj = zkj . De�ne an operator
T ∈ L(`1, X) by

T (αkek) = wk.

According to the assumption and property (G4), we have (wk) ∈ g(X). The con-
stant sequence (x, x, . . .) belongs to the component g(X) according to properties
(S1) and (S4). Therefore we have shown that the original sequence (xk) contains
a subsequence

(ykj)j∈N = (zkj + x)j∈N = (wj + x)j∈N ∈ g(X).

The importance of the above proposition is made apparent by Proposition 5.2.4
and Theorem 5.2.6 below.

De�nition 5.2.2. Let (xk) be any sequence. De�ne

[xj]
j 6=k
j∈N = span{xj | j ∈ N, j 6= k}

for each k ∈ N. Denote by d(x, Y ) the distance of an element x ∈ X to a subset
Y of X. Clearly,

d(xk, [xj]
j 6=k
j∈N) = inf

α1,...,αn∈K,
n∈N

∥∥∥∥∥∥∥∥xk −
n∑

j=1,
j 6=k

αjxj

∥∥∥∥∥∥∥∥.
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For the proof of Proposition 5.2.4, we need the following result, which is due to R.
S. Phillips.

Theorem 5.2.3 (see [Di2, p. 71 (Theorem 3)]). Let Y be a linear subspace of the
Banach space X and suppose that T : Y → m is a bounded linear operator. Then
T may be extended to a bounded linear operator S : X → m having the same norm
as T .

Proposition 5.2.4. Let X be a Banach space and let (xk) be a sequence in X
which satis�es d(xk, [xj]

j 6=k
j∈N) > 0 for all k ∈ N. Then there exists a bounded linear

operator R : X → `1 such that R(xk) = αkek, where |αk| > 0 for each k ∈ N.

Proof. Put
γk = d(xk, [xj]

j 6=k
j∈N) > 0

for each k ∈ N. De�ne
Y = span{xk | k ∈ N} ⊂ X

and T : Y → m by
T (xk) = γkek,

where k ∈ N. To see that T is well de�ned, observe that the elements xk, where
k ∈ N, are linearly independent (since d(xk, [xj]

j 6=k
j∈N) > 0 for each k ∈ N). Clearly,

T is a linear operator. Let x =
∑n

k=1 βkxk ∈ Y , where β1, . . . , βn ∈ K \ {0} and
x 6= 0. Observe that

|βkγk| = |βk| d(xk, [xj]
j 6=k
j∈N) ≤ |βk|

∥∥∥∥∥∥∥∥xk −
n∑

j=1,
j 6=k

−βj
|βk| sign βk

xj

∥∥∥∥∥∥∥∥
Y

=

=

∥∥∥∥∥∥∥∥|βk|xk −
n∑

j=1,
j 6=k

−βj
sign βk

xj

∥∥∥∥∥∥∥∥
Y

=

∥∥∥∥∥∥∥∥βkxk +
n∑

j=1,
j 6=k

βjxj

∥∥∥∥∥∥∥∥
Y

=

∥∥∥∥∥
n∑
j=1

βjxj

∥∥∥∥∥
Y

for each k ∈ N. Therefore the operator T is bounded, since∥∥∥∥∥T
(

n∑
k=1

βkxk

)∥∥∥∥∥
m

=

∥∥∥∥∥
n∑
k=1

βkγkek

∥∥∥∥∥
m

= sup
k
|βkγk| ≤

∥∥∥∥∥
n∑
j=1

βjxj

∥∥∥∥∥
Y

.

By Theorem 5.2.3, there exists a linear norm-preserving extension S : X → m of
T . De�ne J ∈ L(m, `1) by

Jek =
1

2k
ek.



68 5. SEQUENTIALLY GENERATED SUBCLASSES OF K

Put
R = JS ∈ L(X, `1)

and
αk =

1

2k
γk

for each k ∈ N. We complete the proof by observing that

Rxk = JSxk = JTxk = γkJek =
1

2k
γkek = αkek

for each k ∈ N.

De�nition 5.2.5. Let X be a Banach space. We say that a sequence (xk) in X is

(i) autoapproximable if d(xk, [xj]
j 6=k
j∈N) = 0 for each k ∈ N;

(ii) autoapproximable modulo n if there exist indices {k1, . . . , kn} ⊂ N such that
d(xk, [xj]

j 6=k
j∈N) = 0 for each k ∈ N \ {k1, . . . , kn};

(iii) almost autoapproximable if it is autoapproximable modulo n for some n ∈ N;

(iv) hereditarily autoapproximable if every subsequence (yk) of (xk) is autoap-
proximable;

(v) hereditarily autoapproximable modulo n if every subsequence (yk) of (xk) is
autoapproximable modulo n;

(vi) hereditarily almost autoapproximable if every subsequence (yk) of (xk) is al-
most autoapproximable.

Theorem 5.2.6. Take g ∈ GSeq such that Ψ (g) ≤ K. Then Ψ (g) < K if and
only if every sequence in every component g(X) is hereditarily almost autoapprox-
imable.

Proof. For the �if� part, let g ∈ GSeq be such that Ψ (g) ≤ K, where every
sequence in every component g(X) is hereditarily almost autoapproximable. Con-
sider the set A =

{
1
k
ek
}
∈ K(`1). We show that A 6∈ Ψ (g) (`1). Assume to the

contrary that A ∈ Ψ (g) (`1). Then the sequence
(

1
k
ek
)
⊂ A must contain a hered-

itarily almost autoapproximable subsequence
(

1
nk
enk

)
∈ g(`1). However, this is a

contradiction, since it fails to be almost autoapproximable.

For the �only if� part, assume that there exists a Banach space X and a sequence
(xk) ∈ g(X) that is not hereditarily almost autoapproximable. Then it contains
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a subsequence (yk) ∈ g(X) which is not almost autoapproximable. It follows that
there exists a countable set of indices I such that

d(yk, [yj]
j 6=k
j∈N) > 0, if k ∈ I.

Consider the subsequence (zk) = (yk)k∈I of (yk). Observe that

d(zk, [zj]
j 6=k
j∈N) > 0

for each k ∈ N. But then Ψ (g) ≥ K by Propositions 5.2.4 and 5.2.1.

5.3 A system of hereditarily almost autoapprox-

imable sequences

In this section, we provide an example of a system g ∈ GSet which consists of
hereditarily almost autoapproximable sequences and satis�es F < Ψ (g) < K.

We begin by recalling the notion of a hypercomplete sequence (De�nition 5.3.1).
We then show that hereditarily autoapproximable sequences are exactly the se-
quences that are hypercomplete in their own closed span (see Proposition 5.3.2).
For our purposes, we prove (using essentially the same proof as in [GL, Theo-
rem 2.1.2]) that a certain sequence (xk) ∈ c0(`1) is hypercomplete (see Proposi-
tion 5.3.5).

We consider a certain system g ∈ GSet which contains both the system f and the
aforementioned sequence (xk). We observe that Ψ (g) ≤ K (see Proposition 5.3.8).
The rest of this section is devoted to proving that such a system g indeed consists
of only hereditarily almost autoapproximable sequences, which, by Theorem 5.2.6,
proves that Ψ (g) < K.

De�nition 5.3.1 ([GL, De�nition 2.1.1]). Let X be a Banach space and let (xk)
be a sequence in X. Sequence (xk) is said to be hypercomplete if span{xnk} = X
for each subsequence (xnk). We say that (xk) is hypercomplete in its own closed
span if span{xnk} = span{xk} for each subsequence (xnk).

Proposition 5.3.2. Let X be a Banach space and let (xk) be a sequence in X.
Then (xk) is hypercomplete in its own closed span if and only if (xk) is hereditarily
autoapproximable.

Proof. Let (xk) be hypercomplete in its own closed span. Take a subsequence
(yk) of (xk) and �x an index j ∈ N. By assumption, span{yk | k ∈ N, k 6= j} =
span{xk}. But then yj ∈ span{yk | k ∈ N, k 6= j} and therefore

d(yj, [yk]
k 6=j
k∈N) = 0.
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On the other hand, let (xk) be hereditarily autoapproximable. It su�ces to prove
that

xj ∈ span{xpk},
for every subsequence (xpk) of (xk) and every element xj, which does not belong
to the sequence (xpk). Denote by (xrk) the subsequence of (xk) satisfying

{rk | k ∈ N} = {j} ∪ {pk | k ∈ N}.

But then
d(xj, [xrk ]

rk 6=j
k∈N ) = 0,

since (xrk) is autoapproximable. We may conclude that

xj ∈ span{xpk}.

It is proven in [GL, Theorem 2.1.2] that every in�nite-dimensional Banach space
X contains a hypercomplete sequence. Inspired by that result, we consider the
following sequence in c0(`1), which suits our purposes.

De�nition 5.3.3. Put
αkj = 2−k

3−(k+j−1)2

for each j, k ∈ N. De�ne

xk =
k∑
j=1

αkj ej ∈ `1

for each k ∈ N.

In the remainder of this section, the above two notations (αjk and xk) are always
meant to be understood as de�ned above. For the sake of clarity, we write out the
�rst few elements of the sequence (xk) ∈ c0(`1).

x1 = (2−1−1, 0, 0, 0, . . .).
x2 = (2−8−4, 2−8−9, 0, 0, . . .).
x3 = (2−27−9, 2−27−16, 2−27−25, 0, . . .).
x4 = (2−64−16, 2−64−25, 2−64−36, 2−64−49, . . .).

. . .

We will make frequent use of the following lemma.

Lemma 5.3.4. Let j ∈ N and let j < k. Then

k∑
p=j+1

αkp
αkj

k→∞−−−→ 0.
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Proof. Observe that

αkj+1

αkj
= 2−(k+j)2+(k+j−1)2 = 2−(2k+2j−1).

Let j + 1 ≤ p ≤ k. Then

αkp
αkj

=
αkj+1

αkj
· . . . ·

αkp
αkp−1

= 2−(2k+2j−1) · . . . · 2−(2k+2p−3) ≤

≤ 2−(2k+2j−1) · 2−1 · . . . · 2−1 = 2−(2k+2j−1) · 2−(p−j−1) = 2−(2k+p+j−2)

Therefore

k∑
p=j+1

αkp
αkj

= 2−(2k+2j−1) + . . .+ 2−(3k+j−2) ≤ 2−(2k+2j−2) k→∞−−−→ 0.

We prove the following result (using essentially the same proof as in [GL, Theorem
2.1.2]).

Proposition 5.3.5. The sequence x = (xk) is a hypercomplete sequence in `1.

Proof. Let (xnk) be an arbitrary subsequence of (xk). Assume that f ∈ `∗1 satis�es
f(xnk) = 0 for each k ∈ N. Hence

|αnk1 f(e1)| =

∣∣∣∣∣−
nk∑
j=2

αnkj f(ej)

∣∣∣∣∣ ≤ ‖f‖
nk∑
j=2

αnkj

for each k ∈ N. According to Lemma 5.3.4,

|f(e1)| ≤ ‖f‖
nk∑
j=2

αnkj
αnk1

k→∞−−−→ 0.

Therefore f(e1) = 0. Similarly, we see that

|f(e2)| ≤ ‖f‖
nk∑
j=3

αnkj
αnk2

k→∞−−−→ 0.

and thus f(e2) = 0. Continuing in this fashion, we arrive at f(ek) = 0 for each
k ∈ N. By a well-known corollary to the Hahn�Banach theorem, we have `1 =
span{ek} ⊂ span{xnk}. In other words, the sequence (xk) is hypercomplete, as
desired.
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Let us de�ne a system g ∈ GSeq which contains both the system f and the sequence
x ∈ c0(`1).

De�nition 5.3.6. Let X be a Banach space. The component g(X) consists of
sequences of the form

(yk) =
(
T1xp1k + . . .+ TNxpNk + βk

)
,

where N ∈ N0, T1, . . . , TN ∈ L(`1, X), (βk) ∈ f(X), and (p1
k), . . . , (p

N
k ) are increas-

ing sequences of natural numbers.

Throughout the remainder of this section, the system g is meant to be understood
as de�ned above.

Proposition 5.3.7. We have g ∈ GSeq.

Proof. Let us verify that g satis�es the properties (S0), . . . , (S4). The system g
satis�es (S1), since every sequence in BK can be written as (βk ·1), where (βk) ∈ Bm

and 1 ∈ K. Clearly, the system g satis�es (S0), (S2), and (S3). Let S ∈ L(X, Y )
and (yk) ∈ g(X). Then

(Syk) =
(
ST1xp1k + . . .+ STNxpNk + Sβk

)
,

where N ∈ N0, ST1, . . . , STN ∈ L(`1, Y ), (Sβk) ∈ f(Y ), and (p1
k), . . . , (p

N
k ) are

increasing sequences of natural numbers. This means the sequence (Syk) belongs
to the component g(Y ).

Proposition 5.3.8. It holds that Ψ (g) ≤ K.

Proof. By Lemma 2.4.6, it su�ces to show that g . c, since K = Ψ (c). Let

(yk) =
(
T1xp1k + . . .+ TNxpNk + βk

)
,

where N ∈ N0, T1, . . . , TN ∈ L(`1, X), (βk) ∈ f(X), and (p1
k), . . . , (p

N
k ) are increas-

ing sequences of natural numbers.

We need to show that the sequence (yk) contains a convergent subsequence. Ob-
serve that

(zk) = (T1xp1k + . . .+ TNxpNk ) ∈ c0(X),

because (xk) ∈ c0(`1). Since f . fc, (βk) ∈ f(X) contains a convergent sub-
sequence (βrk)k∈N ∈ fc(X). It remains to notice that the sequence (yrk)k∈N =
(zrk + βrk)k∈N is convergent in X.
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It remains to prove the most di�cult part of this section: that every sequence
(yk) in g(X) is indeed hereditarily almost autoapproximable. For this purpose, we
de�ne two intermediate systems of sequences g1 and g2 such that g1 ( g2 ( g
(see De�nitions 5.3.9 and 5.3.10 below).

The remainder of this section is structured as follows. We verify that every se-
quence in the system g1 is hereditarily autoapproximable (Corollary 5.3.16). Then
we show that every sequence in the system g2 is hereditarily almost autoapprox-
imable (Corollary 5.3.22). Finally we prove that every sequence in the system g
is hereditarily almost autoapproximable (Theorem 5.3.26).

Let us de�ne of the system of sequences g1.

De�nition 5.3.9. Let X be a Banach space. The component g1(X) consists of
sequences of the form

(yk) =
(
T1xs1k + . . .+ TNxsNk

)
,

where N ∈ N0, T1, . . . , TN ∈ L(`1, X), and increasing sequences (s1
k), . . . , (s

N
k ) of

natural numbers satisfy s1
k < s2

k < . . . < sNk for each k ∈ N.

Note that g1 fails to be a generating system of sequences, since it does not satisfy
property (S1). Indeed, the constant sequence e = (1, 1, . . . , 1, . . .) ⊂ BK does not
contain a subsequence from the component g1(K) (recall that the sequence (xk) is
a null sequence in `1).

Additionally, g1 fails to satisfy property (S2) (see Example 5.3.23 below). It is
easy to verify that g1 satis�es properties (S0), (S3), and (S4).

Next, let us de�ne the system of sequences g2. Recall that the sum h + k for any
two systems of sequences h and k was de�ned in 3.3.9.

De�nition 5.3.10. g2 = g1 + f .

Note that the system g2 resides inside the system g. Clearly, g2 contains the
system f and therefore satis�es property (S1). Likewise, it is easy to verify that g2

satis�es properties (S0), (S3), and (S4). However, it fails to satisfy property (S2)
(see Example 5.3.23 below).

In the forthcoming, it is convenient to consider the systems of sequences f∞ and
g∗2, which are the unbounded version of f and the corresponding version of g2,
respectively.

De�nition 5.3.11. Every component f∞(X) of the system f∞ consists of all
sequences which span a �nite-dimensional subspace of X.
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Clearly, f∞ contains the system f . Note that the system f∞ violates property (S0)
and therefore f∞ 6∈ GSeq.

De�nition 5.3.12. g∗2 = g1 + f∞.

Clearly, g∗2 is not a generating system of sets and g∗2 6⊂ g; nonetheless, it will be
advantageous to employ this system for proving Proposition 5.3.21.

We begin our journey with the following lemma.

Lemma 5.3.13. Take increasing sequences (vk) and (wk) of natural numbers such
that vk < wk for all k ∈ N. Let j ∈ N. Then

wk∑
p=1

αwkp
αvkj

k→∞−−−→ 0.

Proof. By de�nition,

wk∑
p=1

αwkp
αvkj

=
2−(wk)3 ·

∑wk
p=1 2−(wk+p−1)2

2−(vk)3 · 2−(vk+j−1)2
.

Observe that
wk∑
p=1

2−(wk+p−1)2 = 2−w
2
k + . . .+ 2−(2wk−1)2 ≤

≤ 2−w
2
k(1 + 2−1 + . . .+ 2−(wk−1)) ≤ 2 · 2−w2

k ≤ 2 · 2−(vk+1)2 ,

Therefore
wk∑
p=1

αwkp
αvkj
≤ 2−(vk+1)3 · 2 · 2−(vk+1)2

2−(vk)3 · 2−(vk+j−1)2
= 2−(vk+1)3+(vk)3+1+(vk+j−1)2−(vk+1)2 =

2−3v2k−3vk−1+1−(2vk+j)(j−2) = 2−3v2k+(1−2j)vk+2j k→∞−−−→ 0.

Corollary 5.3.14. Take increasing sequences (vk) and (wk) of natural numbers
such that vk < wk for all k ∈ N. Let j ∈ N. Then

xwk
αvkj

k→∞−−−→ 0.

Proof. By Lemma 5.3.13,∥∥∥∥xwkαvkj

∥∥∥∥ =

∥∥∥∥∥
wk∑
p=1

αwkp
αvkj

ej

∥∥∥∥∥ ≤
wk∑
p=1

αwkp
αvkj

k→∞−−−→ 0.
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The following result is the cornerstone for proving that every sequence in g1(X)
is hereditarily autoapproximable (Corollary 5.3.16).

Proposition 5.3.15. Let X be a Banach space and let (yk) ∈ g1(X). To be
speci�c, let

(yk) =
(
T1xs1k + . . .+ TNxsNk

)
be given as in the de�nition of the system g1. Then

{Tnej | 1 ≤ n ≤ N, j ∈ N} ⊂ span{yk}.

Proof. We use induction over N . Clearly, there is nothing to prove for the base
case N = 0. We assume that the claim holds for the case N − 1 and prove that it
holds for the case N ≥ 1.

Assume that f ∈ X∗ vanishes on the sequence (yk). Put another way, assume that

f(yk) =
N∑
n=1

f(Tnxsnk ) = 0 (5.1)

for each k ∈ N. Recall that

f(Tnxsnk ) =

snk∑
j=1

α
snk
j f(Tnej).

Hence ∣∣∣αs1k1 f(T1e1)
∣∣∣ =

∣∣∣∣∣∣−
s1k∑
j=2

α
s1k
j f(T1ej)−

N∑
n=2

snk∑
j=1

α
snk
j f(Tnej)

∣∣∣∣∣∣
for all k ∈ N. By Lemma 5.3.4 and Lemma 5.3.13 (recall that s1

k < s2
k < . . . < sNk ),

|f(T1e1)| ≤ ‖f‖ sup
1≤n≤N

‖Tn‖

 s1k∑
j=2

α
s1k
j

α
s1k
1

+
N∑
n=2

snk∑
j=1

α
snk
j

α
s1k
1

 k→∞−−−→ 0 +
N∑
n=2

0 = 0.

Therefore f(T1e1) = 0. Similarly, we see that

|f(T1e2)| ≤ ‖f‖ sup
1≤n≤N

‖Tn‖

 s1k∑
j=3

α
s1k
j

α
s1k
2

+
N∑
n=2

snk∑
j=1

α
snk
j

α
s1k
2

 k→∞−−−→ 0 +
N∑
n=2

0 = 0

and thus f(T1e2) = 0. Continuing in this fashion, we arrive at f(T1ek) = 0 for
each k ∈ N. We have shown that every functional f ∈ X∗, which vanishes on the
sequence (yk), vanishes also on the set

{T1ej | j ∈ N}.
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By a corollary to the Hahn�Banach theorem, we have

{T1ej | j ∈ N} ⊂ span{yk}. (5.2)

If N = 1, we have completed the proof.

Assume that N > 1. Put

(zk) =
(
T2xs1k + . . .+ TNxsNk

)
=
(
yk − T1xs1k

)
=

yk − s1k∑
j=1

α
s1k
j T1ej

 . (5.3)

The sequence (zk) satis�es the assumptions of the induction hypothesis for the
case N − 1. Therefore

{Tnej | 2 ≤ n ≤ N, j ∈ N} ⊂ span{yk}.

Combining the latter observation with (5.2) concludes the proof.

We are ready to prove the �rst step in the path to Theorem 5.3.26.

Corollary 5.3.16. Let X be a Banach space and let (yk) ∈ g1(X). Then the
sequence (yk) is hereditarily autoapproximable.

Proof. Take (yk) ∈ g1(X). To be more speci�c, take

(yk) =
(
T1xs1k + . . .+ TNxsNk

)
such that the assumptions from the de�nition of the system g1 are satis�ed. Let
(ypk) be an arbitrary subsequence of (yk). Then (ypk) ∈ g1(X), where

(ypk) =
(
T1xs1pk

+ . . .+ TNxsNpk

)
.

Proposition 5.3.15 yields that

Z = {Tnej | 1 ≤ n ≤ N, j ∈ N} ⊂ span{ypk}.

On the other hand, clearly yk ∈ spanZ for each k ∈ N. Combining the previous
two observations yields that

span{yk} ⊂ span{ypk}.

Since the converse inclusion holds trivially, we have shown that (yk) is hypercom-
plete in its own closed span. By Proposition 5.3.2, it is hereditarily autoapprox-
imable.
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The following example demonstrates that if we drop the assumption that

s1
k < s2

k < . . . < sNk , k ∈ N

from the system g1 (and correspondingly, from Corollary 5.3.16), then we cannot
guarantee that the sequence (yk) will be hereditarily autoapproximable. However,
as Theorem 5.3.26 below demonstrates, we can still prove that any such sequence
is hereditarily almost autoapproximable.

Example 5.3.17. Let X = `1. Put T1 = I`1 ∈ L(`1, `1) and put T2 = −I`1 .
Let (s1

k)k∈N = (2, 3, 4, . . .) and let (s2
k)k∈N = (1, 3, 4, . . .). Then the sequence

(yk) = (T1xs1k + T2xs2k) is hereditarily almost autoapproximable, but not hered-
itarily autoapproximable.

Proof. Write
(yk) = (T1xs1k + T2xs2k) = (x2 − x1, 0, 0, . . .).

Obviously, this sequence is not autoapproximable � its �rst element cannot be ap-
proximated by the other elements of the sequence. Therefore it is also not heredi-
tarily autoapproximable (since the sequence (yk) is also its own subsequence).

To see that it is hereditarily almost autoapproximable, take any subsequence (zk)
of (yk). Clearly, (zk) becomes autoapproximable after dropping the �rst element
of the sequence (zk).

We prove the following easy result.

Lemma 5.3.18. Let (yk) be a sequence in a �nite-dimensional space Y . Then there
exists a subsequence (ypk) of (yk) which satis�es one of the following conditions.

(a) the sequence (‖ypk‖) tends to in�nity and the sequence

(
ypk

‖ypk‖

)
converges

to some element z ∈ Y ;

(b) the sequence (ypk) converges to some element z ∈ Y .

Proof. Suppose that the sequence (yk) is unbounded. Then it contains a subse-
quence (ynk) such that the sequence (‖ynk‖) tends to in�nity and ‖ynk‖ 6= 0 for each
k ∈ N. Clearly, the sequence (ynk/ ‖ynk‖) belongs to a compact set BY . We arrive
at (a) by noticing that the latter sequence contains a convergent subsequence.

On the other hand, let the sequence (yk) be bounded; then it indeed contains a
convergent subsequence (ypk), since Y is �nite-dimensional. Thus we have arrived
at (b).
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We need the following de�nition and result for proving that each sequence in g2 is
hereditarily almost autoapproximable (Corollary 5.3.22).

De�nition 5.3.19. Let X be a Banach space and let W be a �nite-dimensional
subspace of X. We say that a sequence (yk) in X is hypercomplete modulo W in
its own closed span, if every subsequence (ypk) of (yk) satis�es

{yk} ⊂ span{ypk}+W.

Proposition 5.3.20. Let X be a Banach space and let W be a subspace of X,
where dimW ≤ M . Let (yk) be a sequence in X. If (yk) is hypercomplete modulo
W in its own closed span, then (yk) is hereditarily autoapproximable modulo M .

Proof. Consider a subsequence (ypk) of (yk). Assume to the contrary that there
exist indices j1, . . . , jM+1 such that

d(ypj1 , [ypk ]
k 6=j1
k∈N ), . . . , d(ypjM+1

, [ypk ]
k 6=jM+1

k∈N ) > 0.

Consider the sequence
(ypk)k∈N\{j1,...,jM+1}.

Let us denote
Z = span{ypk | k ∈ N, k 6= j1, . . . , k 6= jM+1}

By assumption,
{yk} ⊂ Z +W.

Therefore we may write

ypjm = zm + µm ∈ Z +W

for each 1 ≤ m ≤M + 1.

The set {µ1, . . . , µM+1} ⊂ W must be linearly dependent, since dimW ≤M . Thus
there exists an index 1 ≤ r ≤M + 1 such that

µr =
M+1∑
m=1
m 6=r

βmµm.

Put

w = ypjr −
M+1∑
m=1
m 6=r

βmypjm = zr + µr −
M+1∑
m=1
m6=r

βm(zm + µm) = zr −
M+1∑
m=1
m 6=r

βmzm ∈ Z.
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Therefore

ypjr = w +
M+1∑
m=1
m6=r

βmypjm ∈ span{ypk | k ∈ N, k 6= jr},

which is a contradiction with our assumption that d(ypjr , [ypk ]
k 6=jr
k∈N ) > 0.

Let us take the next step in the path to proving Theorem 5.3.26.

Proposition 5.3.21. Let X be a Banach space and let (yk) ∈ g∗2(X). To be more
speci�c, let

(yk) =
(
T1xp1k + . . .+ TNxpNk + βk

)
,

where N ∈ N0, T1, . . . , TN ∈ L(`1, X), increasing sequences (p1
k), . . . , (p

N
k ) of natu-

ral numbers satisfy p1
k < p2

k < . . . < pNk for each k ∈ N, and the sequence (βk) spans
a �nite-dimensional subspace W of X. Then the sequence (yk) is hypercomplete
modulo W in its own closed span.

Proof. We use induction over the pair of variables (M,N), where dimW ≤M . It
is fairly obvious that the base case N = 0 holds (for anyM ≥ 0). Now consider the
base caseM = 0 (for any N ≥ 0). Then the assumption simpli�es to (yk) ∈ g1(X)
and it becomes necessary to prove that (yk) is hypercomplete in its own closed
span. To do so, it su�ces to apply Corollary 5.3.16 and Proposition 5.3.2.

We use the following form of induction. We assume that the claim holds for the
cases (M − 1, N) and (M,N − 1), and show that the claim holds for the case
(M,N), where M,N ≥ 1. Consider a subsequence (ysk) of (yk). Then

(ysk) =
(
T1xp1sk

+ . . .+ TNxpNsk
+ βsk

)
.

We need to prove that
{yk} ⊂ span{ysk}+W.

Consider the sequence

(η1
sk

) =

(
βsk

α
p1sk
1

)
.

By Lemma 5.3.18, there exists a subsequence (r1,k) of (sk) such that either

(a) the sequence
(∥∥∥η1

r1,k

∥∥∥) tends to in�nity and the sequence
(
η1
r1,k

/∥∥∥η1
r1,k

∥∥∥)
converges to some element µ1 in W ;
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(b) the sequence
(
η1
r1,k

)
converges to some element µ1 ∈ W .

Let us �rst consider the case (a). Assume that a functional f ∈ X∗ vanishes on
the sequence (ysk). In other words, it satis�es

f(ysk) =
N∑
n=1

f(Tnxpnsk ) + f(βsk) = 0

for each k ∈ N.

Then∣∣∣∣∣f
(
βr1,k

)∥∥βr1,k∥∥
∣∣∣∣∣ =

∣∣f (βr1,k)∣∣
α
p1r1,k
1

α
p1r1,k
1∥∥βr1,k∥∥ ≤ ‖f‖ sup

1≤n≤N
‖Tn‖

∥∥∥∥∥∥
N∑
n=1

xpnr1,k

α
p1r1,k
1

∥∥∥∥∥∥ α
p1r1,k
1∥∥βr1,k∥∥ . (5.4)

Observe that
α
p1r1,k
1∥∥βr1,k∥∥ k→∞−−−→ 0.

By Lemma 5.3.4,
xp1r1,k

α
p1r1,k
1

k→∞−−−→ e1

and by Corollary 5.3.14,
N∑
n=2

xpnr1,k

α
p1r1,k
1

k→∞−−−→ 0.

Therefore ∥∥∥∥∥∥
N∑
n=1

xpnr1,k

α
p1r1,k
1

∥∥∥∥∥∥ k→∞−−−→ ‖e1 + 0‖ = 1

and (5.4) demonstrates that

f
(
βr1,k

)∥∥βr1,k∥∥ k→∞−−−→ 0.

On the other hand,

f
(
βr1,k

)∥∥βr1,k∥∥ =
f
(
η1
r1,k

)
∥∥∥η1

r1,k

∥∥∥ k→∞−−−→ f(µ1).
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Therefore f(µ1) = 0.

Let W ′ be a subspace of W satisfying dimW ′ ≤M − 1 and

W = W ′ + span{µ1}.

Clearly, there exists a sequence (σk) in W ′ and a scalar sequence (γk) such that

(βk) = (σk + γkµ1) .

Put
(wk) =

(
T1xp1k + . . .+ TNxpNk + σk

)
.

Each functional f ∈ X∗, which vanishes on the sequence (ysk), vanishes also on
the sequence (wsk), since f(µ1) = 0. By a corollary to the Hahn�Banach theorem,
we have

span{wsk} ⊂ span{ysk}.

By the induction hypothesis for the case (M−1, N), (wk) is hypercomplete modulo
W ′ in its own closed span. Therefore

{wk} ⊂ span{wsk}+W ′.

We conclude the proof for the case (a) by combining the last two observations and
noticing that

{yk} ⊂ {wk}+W ⊂ span{wsk}+W ′ +W ⊂ span{ysk}+W.

For this reason, let us only consider the case (b) in the following. Then

βr1,k

α
p1r1,k
1

k→∞−−−→ µ1.

Assume that a functional f ∈ X∗ vanishes on the sequence (ysk). In other words,
it satis�es

f(ysk) =
N∑
n=1

f(Tnxpnsk ) + f(βsk) = 0 (5.5)

for each k ∈ N.

Equation (5.5) and Corollary 5.3.14 allow us to write∣∣∣∣∣∣f
βr1,k + T1xp1r1,k

α
p1r1,k
1

∣∣∣∣∣∣ ≤ ‖f‖ sup
1≤n≤N

‖Tn‖
N∑
n=2

∥∥∥∥∥∥
xpnr1,k

α
p1r1,k
1

∥∥∥∥∥∥ k→∞−−−→ 0.
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By Lemma 5.3.4,

lim
k→∞

f

βr1,k + T1xp1r1,k

α
p1r1,k
1

 = f(µ1 + T1e1).

Therefore
f(µ1 + T1e1) = 0. (5.6)

Put
(z1,k) =

(
yk − T1

(
α
p1k
1 e1

)
− αp

1
k

1 µ1

)
and

(β2
k) = (βk − α

p1k
1 µ1).

Equations (5.5) and (5.6) demonstrate that every functional f ∈ X∗, which van-
ishes on the sequence (ysk), vanishes also on the sequence (z1,sk). Observe that

f(z1,k) = f
(
T1

(
xp1k − α

p1k
1 e1

))
+

N∑
n=2

f
(
Tnxpnk

)
+ f

(
βk − α

p1k
1 µ1

)
=

= f

 p1k∑
j=2

α
p1k
j T1(ej)

+
N∑
n=2

f
(
Tnxpnk

)
+ f

(
β2
k

) (5.7)

for each k ∈ N.

Consider the sequence

(η2
k) =

(
β2
k

α
p1k
2

)
.

By Lemma 5.3.18, there exists a subsequence (r2,k) of (sk) such that either

(a) the sequence
(∥∥∥η2

r2,k

∥∥∥) tends to in�nity and the sequence
(
η2
r2,k

/∥∥∥η2
r2,k

∥∥∥)
converges to some element µ2 in W ;

(b) the sequence
(
η2
r2,k

)
converges to some element µ2 ∈ W .

Let us �rst consider the case (a). Assume that a functional f ∈ X∗ vanishes on
the sequence (z1,k).

Then (5.7) allows us to write∣∣∣∣∣∣
f
(
β2
r2,k

)
∥∥∥β2

r2,k

∥∥∥
∣∣∣∣∣∣ ≤ ‖f‖ sup

1≤n≤N
‖Tn‖

α
p1r2,k
2∥∥∥β2
r2,k

∥∥∥
∥∥∥∥∥∥∥
∑p1r2,k

j=2 α
p1r2,k
j ej +

∑N
n=2 xpnr2,k

α
p1r2,k
2

∥∥∥∥∥∥∥ . (5.8)
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Observe that
α
p1r2,k
2∥∥∥β2
r2,k

∥∥∥ k→∞−−−→ 0

and, by Lemma 5.3.4 and Corollary 5.3.14,∥∥∥∥∥∥∥
∑p1r2,k

j=2 α
p1r2,k
j ej +

∑N
n=2 xpnr2,k

α
p1r2,k
2

∥∥∥∥∥∥∥ k→∞−−−→ ‖e2 + 0‖ = 1.

Therefore (5.8) shows that
f
(
β2
r2,k

)
∥∥∥β2

r2,k

∥∥∥ k→∞−−−→ 0.

On the other hand,

f
(
β2
r2,k

)
∥∥∥β2

r2,k

∥∥∥ =
f
(
η2
r2,k

)
∥∥∥η2

r2,k

∥∥∥ k→∞−−−→ f(µ2).

Therefore f(µ2) = 0.

Similarly to the procedure that we followed in the previous step when we encoun-
tered the case (a), we may conclude the proof by applying the induction hypothesis
for the case (M − 1, N). Because of this, let us only consider the case (b) in the
following.

If (b) holds, then
β2
r2,k

α
p1r2,k
2

k→∞−−−→ µ2.

Assume that a functional f ∈ X∗ vanishes on the sequence (z1,sk). Observe that
(5.7) and Corollary 5.3.14 allow us to write∣∣∣∣∣∣f

β2
r2,k

+
∑p1r2,k

j=2 α
p1r2,k
j T1ej

α
p1r2,k
2

∣∣∣∣∣∣ ≤ ‖f‖ sup
1≤n≤N

‖Tn‖
N∑
n=2

∥∥∥∥∥∥
xpnr2,k

α
p1r2,k
2

∥∥∥∥∥∥ k→∞−−−→ 0.

By Lemma 5.3.4,

lim
k→∞

f

β2
r2,k

+
∑p1r2,k

j=2 α
p1r2,k
j T1ej

α
p1r2,k
2

 = f(µ2 + T1e2).
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Therefore
f(µ2 + T1e2) = 0.

Continuing in this fashion, we arrive at one of the following results.

(A) There exists µ ∈ W such that every functional, which vanishes on (ysk),
vanishes on the element µ.

(B) For each j ∈ N, there exists an element µj ∈ W such that every functional,
which vanishes on the sequence (ysk), vanishes also on the set

G = {µj + T1ej | j ∈ N}. (5.9)

If (A) holds, then we may complete the proof by referring to the induction hypoth-
esis for the case (M − 1, N). Consider the case (B). Then, by the Hahn�Banach
theorem, we have

spanG = span{µj + T1ej | j ∈ N} ⊂ span{ysk}. (5.10)

By de�nition of the sequence xj and (5.10),

span{T1xj | j ∈ N}+W ⊂ span {µj + T1ej | j ∈ N}+W ⊂ span{ysk}+W.

If N = 1, then we may complete the proof by observing that

{yk} ⊂ span{T1xj | j ∈ N}+W.

Let us assume that N > 1. Recall that

T1xp1k =

p1k∑
j=1

α
p1k
j T1ej.

Put

(z∞,k) =

yk − p1k∑
j=1

α
p1k
j T1ej −

p1k∑
j=1

α
p1k
j µj

 (5.11)

and

(β∞k ) =

βk − p1k∑
j=1

α
p1k
j µj

 .

Then

(z∞,k) =

(
N∑
n=2

Tnxpnk + β∞k

)
. (5.12)
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The sequence (z∞,k) satis�es all of the assumptions of the induction hypothesis for
the case (M,N−1), as demonstrated by (5.12). Therefore (z∞,k) is hypercomplete
modulo W in its own closed span and we may write

{z∞,k} ⊂ span{z∞,sk}+W. (5.13)

Equation (5.11) with (B) yield that every functional f ∈ X∗, which vanishes on
the sequence (ysk), vanishes also on the sequence (z∞,sk). By the Hahn�Banach
theorem, we have

span{z∞,sk} ⊂ span{ysk}. (5.14)

Combining the observations (5.13) and (5.14), we obtain that

{z∞,k} ⊂ span{ysk}+W. (5.15)

By (5.11),
{yk} ⊂ span {z∞,k}+ spanG.

It remains to observe that by (5.15) and (5.10),

span {z∞,k}+ spanG ⊂ span{ysk}+W.

The following result follows immediately from Propositions 5.3.21 and 5.3.20.

Corollary 5.3.22. Let X be a Banach space and let (yk) ∈ g2(X). Then the
sequence (yk) is hereditarily autoapproximable modulo M for some M ∈ N0.

The following example demonstrates that the systems g2 and g do not coincide
and that the systems g1 and g2 fail to satisfy property (S2).

Example 5.3.23. De�ne S : `1 → `1 and T : `1 → `1 by

S(ek) = e2k−1

and
T (ek) = e2k,

where k ∈ N. Next, de�ne the sequences (yk), (zk) ∈ `1 by

yk = Sx3k−2 + Tx3k−1

and
zk = Sx3k + Tx3k,

where k ∈ N.
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Then the alternating sequence (y1, z1, y2, z2, . . .) fails to be hereditarily autoap-
proximable modulo M for every M ∈ N0 and therefore does not belong to g2(`1).
However, it can be represented as

(y1, z1, y2, z2, . . .) = (Sx1 + Tx2, Sx3 + Tx3, Sx4 + Tx5, Sx6 + Tx6, . . .) =

= (Sx1, Sx3, Sx4, Sx5, . . .) + (Tx2, Tx3, Tx5, Tx6, . . .) ∈ g(`1),

where
(Sx1, Sx3, Sx4, Sx5, . . .) ∈ g1(`1) ⊂ g2(`1)

and
(Tx2, Tx3, Tx5, Tx6, . . .) ∈ g1(`1) ⊂ g2(`1).

Proof. The only thing to prove is that the sequence (y1, z1, y2, z2, . . .) fails to be
hereditarily autoapproximable modulo M for every M ∈ N. Assume to the con-
trary that it is hereditarily autoapproximable modulo M for some M ∈ N. Con-
sider the subsequence (wk), de�ned by

wk =

{
yk, if k ≤M + 1,

zk, if k > M + 1.

We will reach the contradiction by proving that

d(y1, [wk]
k 6=1
k∈N), . . . , d(yM+1, [wk]

k 6=M+1
k∈N ) > 0,

since this shows that we cannot arrive at an autoapproximable sequence by remov-
ing M elements.

Let m ∈ {1, . . . ,M + 1}. We need to prove that

ym 6∈ span{wk | k ∈ N, k 6= m}.
By the Hahn�Banach theorem, this is equivalent to the fact there exists a functional
f ∈ `∗1 such that

f(y1) = . . . = f(ym−1) = 0, (5.16)
f(ym+1) = . . . = f(yM+1) = 0, (5.17)
f(zk) = 0 for all k > M + 1, (5.18)

yet f(ym) 6= 0. (5.19)

Note that condition (5.18) is satis�ed if

f(e1) = c1,

f(e2) = −c1,

f(e3) = c2,

f(e4) = −c2,

. . .
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Indeed,

f(zk) = f(Sx3k + Tx3k) = f

(
S

(
3k∑
j=1

α3k
j ej

)
+ T

(
3k∑
j=1

α3k
j ej

))
=

=
3k∑
j=1

α3k
j f(Sej + Tej) = 0,

since f(Sej + Tej) = f(e2k−1) + f(e2k) = ck − ck = 0. Furthermore, f ∈ `∗1 = m
whenever the scalar sequence (ck) is bounded. Observe that

f(yk) = f(Sx3k−2 + Tx3k−1) = f

(
S

(
3k−2∑
j=1

α3k−2
j ej

)
+ T

(
3k−1∑
j=1

α3k−1
j ej

))
=

=
3k−2∑
j=1

α3k−2
j f(Sej) +

3k−1∑
j=1

α3k−1
j f(Tej) =

3k−2∑
j=1

α3k−2
j cj −

3k−1∑
j=1

α3k−1
j cj.

To satisfy (5.16), put
ck = 0,

where 1 ≤ k ≤ 3(m− 1)− 1 = 3m− 4. Then

f(ym) =
3m−2∑
j=1

α3m−2
j cj −

3m−1∑
j=1

α3m−1
j cj =

= α3m−2
3m−3c3m−3 + α3m−2

3m−2c3m−2 − α3m−1
3m−3c3m−3 − α3m−1

3m−2c3m−2 − α3m−1
3m−1c3m−1.

Clearly, (5.19) is satis�ed if we put

c3m−3 = c3m−2 = 0, c3m−1 6= 0.

In order to satisfy (5.17), we follow the iterative process below.

As a �rst step, put c3m = c3m+1 = 0 and de�ne the constant c3m+2 by

c3m+2 =
α3m+1

3m−1c3m−1 − α3m+2
3m−1c3m−1

α3m+2
3m+2

.

Then
f(ym+1) = α3m+1

3m−1c3m−1 − α3m+2
3m−1c3m−1 − α3m+2

3m+2c3m+2 = 0.

Similarly, f(ym+2) = 0 for c3m+3 = c3m+4 = 0 and a suitable choice of the constant
c3m+5. Continuing in this way, we arrive at (5.17), having �xed the constants
c3m+6, . . . , c3M+2. It remains to notice that f ∈ `∗1 = m if we put ck = 0 for each
k ≥ 3M + 3.
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For the proof of Theorem 5.3.26, we need to consider the set of all possible orderings
over the indices {1, . . . , n}.

De�nition 5.3.24. A �nite sequence

ω = (d1, χ1, d2, χ2, . . . , χn−1, dn)

is called an ordering (of length n) if the following conditions are satis�ed.

(i) {d1, . . . , dn} = {1, . . . , n};

(ii) the symbol χj is either �<� or �=� for each 1 ≤ j ≤ n− 1;

(iii) dj < dj+1 if χj is �=� for some 1 ≤ j ≤ n− 1.

Denote the set of all such orderings (of length n) by Ωn.

An ordering ω = (d1, χ1, d2, χ2, . . . , χn−1, dn) is said to correspond to a �nite se-
quence s = (s1, . . . , sn) if the following conditions are satis�ed.

(i) sdj < sdj+1
whenever χj is �<�;

(ii) sdj = sdj+1
whenever χj is �=�.

Let ι : Nn → Ωn denote the function which maps each sequence s = (s1, . . . , sn) to
a (uniquely determined) ordering ι(s), which corresponds to s.

Example 5.3.25. Let s = (7, 3, 3). Then ι(s) = (2, �=�, 3, �<� , 1).

We are now prepared to tackle the most general case.

Theorem 5.3.26. Let X be a Banach space and let (yk) ∈ g(X). Then the
sequence (yk) is hereditarily almost autoapproximable.

Proof. Let (zk) be an arbitrary subsequence of (yk). Then (zk) ∈ g(X) and

(zk) =
(
T1xs1k + . . .+ TNxsNk + βk

)
,

where N ∈ N0, T1, . . . , TN ∈ L(`1, X), βk ∈ f(X), and (s1
k), . . . , (s

N
k ) are increasing

sequences of natural numbers.

Our goal is to prove that (zk) is almost autoapproximable. Put

sk = (s1
k, . . . , s

N
k ).
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Denote by Iω the set of indices satisfying the condition that the ordering ω corre-
sponds to the �nite sequence sk. Put another way,

Iω = {k ∈ N | ι(sk) = ω}.

Note that the sets Iω, where ω ∈ ΩN , form a pairwise disjoint covering of N. In the
following, we prove that each set Iω, where ω ∈ ΩN , contains only a �nite amount
of indices {j1, . . . , jr} such that

d(zj1 , [zk]
k 6=j1
k∈N ), . . . , d(zjr , [zk]

k 6=jr
k∈N ) > 0.

This completes the proof, since there is only a �nite amount of possible orderings
of length N .

Let ω ∈ ΩN . There is nothing to prove if |Iω| < ∞. Therefore let us assume
that |Iω| = ∞. Arrange the elements of Iω in an increasing order and denote the
sequence obtained in this way by (tk). Put

v1
k = s1

tk
, . . . , vNk = sNtk

for each k ∈ N. We aim to prove that the sequence (ztk) is almost autoapprox-
imable. By de�nition,

ω = (d1, χ1, d2, χ2, . . . , χN−1, dN).

Partition the set {d1, . . . , dN} into the sets

A1 = {d1, . . . , da1}, A2 = {da1+1, . . . , da2}, . . . , Al = {dal−1+1, . . . , dal},

so that the indices dh and dh+1 belong to the same partition if and only if χh is
�=�. This means that

xvc1k = xsc1tk
= xsc2tk

= xvc2k

whenever the indices c1 and c2 belong to the same partition (recall that tk ∈ Iω
for each k ∈ N). Furthermore,

vc1k = sc1tk < sc2tk = vc2k

for every index c1 ∈ Ah and c2 ∈ Ah+1, where 1 ≤ h ≤ l − 1 and k ∈ N.

De�ne the operators S1, . . . , Sl ∈ L(`1, X) by

S1 = Td1 + . . .+ Tda1 ,

S2 = Tda1+1 + . . .+ Tda2 ,

. . .

Sl = Tdal−1+1 + . . .+ Tdal .
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Observe that, for each k ∈ N,

Td1xvd1k
+ . . .+ TdNxvdNk

=

=
(
Td1xvd1k

+ . . .+ Tda1xvda1k

)
+ . . .+

(
Tdal−1+1x

v
dal−1+1

k

+ . . .+ Tdalxvdalk

)
=

= S1xvda1k

+ . . .+ Slx
v
dal
k

,

since xc1vk = xc2vk whenever the indices c1 and c2 belong to the same partition. Put
(wk) = (ztk). Note that

(wk) = (S1xvda1k

+ . . .+ Slx
v
dal
k

+ βtk) ∈ g2.

Indeed, S1, . . . , Sl ∈ L(`1, X) and (v
da1
k ), . . . , (v

dal
k ) are increasing sequences of

natural numbers such that

v
da1
k < v

da2
k < . . . < v

dal
k

for each k ∈ N. By Corollary 5.3.22, the sequence (wk) = (ztk) is hereditarily
almost autoapproximable. Clearly, it is then almost autoapproximable.



Chapter 6

Representing completely continuous

operators through weakly

∞-compact operators

In this chapter, we study the generating system W∞ of all relatively weakly
∞-compact sets and the operator ideal W∞ of all weakly ∞-compact oper-
ators. We show that the operator ideal W∞ is a Banach operator ideal. We
prove that the equality V =W∞ ◦W−1 holds (even in the context of Banach
operator ideals). As a consequence, this provides an alternative proof for
the following result from [DFLORT, Theorem 1]: the weak Grothendieck
compactness principle holds only in Schur spaces. This chapter is based on
[JLO] and [Lil2].

6.1 The Banach operator ideal W∞ of weakly ∞-

compact operators

Let us begin this section by extending De�nition 4.1.2.

De�nition 6.1.1. Let 1 ≤ p ≤ ∞ and 1 ≤ r ≤ p∗. For every x = (xk) ∈ `wp (X),
de�ne an operator Ex ∈ L(`r, X) by

Ex(α) =
∞∑
k=1

αkxk, α ∈ `r.

91
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Proposition 6.1.2. Let 1 ≤ p ≤ ∞, let 1 ≤ r ≤ p∗, and let x = (xk) ∈ `wp (X).
Then Ex ∈ L(`r, X) is well de�ned and bounded. Moreover, ‖Ex‖ ≤ ‖x‖wp .

Proof. By a corollary to the Hahn�Banach theorem, it su�ces to show that the set
Ex(B`r) is weakly bounded by the constant ‖x‖wp . Let α ∈ B`r and let x∗ ∈ BX∗ .
By Hölder's inequality,

‖x∗(Ex(α))‖ ≤
∞∑
k=1

|αk| ‖x∗(xk)‖ ≤ ‖α‖p∗
∥∥(x∗(xk))∥∥p ≤ ‖α‖p∗ ‖x‖wp .

De�nition 6.1.3 (see [AO2, Section 4.1]). Let 1 ≤ p ≤ ∞ and 1 ≤ r ≤ p∗. A
subset K of X is relatively weakly (p, r)-compact if

K ⊂ Ex(B`r)

for some (xk) ∈ `wp (X) (where (xk) ∈ cw0 (X) if p =∞).

If r = p∗, then we arrive at the notion of a relatively weakly p-compact set, which
originates from [SK1]. Let W(p,r) denote the system of all relatively weakly (p, r)-
compact sets in all Banach spaces (in [AO2], the notation w(p,r) was used).

PutW(p,r) = Θ(W(p,r)). In this chapter, we focus only on the operator idealW(∞,1).
Because of this, let us denote W∞ = W(∞,1) and W∞ = W(∞,1) for conciseness.
We prove that W∞ is a generating system of sets (see Proposition 6.1.4) and that
W∞ is a Banach operator ideal (see Theorem 6.1.6).

Concerning W(p,1), where 1 ≤ p < ∞, we prove in the next chapter that it is a
quasi-Banach operator ideal (see Theorem 7.7.4) via a more general approach (see
Theorem 7.6.10).

Proposition 6.1.4. W∞ ∈ GSet.

Proof. Let us verify the conditions of De�nition 2.3.1.

(G0) This follows from Proposition 6.1.2.

(G1) Put β = (1, 0, 0, . . .) ∈ cw0 (K). Then BK ⊂ Eβ(B`1).

(G2) Let a ∈ K. Put

zk =

{
21/rax(k+1)/2 if k is odd,
21/ryk/2 if k is even.

We have (zk) ∈ cw0 (X) and aG+H ⊂ Ez(B`1). Therefore aG+H ∈W∞(X).
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(G3) This is obvious from the de�nition of a relatively weakly ∞-compact set.

(G4) Let T ∈ L(X, Y ). Put (yk) = (Txk). To see that (yk) ∈ cw0 (Y ), let y∗ ∈ Y ∗.
Then limk→∞ y

∗(Txk) = 0, since

y∗(Txk) = (T ∗y∗)(xk),

(xk) ∈ cw0 (X), and T ∗y∗ ∈ X∗. Therefore T (G) ⊂ Ey(B`1).

It follows that W∞ = Θ(W∞) is a surjective operator ideal. Let us introduce a
norm on it.

De�nition 6.1.5. Let T ∈ W∞(X, Y ) and put

‖T‖W∞ = inf{‖x‖cw0 (Y ) | x ∈ cw0 (Y ), T (BX) ⊂ Ex(B`1)}.

We are ready to prove the main result of this section.

Proposition 6.1.6. W∞ is a Banach operator ideal with the norm ‖·‖W∞.

Proof. It is easy to see that ‖IK‖W∞ = 1. Indeed, put β = (1, 0, 0, . . .) ∈ cw0 (K) and
observe that BK ⊂ Eβ(B`1). Therefore ‖IK‖W∞ ≤ 1. For the opposite inequality,
let BK ⊂ Eβ(B`1) for some β ∈ cw0 (K). Then there exists a sequence α ∈ B`1 so
that 1 =

∑∞
n=1 αnβn. Therefore

1 ≤

∣∣∣∣∣
∞∑
n=1

αnβn

∣∣∣∣∣ ≤
∞∑
n=1

|αnβn| ≤ sup
n∈N
|βn|

∞∑
n=1

|αn| ≤ sup
n∈N
|βn|,

and we have shown that ‖IK‖W∞ ≥ 1.

Let S, T ∈ W∞(X, Y ). We need to prove that ‖S + T‖W∞ ≤ ‖S‖W∞ + ‖T‖W∞ .
For this, take ε > 0 and sequences x and y from cw0 (Y ) such that S(BX) ⊂ Ex(B`1)
and T (BX) ⊂ Ey(B`1) with ‖x‖ ≤ (1 + ε) ‖S‖W∞ and ‖y‖ ≤ (1 + ε) ‖T‖W∞ .

Assume that supn∈N ‖xn‖ 6= 0 and that supn∈N ‖yn‖ 6= 0 (otherwise, either S = 0
or T = 0, and the proof is trivial). Put

q :=
supn∈N ‖yn‖
supn∈N ‖xn‖

.

De�ne z ∈ cw0 (Y ) by

zn =

{
(q + 1)xk if n = 2k − 1,
q+1
q
yk if n = 2k.
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We check that
sup
n∈N
‖zn‖ ≤ sup

n∈N
‖xn‖+ sup

n∈N
‖yn‖.

For this purpose, we use the fact that

(q + 1) sup
n∈N
‖xn‖ =

q + 1

q
sup
n∈N
‖yn‖.

We have

sup
n∈N
‖zn‖ = max

{
(q + 1) sup

n∈N
‖xn‖,

q + 1

q
sup
n∈N
‖yn‖

}
=

= (q + 1) sup
n∈N
‖xn‖ = sup

n∈N
‖xn‖+ q sup

n∈N
‖xn‖ = sup

n∈N
‖xn‖+ sup

n∈N
‖yn‖.

It remains to show that (S + T )(BX) ⊂ Ez(B`1). Let z ∈ BX , let Sz = Ez(α) and
let Tz = Ez(β). De�ne γ ∈ B`1 by

γn =

{
1
q+1

αk if n = 2k − 1,
q
q+1

βk if n = 2k.

Then

(S + T )(x) =
∞∑
n=1

αnxn +
∞∑
n=1

βnyn =
∑

n=2k−1,
k∈N

γnzn +
∑
n=2k,
k∈N

γnzn =
∞∑
n=1

γnzn = Ez(γ).

Fix operators T ∈ L(X0, X), S ∈ W∞(X, Y ), and R ∈ L(Y, Y0). We prove
that ‖RST‖W∞ ≤ ‖R‖ ‖S‖W∞ ‖T‖. Let ε > 0 and let y ∈ cw0 (Y ) be such that
supn∈N ‖yn‖ ≤ ‖S‖W∞ + ε and S(BX) ⊂ Ey(B`1). Put (zn) := (‖T‖Ryn). Then
z ∈ cw0 (Y0) and

‖z‖cw0 (Y0) = sup
n∈N
‖zn‖ ≤ ‖T‖ ‖R‖ sup

n∈N
‖yn‖ ≤ ‖R‖ (‖S‖W∞ + ε) ‖T‖ .

Since

RST (BX0) ⊂ ‖T‖RS(BX) ⊂ ‖T‖R(E(yn)(B`1)) = ‖T‖E(Ryn)(B`1) = E(zn)(B`1),

we have ‖RST‖W∞ ≤ ‖z‖cw0 (Y0) and therefore ‖RST‖W∞ ≤ ‖R‖ ‖S‖W∞ ‖T‖.

We have shown that (W∞, ‖·‖W∞) is a normed operator ideal. To prove that
it is a Banach operator ideal, we need to show that each of the quasi-normed
components W∞(X, Y ) is complete. By Theorem 2.2.4, it su�ces to show that
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they are sequentially complete. For this, we show that a series
∑∞

k=1 Rk converges
in
(
W∞(X, Y ), ‖·‖W∞

)
whenever

∑∞
k=1 ‖Rk‖W∞ <∞.

By Proposition 2.2.5,

∞∑
k=1

‖Rk‖ ≤
∞∑
k=1

‖Rk‖W∞ <∞.

Therefore we may de�ne

R =
∞∑
k=1

Rk ∈ L(X, Y ).

It remains to show that
R ∈ W∞(X, Y ) (6.1)

and

lim
n→∞

∥∥∥∥∥R−
n∑
k=1

Rk

∥∥∥∥∥
W∞

= lim
n→∞

∥∥∥∥∥
∞∑

k=n+1

Rk

∥∥∥∥∥
W∞

= 0. (6.2)

Let ε > 0. Since the series
∑∞

k=1Rk is absolutely convergent, there exists an
increasing sequence (pm) of natural numbers such that

∞∑
k=pm

‖Rk‖W∞ <
ε

4m

for each m ∈ N. Put

Sm =

pm+1−1∑
k=pm

Rk

and note that ‖Sm‖W∞ < ε
4m

for each m ∈ N.

Clearly,

S :=
∞∑
k=1

Sk =
∞∑

k=m1

Rk = R−
m1−1∑
k=1

Rk.

We prove both (6.1) and (6.2) by showing that S ∈ W∞(X, Y ) and ‖S‖W∞ ≤ ε.

Let m ∈ N. Since Sm ∈ W∞(X, Y ) and ‖Sm‖W∞ ≤
ε

4m
, there exists a sequence

ym = (ymk ) ∈ cw0 (Y ) such that Sm(BX) ⊂ Eym(B`1) and

‖ym‖ = sup
k∈N
‖ymk ‖ ≤

ε

4m
.
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De�ne the sequence z as any permutation of the following elements:

2y1
1, 2y

1
2, . . . , 2y

1
n, . . . ,

4y2
1, 4y

2
2, . . . , 4y

2
n, . . . ,

. . . ,

2mym1 , 2
mym2 , . . . , 2

mymn , . . . ,

. . . ,

where zn = 2jnyjnin . To prove that z ∈ cw0 (Y ), we take any y∗ ∈ Y ∗, let δ > 0, and
show that the set {n ∈ N | |y∗(zn)| > δ} is �nite. It is so because

2m sup
k∈N
‖ymk ‖ ≤

2m

4m
−−−→
m→∞

0

and each of the sequences (ymk )k∈N contains only �nite number of elements such
that |2my∗(ymk )| > δ.

We claim that S(BX) ⊂ Ez(B`1). Let x ∈ BX . For every m ∈ N, we have
Smx =

∑
k∈N α

m
k y

m
k for some sequence (αmk )k∈N ∈ B`1 . Put

βn :=
1

2jn
αjnin .

Then β ∈ B`1 , because
∞∑
n=1

|βn| =
∞∑
m=1

∞∑
k=1

1

2m
|αmk | ≤ 1.

We have

Sx =
∞∑
m=1

Smx =
∞∑
m=1

∞∑
k=1

αmk y
m
k .

The double sequence (αmk y
m
k )m,k∈N is absolutely convergent. Indeed,

∞∑
m=1

∞∑
k=1

|αmk | ‖ymk ‖ ≤
∞∑
m=1

‖ym‖
∞∑
k=1

|αmk | ≤
∞∑
m=1

ε

4m
=
ε

3
.

Therefore it is unconditionally convergent and we may write

Sx =
∞∑
m=1

∞∑
k=1

αmk y
m
k =

∞∑
n=1

αjnin
2jn

(
2jnyjnin

)
=
∞∑
n=1

βnzn.

We have shown that S ∈ W∞(X, Y ). Also,

‖S‖W∞ ≤ ‖z‖ = sup
m∈N
‖zm‖ = sup

n,k∈N
‖2nynk‖ ≤ sup

n∈N
2n

ε

4n
≤ ε.
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6.2 Representing completely continuous operators

through weakly ∞-compact operators

Recall that K ⊂ V and K ⊂ W , but V and W are incomparable [Pi1, 1.11.8].
Consider the following well-known equality:

V = K ◦W−1,

which holds in the context of Banach operator ideals (see [Pi1, 3.2.3]). The main
tool in the proof of the latter formula in [Pi1, 3.2.3] is the simple fact that Ex : c∗0 →
X is weak∗-to-weak continuous if x ∈ cw0 (X).

The main result of this chapter is that V = W∞ ◦ W−1. We �rst prove that this
equality holds as operator ideals (see Theorem 6.2.4) and then prove that it holds
as Banach operator ideals (see Theorem 6.2.8). As an immediate consequence, this
provides an alternative proof for the result [DFLORT, Theorem 1] below. Recall
that X has the Schur property (is a Schur space) if weakly null sequences in X are
norm null.

Theorem 6.2.1 (see [DFLORT, Theorem 1]). Every weakly compact subset of a
Banach space X is contained in the closed convex hull of a weakly null sequence if
and only if X has the Schur property.

In [DFLORT], this result was concisely described as follows: the weak Grothendieck
compactness principle holds only in Schur spaces. In [DFLORT], Schauder basis
theory was used for the proof. In contrast, our method of proof relies on the
Davis�Figiel�Johnson�Peªczy«ski factorization theorem [DFJP].

Let us start with the following well-known fact, for which we include a proof for
completeness.

Proposition 6.2.2. If (xn) is a weakly null sequence in a Banach space X, then
Ex(B`1) is weakly compact and coincides with the closed absolutely convex hull of
(xn).

Proof. (cf. [AO1, proof of the �if� part of Theorem 3]). The set Ex(B`1) is clearly
absolutely convex. It is also weakly compact because Ex : c∗0 → X is weak∗-to-weak
continuous and B`1 = Bc∗0

is weak∗ compact by the Banach�Alaoglu theorem. It
is closed, since weakly closed convex sets are closed in the norm topology. Hence,
Ex(B`1) is a closed absolutely convex subset of X containing (xn). Since Ex(B`1) is
obviously contained in the closed absolutely convex hull of (xn), it coincides with
the latter set.
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Let X be a Banach space. By the Grothendieck compactness principle, every
relatively compact set is relatively weakly ∞-compact. This observation along
with Proposition 6.2.2 yields the following (known) result.

Corollary 6.2.3. K ⊂ W∞ ⊂ W as operator ideals.

From the proof of Proposition 6.3.1 below, it can be seen that these inclusions are
strict.

Theorem 6.2.4. The equality V = W∞ ◦ W−1 holds in the context of operator
ideals.

Proof. Since K ⊂ W∞, we clearly have that K ◦ W−1 ⊂ W∞ ◦ W−1. Since also
V ⊂ K ◦W−1 (this is the obvious �part� of the equality V = K ◦W−1),

V ⊂ W∞ ◦W−1.

It remains to show that
W∞ ◦W−1 ⊂ V .

Let X and Y be Banach spaces and let T ∈ W∞ ◦ W−1(X, Y ). Assume for
contradiction that T 6∈ V(X, Y ). Then there exists a weakly null sequence (xn)
in X such that (Txn) is not a null sequence in Y . Passing to a subsequence of
(xn), we may assume that ‖Txn‖ ≥ δ, n ∈ N, for some δ > 0. Hence, (Txn) is not
relatively compact.

Since Ex ∈ W(`1, X) (see Proposition 6.2.2), the Davis�Figiel�Johnson�Peªczy«ski
factorization theorem [DFJP] yields a re�exive space R and weakly compact op-
erators S : `1 → R with ‖S‖ = 1 and J : R → X such that Ex = JS. From the
de�nition ofW∞◦W−1, we get that TJ ∈ W∞(R, Y ) because T ∈ W∞◦W−1(X, Y )
and J ∈ W(R,X). Hence, there exists a weakly null sequence y in Y such that
TJ(BR) ⊂ Ey(B`1). In particular, Txn = TExen = TJSen ∈ Ey(B`1), n ∈ N,
where (en) is the unit vector basis in `1.

Denote by Ey the injective associate of Ey, which means that Ey = Eyq, where
q : `1 → Z := `1/ kerEy is the quotient mapping. Since ranTJ ⊂ ranEy = ranEy,
we can consider the linear operator E

−1

y TJ : R→ Z. This operator is bounded: if

r ∈ BR, then TJr = Eyα for some α ∈ B`1 and ‖E
−1

y TJr‖ = ‖qα‖ ≤ 1.

We prove that Z has the Schur property. Observe that kerEy is weak∗ closed in
`1 = c∗0 (because Ey is weak∗-to-weak continuous). Put W = (kerEy)⊥. Then
W⊥ = kerEy, since ((kerEy)⊥)⊥ = kerEy

w∗

by the bipolar theorem and kerEy is
w∗-closed. Therefore W ∗ = `1/W

⊥ = `1/ kerEy = Z. This proves that Z has the
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Schur property, since by Grothendieck's result [G1, Theorem 10] (see also Remark
6.2.6 below), the dual W ∗ of any closed subspace W of c0 has the Schur property.

Since R is re�exive and Z has the Schur property, L(R,Z) = K(R,Z). In partic-
ular, E

−1

y TJ and therefore also EyE
−1

y TJ = TJ are compact operators. It follows
that (Txn) = (TJSen) ⊂ (TJ)(BR) is relatively compact, a contradiction that
completes the proof.

Recall the following de�nition.

De�nition 6.2.5. A Banach space X is said to have the Dunford�Pettis property
if for each Banach space Y , every weakly compact linear operator T : X → Y is
completely continuous.

For equivalent characterizations of the Dunford�Pettis property, see, e.g., [Di1,
Theorem 1].

Remark 6.2.6. Let W be a closed subspace of c0. To prove that the dual W ∗ has
the Schur property, Grothendieck [G1, Theorem 10] �rst establishes that W has
the Dunford�Pettis property (DPP). Grothendieck's easy and beautiful proof can
be found in Diestel's survey article [Di1, pp. 25�26, see also Theorem 4]. Since
W does not contain a copy of `1, relying on Rosenthal's `1 theorem, Diestel [Di1,
Theorem 3] quickly concludes that W ∗ has the Schur property. Let us provide a
version of Grothendieck's proof [G1, pp. 171�172], showing that the DPP of W
implies that W ∗ has the Schur property.

Proof. To show thatW ∗ has the Schur property, let (w∗n) be a weakly null sequence
in W ∗. Consider the operator S ∈ L(W, c0) de�ned by Sw = (〈w∗n, w〉). It is
straightforward to verify that S∗ = E(w∗n). Since (w∗n) is weakly null in W ∗, E(w∗n)

is weak∗-to-weak continuous and thus S∗ ∈ W(c∗0,W
∗). By Gantmacher's theorem,

S ∈ W(W, c0).

The Dunford�Pettis property of W yields that S ∈ V(W, c0). By [Sw, p. 398,
Proposition 3], S is compact, since it is a completely continuous operator and the
dual of its domain, W ∗, is separable. Therefore, by Schauder's theorem, we have
S∗ ∈ K(`1,W

∗).

Assume to the contrary that the sequence (w∗n) is not null. Then it contains a
subsequence (w∗nk) satisfying that

∥∥w∗nk∥∥ > δ for each k ∈ N, where δ > 0. Since
(w∗n) ⊂ E(w∗n)(B`1), this subsequence (w∗nk) must contain a subsequence converging
to an element w∗ ∈ W ∗, where ‖w∗‖ ≥ δ. But this is a contradiction with the fact
that the sequence (w∗n) is weakly null.
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Let ε > 0 and let K be a relatively compact set in X. It is well known and easy to
see that in the proof of the Grothendieck compactness principle, one may choose
the sequence x = (xk) ∈ c0(X) so that

sup
n∈N
‖xn‖ ≤ sup

x∈K
‖x‖+ ε,

where K ⊂ Ex(B`1).

This allows us to make the following observation.

Proposition 6.2.7. Let T ∈ K(X, Y ). Then ‖T‖W∞ = ‖T‖.

Proof. The Grothendieck compactness principle yields that

‖T‖ = inf{supn∈N ‖xn‖ | x ∈ c0(Y ), T (BX) ⊂ Ex(B`1)}.

Therefore ‖T‖W∞ ≤ ‖T‖, since in�mum in the de�nition of ‖T‖W∞ is taken over a
larger set than in the previous formula. On the other hand, ‖T‖ ≤ ‖T‖W∞ because
W∞ is a Banach operator ideal.

For the proof of the next theorem, recall that K = V ◦ W as Banach operator
ideals (see [Pi1, 3.1.3]).

Theorem 6.2.8. The equality V = W∞ ◦ W−1 holds in the context of Banach
operator ideals.

Proof. Fix an operator T ∈ V(X, Y ) =W∞ ◦W−1(X, Y ). By de�nition,

‖T‖W∞◦W−1 = sup{‖TW‖W∞ | W ∈ W(X0, X), ‖W‖W ≤ 1},

where the supremum is taken over all Banach spaces X0.

Therefore TW ∈ V ◦W(X0, Y ) = K(X0, Y ) for any W ∈ W(X0, X). According to
Proposition 6.2.7,

‖TW‖W∞ = ‖TW‖ = ‖TW‖K .

Therefore

‖T‖W∞◦W−1 = sup{‖TW‖W∞ | W ∈ W(X0, X), ‖W‖W ≤ 1} =

= sup{‖TW‖K | W ∈ W(X0, X), ‖W‖W ≤ 1} = ‖T‖K◦W−1 = ‖T‖V .
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6.3 Applications

It is well known that K ⊂ V . As we see now, W∞ lies strictly between K and V .

Proposition 6.3.1. K ⊂ W∞ ⊂ V as Banach operator ideals, and both of the
inclusions are strict.

Proof. Observe that W∞ ⊂ W∞ ◦ W−1 = V by Theorems 6.2.4 and 6.2.8. The
inclusion K ⊂ W∞ was observed in Corollary 6.2.3 (as operator ideals) and Propo-
sition 6.2.7 (as Banach operator ideals).

To see that K 6= W∞, consider the identity embedding j : `1 → c0 that is not
compact but is weakly ∞-compact, because j = E(en), where (en) is the unit
vector basis of c0. On the other hand, the identity operator on `1 is completely
continuous (because `1 has the Schur property) but since it is not weakly compact,
it is not weakly ∞-compact either (recall that W∞ ⊂ W). (Another way to see
that W∞ 6= V is to use that W∞ = Wsur

∞ , but V 6= Vsur = L.) Now it is easy to
see that the inclusion W∞ ⊂ W in Corollary 6.2.3 is strict: the identity operator
on `2 is weakly compact but since it is not completely continuous, it is not weakly
∞-compact.

Let X and Y be Banach spaces and T ∈ L(X, Y ). It is well known (and clear
thanks to the Eberlein��mulian theorem) that T ∈ V(X, Y ) if and only if T takes
relatively weakly compact subsets of X into relatively compact subsets of Y .

Theorem 6.3.2. Let X and Y be Banach spaces and T ∈ L(X, Y ). Then T ∈
V(X, Y ) if and only if T takes relatively weakly compact subsets of X into relatively
weakly ∞-compact subsets of Y .

Proof. The �only if� part is obvious because relatively compact sets are relatively
weakly ∞-compact. From the de�nition of W∞ ◦ W−1, it is clear that if T takes
relatively weakly compact sets into relatively weakly ∞-compact sets, then T ∈
W∞ ◦W−1(X, Y ). By Theorem 6.2.4, this means that T ∈ V(X, Y ).

Let A be an operator ideal. Recall that the space ideal Space(A) is de�ned as
the class of all Banach spaces X such that the identity operator on X belongs to
A(X,X). If A and B are operator ideals, then obviously X ∈ Space(A ◦ B−1) if
and only if B(Z,X) ⊂ A(Z,X) for all Banach spaces Z.

From the de�nitions, it is clear that Space(V) is the class of all Banach spaces with
the Schur property. Theorem 6.2.4 yields that

Space(V) = Space(W∞ ◦W−1).
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This can be reformulated as follows. Note that the equivalence (i) ⇔ (ii) below is
precisely Corollary 6.2.1 and, as was mentioned in the beginning of Section 6.2, it
is due to [DFLORT, Theorem 1].

Theorem 6.3.3. For a Banach space X, the following statements are equivalent:

(i) X has the Schur property;

(ii) the weak Grothendieck compactness principle holds in X;

(iii) W(Z,X) ⊂ W∞(Z,X) for all Banach spaces Z.

Proof. We already observed that (i) ⇔ (iii) thanks to Theorem 6.2.4. The impli-
cations (i) ⇒ (ii) ⇒ (iii) are obvious. (But (i) ⇔ (ii) is also the special case of
Theorem 6.3.2, when T is the identity operator on X.)

Remark 6.3.4. By the Davis�Figiel�Johnson�Peªczy«ski factorization theorem, (iii)
is equivalent to

(iv) all injective operators from re�exive Banach spaces to X are weakly ∞-
compact.



Chapter 7

Constructing quasi-Banach operator

ideals from sequence spaces and

systems of sequences

In this chapter, we propose a general method for constructing generating
systems of sets and quasi-Banach operator ideals. This method is inspired
by the construction of generating systems of sets K(p,r) and W∞, and the
corresponding operator ideals K(p,r) and W∞. This construction produces
a quasi-Banach operator ideal from a BK-space g and a normed system of
sequences h, provided that g and h satisfy certain criteria. Among other
examples, we prove that the operator ideals W(p,1) and U(p,1) are quasi-
Banach operator ideals (for 1 ≤ p <∞).

7.1 Summary of this chapter

The aim of this chapter is to provide a new method for constructing generating sys-
tems of sets and quasi-Banach operator ideals. This method relies on the classical
theory of BK-spaces and their Köthe-duals. The de�nitions and relevant aspects
of the latter theory are given in Section 7.2.

In Section 7.3, we give the de�nition of a normed system of sequences h (see
De�nition 7.3.8) and provide several examples of them (see Examples 7.3.11, 7.3.12,
and 7.3.13).

Section 7.4 starts with the de�nition of a g-compatible (for a BK-space g) system

103
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of sequences h (see De�nition 7.4.3). Then we construct the system of sets Λ[g,h]
(see De�nition 7.4.4) and prove that it is a generating system of sets, provided
that g and h satisfy certain properties (see Theorem 7.4.9). We observe that
K(∞,1) = Λ[`1, c0] and K(p,r) = Λ[`r, `p], where 1 ≤ p < ∞ and 1 ≤ r ≤ p∗ (see
Proposition 7.4.5).

Another method for constructing systems of sets was put forth by M. Gupta and
A. Bhar in [GB], encompassing the system K(p,p∗) of relatively (p, p∗)-compact sets.
Although there are similarities between these approaches, there are also substantial
di�erences (see Remark 7.4.6). Nonetheless, we prove in Proposition 7.4.7 that our
construction encompasses all of the systems of sets produced by the approach in
[GB].

In Section 7.5, we study the surjective operator ideal Θ(Λ[g,h]) (we use the nota-
tion ΘΛ[g,h] for conciseness). We can equip it with a quasi-norm ‖·‖[g,h], provided
that g and h satisfy certain properties (see Theorem 7.5.1). For the operator ideal
K(p,r), this quasi-norm coincides with the s-norm ‖·‖K(p,r)

from Theorem 4.2.12 and
for the operator idealW∞, it coincides with the norm ‖·‖W∞ from De�nition 6.1.5.

It was proven in [GB, Theorem 3.10], that under suitable assumptions on a BK-
space λ, the system Kλ of λ-compact operators (a notion, which encompasses the
Banach operator ideal K(p,p∗), where 1 ≤ p ≤ ∞) is a quasi-normed operator ideal
with a quasi-constant of 8. In Section 7.8, we prove that this result is encompassed
by Theorem 7.5.1.

In Section 7.6, we prove that under some additional assumptions on g and h,
the operator ideal ΘΛ[g,h] becomes a quasi-Banach operator ideal (see Theo-
rem 7.6.10).

In Section 7.7, we provide several examples of quasi-Banach operator ideals pro-
duced by our construction. We start with the prototypical example of K(p,r) (see
Proposition 7.7.1). Another example, the quasi-Banach operator ideal ΘΛ[`1,m]
(see Theorem 7.7.2), is di�erent from any of the operator ideals K(p,r), since it
contains non-compact operators (see Proposition 7.4.12).

In [AO2], the notion of unconditionally (p, r)-compact operators was introduced.
The operator ideal of unconditionally (p, r)-compact operators is denoted by U(p,r).
We prove thatW(p,1) = ΘΛ[`1, `

w
p ] and U(p,1) = ΘΛ[`1, `

u
p ] are quasi-Banach operator

ideals (see Theorems 7.7.4 and 7.7.5, respectively). Finally, we recall some known
results about the Banach operator idealsW(p,p∗) and U(p,p∗) (see Remarks 7.7.6 and
7.7.7).

We conclude this summary with a few general remarks. On the positive side,
the construction provided in this chapter simpli�es the process of showing that



7.2. SEQUENCE SPACES AND THEIR KÖTHE-DUALS 105

a given collection of operators ΘΛ[g,h] is a quasi-Banach operator ideal. Indeed,
what remains is to ensure that the given g and h satisfy the necessary properties
(see the various examples in Section 7.7), while the �heavy-weight lifting� is done
by Theorems 7.4.9, 7.5.1, and 7.6.10. However, there is a catch. In all of the
examples provided in Section 7.7, the obtained quasi-constant κ is equal to 2.
However, this is not optimal in general; for example, in the case of the operator
ideal K(p,r) of (p, r)-compact operators, this constant seems to be optimal only if
p = r = 1 (see remarks following Theorem 4.2.10). The quasi-constant κ = 2 is
also suboptimal for the operator ideal W(∞,1), since it is even a Banach operator
ideal (recall Proposition 6.1.6 and compare it to Proposition 7.7.3). For the time
being, we are not aware of a method for calculating the best quasi-constant for a
given operator ideal ΘΛ[g,h] which would only depend on the immediate properties
of g and h.

7.2 Sequence spaces and their Köthe-duals

We begin by giving some basic de�nitions related to sequence spaces. Let ω denote
the vector space of all sequences over the �eld K. Denote by fin the smallest
subspace of ω containing all of the unit vectors en; i.e., fin = span{en | n ∈ N}
(in literature, the symbol φ is commonly used instead). A linear subspace g of ω is
called a sequence space, if it contains the vector space fin (the latter assumption is
for our convenience only, as we will need to consider only such spaces; in literature,
the de�nitions are usually given without this assumption).

The following de�nition is due to G. Köthe and O. Toeplitz [KT]. We refer the
reader to [K, �30] for an overview of properties of sequence spaces and their α-
duals. A wide range of examples of sequence spaces may be found, e.g., in [K,
�30], [KG, p. 48], and [Bo].

De�nition 7.2.1. Let g be a sequence space. The α-dual or Köthe-dual of g is
the space g× de�ned as

g× =

{
β = (βk) ∈ ω :

∞∑
k=1

|αkβk| <∞, for all α = (αk) ∈ g

}
.

In the literature, the notations gα and g× are used interchangeably.

De�nition 7.2.2. A sequence space g is said to be solid (or normal) if for every
(αk) ∈ g it also contains every sequence (βk) satisfying |βk| ≤ |αk| for each k ∈ N.

The following result is well known and easy to see.
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Proposition 7.2.3. Let g be a sequence space. Then the space g× is a solid
sequence space.

De�nition 7.2.4. The k-th coordinate map Pk : g → K is de�ned by Pk(α) = αk,
where α ∈ g and k ∈ N.

A sequence space g equipped with a norm is called a normed sequence space. If g
is complete with respect to this norm, then it is called a Banach sequence space.

De�nition 7.2.5 (see [Bo, De�nition 7.3.1]). A Banach sequence space is said to
be a BK-space provided that each of the projection maps Pk is continuous.

The following de�nition and theorem are given in [W, Theorem 4.3.15] in the more
general setting of multiplier spaces M(g, h). The latter notion encompasses the
notion of the Köthe-dual g× for h = `1.

De�nition 7.2.6. For a BK-space (g, ‖·‖g), the dual norm on g× is de�ned as

∥∥β∥∥
g×

= sup

{
∞∑
k=1

|αk| |βk|
∣∣∣∣α ∈ g, ‖α‖g ≤ 1

}
.

Theorem 7.2.7 (see [W, Theorem 4.3.15]). Let (g, ‖·‖g) be a BK-space. Then the
norm ‖·‖g× is well de�ned and the space (g×, ‖·‖g×) is a BK-space.

De�nition 7.2.8 (see [GB, p. 357]). Let g be a sequence space. A norm ‖·‖g on
g is said to be monotone if ‖α‖g ≤

∥∥β∥∥
g
for every α, β ∈ g with |αk| ≤ |βk| for

each k ∈ N.

The following result is well known and easy to see.

Proposition 7.2.9. Let g be a BK-space. The norm ‖·‖g× of g× is monotone.

Each of the classical sequence spaces `p (where 1 ≤ p ≤ ∞) and c0 is a BK-space.
Their Köthe-duals are given as follows.

Example 7.2.10. Let 1 ≤ p ≤ ∞. Then

(i) `×p = `p∗ ;

(ii) c×0 = `1

as BK-spaces.
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In [K, �30], the following observations and de�nition are given.

Proposition 7.2.11. Let g and h be sequence spaces. It holds that

(i) if g ⊂ h, then h× ⊂ g×;

(ii) g×× := (g×)× ⊃ g.

De�nition 7.2.12. A sequence space g is said to be perfect if g = g××.

Proposition 7.2.13. Let g be a sequence space. Then

(i) g× is perfect;

(ii) g×× is the smallest perfect space containing g.

Example 7.2.14. Let 1 ≤ p ≤ ∞. Each of the BK-spaces `p and c0 is a solid space
with a monotone norm. Moreover, the spaces `p are perfect.

The following result is well known. We include a proof for completeness.

Proposition 7.2.15. Let g be a sequence space and let β ∈ g. Then∥∥β∥∥
g××
≤
∥∥β∥∥

g
.

Proof. Clearly, the claim holds if β = 0. Assume that β 6= 0. Recall that

∥∥β∥∥
g××

= sup

{
∞∑
k=1

|αk| |βk|
∣∣∣∣α ∈ g×, ‖α‖g× ≤ 1

}
.

It su�ces to prove that
∞∑
k=1

|αk| |βk| ≤
∥∥β∥∥

g

for each α ∈ Bg× . This follows from the de�nition of the norm ‖α‖g× . Indeed,

∞∑
k=1

|αk|
|βk|∥∥β∥∥

g

≤ ‖α‖g× ≤ 1.

The normed vector-valued sequence space gs(X), de�ned below, has been intro-
duced and studied in [Ra1], [Ra2], under di�erent notation; we follow the notation
used in [GB].
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De�nition 7.2.16 (cf. [GB, p. 358]). Let g be a solid sequence space and let X
be a Banach space. De�ne the space gs(X) by

gs(X) = {(xk) ⊂ X | (‖xk‖) ∈ g}.

Denote by gs the corresponding system of sequences.

Proposition 7.2.17 (cf. [GB, p. 358]). Let g be a solid sequence space with a
monotone norm ‖·‖g and let X be a Banach space. The space gs(X) becomes a
normed space with respect to the norm

‖x‖gs(X) =
∥∥(‖xk‖)k∈N

∥∥
g
,

where x ∈ gs(X). Moreover, the space gs(X) contains the space fins(X).

Proof. Let X be a Banach space, let x, y ∈ gs(X), and let α ∈ K. Let us prove
that αx+ y ∈ gs(X) and

‖αx+ y‖gs(X) ≤ |α| ‖x‖gs(X) + ‖y‖gs(X) .

Clearly,
(‖αxk‖+ ‖yk‖)k∈N ∈ g.

Since g is solid and the norm ‖·‖g is monotone, we have

(‖αxk + yk‖)k∈N ∈ g

and

‖αx+ y‖gs(X) = ‖(‖αxk + yk‖)k‖g ≤ ‖(‖αxk‖+ ‖yk‖)k‖g ≤ |α| ‖x‖gs(X)+‖y‖gs(X) .

To see that the space gs(X) contains the space fins(X), recall that the space g
contains the space fin.

We denote fin(X) = fins(X). For conciseness, we use the notation g×s := (g×)s

in the remainder of this chapter. We have the following (obvious) examples.

Example 7.2.18. Let 1 ≤ p ≤ ∞. Then

(i) `p = `sp;

(ii) c0 = cs0.
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Remark 7.2.19. In [GB, p. 358], the normed space gs(X) is de�ned without the
assumption that g is solid. However, this seems to be an oversight � without the
assumption of, e.g., solidness, the component gs(X) may fail to be a linear space
for a given space X. To see this, consider the space

m0 = span{A},

where A is the set of all sequences of zeros and ones (see [KG, p. 48]). Clearly, it
is a normed sequence space with respect to the supremum norm of m. Consider
X = C. Take elements αk, βk ∈ SC so that αk + βk = 1

2k
for each k ∈ N. Then

α = (α1, α2, . . .) ∈ ms
0(C)

and
β = (β1, β2, . . .) ∈ ms

0(C).

However,

α + β =

(
1

2
,
1

4
,
1

8
, . . .

)
6∈ ms

0(C).

7.3 Normed systems of sequences

In this section, we give the de�nition of a normed systems of sequences h (see
De�nition 7.3.8) and provide several examples of them (see Examples 7.3.11, 7.3.12,
and 7.3.13). For a BK-space g, we give the de�nition of a g-compatible system of
sequences h (see De�nition 7.4.3).

Denote the set of all increasing functions from N to itself by Inc(N). Let us start
with the following de�nition (the notation is inspired by [Pi1, A.4.3]).

De�nition 7.3.1. Let π ∈ Inc(N) and let g be a sequence space. De�ne the
operator Qg

π : g → ω by
Qg
π(α) = (απ(k)).

The operator Jgπ : g → ω is given by

Jgπ(α) = (απ−1(k)),

where α∅ := 0.

For the sake of clarity, we include the following example.



110 7. CONSTRUCTING QUASI-BANACH OPERATOR IDEALS

Example 7.3.2. Let g be a sequence space and let π ∈ Inc(N) be given by π(k) = 2k.
Then

Qg
π(α) = (α2, α4, . . .)

and
Jgπ(α) = (0, α1, 0, α2, . . .).

Clearly, the operators Qg
π and Jgπ are always linear.

De�nition 7.3.3. Let h be a system of sequences and let X be a Banach space.
The operators Qh(X)

π and Jh(X)
π , acting from the component h(X) to ωs(X), are

de�ned analogously to their scalar counterparts Qg
π and Jgπ .

De�nition 7.3.4. Let (g, ‖·‖) be a normed sequence space and let c ≥ 1. Then

(i) g is contractible if Qg
π(g) ⊂ g and Qg

π ∈ L(g) for every π ∈ Inc(N);

(ii) moreover, g is c-boundedly contractible if ‖Qg
π‖ ≤ c for every π ∈ Inc(N);

(iii) g is expandable if Jgπ(g) ⊂ g and Jgπ ∈ L(g) for every π ∈ Inc(N);

(iv) moreover, g is c-boundedly expandable if ‖Jgπ‖ ≤ c for every π ∈ Inc(N);

(v) g is shiftable if it is contractible and expandable;

(vi) g is c-boundedly shiftable if it is c-boundedly contractible and c-boundedly
expandable.

If c may be taken to be 1 in the above de�nitions, then we say that g is metrically
contractible, metrically expandable, or metrically shiftable, respectively.

In the context of systems of sequences, let us give the following de�nition.

De�nition 7.3.5. Let c ≥ 1 and let h be a system of sequences, where every
component h(X) is a linear subspace of ωs(X), equipped with a norm ‖·‖h(X).
Then

(i) h is expandable if for every π ∈ Inc(N) there exists a constant Cπ ≥ 1 such
that Jh(X)

π (h(X)) ⊂ h(X) and
∥∥∥Jh(X)

π

∥∥∥ ≤ Cπ for every Banach space X;

(ii) moreover, h is c-boundedly expandable if Cπ ≤ c for every π ∈ Inc(N).

The system of sequences h is said to be metrically expandable if it is 1-boundedly
expandable.
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Example 7.3.6. Let 1 ≤ p ≤ ∞. The following BK-spaces are metrically shiftable.

(i) `p;

(ii) c0.

Proposition 7.3.7. Let g be a BK-space.

(i) If g is c-boundedly contractible, then g× is c-boundedly expandable;

(ii) if g is c-boundedly expandable, then gs is c-boundedly expandable.

Proof. (i). Let β ∈ g×. Let us show that∥∥∥Jg×π (β)
∥∥∥
g×

=
∥∥(βπ−1(k))

∥∥
g×
≤ c

∥∥β∥∥
g×
.

Observe that

∥∥(βπ−1(k))
∥∥
g×

= sup
(αj)∈Bg

∞∑
j=1

∣∣βπ−1(j)

∣∣ |αj| = sup
(αk)∈Bg

∞∑
k=1

|βk|
∣∣απ(k)

∣∣ =

= sup
(γk)∈Qgπ(Bg)

∞∑
k=1

|βk| |γk| ≤ sup
(γk)∈‖Qgπ‖·Bg

∞∑
k=1

|βk| |γk| = ‖Qg
π‖
∥∥β∥∥

g×
≤ c

∥∥β∥∥
g×
.

Clearly, (ii) follows from the de�nitions.

Let us give the main de�nition of this section.

De�nition 7.3.8. We say that a system of sequences h is a normed system of
sequences if:

(NS1) every component h(X) is a linear subspace of ωs(X) equipped with a norm
‖·‖h(X);

(NS2) fin(K) ⊂ h(K);

(NS3) if (xk) ∈ h(X), Y is a Banach space, and T ∈ L(X, Y ), then (Txk) ∈ h(Y )
and

‖(Txk)‖h(Y ) ≤ ‖T‖ ‖(xk)‖h(X) .

Proposition 7.3.9. Let g be a solid BK-space with a monotone norm ‖·‖g. Then
the system of sequences gs is a normed system of sequences.
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Proof. Let us verify the properties (NS1)�(NS3).

Proposition 7.2.17 yields that gs(X) is a normed space and that fin(K) ⊂ gs(K)
(i.e., (NS1) and (NS2)). To show (NS3), let x ∈ gs(X) and T ∈ L(X, Y ). Then
(‖Txk‖) ∈ g, since

(‖T‖ ‖xk‖)k∈N = ‖T‖ (‖xk‖)k∈N ∈ g

and g is solid. Therefore (Txk) ∈ gs(Y ). Similarly,

‖(Txk)‖gs(Y ) =
∥∥(‖Txk‖)k∈N

∥∥
g
≤ ‖T‖

∥∥(‖xk‖)k∈N
∥∥
g

= ‖T‖ ‖(xk)‖gs(Y ) ,

since ‖·‖g is monotone.

Corollary 7.3.10. Let g be a BK-space. Then the system of sequences g×s is a
normed system of sequences.

Proof. It su�ces to recall that g× is a solid space with a monotone norm ‖·‖g×
(see Propositions 7.2.3 and 7.2.9) and apply Proposition 7.3.9.

Example 7.3.11. Let 1 ≤ p ≤ ∞. The following are metrically expandable normed
systems of sequences.

(i) `p;

(ii) c0.

Proof. By Example 7.2.14 and Proposition 7.3.9, `p and c0 are normed systems
of sequences. Proposition 7.3.7 and Example 7.3.6 yield that they are metrically
expandable.

Consider also the following examples.

Example 7.3.12. Let 1 ≤ p <∞. The systems cw0 and `wp are metrically expandable
normed systems of sequences.

Proof. Let us �rst prove the claim for the system `wp .

Property (NS1) follows from the fact that `wp (X) is a subspace of `∞(X) for every
Banach space X.

Property (NS2) holds, since fin(K) ⊂ `p(K) = `wp (K).

To prove (NS3), let x ∈ `wp (X) and T ∈ L(X, Y ). We show that (Txk) ∈ `wp (Y )
and

‖(Txk)‖`wp (Y ) ≤ ‖T‖ ‖x‖`wp (X) .
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Clearly, it su�ces to prove that
∥∥(y∗(Txk))∥∥`p ≤ ‖T‖ ‖x‖`wp (X) for each y

∗ ∈ BY ∗ .
Let y∗ ∈ BY ∗ . Then∥∥(y∗(Txk))∥∥`p = ‖(T ∗y∗xk)‖`p ≤ ‖T

∗y∗‖ ‖x‖`wp (X) ≤ ‖T‖ ‖x‖`wp (X) ,

since T ∗y∗ ∈ X∗ and ‖T ∗y∗‖ ≤ ‖T ∗‖ = ‖T‖.

To see that `wp is metrically expandable, let x ∈ `wp (X) and π ∈ Inc(N). It follows
easily from the de�nitions that (xπ−1(k)) ∈ `wp (X) and∥∥(xπ−1(k)

)∥∥
`wp (X)

= ‖x‖`wp (X) .

The proof for the system cw0 is essentially the same. The only substantial di�erence
is in the proof of property (NS3). For this, let x ∈ cw0 (X) and T ∈ L(X, Y ) be
given. Then (Txk) ∈ cw0 (Y ) and

‖(Txk)‖cw0 (Y ) = sup
k∈N
‖Txk‖ ≤ ‖T‖ sup

k∈N
‖xk‖ = ‖T‖ ‖x‖cw0 (X) .

As a �nal example of this section, let us consider the system `up of unconditionally
p-summable sequences, which resides �between� the systems `p and `wp (see, e.g.,
[DF, 8.2, 8.3]; we follow [BCFP] in our terminology). The space `up(X) is de�ned
as the (closed) subspace of `wp (X), equipped with the norm of `wp (X), and formed
by (xn) ∈ `wp (X) satisfying (xn) = limN→∞(x1, . . . , xN , 0, 0, . . .) in `wp (X). The
space `up(X) was introduced and thoroughly studied by Fourie and Swart [FS] in
1979.

Example 7.3.13. Let 1 ≤ p <∞. The system `up is a metrically expandable normed
system of sequences.

Proof. Clearly, properties (NS1) and (NS2) are satis�ed.

To show (NS3), let x ∈ `up(X) and T ∈ L(X, Y ). Note that we only need to
prove that (Txk) ∈ `up(Y ), since the norms of `up(X) and `wp (X) coincide. By
Example 7.3.12,

‖(0, . . . , 0, TxN+1, TxN+2, . . .)‖`wp (Y ) ≤ ‖T‖ ‖(0, . . . , 0, xN+1, xN+2, . . .)‖`wp (X)

This proves that (Txk) ∈ `up(Y ).

To see that `up is metrically expandable, let x ∈ `up(X) and π ∈ Inc(N). It follows
easily from the de�nitions that (xπ−1(k)) ∈ `up(X).
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7.4 Constructing systems of sets

In this section, we give the notion of a g-compatible system of sequences (see
De�nition 7.4.3) and show how to construct a system of sets Λ[g,h] from a BK-
space g and a g-compatible normed system of sequences h (see De�nition 7.4.4).
We prove that the system of sets Λ[g,h] produced in this way is a generating system
of sets, provided that g and h satisfy certain properties (see Theorem 7.4.9).

In Remark 7.4.6, we compare the method of constructing systems of sets from
[GB] with our approach. We prove in Proposition 7.4.7 that our construction
encompasses all of the examples produced by their approach. We end this section
with several examples.

Let us extend De�nition 4.1.2.

De�nition 7.4.1. Let g be a BK-space. For every x ∈ g×s(X), de�ne an operator
Ex : g → X by

Ex(α) =
∞∑
k=1

αkxk.

Lemma 7.4.2. Let g be a BK-space and let x ∈ g×s(X). Then Ex ∈ L(g,X).

Proof. Clearly, Ex is a linear operator. To show that it is bounded, let α ∈ Bg.
Then

‖Ex(α)‖ =

∥∥∥∥∥
∞∑
k=1

αkxk

∥∥∥∥∥ ≤
∞∑
k=1

|αk| ‖xk‖ ≤
∥∥(‖xk‖)k∈N

∥∥
g×

= ‖x‖g×s(X) .

De�nition 7.4.3. Let g be a BK-space. We say that a system of sequences h is
g-compatible if h(X) ⊂ g×s(X) for every Banach space X.

De�nition 7.4.4. Let a BK-space g be given along with a g-compatible system of
sequences h. De�ne a system of sets Λ[g,h] in the following way: a set K belongs
to the component Λ[g,h](X) whenever there exists a sequence x ∈ h(X) such that

K ⊂ Ex(Bg).

The familiar system K(p,r) is a special case of the above construction, as demon-
strated by the following proposition.

Proposition 7.4.5. Let 1 ≤ p ≤ ∞ and 1 ≤ r ≤ p∗. Put g = `r and h = `p
(where h = c0, if p =∞). Then K(p,r) = Λ[g,h].
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Proof. Essentially, we only need to check that the system h is g-compatible. If
p =∞, then this follows from the fact that c0 ⊂ `×1 . Similarly, if 1 ≤ p <∞, then
this is clear from the fact that `r ⊂ `p∗ = `×p .

Having given a method for constructing systems of sets, we compare it with the
method for constructing λ-compact systems of sets introduced in [GB].

Remark 7.4.6. In [GB, De�nition 3.1], Gupta and Bhar started from a BK-space
λ and de�ned for every x ∈ λs(X) the λ-convex hull of the sequence x by

λ− co(x) =

{
∞∑
k=1

αkxk
∣∣α ∈ Bλ×

}
.

A set K was de�ned to be λ-compact if there exists a sequence x ∈ λs(X) such
that

K ⊂ λ− co(x).

Comparing the previous remark with De�nition 7.4.1, one observes that we re-
quired x ∈ λ×s(X) and α ∈ λ instead of x ∈ λs(X) and α ∈ λ×. Nonetheless, the
systems of λ-compact sets (in the sense of Gupta and Bhar) are encompassed by
our construction, as demonstrated by the following result.

Proposition 7.4.7. Let λ be a BK-space. Then the system Λ[λ×, λs] coincides
with the system of λ-compact sets.

Proof. According to Theorem 7.2.7, λ× is a BK-space. Recall that λ ⊂ λ××;
therefore the system λs ⊂ λ××s is λ×-compatible and the system Λ[λ×, λs] is well
de�ned. It remains to observe that the sets of the system Λ[λ×, λs] are exactly the
λ-compact sets.

Proposition 7.4.8. Let a BK-space g be given along with a g-compatible system
of sequences h. Then Λ[g,h] ≤ B.

Proof. Let us verify that a set K ∈ Λ[g,h](X) is bounded. By de�nition, there
exists a sequence x ∈ h(X) ⊂ g×s(X) so that K ⊂ Ex(Bg). Take an element y
from the set K; then y =

∑∞
k=1 αkxk for some α ∈ Bg. Therefore

‖y‖ =

∥∥∥∥∥
∞∑
k=1

αkxk

∥∥∥∥∥ ≤
∞∑
k=1

|αk| ‖xk‖ ≤ ‖x‖g×s(X) ,

which proves that the set K is bounded.
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Theorem 7.4.9. Let an expandable BK-space g be given along with a g-compatible
expandable normed system of sequences h. Then Λ[g,h] is a generating system of
sets.

Proof. We prove that the system of sets Λ[g,h] satis�es properties (G0)�(G4).

(G0). This has been proved in Proposition 7.4.8.

(G1). We need to show that BK ∈ Λ[g,h](K). De�ne

β = (‖e1‖g , 0, 0, . . .) ∈ fin(K) ⊂ h(K) ⊂ g×s(K).

Take c ∈ BK and denote
α =

c

‖e1‖g
e1 ∈ Bg.

Then

c =
∞∑
k=1

αkβk ∈ Eβ(Bg).

Thus we have shown that BK ∈ Eβ(Bg).

(G2). Let c ∈ K and let G,H ∈ Λ[g,h](X). By de�nition, there exist sequences
x ∈ h(X) and y ∈ h(X) such that G ⊂ Ex(Bg) and H ⊂ Ey(Bg). Put π1(k) =
2k − 1 and π2(k) = 2k (where k = 1, 2, . . .). De�ne

z = 2
(
c
∥∥Jgπ1∥∥ Jh(X)

π1
(x) +

∥∥Jgπ2∥∥ Jh(X)
π2

(y)
)
.

Then z ∈ h(X). Let us verify that

cG+H ⊂ Ez(Bg) =

{
∞∑
k=1

γkzk | γ ∈ Bg

}
.

Take w = cw1 + w2, where w1 =
∑∞

k=1 αkxk and w2 =
∑∞

k=1 βkyk with α, β ∈ Bg.
Put

γ =
1

2

(
Jgπ1(α)

‖Jgπ1‖
+
Jgπ2(β)

‖Jgπ2‖

)
.

Then

w = c
∞∑
k=1

αkxk +
∞∑
k=1

βkyk =
∞∑
k=1

cαπ−1
1 (k)xπ−1

1 (k) +
∞∑
k=1

βπ−1
2 (k)yπ−1

2 (k) =
∞∑
k=1

γkzk.

It remains to notice that

‖γ‖g ≤
1

2

(
‖α‖g +

∥∥β∥∥
g

)
≤ 1.
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(G3). Trivial and omitted.

(G4). Let G ∈ Λ[g,h](X). By de�nition, G ⊂ Ex(Bg), where x ∈ h(X). Therefore

T (G) ⊂ TEx(Bg) = E(Txk)(Bg),

where (Txk) ∈ h(Y ) by (NS3). We have shown that T (G) ∈ Λ[g,h](Y ).

Corollary 7.4.10. Let g be a shiftable BK-space. Then Λ[g, g×s] ∈ GSet.

Proof. By Corollary 7.3.10 and Proposition 7.3.7, g×s is an expandable normed
system of sequences. The claim follows from Theorem 7.4.9, since g×s is clearly
g-compatible.

Let us re-prove the prototypical example that K(p,r) ∈ GSet.

Proposition 7.4.11. Let 1 ≤ p ≤ ∞ and 1 ≤ r ≤ p∗. Put g = `r and h = `p
(where h = c0, if p =∞). Then K(p,r) = Λ[g,h] ∈ GSet.

Proof. By Proposition 7.4.5, K(p,r) = Λ[g,h]. It remains to observe that by Exam-
ple 7.3.6, g is an expandable BK-space and by Example 7.3.11, h is an expandable
normed system of sequences.

Recall that, by Remark 4.1.4, Λ[m, `1] = Λ[c0, `1]. Observe that we have already
considered all of the possible combinations that can be obtained from the �classical�
sequence spaces `p, c0, m, and their vector counterparts, except for the system
Λ[`1,m]. Let us consider it now.

Proposition 7.4.12. The generating system of sets Λ[`1,m] contains the system
K = K(∞,1) = Λ[`1, c0] of all relatively compact sets, but does not coincide with it.

Proof. Clearly, Λ[`1, c0] ≤ Λ[`1,m]. Observe that

B`1 = Ee(B`1) ∈ Λ[`1,m](`1),

where e = (1, 1, . . . , 1, . . .) ∈m(`1). However, B`1 is not relatively compact.

Let 1 ≤ p <∞. Observe that W(p,1) = Λ[`1, `
w
p ] and W∞ = Λ[`1, c

w
0 ].

Theorem 7.4.9 together with Example 7.3.12 yields the following result. For proof,
it su�ces to observe that `wp (X) ⊂m(X) for every Banach space X.

Proposition 7.4.13. Let 1 ≤ p <∞. Then W(p,1) = Λ[`1, `
w
p ] ∈ GSet.
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Observe that Theorem 7.4.9 together with 7.3.12 proves once again that W∞ is a
generating system of sets (it is only necessary to notice that cw0 (X) ⊂ m(X) for
every Banach space X).

In [AO2, p. 1574], the notion of a relatively unconditionally (p, r)-compact set
was introduced, where 1 ≤ p < ∞ and 1 ≤ r ≤ p∗. In our terminology, the
system U(p,1) of relatively unconditionally (p, 1)-compact sets can be expressed as
U(p,1) = Λ[`1, `

u
p ] (in [AO2], the notation u(p,1) was used instead).

Theorem 7.4.9 together with Example 7.3.13 yields the following result.

Proposition 7.4.14. Let 1 ≤ p <∞. Then U(p,1) = Λ[`1, `
u
p ] ∈ GSet.

7.5 Constructing quasi-normed operator ideals

In this section, we show that under suitable assumptions, the operator ideal
Θ(Λ[g,h]) is quasi-normed. If both g and h are metrically expandable, then prop-
erty (QOI1) is satis�ed for a quasi-constant κ = 2. This quasi-constant is not
optimal in general; consider the quasi-Banach operator ideal K(p,r) = Θ(Λ[`r, `p])
from Section 4.2 (where 1 ≤ p < ∞ and 1 ≤ r ≤ p∗). We showed that property
(QOI1) for K(p,r) is satis�ed for a quasi-constant 1 ≤ κ ≤ 2, where the one extreme
κ = 1 occurs if r = p∗, and the other extreme κ = 2 occurs if r = p = 1. In the
following, we use the notation ΘΛ[g,h] := Θ(Λ[g,h]) for conciseness.

Note that it was proven in [GB] that the class Kλ of λ-compact operators is a
quasi-Banach operator ideal with a quasi-constant of 8. We prove in Section 7.8
that their result is encompassed by the next theorem.

The quasi-norm ‖·‖[g,h] de�ned in the following theorem is a generalization of the
norms ‖·‖K(p,r)

(recall Theorem 4.2.12) and ‖·‖W∞ .

Theorem 7.5.1. Let an expandable BK-space g be given along with a g-compatible
expandable normed system of sequences h so that

(i) for each β ∈ h(K), it holds that
∥∥β∥∥

h(K)
≥
∥∥β∥∥

g×
;

(ii) ‖e1‖h(K) = ‖e1‖g×.

Then ΘΛ[g,h] is a quasi-normed operator ideal with respect to the quasi-norm

‖T‖[g,h] = inf{‖x‖h(Y ) | x ∈ h(Y ), T (BX) ⊂ Ex(Bg)},

where T ∈ ΘΛ[g,h](X, Y ). If both g and h are metrically expandable, then property
(QOI1) is satis�ed for the quasi-constant κ = 2.
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Proof. By Theorem 7.4.9, Θ(Λ[g,h]) is an operator ideal. Let us verify (QOI0) by
showing that ‖IK‖[g,h] = 1.

Observe that g× = g×s(K). By assumption (i) and the fact that h is g-compatible,

‖IK‖[g,h] = inf{
∥∥β∥∥

h(K)
| β ∈ h(K), BK ⊂ Eβ(Bg)} ≥

≥ inf{
∥∥β∥∥

g×
| β ∈ g×, BK ⊂ Eβ(Bg)}.

Let β ∈ g× be given so that BK ⊂ Eβ(Bg). Then there exists α ∈ Bg such that
1 =

∑∞
k=1 βkαk. Therefore

∥∥β∥∥
g×

= sup

{
∞∑
k=1

|γk| |βk|
∣∣∣∣ γ ∈ Bg

}
≥

∞∑
k=1

|βk| |αk| ≥

∣∣∣∣∣
∞∑
k=1

βkαk

∣∣∣∣∣ = 1.

We have shown that
∥∥β∥∥

g×
≥ 1 for any β ∈ g× satisfying BK ⊂ Eβ(Bg). Therefore

‖IK‖[g,h] ≥ inf{
∥∥β∥∥

g×
| β ∈ g× and BK ⊂ Eβ(Bg)} ≥ 1.

For the opposite inequality, let us check that ‖IK‖[g,h] ≤ 1 + ε for each ε > 0. By
de�nition,

‖e1‖g× = sup{|α1| | α ∈ Bg}.

Therefore there exists a sequence α ∈ Bg such that (1 + δ)α1 = ‖e1‖g× , where
0 < δ ≤ ε. Put

β =
1 + δ

‖e1‖g×
e1 ∈ fin(K) ⊂ h(K).

Then ∥∥β∥∥
h(K)

=
∥∥β∥∥

g×
= 1 + δ,

since ‖e1‖h(K) = ‖e1‖g× by assumption (ii).

We will have shown that ‖IK‖[g,h] ≤ 1 + δ ≤ 1 + ε if we prove that BK ⊂ Eβ(Bg).
Take c ∈ BK. Since (c · αk) ∈ Bg, we may conclude that, indeed,

c =
c(1 + δ)α1

‖e1‖g×
=
∞∑
k=1

cαkβk ∈ Eβ(Bg).

In order to verify property (QOI1), let S, T ∈ ΘΛ[g,h](X, Y ). We will prove that

‖S + T‖[g,h] ≤ κ[‖S‖[g,h] + ‖T‖[g,h]],
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for a certain constant κ (see (7.1) below). For this, take ε > 0 and sequences x
and y from h(Y ) such that S(BX) ⊂ Ex(Bg) and T (BX) ⊂ Ey(Bg) with ‖x‖h(Y ) ≤
(1 + ε) ‖S‖[g,h] and ‖y‖h(Y ) ≤ (1 + ε) ‖T‖[g,h]. As in the proof of Theorem 7.4.9,
put π1(k) = 2k − 1 and π2(k) = 2k (k = 1, 2, . . .), and de�ne

z = 2
( ∥∥Jgπ1∥∥ Jh(X)

π1
(x) +

∥∥Jgπ2∥∥ Jh(X)
π2

(y)
)
.

Then, similarly to the proof of Theorem 7.4.9, we may verify that

(S + T )(BX) ⊂ S(BX) + T (BX) ⊂ Ez(Bg).

Since h is extendable, there exist constants Cπ1 and Cπ2 (independent of the space
Y ) such that

∥∥∥Jh(Y )
π1

∥∥∥ ≤ Cπ1 and
∥∥∥Jh(Y )

π2

∥∥∥ ≤ Cπ2 . By (NS1),

‖z‖h(Y ) ≤ 2
[∥∥Jgπ1∥∥Cπ1 ‖x‖h(Y ) +

∥∥Jgπ2∥∥Cπ2 ‖y‖h(Y )

]
≤

≤ 2 max
k∈{1,2}

{∥∥Jgπk∥∥Cπk} [‖x‖h(Y ) + ‖y‖h(Y )

]
.

Put
κ = 2 max

k∈{1,2}

{∥∥Jgπk∥∥Cπk} . (7.1)

If both g and h are metrically expandable, then κ = 2.

Recall that (S + T )(BX) ⊂ Ez(Bg). Therefore

‖S + T‖[g,h] ≤ ‖z‖h(Y ) ≤ κ
[
‖x‖h(Y ) + ‖y‖h(Y )

]
≤ (1 + ε)κ

[
‖S‖[g,h] + ‖T‖[g,h]

]
.

Since the choice of ε was arbitrary, we have

‖S + T‖[g,h] ≤ κ
[
‖S‖[g,h] + ‖T‖[g,h]

]
.

It remains to check (QOI2). Fix operators T ∈ L(X0, X), S ∈ ΘΛ[g,h](X, Y ), and
R ∈ L(Y, Y0). We need to prove that

‖RST‖[g,h] ≤ ‖R‖ ‖S‖[g,h] ‖T‖ .

Let ε > 0. Take y ∈ h(Y ) satisfying ‖y‖h(Y ) ≤ ‖S‖[g,h] + ε and S(BX) ⊂ Ey(Bg).
Put z = (‖T‖Ryk). By (NS3), z ∈ h(Y0) and

‖z‖h(Y0) ≤ ‖T‖ ‖R‖ ‖y‖h(Y ) ≤ ‖R‖ (‖S‖[g,h] + ε) ‖T‖ .

Since

RST (BX0) ⊂ ‖T‖RS(BX) ⊂ ‖T‖R(Ey(Bg)) = E(‖T‖Ryk)(Bg) = Ez(Bg),

we have ‖RST‖[g,h] ≤ ‖z‖h(Y0) and therefore ‖RST‖[g,h] ≤ ‖R‖ ‖S‖[g,h] ‖T‖.
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Corollary 7.5.2. Let g be a shiftable BK-space. Then ΘΛ[g, g×s] is a quasi-normed
operator ideal. If g is metrically shiftable, then property (QOI1) is satis�ed for the
quasi-constant κ = 2.

Proof. By Corollary 7.3.10, g×s is a normed system of sequences. To see that
assumptions (i) and (ii) of Theorem 7.5.1 are satis�ed, observe that g× = g×s(K).
Additionally, Proposition 7.3.7 yields that g×s is (metrically) expandable provided
that g is (metrically) contractible.

7.6 Constructing quasi-Banach operator ideals

In this section, we prove that the quasi-normed operator ideal ΘΛ[g,h] is complete
(i.e., a quasi-Banach operator ideal) whenever certain assumptions are ful�lled.

De�nition 7.6.1. We call any bijection % : N × N → N a rearrangement. We
denote the set of all rearrangements by Arr.

De�nition 7.6.2. Let g be a normed sequence space and let % be a rearrangement.
We de�ne the rearrangement operator

Hg
% : `1(g)→ ω

in the following way. Let (αn)n∈N be an absolutely summable sequence of scalar
sequences, where αn = (αnk)k∈N ∈ g for each n ∈ N. Put

Hg
%

(
(αn)n∈N

)
= (βm)m∈N,

where β%(n,k) = αnk for each n ∈ N and k ∈ N.

Clearly, every rearrangement operator is linear.

De�nition 7.6.3. Let % ∈ Arr. A normed sequence space g is said to be %-
rearrangeable, if

Hg
%

(
`1(g)

)
⊂ g

and the operator Hg
% : `1(g)→ g is bounded.

If
∥∥Hg

%

∥∥ ≤ 1, then g is said to be metrically %-rearrangeable.

Example 7.6.4. Let % ∈ Arr. The following BK-spaces are metrically %-rearrangeable.

(i) `p, where 1 ≤ p ≤ ∞;
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(ii) c0.

Proof. (i). Let 1 ≤ p < ∞. Consider sequences αn = (αnk)k∈N ∈ `p, where n ∈ N,
such that

∞∑
n=1

‖αn‖`p <∞.

Put
α = (αn) ∈ `1(`p)

and
β = H`p

% (α).

The double sequence (|αnk |
p)n,k∈N is absolutely convergent. Indeed,

∞∑
n=1

∞∑
k=1

|αnk |
p =

∞∑
n=1

‖αn‖p`p = ‖α‖p`p(`p) ≤ ‖α‖
p
`1(`p) =

(
∞∑
n=1

‖αn‖`p

)p

<∞.

Therefore it is unconditionally convergent and we may write

∥∥β∥∥
`p

=

(
∞∑
m=1

|βm|p
) 1

p

=

(
∞∑
n=1

∞∑
k=1

|αnk |
p

) 1
p

≤
∞∑
n=1

‖αn‖`p .

We have shown that
∥∥∥H`p

%

∥∥∥ ≤ 1.

Let p = ∞. To prove that m is metrically %-rearrangeable, consider sequences
αn = (αnk)k ∈ m such that

∞∑
n=1

‖αn‖m <∞.

Put
α = (αn) ∈ `1(m)

and
β = Hm

% (α).

Observe that∥∥β∥∥
m

= sup
m∈N
|βm| = sup

n,k∈N
|αnk | ≤

∞∑
n=1

sup
k∈N
|αnk | =

∞∑
n=1

‖αn‖m = ‖α‖`1(m) .

(ii). Since c0 ⊂ m and the norms agree, we only need to prove that

Hc0
%

(
`1(c0)

)
⊂ c0.
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Let α = (αn)n = ((αnk)k∈N)n∈N ∈ `1(c0). Clearly, α ∈ c0(c0). Put

β = Hc0
% (α).

We need to prove that limm→∞ |βm| = 0. Let ε > 0. Observe that the double
sequence α = ((αnk)k∈N)n∈N ∈ c0(c0) contains only �nitely many elements satisfying
|αnk | > ε. Put

M = max{%(n, k)
∣∣ ∣∣β%(n,k)

∣∣ = |αnk | > ε}.

Then |βm| ≤ ε for each m > M .

Let us repeat De�nitions 7.6.2 and 7.6.3 in the context of normed systems of
sequences.

De�nition 7.6.5. Let h be a normed system of sequences, let X be a Banach
space, and let % be a rearrangement. We de�ne the rearrangement operator

Hh(X)
% : `1(h(X))→ ωs(X)

in the following way. Let (xn)n∈N be an absolutely summable sequence of X-valued
sequences, where xn = (xnk)k∈N ∈ h(X) for each n ∈ N. Put

Hh(X)
%

(
(xn)n∈N

)
= (ym)m∈N,

where y%(n,k) = xnk for each n ∈ N and k ∈ N.

De�nition 7.6.6. Let % ∈ Arr. A normed system of sequences h is said to be
%-rearrangeable if

Hh(X)
% ∈ L

(
`1(h(X)),h(X)

)
for every Banach space X.

If
∥∥Hh(X)

%

∥∥ ≤ 1 for every Banach space X, then h is said to be metrically %-
rearrangeable.

It is straightforward to prove the following proposition from the de�nitions.

Proposition 7.6.7. Let % ∈ Arr and let g be a normed sequence space. If g is
(metrically) %-rearrangeable, then gs is also (metrically) %-rearrangeable.

The previous proposition yields the following examples.

Example 7.6.8. Let % ∈ Arr. The following normed systems of sequences are
metrically %-rearrangeable.
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(i) `p, where 1 ≤ p ≤ ∞;

(ii) c0.

Consider also the following examples.

Example 7.6.9. Let % ∈ Arr and let 1 ≤ p <∞. The following normed systems of
sequences are metrically %-rearrangeable.

(i) cw0 ;

(ii) `wp ;

(iii) `up .

Proof. (i). Let X be a Banach space. We prove that cw0 (X) is metrically %-
rearrangeable. Since cw0 (X) ⊂ `∞(X) and the norms agree, it su�ces to show
that

Hcw0 (X)
%

(
`1(cw0 (X))

)
⊂ cw0 (X).

Let x = (xn)n = ((xnk)k∈N)n∈N ∈ `1(cw0 (X)). Clearly, x ∈ c0(cw0 (X)). Put

y = Hcw0 (X)
% (x).

We need to prove that limm→∞ |x∗(ym)| = 0 for every x∗ ∈ X∗. Let x∗ ∈ X∗ and
let ε > 0. Observe that the double sequence((

x∗(xnk)
)
k∈N

)
n∈N
∈ c0(c0)

contains only �nitely many elements which satisfy |x∗(xnk)| > ε. Put

M = max{%(n, k)
∣∣ ∣∣x∗(y%(n,k))

∣∣ = |x∗(xnk)| > ε}.

Then |x∗(ym)| ≤ ε for each m > M .

(ii). Let X be a Banach space. To prove that `wp (X) is metrically %-rearrangeable,
consider sequences xn = (xnk)k∈N ∈ `wp (X) such that

∞∑
n=1

‖xn‖`wp (X) <∞.

Put
x = (xn) ∈ `1

(
`wp (X)

)
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and
y = H

`wp (X)
% (x).

We need to prove that y ∈ `wp (X) and that

‖y‖`wp (X) = sup
x∗∈BX∗

‖(x∗(ym))‖`p ≤ ‖x‖`1(`wp (X)) .

Take x∗ ∈ BX and put
β = (x∗(ym))m∈N.

To complete the proof, it su�ces to prove that β ∈ `p and that∥∥β∥∥
`p
≤ ‖x‖`1(`wp (X)) .

Put
αn = (x∗(xnk))k∈N ∈ `p

for each n ∈ N. Then
‖αn‖`p ≤ ‖xn‖`wp (X) .

Therefore α = (αn)n∈N ∈ `1(`p) and

‖α‖`1(`p) ≤ ‖x‖`1(`wp (X)) .

Observe that
β = H`p

% (α) ∈ `p
and ∥∥β∥∥

`p
≤
∥∥H`p

%

∥∥ ‖α‖`1(`p) ≤ 1 · ‖x‖`1(`wp (X)) .

(iii). Let X be a Banach space. Since `up(X) ⊂ `wp (X) and the norms agree, it
su�ces to show that

H
`up (X)
%

(
`1(`up(X))

)
⊂ `up(X).

Consider sequences xn = (xnk)k∈N ∈ `up(X) such that

∞∑
n=1

‖xn‖`up (X) <∞.

Put
x = (xn) ∈ `1

(
`up(X)

)
and

y = H
`up (X)
% (x) ∈ `wp (X).
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Since the norms of `up(X) and `wp (X) agree, it su�ces to prove that y ∈ `up(X).

Let ε > 0. Fix N ∈ N so that

‖(xn)n>N‖`1(`up (X)) ≤
ε

2
. (7.2)

Since (xn) ∈ `up(X) for each 1 ≤ n ≤ N , we may �nd an index K so that∥∥(xnK+1, x
n
K+2, . . .)

∥∥
`wp (X)

=
∥∥(0, . . . , 0︸ ︷︷ ︸

K

, xnK+1, x
n
K+2, . . .)

∥∥
`wp (X)

≤ ε

2N
(7.3)

for each 1 ≤ n ≤ N . Put

M = max{%(n, k)
∣∣ 1 ≤ n ≤ N, 1 ≤ k ≤ K}.

It su�ces to prove that

‖(ym)m>M‖`wp (X) =
∥∥(0, . . . , 0︸ ︷︷ ︸

M

, yM+1, yM+2, . . .)
∥∥
`wp (X)

≤ ε.

Take x∗ ∈ BX∗ and denote

β = (x∗(ym))m∈N ∈ `p.

Let us prove that ‖(βm)m>M‖`p ≤ ε. Denote

αnk = x∗(xnk)

for each k, n ∈ N. Then
αn := (αnk)k∈N ∈ `p

for each n ∈ N, since (xnk)k∈N ∈ `wp (X).

Let us write

‖(βm)m>M‖`p =

(
∞∑

m=M+1

|x∗(ym)|p
) 1

p

=

(
∞∑

n,k=1,
%(n,k)>M

|x∗(ynk )|p
) 1

p

≤

≤

(
∞∑

n=N+1

∞∑
k=1

|αnk |
p +

∞∑
n=1

∞∑
k=K+1

|αnk |
p

) 1
p

≤

≤

(
∞∑

n=N+1

∞∑
k=1

|αnk |
p

) 1
p

+

(
N∑
n=1

∞∑
k=K+1

|αnk |
p

) 1
p

=

=

(
∞∑

n=N+1

‖αn‖p`p

) 1
p

+

(
N∑
n=1

‖(αnk)k>K‖p`p

) 1
p

.
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According to (7.2),(
∞∑

n=N+1

‖αn‖p`p

) 1
p

= ‖(αn)n>N‖`p(`p) ≤ ‖(αn)n>N‖`1(`p) ≤ ‖(xn)n>N‖`1(`wp (X)) ≤
ε

2
,

since ‖αn‖`p ≤ ‖xn‖`wp (X) for each n ∈ N. By (7.3),

(
N∑
n=1

‖(αnk)k>K‖p`p

) 1
p

≤

(
N∑
n=1

‖(xnk)k>K‖p`wp (X)

) 1
p

≤
N∑
n=1

ε

2N
≤ ε

2
.

Combining the last two observations yields that ‖(βm)m>M‖`p ≤ ε.

Let us prove the main result of this section.

Theorem 7.6.10. Let an expandable BK-space g be given along with a g-compatible
expandable normed system of sequences h, which satisfy the following assumptions.

(i∗) For each x ∈ h(X), it holds that ‖x‖h(X) ≥ ‖x‖g×s(X);

(ii) ‖e1‖h(K) = ‖e1‖g×;

(iii) there exists a rearrangement % ∈ Arr such that both g and h are %-rearrangeable.

Then the operator ideal ΘΛ[g,h] is a quasi-Banach operator ideal.

Proof. By Theorem 7.5.1, ΘΛ[g,h] is a quasi-normed operator ideal (observe that
assumption (i∗) is stronger than assumption (i) of Theorem 7.5.1).

To prove that ΘΛ[g,h] is a quasi-Banach operator ideal, we need to show that each
of the quasi-normed components ΘΛ[g,h](X, Y ) is complete. By Theorem 2.2.4,
it su�ces to show that they are sequentially complete. For this, we show that a
series

∑∞
k=1 Rk in

(
ΘΛ[g,h], ‖·‖[g,h]

)
converges whenever

∑∞
k=1 ‖Rk‖[g,h] <∞. By

Proposition 2.2.5,
∞∑
k=1

‖Rk‖ ≤
∞∑
k=1

‖Rk‖[g,h] <∞.

Therefore we may de�ne

R =
∞∑
k=1

Rk ∈ L(X, Y ).

It remains to show that
R ∈ ΘΛ[g,h](X, Y ) (7.4)
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and

lim
n→∞

∥∥∥∥∥R−
n∑
k=1

Rk

∥∥∥∥∥
[g,h]

= lim
n→∞

∥∥∥∥∥
∞∑

k=n+1

Rk

∥∥∥∥∥
[g,h]

= 0. (7.5)

Let ε > 0. By assumption (iii), there exists % ∈ Arr such that the rearrangement
operators Hg

% : `1(g) → g and H
h(Y )
% : `1(h(Y )) → h(Y ) are well de�ned, linear,

and bounded. Put
cm = 2m

∥∥Hg
%

∥∥
and

dm =
ε

4m ‖Hg
%‖
∥∥Hh(X)

%

∥∥ .
Since the series

∑∞
k=1Rk is absolutely convergent, there exists an increasing se-

quence (pm) of natural numbers such that

∞∑
k=pm

‖Rk‖[g,h] < dm

for each m ∈ N. Put

Sm =

pm+1−1∑
k=pm

Rk

and note that ‖Sm‖[g,h] < dm for each m ∈ N.

Clearly,

S :=
∞∑
k=1

Sk =
∞∑

k=p1

Rk = R−
p1−1∑
k=1

Rk.

We prove both (7.4) and (7.5) by showing that S ∈ ΘΛ[g,h](X, Y ) and ‖S‖[g,h] ≤ ε.

Let m ∈ N. By the de�nition of the quasi-norm ‖·‖[g,h], there exists a sequence
ym = (ymk )k∈N ∈ h(Y ) with ‖ym‖h(Y ) ≤ dm such that

Sm(BX) ⊂ Eym(Bg).

Put
y = (cnyn)n∈N ∈ `1(h(Y )).

The latter de�nition is correct, because

‖y‖`1(h(Y )) =
∞∑
n=1

cn ‖yn‖h(Y ) ≤
∞∑
n=1

cndn =
∞∑
n=1

ε

2n
∥∥Hh(X)

%

∥∥ =
ε∥∥Hh(X)
%

∥∥ <∞.
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Denote
z = Hh(X)

% (y) ∈ h(Y ).

Then
‖z‖h(Y ) ≤

∥∥Hh(X)
%

∥∥ ‖y‖`1(h(Y )) ≤ ε.

We claim that
S(BX) ⊂ Ez(Bg).

Let x ∈ BX . For each m ≥ 1, we have

Smx =
∞∑
k=1

αmk y
m
k

for some sequence αm = (αmk )k∈N ∈ Bg.

Put

α =

(
1

cn
αn

)
n∈N
∈ `1(g).

The latter de�nition is correct, since

‖α‖`1(g) =
∞∑
n=1

1

cn
‖αn‖g ≤

1

‖Hg
%‖
.

Denote
β = Hg

% (α) ∈ g.

Then ∥∥β∥∥
g

=
∥∥Hg

% (α)
∥∥
g
≤
∥∥Hg

%

∥∥ ‖α‖`1(g) ≤ 1.

We have

Sx =
∞∑
n=1

Snx =
∞∑
n=1

∞∑
k=1

αnky
n
k .

We prove that the double sequence (αnky
n
k )n,k∈N is absolutely convergent. Since

αn = (αnk)k∈N ∈ Bg and yn = (ynk )k∈N ∈ h(Y ) ⊂ g×s(Y ) for each n ∈ N, we have

∞∑
k=1

|αnk | ‖ynk‖ ≤ sup
γ∈Bg

∞∑
k=1

|γk| ‖ynk‖ = ‖yn‖g×s(Y ) .

By assumption (i∗),

∞∑
n=1

∞∑
k=1

|αnk | ‖ynk‖ ≤
∞∑
n=1

‖yn‖g×s(Y ) ≤
∞∑
n=1

‖yn‖h(Y ) ≤
∞∑
n=1

dm <∞.
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The double sequence (αnky
n
k )n,k∈N is unconditionally convergent, since it is abso-

lutely convergent. This allows us to write

Sx =
∞∑
n=1

∞∑
k=1

αnky
n
k =

∞∑
n,k=1

(
1

cn
αnk

)
· (cnynk ) =

∞∑
n,k=1

β%(n,k)z%(n,k) =
∞∑
m=1

βmzm.

We have shown that S(BX) ⊂ Ez(Bg) and therefore S ∈ ΘΛ[g,h](X, Y ). Also,

‖S‖[g,h] ≤ ‖z‖h(Y ) ≤ ε.

We have the following easy corollary.

Corollary 7.6.11. Let g be a shiftable BK-space. Assume that there exists a
rearrangement % ∈ Arr so that both g and g× are %-rearrangeable. Then ΘΛ[g, g×s]
is a quasi-Banach operator ideal.

Proof. Corollary 7.5.2 yields that ΘΛ[g, g×s] is a quasi-normed operator ideal.
Clearly, property (i∗) of Theorem 7.6.10 is ful�lled. By Proposition 7.6.7 and
the assumption that g× is %-rearrangeable, g×s is also %-rearrangeable and thus
the property (iii) holds. Therefore ΘΛ[g, g×s] is a quasi-Banach operator ideal by
Theorem 7.6.10.

7.7 Examples of the construction

We are ready to present some examples of quasi-Banach operator ideals produced
by the theory outlined in the previous sections. We begin by re-proving the pro-
totypical example of the operator ideal K(p,r).

Proposition 7.7.1. Let 1 ≤ p ≤ ∞ and 1 ≤ r ≤ p∗. Put g = `r and h = `p
(where h = c0, if p =∞). Then

K(p,r) = ΘΛ[g,h]

is a quasi-Banach operator ideal, where the property (QOI1) is satis�ed for κ = 2.

Proof. We proved already in Proposition 7.4.5 that the system of sequences h
is g-compatible and K(p,r) = Λ[g,h]. We know from Example 7.3.6 that `r is
a metrically extendable BK-space. In order to apply Theorem 7.6.10, we need
to show that `r and `p (c0, if p = ∞) satisfy properties (i∗), (ii), and (iii) of
Theorem 7.6.10.
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Property (iii) is proven by Examples 7.6.4 and 7.6.8.

Clearly,
‖e1‖c0(K) = ‖e1‖`p(K) = ‖e1‖`×r = 1.

To show the property (i∗), consider �rst the case when p = ∞. Then for each
(xk) ∈ c0(X), it holds that

‖(xk)‖c0(X) = ‖(xk)‖m(X) = ‖(xk)‖`×s1 (X) .

On the other hand, if 1 ≤ p <∞, then `×sr (X) = `r∗(X) and

‖(xk)‖`p(X) ≥ ‖(xk)‖`r∗ (X) = ‖(xk)‖`×sr (X) ,

since r∗ ≥ p if and only if r ≤ p∗.

The following result complements Proposition 7.4.12.

Theorem 7.7.2. The operator ideal ΘΛ[`1,m] is a quasi-Banach operator ideal,
where the property (QOI1) is satis�ed for κ = 2.

Proof. This follows from Corollary 7.6.11, since `1 is a metrically shiftable BK-
space and both `1 and m are metrically %-rearrangeable for any % ∈ Arr. Corol-
lary 7.5.2 yields that the quasi-constant κ does not exceed 2.

We proved in Section 6.1 that W∞ is a Banach operator ideal. Let us prove this
result using the theory from the current chapter (with the shortcoming that we
only obtain a quasi-Banach operator ideal).

Proposition 7.7.3. The operator ideal W∞ = Θ(W∞) = ΘΛ[`1, c
w
0 ] is a quasi-

Banach operator ideal, where the property (QOI1) is satis�ed for κ = 2.

Proof. Clearly, ‖·‖[`1,cw0 ] = ‖·‖W∞ (recall that the de�nition of the latter norm was
given in De�nition 6.1.5). We only need to show that `1 and cw0 satisfy properties
(i∗), (ii), and (iii) of Theorem 7.6.10.

Property (iii) is proven by Examples 7.6.4 and 7.6.9.

Clearly, ‖e1‖cw0 (K) = 1 = ‖e1‖`×1 , since cw0 (K) = c0(K) = c0.

To show property (i∗), let x ∈ cw0 (X). Then

‖x‖cw0 (X) = ‖x‖m(X) = ‖x‖g×s(X) .
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We consider the next two results to be rather interesting examples of our con-
struction. Recall that the operator ideals W(p,1) and U(p,1) are special cases of the
operator ideals W(p,r) and U(p,r), respectively, which were considered in [AO2].

Theorem 7.7.4. Let 1 ≤ p < ∞. The operator ideal W(p,1) = Θ(W(p,1)) =
ΘΛ[`1, `

w
p ] is a quasi-Banach operator ideal, where the property (QOI1) is satis�ed

for κ = 2.

Proof. We only need to show that `1 and `wp satisfy properties (i∗), (ii), and (iii)
of Theorem 7.6.10.

Property (iii) is proven by Examples 7.6.4 and 7.6.9.

Clearly, ‖e1‖`wp (K) = 1 = ‖e1‖`×1 , since `wp (K) = `p(K) = `p.

To show the property (i∗), let x ∈ `wp (X). By Lemma 4.2.6,

‖x‖`wp (X) ≥ ‖x‖cw0 (X) = ‖x‖m(X) = ‖x‖g×s(X) .

Theorem 7.7.5. Let 1 ≤ p < ∞. The operator ideal U(p,1) = Θ(U(p,1)) =
ΘΛ[`1, `

u
p ] is a quasi-Banach operator ideal, where the property (QOI1) is satis-

�ed for κ = 2.

Proof. We only need to show that `1 and `up satisfy properties (i∗), (ii), and (iii) of
Theorem 7.6.10. Property (iii) is proven by Examples 7.6.4 and 7.6.9. Properties
(i∗) and (ii) are proven exactly as in the previous theorem, since the norms of
`up(X) and `wp (X) coincide.

The following remarks give an overview of the already known results from the
literature about the operator ideals W(p,r) and U(p,r) for the special case r = p∗

(which our construction does not contain, since the system `wp is not `p∗-compatible
unless p =∞).

Remark 7.7.6. Let 1 ≤ p <∞. In [SK1, Theorem 4.1], it was proved that W(p,p∗)

is a Banach operator ideal when equipped with a certain factorization norm.

Remark 7.7.7. In [AO2, p. 1575], it was proven that U(p,r) = N sur
(∞,p∗,r∗). Recall that

by de�nition, Kp∗ = N(∞,p∗,p), where Kp denotes the ideal of classical p-compact
operators (see, e.g., [Pi1, 18.3]). (Note that K(p,p∗) = Kp and Kp are di�erent as
operator ideals (see [O2] and [Pi3])).

In [Ki], the operator ideal U(p,p∗) was equipped with the following norm (where X
and Y are Banach spaces and T ∈ U(p,p∗)(Y,X)):

‖T‖U(p,p∗) = inf ‖(xn)‖wp ,
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where the in�mum is taken over all sequences (xn) ∈ `up(X) such that

T (BY ) ⊂ E(xn)(B`p∗ ).

It was proven that U(p,p∗) is a Banach operator ideal with respect to this norm.
Notice that the norm ‖·‖U(p,p∗) is essentially the same norm that we have been
utilizing all along in this chapter.

In [MOP, p. 2885], referring to the fact from [AO2] that U(p,p∗) = Ksur
p∗ as operator

ideals, U(p,p∗) was equipped with the norm ‖·‖Ksur
p∗
. It was stated that with respect

to this norm, U(p,p∗) becomes a Banach operator ideal. The authors then remarked
that an explicit description for the norm ‖·‖U(p,p∗) can be given, using the same
technique as in [ALO, Theorem 3.4] (which is Theorem 4.2.12 in the current thesis),
and that this obtained norm coincides with the norm provided in [Ki].

7.8 A comparison with λ-compact operators

In this section, we compare the approach taken in [GB] with our construction from
this chapter. Let us begin by introducing the necessary terminology and de�nitions
from [GB].

De�nition 7.8.1 (see [GB, De�nition 3.1]). Let λ be a BK-space. An operator
T ∈ L(X, Y ) is said to be λ-compact if it maps bounded sets to λ-compact sets.

The collection of all λ-compact operators between arbitrary Banach spaces is de-
noted by Kλ. Keeping in mind Proposition 7.4.7, we state this by Kλ = ΘΛ[λ×, λs]
in our terminology.

It is proven in [GB, Theorem 3.10] that, under suitable assumptions, the collection
of operators Kλ becomes a quasi-normed operator ideal with respect to the quasi-
norm kλ, where, in our terminology,

kλ(T ) = ‖T‖[λ×,λs] .

We prove that [GB, Theorem 3.10] is encompassed by Theorem 7.5.1 (see Propo-
sition 7.8.9 and the preceding remarks). The following assumptions are made in
[GB, Theorem 3.10] (see De�nitions 7.8.2�7.8.4 for emphasized notions, which are
de�ned below).

(i) λ is a monotone and symmetric BK-space;

(ii) ‖·‖λ is a k-symmetric and monotone norm.
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Let us provide the necessary de�nitions.

De�nition 7.8.2. A sequence space λ is said to be symmetric if (ασ(k)) ∈ λ
whenever (αk) ∈ λ and σ ∈ Π, where Π is the collection of all permutations of the
set N.

De�nition 7.8.3. Let (λ, ‖·‖λ) be a symmetric sequence space. The norm ‖·‖λ is
said to be k-symmetric if

∥∥(ασ(k))
∥∥
λ

= ‖(αk)‖λ whenever (αk) ∈ λ and σ ∈ Π.

The next de�nition is given in [GB] via J-stepspaces and the canonical preimage
of a sequence. We prefer to use the following equivalent de�nition, using the
terminology already established in this thesis.

De�nition 7.8.4. A sequence space λ is said to be monotone if (Jωπ ◦Qλ
π)(λ) ⊂ λ

for every π ∈ Inc(N).

For clarity, we include the following example.

Example 7.8.5. Let λ be a sequence space and let π ∈ Inc(N) be given by π(k) = 2k.
Then

(Jωπ ◦Qλ
π)(x) = (0, x2, 0, x4, 0, . . .).

Clearly, every solid sequence space is monotone.

Let us prove a few preliminary results.

Lemma 7.8.6. If a sequence space λ is solid and symmetric with a k-symmetric
and monotone norm, then it is 2-boundedly shiftable.

Proof. Let λ be a solid and symmetric sequence space with a k-symmetric and
monotone norm. To see that it is 2-boundedly expandable, let x ∈ λ and let
π ∈ Inc(N). Consider the sequences

y = (x1, 0, x3, 0, x5, . . .)

and
z = (0, x2, 0, x4, 0, . . .).

Then y, z ∈ λ, since λ is solid. Observe that the sequences Jλπ (y) and Jλπ (z) are
permutations of the sequences y and z, respectively (since there are countably
many zeros which we may rearrange at will). Therefore Jλπ (y) ∈ λ and Jλπ (z) ∈ λ,
since λ is symmetric. Also note that Jλπ (x) = Jλπ (y) + Jλπ (z) ∈ λ. Since ‖·‖λ is
k-symmetric and monotone, we get∥∥Jλπ (x)

∥∥ ≤ ∥∥Jλπ (y)
∥∥+

∥∥Jλπ (z)
∥∥ ≤ ‖y‖+ ‖z‖ ≤ 2 ‖x‖ .
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To show that λ is 2-boundedly contractible, let x ∈ λ and let π ∈ Inc(N). Since λ
is solid and symmetric, we have

y = (xπ(1), 0, xπ(3), 0, . . .) ∈ λ

and
z = (0, xπ(2), 0, xπ(4), . . .) ∈ λ.

Moreover, ‖y‖ ≤ ‖x‖ and ‖z‖ ≤ ‖x‖, since ‖·‖λ is k-symmetric and monotone.
Therefore ∥∥Qλ

π(x)
∥∥ = ‖y + z‖ ≤ ‖y‖+ ‖z‖ ≤ 2 ‖x‖ .

Lemma 7.8.7. Let λ be a solid sequence space with a monotone norm. Then
λs(K) = λ as normed spaces.

Proof. Let α ∈ λs(K). By de�nition, α ∈ λs(K) whenever (|αk|) ∈ λ. Since λ
is solid, this is equivalent to the fact that α = (αk) ∈ λ. Moreover, ‖(αk)‖λ =
‖(|αk|)‖λ, since ‖·‖λ is monotone.

Lemma 7.8.8. Let λ be a normed sequence space. Then

‖e1‖λ = ‖e1‖λ×× .

Proof. By Proposition 7.2.15, we only need to show that ‖e1‖λ×× ≥ ‖e1‖λ. Observe
that

‖e1‖λ× ≤
1

‖e1‖λ
,

since e1/ ‖e1‖ ∈ Bλ. Put
β =

e1

‖e1‖λ×
∈ Bλ× .

By de�nition,

‖e1‖λ×× = sup {|α1| |α ∈ Bλ×} ≥ |β1| =
1

‖e1‖λ×
≥ ‖e1‖λ .

The following result shows that [GB, Theorem 3.10] is encompassed by Theo-
rem 7.5.1. Observe that the monotonicity of λ is not su�cient for λs to be a linear
space (this can be seen from Remark 7.2.19). To ensure correctness, it su�ces to
add the solidness of λ to the assumptions of [GB, Theorem 3.10]. Since every solid
sequence space is monotone, it becomes unnecessary to keep the assumption that
λ is monotone.

Proposition 7.8.9 (cf. [GB, Theorem 3.10]). Let λ be a BK-space satisfying the
following conditions.
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(i) λ is solid and symmetric;

(ii) ‖·‖λ is a k-symmetric and monotone norm.

Then

(i) λ× is a 2-boundedly expandable BK-space;

(ii) λs is a 2-boundedly expandable normed system of sequences;

(iii) assumptions (i) and (ii) of Theorem 7.5.1 hold.

By Theorem 7.5.1, Kλ = ΘΛ[λ×, λs] is a quasi-normed operator ideal with the
quasi-constant 8.

Proof. By Lemma 7.8.6, λ is 2-boundedly shiftable. Proposition 7.3.7 yields that
λ× and λs are both 2-boundedly expandable. We know from Theorem 7.2.7 that
λ× is a BK-space. Also, we know from Proposition 7.3.9 that λs(X) is a normed
system of sequences.

It remains to verify that the assumptions of Theorem 7.5.1 hold. To prove (i), let
β ∈ λs(K). By Lemma 7.8.7, β ∈ λ and

∥∥β∥∥
λ

=
∥∥β∥∥

λs(K)
. We need to show that∥∥β∥∥

λ
≥
∥∥β∥∥

λ××
,

which is proven in Proposition 7.2.15.

To show (ii) of Theorem 7.5.1, we need to prove that ‖e1‖λ×× = ‖e1‖λs(K) = ‖e1‖λ,
which follows from Lemma 7.8.8.



Chapter 8

Approximable sets and sequences

We begin this chapter with an overview about some of the known re-
sults concerning the approximation property. After this, we give the de�-
nitions of an approximable set and an approximable sequence. We prove
a Grothendieck-like criterion for describing the approximable sets in a Ba-
nach space via the approximable sequences in this space. We also prove
that there exists a non-approximable sequence, which can be represented
as a sum of three approximable sequences.

8.1 Background and motivation

We begin this chapter with an overview about some of the known results concerning
the approximation property, a notion which was introduced by Grothendieck in
[G2]. By any means, we do not aim to be exhaustive; rather, we aim only to cover
some aspects of it that are directly related to the contents of this chapter. We refer
the reader to [O1] for a more detailed overview of the history of the approximation
property and its variants; for an extensive historical treatment, see [Pi2, Section
5.7].

Recall that a Banach space X is said to have the approximation property (AP) if,
for every compact set K in X and every ε > 0, there exists an operator T ∈ F(X)
so that for every x ∈ K we have

‖(I − T )x‖ ≤ ε. (8.1)

Let λ ≥ 1. A Banach space X is said to have the λ-bounded approximation
property (λ-BAP) if the operators T ∈ F(X) appearing in the above de�nition

137
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can be chosen so that their norm does not exceed λ. A Banach space X is said
to have the bounded approximation property (BAP) if it has the λ-BAP for some
λ ≥ 1. If λ = 1, then X has the metric approximation property (MAP).

The approximation problem asks whether every compact operator between arbi-
trary Banach spaces can be approximated, in the norm topology of operators, by
�nite-rank operators. The approximation problem goes back at least to the Polish
School in Lwów.

We quote [O1, p. 220]: �The AP and the MAP were deeply studied by A.
Grothendieck in his famous Memoir [G2]. He found eight important criteria for
the AP and �ve for the MAP (see [G2, Chapter I, pp. 165 and 179]). In �Propo-
sition� 37 in [ibid, pp. 170�171], he proved among others that the approximation
problem is equivalent (...) to the fact that all Banach spaces have the AP. In
fact, Grothendieck's �Proposition� 37 contains 19 conditions which are all equiva-
lent to the approximation problem.�. One of those equivalent conditions may be
formulated as follows: every matrix A = (aj,k)

∞
j,k=1 of scalars, for which A2 = 0,∑∞

j=1 maxk |aj,k| <∞, and limk aj,k = 0, where j ∈ N, satis�es

traceA =
∞∑
n=1

ann = 0. (8.2)

Even though Grothendieck's contribution to the understanding of the approxi-
mation problem was enormous, the problem itself remained open. Only 17 years
later, in 1972, did En�o discover a separable re�exive Banach space without the
approximation property [E], and therefore solved the approximation problem in
the negative.

By �Proposition� 37, En�o's counterexample demonstrates that there exists a ma-
trix which fails to satisfy condition (8.2), which in turn shows that there exists a
closed subspace of c0 that fails the AP. A simpli�ed construction of such a matrix
and the corresponding subspace of c0 without the AP was given by Davie [Da] in
1973.

We conclude this historical overview with a quote from [O1, p. 220] concerning
the properties AP, BAP, and MAP. �Grothendieck remarked [G2, Chapter I, p.
182] that there would exist a Banach space without the BAP, provided that there
exist Banach spaces having the BAP, but failing the λ-BAP for arbitrarily large
λ. This idea was made explicit by T. Figiel and W. B. Johnson [FJ] in 1973.
They succeeded to construct a sequence of Banach spaces Xn, n = 1, 2, . . ., with
the BAP but failing the n-BAP, in particular, failing the MAP, and observed that
the direct `2-sum (

∑∞
n=1Xn)2 has the AP but fails the BAP. These were the �rst

counterexamples showing that the AP, BAP, and MAP are, in general, di�erent
notions.�
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Since there are Banach spaces without the AP, it makes sense to study the extent
to which a given Banach spaceX has the AP. In the spirit of this thesis, we propose
to study the system AP of approximable sets, i.e., sets that satisfy condition (8.1).
More precisely, let a bounded set K belong to the component AP(X) if for every
ε > 0 there exists an operator T ∈ F(X) so that

‖(I − T )x‖ ≤ ε (8.3)

for every x ∈ K. Let λ ≥ 1. De�ne the system λ−BAP of λ-boundedly approx-
imable sets by letting K ∈ λ−BAP(X) if the operators T ∈ F(X) appearing in
the above de�nition can be chosen so that their norms do not exceed λ. The system
BAP of boundedly approximable sets consists of all λ-boundedly approximable sets
for any λ ≥ 1. Denote MAP = 1−BAP.

The following well-known result demonstrates that all approximable sets are rela-
tively compact.

Lemma 8.1.1. Let X be a Banach space. Then AP(X) ⊂ K(X).

Proof. Let G ∈ AP(X) and let ε > 0. Fix an operator T ∈ F(X), which satis�es
condition (8.3). Then the set T (G) is a relatively compact ε-net to the set G.

It follows that a Banach space X has the AP if and only if AP(X) = K(X).
Similarly, X has the λ-AP if and only if K(X) = λ−BAP(X).

The Grothendieck compactness principle characterizes relatively compact subsets
of a Banach space X as those that reside in the closed absolutely convex hull of a
null sequence. In our terminology, this may be stated concisely as K = Λ[`1, c0].
Could the approximable sets be characterized in an analogous fashion? In order
to answer this question, we introduce some additional de�nitions.

Let us de�ne the system ap of approximable sequences as follows: (xk) ∈ ap(X) if
(xk) is a null sequence in X and for every ε > 0 there exists an operator T ∈ F(X)
satisfying

‖(I − T )xk‖ ≤ ε (8.4)

for each k ∈ N. Let λ ≥ 1. De�ne the system λ−bap of λ-boundedly approximable
sequences by letting (xk) ∈ λ−bap(X) if the operators T ∈ F(X) appearing in the
above de�nition can be chosen so that their norms do not exceed λ. The system
bap of boundedly approximable sequences consists of all λ-boundedly approximable
sequences for any λ ≥ 1. Denote map = 1−bap.

We prove (see Theorem 8.2.3) that the (λ-bounded) approximable sets are exactly
those that reside in the closed absolutely convex hull of a (λ-bounded) approx-
imable sequence. In our terminology, these observations may be stated concisely
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by AP = Λ[`1, ap] and λ−BAP = Λ[`1, λ−bap]. A consequence of this is that if
one desires to describe the structure AP(X) of the approximable sets of a Banach
space X, then it is su�cient to describe the (presumably simpler) structure ap(X)
of approximable sequences in X. Note that a Banach space X has the AP if and
only if c0(X) = ap(X), and λ-BAP if and only if c0(X) = λ−bap(X).

From the perspective of this thesis, it is natural to ask whether the systems of
sets AP, BAP, λ−BAP are generating systems of sets? Keeping in mind that
AP = Λ[`1, ap] and λ−BAP = Λ[`1, λ−bap], we ask whether the systems of
sequences ap, bap, λ−bap are normed systems of sequences (when equipped with
the supremum norm of the system c0)? Answer to all of these questions turns out
to be no � a straightforward veri�cation shows these systems are not closed with
respect to applying bounded linear operators (see Propositions 8.5.1 and 8.5.2).

In Sections 8.3�8.5, we revisit some of the classical results due to Grothendieck
and prove modi�ed versions of them, where we concentrate on speci�c approx-
imable sets and sequences, instead of looking at the whole Banach space at once.
In this perspective, Theorem 8.3.1 (which is an extract of [G2, Proposition 35])
and the direction ¬(ii) ⇒ ¬(i) of �Proposition� 8.4.1 (which is an extract of [G2,
�Proposition� 37]) become Theorem 8.3.8 and Proposition 8.4.2, respectively. Our
approach, combined with the matrix constructed by Davie, yields an example of a
non-approximable sequence, which can be represented as a sum of three approx-
imable sequences (see Theorem 8.5.8). This proves that the systems AP and ap
are not closed with respect to addition (i.e., they do not satisfy properties (G2)
and (NS1), respectively).

Recall that the example of Figiel and Johnson in 1973 showed that the BAP and
the AP are di�erent notions for Banach spaces. However, it is not immediately
apparent from this fact that the systems BAP and AP are di�erent. Indeed,
consider a Banach space X having the AP, but failing the BAP. This means that
for each λ ≥ 1, there exists a set that fails the λ-BAP. But does this guarantee
that BAP(X) 6= AP(X)? In order to answer this question a�rmatively, we need
to construct a single set (or alternatively, a single sequence) which does not belong
to λ−BAP(X) (respectively, λ−bap(X)) for any λ ≥ 1. Indeed, we are able to
construct such a sequence. We do it by taking, for each n ∈ N, an approximable
sequence which fails to be n-boundedly approximable, and manipulating and re-
ordering these sequences into a single approximable sequence, which fails to be
boundedly approximable. In fact, we show that this construction works in every
Banach space X having the AP but failing the BAP (see Proposition 8.6.1).

Coming to terms with the fact that the system AP fails to be a generating system
of sets, it is natural to ask the following questions. What is the smallest generating
system of sets encompassing AP? What is the largest generating system of sets
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residing in AP? It is relatively easy to show that the answer to the �rst question
is the system K of all relatively compact sets (see Corollary 8.5.3). We propose
that the answer to the second question might be the system K(2,2) of all relatively
(2, 2)-compact sets (see Question 8.5.4).

8.2 Criterion for approximable sets

By a classical and well-known criterion (see, e.g., [LiT, p. 37]), a Banach space X
has the λ-AP if and only if every �nite set is λ-boundedly approximable. Using
essentially the same proof as in [LiT, p. 37], we obtain the following criterion for
λ-boundedly approximable sets.

Proposition 8.2.1. Let X be a Banach space. Then K ∈ λ−BAP(X) if and
only if for every ε > 0 there exists a �nite set L ∈ λ−BAP(X) so that L is an
ε-net to the set K.

Proof. For the �only if� part, let K ∈ λ−BAP(X) and let ε > 0. Find an ε-net
L in the set K (we may do so, since λ−BAP(X) ⊂ AP(X) ⊂ K(X)). Then also
L ∈ λ−BAP(X), since L ⊂ K.

To prove the �if� part, take a set K, �x ε > 0, and take a �nite set L =
{x1, . . . , xn} ∈ λ−BAP(X) so that L is an ε

3λ
-net to the setK. Now let T ∈ F(X)

be given such that ‖T‖ ≤ λ and ‖Txj − xj‖ ≤ ε
3
for every j ∈ N. Fix x ∈ K and

choose an index j ∈ {1, . . . , n} so that ‖x− xj‖ ≤ ε
3λ
. Then

‖Tx− x‖ ≤ ‖Tx− Txj‖+ ‖Txj − xj‖+ ‖xj − x‖ ≤
ε

3λ
‖T‖+

ε

3
+

ε

3λ
≤ ε.

According to the following well-known result, every �nite set {x1, . . . , xn} is ap-
proximable. Therefore one cannot replace �λ−BAP� with �AP� in Proposi-
tion 8.2.1 above.

Lemma 8.2.2. Let X be a Banach space and let {x1, . . . , xn} ⊂ X. Then

{x1, . . . , xn} ∈ AP(X).

Proof. Put Y = span{x1, . . . , xn}. Auerbach's Lemma provides a projection P of
X onto Y such that ‖P‖ ≤ n. Observe that

‖Px− x‖ = 0

for every x ∈ Y .
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The following result draws inspiration from the Grothendieck compactness princi-
ple. It describes approximable sets as those sets which are situated in the closed
absolutely convex hulls of approximable sequences. It also gives a similar charac-
terization for λ-boundedly approximable sets.

Theorem 8.2.3. Let X be a Banach space and let K ⊂ X. Then K is approx-
imable if and only if there exists a sequence x ∈ ap(X) such that

K ⊂ Ex(B`1) =

{
∞∑
k=1

αkxk | α ∈ B`1

}
.

Let λ ≥ 1. Then K is λ-boundedly approximable if and only if there exists a
sequence x ∈ λ−bap(X) such that

K ⊂ Ex(B`1) =

{
∞∑
k=1

αkxk | α ∈ B`1

}
.

These two observations can also be written as

AP = Λ[`1, ap]

and

λ−BAP = Λ[`1, λ−bap].

Proof. The proofs for the both cases are similar in their nature. Therefore the
proof is only written once, and there are remarks in the places where the proof
techniques diverge. Note that the proof of the �only if� direction is inspired by the
proof of the Grothendieck compactness principle.

To prove the �if� direction, take a (λ-bounded) approximable sequence (xk) so that

K ⊂

{
∞∑
k=1

αkxk | α ∈ B`1

}
.

Let ε > 0. We may choose an operator T ∈ F(X) so that ‖(I − T )(xk)‖ ≤ ε for
each k ∈ N (if K ∈ λ−BAP(X), we require ‖T‖ ≤ λ). Let x ∈ X. Every element
of the set K can be represented as a sum

∑∞
k=1 αkxk, where α ∈ B`1 , so we have

‖(I − T )(x)‖ =

∥∥∥∥∥(I − T )

(
∞∑
k=1

αkxk

)∥∥∥∥∥ ≤
∞∑
k=1

|αk| ‖(I − T )(xk)‖ ≤ ε
∞∑
k=1

|αk| ≤ ε.
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To prove the �only if� direction, let K be a (λ-boundedly) approximable set.
Choose, for each k ∈ N, an operator Tk ∈ F(X) so that

‖(I − Tk)(x)‖ ≤ 1

22k+1
(8.5)

for every x ∈ K (we additionally require that ‖Tk‖ ≤ λ if K is λ-boundedly
approximable). Put

εk = min

{
1

4k
,

1

2k+2(1 + ‖T1‖)
, . . . ,

1

22k+1(1 + ‖Tk‖)

}
. (8.6)

Choose an ε1-net {y1,j}n1
j=1 from the set K. De�ne a relatively compact set K1,j =

B(y1,j, ε1) ∩K for each 1 ≤ j ≤ n1 and put I1 = {1, . . . , n1}.

We start constructing the sequence (xk) by putting xj = 2y1,j, where 1 ≤ j ≤ n1.
The general idea of the proof is that in every k-th step hereafter (k ≥ 2), we will

(a) choose a �nite εk-net Lk,j ⊂ Kk−1,j for each set Kk−1,j, where 1 ≤ j ≤ nk−1;
unite all of those nets into a single set and denote it by {yk,j}nkj=1;

(b) denote Kk,j = B(yk,j, εk) ∩K for each 1 ≤ j ≤ nk;

(c) denote Ik = {mk−1 + 1, . . . ,mk−1 + nk}, where mk = max{r | r ∈ Ik};

(d) put xm = 2k(yk,j−yk−1,p) for each 1 ≤ j ≤ nk, where m = mk−1 + j ∈ Ik and
yk,j ∈ Lk,p ⊂ Kk−1,p (note that ‖xm‖ ≤ 2kεk−1, since yk,j ∈ B(yk−1,p, εk−1)).

This construction gives us that

(i) (xk) ∈ c0(X);

(ii) every x ∈ K can be expressed as a sum
∑∞

k=1
1
2k
xjk , where jk ∈ Ik.

(iii) ‖(I − Tm)(xj)‖ ≤ 1
2m

for every j,m ∈ N.

To see (i), observe that if k ≥ 2 and j ∈ Ik, then ‖xj‖ ≤ 2kεk−1 ≤ 1
2k−2

k→∞−−−→ 0.

By Lemma 4.1.5, it su�ces to verify (ii) to show that K ⊂ Ex(B`1), since

∞∑
k=1

1

2k
xjk ∈

{
∞∑
k=1

αkxk | α ∈ B`1

}
.
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Let x ∈ K and take r1 ∈ {1, . . . , n1} such that x ∈ B(y1,r1 , ε1). Then x ∈ K1,r1 .
Take r2 ∈ {1, . . . , n2} such that x ∈ B(y2,r2 , ε2) and y2,r2 ∈ L1,r1 . Then x ∈ K2,r2 .
Continuing in this manner, we obtain a sequence (yk,rk) such that limk→∞ yk,rk = x.

Put jk = mk + rk ∈ Ik if k ≥ 2; put j1 = r1 ∈ I1. Write

x = lim
k→∞

yk,rk = y1,r1 +
∞∑
k=2

(yk,rk − yk−1,rk−1
) =

1

2
xj1 +

∞∑
k=2

1

2k
xjk =

∞∑
k=1

1

2k
xjk .

It remains to prove (iii), which yields that (xj) ∈ ap(X). Furthermore, if the set
K was assumed to be λ-boundedly approximable, then we chose the operators Tk
so that ‖Tk‖ ≤ λ, in which case (iii) yields that (xj) ∈ λ−bap(X).

We use two di�erent techniques to prove that ‖(I − Tm)(xj)‖ ≤ 1
2m

for every
j,m ∈ N. Using condition (8.5), we will prove that it holds if 1 ≤ n ≤ m, where
j ∈ In; using condition (8.6), we will prove that this inequality holds if 1 ≤ m < n,
where j ∈ In.

Let 1 ≤ n ≤ m and let j ∈ In. Then xj = 2n(yn,l − yn−1,p), where yn,l ∈ K and
yn−1,p ∈ K. By condition (8.5),

‖(I − Tm)(xj)‖ = ‖(I − Tm)(2n(yn,l − yn−1,p))‖ ≤

≤ 2n ‖(I − Tm)(yn,l)‖+ 2n ‖(I − Tm)(yn−1,p)‖ ≤ 2n+1 1

22m+1
≤ 1

2m
.

Let 1 ≤ m < n and let j ∈ In. Therefore ‖xj‖ ≤ 2nεn−1. By condition (8.6),

‖(I − Tm)(xj)‖ ≤ (1 + ‖Tm‖) ‖xj‖ ≤ 2nεn−1(1 + ‖Tm‖) ≤
2n

2n+m
=

1

2m
.

Remark 8.2.4. Let A be an operator ideal satisfying F ⊂ A ⊂ K. Consider the
systems of �A-approximable sets� and �A-approximable sequences�, obtained by
replacing the operator ideal F with A in the de�nitions of approximable sets and
sequences, respectively. It is not di�cult to see that Theorem 8.2.3 will remain
true in this more general context, using essentially the same proof.

8.3 A characterization of approximable sequences

In this and the following two sections we revisit some of the classical results due
to Grothendieck and interpret their proofs in the context of approximable sets
and sequences (instead of concentrating on the whole space). Recall the following
result from [G2] (see, e.g., [LiT, Theorem 1.e.4]).
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Theorem 8.3.1 ([G2, Proposition 35]). Let X be a Banach space. The following
are equivalent.

(i) X has the AP;

(ii) For every choice (xk) ⊂ X, (x∗k) ⊂ X∗ such that
∑∞

k=1 ‖x∗k‖ ‖xk‖ < ∞ and∑∞
k=1 x

∗
k(x)xk = 0, for all x ∈ X, we have

∑∞
k=1 x

∗
k(xk) = 0.

In this section, we prove a more speci�c version of the above theorem (see Theo-
rem 8.3.8), which allows us to characterize whether a given sequence (xk) ∈ c0(X)
is approximable. Essentially we follow the proof of Theorem 8.3.1 as given in [LiT,
pp. 31�33]. We begin by recalling the relevant topology.

De�nition 8.3.2 (see [LiT, Proposition 1.e.3]). Let X and Y be Banach spaces.
Let K ∈ K(X) and de�ne the semi-norm pK : L(X, Y )→ K as follows.

pK(T ) = sup
x∈K
‖Tx‖.

Denote by τc the locally convex topology generated by the family of semi-norms

{pK | K ∈ K(X)}.

One can also de�ne this topology using a di�erent set of semi-norms.

De�nition 8.3.3. Let X and Y be Banach spaces. Let x ∈ c0(X) and de�ne the
semi-norm px : L(X, Y )→ K as follows.

px(T ) = sup
k∈N
‖Txk‖.

Put another way,
px = p{xk}.

Lemma 8.3.4. The topology τc coincides with the locally convex topology τ ′c gen-
erated by the family of semi-norms

{px | x ∈ c0(X)}.

Proof. To see that the topology τ ′c is weaker than τc, observe that every semi-norm
px, where x ∈ c0(X), is equal to a semi-norm p{xk}, where {xk} ∈ K(X).

To show that the topology τ ′c is stronger than the topology τc, take a semi-norm
pK , where K ∈ K(X). According to Grothendieck's compactness principle, there
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exists a sequence x ∈ c0(X) so that K ⊂ Ex(B`1). It su�ces to show that
pK(T ) ≤ px(T ) for each T ∈ L(X, Y ). In other words, we need to show that

sup
x∈K
‖Tx‖ ≤ sup

k∈N
‖Txk‖.

Let x ∈ K. Since K ⊂ Ex(B`1), there exists a scalar sequence α ∈ B`1 with
x =

∑∞
k=1 αkxk. Thus

‖Tx‖ =

∥∥∥∥∥T
(
∞∑
k=1

αkxk

)∥∥∥∥∥ =

∥∥∥∥∥
∞∑
k=1

αkTxk

∥∥∥∥∥ ≤ sup
k∈N
‖Txk‖

∞∑
k=1

|αk| ≤ sup
k∈N
‖Txk‖.

We now introduce another topology on L(X, Y ) which, in general, is considerably
weaker than the topology τc.

De�nition 8.3.5. Let x ∈ c0(X). Denote by τxc the locally convex topology
generated by the single semi-norm px.

Recall the following Grothendieck's result.

Proposition 8.3.6 (see, e.g., [LiT, Proposition 1.e.3]). Continuous linear func-
tionals on (L(X, Y ), τc) coincide with the functionals f of the form

f(T ) =
∞∑
k=1

y∗k(Txk), (xk) ⊂ X, (y∗k) ⊂ Y ∗,
∞∑
k=1

‖xk‖ ‖y∗k‖ <∞.

We continue by proving a modi�ed version of the aforementioned result. We
include a proof for completeness, although it is essentially the same as in [LiT,
Proposition 1.e.3].

Proposition 8.3.7. Let x ∈ c0(X). Continuous linear functionals on (L(X, Y ), τxc )
coincide with the functionals f of the form

f(T ) =
∞∑
k=1

y∗k(Txk), (y∗k) ⊂ `1(Y ∗).

Proof. Assume that f has such a representation. Then

|f(T )| ≤
∞∑
k=1

‖y∗k‖ ‖Txk‖ ≤ sup
k∈N
‖Txk‖

∞∑
k=1

‖y∗k‖ ≤ sup
k∈N
‖Txk‖ = px(T ),

which proves that f is continuous.
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Conversely, assume that f is a linear functional on L(X, Y ) so that |f(T )| ≤
Cpx(T ) for some constant C. De�ne S : L(X, Y )→ c0(Y ) by

S(T ) = (Tx1, Tx2, . . .).

Observe that kerS ⊂ ker f . Indeed,

|f(T )| ≤ Cpx(T ) = C sup
k∈N
‖Txk‖ = C ‖S(T )‖c0(Y ) .

It is well known that one may de�ne (see, e.g., [M, Theorem 1.7.13, 1.7.14]) a
bounded linear operator g0 : ranS → K by

g0(ST ) = f(T ).

By the Hahn�Banach theorem, we may extend g0 to a continuous linear functional
g on c0(Y ). Denote by J the canonical isomorphism from c0(Y )∗ to `1(Y ∗) and
put (y∗k) = J(g). Then

f(T ) = g0(ST ) = g(ST ) = J−1Jg(ST ) = (J−1(y∗k))(ST ) =
∞∑
k=1

y∗k(Txk).

We are now ready to prove the main result of this section. The proof follows the
proof of Theorem 8.3.1 (see [LiT, Theorem 1.e.4]) with obvious modi�cations.

Theorem 8.3.8. Let X be a Banach space and let (xk) ∈ c0(X). The following
are equivalent.

(i) (xk) ∈ ap(X);

(ii) IX ∈ F(X,X)
τxc
;

(iii) For every choice (x∗k) ∈ `1(X∗) such that
∑∞

k=1 x
∗
k(x)xk = 0 for all x ∈ X,

we have
∑∞

k=1 x
∗
k(xk) = 0.

Proof. Observe that (ii) means that for every ε > 0 there exists an operator
T ∈ F(X,X) such that px(T − IX) ≤ ε. This is equivalent to the fact that
x ∈ ap(X), since

px(T − IX) = sup
k∈N
‖Txk − xk‖.

By the Tukey-Klee separation theorem and the fact that every �nite-rank operator
can be expressed as a sum of rank 1 operators, (ii) is equivalent to the fact that
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every operator f ∈ (L(X,X), τxc )∗, which vanishes on operators of rank 1, vanishes
also on the identity operator. Let us show the the latter statement is equivalent
to (iii).

According to Proposition 8.3.7, f ∈ (L(X,X), τxc )∗ if and only if there exists a
sequence (x∗k) ⊂ `1(X∗) such that

f(T ) =
∞∑
k=1

x∗k(Txk).

Recall that f vanishes on all operators of rank 1 if and only if f(x∗ ⊗ x) = 0 for
every x∗ ∈ X∗, x ∈ X. Observe that

f(x∗ ⊗ x) =
∞∑
k=1

x∗k((x
∗ ⊗ x)xk) =

∞∑
k=1

x∗(xk)x
∗
k(x) = x∗

(
∞∑
k=1

x∗k(x)xk

)
.

Since f(IX) =
∑∞

k=1 x
∗
k(xk), it remains to show only that

∀x∗ ∈ X∗, ∀x ∈ X, x∗
(
∞∑
k=1

x∗k(x)xk

)
= 0⇔ ∀x ∈ X,

∞∑
k=1

x∗k(x)xk = 0.

The �only if� part follows from the Hahn�Banach theorem; the �if� part is obvious.

We remark that having proven Theorem 8.3.8 for a single approximable sequence
x, one may easily obtain the original Theorem 8.3.1 from it in the following way.

Proof of Theorem 8.3.1. (ii) ⇒ (i). For every choice (xk) ⊂ X, (x∗k) ⊂ X∗ such
that

∑∞
k=1 ‖x∗k‖ ‖xk‖ < ∞ and

∑∞
k=1 x

∗
k(x)xk = 0, for all x ∈ X, we have∑∞

k=1 x
∗
k(xk) = 0. By the part (ii) ⇒ (i) of Theorem 8.3.8, it holds that every

sequence (xk) ∈ c0(X) is approximable and therefore X has the AP.

(i) ⇒ (ii). Let X be a Banach space with the approximation property. Let
(xk) ⊂ X and (x∗k) ⊂ X∗ so that

∑∞
k=1 ‖x∗k‖ ‖xk‖ <∞ and

∑∞
k=1 x

∗
k(x)xk = 0 for

every x ∈ X. We need to show that
∑∞

k=1 x
∗
k(xk) = 0. Take a sequence (βk) of

positive scalars tending to ∞ so that
∞∑
k=1

βk ‖x∗k‖ ‖xk‖ <∞.

Put

yk =

{
xk

βk‖xk‖
, if xk 6= 0,

0, otherwise.
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and
y∗k = βk ‖xk‖x∗k.

Then (y∗k) ∈ `1(X∗) and (yk) ∈ c0(X) = ap(X). Since y∗k(yk) = x∗k(xk) and
y∗k(x)yk = x∗k(x)xk for every x ∈ X, then by the part (i)⇒ (ii) of Theorem 8.3.8,

∞∑
k=1

x∗k(xk) =
∞∑
k=1

y∗k(yk) = 0.

8.4 Non-approximable sequences arising from in�-

nite matrices

Recall the following result, which we mentioned in the introduction to the current
chapter.

�Proposition� 8.4.1 (see [G2, �Proposition� 37]). The following are equivalent.

(i) Every Banach space has the AP;

(ii) every matrix A = (ajk) of scalars, for which limk ajk = 0 for each j ∈ N,

∞∑
j=1

max
k∈N
|ajk| <∞ and A2 = 0, satis�es traceA =

∞∑
n=1

ann = 0.

Of course, this result in the given formulation is only of historical interest, since we
now know that both of these statements are false. However, the simple and explicit
proof enables us to transfer a counterexample of one statement to a counterexample
of the other statement. Speci�cally, we are interested in the direction (i) ⇒ (ii),
i.e., ¬(ii) ⇒ ¬(i). By inspecting the proof of the latter direction (see, e.g., [LiT,
Proposition 1.e.8]) and modifying it slightly, we obtain the following result.

Proposition 8.4.2. Let A = (ajk) be an in�nite matrix with the following prop-
erties.

(i) limk ajk = 0 for each j ∈ N;

(ii)
∑∞

j=1 maxk∈N |ajk| <∞;

(iii) A2 = 0;

(iv) traceA 6= 0.
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Denote the j-th row of A by xj = (ajk)k∈N. Note that xj ∈ c0 for every j ∈ N.
De�ne X = span{xj | j ∈ N} ⊂ c0. Then there exists a sequence of positive scalars
(βj) tending to ∞ so that the sequence(

xj
βj ‖xj‖

)
converges to zero in X, but is not approximable in X.

Proof. Let ek, where k ∈ N, denote the k-th unit vector of c∗0 = `1, restricted to
the subspace X ⊂ c0. Then ek(xj) = ajk and

‖ek‖X∗ = sup
x∈BX

|ek(x)| ≤ sup
x∈Bc0

|ek(x)| = 1.

By assumption,

∞∑
j=1

‖ej‖ ‖xj‖ ≤
∞∑
j=1

1 ·
(

max
k
|ajk|

)
=
∞∑
j=1

max
k
|ajk| <∞.

Fix j ∈ N and k ∈ N. Then

ek

(
∞∑
n=1

en(xj)xn

)
=
∞∑
n=1

en(xj)ek(xn) =
∞∑
n=1

ajnank = 0,

since the latter is the entry in the j-th row and k-th column of the matrix A2.

Let x ∈ X be an arbitrary non-zero element. We will show that for every k ∈ N,

ek

(
∞∑
n=1

en(x)xn

)
= 0.

Let ε > 0. Choose an element x̂ ∈ span {xj} so that

‖x− x̂‖ < ε
/( ∞∑

n=1

max
k
|ank|

)
.

Then

ek

(
∞∑
n=1

en(x̂)xn

)
=
∞∑
n=1

en(x̂)ej(xn) = 0.
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Observe that∣∣∣∣∣ek
(
∞∑
n=1

en(x)xn

)∣∣∣∣∣ ≤
∣∣∣∣∣ek
(
∞∑
n=1

en(x− x̂)xn

)∣∣∣∣∣+

∣∣∣∣∣ek
(
∞∑
n=1

en(x̂)xn

)∣∣∣∣∣ ≤
‖ek‖

(
∞∑
n=1

‖en‖ ‖x− x̂‖ ‖xn‖

)
≤ ‖x− x̂‖

∞∑
n=1

max
k
|ank| < ε.

Take x∗ ∈ X∗ and �nd its continuous extension x̂∗ ∈ `1. Then x̂∗ =
∑∞

j=1 ajej and

x∗

(
∞∑
n=1

en(x)xn

)
= x̂∗

(
∞∑
n=1

en(x)xn

)
=
∞∑
j=1

ajej

(
∞∑
n=1

en(x)xn

)
=
∞∑
j=1

0 = 0.

We have shown that every functional x∗ vanishes on the element
∑∞

n=1 en(x)xn,
where x ∈ X is arbitrarily chosen. Therefore

∑∞
n=1 en(x)xn = 0 for every x ∈ X.

Observe that
∞∑
j=1

ej(xj) =
∞∑
j=1

ajj = traceA 6= 0.

Recall that
∑∞

j=1 ‖ej‖ ‖xj‖ <∞. Take a sequence of positive scalars (βj) tending
to ∞ so that

∞∑
j=1

βj ‖ej‖ ‖xj‖ <∞.

Put

yj =

{
xj

βj‖xj‖ , if xj 6= 0,

0, otherwise.

and
fj = βj ‖xj‖ ej,

where j ∈ N. Then (yj) ∈ c0(c0) and (fj) ∈ `1(`1) = `1(c∗0). Since fj(yj) =
ej(xj) 6= 0 and fj(x)yj = ej(x)xj = 0 for every x ∈ X, then (yj) 6∈ ap(c0) by
Theorem 8.3.8.

8.5 Are approximable sets a generating system of

sets?

It is natural to ask whether the systems AP and λ−BAP are generating systems
of sets. Clearly, the systems of sets AP and λ−BAP satisfy properties (G0) (each
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approximable set is relatively compact), (G1) (the unit ball BK is an approximable
set), and (G3) (a subset of an approximable set is an approximable set) and they
are closed with respect to multiplication by a scalar. However, neither of the afore-
mentioned systems is closed with respect to applying bounded linear operators, as
demonstrated by Proposition 8.5.2 below. To see this, let K in Proposition 8.5.2
be any relatively compact set which fails to be (λ-boundedly) approximable.

On a related note, are the systems ap and λ−bap normed systems of sequences
(when equipped with the supremum norm of c0)? Clearly, they satisfy property
(NS2). Indeed, any sequence (xk) ∈ fin(K) is (1-boundedly) approximable, since
IK has rank 1 (and ‖IK‖ = 1). However, neither ap nor λ−bap is closed with
respect to applying bounded linear operators, as demonstrated by Proposition 8.5.1
below. To see this, let (xk) in Proposition 8.5.1 be any convergent sequence which
fails to be (λ-boundedly) approximable.

Proposition 8.5.1. Let X be a Banach space and let x ∈ c0(X). Then there
exists an operator T ∈ L(`1, X) and a sequence (αk) ∈ c0(`1) = 1−bap(`1) such
that

(xk) = (Tαk)k∈N.

Proof. Put αk = ‖xk‖ ek ∈ `1 for each k ∈ N. De�ne an operator T ∈ L(`1, X) by

T (ek) =
xk
‖xk‖

(put T (ek) = 0 if xk = 0).

Obviously, (αk) ∈ c0(`1) = 1−bap(`1). Then

(Tαk)k∈N = (‖xk‖Tek)k∈N = (xk).

Proposition 8.5.2. Let X be a Banach space and let K ∈ K(X). Then there
exists an operator T ∈ L(`1, X) and a set G ∈ K(`1) = 1−BAP(`1) such that

K ⊂ T (G).

Proof. Let K be a relatively compact set. Then K ⊂ Ex(B`1) for some sequence
x ∈ c0(X). De�ne (αk) ∈ c0(`1) and T ∈ L(`1, X) exactly as in the proof of
the previous proposition. Denote G = E(αk)(B`1) and observe that G ∈ K(`1) =
1−BAP(`1). Therefore

K ⊂ Ex(B`1) = E(Tαk)(B`1) = TE(αk)(B`1) = T (G).

The following corollary follows easily from Proposition 8.5.2 and the fact that every
generating system of sets satis�es property (G4).
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Corollary 8.5.3. K is the smallest generating system of sets which contains the
system AP.

Coming to terms with the fact that the system AP fails to be a generating system
of sets, it is natural to ask the following question: what is the largest generating
system of sets residing in AP? Sinha and Karn proved in [SK1, Theorem 6.4] that
every Banach space has the (2, 2)-approximation property. In our terminology, this
result can be stated as K(2,2) ⊂ AP. We pose the following question.

Question 8.5.4. Is K(2,2) the largest generating system of sets which is contained
by the system AP?

It turns out that the systems AP and ap also fail to be closed under addition
(of sets and sequences, respectively); this will be demonstrated in Theorem 8.5.8.
However, compared to the above proposition, its proof is rather more involved.
The proof is based on the �shape� of an in�nite matrix, constructed by Davie in
[Da], which satis�es the assumptions of Proposition 8.4.2. The latter proposition
then yields an example of a non-approximable null sequence in a subspace X of c0.
We will show that this sequence can be represented as a sum of three approximable
sequences (see Theorem 8.5.8).

Our proof relies on the following lemma.

Lemma 8.5.5. Let Y be a Banach space and let X be its subspace. If G ∈ AP(X),
then G ∈ AP(Y ). Similarly, if x ∈ ap(X), then x ∈ ap(Y ).

Proof. Let G ∈ AP(X) and let ε > 0. Then there exists an operator T ∈ F(X)
so that

‖(I − T )x‖ ≤ ε

for every x ∈ G ⊂ X. Since T is of �nite rank, it admits a representation

T =
n∑
k=1

x∗k ⊗ xk,

where n ∈ N, x∗1, . . . , x∗n ∈ X∗, and x1, . . . , xn ∈ X. By the Hahn�Banach theorem,
each of those bounded linear functionals x∗k can be extended to a bounded linear
functional y∗k on Y . Put S =

∑n
k=1 y

∗
k ⊗ xk. Then S ∈ F(Y, Y ) and for every

x ∈ G ⊂ Y we have

‖(I − S)x‖ =

∥∥∥∥∥
(
I −

n∑
k=1

y∗k ⊗ xk

)
x

∥∥∥∥∥ = ‖(I − T )x‖ ≤ ε,

i.e., G ∈ AP(Y ). The claim is proved similarly for approximable sequences.
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Remark 8.5.6. We do not know whether the above result also holds for λ-boundedly
approximable sets and sequences. Notice that the line of thought employed in the
above lemma cannot be used in that case; indeed, although the Hahn�Banach
theorem allows us to choose extensions y∗k such that ‖y∗k‖ = ‖x∗k‖, it does not
guarantee that ‖S‖ = ‖T‖.

We also need the following result to prove Theorem 8.5.8.

Proposition 8.5.7. Let A be an in�nite diagonal block matrix of the following
shape, where blocks Bk are any scalar matrices of any size mk × nk and zeros
denote the zero matrices of suitable sizes.

A =


B1 0 0 . . .
0 B2 0 . . .
0 0 B3 . . .
...

...
...

. . .


Let xk denote the k-th row of A and let X = span{xk | k ∈ N} ⊂ c0. Then the
space X has the 1-BAP.

Proof. Denote the linear span of �rst m1 rows by X1, the linear span of next m2

rows by X2, etc. For each k ∈ N de�ne the projection Pk : X → X as follows.

Pk(xj) =

{
xj, if xj ∈ Xk,

0, otherwise.

It is easy to see that the de�nition of Pk is correct and that ‖Pk‖ ≤ 1 (if Xk is a
non-trivial space, then ‖Pk‖ = 1). Since Xk is a �nite-dimensional subspace of X,
we have Pk ∈ F(X,X). Put

Sk =
∞∑
j=1

Pj.

Clearly, ‖Sk‖ ≤ 1 and Sk ∈ F(X,X) for each k ∈ N.

Let (yk) ∈ c0(X). We need to show that (yk) ∈ 1−bap(X). Fix ε > 0. Since
the sequence (yk) converges to 0 in X, there exists an index n0 ∈ N such that
‖yn‖ ≤ ε

2
for every n > n0.

Let 1 ≤ j ≤ n0. Since yj = (ykj )k∈N ∈ X, then there exists an index mj so that∥∥(I − Smj)yj
∥∥ ≤ ε. Put

M = max
1≤j≤n0

mj.
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For each n ≤ n0, we have

‖(I − SM)yn‖ ≤ ‖(I − Smn)yn‖ ≤ ε.

On the other hand, for every n > n0, we have

‖(I − SM)yn‖ ≤ (‖I‖+ ‖SM‖) ‖yn‖ ≤ 2 ‖yn‖ ≤ 2 · ε
2

= ε.

Therefore we may conclude that (yk) ∈ 1−bap(X).

We are now ready to give the main result of this section. Denote by A the matrix
constructed by Davie, which satis�es the assumptions of Proposition 8.4.2. It is a
block matrix and has the following shape (where Pk is a certain 2k+1×3 ·2k matrix
and Qk is a certain 2k × 3 · 2k matrix for each k ∈ N0):

A =


P ∗0P0 P ∗0Q1 0 0 0 . . .
−Q∗1P0 P ∗1P1 −Q∗1Q1 P ∗1Q2 0 0 . . .

0 −Q∗2P1 P ∗2P2 −Q∗2Q2 P ∗2Q3 0 . . .
0 0 −Q∗3P2 P ∗3P3 −Q∗3Q3 P ∗3Q4 . . .
...

...
...

...
... . . .

 .

Following Proposition 8.4.2, denote the j-th row of A by xj = (ajk)k∈N. Clearly,
xj ∈ c0 for every j ∈ N. Put X = span{xj | j ∈ N} ⊂ c0. Then there exists a
sequence of positive scalars (βj) tending to ∞ so that the sequence

(x′j) =

(
xj

βj ‖xj‖

)
converges to zero in X, but is not approximable in X.

De�ne the matrices B, C, and D in the following way.

(i) The matrix B is obtained by putting rows �lled with zeros instead of all rows
of the matrix A, except for the rows from 1st, 4th, 7th, etc. blocks of rows.

(ii) The matrix C is obtained by putting rows �lled with zeros instead of all rows
of the matrix A, except for the rows from 2nd, 5th, 8th, etc. blocks of rows.

(iii) The matrix D is obtained by putting rows �lled with zeros instead of all rows
of the matrix A, except for the rows from 3rd, 6th, 9th, etc. blocks of rows.

For the sake of clarity, we write out a part of the matrix B.
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P ∗0P0 P ∗0Q1 0 0 0 0 . . .
0 0 0 0 0 0 . . .
0 0 0 0 0 0 . . .
0 0 −Q∗3P2 P ∗3P3 −Q∗3Q3 P ∗3Q4 0 . . .
0 0 0 0 0 0 . . .
...

...
...

...
...

... . . .


Clearly, A = B + C + D. Denote by yj, zj, and wj the j-th rows of B, C, and
D, respectively. It is easy to see that xj = yj + zj + wj for each j ∈ N. Put
Y = span{yj | j ∈ N}; Z = span{zj | j ∈ N}; W = span{wj | j ∈ N}. Then each
of the spaces Y , Z, andW is a subspace ofX. The following theorem demonstrates
that the systems ap and AP are not closed with respect to addition.

Theorem 8.5.8. Let the space X ⊂ c0, the scalar sequence (βj), and the sequences
(xj), (yj), (zj), and (wj) be given as described above. Put

(y′j) =

(
yj

βj ‖xj‖

)
, (z′j) =

(
zj

βj ‖xj‖

)
, and (w′j) =

(
wj

βj ‖xj‖

)
.

Then each of the sequences (y′j), (z′j), and (w′j) belongs to the system ap(X), but

their sum
(
x′j
)
does not belong to the system ap(X). Likewise, each of the sets{

y′j
}
,
{
z′j
}
, and

{
w′j
}
belongs to the system AP(X), but

{
x′j
}
6∈ AP(X), although{

x′j
}

=
{
y′j + z′j + w′j

}
⊂
{
y′j
}

+
{
z′j
}

+
{
w′j
}
.

Proof. Clearly,
(
y′j
)
∈ c0(Y ),

(
z′j
)
∈ c0(Z), and

(
w′j
)
∈ c0(W ). According to

Proposition 8.5.7, (y′j) ∈ 1−bap(Y ), (z′j) ∈ 1−bap(Z), and (w′j) ∈ 1−bap(W ).
Lemma 8.5.5 yields that each of the sequences (y′k), (z′k), and (w′k) belongs to the
system ap(X). We conclude the proof by recalling that (x′j) 6∈ ap(X).

We conclude this section by remarking that we do not know whether the systems
λ−BAP and λ−bap also fail to be closed with respect to addition.

8.6 Approximable sequences and sets which are

not boundedly approximable

Recall that the example of Figiel and Johnson [FJ] in 1973 showed that the BAP
and the AP are di�erent notions for Banach spaces. From the point of view of this
thesis, we are interested in the question whether the systems BAP and AP are
also di�erent. The answer to this questions turns out to be yes, as demonstrated
by the following result.
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Proposition 8.6.1. Let X be a Banach space which has the AP , but does not
have the BAP . Then bap(X) 6= ap(X). Similarly, BAP(X) 6= AP(X).

Proof. For each n ∈ N, �x a set Kn ∈ AP(X) such that Kn 6∈ n−BAP(X).
According to Theorem 8.2.3, there exists a sequence xn = (xnk)k∈N ∈ ap(X) such
that Kn ⊂ Exn(B`1), but xn 6∈ n−bap(X). Put Mn = supk∈N ‖xnk‖ 6= 0.

De�ne y = (yn) as any array of the following elements:

x1
1

2M1

,
x1

2

2M1

, . . . ,
x1
k

2M1

, . . . ,

x2
1

4M2

,
x2

2

4M2

, . . . ,
x2
k

4M2

, . . . ,

. . . ,

xn1
2nMn

,
xn2

2nMn

, . . . ,
xnk

2nMn

, . . . ,

. . .

Observe that y ∈ c0(X). But this means that y ∈ ap(X), since X has the AP .
Assume to the contrary that y ∈ bap(X). Then y ∈ n−bap(X) for some n ∈ N.
Thus also the sequence

xn
2nMn

=
(xnk)k∈N
2nMn

,

which is a re-ordered subsequence of y, belongs to n−bap(X). But then the
sequence xn also belongs to n−bap(X), since the system n−bap is closed with
respect to scalar multiplication. Furthermore, this yields that Kn ∈ n−BAP(X).
We have reached a contradiction, as desired.
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Genereerivate hulkade ja jadade süsteemid

Kokkuvõte

Operaatorideaalide teooria sai alguse A. Pietschi monograa�ast [Pi1] ning on täna-
seks saanud kaasaegse Banachi ruumide teooria lahutamatuks osaks. I. Stephani tõi
artiklis [S] sisse kaks operaatorideaalidega tihedalt seotud mõistet: genereerivate
hulkade süsteem ja genereerivate jadade süsteem. Nimelt, lähtudes kahest ette-
antud genereerivate hulkade süsteemist, saame me tekitada operaatorideaali, mis
koosneb kõigist operaatoritest, mis teisendavad esimesse süsteemi kuuluvad hulgad
teise süsteemi kuuluvateks hulkadeks. Genereerivate jadade süsteeme saab oma-
korda kasutada genereerivate hulkade süsteemide tekitamiseks. Siinkohal märgime,
et genereerivate hulkade ja jadade süsteemide mõisteid on uuritud operaatorideaa-
lidest oluliselt vähem.

Üks väitekirja põhieesmärkidest on uurida genereerivate hulkade ja jadade süs-
teemide klasse ning nendevahelisi seoseid. Muuhulgas tõestatakse, et leidub Galois'
vastavus genereerivate hulkade süsteemide klassi ja teatava genereerivate jadade
süsteemide faktorklassi vahel.

Teine väitekirja eesmärk on uurida järgmisi struktuure ning nendega seotud klas-
se võreteoreetilisest aspektist: operaatorideaalide klass, genereerivate hulkade süs-
teemide klass ja genereerivate jadade süsteemide klass.

Nagu eelnevalt mainitud, näitas Stephani, kuidas genereerivate hulkade süsteemi
kaudu saab tekitada operaatorideaale. Sellele lisaks näitas ta, kuidas etteantud
operaatorideaalist saab tekitada genereerivate hulkade süsteemi. Nende teisendus-
tega seotult tõi Stephani sisse kaks mõistet: sürjektiivse operaatorideaali mõiste
ja ideaalse hulkade süsteemi mõiste. Väitekirjas näidatakse, et operaatorideaalide
ja genereerivate hulkade süsteemide vahel on Galois' vastavus, ning et läbi selle
vaatenurga on võimalik uuesti näha ja mõtestada teatud tulemusi artiklist [S].

Üks levinud näide genereerivate hulkade süsteemide kohta on kõigi suhteliselt kom-
paktsete hulkade süsteem, mis on tekitatav teatud viisil kõigi koonduvate jadade
süsteemi kaudu. Kõigi kompaktsete operaatorite operaatorideaal on omakorda te-
kitatav kõigi tõkestatud ja suhteliselt kompaktsete hulkade süsteemide kaudu järg-
misel viisil: operaator on kompaktne parajasti siis, kui teisendab tõkestatud hulgad
suhteliselt kompaktseteks hulkadeks. Väitekirjas uuritakse lisaks mitmeid alterna-
tiivseid suhtelise kompaktsuse variante. Need alternatiivsed mõisted baseeruvad A.
Grothendiecki poolt 1955. aastal tõestatud tulemusel [G2]: Banachi ruumi alam-
hulk on suhteliselt kompaktne parajasti siis, kui ta sisaldub nulli koonduva jada
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kinnises kumeras kattes. Tänapäeval tuntakse seda tulemust kui Grothendiecki
kompaktsuse printsiipi.

Asendades Grothendiecki kompaktsuse printsiibis nulli koonduvad jadad absoluut-
selt p-summeeruvate jadadega (kus 1 ≤ p < ∞), saadakse tugevam variant suh-
telisest kompaktsusest. Sellist kompaktsuse mõistet uuriti 1980ndatel O. Reinovi
[Re1] ja J. Bourgaini ning O. Reinovi [BR] poolt. Käesolevas väitekirjas nimeta-
takse selliseid hulki suhteliselt p-kompaktseteks Bourgain�Reinovi mõttes. Aastal
2002 tõid D. P. Sinha ja A. K. Karn artiklis [SK1] sisse teise suhtelise kompaktsu-
se mõiste, mis asetseb eelmainitud mõistete vahel. Väitekirjas nimetatakse sellised
hulki suhteliselt p-kompaktseteks Sinha�Karni mõttes.

Kehtigu 1 ≤ p ≤ ∞ ning 1 ≤ r ≤ p∗, kus p∗ on indeksi p kaasindeks. Sel-
leks, et uurida ühise käsitluse raames eelmainitud omadusi, tuuakse väitekirjas
sisse suhteliselt (p, r)-kompaktse hulga mõiste, mis erijuhuna sisaldab suhteliselt
p-kompaktseid hulki Bourgain�Reinovi mõttes (juhul r = 1) ja Sinha�Karni mõttes
(juhul r = p∗). Seejärel veendutakse, et kõigi suhteliselt (p, r)-kompaktsete hulkade
süsteem on genereerivate hulkade süsteem. Vaadeldes operaatoreid, mis teisenda-
vad tõkestatud hulgad suhteliselt (p, r)-kompaktseteks, saadakse (p, r)-kompaktsed
operaatorid. Erijuhtudena sisaldab viimane mõiste p-kompaktseid operaatoreid
Bourgain�Reinovi mõttes (juhul r = 1) ning Sinha�Karni mõttes (juhul r = p∗).

Artiklis [SK1] tõestati, et (Sinha�Karni mõttes) p-kompaktsed operaatorid moo-
dustavad Banachi operaatorideaali. Väitekirjas antakse kõigi (p, r)-kompaktsete
operaatorite operaatorideaali K(p,r) kirjeldus operaatorideaali N(p,1,r∗) sürjektiivse
katte kaudu. See võimaldab varustada operaatorideaali K(p,r) tuntud operaator-
ideaali N sur

(p,1,r∗) s-normiga ning näidata, et K(p,r) on s-Banachi operaatorideaal.

Artiklis [SK1] vaadeldi ka suhteliselt nõrgalt p-kompaktse hulga mõistet. Selle
mõiste üldistatud variant, suhteliselt nõrgalt (p, r)-kompaktne hulk, toodi sisse
artiklis [AO2]. Artiklis [AO2] toodi sisse ka tingimatult (p, r)-kompaktse hulga
mõiste. Nõrgalt p-kompaktsed, nõrgalt (p, r)-kompaktsed, ning tingimatult (p, r)-
kompaktsed operaatorid de�neeritakse loomulikul viisil. Tähistagu W(p,r) ja U(p,r)

vastavalt kõigi nõrgalt (p, r)-kompaktsete ja tingimatult (p, r)-kompaktsete ope-
raatorite kogumeid. Artiklis [SK1] tõestati, et nõrgalt p-kompaktsete operaatorite
klassWp =W(p,p∗) on Banachi operaatorideaal, kui 1 ≤ p <∞. Väitekirjas tõesta-
takse, et W(p,1) ja U(p,1) on kvaasi-Banachi operaatorideaalid. Selle saavutamiseks
tuuakse sisse üldine meetod genereerivate hulkade süsteemide ja operaatorideaa-
lide konstrueerimiseks, lähtudes BK-ruumist g ja normeeritud jadade süsteemist
h. Tõestatakse, et sellel viisil konstrueeritud operaatorideaal on kvaasi-Banachi
operaatorideaal, eeldusel, et g ja h rahuldavad teatud tingimusi.
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Väitekirjas näidatakse, et W∞ = W(∞,1) on Banachi operaatorideaal ning tõesta-
takse, et täielikult pidevate operaatorite operaatorideaal V on esitatav jagatisena
V =W∞ ◦W−1. See annab uue tõestuse tulemusele [DFLORT, Theorem 1]: nõrk
Grothendiecki kompaktsuse printsiip kehtib vaid Schuri omadusega ruumides.

Öeldakse, et Banachi ruumil on aproksimatsiooniomadus, kui ühikoperaatorit saab
lähendada lõplikumõõtmeliste operaatoritega ühtlaselt ruumi suhteliselt kompakt-
setel alamhulkadel. Käesolevas väitekirjas vaadeldakse kõigi aproksimeeritavate
hulkade süsteemi, kus aproksimeeritav hulk on de�neeritud kui tõkestatud hulk,
millel ühikoperaator on ühtlaselt lähendatav lõplikumõõtmeliste operaatoritega.
Lisaks de�neeritakse aproksimeeritav jada kui nulli koonduv jada, millel ühikope-
raator on ühtlaselt lähendatav lõplikumõõtmeliste operaatoritega. Grothendiecki
kompaktsuse printsiibile analoogiliselt tõestatakse väitekirjas, et hulk on aprok-
simeeritav parajasti siis, kui ta sisaldub aproksimeeritava jada kinnises kumeras
kattes. Lisaks tõestatakse, et leidub mitteaproksimeeritav jada, mis on esitatav
kolme aproksimeeritava jada summana.

Väitekirja esimene peatükk sisaldab vaadeldava temaatika ülevaadet, väitekirja
kokkuvõtet ning väitekirjas kasutatud tähistuste kirjeldust.

Väitekirja teises peatükis uuritakse operaatorideaalide klassi OI, genereerivate hul-
kade süsteemide klassi GSet ning genereerivate jadade süsteemide klassi GSeq
ning nende klasside omavahelisi seoseid. Stephani vaatles klassil GSeq teatavat
seost, mida me tähistame sümboliga .. Selle seose näol on tegemist eeljärjestusega,
mis indutseerib ekvivalentsiseose ∼. Kasutades eeljärjestust ., saab faktorklassi
GSeq/∼ muuta järjestatud klassiks. Üks väitekirja põhitulemustest on, et järjes-
tatud klasside GSet ja GSeq/∼ vahel eksisteerib Galois' vastavus. De�neeritakse,
et genereerivate hulkade süsteem on jadaliselt tekitatav, kui ta on tekitatav mingi
genereerivate jadade süsteemi poolt. Eelmainitud Galois' vastavuse olemasolu an-
nab praktilise kriteeriumi jadaliselt tekitatavate genereerivate hulkade süsteemide
kirjeldamiseks. Teine peatükk põhineb enamuses artiklil [Lil1].

Kolmandas peatükis uuritakse klasside OI, GSet ja GSeq võrestruktuure. Samuti
uuritakse võrestruktuure eelnevate klassidega seotud klassidel, mis tekivad loomu-
likul viisil nende klasside vaheliste teisenduste ja Galois' vastavuste kaudu. Antud
peatükk põhineb artiklil [Lil1].

Neljandas peatükis uuritakse kõigi suhteliselt (p, r)-kompaktsete hulkade süsteemi
K(p,r) ja veendutakse, et tegemist on genereerivate hulkade süsteemiga. Toetu-
des teisele peatükile, tõestatakse, et hulkade süsteem K(p,r) on jadaliselt tekitatav
vaid juhul p = ∞ ja r = 1, millisel juhul süsteem K(p,r) ühtib kõigi suhteliselt
kompaktsete hulkade süsteemiga K. Lisaks pakub hulkade süsteemi K(p,r) uuri-
mine vastuseid ja kontranäiteid mitmetele teises peatükis püstitatud küsimustele.
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Tõestatakse, et K(p,r) = N sur
(p,1,r∗), mis lubab varustada operaatorideaali K(p,r) ope-

raatorideaali N sur
(p,1,r∗) s-normiga ning näha, et K(p,r) on s-Banachi operaatorideaal.

Neljas peatükk põhineb artiklitel [ALO] ja [Lil1].

Viiendas peatükis uuritakse jadaliselt tekitatavaid genereeritavate hulkade süstee-
me G, mis rahuldavad tingimust G ≤ K. Selleks tuuakse sisse mitmeid mõisteid,
muuhulgas päranduvalt peaaegu eneselähendava jada mõiste. Sellele mõistele toe-
tudes tõestatakse, et võrratus G ≤ K on range parajasti siis, kui süsteem G on te-
kitatav mingi genereerivate jadade süsteemi g poolt, milles iga jada on päranduvalt
peaaegu eneselähendav. Samuti konstrueeritakse sellise omadusega genereerivate
jadade süsteem g.

Kuuendas peatükis uuritakse kõigi suhteliselt nõrgalt∞-kompaktsete hulkade süs-
teemi ning näidatakse, et tegemist on genereerivate hulkade süsteemiga. Tõesta-
takse, et kõigi nõrgalt ∞-kompaktsete operaatorite kogum W∞ on Banachi ope-
raatorideaal. Tõestatakse üks väitekirja põhitulemusi, et kehtib operaatorideaalide
võrdus V = W∞ ◦ W−1 (ning et see võrdus kehtib ka Banachi operaatorideaalide
kontekstis). Vahetu järeldusena saadakse sellest võrdusest uus tõestus tulemusele
[DFLORT, Theorem 1], et nõrk Grothendiecki kompaktsuse printsiip kehtib vaid
Schuri omadusega ruumides. Kuues peatükk põhineb artiklitel [JLO] ja [Lil2].

Seitsmendas peatükis luuakse meetod genereerivate hulkade süsteemide ja kvaasi-
Banachi operaatorideaalide konstrueerimiseks. See meetod üldistab viisi, kuidas on
konstrueeritud hulkade süsteemid K(p,r) ja W∞ ning vastavad operaatorideaalid
K(p,r) ja W∞. Antud konstruktsioon lähtub BK-ruumist g ja normeeritud jadade
süsteemist h ning annab tulemuseks kvaasi-Banachi operaatorideaali, eeldusel, et
g ja h rahuldavad teatavaid lisatingimusi. Muuhulgas tõestatakse, etW(p,1) ja U(p,1)

on kvaasi-Banachi operaatorideaalid (kus 1 ≤ p <∞).

Kaheksas peatükk algab ülevaatega mõningatest teadaolevatest aproksimatsiooni-
omadust puudutavatest tulemustest. Seejärel tuuakse sisse aproksimeeritava hul-
ga ja jada mõisted. Lähtudes neist mõistetest, tõestatakse kriteerium, mis kirjel-
dab Banachi ruumi aproksimeeritavaid hulki selle ruumi aproksimeeritavate jadade
kaudu. Näidatakse, et leidub mitteaproksimeeritav jada, mis esitub kolme aprok-
simeeritava jada summana.
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