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1 Preface

1.1 Introduction

Nygaard and Werner showed that for any in�nite-dimensional uniform

algebra, every nonempty relatively weakly open subset of its closed unit

ball has diameter equal to 2 [16]. If a Banach space satis�es the above

condition, then it has the diameter 2 property (see, e.g., [7] or [3]).

In addition to the diameter 2 property Abrahamsen, Lima and Nygaard

[1] consider two other formally di�erent diameter 2 properties�the local

diameter 2 property and the strong diameter 2 property.

Let X be a Banach space. By a slice of BX we mean a set of the form

S(x∗, α) = {x ∈ BX : x∗(x) > 1− α},

where x∗ ∈ SX∗ and α > 0.

A nontrivial Banach space X has the

(i) local diameter 2 property if every slice of BX has diameter 2;

(ii) diameter 2 property if every nonempty relatively weakly open subset

of BX has diameter 2;

(iii) strong diameter 2 property if every convex combination of slices of

BX has diameter 2.

The following implications hold in general (iii) ⇒ (ii) ⇒ (i). The

�rst implication is a consequence of Bourgain's lemma: every nonempty

relatively weakly open subset of BX contains a convex combination of slices.

The second implication holds because slices are relatively weakly open.
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1 Preface

Standard examples of Banach spaces with diameter 2 properties include

`∞, c0, C[0, 1], and L1[0, 1].

One of the main questions in [1] is whether these three diameter 2

properties di�er from each other. We will show that there exist Banach

spaces with the diameter 2 property but lacking the strong diameter 2

property. So far, there is no known example of a Banach space with the

local diameter 2 property but lacking the diameter 2 property.

The main aim of this thesis is to give an overview of results on diameter

2 properties, and to provide new results. Our starting points are the survey

[1], and articles [16], [14] and [18].
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1 Preface

1.2 Synopsis

The thesis consists of a preliminary part and a main part, which has been

organized as follows.

Chapter 1 contains an introduction, where we explain our motivation

and the goal of the thesis, and present a brief overview of our starting

points. In addition to this narrative summary section, we describe the

notation.

In chapter 2, we recall some basic de�nitions and initial results. The

�rst section deals with the weak topology of a normed space and the weak*

topology of its dual space. We added this section because a student with

a solid �rst course in functional analysis may not have seen some results

mentioned here. This is followed by a section where we introduce the notion

of a slice. The essential concept of this master thesis is based on slices of

the unit ball. In the third section, we recall the term of an extreme point

and the Krein�Milman theorem. The Choquet lemma is presented next,

this is used in our �fth section to prove the main result in this chapter�

Bourgain's lemma.

Chapter 3 is the main part of this thesis. We start with the de�nitions

of the diameter 2 properties under consideration, and establish them for

classical spaces `∞, c0, L1[0, 1], and C0(K). It is known that Banach spaces

with the Daugavet property have the strong diameter 2 property. We will

verify this following the main idea but modifying slightly some details to

our liking.

Next we study how the diameter 2 properties are preserved by projective

tensor products and `p-sums of Banach spaces. A detailed proof is given

to the fact that the projective tensor product X⊗̂πY of Banach spaces X

and Y has the local diameter 2 property whenever X or Y has the local

diameter 2 property. It is known that the (local) diameter 2 property is

stable by taking `p-sums for all 1 ≤ p ≤ ∞. On the other hand, we show

that, for nontrivial Banach spaces X and Y , for all 1 < p <∞, the Banach

space X ⊕p Y cannot enjoy the strong diameter 2 property whether or not
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1 Preface

X and Y have it.

We end this chapter by establishing the diameter 2 properties for M -

ideals. In fact, if Y is a strict M -ideal in X, then both Y and X have the

strong diameter 2 property. Thus, if X is an M -ideal in X∗∗, then both X

and X∗∗ have the strong diameter 2 property. Finally, we show that if Y

is an M -ideal in X, then any diameter 2 property of Y is carried to X.
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1 Preface

1.3 Notation

Our notation is standard in the theory of Banach spaces.

We will consider vector spaces only over the �eld of real numbers. In a

Banach (or normed) space X, we denote the unit sphere by SX and the

closed unit ball by BX . A Banach space X is sometimes regarded as a

subspace of its bidual X∗∗ under the canonical embedding jX : X → X∗∗.

For a set A ⊂ X, its diameter is denoted by diam(A), its closure is denoted

by A, and its convex hull by conv(A); the closure of the latter set is denoted

by conv(A). For closures with respect to other topologies, we mark the

topology separately, such as A
w∗

. For Banach spaces X and Y , we denote

the Banach space of all bounded linear operators from X to Y by L(X, Y ).

For 1 ≤ p ≤ ∞, we denote the `p-sum of Banach spaces X and Y by

X⊕pY . For an operator T : X → Y , we denote kerT = {x ∈ X : Tx = 0}.

6



2 Preliminaries

In this chapter, we recall some basic de�nitions and initial results needed

for the main chapter. These include the weak and the weak* topology

together with Goldstine's theorem and the Banach�Alaoglu theorem,

extreme points, and the Krein�Milman theorem. We also introduce the

notion of a slice. The essential concept of this master's thesis is based on

slices of the unit ball. At the end of this chapter, we present two important

tools�Choquet's lemma and Bourgain's lemma. These two results form

the basis for our subsequent results in Chapter 3.

Throughout this chapter X denotes a normed space unless speci�cally

stated otherwise.

2.1 Weak and weak* topology

One can �nd the information presented in this section in almost any

Banach space textbook. We use [8] and [15] as references. But to keep

our treatment self-contained and for the sake of completeness, we will add

this review.

The main purpose of this section is to study two extremely important lo-

cally convex Hausdor� topologies, used through the thesis, and unavoidable

in the Banach space theory�the weak topology, and the weak* topology

on a dual space. These topologies are in general weaker than the norm

topology and not always induced by metrics.

De�nition. The weak topology on X is the topology whose neighbor-
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2 Preliminaries

hood basis at x0 ∈ X consists of all sets

{x ∈ X : |x∗i (x)− x∗i (x0)| < 1, i = 1, . . . , n},

where n ∈ N and x∗1, . . . , x
∗
n ∈ X∗.

The weak* topology on X∗ is the topology whose neighborhood basis at

x∗0 ∈ X∗ consists of all sets

{x∗ ∈ X∗ : |x∗(xi)− x∗0(xi)| < 1, i = 1, . . . , n},

where n ∈ N and x1, . . . , xn ∈ X.

In fact, the weak topology for X is the coarsest topology on X that

makes every element of X∗ continuous; the weak* topology for X∗ is the

coarsest topology on X∗ that makes every element of X continuous. The

weak* topology of X∗ is included in the weak topology of X∗.

Note that nonempty weakly open sets or weak* open sets in an in�nite-

dimensional normed space are unbounded with respect to the norm (see,

e.g., [8, Proposition 3.89]).

It turns out that, (the canonical image of) X must be weak* dense in

X∗∗. In fact, the following says even more.

Theorem 2.1 (Goldstine, 1938; see, e.g., [8, Theorem 3.96]). The weak*

closure of BX in X∗∗ is BX∗∗.

Recall that the topology induced by a topological space X on a subset

B is called the relative topology on B. The open sets of B in the relative

topology are the intersections B ∩ U , where U is an open subset of X.

Lemma 2.2. Every nonempty relatively weak* open subset of BX∗∗

contains a nonempty relatively weakly open subset of BX .

Proof. Let U be a nonempty relatively weak* open subset of BX∗∗

containing an element x∗∗0 . We may assume that

{x∗∗ ∈ BX∗∗ : |(x∗∗ − x∗∗0 )(x∗i )| < 1, i = 1, . . . , n} ⊂ U,

8



2 Preliminaries

for some n ∈ N and x∗1, . . . , x
∗
n ∈ X∗. By Goldstine's theorem (see Theorem

2.1), there is an element x0 in BX such that

|(x0 − x∗∗0 )(x∗i )| <
1

2

for all i = 1, . . . , n. Obviously,

V = {x ∈ BX : |x∗i (x− x0)| <
1

2
, i = 1, . . . , n}

is relatively weakly open in BX .

We will show that V is contained in U . Let x ∈ V . For every i = 1, . . . , n,

|(x− x∗∗0 )(x∗i )| ≤ |x∗i (x− x0)|+ |(x0 − x∗∗0 )(x∗i )|

<
1

2
+

1

2
= 1.

Hence x ∈ U .

One of the major results of the theory of normed spaces is that BX∗ is

weak* compact.

Theorem 2.3 (Banach, 1932; Alaoglu, 1940; see, e.g., [15, Theorem

2.6.18]). The unit ball BX∗ is weak* compact.

Note that weakly closed sets are always norm closed. It turns out that

the converse holds for convex sets.

Theorem 2.4 (Mazur, 1933; see, e.g., [8, Theorem 3.45]). The weak

closure and the norm closure of any convex subset of X coincide.

We end this section by recalling that the norm is weakly lower semicon-

tinuous, and the norm on the dual space is weak* lower semicontinuous.

Theorem 2.5 (see, e.g., [15, Theorem 2.5.21, Theorem 2.6.14]).

(i) If a net (xα) in X converges to an element x ∈ X in the weak

topology, then

‖x‖ ≤ lim inf
α
‖xα‖ ;
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2 Preliminaries

(ii) If a net (x∗α) in X∗ converges to an element x∗ ∈ X∗ in the weak*

topology, then

‖x∗‖ ≤ lim inf
α
‖x∗α‖ .
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2 Preliminaries

2.2 Slices

As we mentioned before, slices are the key concept of this thesis.

De�nition. Let B be a nonempty bounded subset of X. A slice of B

is a set of the form

SB(x∗, α) = {x ∈ B : x∗(x) > sup
y∈B

x∗(y)− α},

where x∗ ∈ SX∗ and α > 0.

If B is the unit ball of X, then we write S(x∗, α) instead of SB(x∗, α).

If X is a dual space, then slices of B whose de�ning functional comes

from (the canonical image of) the predual of X are called weak* slices of

B. We denote a weak* slice of B by adding a *-symbol;

S∗B(x̃, α) = {x ∈ B : x(x̃) > sup
y∈B

y(x̃)− α},

for some x̃ in the unit sphere of the predual X̃ of X and α > 0.

A slice SB(x∗, α) is clearly a nonempty intersection of B with the open

half-space {x ∈ X : x∗(x) > supy∈B x
∗(y)− α}. Therefore a slice is always

relatively weakly open, moreover a weak* slice is always relatively weak*

open.

By a convex combination of slices of BX we mean a set of the form

n∑
i=1

λiS(x∗i , αi),

where n ∈ N, S(x∗1, α1), . . . , S(x∗n, αn) are slices of BX , and λ1, . . . , λn ≥ 0

with
∑n

i=1 λi = 1.

In the thesis, we sometimes refer to the Radon�Nikodým property.

Although it has many equivalent formulations, it also can be characterized

by slices.

De�nition (see, e.g., [8, Theorem 11.15]). A Banach space X is said to

have the Radon�Nikodým property if every nonempty bounded subset of X

11



2 Preliminaries

has slices of arbitrarily small diameter, that is, for every bounded subset

B of X and for every ε > 0, there is an x∗ ∈ SX∗ and α > 0 such that

SB(x∗, α) has diameter less than ε.

We remark that all re�exive spaces enjoy the Radon�Nikodým property

(see, e.g., [8, Corollary 11.10]).
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2 Preliminaries

2.3 Extreme points

We now proceed to the principal notion of the next section.

De�nition. LetX be a vector space and C be a nonempty convex subset

of X. A point in C is called an extreme point of C if it does not lie inside

an interval with endpoints in C, that is, x ∈ C is an extreme point of C if

y, z ∈ C, λ ∈ (0, 1), x = λy + (1− λ)z ⇒ x = y = z.

We denote by ext(C) the set of all extreme points of C.

We describe now the extreme points of the unit ball in `∞. This will be

used in Chapter 3 (see Proposition 3.5).

Lemma 2.6 (see, e.g., [8, Exercise 3.129]). A sequence x = (xk)
∞
k=1 is

an extreme point of B`∞ if and only if |xk| = 1 for every k ∈ N.

Proof. Necessity. Let x = (xk)
∞
k=1 ∈ ext(B`∞). Suppose that there is an

index K ∈ N with |xK | < 1. Consider y = (yk)
∞
k=1 and z = (zk)

∞
k=1, where

yk =

1, if k = K;

xk, if k 6= K;

and

zk =

−1, if k = K;

xk, if k 6= K.

Since x = λy + (1 − λ)z for some λ ∈ (0, 1), but y 6= z, we get a

contradiction.

Su�ciency. Let x = (xk)
∞
k=1 where |xk| = 1 for all k ∈ N. Suppose that

x = λy+ (1− λ)z for some y = (yk)
∞
k=1, z = (zk)

∞
k=1 ∈ B`∞ , and λ ∈ (0, 1).

If yk 6= zk for some k ∈ N, then

1 = |xk| = |λyk + (1− λ)zk| < 1,

a contradiction. Thus, yk = zk for all k ∈ N, and hence x = y = z.
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2 Preliminaries

Proposition 2.7 (see [8, Exercise 3.127]). Let X be a vector space, C

a convex subset of X, and e ∈ ext(C). If e =
∑n

i=1 λici for some n ∈ N,
c1, . . . , cn ∈ C, and λ1, . . . , λn ≥ 0 with

∑n
i=1 λi = 1, then there exists an

index i ∈ {1, . . . , n} such that e = ci.

Proof. The proof is by induction on n. The assertion clearly holds for

n = 1.

Assume now that the assertion holds if n = m. We are going to show

that it holds for n = m+ 1. Suppose that e =
∑m+1

i=1 λici. We may clearly

assume that 0 < λm+1 < 1. Indeed, if λm+1 = 0, then the assertion follows

by the assumption; if λm+1 = 1, then x = cm+1, and we are also done. Set

c =
λ1∑m
i=1 λi

c1 + · · ·+ λm∑m
i=1 λi

cm.

Then c ∈ C by the convexity of C, and

e = (1− λm+1)c+ λm+1cm+1.

Since e is an extreme point of C, it immediately follows that e = c =

cm+1. The proof is now complete.

We would like to use the Krein�Milman theorem in case X is equipped

with the weak topology, and in case we consider X∗ with the weak*

topology. To do this, we need to assume that X is a locally convex

topological vector space.

Theorem 2.8 (Krein�Milman, 1940; see, e.g., [8, Theorem 3.65]). Let

X be a locally convex topological vector space and let K be a nonempty

convex and compact subset of X. Then

(i) K possesses an extreme point;

(ii) K = conv(ext(K)).

14



2 Preliminaries

2.4 Choquet's lemma

There are two versions of the Choquet lemma presented in this section�

the weak and the weak* case, although only the second one is put to use

in the next section to prove Bourgain's result. In fact, in the following

section, we will present also two versions of the Bourgain lemma, whereas

we will derive one version from another; the weak case of the Choquet

lemma can be used to provide its direct proof.

In turn we use the following.

Theorem 2.9 (see, e.g., [8, Theorem 3.32 and Corollary 3.34]).

(i) If C is a nonempty closed convex set in X and x0 /∈ C, then there

exists an element x∗ ∈ SX∗ and α ∈ R such that

x∗(x0) > α > sup{x∗(x) : x ∈ C}.

(ii) If C is a nonempty weak* closed convex set in X∗ and x∗0 /∈ C, then
there exists an element x ∈ SX and α ∈ R such that

x∗0(x) > α > sup{x∗(x) : x∗ ∈ C}.

Proposition 2.10 (see, e.g., [8, Exercise 3.14]). Let X be a locally

convex topological vector space. If A and B are two convex compact subsets

of X, then conv(A ∪B) is compact.

Proof. Consider the map T : R×X ×X → X de�ned by

T (λ, x, y) = λx+ (1− λ)y.

Observe that conv(A ∪ B) = {λa + (1 − λ)b : a ∈ A, b ∈ B, λ ∈ [0, 1]}.
Clearly, T is continuous and by this

T ([0, 1]× A×B) = conv(A ∪B).

Since the continuous image of a compact set is compact, it follows that

conv(A ∪B) is a compact set in X.

15



2 Preliminaries

Now we are prepared to present the Choquet lemma.

Lemma 2.11 (Choquet, 1969; see, e.g., [8, Lemma 3.69]). Let C be a

weakly compact convex set in X and e an extreme point of C. Then slices of

C containing e form a neighborhood basis at e in the relative weak topology

of C.

Remark. Observe that, for every c ∈ C, slices of C that contain c form

a neighborhood subbasis for the relative weak topology of C at c; �nite

intersections of slices therefore form a basis for the relative weak topology.

Choquet's lemma says that under the assumptions for C at any extreme

point e ∈ C the latter subbasis is, in fact, a basis.

Proof. Let V be a neighborhood of e in the relative weak topology of C.

We assume that V =
⋂n
i=1 Si, where n ∈ N and S1, . . . , Sn are slices of C.

We will �nd a slice S of C such that e ∈ S ⊂ V . Denote by

K =
n⋃
i=1

(C \ Si).

Then clearly e /∈ K. By Proposition 2.7, it follows that e /∈ conv(K).

In fact, e /∈ conv(K). Indeed, we note that, by Proposition 2.10, conv(K)

is relatively weakly compact since K =
⋃n
i=1(C \ Si) is relatively weakly

compact. Thus, conv(K) is weakly closed, hence, by the Mazur theorem

(see Theorem 2.4), conv(K) = conv(K).

Now, by Theorem 2.9, there is a functional x∗ in SX∗ and α ∈ R such

that

x∗(e) > α > sup{x∗(x) : x ∈ conv(K)}.

Notice that the slice S = C ∩ {x ∈ X : x∗(x) > α} contains e and is

contained in V .

Similarly, we have the result for the relative weak* topology.

16



2 Preliminaries

Lemma 2.12 (Choquet). Let C be a weak* compact convex set in X∗

and e∗ an extreme point of C. Then weak* slices of C containing e∗ form

a neighborhood basis at e∗ in the relative weak* topology of C.

Remark. Observe that, for every c∗ ∈ C, weak* slices of C that contain

c∗ form a neighborhood subbasis for the relative weak* topology of C at

c∗; �nite intersections of weak* slices therefore form a basis for the relative

weak* topology. Choquet's lemma says that under the assumptions for C

at any extreme point e∗ ∈ C the latter subbasis is, in fact, a basis.

Proof. Let V be a neighborhood of e∗ in the relative weak* topology of C.

We assume that V =
⋂n
i=1 S

∗
i , where n ∈ N and S∗1 , . . . , S

∗
n are weak* slices

of C. We will �nd a weak* slice S∗ of C such that e∗ ∈ S∗ ⊂ V . Denote

by

K =
n⋃
i=1

(C \ S∗i ).

Then clearly e∗ /∈ K. By Proposition 2.7, it follows that e∗ /∈ conv(K).

In fact, e∗ /∈ convw
∗
(K). Indeed, we note that, by Proposition 2.10,

conv(K) is relatively weak* compact since K =
⋃n
i=1(C \ S∗i ) is relatively

weak* compact. Thus, conv(K) = convw
∗
(K).

Now, by Theorem 2.9, there is an x in SX and α ∈ R such that

e∗(x) > α > sup{x∗(x) : x∗ ∈ convw
∗
(K)}.

Notice that the weak* slice S∗ = C ∩ {x∗ ∈ X∗ : x∗(x) > α} contains e∗

and is contained in V .

17



2 Preliminaries

2.5 Bourgain's lemma

Now we are ready to prove the main result in this chapter.

Lemma 2.13 (Bourgain, 1979; cf. [9, Lemma II.1 p. 26]). Let C be a

bounded convex set in X∗ and let U be a nonempty relatively weak* open

subset of C. Then there exists n ∈ N, weak* slices S∗1 , . . . , S
∗
n of C, and

scalars λ1, . . . , λn ≥ 0 with
∑n

i=1 λi = 1 such that
n∑
i=1

λiS
∗
i ⊂ U.

Proof. Let U be a relatively weak* open subset of C containing an element

x∗. Find a weak* convex neighbourhood V of zero such that (x∗+2V )∩C ⊂
U .

By the Banach�Alaoglu theorem (see Theorem 2.3), C
w∗

is weak*

compact. Therefore, by the Krein�Milman theorem (see Theorem 2.8),

we have that C
w∗

= convw
∗
(ext(C

w∗

)).

Denote by E = ext(C
w∗

). Then clearly x∗ ∈ convw
∗
(E). Thus, there are

n ∈ N, e∗1, . . . , e∗n ∈ E, and scalars λ1, . . . , λn ≥ 0 with
∑n

i=1 λi = 1 such

that
n∑
i=1

λie
∗
i ∈ x∗ + V.

By Lemma 2.12, there is a weak* slice S̃∗i of C
w∗

with S̃∗i ⊂ e∗i + V for

every i = 1, . . . , n. We take S∗i = S̃∗i ∩ C for every i = 1, . . . , n. Then

S∗1 , . . . , S
∗
n are weak* slices of C satisfying

n∑
i=1

λiS
∗
i ⊂

n∑
i=1

λi(e
∗
i + V ) ∩ C ⊂ (x∗ + 2V ) ∩ C ⊂ U.

Lemma 2.14 (Bourgain). If U is a nonempty relatively weakly open

subset of BX , then there exists n ∈ N, slices S1, . . . , Sn of BX , and scalars

λ1, . . . , λn ≥ 0 with
∑n

i=1 λi = 1 such that
n∑
i=1

λiSi ⊂ U.

18



2 Preliminaries

Proof. Let U be a nonempty relatively weakly open subset of BX . Observe

that U is a relatively weak* open subset of BX ⊂ X∗∗. By Lemma 2.13,

there exists n ∈ N, weak* slices S∗1 , . . . , S∗n ofBX , and scalars λ1, . . . , λn ≥ 0

with
∑n

i=1 λi = 1 such that

n∑
i=1

λiS
∗
i ⊂ U.

Notice that the weak* slices of BX are precisely the weak slices of BX .

This proves the result.
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3 Diameter 2 properties

In Banach spaces with the Radon�Nikodým property one can always �nd

arbitrary small slices in any nonempty bounded set. But some of the

classical Banach spaces which fail to have the Radon�Nikodým property

actually have the �opposite property� that all slices of its unit ball have

diameter 2.

For example, Nygaard and Werner [16] showed that for any in�nite-

dimensional uniform algebra, every nonempty relatively weakly open subset

of its unit ball has diameter 2. The latter property is now known as the

diameter 2 property (see, e.g., [7] or [3]).

In addition to the diameter 2 property Abrahamsen, Lima and Nygaard

[1] consider two other formally di�erent diameter 2 properties�the local

diameter 2 property and the strong diameter 2 property. One of their

main questions is whether these three diameter 2 properties di�er from

each other.

We will now study these three diameter 2 properties in more detail. At

the end, we will show that the strong diameter 2 property is not equivalent

to the diameter 2 property (see Theorem 3.23).

3.1 De�nitions and prerequisites

De�nition (see [1], cf. [7]). A nontrivial Banach space X has the

(i) local diameter 2 property if every slice of BX has diameter 2;

(ii) diameter 2 property if every nonempty relatively weakly open subset

of BX has diameter 2;
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(iii) strong diameter 2 property if every convex combination of slices of

BX has diameter 2.

We �rst observe that the following implications hold for these properties:

• the diameter 2 property implies the local diameter 2 property;

• the strong diameter 2 property implies the diameter 2 property.

The �rst implication is clear since any slice of the unit ball is also

relatively weakly open. The second implication follows directly from

Bourgain's lemma (see Lemma 2.14).

Remark. Since isometric isomorphisms preserve distances, it follows that

they preserve all three diameter 2 properties.

Notice that a nonempty relatively weakly open subset of BX always

intersects SX since it contains a �nite number of intersections of open half-

spaces with BX .

Example. A convex combination of slices need not be relatively weakly

open (it might be contained in the open unit ball or even in some ball

B(0, r), where r < 1 (see, e.g., [9, Remark IV.5 p. 48] or the proof of

Theorem 3.23 and the remark after that)).

We have the following example. Let X be an in�nite-dimensional strictly

convex space (e.g., `2) and �x a functional x∗ in SX∗ . Consider the slices

S(x∗, 1) and S(−x∗, 1) ofBX . Although the set 1/2·S(x∗, 1)+1/2·S(−x∗, 1)

has diameter 2, it is not relatively weakly open in BX since it obviously

does not contain a point from the unit sphere.

We remark that in a strictly convex space the convex combination of

slices might not be contained in some ball B(0, r), where r < 1. Indeed,

on page 168 in [11] there exists a strictly convex space with the strong

diameter 2 property. By Lemma 3.1, convex combinations of slices in that

space cannot sit inside some open ball with radius less than 1.
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Lemma 3.1. If a Banach space X has the strong diameter 2 property,

then every convex combination of nonempty relatively weakly open subsets

of BX has diameter 2.

Proof. Assume that X has the strong diameter 2 property. Let W =∑n
i=1 λiWi, where n ∈ N, W1, . . . ,Wn are nonempty relatively weakly open

subsets of BX , and λ1, . . . , λn ≥ 0 with
∑n

i=1 λi = 1. We will show that

the diameter of W equals 2.

By Bourgain's lemma (see Lemma 2.14) any Wi under consideration

contains some convex combination of slices of BX , say
mi∑
j=1

µi,jSi,j,

where mi ∈ N, Si,1, . . . , Si,mi
are slices of BX , and µi,1, . . . , µi,mi

≥ 0 with∑mi

j=1 µi,j = 1.

The set ∑
i=1,...,n
j=1,...,mi

(λiµi,j)Si,j

is clearly a convex combination of slices of BX that is contained inW . Since

X has the strong diameter 2 property, it follows that diam(W ) = 2.

A similar result holds for weak* slices.

Lemma 3.2. If every convex combination of weak* slices of BX∗ has

diameter 2, then every convex combination of nonempty relatively weak*

open sets in BX∗ has diameter 2.

Proof. Assume that every convex combination of weak* slices of BX∗ has

diameter 2. Let W =
∑n

i=1 λiWi, where n ∈ N, W1, . . . ,Wn are nonempty

relatively weak* open subsets of BX∗ , and λ1, . . . , λn ≥ 0 with
∑n

i=1 λi = 1.

We will show that the diameter of W equals 2.

By Bourgain's lemma (see Lemma 2.13) any Wi under consideration

contains some convex combination of weak* slices of BX∗ , say
mi∑
j=1

µi,jS
∗
i,j,
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wheremi ∈ N, S∗i,1, . . . , S∗i,mi
are weak* slices of BX∗ , and µi,1, . . . , µi,mi

≥ 0

with
∑mi

j=1 µi,j = 1.

The set ∑
i=1,...,n
j=1,...,mi

(λiµi,j)S
∗
i,j

is clearly a convex combination of weak* slices of BX∗ that is contained in

W . Since every convex combination of weak* slices of BX∗ has diameter

2, it follows that diam(W ) = 2.

Proposition 3.3. A Banach space X has the local diameter 2 property

(resp. the diameter 2 property, the strong diameter 2 property) if and only

if every weak* slice (resp. nonempty relatively weak* open subset, every

convex combination of weak* slices) of BX∗∗ has diameter 2.

Proof. Assume �rst thatX has the local diameter 2 property. Let S∗(x∗, α)

be a weak* slice of BX∗∗ . Clearly, S(x∗, α) ⊂ S∗(x∗, α), where S(x∗, α) is

the corresponding slice of BX . By the assumption,

2 = diam(S(x∗, α)) ≤ diam(S∗(x∗, α)) ≤ 2.

Suppose now that every weak* slice of BX∗∗ has diameter 2. Let S(x∗, α)

be a slice of BX . Then S(x∗, α) is weak* dense in the corresponding weak*

slice S∗(x∗, α) of BX∗∗ . Indeed, �x x∗∗ ∈ S∗(x∗, α). By Goldstine's theorem

(see Theorem 2.1), there is a net (xα) in BX which converges to x∗∗ in the

weak* topology. Since

1− α < x∗∗(x∗) = lim
α
x∗(xα),

there is an index α0 such that xα ∈ S(x∗, α) whenever α ≥ α0. This proves

our claim.

Let ε > 0. By the assumption, there exist x∗∗, x̃∗∗ ∈ S∗(x∗, α) such that

‖x∗∗ − x̃∗∗‖ > 2 − ε. Since S(x∗, α) is weak* dense in S∗(x∗, α), there are
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nets (xα), (x̃α) ⊂ S(x∗, α) such that the net (xα− x̃α) converges to x∗∗− x̃∗∗

in the weak* toplogy. We have

2− ε < ‖x∗∗ − x̃∗∗‖ ≤ lim inf
α
‖xα − x̃α‖ ,

because the norm on X∗∗ is weak* lower semicontinuous (see Theorem 2.5).

Thus, the diameter of S(x∗, α) is equal to 2. The proof of Proposition 3.3

is now complete for the local diameter 2 case.

Assume �rst that X has the diameter 2 property. Let U be a nonempty

relatively weak* open subset of BX∗∗ . By Lemma 2.2, there is a nonempty

relatively weakly open set V of BX with V ⊂ U . By the assumption,

2 = diam(V ) ≤ diam(U) ≤ 2.

Suppose now that every nonempty relatively weak* open subset of BX∗∗

has diameter 2. Let U be a relatively weakly open set containing x0. We

may assume that U is of the form

U = {x ∈ BX : |x∗i (x− x0)| < 1, i = 1, . . . , n},

for some n ∈ N and x∗1, . . . , x
∗
n ∈ X∗. Consider the set

V = {x∗∗ ∈ BX∗∗ : |x∗i (x∗∗ − x0)| < 1, i = 1, . . . , n}.

Then V is a nonempty relatively weak* open subset of BX∗∗ . We claim

that U is weak* dense in V . Fix x∗∗ ∈ V . By Goldstine's theorem, there

is a net (xα) in BX which converges to x∗∗ in the weak* topology. Since

lim
α
|x∗i (xα − x0)| = |x∗i (x∗∗ − x0)| < 1

for every i = 1, . . . , n, there is an index α0 such that xα ∈ U whenever

α ≥ α0. This proves our claim. From the assumption and the weak* lower

semicontinuity of the norm on X∗∗, it follows that the diameter of U is 2.

The proof of Proposition 3.3 is now complete for the diameter 2 case.

Assume �rst that X has the strong diameter 2 property. Let S∗ be

a convex combination of weak* slices of BX∗∗ . Clearly, S∗ contains a
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convex combination of corresponding slices of BX . By the assumption,

the diameter of S∗ is 2.

Suppose now that every convex combination of weak* slices of BX∗∗ has

diameter 2. Let S be a convex combination of slices of BX . Denote by S∗

the convex combination of corresponding weak* slices of BX∗∗ . Since every

slice of BX is weak* dense in the corresponding slice of BX∗∗ , it follows

that S is weak* dense in S∗. Again, using the assumption and the weak*

lower semicontinuity of the norm on X∗∗, we deduce that the diameter of

S is 2. Proposition 3.3 is proved now.

From Proposition 3.3 we conclude that X inherits all three diameter 2

properties from its bidual X∗∗.

Corollary 3.4. If X∗∗ has the local diameter 2 property (resp. the

diameter 2 property, the strong diameter 2 property), then X has the local

diameter 2 property (resp. the diameter 2 property, the strong diameter 2

property).
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3.2 Examples

In this section, we will establish the diameter 2 properties for classical

spaces `∞, c0, and L1[0, 1], and improve the known result for C0(K). With

this we solve a challenging exercise from the introduction of [1].

We begin with an example that essentially is an exercise from [8].

Proposition 3.5 (cf. [8, Exercise 3.147]). The Banach space `∞ has the

local diameter 2 property.

Proof. Consider a slice S(x∗, α) of B`∞ . It is enough to show that the slice

S(x∗, α) contains at least two distinct extreme points of B`∞ (see Lemma

2.6).

In fact, every slice contains some extreme point of the unit ball. This

is because of the Krein�Milman theorem (see Theorem 2.8), we have that

a convex combination of some extreme points lie in the slice (which is

relatively weakly open subset) and this is immediate that at least one of

those extreme points must belong to the slice.

Therefore S(x∗, α) certainly contains an extreme point e of B`∞ .

We will now show the existence of another extreme point in S(x∗, α)

di�erent from e. Denote by A the set of all those functionals in B`∗∞ which

do not attain their norms. We observe that A is dense in B`∗∞ . Otherwise,

there is an element x∗0 in B`∗∞ and r > 0 such that

B(x∗0, r) ⊂ B`∗∞ \ A.

Which would imply that all functionals in `∗∞ would attain their norms and

`∞ would be re�exive (see, e.g., [8, Corollary 3.131]), a contradiction.

Let y∗ ∈ A∩ S`∗∞ be such that ‖x∗ − y∗‖ < α/2. Then, for x ∈ S(y∗, α
2
),

we have

x∗(x) = y∗(x)− (y∗(x)− x∗(x)) > 1− α

2
− α

2
= 1− α.

Thus, S(y∗, α/2) ⊂ S(x∗, α), and we may assume that x∗ does not attain

its norm. If not, then we can pass to the slice S(y∗, α/2).
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If e were the only extreme point in S(x∗, α), then e ∈ S(x∗, β) for every

positive member β < α, meaning that x∗(e) = 1 = ‖x∗‖. Thus, x∗ attains
its norm, a contradiction.

More generally, uniform algebras (e.g., `∞) have the strong diameter 2

property (see [1, Theorem 4.2]).

Proposition 3.6. The Banach space c0 has the diameter 2 property.

Proof. Let U be a nonempty relatively weakly open subset of Bc0 . First,

�x an element u = (uk)
∞
k=1 of U . Then U contains a set of the form

{x ∈ Bc0 : |x∗i (x− u)| < 1, i = 1, . . . , n},

for some n ∈ N and functionals x∗1, . . . , x
∗
n ∈ c∗0.

The dual space c∗0 is identi�ed with `1 in the usual way. Thus, for every

i = 1, . . . , n, we identify the functional x∗i with an element (αik)
∞
k=1 from

`1, where

x∗i (x) =
∞∑
k=1

αikxk for all x = (xk)
∞
k=1 ∈ c0.

Choose a K ∈ N such that |αik| < 1/2 for all k ≥ K and for all i =

1, . . . , n.

To show that c0 has the diameter 2 property we will pick elements x and

x̃ of U such that ‖x− x̃‖ = 2 as follows.

By setting

xk =

1, if k = K;

uk, if k 6= K;

and

x̃k =

−1, if k = K;

uk, if k 6= K;

we take x = (xk)
∞
k=1 and x̃ = (x̃k)

∞
k=1. It is clear that x and x̃ are in U . In

fact,

|x∗i (x− u)| =

∣∣∣∣∣
∞∑
k=1

αik(xk − uk)

∣∣∣∣∣ =
∣∣αiK(1− uK)

∣∣ ≤ 2
∣∣αiK∣∣ < 1,
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and

|x∗i (x̃− u)| =

∣∣∣∣∣
∞∑
k=1

αik(x̃k − uk)

∣∣∣∣∣ =
∣∣αiK(−1− uK)

∣∣ ≤ 2
∣∣αiK∣∣ < 1,

for all i = 1, . . . , n. Obviously, ‖x− x̃‖ = 2. Consequently, c0 has the

diameter 2 property.

More generally, Becerra Guerrero, López Pérez, and Rodríguez Palacios

(see [6, Lemma 2.2]) have shown that C0(K) has the diameter 2 property

whenever K is an in�nite locally compact Hausdor� space. Our next result

shows that even a further improvement is possible.

Proposition 3.7. If K is an in�nite locally compact Hausdor� space,

then the Banach space C0(K) has the strong diameter 2 property.

Proof. Since (C0(K))∗∗ = C(Ω) for a suitable compact Hausdor� topolog-

ical space Ω (see [13, (7.1)]), and C(Ω) has the strong diameter 2 property

(see [1, Theorem 4.2]), we deduce by Corollary 3.4 that C0(K) has the

strong diameter 2 property.

Since c0 = C0(N), we have the following corollary.

Corollary 3.8. The Banach space c0 has the strong diameter 2 property.

We remark that this result can also be deduced by using the fact that

c∗∗0 = `∞ and Corollary 3.4.

Proposition 3.9. The Banach space L1[0, 1] has the strong diameter 2

property.

In order to prove this proposition, we need the following lemma.

Lemma 3.10. Let α > 0, n ∈ N, and f1, . . . , fn ∈ SL∞[0,1]. Then there

are pairwise disjoint subsets E1, . . . , En ⊂ [0, 1] with positive measure such

that, for every i = 1, . . . , n,

|fi(t)| ≥ 1− α for all t ∈ Ei.
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Proof. We will show the existence of such subsets E1, . . . , En by induction.

The existence of a set E1 is immediate from ‖f1‖ = 1.

Suppose that we can �nd sets E1, . . . , Em as needed for some m ∈ N,
where m < n. We will show the existence of a suitable Em+1. Denote by

Dm+1 = {t ∈ [0, 1] : |fm+1(t)| ≥ 1− α}.

If µ(Dm+1 \
⋃m
i=1Ei) > 0, then we may take Em+1 = Dm+1 \

⋃m
i=1Ei.

Otherwise, there is an index i0 ∈ {1, . . . ,m} such that µ(Dm+1 ∩Ei0) > 0.

Choose disjoint subsets Ẽi0 , Em+1 ⊂ Dm+1∩Ei0 with positive measure (see,

e.g., [4, Theorem 10.52]) and rede�ne Ei0 = Ẽi0 .

Proof of Proposition 3.9. Let
∑n

i=1 λiS(fi, αi) be a convex combination

of slices of BL1[0,1], where n ∈ N, f1, . . . , fn ∈ SL∞[0,1] = S(L1[0,1])∗ ,

α1, . . . , αn > 0, and λ1, . . . , λn ≥ 0 with
∑n

i=1 λi = 1. We will show

that diam(
∑n

i=1 λiS(fi, αi)) = 2.

We take α = min{α1, . . . , αn}/2. By Lemma 3.10, there are pairwise

disjoint subsets E1, . . . , En ⊂ [0, 1] with positive measure such that, for

every i = 1, . . . , n,

|fi(t)| ≥ 1− α for all t ∈ Ei.

We shall split every Ei, i = 1, . . . , n, further into two disjoint subsets Fi
and Gi such that Ei = Fi ∪ Gi and µ(Fi) = µ(Gi) (see, e.g., [4, Theorem

10.52]).

We take

x =
n∑
i=1

λi
sgnfi · χFi

µ(Fi)
and x̃ =

n∑
i=1

λi
sgnfi · χGi

µ(Gi)
.

Notice that ‖x‖ = 1, because∫ 1

0

|x(t)| dt =
n∑
i=1

λi
µ(Fi)

µ(Fi) =
n∑
i=1

λi = 1,

and, for every i = 1, . . . , n, one has∫ 1

0

fi(t)
sgnfi(t) · χFi

(t)

µ(Fi)
dt =

∫
Fi

|fi(t)|
µ(Fi)

dt ≥ 1− α > 1− αi.

29



3 Diameter 2 properties

Thus, x is an element in
∑n

i=1 λiS(fi, αi). Similarly one shows that

‖x̃‖ = 1 and x̃ is an element in
∑n

i=1 λiS(fi, αi).

Therefore

diam
( n∑
i=1

λiS(fi, αi)
)
≥ ‖x− x̃‖ = ‖x‖+ ‖x̃‖ = 2.

More generally, all Banach spaces with the Daugavet property (e.g.,

L1(µ) and L∞(µ), where µ is a nonatomic measure (see, e.g., [20])) have

the strong diameter 2 property (see Theorem 3.13).
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3.3 The Daugavet property

The main task in this section is to show that the Daugavet property implies

the strong diameter 2 property. We follow the idea from [1]; our approach,

however, is slightly di�erent.

De�nition (see, e.g., [20]). A Banach spaceX has theDaugavet property

if

‖I + T‖ = 1 + ‖T‖

for every rank-1 operator T : X → X.

In fact, it is enough to check the Daugavet property for rank-1 operators

with norm 1 (cf. discussion in [20]). Indeed, if ‖I + T‖ = 1 + ‖T‖ holds
for some T , then the nonnegative function ϕ(λ) = λ + (1 − λ) ‖T‖ −
‖λI + (1− λ)T‖ is concave on [0, 1] with ϕ(1/2) = 0; therefore ϕ ≡ 0 on

[0, 1] which implies that ‖I + µT‖ = 1 + µ ‖T‖ for all µ ≥ 0.

The de�nition of the Daugavet property modestly involves only rank-

1 operators, but it is well known that then automatically the latter

norm identity also holds for all compact and even for all weakly compact

operators.

Banach spaces with the Daugavet property have been studied since

Daugavet in his 1963 paper established a remarkable result that the norm

identity

‖I + T‖ = 1 + ‖T‖

holds for compact operators T on C[0, 1].

The class of Banach spaces with the Daugavet property include the

spaces C(K), whenever K is a compact Hausdor� space without isolated

points, and the spaces L1(µ) and L∞(µ), when µ is a nonatomic measure.

If a Banach space X has the Daugavet property, then X fails to have the

Radon�Nikodým property. For more details we refer the interested reader

to a survey paper [20] by Werner.

Our starting point is the following basic geometric description of the

Daugavet property.
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Lemma 3.11 (cf. [18, Lemma 2] or see [20, Lemma 2.2]). The following

assertions are equivalent:

(i) X has the Daugavet property;

(ii) For every slice S(x∗, α) of BX , every x ∈ SX and every ε > 0 there

exists a vector x̃ ∈ S(x∗, α) such that ‖x+ x̃‖ ≥ 2− ε.

Remark. 1 ) For the sake of completeness, we present the full proof of

the above lemma in detail; we remark that in [20] only the idea of

the proof was given.

2 ) After we established the detailed veri�cation of the equivalence in

Lemma 3.11, we learned that [12] also contains the proof.

3 ) Condition (ii) implies the local diameter 2 property. In fact, (ii)

immediately implies that diam(S(x∗, α)∪{x}) = 2 for all x ∈ SX . It
is straightforward that if U ⊂ BX satis�es diam(U ∪ {x}) = 2 for all

x ∈ SX , then diam(U) = 2. Therefore, in particular, every slice of

BX has diameter 2.

Proof of Lemma 3.11. Suppose �rst that X has the Daugavet property.

Consider a slice S(x∗, α) of BX , an x ∈ SX and ε > 0. Without loss

of generality we can assume that ε/2 < α. Since the rank-1 operator T

de�ned by Ty = x∗(y)x, y ∈ X, has norm 1, we have ‖I + T‖ = 2. Hence

there is a vector x̃ ∈ SX such that ‖x̃+ T x̃‖ ≥ 2 − ε/2 and x∗(x̃) ≥ 0. It

follows that x∗(x̃) ≥ 1− ε/2, so x̃ ∈ S(x∗, α), and

‖x+ x̃‖ ≥ ‖x̃+ T x̃‖ − ‖x− T x̃‖ ≥ 2− ε/2− 1 + x∗(x̃) ≥ 2− ε.

This proves the implication (i) ⇒ (ii).

Let us now turn to the converse implication. Let T be a rank-1 operator

on X. We may assume without loss of generality that ‖T‖ = 1. Hence T

is de�ned by Ty = x∗(y)x for some x∗ ∈ SX∗ and x ∈ SX . We have to

show that ‖I + T‖ = 2.
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Let us �x an arbitrary ε > 0. Choose a vector x̃ ∈ S(x∗, ε/2) such that

‖x+ x̃‖ ≥ 2− ε/2. Then we have

‖I + T‖ ≥ ‖x̃+ T x̃‖ = ‖x+ x̃− (x− T x̃)‖ ≥ ‖x+ x̃‖ − 1 + x∗(x̃)

> 2− ε/2− 1 + 1− ε/2 = 2− ε.

Thus, ‖I + T‖ = 2.

The following is our essential tool to complete the main task of this

section.

Corollary 3.12. If X has the Daugavet property, then for every slice

S(x∗, α) of BX , for every x ∈ X, and every ε > 0 there exists a vector

x̃ ∈ S(x∗, α) such that

‖x+ λx̃‖ ≥ (‖x‖+ λ)(1− ε) for all λ ≥ 0.

We base the proof on the following elementary fact (cf., e.g, [2, Problem

11.1.2]).

If two elements x and x̃ in the unit ball of a normed space satisfy

‖x+ x̃‖ ≥ 1 + c for some c, then ‖κx+ λx̃‖ ≥ (κ + λ)c for all κ, λ ≥ 0.

Indeed, note that c ≤ 1 and

‖κx+ λx̃‖ ≥ max{κ, λ} ‖x+ x̃‖ − ‖(κ− λ)x‖

≥ max{κ, λ}(1 + c)−max{κ, λ}+ min{κ, λ}

≥ max{κ, λ}c+ min{κ, λ}c = (κ+ λ)c.

Proof of Corollary 3.12. We may assume that x 6= 0. Find a vector x̃ ∈
S(x∗, α) such that ‖x/ ‖x‖+ x̃‖ ≥ 2−ε. Then ‖x+ λx̃‖ ≥ (‖x‖+λ)(1−ε)
for any λ ≥ 0.

Now we are ready to prove the main result in this section.

Theorem 3.13 (see [1, Theorem 4.4]). A Banach space with the

Daugavet property has the strong diameter 2 property.
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Proof. Let X be a Banach space with the Daugavet property and �x a

vector x ∈ SX . We only have to show that diam(S ∪ {x}) = 2, where S is

any convex combination of slices of BX (cf. Remark 3 ) after Lemma 3.11).

Consider, for some n ∈ N, slices S1, . . . , Sn of BX , and λ1, . . . , λn ≥ 0 with∑n
i=1 λi = 1. In order to show that diam(

∑n
i=1 λiSi ∪ {x}) = 2 we �x an

0 < ε < 1.

By Corollary 3.12, �nd one after another, elements x1 ∈ S1, . . . , xn ∈ Sn
such that

‖−x+ λ1x1‖ ≥ (‖x‖+ λ1)(1− ε),

‖(−x+ λ1x1) + λ2x2‖ ≥ (‖−x+ λ1x1‖+ λ2)(1− ε),
...

‖(−x+
n−1∑
i=1

λixi) + λnxn‖ ≥ (‖ − x+
n−1∑
i=1

λixi‖+ λn)(1− ε).

Substituting all previous estimations in the last one it implies that∥∥∥∥∥−x+
n∑
i=1

λixi

∥∥∥∥∥ ≥ (‖x‖+
n∑
i=1

λi)(1− ε)n = 2(1− ε)n.

Therefore diam(
∑n

i=1 λiSi ∪ {x}) = 2, and we are done.

We end this section with a note from [1] that the Daugavet property can

be weakened so that it still implies the local diameter 2 property (cf. [20,

Problem (7)]).

Proposition 3.14 (see [1, Proposition 2.2]). A Banach space X has the

local diameter 2 property provided it enjoys the property that x ∈ conv∆ε(x)

for every x ∈ SX and ε > 0, where ∆ε(x) = {y ∈ BX : ‖x− y‖ ≥ 2− ε}.

Proof. Let S(x∗, α) be a slice of BX . Find an x ∈ S(x∗, α) with ‖x‖ = 1

and δ > 0 such that x∗(x) > 1− α + δ.

By the assumption, there are n ∈ N, x1, . . . , xn ∈ ∆ε(x), and

λ1, . . . , λn ≥ 0 with
∑n

i=1 λi = 1 such that ‖x−
∑n

i=1 λixi‖ < δ. It follows
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that

x∗(
n∑
i=1

λixi) > x∗(x)− δ > 1− α.

Therefore there is at least one index i0 ∈ {1, . . . , n} such that x∗(xi0) >

1−α. Indeed, if x∗(xi) ≤ 1−α for every i = 1, . . . , n, then we would have

that x∗(
∑n

i=1 λixi) ≤ 1 − α. Now x and xi0 are elements in S(x∗, α) with

‖x− xi0‖ ≥ 2− ε. Hence X has the local diameter 2 property.

It remains open whether one can conclude the diameter 2 or even the

strong diameter 2 property in Proposition 3.14 (cf. Problem (a) in [1]).

We remark that the reverse implication does not hold in Proposition 3.14

(X = `∞, and x = (1, 0, 0, . . . ) would provide a counterexample).
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3.4 Projective tensor products

In the current section, we will prove that the projective tensor product of

two Banach spaces has the local diameter 2 property whenever one of these

Banach spaces has the local diameter 2 property.

We begin by collecting preliminary material to understand the notion of

the projective tensor product. We encourage the reader unfamiliar with

this subject to consult [17]. To this end, let X and Y be Banach spaces.

De�nition. A mapping B : X × Y → R is called a bilinear form, if it is

linear in each variable, that is,

(i) B(λ1x1 + λ2x2, y) = λ1B(x1, y) + λ2B(x2, y),

(ii) B(x, µ1y1 + µ2y2) = µ1B(x, y1) + µ2B(x, y2)

for all x1, x2, x ∈ X, y1, y2, y ∈ Y and all scalars λ1, λ2, µ1, µ2.

The vector space of all bilinear forms fromX×Y is denoted by B(X×Y ).

Its algebraic dual is denoted by B(X × Y )]. For x ∈ X and y ∈ Y , we

denote by x⊗ y the linear functional on B(X × Y ) given by

(x⊗ y)(B) = B(x, y)

for each B ∈ B(X × Y ).

De�nition. The algebraic tensor product X ⊗ Y of X and Y is the

subspace of B(X×Y )] spanned by all functionals of the form x⊗ y, where
x ∈ X and y ∈ Y ,

X ⊗ Y = span{x⊗ y : x ∈ X, y ∈ Y }.

De�nition. A norm ‖·‖ on the algebraic tensor product X⊗Y is called

a crossnorm, if

‖x⊗ y‖ = ‖x‖ ‖y‖ for all x ∈ X, y ∈ Y.
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De�nition. The projective norm ‖·‖π on the algebraic tensor product

X ⊗ Y is given by

‖u‖π = inf{
n∑
i=1

‖xi‖ ‖yi‖ : u =
n∑
i=1

xi ⊗ yi}.

The projective norm is a crossnorm. Denote by

X ⊗π Y = (X ⊗ Y, ‖·‖π).

Unless X and Y are �nite-dimensional, the space X ⊗π Y is not complete.

De�nition. The completion of X ⊗π Y is called the projective tensor

product of Banach spaces X and Y , and is denoted by X⊗̂πY .

The next result is stated in [1] (see Theorem 2.7 (i)) and in [3] (see

introduction) without a proof. We will present it with a detailed proof.

Proposition 3.15. Let X and Y be Banach spaces. If X or Y has the

local diameter 2 property, then the projective tensor product X⊗̂πY has the

local diameter 2 property.

Proof. Since X⊗̂πY is isometrically isomorphic to Y ⊗̂πX, we may assume

without loss of generality that Y has the local diameter 2 property. To

this end, it is convenient to denote by Z the projective tensor product

X⊗̂πY . Let S(z∗, α) be a slice of BZ and ε > 0. We will show that there

are elements z and z̃ in S(z∗, α) such that ‖z − z̃‖ ≥ 2− ε.
It is known that Z∗ is isometrically isomorphic to L(X, Y ∗) (see, e.g., [17,

Theorem 2.9]), where every A ∈ L(X, Y ∗) is identi�ed with the functional

x⊗ y 7→ (Ax)(y) for all x⊗ y ∈ Z.

Let A be the functional in L(X, Y ∗) that corresponds to z∗. Find x ∈ SX
with (1 − α/2) ‖Ax‖ ≥ 1 − α. We take y∗ = Ax/ ‖Ax‖. Then clearly

y∗ ∈ SY ∗ . Consider the slice S(y∗, α/2) of BY . Since Y has the local

diameter 2 property, we can �nd elements y and ỹ in S(y∗, α/2) with

‖y − ỹ‖ ≥ 2− ε.
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We take z = x⊗ y and z̃ = x⊗ ỹ. Then z, z̃ ∈ BZ and ‖z − z̃‖ ≥ 2− ε,
because π is a crossnorm. Note that

z∗(z) = (Ax)(y) = ‖Ax‖ y∗(y) > ‖Ax‖ (1− α

2
) ≥ 1− α.

Similarly, z∗(z̃) > 1 − α. Thus, z, z̃ ∈ S(z∗, α), and we have proved the

Proposition 3.15.

It is unclear to us whether similar result to Proposition 3.15 holds for

the (strong) diameter 2 property.

In [3], it is shown that X⊗̂πY has the diameter 2 property under some

special assumptions for X and Y .
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3.5 `p-sums

In this section, we study how the diameter 2 properties are preserved by

taking `p-sums of Banach spaces.

In [14, Lemma 2.1], it is shown that X⊕∞Y has the diameter 2 property

whenever X or Y has the diameter 2 property (see also [5, Lemma 2.2], or

the remark after Lemma 3.17). If we assume that one of the spaces X or

Y has the strong diameter 2 property, then this is true even for the strong

diameter 2 property [1, Proposition 4.6].

Proposition 3.16 (see [1, Proposition 4.6]). Let X and Y be Banach

spaces. If X has the strong diameter 2 property, then X ⊕∞ Y has the

strong diameter 2 property.

In fact, we give two di�erent proofs to Proposition 3.16��rst, we follow

the idea from [1], and present a direct proof at the end. In the next section

we generalize the result (see Proposition 3.28).

Lemma 3.17 (see [1, Lemma 4.5]). Let X and Y be Banach spaces,

W a nonempty weakly open subset in Z = X ⊕∞ Y , and (x0, y0) ∈ W .

There exist weakly open subsets U of X and V of Y such that (x0, y0) ∈
U ×V ⊂ W . Moreover, if W is a relatively weakly open subset of BZ, then

U and V can be chosen to be relatively weakly open subsets of BX and BY

respectively.

Remark. It is immediate from Lemma 3.17 that Z = X ⊕∞ Y has the

diameter 2 property whenever X or Y has the diameter 2 property.

Proof of Lemma 3.17. We may assume that

W0 = {(x, y) ∈ Z : |z∗i (x, y)− z∗i (x0, y0)| < 1, i = 1, . . . , n} ⊂ W

for some n ∈ N and z∗1 = (x∗1, y
∗
1), . . . , z∗n = (x∗n, y

∗
n) ∈ X∗ ⊕1 Y

∗.

Set

U = {x ∈ X : |x∗i (x)− x∗i (x0)| <
1

2
, i = 1, . . . , n}
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and

V = {y ∈ Y : |y∗i (y)− y∗i (y0)| <
1

2
, i = 1, . . . , n}.

Then U and V are weakly open in X and Y respectively, and (x0, y0) ∈
U × V ⊂ W0. In this part of the proof, we have not used the fact that Z

is equipped with the supremum norm.

For the last part, notice that because of the supremum norm BZ =

BX ×BY , and just rede�ne U = U ∩BX and V = V ∩BY .

Proof of Proposition 3.16. Our proof is a slight modi�cation of the proof

in [1].

Let Z = X ⊕∞ Y and let P : Z → X be the natural projection onto

X. Let S =
∑n

i=1 λiSi, where n ∈ N, S1, . . . , Sn are slices of BZ , and

λ1, . . . , λn ≥ 0 with
∑n

i=1 λi = 1.

We recall that slices S1, . . . , Sn are relatively weakly open in BZ . It

follows by Lemma 3.17 that for every i = 1, . . . , n one can �nd relatively

weakly open subsets Ui of BX and Vi of BY such that Ui × Vi ⊂ Si.

We have now

P (S) =
n∑
i=1

λiP (Si) ⊃
n∑
i=1

λiUi.

By Lemma 3.1, diam(
∑n

i=1 λiUi) = 2. Since ‖P‖ = 1, we must have

diam(P (S)) = diam(S) = 2.

In a similar fashion, we can prove the weak* version of Proposition 3.16

(cf. [1, Proposition 4.9]).

Proposition 3.18. Let Z be a Banach space, X and Y closed subspaces

of Z such that Z = X ⊕1 Y . If every convex combination of weak* slices

of BX∗ has diameter 2, then every convex combination of weak* slices of

BZ∗ has diameter 2.

To prove Proposition 3.18, we need the following lemma.
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Lemma 3.19. Let Z be a Banach space, and let X and Y be closed

subspaces of Z such that Z = X ⊕1 Y . Let W be a nonempty weak* open

subset in Z∗, and (x∗0, y
∗
0) ∈ W . There exist weak* open subsets U of X∗

and V of Y ∗ such that (x∗0, y
∗
0) ∈ U × V ⊂ W . Moreover, if W is a

relatively weak* open subset of BZ∗, then U and V can be chosen to be

relatively weak* open subsets of BX∗ and BY ∗ respectively.

Proof. Denote by z∗0 = (x∗0, y
∗
0). We may assume that

W0 = {z∗ ∈ Z∗ : |(z∗ − z∗0)(zi)| < 1, i = 1, . . . , n} ⊂ W,

for some n ∈ N and z1 = (x1, y1), . . . , zn = (xn, yn) ∈ X ⊕1 Y .

Set

U = {x∗ ∈ X∗ : |x∗(xi)− x∗0(xi)| <
1

2
, i = 1, . . . , n}

and

V = {y∗ ∈ Y ∗ : |y∗(yi)− y∗0(yi)| <
1

2
, i = 1, . . . , n}.

Then U and V are weak* open in X∗ and Y ∗ respectively, and (x∗0, y
∗
0) ∈

U × V ⊂ W0. In this part of the proof, we have not used the fact that Z∗

is equipped with the supremum norm.

For the last part, notice that because of the supremum norm BZ∗ =

BX∗ ×BY ∗ , and just rede�ne U = U ∩BX∗ and V = V ∩BY ∗ .

Proof of Proposition 3.18. Notice �rst that Z∗ = X∗⊕∞Y ∗. Let P : Z∗ →
X∗ be the natural projection onto X∗. Let S∗ =

∑n
i=1 λiS

∗
i , where n ∈ N,

S∗1 , . . . , S
∗
n are weak* slices of BZ∗ , and λ1, . . . , λn ≥ 0 with

∑n
i=1 λi = 1.

We recall that weak* slices S∗1 , . . . , S
∗
n are relatively weak* open in BZ∗ .

It follows by Lemma 3.19 that for every i = 1, . . . , n one can �nd relatively

weak* open subsets Ui of BX∗ and Vi of BY ∗ such that Ui × Vi ⊂ S∗i .

We have now

P (S∗) =
n∑
i=1

λiP (S∗i ) ⊃
n∑
i=1

λiUi.
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By Lemma 3.2, diam(
∑n

i=1 λiUi) = 2. Since ‖P‖ = 1, we must have

diam(P (S∗)) = diam(S∗) = 2.

Now we want to present a direct proof of Proposition 3.16. (Similarly,

one can give a direct proof to Proposition 3.18.)

First, observe that if Z = X ⊕∞ Y , then for every slice S(z∗, α) of BZ

there exists a slice S of BX and y ∈ BY such that

S(z∗, α) ⊃ S × {y}.

Indeed, let z∗ = (x∗, y∗) ∈ SZ∗ = SX∗⊕1Y ∗ and let α > 0. If x∗ = 0, then

S(z∗, α) ⊃ BX ×{y} for any y in the slice S(y∗, α) of BY . This proves our

result since BX can also be considered as a slice.

Assume now that x∗ 6= 0. Choose an y ∈ BY such that y∗(y) > ‖y∗‖ −
α/2. It is straightforward to verify that

S(z∗, α) ⊃ S(x∗/ ‖x∗‖ , β/ ‖x∗‖)× {y},

where β = α + ‖x∗‖+ y∗(y)− 1.

This observation clearly implies that if X has the local diameter 2

property, then also X ⊕∞ Y has the local diameter 2 property.

Second proof of Proposition 3.16. Let Z = X ⊕∞ Y and let P : Z → X be

the natural projection onto X. Let S =
∑n

i=1 λiSi, where n ∈ N, S1, . . . , Sn

are slices of BZ , and λ1, . . . , λn ≥ 0 with
∑n

i=1 λi = 1.

By the observation above, there exist slices S̃1, . . . , S̃n of BX and

elements y1, . . . , yn ∈ BY such that

n∑
i=1

λiSi ⊃
n∑
i=1

λi(S̃i × {yi}).

We have now that

P (S) =
n∑
i=1

λiP (Si) ⊃
n∑
i=1

λiS̃i.
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Since ‖P‖ = 1, it follows that

2 = diam(P (S)) = diam(S).

Next, we will show that if X and Y have the strong diameter 2 property,

then X ⊕1 Y has the strong diameter 2 property. The proof is essentially

due to Becerra Guerrero and López Pérez in [5, proof of Lemma 2.1 (ii)].

It is remarkable that in [5] their proof does not �t to the corresponding

statement�if X or Y has the diameter 2 property, then X ⊕1 Y has the

diameter 2 property. Later, we will see that the above-mentioned result in

[5] is also true (see Theorem 3.22).

Proposition 3.20 (cf. [5, Lemma 2.1]). Let X and Y be Banach spaces.

If X and Y have the strong diameter 2 property, then X⊕1Y has the strong

diameter 2 property.

Proof. Denote by Z = X ⊕1 Y . Let S =
∑n

i=1 λiS(z∗i , αi) be a convex

combination of slices of BZ , where n ∈ N, z∗1 = (x∗1, y
∗
1), . . . , z∗n = (x∗n, y

∗
n) ∈

SZ∗ , α1, . . . , αn > 0, and λ1, . . . , λn ≥ 0 with
∑n

i=1 λi = 1. We will show

that the diameter of S is arbitrarily close to 2.

Split the set {1, . . . , n} into two disjoint subsets I and J , such that

‖x∗i ‖ = 1 for every i ∈ I and
∥∥y∗j∥∥ = 1 for every j ∈ J . For every i ∈ I

consider the slice S(x∗i , αi) of BX and for every j ∈ J consider the slice

S(y∗j , αj) of BY . Observe that S(x∗i , αi) × {0} ⊂ S(z∗i , αi) for every i ∈ I
and {0} × S(y∗j , αj) ⊂ S(z∗j , αj) for every j ∈ J .
Denote by λI =

∑
i∈I λi and λJ =

∑
j∈J λj. Assume �rst that λI = 0

or λJ = 0. To be more speci�c, suppose that λJ = 0, then λI = 1. Let

ε > 0. Since X has the strong diameter 2 property, there are elements

x, x̃ ∈
∑

i∈I λiS(x∗i , αi) such that ‖x− x̃‖ > 2 − ε. Note that (x, 0), (x̃, 0)

are elements in S. Finally,

diam(S) ≥ ‖x− x̃‖ > 2− ε.
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Suppose now that λI 6= 0 and λJ 6= 0. We have that∑
i∈I

λi
λI
S(x∗i , αi)× {0} ⊂

∑
i∈I

λi
λI
S(z∗i , αi)

and

{0} ×
∑
j∈J

λj
λJ
S(y∗j , αj) ⊂

∑
j∈J

λj
λJ
S(z∗j , αj).

Let ε > 0. Since X and Y both have the strong diameter 2 property,

there are elements x, x̃ ∈
∑

i∈I
λi
λI
S(x∗i , αi) and y, ỹ ∈

∑
j∈J

λj
λJ
S(y∗j , αj)

such that ‖x− x̃‖ > 2− ε and ‖y − ỹ‖ > 2− ε. Note that (λIx, λJy) is an

element in S, because

(λIx, λJy) = (λIx, 0) + (0, λJy)

∈
∑
i∈I

λiS(x∗i , αi)× {0}+ {0} ×
∑
j∈J

λjS(y∗j , αj)

⊂
∑
i∈I

λiS(z∗i , αi) +
∑
j∈J

λjS(z∗j , αj) = S.

Similarly, (λI x̃, λJ ỹ) is in S. Finally,

diam(S) ≥ λI ‖x− x̃‖+ λJ ‖y − ỹ‖ > 2− ε.

The next result is stated in [1] without a proof. We will present it with

a detailed proof.

Theorem 3.21 (see [1, Theorem 3.2]). Let X and Y be Banach spaces

and 1 ≤ p ≤ ∞. If X and Y have the local diameter 2 property, then

X ⊕p Y has the local diameter 2 property.

Proof. To begin with, note that the case p = ∞ is already done (see

the observation before the second proof of Proposition 3.16). We assume

therefore that p <∞.

Denote by Z = X ⊕p Y . Let q be such that 1/p+ 1/q = 1, if p > 1; and

q = ∞, if p = 1. Consider a slice S(z∗, α) of BZ , where z∗ = (x∗, y∗) ∈
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SZ∗ = SX∗⊕qY ∗ and α > 0. Without loss of generality we may assume that

α ≤ 1. Fix an arbitrary ε > 0. We will show the existence of elements in

S(z∗, α) with distance arbitrarily close to 2.

Assume that x∗ = 0 or y∗ = 0. To be more speci�c, suppose that y∗ = 0,

then x∗ ∈ SX∗ . The other case is similar. Consider the slice S(x∗, α) of BX .

By the assumption, we can �nd x, x̃ ∈ S(x∗, α) such that ‖x− x̃‖ ≥ 2− ε.
We take z = (x, 0) and z̃ = (x̃, 0). Clearly, z and z̃ are in S(z∗, α) with

‖z − z̃‖ ≥ 2− ε.
Consider now the case x∗ 6= 0 and y∗ 6= 0. Find an element z0 =

(x0, y0) ∈ S(z∗, α/4) with ‖z0‖ = 1.

Choose x, x̃ ∈ S(x∗/ ‖x∗‖ , α/2) and y, ỹ ∈ S(y∗/ ‖y∗‖ , α/2) such that

‖x− x̃‖ ≥ 2 − ε and ‖y − ỹ‖ ≥ 2 − ε. We take z = (‖x0‖x, ‖y0‖ y) and

z̃ = (‖x0‖ x̃, ‖y0‖ ỹ). Observe that z, z̃ ∈ S(z∗, α). In fact,

‖z‖p = ‖x0‖p ‖x‖p + ‖y0‖p ‖y‖p ≤ ‖x0‖p + ‖y0‖p = 1,

and

z∗(z) = ‖x0‖x∗(x) + ‖y0‖ y∗(y) > (‖x0‖ ‖x∗‖+ ‖y0‖ ‖y∗‖)(1− α/2)

≥ z∗(z0)(1− α/2) > (1− α/4)(1− α/2) > 1− α.

Thus, z ∈ S(z∗, α). Similarly we have z̃ ∈ S(z∗, α). Finally,

‖z − z̃‖p = ‖x0‖p ‖x− x̃‖p + ‖y0‖p ‖y − ỹ‖p

≥ (2− ε)p(‖x0‖p + ‖y0‖p) = (2− ε)p.

In [1], it is shown that the diameter 2 property is stable by taking `p-

sums of Banach spaces for all 1 ≤ p ≤ ∞. Our proof, however, is slightly

di�erent from [1]; we like to think that our approach is more direct.

Theorem 3.22 (see [1, Theorem 3.2]). Let X and Y be Banach spaces

and 1 ≤ p ≤ ∞. If X and Y have the diameter 2 property, then X ⊕p Y
has the diameter 2 property.
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Proof. To begin with, note that the case p = ∞ is already done (see the

remark after Lemma 3.17). We assume therefore that p <∞.

Denote by Z = X ⊕p Y . Let W be a nonempty relatively weakly open

subset of BZ . Fix z0 = (x0, y0) ∈ W ∩ SZ . We may assume that

W ⊃ {z ∈ BZ : |z∗i (z − z0)| < 1, i = 1, . . . , n}

for some n ∈ N, z∗1 = (x∗1, y
∗
1), . . . , z∗n = (x∗n, y

∗
n) ∈ Z∗. Fix an arbitrary ε >

0. We will show the existence of elements in W with distance arbitrarily

close to 2.

Assume that x0 = 0 or y0 = 0. To be more speci�c, suppose that y0 = 0,

then x0 ∈ SX . The other case is similar. The set

U = {x ∈ BX : |x∗i (x− x0)| < 1, i = 1, . . . , n}

is a nonempty relatively weakly open subset of BX . By assumption, we can

�nd x, x̃ ∈ U such that ‖x− x̃‖ ≥ 2−ε. We take z = (x, 0) and z̃ = (x̃, 0).

Clearly, z and z̃ are elements in W with ‖z − z̃‖ ≥ 2− ε.
Suppose now that x0 6= 0 and y0 6= 0. Consider the sets

U = {x ∈ BX : |x∗i (x−
x0
‖x0‖

)| < 1

2 ‖x0‖
, i = 1, . . . , n},

and

V = {y ∈ BY : |y∗i (y −
y0
‖y0‖

)| < 1

2 ‖y0‖
, i = 1, . . . , n}.

Clearly, U and V are nonempty relatively weakly open subsets of BX and

BY respectively.

By the assumption, we can �nd x, x̃ ∈ U and y, ỹ ∈ V such that

‖x− x̃‖ ≥ 2 − ε and ‖y − ỹ‖ ≥ 2 − ε. We take z = (‖x0‖x, ‖y0‖ y)

and z̃ = (‖x0‖ x̃, ‖y0‖ ỹ). Observe that z, z̃ ∈ W . In fact

‖z‖p = ‖x0‖p ‖x‖p + ‖y0‖p ‖y‖p ≤ ‖x0‖p + ‖y0‖p = 1,
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and

|z∗i (z − z0)| = |x∗i (‖x0‖x− x0) + y∗i (‖y0‖ y − y0)|

≤ ‖x0‖ |x∗i (x−
x0
‖x0‖

)|+ ‖y0‖ |y∗i (y −
y0
‖y0‖

)|

< ‖x0‖
1

2 ‖x0‖
+ ‖y0‖

1

2 ‖y0‖
= 1,

for �xed i = 1, . . . , n. Thus, z ∈ W . Similarly, z̃ ∈ W . Finally,

‖z − z̃‖p = ‖x0‖p ‖x− x̃‖p + ‖y0‖p ‖y − ỹ‖p

≥ (2− ε)p(‖x0‖p + ‖y0‖p) = (2− ε)p.

We end this section by showing that if X and Y are nontrivial Banach

spaces, then the Banach space X⊕pY does not have the strong diameter 2

property for each 1 < p <∞. With this we are going to present a negative

answer to question (c) in [1]. Moreover, it is conjectured in [1] that all three

diameter 2 properties are in general di�erent. Our next result also shows

that at least the diameter 2 property di�ers from the strong diameter 2

property.

Theorem 3.23. Let X and Y be nontrivial Banach spaces and let 1 <

p <∞. The Banach space Z = X ⊕p Y does not have the strong diameter

2 property.

To prove this theorem, we will need the following lemma.

Lemma 3.24. Let 1 < q <∞ be such that 1/p+1/q = 1. If z∗ = (x∗, y∗)

is an element in SZ∗ = SX∗⊕qY ∗, then for every ε > 0 there exists α > 0

such that ∣∣∣ ‖x‖ − ‖x∗‖q−1 ∣∣∣+
∣∣∣ ‖y‖ − ‖y∗‖q−1 ∣∣∣ < ε,

whenever z = (x, y) is an element in S(z∗, α).
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Proof. Note that if z = (x, y) is an element in S(z∗, α), then (‖x‖ , ‖y‖)
and (‖x∗‖q−1 , ‖y∗‖q−1) are both elements of the slice S((‖x∗‖ , ‖y∗‖), α) of

B`2p
. Obviously, when α tends to 0, then diam(S((‖x∗‖ , ‖y∗‖), α)) tends to

0 as well. This proves the result.

Proof of Theorem 3.23. We will show that, for every λ ∈ (0, 1), there exists

α > 0 and β > 0 such that

λS(z∗, α) + (1− λ)S(z̃∗, α) ⊂ (1− β)BZ ,

where S(z∗, α) and S(z̃∗, α) are two suitable slices of BZ .

Let x∗ ∈ SX∗ and y∗ ∈ SY ∗ . We take z∗ = (x∗, 0) and z̃∗ = (0, y∗). Then

z and z̃ are elements in SZ∗ . Fix λ ∈ (0, 1). Denote by

ε = 1−
(
λp + (1− λ)p

)1/p
.

Clearly, ε > 0. By Lemma 3.24, there exists α > 0 such that((
λ ‖x‖+ (1− λ) ‖x̃‖

)p
+
(
λ ‖y‖+ (1− λ) ‖ỹ‖

)p)1/p

≤

((
λ · 1 + (1− λ) · 0

)p
+
(
λ · 0 + (1− λ) · 1

)p)1/p

+
ε

2

=
(
λp + (1− λ)p

)1/p
+
ε

2
= 1− ε

2
,

whenever z = (x, y) ∈ S(z∗, α) and z̃ = (x̃, ỹ) ∈ S(z̃∗, α).

One may take β = ε/2. Indeed, for z = (x, y) ∈ S(z∗, α) and z̃ =

(x̃, ỹ) ∈ S(z̃∗, α), we have now

‖λz + (1− λ)z̃‖ =
(
‖λx+ (1− λ)x̃‖p + ‖λy + (1− λ)ỹ‖p

)1/p
≤

((
λ ‖x‖+ (1− λ) ‖x̃‖

)p
+
(
λ ‖y‖+ (1− λ) ‖ỹ‖

)p)1/p

≤ 1− ε

2
.
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Remark. In the proof of Theorem 3.23, the constructed convex combina-

tion of slices is, in particular, not relatively weakly open. In fact, we can

point out a lot of convex combinations of slices in X ⊕p Y , which are not

relatively weakly open.

We will show that, if functionals z∗ and z̃∗ in SZ∗ are di�erent enough,

then, for every λ ∈ (0, 1), there exists α > 0 and β > 0 such that

λS(z∗, α) + (1− λ)S(z̃∗, α) ⊂ (1− β)BZ ,

where S(z∗, α) and S(z̃∗, α) are two suitable slices of BZ . Hence λS(z∗, α)+

(1− λ)S(z̃∗, α) cannot be relatively weakly open.

Let z∗ = (x∗, y∗), z̃∗ = (x̃∗, ỹ∗) ∈ SZ∗ be such that (‖x∗‖ , ‖y∗‖) and

(‖x̃∗‖ , ‖ỹ∗‖) are linearly independent vectors in R × R. Fix λ ∈ (0, 1).

Denote by

ε = 1−

((
λ ‖x∗‖q−1+(1−λ) ‖x̃∗‖q−1

)p
+
(
λ ‖y∗‖q−1+(1−λ) ‖ỹ∗‖q−1

)p)1/p

.

Using the Minkowski inequality, we have that((
λ ‖x∗‖q−1 + (1− λ) ‖x̃∗‖q−1

)p
+
(
λ ‖y∗‖q−1 + (1− λ) ‖ỹ∗‖q−1

)p)1/p

<
(

(λ ‖x∗‖q−1)p + (λ ‖y∗‖q−1)p
)1/p

+
(

((1− λ) ‖x̃∗‖q−1)p + ((1− λ) ‖ỹ∗‖q−1)p
)1/p

=
(
λp ‖x∗‖q + λp ‖y∗‖q

)1/p
+
(

(1− λ)p ‖x̃∗‖q + (1− λ)p ‖ỹ∗‖q
)1/p

= λ+ 1− λ = 1.
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Hence ε > 0. By Lemma 3.24, there exists α > 0 such that((
λ ‖x‖+ (1− λ) ‖x̃‖

)p
+
(
λ ‖y‖+ (1− λ) ‖ỹ‖

)p)1/p

≤

((
λ ‖x∗‖q−1 + (1− λ) ‖x̃∗‖q−1

)p
+
(
λ ‖y∗‖q−1 + (1− λ) ‖ỹ∗‖q−1

)p)1/p

+
ε

2
,

when z = (x, y) ∈ S(z∗, α) and z̃ = (x̃, ỹ) ∈ S(z̃∗, α).

Finally, we will show that one may take β = ε/2. Indeed, for z = (x, y) ∈
S(z∗, α) and z̃ = (x̃, ỹ) ∈ S(z̃∗, α), we have

‖λz + (1− λ)z̃‖ =
(
‖λx+ (1− λ)x̃‖p + ‖λy + (1− λ)ỹ‖p

)1/p
≤

((
λ ‖x‖+ (1− λ) ‖x̃‖

)p
+
(
λ ‖y‖+ (1− λ) ‖ỹ‖

)p)1/p

≤

((
λ ‖x∗‖q−1 + (1− λ) ‖x̃∗‖q−1

)p
+
(
λ ‖y∗‖q−1 + (1− λ) ‖ỹ∗‖q−1

)p)1/p

+
ε

2

= 1− ε+
ε

2
= 1− ε

2
.
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3.6 M-ideals

The question whetherM -ideals have the diameter 2 property was probably

�rst considered in [14], further investigation was carried out in [1].

For example, it was shown in [1] that if Y is a strict M -ideal in X, then

both Y and X have the strong diameter 2 property.

We denote the annihilator of a subspace Y of a Banach space X by

Y ⊥ = {x∗ ∈ X∗ : x∗(y) = 0 for all y ∈ Y }.

De�nition (cf., e.g., [11]). Let X be a Banach space. A closed subspace

Y ⊂ X is called an M-ideal if there exists a norm-1 projection P on X∗

with kerP = Y ⊥ and

‖x∗‖ = ‖Px∗‖+ ‖x∗ − Px∗‖ for all x∗ ∈ X∗.

De�nition (see, e.g., [8, p. 160]). Let X be a Banach space. A subspace

Z of X∗ is called 1-norming if

‖x‖ = sup{|z(x)| : z ∈ BX∗ ∩ Z} for all x ∈ X.

By the Hahn�Banach theorem, X∗ is 1-norming.

De�nition (cf., e.g., [10]). An M -ideal is called a strict M-ideal if the

range of the corresponding projection is 1-norming.

The following result is inspired from [14, Proposition 2.3].

Proposition 3.25 (cf. [14, Proposition 2.3]). Let X be a Banach space

and let Y be a proper closed subspace of X. Assume that Y is an M-ideal

in X, that is X∗ = Z ⊕1 Y
⊥ for some subspace Z of X∗. Then every

nonempty convex combination of σ(X,Z)-slices of BX which intersects BY

has diameter 2.

Proof. Our proof is inspired by the proofs of [14, Proposition 2.3] and [1,

Theorem 4.10].
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Consider S =
∑n

i=1 λiSi, where

Si = {x ∈ BX : zi(x) > 1− αi} ∩BY ,

n ∈ N, z1, . . . , zn ∈ SZ , α1, . . . , αn > 0, and λ1, . . . , λn ≥ 0 such that∑n
i=1 λi = 1. We will show that the diameter of S is equal to 2.

Let δ > 0. Due to Riesz' lemma (see, e.g., [8, Lemma 1.37]), there exists

an x ∈ SX such that d(x, Y ) > 1 − δ. By [19, Proposition 2.3], there is a

net (yβ) in Y such that (yβ) converges to x in the σ(X,Z)-topology and

lim sup
β
‖y ± (x− yβ)‖ ≤ 1 for all y ∈ BY .

Fix an element
∑n

i=1 λiyi in S. Let ε > 0 be such that zi(yi) >

1 − αi + ε for every i = 1, . . . , n. Choose an index β1 such that

(1 − ε/2) ‖yi ± (x− yβ)‖ ≤ 1 for every i = 1, . . . , n and β ≥ β1. Since

the net (yβ) converges to x in the σ(X,Z)-topology, there is an index β2
such that |zi(x)− zi(yβ)| ≤ ε/2 for every i = 1, . . . , n and β ≥ β2. If

β ≥ β1 and β ≥ β2, then (1− ε/2)(yi ± (x− yβ)) ∈ Si for all i = 1, . . . , n.

Indeed,

(1− ε

2
)zi(yi ± (x− yβ)) ≥ zi(yi)−

ε

2
zi(yi)− (1− ε

2
) |zi(x)− zi(yβ)|

> 1− αi + ε− ε

2
− |zi(x)− zi(yβ)|

≥ 1− αi +
ε

2
− ε

2
= 1− αi.

Thus,

diam(S) ≥

∥∥∥∥∥
n∑
i=1

λi(1−
ε

2
)(yi + (x− yβ))−

n∑
i=1

λi(1−
ε

2
)(yi − (x− yβ))

∥∥∥∥∥
= 2(1− ε

2
) ‖x− yβ‖ > 2(1− ε

2
)(1− δ).

Since δ and ε can be arbitrarily small, we obtain that the diameter of S is

2.
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Now we are ready to show that if Y is a strict M -ideal in X, then both

Y and X have the strong diameter 2 property.

Theorem 3.26 (see [1, Theorem 4.10]). Let X be a Banach space and

let Y be a proper closed subspace of X. Assume that Y is an M-ideal in

X, that is X∗ = Z ⊕1 Y
⊥ for some subspace Z of X∗. If Z is 1-norming

for X, then both Y and X have the strong diameter 2 property.

Proof. Our proof is slightly di�erent from [1], it is inspired by the proof of

[14, Theorem 2.4].

We will present the proof in two parts. First we will show that Y has

the strong diameter 2 property, and then we will deduce the property for

X.

Part 1. We identify Y ∗ and Z (see [11, Proposition I.1.12]). Every

slice S(y∗, α) of BY therefore corresponds to some σ(X,Z)-slice S(z, α) =

{x ∈ BX : z(x) > 1 − α} of BX . In fact, S(y∗, α) is dense in S(z, α) with

respect to σ(X,Z)-topology. To see this, consider an x ∈ S(z, α). Since

X∗∗ = Y ⊥⊥⊕∞Z⊥ (see, e.g., [11]), there exists u ∈ BY ⊥⊥ and v ∈ BZ⊥ such

that x = u + v. We also identify Y ⊥⊥ and Y ∗∗ (see, e.g., [15, Proposition

1.11.14]). By Goldstine's theorem (see Theorem 2.1), one can �nd a net

(yβ) in BY which converges to u in the weak* topology. Hence, for every

z ∈ Z, we have

z(x) = z(u+ v) = z(u) = lim
β
z(yβ).

Since z(x) > 1− α, it follows that there exists an index β0 such that

y∗(yβ) = z(yβ) > 1− α for all β ≥ β0.

Thus, (yβ)β≥β0 is a net in S(y∗, α) that converges to x in the σ(X,Z)-

topology; therefore S(y∗, α) is dense in S(z, α).

Let S =
∑n

i=1 λiS(y∗i , αi) be a convex combination of slices of BY , where

n ∈ N, and λ1, . . . , λn ≥ 0 such that
∑n

i=1 λi = 1. We will show that the

diameter of S is 2.
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By our observation, every slice S(y∗i , αi) is σ(X,Z)-dense in the corre-

sponding σ(X,Z)-slice S(zi, αi) of BX . It follows that S is σ(X,Z)-dense

in T =
∑n

i=1 λiS(zi, αi). Note that, by Proposition 3.25, the diameter of

T is 2.

We next show that the norm on X is σ(X,Z)-lower semicontinuous.

To see this, consider a net (xγ) in X that converges to some element x

in X in the σ(X,Z)-topology. If z ∈ Z, then |z(x)| = limγ |z(xγ)| ≤
lim infγ ‖z‖ ‖xγ‖. Since Z is 1-norming, it follows that

‖x‖ = sup{|z(x)| : z ∈ BX∗ ∩ Z}

≤ lim inf
γ
‖xγ‖ .

Now we are ready to accomplish that diam(S) = 2. Let ε > 0. We

recall that the diameter of T is 2. Find elements x and x̃ in T such that

‖x− x̃‖ > 2 − ε. Consider nets (yγ) and (ỹγ) in S converging to x and x̃

respectively in the σ(X,Z)-topology. By the σ(X,Z)-lower semicontinuity

of the norm on X, we have

2− ε < ‖x− x̃‖ ≤ lim inf
γ
‖yγ − ỹγ‖ ≤ diam(S).

Since ε can be arbitrarily small, we obtain that the diameter of S is 2.

Part 2. Firstly, we will show that every convex combination of weak*

slices of BY ⊥⊥ has diameter 2. Since we identify Y ∗∗ and Y ⊥⊥, it is enough

to show that every convex combination of weak* slices of BY ∗∗ has diameter

2. Since Y has the strong diameter 2 property, by Proposition 3.3, every

convex combination of weak* slices of BY ∗∗ has diameter 2.

Proposition 3.18 and X∗∗ = Y ⊥⊥ ⊕∞ Z⊥ implies that every convex

combination of weak* slices of BX∗∗ has diameter 2. Hence, by Proposition

3.3, X has the strong diameter 2 property.

IfX is anM -ideal inX∗∗, thenX∗∗∗ = X∗⊕1X
⊥. SinceX∗ is 1-norming,

it follows that X is a strict M -ideal in X∗∗, and we derive the following

immediate corollary.
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Corollary 3.27. Let X be a nonre�exive Banach space. If X is an

M-ideal in X∗∗, then both X and X∗∗ have the strong diameter 2 property.

In our next proposition we will demonstrate an alternative version for

the second part of the proof of Theorem 3.26. Note that our proof makes

no use of second duals, and thus we derive the result more directly.

Proposition 3.28. Let X be a Banach space and let Y be a proper

closed subspace of X. Assume that Y is an M-ideal in X. If Y has the

strong diameter 2 property, then X has the strong diameter 2 property.

Proof. Let
∑n

i=1 λiS(x∗i , αi) be a convex combination of slices of BX , where

n ∈ N, and λ1, . . . , λn ≥ 0 such that
∑n

i=1 λi = 1. Let ε > 0 be such that

ε < min{α1, . . . , αn}/3.
We will show the existence of x11, . . . , x

1
n, x

2
1, . . . , x

2
n ∈ BX such that xki ∈

S(x∗i , αi) for every i = 1, . . . , n, for every k = 1, 2, and∥∥∥∥∥
n∑
i=1

λi(x
1
i − x2i )

∥∥∥∥∥ > 2− ε
1 + ε

.

Denote by P the M -ideal projection on X∗ with kerP = Y ⊥. For every

i = 1, . . . , n, we take

y∗i =
Px∗i
‖Px∗i ‖

and βi =
ε− ε ‖Px∗i ‖+ ε2

‖Px∗i ‖
.

Therefore
∑n

i=1 λiS(y∗i , βi) is a convex combination of slices of BY . Since Y

has the strong diameter 2 property, we can �nd y11, . . . , y
1
n, y

2
1, . . . , y

2
n ∈ BY

such that

Px∗i (y
k
i ) > (‖Px∗i ‖ − ε)(1 + ε), k = 1, 2, i = 1, . . . , n,

and ∥∥∥∥∥
n∑
i=1

λi(y
1
i − y2i )

∥∥∥∥∥ > 2− ε.

There are x1, . . . , xn ∈ BX such that

(x∗i − Px∗i )(xi) > (‖x∗i − Px∗i ‖ − ε)(1 + ε),
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for every i = 1, . . . , n.

Since Y is an M -ideal in X, then by [19, Proposition 2.3], we can, for

every i = 1, . . . , n, choose zi ∈ BY such that∥∥yki + xi − zi
∥∥ < 1 + ε, k = 1, 2,

and

|Px∗i (xi − zi)| < ε.

We take

xki =
yki + xi − zi

1 + ε
, k = 1, 2, i = 1, . . . , n.

Now, for every i = 1, . . . , n, for every k = 1, 2, xki is an element in S(x∗i , αi),

because

x∗i (x
k
i ) =

x∗i (y
k
i + xi − zi)
1 + ε

=
Px∗i (y

k
i ) + (x∗i − Px∗i )(xi) + Px∗i (xi − zi)

1 + ε

> ‖Px∗i ‖ − ε+ ‖x∗i − Px∗i ‖ − ε− ε

= ‖x∗i ‖ − 3ε > 1− αi.

Finally, observe that∥∥∥∥∥
n∑
i=1

λi(x
1
i − x2i )

∥∥∥∥∥ =
1

1 + ε

∥∥∥∥∥
n∑
i=1

λi(y
1
i − y2i )

∥∥∥∥∥ > 2− ε
1 + ε

.

Remark. Proposition 3.28 generalizes Proposition 3.16. In fact, if X and

Y are closed subspaces of a Banach space Z, then (see, e.g., [11, I.1])

Z = X ⊕∞ Y ⇐⇒ Z∗ = X⊥ ⊕1 Y
⊥.

We will �nish with the local diameter 2 and the diameter 2 versions of

Proposition 3.28.

Proposition 3.29. Let X be a Banach space and let Y be a proper

closed subspace of X. Assume that Y is an M-ideal in X. If Y has the

local diameter 2 property, then X has the local diameter 2 property.
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Proof. Take n = 1 in the proof of Proposition 3.28.

The next result is obtained in the proof of [14, Theorem 2.4], but not

stated explicitly. We will give a direct proof to this result.

Proposition 3.30. Let X be a Banach space and let Y be a proper

closed subspace of X. Assume that Y is an M-ideal in X. If Y has the

diameter 2 property, then X has the diameter 2 property.

Proof. Let U be a nonempty relatively weakly open subset ofBX containing

an element x0. We may assume that

{x ∈ BX : |x∗i (x− x0)| < γ, i = 1, . . . , n} ⊂ U,

for some n ∈ N, x∗1, . . . , x∗n ∈ SX∗ , and γ > 0.

Denote by P the M -ideal projection on X∗ with kerP = Y ⊥, and by

δ = max{‖Px∗i ‖ : i = 1, . . . , n}. Let ε > 0 be such that ε(1+δ)
1+ε

< γ. We

will show the existence of elements x and x̃ in U such that

‖x− x̃‖ > 2− ε
1 + ε

.

Since Y is an M -ideal in X, by [19, Proposition 2.3], there is an element

y0 ∈ BY such that

‖y + x0 − y0‖ < 1 + ε for all y ∈ BY .

Consider the set

V = {y ∈ BY : |Px∗i (y − y0)| < εδ, i = 1, . . . , n}.

Clearly V is a nonempty relatively weakly open subset of BY . By the

assumption, there are y, ỹ ∈ V with ‖y − ỹ‖ > 2− ε. We take

x =
y + x0 − y0

1 + ε
and x̃ =

ỹ + x0 − y0
1 + ε

.
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Now, for every i = 1, . . . , n, we have

|x∗i (x− x0)| =
1

1 + ε
|x∗i (y − εx0 − y0)|

≤ 1

1 + ε

(
|Px∗i (y − y0)|+ ε |x∗i (x0)|

)
<

1

1 + ε
(εδ + ε) < γ.

Thus, x ∈ U . Similarly one can show that x̃ ∈ U . Finally, observe that

‖x− x̃‖ =
1

1 + ε
‖y − ỹ‖ > 2− ε

1 + ε
.
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Diameeter 2 omadused

Magistritöö

Johann Langemets

Kokkuvõte

Kui Banachi ruumi ühikkera iga mittetühja suhteliselt nõrgalt lahtise

ühikkera alamhulga, nt. viilu, diameeter on 2, siis öeldakse, et sellel

Banachi ruumil on d2 omadus (vt. [7] või [3]).

D2 omaduse uuringute lähtekohaks peetakse Nygaardi ja Werneri artiklit

[16], kus tõestati, et lõpmatumõõtmelistel ühtlastel algebratel on d2

omadus. Veidi varem oli teada, et Daugaveti ruumidel on d2 omadus,

vastav artikkel [18] ilmus siiski artiklist [16] hiljem. Nygaardi ja Werneri

tähelepanek oli aluseks artiklite seeriale (vt. [6], [5] ja [14]), kus

mitmed matemaatikud selgitasid samasuguse geomeetrilise fenomeni esine-

mist erinevates konkreetsetes Banachi ruumides. Muuhulgas uuriti selle

omaduse ülekandumist Banachi ruumide abil konstrueeritud ruumidele, nt.

päranduvust komponentidelt otsekorrutistele.

Põhjalikum ülevaade on ilmumas artiklis [1].

Suhteliselt nõrgalt lahtise alamhulga erijuhuks on viil, kusjuures on

(Bourgain'i lemma (vt. lemma 2.14) põhjal) teada, et ühikkera iga mit-

tetühi suhteliselt nõrgalt lahtine alamhulk sisaldab teatud viilude kumerat

kombinatsiooni. Seda asjaolu silmas pidades vaatlevad Abrahamsen, Lima

ja Nygaard artiklis [1] d2 omaduse kõrval selle omaduse kahte formaalselt

erinevat versiooni � tugevat d2 omadust ja lokaalset d2 omadust. Artiklis
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[1] on püstitatud hüpotees, et need omadused on üksteisest erinevad.

Üldiselt on Banachi ruumi d2 omadus tarvilik tugeva d2 omaduseks ja

piisav lokaalse d2 omaduseks.

tugev d2 omadus ⇒ d2 omadus ⇒ lokaalne d2 omadus

Käesoleva magistritöö põhieesmärk oli anda ülevaade d2 omadustega

ruumidest ja saada uusi tulemusi.

Töö koosneb sissejuhatavast osast ja põhiosast, kus esmalt teeme

kindlaks, millised d2 omadused on Banachi ruumidel `∞, c0 ja L1[0, 1].

Artikli [1] eeskujul näitame, et Daugaveti ruumidel on tugev d2 omadus.

Detailne tõestus esitatakse artiklis [1] sõnastatud tulemusele � Banachi

ruumide projektiivsel tensorkorrutisel on lokaalne d2 omadus, kui ühel

komponendil on lokaalne d2 omadus. Abrahamsen, Lima ja Nygaard [1,

teoreem 3.2] näitasid, et kui Banachi ruumidel X ja Y on d2 omadus, siis

ka X ⊕p Y on d2 omadusega iga 1 ≤ p ≤ ∞ korral. Kas analoogiline

väide jääb kehtima tugeva d2 omaduse korral (vt. [1, küsimus (c)])? Me

vastame sellele küsimusele eitavalt. Nimelt, näitame, et mittetriviaalsete

Banachi ruumide X ja Y ning suvalise 1 < p < ∞ korral ei ole ruumil

X ⊕p Y tugevat d2 omadust (vt. teoreem 3.23). Ühtlasi oleme sellega

saanud oma magistritöö põhitulemuse, et d2 omadus ja tugev d2 omadus

on üldiselt erinevad. Seni ei ole teada, kas lokaalne d2 omadus ja d2 omadus

erinevad. Töö lõpus uurime d2 omadusi M -ideaalidel. Artiklitest [14] ja

[1] inspireerituna tõestame, et kui Y on range M -ideaal Banachi ruumis

X, siis ruumidel Y ja X on tugev d2 omadus. Viimasena näitame, et kui

Y on M -ideaal ruumis X, siis vastav d2 omadus ruumil Y kandub üle ka

ruumile X (vt. laused 3.28�3.30).
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