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Chapter 1

Introduction

1.1 Historical overview

A variety of algebras can be considered as a category in a natural way: the
objects are the algebras in the variety, and the morphisms are the homo-
morphisms between them. The first classical example of varieties of algebras
which are equivalent as categories is Kiiti Morita’s theorem from 1958 ([32]). It
provides necessary and sufficient algebraic conditions on two rings with unity
in order their varieties of left modules to be equivalent as categories.

In 1969, Tah-Kai Hu showed that every variety categorically equivalent to the
variety generated by the two-element Boolean algebra is generated by some
primal algebra ([18]), i.e. a finite algebra for which all finitary operations on its
universe are term operations. The first systematic study of categorical equiva-
lence in algebra was carried out by Brian Davey and Heinrich Werner in their
paper [11], published in 1983. Their work also exhibited a large number of
algebraic properties preserved under categorical equivalence of varieties. Ac-
tually, the leading idea of Davey and Werner was to develop the theory of nat-
ural dualities which would generalize the classical duality between the variety
of Boolean algebras and the category of topological Boolean spaces.

A purely algebraic characterization of categorical equivalence was given by
Ralph McKenzie in 1996 ([30]). This characterization is very general and it
gave a push for further investigations in this topic.

The notion of categorically equivalent algebras was first introduced explic-
itly by Clifford Bergman and Joel Berman in 1996 in [5]: two algebras A and
B are called categorically equivalent if the varieties they generate are equiv-
alent as categories, and the equivalence functor maps A to B. Bergman
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and Berman used McKenzie’s result (Theorem to characterize categorical
equivalence for the finite algebras that in some way generalize primal algebras
(congruence-primal, subalgebra-primal, and automorphism-primal algebras).
As an example they described the categorical equivalence of two finite fields:
for primes p and g, the fields F,» and F4n are categorically equivalent if and
only if m =n.

In [6], the same authors provided a computational algorithm based on
McKenzie’s theorem for deciding whether two finite algebras are categorically
equivalent. The authors however pointed out, that in general case their algo-
rithm is not practical, even for small algebras.

Using McKenzie’s method, Klaus Denecke and Otfried Liiders developed a
characterization of categorical equivalence of finite algebras via algebras of
their invariant relations ([12]), the paper appeared in 2001. (See Section 2.4
for more details.) Already in 1998, C. Bergman simplified this characterization
for the algebras with a majority term operation ([7]) by observing that it is suf-
ficient to consider just binary relations in this case. (See Section 2.5 for more
details.)

In 1997, Laszl6 Zadori used McKenzie's theorem to describe categorical equiv-
alence of finite algebras via minimal relational sets ([43]). Using this descrip-
tion, he proved that two categorically equivalent finite groups must be weakly
isomorphic ([42]).

In 2013, Shohei Izawa ([20]) and Mike Behrisch ([4], p. 130) used the result of
Denecke and Liiders to develop a characterization of categorical equivalence
of finite algebras via non-refinable covers. Applying this, Behrisch together
with Tamés Waldhauser announced that they have strengthened Zadori’s re-
sult by showing that two categorically equivalent finite semigroups must be
weakly isomorphic.

1.2 Summary of the thesis

The aim of this thesis is to investigate categorical equivalence of alge-
bras within certain classes. Theorem by L. Zadori, Theorem [2.11
by M. Behrisch and T. Waldhauser, and Theorem by C. Bergman and
J. Berman, which characterize categorical equivalence of finite groups, finite
semigroups, and finite fields, respectively, serve as our starting point.

The thesis has been organized as follows.

Chapter [1| contains a short historical overview of the categorical equivalence
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in algebra, a summary of the thesis and some technical remarks on the nota-
tion used in the thesis.

Chapter [2| familiarizes the reader with the tools and concepts used to study
the categorical equivalence. We start with defining the notions of categorical
equivalence and term equivalence, and give first examples. Then we list sev-
eral algebraic properties preserved under categorical equivalence and intro-
duce some algebraic methods for determining the categorical equivalence. In
the last section we present the results for finite groups and semigroups which
provide motivation for the study of term equivalent semigroups in Chapter [4}

In Chapter [3) we show that the condition of categorical equivalence for lat-
tices and normal bands (of any cardinality) is very strict: two lattices are cat-
egorically equivalent if and only if they are isomorphic or dually isomorphic,
and two normal bands are categorically equivalent if and only if they are iso-
morphic or anti-isomorphic. As a consequence, any two categorically equiva-
lent semilattices are isomorphic. The key idea for the proofs is the refinement
property of direct factorizations, which is introduced in the beginning of the
chapter.

In Chapter [4} we investigate the term equivalence of semigroups. We find a
large number of semigroup properties that are preserved by term equivalence.
For some classes of semigroups, like commutative semigroups or bands, the
term equivalence is trivial: the semigroups must be identical or dual. How-
ever, there exist examples of non-trivial term equivalence. We discuss sepa-
rately completely regular and completely 0-simple semigroups.

In Chapter 5} the categorical equivalence of finite unitary rings is considered.
We first reduce the general problem to the case of rings of prime power char-
acteristic. We observe that semisimplicity is a categorical property and com-
pletely solve the problem when two finite semisimple rings are categorically
equivalent. We also show that the rings of coprime characteristics can be cate-
gorically equivalent only if they are semisimple. The case of rings of the same
characteristic remains open. In the end of the chapter we also take a look at
one specific case of infinite rings: polynomial rings over a finite field.

Adding constants to the set of basic operations of an algebra can give us some
interesting non-trivial examples of categorical equivalence. In Chapter [6, we
define two algebras to be p-categorically equivalent if the algebras obtained
from them by adding new constant operations for each of their elements are
categorically equivalent. We show that non-direct extensions of finite simple
non-abelian groups by a finite abelian group are p-categorically equivalent.
In particular, any two symmetric groups S,, and S,, where m,n > 4, are p-



12 CHAPTER 1. INTRODUCTION

categorically equivalent.

We also characterize the p-categorical equivalence of finite strictly locally
affine complete algebras and finite strictly locally order affine complete lat-
tices. The latter gives us non-trivial examples of p-categorically equivalent
lattices.

Chapter [3|is based on [26]. Chapter |4 is a joint work with Peter Mayr from
Johannes Kepler University, Linz, Austria. Chapter |5|is a joint work with Kalle
Kaarli and Tamds Waldhauser from University of Szeged, Hungary.

1.3 Notation

An algebra A = (A; F) is a non-empty set A (the universe of A) together with
a sequence F = (f; | i € I) of finitary operations on A, called the basic opera-
tions of A. The cardinality of an algebra is the cardinality of its universe. The
signature of A is the function Z that assigns to each i € I the arity of the basic
operation f;.

For technical reasons, we formally disallow nullary operations in this thesis.
There is no loss of generality here, because one can always replace nullary op-
erations by unary constant operations. We do not permit the empty algebra,
but every algebra will have an empty subuniverse.

We write B < A to indicate that B is a subalgebra of A. By SubA we denote the
lattice of all subuniverses of A. The lattice of all congruences of A is denoted
by ConA, the automorphism group by AutA.

We use the prefix notation, thus the composition fg of two functions f and g
is defined by (fg)(x) = f(g(x)).

We attempted to make this thesis as self-contained as possible. However,
some elementary knowledge of universal algebra and category theory is use-
ful. If required, the adequate background information about universal algebra
can be found, for instance, in [8] or [31], and about category theory in [29] or
1371.



Chapter 2

Categorical equivalence in general

In this chapter we build the basement for our subsequent research. We define
the notions of categorical equivalence and term equivalence, look at some ba-
sic properties of categorical equivalence and review some important results
we will need in the following chapters, in particular the criteria for determin-
ing the categorical equivalence.

2.1 Basic notions

A variety is a class of algebras of the same signature closed under the forma-
tion of subalgebras, products, and homomorphic images. A variety of algebras
can be considered as a category in a natural way: the objects are the algebras
in the variety, and the morphisms are the homomorphisms between them.

Two categories C and D are said to be equivalent if there are covariant func-
tors F: C — D and G: D — C such that the composite functors FoG and Go F
are naturally isomorphic to the identity functors on D and C, respectively.

The following is well-known from category theory.

Proposition 2.1. A covariant functor H:V — W between varieties V and W is
a categorical equivalence if and only if the following conditions hold:

e for all A,B eV, the functor H defines a bijection between Hom(A, B) and
Hom(H(A), H(B));

* for every algebra D € W there is an algebra C € V such that H(C) is iso-
morphic to D.

13
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By Var(A) we denote the variety generated by an algebra A.

Definition 2.2. Two algebras A and B are called categorically equivalent, if
there is a categorical equivalence between the varieties Var(A) and Var(B) that
maps A to B. We denote this A =, B.

A term operation of an algebra A is any finitary operation on A that can be
constructed by means of composition from basic operations and projection
maps. A finite algebra A is called primal if every operation on A is a term
operation of A. The first example for categorical equivalence of algebras arises
from the fundamental result of T. K. Hu in [18]:

Theorem 2.3. Every primal algebra is categorically equivalent to the two-
element Boolean algebra.

One proof of this theorem (different from the original one) will be presented
in Section

Definition 2.4. Two algebras are called term equivalent if their base sets and
term operations coincide. We denote this A =; B. Two algebras A and B are
called weakly isomorphic, if there exists an algebra C isomorphic to A and
term equivalent to B.

For example, a group (G;1,”!,-) and the algebra (G; %), where the binary oper-
ation * is defined by x * y = x- y~!, are term equivalent.

In Section we will see that weak isomorphism implies categorical equiv-
alence. On the other hand, weak isomorphism preserves cardinality, whereas
categorical equivalence does not. The latter follows from Theorem be-
cause primal algebras of any cardinality exist. In particular, categorical equiv-
alence does not imply weak isomorphism.

2.2 Categorical properties

All algebraic notions and properties that can be expressed by means of cate-
gorical language are preserved under categorical equivalence. We list several
algebraic concepts preserved under categorical equivalence. We will comment
on some of them; the full proofs can be found in [11], Proposition 3.1 and The-
orem 3.3, and in [30], Theorem 3.1.

Theorem 2.5. Let V and W be categorically equivalent varieties with the equiv-
alence functor H:V — W. Then:
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(1) H maps embeddings to embeddings;
(2) H maps surjective homomorphisms to surjective homomorphisms;
(3) for any A€V, the algebras A and H(A) are categorically equivalent;

(4) H induces a categorical equivalence between any subvariety of V and a
subvariety of W;

(5) if V satisfies a linear Mal'cev condition, then W satisfies the same condi-
tion.

(A Mal’cev condition is linear if it does not involve composition of terms.
In particular, congruence-permutability and congruence-distributivity can be
expressed via such condition.)

The functor H preserves embeddings since embeddings are precisely
monomorphisms in a variety as a category.

Surjective homomorphisms are preserved although in general they do not co-
incide with the categorical epimorphisms. The proof follows from the fact that
¢ € Hom(A, B) is surjective iff, whenever ¢ = 67, where 7 € Hom(A, C), and
6 € Hom(C,B) is injective, then § is an isomorphism. In a variety, the alge-
braic notion of isomorphism coincides with the categorical one.

For (3), it is easy to see that the functor H' = H lvar(a) is an equivalence func-
tor between Var(A) and Var(H(A)). Indeed, H’ satisfies the first condition of
Proposition [2.1]since H satisfies it. The second condition is satisfied because
categorical equivalence preserves products, also subalgebras by (1), and ho-
momorphic images by (2). The same reasoning holds for ().

For the proof of (5), see [I1], Proposition 3.3.

Theorem 2.6. Let A and B be categorically equivalent algebras. Then the fol-
lowing statements hold.

(1) For any positive integer n, the algebras A" and B" are categorically equiv-
alent.

(2) The endomorphism monoids EndA and EndB are isomorphic.
(3) The automorphism groups AutA and AutB are isomorphic.

(4) The subuniverse lattices SubA and SubB are isomorphic. The corre-
sponding subalgebras are categorically equivalent.
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(5) The congruence lattices ConA and ConB are isomorphic. The corre-
sponding quotient algebras are categorically equivalent.

(6) IfA is finite, then B is finite; if A is infinite, then B is infinite of the same
cardinality as A.

(7) IfA is finitely generated, then B is finitely generated.

We note that Theorem [2.5| (5) extends also to categorically equivalent algebras.
For example, if A and B are categorically equivalent and A has a Mal’cev term
operation (i.e. m(x,y,y) = m(y, y,x) = x for all x,y € A), then B has a Mal’cev
term operation too.

holds since categorical equivalence functors preserve categorical products
(if they exist), and varieties are closed under direct powers. [2) is obvious, and
holds since categorical equivalence preserves isomorphisms. follows
from Theorem and @), and () follows from Theorem and
®.

For the proofs of (6) and (7), see [11], Proposition 3.3.

Of course, not every algebraic concept is categorical. A significant example of
an algebraic concept that is not categorical is the concept of an algebra being
free in a class ([30], p. 222).

2.3 McKenzie’s theorem

In [30], R. McKenzie introduced the first purely algebraic characterization of
categorical equivalence.

Let A be an algebra, n a positive integer, and s a unary term operation of A.
Here we assume that the set of natural numbers contains zero.

¢ For every natural number p and every sequence g1, 8o,...,8, of pn-ary
term operations of A, (g1, ..., gn) denotes the p-ary operation on A” that
maps (ay,..., dp) to (g1(a), g2(a),..., gn(a)), where a; = (ay;,..., ayi) is an
element of A", and

~ n
a= ((lll;aZly---»anl,012»---,anp) EAP .

e The n-th matrix power of A is an algebra A" with the universe A", such
that for every natural number p and every sequence g, ..., g, of pn-ary
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term operations of A, A" has a basic p-ary operation (gi,...,&n), and
these are all basic operations of A",

* The unary operation s is idempotent if for every x € A, s(s(x)) = s(x),
and s is invertible if for some r there are an r-ary term operation w and
unary term operations fi, ..., t, of A such that, for every a€ A,

w(sh(a),st(a),...,str(a)) = a.

e Let s be an idempotent term operation of A. By A(s) we denote the al-
gebra with the universe s(A), such that for each natural number p and
a p-ary term operation g of A, A(s) has a basic operation g5 = so glsa),
and these are all basic operations of A(s).

Theorem 2.7 ([30], Corollary 6.1). For two algebras A and B, A =, B if and
only if there exist a positive integer m and a unary invertible idempotent term
operation s of A" such that B is term equivalent to an algebra isomorphic to
A" (s).

Corollary 2.8. Weakly isomorphic algebras are categorically equivalent.

2.4 Invariant relations

In [12], K. Denecke and O. Liiders used Theorem [2.7]to give a characterization
of categorical equivalence of finite algebras by invariant relations.

Let A be a finite set. For every positive integer n, let Rel,(A) denote the set
of all n-ary relations on A, and Rel(A) = U Rel,,(A). Let 0 € Reli(A) and A €

neN

Rel;(A). On Rel(A) we define the following operations:

§O) = {(x2,x3,..., %k, Xx1) | (x1,%2,..., X) €6},

T(@) = {(xg,xl,xg,...,xk)l (xl,)Cg,...,xk)EH},

AB) = {(x1,x2,..., Xk-1) | (x1, %1, X2,..., Xk—1) €6},
Ood = {(x1,%X2,..., Xptr7—2) | Tx € A (X1,...,X)-1,%) €0,

& (x) Xy eees xk+l—2) € A})

s = ((x,y,1) | x,y € A}

(If k =1, each of ¢, 7 and A behaves like the identity map. If k = [ =1, then
Ood=0nA)
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The algebra (Rel(A);&,7,A, 0,8 5%%) is called the full relation algebra on A and
by a relation algebra on A we mean any subalgebra of the full relation algebra.
Now let A = (A; F) be an algebra and 0 € Rel,,(A). We say that 0 is F-invariant
if for all f € F and all n-tuples xl,xz, . ..,xk € 8, where k stands for the arity of
f, we have (f(xi,...,xf),...,f(x}l,...,x,’;)) € 0. This actually means that 8 is a
subuniverse of A”.

It is not hard to verify that the set of all relations on A invariant under F is the
universe of a relation algebra on A. We call this the relation algebra of A and
denote it R(A). Then the following result holds:

Theorem 2.9 ([12]). Let A and B be two finite algebras. Then A and B are cate-
gorically equivalent if and only if the relation algebras R(A) and R(B) are iso-
morphic.

2.5 Majority algebras

The Denecke-Liiders Theorem has a simpler form in case of majority algebras.
A ternary operation m on a set A is called a majority operation if for every
X, yE A,

m(x,x,y) =m(x,y,x) =m(y,x,x) = Xx.

A majority algebra is an algebra that has a majority term operation. For ex-
ample, any lattice (L; Vv, A) is a majority algebra with the majority operation
mx,y,2)=xXVyY)IANYVZ)A(zVX).

For an algebra A, let S(A) denote the algebraic structure (Sub(A?);n,0,”, A, V),
where N and o are the binary operations of intersection and relational prod-
uct, ~ is the unary operation of taking the inverse relation, and A (diagonal)
and V = A x A are nullary operations.

In view of Theorem it is clear that if an algebra is categorically equiv-
alent to a majority algebra, then it is a majority algebra itself. C. Bergmann
proved the following result:

Theorem 2.10 ([7, Thm. 2.3]). Let A be a finite majority algebra and B any alge-
bra. Then A =. B if and only if B is a finite majority algebra and the structures
S(A) and S(B) are isomorphic.

Now we use Theorem to prove Theorem which states that every pri-
mal algebra is categorically equivalent to the two-element Boolean algebra. By
definition, every primal algebra has a majority term operation. Observe that
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for any primal algebra A, A and V are the only subalgebras of A%. Since the
two-element Boolean algebra is itself primal (see e.g. [22], Section 3.1), the
statement follows.

2.6 Finite groups and semigroups

In some cases categorical equivalence implies weak isomorphism.

L. Zadori used McKenzie’s theorem to characterize categorical equivalence of
finite algebras via minimal relational sets ([43]). Using this characterization,
he proved the following theorem ([42]):

Theorem 2.11. Finite groups are categorically equivalent if and only if they are
weakly isomorphic.

M. Behrisch developed a characterization of categorical equivalence of finite
algebras via non-refinable covers (see the end of Section 3.4 in [4] for the out-
line of it). Applying this, M. Behrisch together with T. Waldhauser managed to
extend the result of Zadori to finite semigroups (the result is being prepared
to getting published):

Theorem 2.12. Finite semigroups are categorically equivalent if and only if
they are weakly isomorphic.

This result motivates to take a closer look at term equivalence of semigroups.
We will explore it in Chapter






Chapter 3

Bands and lattices

In this chapter we show that the condition of categorical equivalence for lat-
tices and normal bands (of any cardinality) is very strict: two lattices are cat-
egorically equivalent if and only if they are isomorphic or dually isomorphic,
and two normal bands are categorically equivalent if and only if they are iso-
morphic or anti-isomorphic. As a consequence, any two categorically equiva-
lent semilattices are isomorphic. The key idea here is the refinement property
of direct factorizations.

3.1 Refinement property

An algebra A is called directly irreducible if | A| > 1, and A = BxC implies |B| = 1
or |C| = 1. An algebra A has the unique factorization property if

(1) Aisisomorphic to a product of directly irreducible algebras;

2) if

A=[]B;=]]C;

iel jej

for some index sets I and J and for directly irreducible algebras B; and
C;, then there is a bijection ¢ : I — J such that B; ~ Cy(;) for all i € I.

An algebra A has the refinement property (for direct factorizations) if

A=][B;=]]C;

iel jej

21
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implies the existence of algebras D;; (i € I, j € J) such that, for all i € I and
jeT,

B; = HDij and C;= HD,‘]'.
jej iel

It is easy to see ([31], Section 5.6) that refinement property implies condition
(2) of the unique factorization property (but does not imply condition (1)).

Let R be a (partial) order relation on a set A. The ordered set (A, R) is called
connected if the conditions

BuC=A, BnC=¢, RcB?uC?

entail that B= A or C = A.

Notions of direct irreducibility, the unique factorization property and the re-
finement property for ordered sets are defined in the same way as for algebras.

In [31], Section 5.6, the following facts that we will use later are proved:
Proposition 3.1. Every connected ordered set has the refinement property.

Proposition 3.2. Every congruence distributive algebra has the refinement
property.

3.2 Normal bands

We say that two groupoids (4,-) and (B,-) are anti-isomorphic, if there is a
bijection ¢: A — B such that ¢(xy) = ¢(y)¢p(x) for any x, y € A.

For a groupoid A, we define A* to be the groupoid with the same universe as
A, but with the multiplication x * y := yx. Clearly, A* is, up to isomorphism,
the only groupoid anti-isomorphic to A.

We start with the following simple observations.

Lemma 3.3. For any groupoids A and B, (AxB)* =~ A* x B*.

Proof. Let ¢p;:A— A* and ¢, : B— B* be anti-isomorphisms. Then the map
¢: AxB— A* x B* defined by ¢((x, y)) = (¢p1(x), P2(y)) is an anti-isomorphism.
O

Proposition 3.4. Anti-isomorphic groupoids are weakly isomorphic.
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Proof. Let (4,) and (B,-) be two anti-isomorphic groupoids. Consider the
groupoid (B,*) with x % y := yx. Groupoids (B,:) and (B,*) are anti-
isomorphic, hence (4,-) and (B, *) are isomorphic. On the other hand, (B,")
and (B,x*) are term-equivalent. Altogether we get that (A,-) and (B,-) are
weakly isomorphic. O

Corollary 3.5. Anti-isomorphic groupoids are categorically equivalent.

A band is a semigroup consisting of idempotents. A rectangular band is a
band satisfying the identity xyx = x. It can be easily seen ([25], Lemma 1)
that every rectangular band is isomorphic to a direct product of a left zero
band (satisfies the identity xy = x) and a right zero band (satisfies the identity
xy =y). A band is called normal if it satisfies the identity xyzx = xzyx.

It is well-known (see for example [25], p. 262) that every band S is a semilattice
Y of rectangular subbands S, e € Y. This means that S = U{Se :ee Y} and
SeSpc Ser for e, f € Y. The semilattice Y is called the structural semilattice of
S. The rectangular bands S,, e € Y, are called the rectangular components of
S. Both the structural semilattice and the rectangular components of a band
are uniquely determined (up to isomorphism).

Lemma 3.6. If a band S is isomorphic to the direct product of a semilattice Y
and a rectangular band C, then'Y and C are uniquely determined, up to iso-
morphism.

Proof. If S=YxC, where Y is a semilattice and C a rectangular band, then Y is
the structural semilattice of S and the rectangular components are all isomor-
phic to C. O

Lemma 3.7. IfY is a semilattice and C a rectangular band, then (Y x C)* =
YxC*.

Proof. Since semilattices are commutative, Y* =Y. Thus we have
(YxO)*=Y"xC"=YxC".
O

Suppose Y is a chain semilattice, i.e., Y is linearly ordered, and st = min{s, t}
forall s, €Y. Then Y% denotes the dual chain semilattice, i.e., the semigroup
(Y, *), where s * r = max{s, t} for any s,z € Y. If C is a rectangular band, then
both Y x C and Y? x C are normal bands. Every band isomorphic to Y x C is
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called a chain normal band. If S and T are bands isomorphic to Y x C and
Y xC, respectively, then S and T are called dual chain normal bands.

In 1985, B. M. Schein characterized normal bands with isomorphic endomor-
phism monoids.

Theorem 3.8 ([36, Thm. 3]). Let S and T be normal bands with isomorphic
endomorphism monoids. Then one of the following holds:

(1) S and T are isomorphic;
(2) S and T are anti-isomorphic;
(3) S andT are dual chain normal bands;

(4) S andT are chain normal bands and T is anti-isomorphic to the dual of
S.

Now we are ready to prove the following result.

Theorem 3.9. Normal bands are categorically equivalent if and only if they are
isomorphic or anti-isomorphic.

Proof. We need to show that categorically equivalent normal bands are iso-
morphic or anti-isomorphic. By Corollary[3.5} the converse is always true.

Take two categorically equivalent normal bands S and T. By Theorem
their endomorphism monoids are isomorphic, thus one of the statements (1)-
(4) of Theorem [3.8]is fulfilled. In case (1) or (2) we are done. So assume that
(3) or (4) holds.

In case (3), S=YxCand T = Y% x C for some chain semilattice Y and some
rectangular band C. We may assume that Y has at least two elements, other-
wise case (3) reduces to (1).

Consider the normal bands $? =~ (Y x C)? =~ Y x C? and T? = (Y? x C)? =
(Y92 x C2. They are also categorically equivalent and therefore have isomor-
phic endomorphism semigroups. Thus one of the cases (1)-(4) is fulfilled also
for §* and T2. We analyze each possibility.

Case 3.1. S? ~Y? x C? and T? = (Y%)? x C? are isomorphic.

By Lemma we get that the semilattices Y* and (¥%)? are isomorphic. Semi-
lattices as ordered sets are connected, hence, by Proposition 3.1} they have the
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refinement property. Both Y? and (Y%)? have factorization into directly irre-
ducible ordered sets (chains Y and Y¥ are directly irreducible), thus this fac-
torization is unique. Therefore Y and Y are isomorphic as ordered sets and
hence also as semilattices. Thus normal bands S and T are also isomorphic.

Case 3.2. Y? x C? and (Y9)? x C? are anti-isomorphic.

Lemma gives us that Y2 x C? = (¥%)? x (C*)*, hence by Lemma Y? and
(Y%)? are isomorphic. Like in Case 3.1, this implies that semilattices Y and Y
are isomorphic and therefore $ =Y x C and T = Y? x C are also isomorphic.

Cases 3.3 and 3.4. §* ~Y? x C? is a chain normal band.

By Lemma Y? must be a chain semilattice. Since the square of at least two-
element chain is not a chain, this is not possible. This completes the study of
the case (3).

Finally, in case (4), S =YxC and T is anti-isomorphic to Y?xC. By Lemma
T = Y% x C*. Like in case (3), we consider the normal bands S? = Y? x C* and
T? = (Y%)? x (C*)?, which are also categorically equivalent and therefore have
isomorphic endomorphism semigroups. One of the cases (1)-(4) of Theorem
is fulfilled for $* and T?, and the analysis of them is exactly the same as for
the cases (3.1)-(3.4).

The first two cases lead to Y = Y%, and thus $ = Yx C, T=Y x C*. From Lemma
B.7|we see that S and T are anti-isomorphic. The last two cases lead to contra-
diction.

The proof of the theorem is now complete. O

Corollary 3.10. Categorically equivalent rectangular bands are isomorphic or
anti-isomorphic.

Corollary 3.11. Categorically equivalent semilattices are isomorphic.

Proof. Since the semilattice multiplication is commutative, anti-isomorphic
semilattices are isomorphic. O

3.3 Lattices

Let L = (L; V, A) be a lattice. The dual lattice of L is the lattice LY = (L; v/, A),
where v’ and A’ are defined by xV'y=xAyand xA'y=xv yforall x,y€ L.
We say that the lattices L and L' are dually isomorphic, if L' ~ L. We denote
this L' ~ 4 L.
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From Corollary 6.4 in [30] it follows that two finitely generated projective lat-
tices are categorically equivalent if and only if they are isomorphic or dually
isomorphic. We are going to extend this result to arbitrary lattices. We will
need the following easy lemma.

Lemma 3.12. For any positive integer n and lattice L, (L)% = (L%)".

We say that SubL determines L if for an arbitrary lattice K, SubL = SubK im-
pliesL=Kor L=;K.

In [40] the following statement was proved:

Theorem 3.13. If a lattice L is directly reducible, then SubL determines L.

Note that in this theorem L is determined not only in the class of directly re-
ducible lattices, but in the class of all lattices.

Theorem 3.14. Lattices are categorically equivalent if and only if they are iso-
morphic or dually isomorphic.

Proof. Take two categorically equivalent lattices L and K. By Theorem
they have isomorphic sublattice-lattices. If at least one of them, say L, is di-
rectly reducible, then SubL determines L, thus L=K or L=; K.

Now assume that none of L and K is directly reducible. The lattices L? and K>
are also categorically equivalent by Theorem and SubL? =~ SubK?. Since
L? is reducible, we obtain that L? =~ K? or L? = (K)? = (K%)%. Lattices have
distributive congruence-lattices, thus by Proposition |3.2| they have the refine-
ment property. Since, by assumption, L and K are directly irreducible, both L?
and K? have factorization into directly irreducible lattices and therefore have
unique factorization. Thus L=Kor L= K.

Conversely, assume that L and K are either isomorphic or dually isomorphic.
The first case is trivial, in the second case L and K are weakly isomorphic,
hence categorically equivalent. O

Remark 3.15. Theorem [3.14| can be proved also by using Proposition [3.1} in
which case Proposition [3.2) may be avoided.
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Term equivalent semigroups

From Chapter[2 we know that two finite semigroups are categorically equiva-
lent iff they are weakly isomorphic. In view of that, it seems natural to inves-
tigate the term equivalence of semigroups. We find a large number of semi-
group properties that are preserved by term equivalence. For some classes of
semigroups, like commutative semigroups or bands, the term equivalence is
trivial: the semigroups must be identical or dual. However, there exist exam-
ples of non-trivial term equivalence. We discuss separately completely regular
and completely 0-simple semigroups.

4.1 General observations

A semigroup term in k variables is a finite word in the alphabet xy,...,X;. On
a fixed semigroup (S;-) such a term induces a k-ary term operation by evalu-
ation. A length of a term is the length of the corresponding word.

Let (S;+) be a semigroup and a € S. By (a) we denote the subsemigroup of
(S;+) generated by a. The index m(a) of a is the smallest positive integer m
for which a = a” for some positive integer r > m. The period n(a) of a is
the smallest positive integer n for which a”*" = a™ for some positive integer
m. If (a) is infinite, then both m(a) and n(a) are infinite. If (a) is finite, then
(@*:=1{a™P,. .., a™ @ @11 is 3 group. Note that a is contained in a group
iff m(a) = 1.

Lemma 4.1. Let (S;-) and (S;+) be term equivalent semigroups. Then the fol-
lowing statements hold.

(1) The subsemigroups of (S;-) and (S;+) are the same and term equivalent.

27
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(2) The congruences of (S;-) and (S;+) are the same and the corresponding
quotient semigroups are term equivalent.

(3) The ideals of (S;-) and (S;+) are the same.
(4) The idempotents of (S;-) and (S;+) are the same.

(5) Forevery ac S, the index and the period of a are the same with respect to
-and +.

Proof. The statements (I)-({) follow straightforwardly from the fact that the
basic operation of one semigroup is a term operation of the other one.

Let a € S. Note that {a"|n € N} is the intersection of all subsemigroups of
(S;+) that contain a. Similarly, {naln € N} is the intersection of all subsemi-
groups of (S; +) that contain a. From (I) it follows that {a"|n € N} = {na|n € N}.
So the subsemigroup generated by a is (a) with respect to both - and +.

Now assume that (a) is finite, and let m, n be the index and the period of a in
(S;). Then (a)* = {a™,...,a™" "} is the smallest ideal of ({(a),"). By @), (a)*
is an ideal in ({a),+) as well. Hence the smallest multiplicative ideal of (a)
contains the smallest additive ideal of (a). By exchanging - and + we obtain
the converse inclusion. Hence (a)™* also is the smallest ideal of ((a),+). Since
n=|(a)*| and m = [{a) \ (a)*| + 1, we obtain that m and n are also the index
and the period for a with respect to +, respectively. O

Lemma 4.2. Let (S;-) and (S;+) be term equivalent semigroups. Assume that +
does not depend on both arguments. Then xy = x+y forallx,ye Sorxy = y+x
forallx,yesS.

Proof. Assume, without loss of generality, that + does not depend on the sec-
ond argument. Then there exists a function f: S — S such that x+y = f(x) for
all x,yeS. Let x,y,z€ S. By associativity we obtain

f)=x+y+2)=x+y)+z=f(f(x).

That is, f is idempotent. Hence the only binary term operations of (S;+) are
x,¥, f(x), and f(y). From the term equivalence of (S;-) and (S; +) it follows that
forall x,ye S, xy=f(x)=x+y,orxy=f(y)=y+x,orxy=xorxy=y. In
the first two cases, the lemma is proved. In the last two cases, the only binary
term operations of (S;-) are x and y, hence, from the term equivalence, also
X+y=xorx+y=y. O
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Hence we may restrict ourselves to essentially binary operations when looking
for non-trivial examples of term equivalent semigroups.

Two semigroups (S;-) and (S;+) are called dual, if xy = y+ x for all x,y € S.
By the next lemma, two semigroups can be term equivalent without being
identical or dual only if every element is contained in a group or has index
2. The order of every element is then bounded by some fixed integer. Thus
such semigroups must be periodic.

Lemma 4.3. Let (S;-) and (S;+) be term equivalent semigroups. Assume that
one of the following holds:

(1) for every integer n there exists a € S such that |{a)| > n;

(2) there exists a € S with index at least 3.
Then these semigroups are identical or dual.

Proof. By Lemma |4.2) we may assume that the operations of these two semi-
groups are essentially binary. Let s and t be semigroup terms such that their
induced term operations s on (S;+) and ¢ on (S;-) satisfy

xy=s(x,y) and x+y=t(x,y forall x,yeS. 4.1)

Let k and [ denote the length of the terms s and t, respectively. Since the op-
erations of our semigroups are essentially binary, we have k=2 and [ = 2. If
k =2, then we have for s four possibilities: x+Xx, y+y, x+y and y+x. The first
two of them contradict the assumption that the operation - is essentially bi-
nary. If, however, s =x+y or s = y + X, then we are done. Thus, we may assume
that k > 2, and similarly / > 2.

It follows from that 2x = £(x,x) = x' for every x € S. Now, proceeding
by induction on m, it is easily seen that for every positive integer m there
exists an integer r = r(m) > 2 such that mx = x”. Hence, x° = s(x,x) =kx =
x"® for every x € S. This shows that every a € S has index less than 3 and
it generates the monogenic subsemigroup whose size is bounded by r(k), a
contradiction. O

A semigroup with zero (S;-) is called nilpotent if S" = {0} for some positive
integer n.

Proposition 4.4. If a semigroup (S;+) is term equivalent to a nilpotent semi-
group (S;+), then these semigroups are identical or dual to each other.
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Proof. Assume that S contains an element 0 such that S” = {0} for some pos-
itive integer n. Let s and t be semigroup terms as in the proof of Lemma |4.3
Let k and I be their lengths, respectively. If k < 2 or I < 2, then the result fol-
lows from Lemma 4.2} like in the proof of Lemma4.3] Let now k>3 and [ = 3.
Then
$?cS+--+ScS+8cscs’cs?,
k

implying S* = $>. But then S* = $” = {0} and also S+ S = {0}. Thus, (S;+) and
(S;-) are identical zero-semigroups. O

Theorem 4.5. If a semigroup (S;-) is term equivalent to a commutative semi-
group (S;+), then these semigroups are identical.

Proof. By Lemma we may assume that + and - depend on both argu-
ments. Further, if there exists no finite bound on the size of monogenic sub-
semigroups of S or if there exists a € S of index m(a) > 2, then the result fol-
lows from Lemma Thus assume that every x € S generates a finite sub-
semigroup with index m(x) < 2.

Since (S;-) and (S;+) are term equivalent and - depends on both arguments,
we have k,! € N such that xy = kx+ [y for all x,y € S. Note thatif k=1=1,
then we are done. Otherwise we claim

Jk,leN\{1} Vx,ye S: xy=kx+1y. 4.2)

The term equivalence of (S;-) and (S; +) implies that we have a term operation
t(x,y) on (S;-) such that x + y=t(x,y) forall x,y € S.

Consider the case k > 1,1 =1 (the case k = 1,1 > 1 is similar). By applying
xy = kx+ y repeatedly on f(x, y), we have a, b € N that are not both 1 such that
x+y=t(x,y)=ax+byforall x,y€S. Note that a and b are not 0, because +
depends on both arguments. Since + is commutative, we have

ax+by=x+y=y+x=ay+bx=bx+ay
for all x,y € S. Now
xy=kx+y=akx+by=D>bkx+ay

yields (4.2).

Fix k,l as in (@.2). Let x € S, and define r(x) = m(x)n(x). By Lemma[4.1] &), we
have that x"™ is the identity element of the group ((x)*;-), and likewise for
the group ((x)*;+). Note that k =2 = m(x), thus kx € (x)*. We obtain

kx=kx+1x"W = x.x"0 = x T I+1 (4.3)



4.1. GENERAL OBSERVATIONS 31

Similarly, for every y € S from [ = 2 = m(y) it follows [y = y"V*!

kx = lx for every x € S. Now,

, implying

xy=kx+ky=ky+kx=yx,

that is, the semigroup (S;-) is commutative.
Now, the situation between (S;+) and (S;-) is fully symmetric. By applied
to (S;-) we have u € N\ {1} such that

x+y=x"y“forall x,y€S.

For x,y € S we obtain

xy=kx+ky= K0+ +yr(y)+1 — (xr(x)+1)u(yr(y)+1)u —

— ((xr(x))uxu) ((yr(y))uyu) — xuyu =X+,

which completes the proof. In the penultimate equality we used that u = m(x)
and u = m(y). O

Corollary 4.6. Let (S;-) and (S;+) be term equivalent semigroups. Then for ev-
ery k € N and for every x € S we have x* = kx.

Proof. This follows from Theorem since monogenic subsemigroups are
commutative. O

In view of Theorem we may assume, without loss of generality, that semi-
groups we are studying are non-commutative. For this reason, we use in the
following the symbols - and * for the semigroup operation, rather than - and
+.

Lemma 4.7. Let (S;),(S; *) be term equivalent semigroups. Then there exist
semigroup terms s(X,y) and t(X,y), such that their induced term operations s
on (S;*) and t on (S;-) satisfy

xy=s(x,y), xxy=1t(x,y) forallx,ye S

and either
s and t both start with x and end withy (4.4)

or
s and t both start with'y and end with Xx. (4.5)
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Proof. For better clarity, we have replaced in this proof some insignificant
parts of expressions by dots.

We assume that (S; *) and (S;-) are neither identical nor dual to each other,
otherwise the statement holds trivially. Then, by Lemma 4.2} the operations *
and - depend on both their arguments.

Let sp(x,y), to(X,y) be semigroup terms such that their induced term opera-
tions sy on (S; *) and £y on (S;-) satisfy

xy=so(x,y), xxy=1y(x,y) forall x,yeS.

We first show that, without loss of generality, sy and ty start with the same

letter. For that, suppose that so(x,y) starts with x and ty(x,y) starts with y.
Then we have some k € N such that for all x,y € S,

xy:xk*y*..., (4.6)

X*xy=y-.... 4.7)

Here we used that - depends on both arguments. Note that by Corollary 4.6}
xF is the same with respect to both - and *. We have

xk* y*...(y-...)*.. &P

Xy L= (xL )k =y R

for all x, y € S. It follows that there exists a term s;(X,y) starting with y whose
induced term operation s; on (S; %) satisfies

xy=si1(x,y) forall x,yeS.

Hence we may assume that sy and ty both start with x or both start with y.

Now we consider several cases. We only need to study those cases where ei-
ther sq or t is not in the required form.

Case 1: sp(x,y) and ty(x,y) start and end with x. Since - depends on both argu-
ments, we have some positive integer k such that for all x,y € S,

xyzxk*y*...*x, (4.8)
X*y=X...X. (4.9)

It follows that
x*y@x-(...-x)xk*...*xzx*...*x (4.10)

for all x,y € S. Now

(4.8) (4.10)
xy BB 4« * X) €10

* Yk (... *(Y*...xy)=X*...% ).
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Similarly we get x+*y = x...y for all x, y € S. Hence there exist s and t satisfying

(4.4).

Case 2: sp(x,y) and ty(x,y) start both with x and end with distinct letters. As-
sume xy =x*...*x, x*y=x...y for all x,y e S. Exactly like in Case 1, we
obtain x* y=x=...*x and xy = x*...* y for all x,y € S. Hence there exist s

and t satisfying (4.4).

Case 3: syp(x,y) and ty(x,y) start and end with y. This case is symmetric to
Case 1. The same argument leadsto x* y=y*...* yand xy=x*...* y for all
x,y € S. Hence there exist s and t satisfying (4.4).

Case 4: sp(x,y) and ty(x,y) start both with y and end with distinct letters. As-
sume $y(X,y) =Y...V, to(X,y) =y...X. Since - depends on both arguments, we
have some positive integer k such that for all x,y € S,

xy:y*...*x*yk, (4.11)
X*xy=y...X. (4.12)
It follows that
x*y(y-...)-x4élx*...*xk:x*...*x (4.13)
for all x,y € S. Now
xyy*...*x*yky*...*(x*...*x)zy*...*x.
Hence there exist s and t satisfying (4.5). O

Now me derive some corollaries from Lemma [4.7]

Corollary 4.8. If a semigroup (S;*) is term equivalent to a band (S;-), then
these semigroups are identical or dual to each other.

Proof. By Lemmal4.1] @), (S;*) is a band.

Let t(x,y) be a semigroup term whose induced term operation ¢ on (S;-) satis-
fies x % y = t(x,y) for all x,y € S. By Lemma we may assume that t either
starts with x and ends with y, or starts with y and ends with x. Since the band
operation - is idempotent, the first possibility leads to x = y = xy, while the
second one to x * y = yx. O
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Green's relations L, R, H, D, J on a semigroup (S;-) are the equivalence rela-
tions on S defined by

alb <> S'a=S'b,
aRb <> aS' = bS',
H=LAR,
D=LVR,
aJb <> S'aS' = S'bS".
Here (S';-) denotes (S;-), if it is a monoid, and (S;-) with adjoined identity
element, otherwise.

Green'’s relations were introduced by J. A. Green in [16] and play an important
role in the structure theory of semigroups. We use Lemma to show that
under term equivalence the relations H, J and D are preserved, while the
relations £ and R are either preserved or flipped.

Theorem 4.9. Let (S;-) and (S;*) be term equivalent semigroups with Green’s
relations (L, R, H,D,J) and (L', R, H',D',J"), respectively. Then

(1) either (L=L' R=R)orL=R', R=L");
@ H=H,D=D,J=J".

Proof. (I) Lemma[4.7]implies that for every x, y € S either

Xy=X*...%}, (4.14)

X*xy=Xx-...-) (4.15)
or

Xy=Y*..%X, (4.16)

X*Y=y-...-X. (4.17)
Letac€S.

In the first case, yields aS< a = S, and yields a * S < aS8. It follows
that aS=ax S for any a € S. Hence, R = R'. Similarly one gets £ =L'.

In the second case, yields aS < S * a, and yields S*xa < aS. It
follows that aS = S * a for any a € S. Hence, R = £L'. Similarly one gets £L="TR'.

Preservation of 7 and D follows from their definitions and (1).

Now, if (S;+) and (S; *) are identical or dual, then 7 = 7' holds trivially. Other-
wise, (S;+) and (S; *) are periodic (Lemma[4.3). It is well known that for peri-
odic semigroups, D and J coincide ([16], Theorem 3). Hence, J = 7. O
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Next we exhibit a number of semigroup properties that are invariant under
term equivalence. Clearly, all properties preserved by categorical equivalence
are preserved also by term equivalence (e.g. being finitely generated).

A semigroup S is completely regular if every element of S lies in some sub-
group of S. A semigroup (S;-) is regular if every element a € S is regular; an
element a € S is regular if there exists an element x € S such that axa=a. A
semigroup (S;-) is inverse if every element x € S has a unique inverse element,
i.e. an element y € S such that x=xyx and y = yxy.

Theorem 4.10. Let (S;-),(S; *) be term equivalent semigroups. Then the follow-
ing holds.

(1) If(S;-) has a zero 0, then 0 is also a zero with respect to *.

(2) If (S;) has an identity 1, then 1 is also an identity with respect to *, and
the semigroups (S;-) and (S; *) are identical, dual, or both completely reg-
ular.

(3) If(S;-) is regular, then (S; %) is regular.
(4) If (S;-) is inverse, then (S; *) is inverse.
(5) If(S;:) is a group, then (S; *) is a group.

(6) If(S;-) is completely regular, then (S; *) is completely regular.

Proof. Since {0} is an ideal in (S;-), it is also an ideal in (S;*) by
Lemma [4.1] (3).

Let x € S. Then (x) U {1} forms a commutative subsemigroup of (S;-). From
Lemma [4.1] (I) and Theorem [4.5]it follows that - and * coincide on (x) U{1}. In
particular x* 1 =1%x = x.

Next let t(x,y) be a semigroup term that induces a term operation ¢ on (S;-)
satisfying x * y = t(x,y) for all x,y € S. Let k and [/ be the multiplicities of x
and y in t. For x € S, we obtain

x:x*lzt(x,l)zxk,

x=1%x=1t(1,x) =x.
If x has index greater than 1, this implies k = [ = 1. Hence t(x,y) = xy or

t(x,y) = yx, that is, (S;),(S; *) are identical or dual. Else every element in S
generates a group, and (S;-), (S; *) are completely regular.
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Let t(x,y) be a word in x,y. We claim that
the word t(t(x,y),x) begins and ends with x. (4.18)

Observe that the first letter in t(t(x,y),X) is X no matter whether t(x,y) starts
with x or y. Indeed, if t(x,y) = xou(x,y), where u(x,y) is a word in X,y and o
stands for concatenation, then

t(tx,y),x) = tixou(x,y),x) =xou(x,y) cuxoux,y),x).
Iftx,y) =you(x,y), then
t(t(x,y),x) =xou(t(x,y),x).
Similarly the last letter in t(t(x,y),X) is X no matter whether t(x,y) ends with x
ory.
Now assume that t(x,y) induces a term operation ¢ on (S;*) such that xy =
t(x,y) forall x,y € S. Let a€ S. Since (S;-) is regular, there is b € S such that
a=aba=t(t(a,b),a).
By (4.18), we have that #(¢(a, b),a) = a*c*a for some c€ S. Hence a=axc*a,
and (S; *) is regular.

Recall that a semigroup is inverse iff it is regular and its idempotents com-
mute. The idempotents of (S;-) form a commutative subsemigroup of (S;-). By
Lemma [4.1]and Theorem the idempotents of (S; *) also form a commuta-
tive subsemigroup, and, hence, (S; %) is inverse.

The statement immediately follows from the fact that a semigroup is a
group iff it is inverse and has exactly one idempotent.

(6) This follows from (5) and Lemma [4.1 O

In [24] and [39], examples of term equivalent non-isomorphic finite groups
were constructed. The finiteness implies that both identity and inverse can be
expressed by multiplication. Hence these groups (with three basic operations)
are also term equivalent as semigroups (with one basic operation).

If we have two groups that are term equivalent but not isomorphic, we can
obtain semigroups that are not regular and still term equivalent in a nontrivial
way.

Example 4.11. Term equivalent semigroups that are not regular, not isomor-
phic, and not dual to each other.
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Let (G;-) and (G;#*) be term equivalent non-isomorphic finite groups with
identity 1. Let a be distinct from the elements of G, and extend the opera-
tion o€ {;x} to S:= GU {a} as follows:

xoa=aox=x VxeG;

aoa=1.

We first show that (S;-) and (S; *) are term equivalent. By assumption we have
binary term operations s on (S;-) and ¢ on (S; *) such that xy = t(x,y), x* y =
s(x,y) for all x,y € G. We claim that these identities hold for all elements of
S. For x € G, we have t(x,a) = t(x,1) = x1 = xa. Further, t(a,a) =1 = aa. The
remaining cases follow similarly. Hence, (S;-) and (S; *) are term equivalent.

These semigroups are not regular, because a is not a regular element. Finally,
since (G;-) and (G; *) are neither isomorphic nor dual, the same holds obvi-
ously also for (S;-) and (S; *).

4.2 Completely 0-simple and completely regular
semigroups

Now we take a closer look at completely 0-simple and completely regular
semigroups.

A semigroup is called simple if it has no proper ideals. A semigroup (S;-) with
zero 0 is called 0-simple if its only proper ideal is {0} and S? # {0}. A semigroup
(S;+) is called completely simple (completely 0-simple) if it is simple (0-simple)
and contains a primitive idempotent, i.e. a non-zero idempotent that is not
an identity for any other non-zero idempotent of (S;-).

Proposition 4.12. Let (S;-), (S; *) be term equivalent semigroups. If (S;-) is com-
pletely 0-simple (completely simple), then (S; ) is completely 0-simple (com-
pletely simple).

Proof. 1f (S;-) is 0-simple (simple), then, by Lemma and Theorem
(@, (S; =) is also 0-simple (simple).

Let e be a primitive idempotent in (S;-). We show that e is primitive in (S; *),
too. Suppose there is a non-zero idempotent f €S, f #e, such thatex* f = f *
e = f. Then {e, f} is a subsemigroup of (S; *) with identity e. By Lemma[4.1]
and Theorem (@), it must be also a subsemigroup of (S;-) with identity e,
which is a contradiction. O
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We say that a semigroup (S;-) is a band of semigroups, if for some band Y,

S= U Sqa, where S, are subsemigroups of (S;-) such that So, NS =@ if a # B
acY

and SoSp S Sqp forany a, fe Y.

Let G be a group. Then G° denotes the group G with adjoined zero 0. Let A

and I be non-empty sets and let P be a A x I matrix with entries p, ; from G°.

Let M°(G, I, A, P) be the set (I x G x A) U {0} together with the multiplication

0-(i,s5,1)=(i,5,4):0=0-0=0
for all triples (i, s, 1), and

(i,spajt,p), if py;#0,

(i,sA)-(j,t,m = { 0, otherwise.

This is a semigroup, called the Rees Matrix semigroup with zero over a group.
If the entries of P are from G, then the Rees Matrix semigroup over a group, de-
noted M(G, I, A, P), is the set I x G x A with the above multiplication restricted
to it.

D. Rees proved in [35] that a semigroup is completely simple (completely 0-
simple) iff it is isomorphic to a Rees matrix semigroup over a group (a regular
Rees matrix semigroup with zero over a group).

It follows that every completely simple semigroup S is a rectangular band of
isomorphic groups, which are precisely the H-classes of S ([10]).

Proposition 4.13. If completely simple semigroups (S;*) and (S;-) are term
equivalent, then their underlying groups are term equivalent and the rectan-
gular bands either identical or dual.

Proof. The first part of the statement follows from Theorem (B). For the
second part, observe that the equivalence relation # is a congruence relation
in our case. Now, the claim follows from Lemma[4.1] @) and Corollary[d.8] O

Proposition 4.14. If a semigroup (S; *) is term equivalent to a completely 0-
simple semigroup (S;-), then these semigroups are identical, dual, or both com-
pletely regular.

Proof. Let (S;-) be the completely 0-simple semigroup M°(G, I, A, P).

Assume that (S;+) and (S; *) are neither identical nor dual. Then, clearly, |S| >
2. We show that the product of any two non-zero elements of (S;-) is not zero,
which means that (S;-) is isomorphic to a Rees matrix semigroup over a group,
with zero adjoined, and thus is completely regular.
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Suppose py,; =0 forsome i€, A€ A,ie. (-,4)-(,-)=0.
Let s(x,y), t(x,y) be semigroup terms such that their induced term operations
son (S;*) and ¢ on (S;-) satisfy

xy=s(x,y)and x* y=t(x,y) for all x,y€S.

Consider several cases.

Case 1. The term t(x,y) contains xy (as a subword), the term s(x,y) contains
yx. Then
(') % A/) * (i) % ') = t(('; ';A’)’ (i’ % ')) =0

and therefore for any pe A, jel,
G-, A =s@,),6A) = (5 A) % (1) *...=0

Then S? = {0} contradicting the assumption that (S;) is 0-simple.

Case 2. The term t(x,y) contains yx, the term s(x,y) contains xy. This case is
similar to Case 1.

Case 3. t(x,y) =X...Xy...Vy, s(X,y) =X...Xy...y. Without loss of generality sup-
pose that the multiplicity of x in tis at least 2. For any y € S,
(i,'rﬂ') *y: (i)')/ll)'(i",ﬂ')'--- :0,
whence
(i; ')A*) Y= S((i)')/l)yy) =0.

This yields p;, ; = 0 for every j € I. But then the set {(j,g,A)|j € I,g € G}U{0} is
an ideal in (S;-). Hence, (S;-) is not 0-simple.

Case 4. t(x,y) =y...yX...X, 8(X,y) =y...yX...X. This case is similar to Case
3. O

A Brandt semigroup is a completely 0-simple inverse semigroup.

Theorem 4.15. A semigroup (S; *) is term equivalent to a Brandt semigroup
(S;+) if and only if they are identical, dual, or term equivalent groups with ad-
joined zero.

Proof. The sufficiency is trivial. So, we prove the necessity.

Assume that (S; *) and (S;-) are term equivalent, but neither identical nor dual
to each other. From Proposition it follows that both semigroups must be
completely simple semigroups with adjoined zero. Since, on the one hand,
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idempotents in an inverse semigroup commute, and on the other hand, a
completely simple semigroup is a rectangular band of groups, a completely
simple semigroup is inverse if and only if it is a group. O

A. H. Clifford described in [9] the global structure of completely regular semi-
groups. Every completely regular semigroup S is a semilattice of completely
simple semigroups, which are precisely the D-classes of S ([10]). The underly-
ing semilattice is called the structural semilattice of S.

Proposition 4.16. Let (S;*),(S;-) be completely regular term equivalent semi-
groups. Then the structural semilattices of (S; *) and (S;-) are identical and the
corresponding completely simple subsemigroups are term equivalent.

Proof. Since every completely regular semigroup S is a semilattice of the D-
classes of S, it is clear that the equivalence relation D is a congruence relation.
Hence, by Lemma [4.1] 2), the structural semilattices of term equivalent com-
pletely regular semigroups are term equivalent. From Theorem it follows
that they are identical. By Theorem the D-classes of (S;*) and (S;-) are
the same, and since they are subsemigroups, they are term equivalent. O

It seems natural to ask the following question. Let (S; %), (S;:) be term equiv-
alent semigroups such that * and - are identical on all subgroups. Are (S; %)
and (S;-) identical or dual to each other?

In general, the answer to this question is negative.

Example 4.17. Let G be a finite non-commutative group. Let S = G x Z; be the
universe of semigroups (S;-) and (S; *), where for all g,he G and a,b € Z,,

(g,a)-(h,b):=(gh,Db), (g,a) = (h,b) := (gh, a).
The semigroups (S;-) and (S; *) are term equivalent since for all x, y € S,
x-y=yxxxy, xxy=x-y-x°.
To see thatlet g,he€ G and a,b € Z,. Then
(h,b)'“" % (g,@) * (h,b) = (1,b) * (g,a) * (h,b) = (gh,b) = (g, - (h, b)
and

(g,a)-(h,b)-(g,a)° =(g,a)-(h,b)-(1,a) = (gh,a) = (g,a) * (h,b).

It is clear that - and * are identical on the subgroups, but (S;-) and (S; *) are
neither identical nor dual to each other.



4.3. CONCLUDING REMARKS 41

However, the semigroups in this example are still dually isomorphic via the
bijection ¢(g,a) = (g}, a). It remains open, whether there exists an example
of term equivalent semigroups such that the operations are identical on all
subgroups, but the semigroups are neither isomorphic nor dually isomorphic.

As we found previously, the answer to the question, whether term equivalent
semigroups identical on all subgroups must be identical or dual, is positive
for bands. Also we can give an affirmative answer for Clifford semigroups.

Clifford semigroups are completely regular inverse semigroups. Their struc-
ture was completely described in [9]. Let S be a Clifford semigroup. Every

semilattice component (D-class) of S is a group. Let S= | J Sq, where Y is a
acY

semilattice, Sq, a € Y are groups such that SuNSg=@ if a # f and S Sp S S p
for any a,f € Y. For each pair of elements a = § of Y, there is a homomor-
phism ¢4 5: Sa — Sp, called a structural homomorphism, such that

1) (g o is the identity homomorphism on Sg;

2)ifa=pf>yin G, then ¢pqy = Pgyda p;

3)forany a,f€ Y and a€ Sy, b€ Sg, ab = pg ap(@)Ppap(b).

Proposition 4.18. Let (S;*),(S;-) be term equivalent Clifford semigroups. As-
sume the operations * and - are identical on all subgroups. Then (S;*) and
(S;) are identical.

Proof. Let t(x,y) be a term operation of (S;-) such that x * y = (x, y) for all
x,y€S. Let Y be the structural semilattice of S, and S,, a € Y, be the maximal
subgroups of S, as described above. Let 1, denote the identity element of a
group Sg.

We first show that the structural homomorphisms of (S; %) and (S;-) are iden-
tical. Let o,y €Y, a >7y. Let ¢4,y and (pfm be the structural homomorphisms
corresponding to * and -, respectively. For any a € S, we have

bayl@=axly,=1t(aly) = l‘(qb;,y(a), )= (,b'a,y(a) * 1y = (,b;'y(a).
Now let @, € Y, a€ Sqa, b€ Sg. Since * and - coincide on Sug, we get

axb= (Pa,aﬁ(a) * (pﬁ,aﬁ(b) = (pa,aﬁ(a) : (P,B,aﬁ(b) =a-b.

4.3 Concluding remarks

It was a long standing question whether two term equivalent groups must be
isomorphic. See, for example, [42]. In 2004, K. A. Kearnes and A. Szendrei
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[24] answered this question negatively, by constructing two groups of the form
(Z7 x Z13) 1 Z3 that are term equivalent but not isomorphic. They pointed out
that actually already in 1968, A. P. Street [39] constructed an example of two
non-isomorphic term equivalent groups. The smallest order of the groups in
that example was 2-7-43. In that paper, the notion 'P-property’ was used for
term equivalence.

As we have seen, if a semigroup is term equivalent to a group, then it is a
group itself (Theorem[4.10| (5)). At the same time, any two groups term equiv-
alent as semigroups (with one basic operation) are also term equivalent as
groups (with three basic operations). For this, it suffices to show how the op-
erations identity and inverse of one group can be expressed as term opera-
tions of the other one. The identity element is the same in every two term
equivalent monoids (Theorem[4.10| 2)). By Lemma[4.3} when two semigroups
are term equivalent, they are identical, dual, or the order of every element is
bounded by some finite constant. In the first two cases, the inverse element
is preserved trivially. In the latter case, the exponent of both groups is finite,
and thus the inverse element can be expressed by a term operation.

Many invariant properties of term equivalent groups are listed in [39].

As we pointed out after Theorem term equivalent finite groups are also
term equivalent as semigroups. However, term equivalent groups with infi-
nite exponent might not be term equivalent as semigroups. It remains open
whether such examples exist.

One may ask what happens if we drop the condition of associativity and con-
sider just groupoids. As the following easy example shows, we cannot deduce
much in this case.

Consider the groupoid (Z,;-) and the abelian group (Z,;+), with n > 3. They
are term equivalent, because x—y=x+n-lyand x+y=x—-((y—-y) — ).
However, (Z,;—) is not commutative, not associative and has no identity ele-
ment.



Chapter 5
Rings

We reduce the problem of categorical equivalence for finite unitary rings to
the case of rings of prime power characteristics. It is proved that categorically
equivalent rings of coprime characteristics must be semisimple. The categor-
ical equivalence problem for finite semisimple rings is completely solved.

5.1 Introduction

In the following we assume that all rings are with unity. This means, in par-
ticular, that the unity element 1 of a ring R is contained in every subring of
R.

Recall that a finite algebra is called primal if all finitary operations on its uni-
verse are term operations. It is easy to see that all prime fields Z, are primal
(e.g. [13], Theorem 10.5.5). Thus, Theoremyields Zp = Z4 for any primes
p and q. This result was generalized by C. Bergman and J. Berman:

Theorem 5.1. ([5], Example 5.10) For any primes p and q and positive integers
m and n, the finite fields F,m and F n are categorically equivalent if and only
ifm=n.

This fact is somewhat intriguing because as we have seen, in other well stud-
ied varieties (groups, semigroups, lattices) the finite categorically equivalent
members have been proved to be weakly isomorphic, hence of the same size.

In the present chapter an attempt is made to study categorical equivalence of
finite rings, in general. We first reduce the general problem to the case of rings
of prime power characteristic. We observe that semisimplicity is a categorical

43
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property and completely solve the problem when two finite semisimple rings
are categorically equivalent. We also show that the rings of coprime charac-
teristics can be categorically equivalent only if they are semisimple. The case
of rings of the same characteristic remains open. Our conjecture is that if this
happens then the rings are isomorphic or anti-isomorphic.

In the end we also take a look at one specific case of infinite rings: polynomial
rings over a finite field.

5.2 Reduction to p-rings

For a prime p, a p-group is a group, all of whose elements have orders a power
of p. A finite group is a p-group iff its order is a power of p. A ring whose addi-
tive group is a p-group will be called a p-ringﬂ It is well known that every fi-
nite ring R can be represented as a direct product of non-zero p-rings, for dif-
ferent primes p. We shall call this decomposition of a ring R a canonical one.
The factors of the canonical decomposition of R are called p-components of R.
We are going to show that every categorical equivalence between finite rings
is actually induced by categorical equivalences between their p-components,
possibly for different primes p.

The characteristic of a finite ring R, denoted by char(R), is the exponent of
the additive group of R, that is, a smallest positive integer n such that nR = 0.
Obviously, the characteristic of a p-ring is a power of p.

Since categorical equivalence functors preserve categorical products, we make
the following technical observation that we need later:

Lemma 5.2. Let V and W be categorically equivalent varieties with the equiv-
alence functor F: V — W, and let A;,A, € V. Then H(A; x Ap) = H(A;) x H(Ay).

We shall make use of the notion of independence introduced by Foster in [15]
and developed further by Hu and Kelenson in [19]. The algebras Ay,...,A,
of the same signature are called independent if there exists an n-ary term
t(xy,...,Xn) such that in the algebra A; the identity t(xi,...,x,) = x; holds,
i =1,...,n. Corollary 2.9 of [19] essentially states that algebras Ay,...,A, of
a congruence permutable variety are independent if and only if, for any two
of them, the intersection of the varieties they generate is trivial. Since the
congruences of any ring permute, it follows that in the variety of rings the in-
dependence can be easily characterized, as mentioned in [19].

'The notion of p-ring has been used earlier for the rings defined by the identities px ~ 0
and xP ~ x where p is a prime number.
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Proposition 5.3. FiniteringsRy,...,R;, are independent in the category of rings
with unity if and only if their characteristics are pairwise coprime.

Corollary 2.9 of [19] also implies that in case of rings the independence is a
categorical property in the following sense. If the variety V is generated by
an independent system of rings Rj,...,R, and F: V — W is an equivalence
functor where W is some variety of rings then the system F(R;),..., F(R,) is
independent, too.

Indeed, assume that for some 1 < i < j < n, the intersection of Var(R;) and
Var(R;) is trivial, i.e. is the variety consisting of the single one-element ring
(up to isomorphism). In view of Theorem it must be mapped by F to
the intersection of Var(F(R;)) and Var(F(R;)), which cannot be anything else
than the variety of the single one-element ring (up to isomorphism).

Corollary 5.4. The property to be a finite p-ring for some prime p is categorical.

Proof. Assume that R is a finite p-ring and S is a ring categorically equiva-
lent to R. Then § is finite by Theorem (©). Suppose that S is not a g-ring
for some prime g. Then it is a direct product of two independent rings. By
Lemma5.2} since R=,S, the same must hold for R, a contradiction. O

Two categories C and D are said to be isomorphic if there are covariant func-
tors F: C — D and G: D — C such that the composite functors FoG and Go F
are the identity functors on D and C, respectively.

For a category C, a skeleton of C is any full subcategory A such that each ob-
ject of C is isomorphic to exactly one object in A. It is well known that two
categories are equivalent if and only if their skeletons are isomorphic (as cat-
egories).

Theorem 5.5. Finite rings R and S are categorically equivalent if and only if
there is a one-to-one correspondence between their p-components such that the
corresponding p-components are categorically equivalent.

Proof. Assume first that R and S are categorically equivalent finite rings and
let F be a functor that establishes this equivalence. Now, if R=R; x--- xRy,
where R;, i =1,..., n, are the p-components of R, then Lemmaimplies that
S is isomorphic to the direct product of F(R;),..., F(R,). By Theorem 3D,
R; =. F(R;), i = 1,...,n. Thus, we have to show that F(R;),...,F(R;) are the
p-components of S. By Corollary[5.4} there exist primes g; such that the char-
acteristic of F(R;) is a power of g;, i = 1,..., n. It remains to show that g; # g,
if i # j. But this easily follows from Proposition[5.3|
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Let now R and S be finite rings with canonical decompositions R=R; x--- xR,
and S = 8; x--- x§,. Assume that a functor F; establishes categorical equiv-
alence between R; and S;, i = 1,...,n. Then F; induces an isomorphism
between skeletons of the categories Var(R;) and Var(S;), i = 1,...,n. Since
Ry, ..., R, are independent, from Theorem 2.7 of [19] it follows that every ring
T € Var(R) admits a decomposition T = T} x --- x T,;, where the direct factors
T; € Var(R;) are unique, up to isomorphism. The similar statement holds
also for every member of Var(S). This allows us to conclude that the formula
F(T) = F1(Ty) x --- x F,(T,) determines an isomorphism between skeletons of
the categories Var(R) and Var(S). Since obviously F(R) =S, we get R=.S. [

In view of Theorem 5.5, our main problem splits in two:

1. Describe when a finite p-ring and a finite g-ring with p # g can be cat-
egorically equivalent.

2. Describe when two finite p-rings can be categorically equivalent.

In this chapter we solve the first problem. The second problem remains open.
We are not aware of any pair of finite categorically equivalent p-rings that
would be neither isomorphic nor anti-isomorphic. Our conjecture is that
there is no such pair.

5.3 Rings Z,

Obviously the rings Z,, are, up to isomorphism, the only rings with no proper
subrings. Therefore, if Z,, is categorically equivalent to a ring R, the latter must
be isomorphic to some ring Z,,. In this section we are going to establish when
exactly two rings Z,, and Z, are categorically equivalent. We first sharpen
Theorem 5.1/ by showing that a finite field F ,x can be categorically equivalent
only to F . We use the following well-known fact:

Lemma 5.6. For any finite field F x, AutF i = (Z, +).

Proof. The only automorphisms of the finite field F,« are the Frobenius auto-

morphismsx—>x”l,i:O,l,...,k—l. O

Let n be a positive integer. The full matrix ring over a finite field F is denoted
by Mat, (F).
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Theorem 5.7. If the finite field F . is categorically equivalent to some ring R
then there exists a prime g such that R=F .

Proof. Since by Theorem finiteness and simplicity are preserved by cate-
gorical equivalence, R must be a finite simple ring. Thus, R is isomorphic to
some ring Mat, (F) where F is a finite field and 7 is a positive integer. Assume
that n > 2 and consider the automorphism groups of F,« and R. The first of
them is by Lemma cyclic, while the other, as well-known, is non-abelian.
Thus, n =1, that is, R=F. Now our claim follows from Theorem O

Corollary 5.8. A ring categorically equivalent to the ring Z,, with a prime p is
isomorphic to some ring Z ; with a prime q.

In order to prove the main result of the present section, we need the following
lemma.

Lemma 5.9. For any primes p and q and positive integers k and 1, the rings
Z,x and Z ;i are categorically equivalent if and only if: D k=1=10r2)p=q
and k = 1.

Proof. The sufficiency is obvious since, as we mentioned in the introduction,
Zp =c Z4 for all primes p and g. For necessity, assume that Z,x =c Z ;. The
ring 7« has k +1 ideals and the ring 7, has [ + 1. Since categorically equiv-
alent algebras have isomorphic congruence lattices (Theorem @), we im-
mediately have k = [. Assume k > 2. The ideal lattices of Z  and Z are
again isomorphic, with corresponding quotient rings categorically equivalent.
Hence Z ¢/ (pH =z pe and Z i/ (g% = Z ;» must be categorically equivalent.

p
be isomorphic. We are going to show that the subring lattice of Zzz has exactly

I£7,, =7, then Z?’;Z =, ZE; .. Hence, the subring lattices of Zi’;z and Z‘ZZ must

p+1 atoms. Then, of course, the subring lattice of Z‘Z’] » has exactly g+1 atoms
which allows us to conclude p = q.

The smallest subring of Z:; , is one consisting of all diagonal elements (a, a, a).
Thus, any atom X of the subring lattice of Z?;?Z is a subring of Z; , generated
by a single non-diagonal triple (a;, az, as) € Z:; ,. Since (as, as, as) € X, we may

assume, without loss of generality, that a3 = 0. Assume that pa; # 0. Easy
straightforward calculations show that then the set

Y={(i+jpayi+jpa,ili=0,...,p*-1,j=0,...,p-1}
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is a subuniverse of the ring Z‘;’] , and is contained in X. Also, Y contains the
non-diagonal element (pa,, pay,0), but (a;, ay,0) € Y. This contradicts the as-
sumption that X is an atom of the subring lattice of Z?;) ,. Thus, pa; =0 and
similarly pa, = 0. Now, one can easily check that the set

Z=li+ja,i+jaxi)|i=0,..,p*-1,j=0,...,p—1}

is a subuniverse of the ring Z?’; ». In view of the choice of X, we have X = Z.

We have seen that every non-zero pair (a1, az) € Z,> with pa; = paz = 0 de-
termines an atom of the subring lattice of Z; ,. The number of such pairs is

p?—1 and it is easy to see that two pairs of this form determine the same sub-
ring if and only if one of them can be obtained from the other multiplying by
i€{l,...,p—1}. Thus, the number of atoms is (p> —1)/(p—1) = p + 1. O

Now we are ready to formulate and prove the general result. For any positive
integer n, we denote g(n) = n/r where r is the squarefree part of n, that is, the
product of all prime divisors p of n such that p? does not divide 7.

Theorem 5.10. The rings Z,, and Z,, are categorically equivalent if and only
if n1 and ny have the same number of (different) prime divisors, and q(n;) =
q(ny).

Proof. This is a straightforward consequence of Theorem [5.5|and Lemma 5.9
0

Every finite ring R has a unique minimal subring. This is the subring gener-
ated by 1 € R and obviously it is isomorphic to Z, where n = char(R). Clearly,
if two finite rings are categorically equivalent then so are their minimal sub-
rings. Hence we have the following corollary from Theorem |5.10

Corollary 5.11. Let R and S be a finite p-ring and a finite q-ring, respectively.
IfR =S then either char(R) = char(S) or char(R) = p and char(S) = q.

5.4 Rings of order p*

Since all rings of prime order are categorically equivalent to each other (they
all are isomorphic to the rings Z,), it is natural to consider, as the next step,
the rings of order p?, for a prime p. Theorem the main result of this
section shows that a ring categorically equivalent to a ring of order p? is of
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order g? for some prime g. Moreover, we show exactly how this can happen.
This result has several applications; see the proofs of Theorems and

It is easy to see (e.g. [3] or [14]) that for a prime p, there are up to isomorphism
exactly four different rings of order p*:

1. sz;

2. ZpxZp;

3. sz;

4. Zp[x1/(x*) ={a+Dbe|a,be Z,}, e =0.

We already know that F,» = F> and Z,, x Z,, = Z; x Z4 for any primes p and
g. As we shall see soon, these are the only non-trivial occurrences of cate-
gorical equivalence involving a ring of order p?. To prove this, we need some
simple lemmas.

A ring is called semisimple if it is isomorphic to a finite direct product of sim-
ple rings.

Lemma 5.12. If a finite semisimple ring R is categorically equivalent to a ring
S, then S is finite semisimple, too.

Proof. Let F be the equivalence functor from Var(R) to Var(S) such that F(R) =
S. Since R is finite and semisimple, we have R=R; x --- x R;; where Ry,..., R,
are simple rings. Since, by Lemma [5.2] and Theorem [2.6| (B), direct products
and simplicity are preserved by equivalence functors, we see that S is iso-
morphic to the direct product of simple rings F(R;),...,F(R;). Hence, § is
semisimple. O

For a ring R, the Jacobson radical is the intersection of all maximal left ideals
of R (equivalently, it is the intersection of all maximal right ideals of R). For
shortness, in the following we will call the Jacobson radical just the radical.
The following well-known facts can be found, for example, in [I], Chapter 8.
The radical is a (two-sided) ideal, and in case of a finite ring, it is in fact the
intersection of all maximal (two-sided) ideals. A finite ring R is semisimple if
and only if its radical is zero, and the radical is the smallest ideal J such that
R/]J is semisimple. This yields the following corollary:

Corollary 5.13. Assume that finite rings R and S are categorically equivalent
and this equivalence induces the lattice isomorphism ® : Con(R) — Con(S).
Then ® maps the radical of R to the radical of S.
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An ideal I of a ring is called nilpotent if some power of it is zero. Assume that
I is non-zero and n is the smallest integer such that I" = 0. Then I""! is non-
zero, but (I""1? = 0. The radical of a finite ring is nilpotent ([II). Thus we
get:

Lemma 5.14. The radical of a finite ring S, if non-zero, contains a non-zero
ideal K of S such that K* = 0.

Theorem 5.15. Let R and S be categorically equivalent non-isomorphic rings
and |R| = p? where p is a prime. Then either R is of Type (1) and S = E,. for
some prime q # p, or R is of Type (2) and S =~ Z 4 x Z 4 for some prime q # p.

Proof. We consider separately four cases depending in which type the ring R
falls. Let F be a functor that establishes categorical equivalence between R
and S, F(R) =S.

If R=F,. then by Theoremwe have 8 = F > for some prime q. Since R#$S,
the primes p and q are different.

Let R=Z, x Z,. Since F preserves products, S = F(Z,) x F(Z,) but then by
Corollary [5.8| there is a prime g such that F(Z)) = Z,. Clearly, p # q because
otherwise R and S would be isomorphic.

Let now R=2Z,.. Since the rings Z, are, up to isomorphism, exactly the rings
with no proper subrings, there exists an integer n such that S = Z,,. But then

Theorem yields n = p?.

It remains to consider the case when R is of Type (4). Thus, assume that
R={a+bela,be Z,} where €2 = 0. We know that § must be finite (Theorem
(6), and by Corollary5.11} it must have prime characteristic, say g. Thus,
S can be considered as a vector space over Z,. Obviously the only proper non-
zero ideal of Ris I = {ae| a € Z,}, which is the radical of R. Now, if J is the ideal
of S corresponding under F to I, then R/I =. S/J which by Corollary 5.8 im-
plies that S/J is isomorphic to Z,. Corollary gives that J is the radical of
S and J # 0 because by Lemma [5.12| semisimplicity is a categorical property.

We next show that |J| = g. By Lemma [5.14} J contains a non-zero ideal K of
S with K? = 0. Since J is the only proper non-zero ideal of S, we have K = J.
We pick an arbitrary non-zero element ¢ € J and consider the Z,-subspace L
of S generated by #. Clearly, |L| = g. Since S/J =~ Z,, every element s € S has
the form s = a-1+u where a€ Z; and u € J. It follows that st = (a-1+u)t =
at+ut = at e L and similarly s = at € L. Thus, L is an ideal of S. As above, J
must be the only proper non-zero ideal of S, so we conclude L = J and |S| = ¢°.

Since t* = 0, the ring S is of Type (4), indeed.
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It remains to notice that the rings of Type (4) corresponding to differ-
ent primes cannot be categorically equivalent because their automorphism
groups are of different size. Indeed, it is easy to see that the automorphisms
of R are precisely the mappings of the form a+ be — a + bAe where A is a
non-zero element of Z,,. Thus, |[AutR|=p—1. O

Now we derive an important consequence of Theorem and Corollary
It shows, in essence, that a finite non-semisimple p-ring can be categorically
equivalent only to a ring of the same characteristic.

Theorem 5.16. Let R be a finite non-semisimple p-ring for some prime p. IfR
is categorically equivalent to a ring S then char(R) = char(S).

Proof. Assume that char(R) # char(S). Then by Corollary[5.11| char(R) = p and
char(S) = g where q is a prime different from p. Since R is not semisimple, its
radical is non-zero, and by Lemma there exists a non-zero element e € R
such that e? = 0.

Now consider the subring R; of R consisting of all elements of the form a + be
where a,b € Z,,. It is categorically equivalent to a subring S; of S. However, it
is easily seen that R is a Type (4) ring of order p*. Thus, by Theorem we
have R; = S;, implying p = g. This contradiction proves the theorem. O

Corollary 5.17. Finite categorically equivalent rings of coprime characteristics
are semisimple.

Proof. Let R and S be finite rings of coprime characteristics, R = S, and let
R;,...,R, be the factors of the canonical decomposition for R. Then, by The-
orem there is the same number of factors in the canonical decomposi-
tion for S; let them be Sy, ...,S,. Without loss of generality, we have R; =, §;,
i =1,...,n. Since obviously char(R;) and char(S;) are coprime, Theorem |5.16
implies that R; and S; are semisimple for i = 1,...,n. Hence also R and S as
direct products of semisimple rings are semisimple. O

5.5 Semisimple rings

In this section we consider categorical equivalence of semisimple rings. Since
finite semisimple rings are direct products of finitely many simple rings, as a
first step, we consider the case of finite simple rings, which, as well known,
are full matrix rings over finite fields (in particular, they are p-rings for some
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prime p). Our approach is based on the fact that categorically equivalent alge-
bras must have isomorphic automorphism groups. In order to prove the main
result, we need two lemmas.

Let K be a finite field, n a positive integer. By Inn Mat,(K) we denote the set
of all inner automorphisms of Mat, (K), i.e. @ € InnMat, (K) if there exists Q €
GL,(K) such that for every X € Mat, (K), a(X) = Q"' XQ.

A group is called solvable if its composition series has only commutative fac-
tors.

Lemma 5.18. Let K be a finite field and n = 2 an integer. The group AutMat, (K)
is solvable if and only if n = 2 and K is isomorphic either to Z, or Zs. In all
other cases AutMat, (K) has a single non-abelian composition factor which is
isomorphic to the projective special linear group PSL(n,K).

Proof. We first prove that
AutMat, (K) = Inn Mat, (K) x AutK (5.1)

where X denotes semidirect product of groups. This can be derived using [34],
Chapter I, Theorem 3.1, but we present here the direct proof.

For every o € AutK, define o € AutMat, (K) as follows: for every A € Mat,(K),
(0(A))ij =0(Aij).

Take any ¢ € AutMat, (K). Denote by I the identity matrix of Mat, (K). Let Z =
{cI | c € K} be the set of scalar matrices. Observe that (Z,+,:) =K and Z is the
center of Mat,(K). We define o as the automorphism of K that corresponds to
@lzeAutZ. Thus, o(c)I = @(cl) for every ce K.

Now define a : Mat,(K) — Mat,(K) by @ = o '. The map « is an auto-
morphism of Mat,(K) whose restriction to Z is the identity map. For every
X € Mat,(K) and c € K, it satisfies

alcX)=alcIX)=alc])-a(X)=(c]) -a(X) =c-a(X).

Hence, a is also an automorphism of Mat,(K) considered as an algebra over
the field K. Since Mat,(K) is a central simple algebra over K, we get by the
Skolem-Noether theorem that « is an inner automorphism of Mat, (K).

So we got that ¢ = ao, where a € InnMat,(K) and o € AutK. Observe also that
InnMat,(K) is a normal subgroup of AutMat,(K) and that {o | 0 € AutK} is a
subgroup of AutMat, (K) (isomorphic to AutK).

It remains to prove that the intersection of InnMat,(K) and {g | o € AutK}
is trivial. For this, suppose that for some ay € InnMat,(K) and o( € AutK,
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ao(X) =0((X) for all X € Mat,(K). We show that @y and o are identity maps
on Mat,(K). For any c € K, we have ay(cl) = cI, but gg(cl) = cI for all ce K
only if oy = 1x. This completes the proof of (5.1).

Therefore, since the automorphism group of a finite field is cyclic (Lemma
[.6), the solvability of AutMat,(K) is equivalent to that of InnMat,(K). Fur-
ther, since InnMat,(K) is isomorphic to the quotient group of GL(n,K) over
its center, the solvability of InnMat,(K) is equivalent to that of GL(n,K).
Now, since GL(n,K)/SL(n,K) =~ K*, and PSL(n,K) is isomorphic to the quo-
tient group of SL(n,K) over its center, we see that the solvability of GL(#n,K) is
equivalent to that of PSL(n,K). Finally, our claim follows from a classical fact
of group theory: the group PSL(#n,K) with n = 2 is solvable if and only if n =2
and |K] is 2 or 3 (then we have PSL(2,F,) = S3 and PSL(2,F3) = A4), and in all
other cases it is simple non-abelian (see, for example, [41], Section 1.2). O

Lemma 5.19. Every atom in the lattice of subrings of Mat,(Z ) has cardinality

p’.

Proof. Since Z, is a prime field, every subring of Mat,(Z,) is a vector space
over Z,. The proper non-trivial subrings of this ring have dimension 2 or 3,
hence it is sufficient to prove that no subring of dimension 3 is an atom. If
S < Mat,(Z,) is a 3-dimensional subring, then it can be defined by a single
homogeneous linear equation, i.e., there exist coefficients a, §,y,6 € Z, (not
all zero) such that

a b
S= {(C d)|a,b,c,dezp, aa+ﬁb+yc+5d_o}.

Since the identity matrix belongs to S, we must have @ +6 =0. If y #0, then S
contains the p*-element subring

{(fb Z)‘a,bezp}

with A = =By ™1, therefore S is not an atom. If B # 0, then a similar argument
works, so in the remaining cases we can assume that =y =0and 6 = —a #0.

Then we have
b
sz{(“ )| a,b,ceZp};
c a
however, this set is not closed under multiplication. O

We know that if a finite simple ring R is categorically equivalent to a ring S
then S is finite simple, too. We also know that if R is a finite field then so is S.
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Moreover, we know that then there exist primes p and g and a positive integer
k such that one of the two rings is isomorphic to F« and the other to F «. The
following theorem shows that in all other cases categorically equivalent finite
simple rings are isomorphic.

Theorem 5.20. Let Ky and K, be finite fields and ny,ny = 2 positive integers.
Mat,, (K;) = Mat,, (Ky) if and only if ny = ny and K; =Kj.

Proof. The sufficiency is obvious. For necessity, assume that Mat,, (K;) =,
Mat,, (K). Then AutMat,, (K;) = AutMat,, (K>).

Let first AutMat,, (K;) be non-solvable. Then, by Lemma PSL(n;,K;) =
PSL(n2,K>). The only non-trivial possibilities for that are the exceptional iso-
morphisms PSL(2,F;) = PSL(3,F»2) and PSL(2,F,;) = PSL(2,F5) (see [41], Section
1.2) which leaves the possibility that Mat, (F;) =, Mats(F,) and/or Mat; (F4) =,
Mat, (Fs). The first of them can be excluded by comparison of the automor-
phism groups. Elementary calculations (see, for example, [41], Section 3.3.1)
give |GL, (F7)| = 48-42. Since the center of this group is of size 6 and |Aut(F;)| =
1 by Lemma the formula gives |AutMat,(F7)| = (48 -42)/6 = 336.
On the other hand, |GL3(F,)| = 7-6-4 = 168, the center of this group is triv-
ial and |Aut(F,)| = 1, so the formula gives |AutMats(F,)| = 168. Hence,
AutMat;, (F7) # AutMats(F,) and, consequently, Mat, (F;) #. Mats(F>).

Now consider the rings Mat, (F;) and Mat, (F5). We shall show that there is an
atom A in the subring lattice of Maty (F4) which is not categorically equivalent
to any atom of the subring lattice of Mat, (Fs), thus Mat, (F,;) and Mat; (Fs) can-
not be categorically equivalent. The ring A consists of all matrices in Mat, (F,)

having the form (g Z) with a, b € {0,1}. Clearly, the size of A is 2, it is a ring

of Type (4) in Section and its only proper subring is the smallest subring
of Mat,(F4). On the other hand, by Lemma [5.19, every atom in the lattice of
subrings of Mat, (Fs) has cardinality 5°. Hence, by Theorem none of the
latter is categorically equivalent to A.

It remains to consider the case when the group AutMat,, (K;) is solvable. In
view of Lemma this leaves the possibility that Mat,(Z;) =, Mat,(Z3).
However, this is not the case because the automorphism groups of these two
rings have different sizes: 6 and 24, respectively. O

Now we are ready to describe categorical equivalences between finite
semisimple rings. This result shows that our conjecture that all categorical
equivalences between finite rings are consequences of Theorem holds for
semisimple rings.
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Theorem 5.21. Let R and S be semisimple rings with p-components Ry,...,Ry
and $y,...,8,, respectively. Then R and S are categorically equivalent if and
only if there is a permutation 7 € Sy, such that for everyi €{l1,...,n}, one of the
following two conditions holds:

a. R; and Sy ;) are isomorphic, or

b. R; = Foi x-xF and Sy ;) = Foo x-o-xF gk for some primes p and q
and positive integers ki, ..., k;.

Proof. First, to prove the “only if" part, let us suppose that R and S are cate-
gorically equivalent. By Theorem [5.5} there is a permutation 7 € S, such that
R; =Sy for every i. Assume that R; is a p-ring and §; is a g-ring; then R; is
of the form R; =~ Mat,, (Fpkl) x---xMaty, (F k). If F is a categorical equivalence
that maps R; to S;, then we have S; = F(Maty, (Fpkl)) x .-+ x F(Maty, (F k).
Clearly, these direct factors are simple rings, hence they are also matrix rings
over finite fields: F(Maty, (Fpkj)) = Mat,,; (Fqu) for j =1,...,t. By Theo-
rems [5.7/and [5.20} we have n; = m; and k; = [; for every j. If n; > 2 for some
j, then, again by Theorem we have also p = g, and then R; = S,; fol-
lows, i.e., (a) holds. If n; =---=n; =1, then p and g may be different, and in
this case condition (b) is satisfied.

Now, for the “if" part, assume that there is a permutation 7 as stated in the
theorem. According to Theorem it suffices to verify that R; =, S;(;) for
every i. This is clear if (a) holds, so let us suppose (b), and let us set k =
ki-...-k,. By Theorem5.1} there is a categorical equivalence functor F between
Var(F ) and Var(F x), such that F(F ,«) = F x. Observe that F is (isomorphic
to) a subfield of F, and Theorem 5.1/ shows that F_x, is the only subfield of
F . that is categorically equivalent to F ;. Thus, we must have F (Fpki) = F i,
for i =1,..., ¢, and this implies

p

F(R) = F(B i, x -+ x F ) = Fy -+ x Bty = S,

5.6 Polynomial rings

So far we have discussed only finite rings. Now we take also a look at one
specific infinite case. The motivation is that since by Theorem there is
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non-trivial categorical equivalence for finite fields, one may ask if this equiv-
alence extends to the polynomial rings over them. It appears though that this
is not the case.

Proposition 5.22. Let K, and K, be finite fields. The rings K;[x] and Ky [x] are
categorically equivalent iff Ky = Kp.

Proof. Denote by Id(R) the lattice of two-sided ideals of the ring R. It is well
known that this lattice is isomorphic to Con(R). Suppose K;[x] =, Ky[x].
From Theorem it follows that there exists a lattice isomorphism @ :
Id(K; [x]) — Id(Kz[x]) such that K;[x]/] =; Kz [x]/® () for every I € Id(K;[x]).
We observe that any proper ideal I of K;[x] has zero intersection with the
subring of constant polynomials in K; [x]. Therefore the quotient ring K, [x]/]
necessarily contains a subring isomorphic to K;. In particular, the quotient
ring K [x]/1 is isomorphic to K; if and only if the ideal I is generated by a
polynomial of degree 1. (Recall that K [x] is a principal ideal ring; thus every
ideal of K;[x] is a principal ideal.) It follows that the ideals I of K;[x] gen-
erated by polynomials of degree 1 are characterized among all proper ideals
of K;[x] by the property: K;[x]/I has the smallest number of subrings. This
implies that the lattice isomorphism ® must map all ideals of K; [x] generated
by polynomials of degree 1 to the ideals of K»[x] generated by polynomials of
degree 1. It remains to notice that K[x] has exactly |K| ideals generated by a
polynomial of degree 1. O



Chapter 6

P-categorical equivalence

Adding constants to the set of basic operations of an algebra can give us some
interesting non-trivial examples of categorical equivalence. We define two al-
gebras to be p-categorically equivalent if the algebras obtained from them by
adding new constant operations for each of their elements are categorically
equivalent. It appears that non-direct extensions of finite simple non-abelian
groups by a finite abelian group are p-categorically equivalent. In particu-
lar, any two symmetric groups Sy, and S,,, where m, n > 4, are p-categorically
equivalent.

We characterize the p-categorical equivalence of finite strictly locally affine
complete algebras and finite strictly locally order affine complete lattices. The
latter gives us non-trivial examples of p-categorically equivalent lattices.

6.1 Definition and relation to the categorical equiv-
alence

We denote by A* the algebra obtained from an algebra A by adding to its basic
operations all constant operations, one for each element of A. Thus the term
operations of A* are precisely all polynomial operations of A.

Definition 6.1. We call algebras A and B p-categorically equivalent if A* and
B™ are categorically equivalent. We denote this A=, B.

A finite algebra A is called functionally complete if every operation on A is a
polynomial operation of A. From Theorem [2.3|we get immediately the follow-

ing corollary.

57
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Proposition 6.2. Every two functionally complete algebras are p-categorically
equivalent.

In [7], C. Bergman proved the following result.

Theorem 6.3. Categorically equivalent algebras are p-categorically equivalent.

The proof of Bergman was purely categorical. In his paper, Bergman men-
tioned that this result can be also proved using Theorem of R. McKenzie.
Here we carry out this proof.

Proof. We use the following three observations.

Observation 1. Let m be a positive integer. Then algebras A"™)* and (A*)!™
are term equivalent.

We need to show that every basic operation f of (A")" is a term operation of
(AN and vice versa.

If f is a basic operation of A, then, obviously, it is also a basic operation
of (AN, Otherwise f is a constant @ = (ay,...,a,) € A™. But every a; as
a constant is a basic operation of A*, therefore @ is also a basic operation of
@an.

Conversely, assume that g = (g1,...,g) is a p-ary basic operation of (A*)!™,
where every g;i(x1,...,Xmp) is an mp-ary term operation of A", i.e. a super-
position of projections, basic operations and constants of A. Replace all con-
stants ay, ..., ay appearing in all g;-s by variables yi1,..., y1x to obtain term
operations g;(X1,..., Xmp, Y11,---, Y1x) satisfying the condition

/
8 X1,y Xmp, A1, ..., Ax) = &i(X1,..., Xmp)-

For a tuple x = (x3,..., Xm), let Pr; denote the i-th projection map, i.e. Pr;(x) =
x;. Now in every g substitute y;; = Pri(1j,...,¥m;) for 1 < j < k to ob-
tain m(p + k)-ary term operations h;(x11,..., Xmp, Y11,---, Ymk) of A. Then h =
(h1,..., hm) is a (p + k)-ary basic operation of A",

Now for 1 < j < k take (y1j,...,Ymj) = (aj,...,a;). Notice that (a;,...,a;) €
(A"*. Then

g((xll,---;xml)y---y(xlp;---;xmp)) =
h((xllv--)xml)r---»(xlpy”')xmp))(al)'--)a])y”')(ak»”-)ak))
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[m])+

is a p-ary term operation of (A . Furthermore,

hi(x11,..., Xmp, A1, ..., Q15 ..., Ak, ..., Ak) =
=gi(X1,..., Xmp, Pr1(ar,...,a1),...,Pri(ay,..., ay)
= g1 (X1, 0y Xp, A1, .., AK) = &i (X1, Ximp),
thus g=g.
Observation 2. Let s be an invertible idempotent unary term of an algebra A.

Then the algebras A(s)* and A" (s) are term equivalent.

Again, we need to show that every basic operation f of A(s)* is a term opera-
tion of A" (s), and vice versa.

If f is a basic operation of A(s), then, clearly, it is also a basic operation of
A" (s). Otherwise it is a constant of algebra A(s)", say a. Then there exists
b € A such that s(b) = a. But b is a basic operation of A*, thus b, = s(b) is a
basic operation of A* (s).

Conversely, assume that g is a basic operation of A" (s), where g(xi,...,X;)
is some term operation of A*. Replace all constants aj, ..., a; appearing in g
by variables yi,..., yx to obtain a term operation h(x1,..., Xy, y1,-.., Yx) of A, to
which corresponds the basic operation hg of A(s) (as well as that of A(s)™).

Since s is invertible, for some r there are an r-ary term operation w and unary
term operations #,..., ; on A such that for every a;, 1 < j <k,

w(st(aj), stz(aj),..., str(aj)) = a;.

Note that b;; := st;(a;) € s(A), where 1 <i <, thus b;; are constants of A(s)*.
Now set g(x1,...,X,) := hs(x1,..., Xp, w(b11,..., br1), ..., W(big,..., bri)). Then g
is a term operation of A(s)™ and

g(xl,...,xn) = hs(xl,...,xn, w(bll,---rbrl)»---) w(blk»---)brk)) =

=s(h(xy,....,xn, a1,...,ar)) = s(g(x1,..., Xn)) = gs(X1,...,Xn),

yielding g; = &.
Observation 3. IfA=,;B, then A" =, B".

If A and B are term equivalent, then they are also polynomially equivalent,
which means that A" and B* are term equivalent

Proof of the theorem. Assume that algebras A and B are categorically equiv-
alent. Then there exist a positive integer m and a unary invertible idempo-
tent term s such that B is term equivalent to an algebra isomorphic to A" (s).
Without loss of generality we may assume that B is term equivalent to A" (s).
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By Observations 3, 2 and 1 we get
B =, A" (s)" =, A")*(s) =, (AH™(s).

If s is a unary invertible idempotent term of A, then it is also the same for
(A" Thus, by McKenzie's theorem A" and B* are categorically equivalent.
[

From Proposition [6.2] we see that the converse of Theorem[6.3]is not true. For
example, every two finite unitary simple rings are p-categorically equivalent
because they are functionally complete ([33], Theorem 7). But from our Chap-
ter [5| we know that such rings need not be categorically equivalent.

6.2 Abelian groups

For finite abelian groups, the condition for p-categorical equivalence happens
to be the same as for the usual categorical equivalence.

Proposition 6.4. P-categorically equivalent finite abelian groups are isomor-
phic.

Proof. Assume that for finite abelian groups A and B, A* =, B*. Then also
(A"? =. B*)2. Congruence lattices of categorically equivalent algebras are
isomorphic by Theorem Since congruences as equivalence relations are
reflexive, constants don't affect congruences and thus

ConA? = Con(A™)? ~ Con(B")? = ConB?.

For abelian groups, subgroups are in one-to-one correspondence with the
congruences, thus the subgroup lattice is isomorphic to the congruence lat-
tice. We obtain SubA? =~ SubB?, which implies A =~ B, since for a finite abelian
group, the subgroup lattice of the direct square determines the group up to
isomorphism ([27]). O

6.3 Simple non-abelian groups and their exten-

sions

Finite simple non-abelian groups are functionally complete ([28]), so Proposi-
tion [6.2) yields
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Proposition 6.5. Every two finite simple non-abelian groups are p-categorically
equivalent.

Functional completeness implies that for any tuple (g1,..., gx) of the elements
of a finite simple non-abelian group H and a tuple (hy,..., ;) of pairwise
distinct elements of H, there is a unary term operation ¢ of H" such that
tth))=g;iforalll<i<k.

The alternating group .A,, is simple non-abelian for n > 5, hence any groups
A and A, with m,n =5 are p-categorically equivalent. Note that if m # n,
then A,, and A, are not categorically equivalent, since categorically equiva-
lent finite groups must be weakly isomorphic (Theorem [2.11)), hence have the
same size.

We consider the extensions of finite simple non-abelian groups by finite
abelian groups, which are centerless. We call a group G an extension of a group
H by a group A, if H is a normal subgroup of G and G/H = A. (Note that in lit-
erature, many authors reverse the roles and say that G is an extension of A.)
A group is called centerless, if it has one-element center.

We call a subalgebra S of an algebra AF non-diagonal, if for every pair of in-
dices 1 <i < j <k there is an element x = (xy,..., X;) € S such that x; # x;.

Lemma 6.6. Let H be a finite simple non-abelian group, G its centerless exten-
sion by a finite abelian group, and k a positive integer. Let S be a non-diagonal
subalgebra of (GY)*. Then H* < S.

Proof. Observe that the subalgebras of (GHF have precisely the same universe
as the subgroups of GF containing all diagonal elements (a, ..., a), a € G.

If k = 1, the only subalgebra of (G*)* is G* itself.

Take k = 2 and consider a non-diagonal subalgebra S of the algebra (G™)2.
It has an element (a, b) such that a # b. We claim that there is an element
(x1,x2) € S such that x1,x, € H, and x; # x». Assume that this is not true.

The element (a,b)(b™!,b™') = (ab™!,bb™1) = (ab™,1) belongs to S, and x :=
ab™' #1 since a # b. Now, for each x € G consider the element

(X0, 1) (x, ), (x0, D~ (x ™1, 7 = (woxxy T 71, 1).

Observe that this element belongs to S, and xoxx;'x™! € H, because G/H is
commutative. By our contradictory assumption it follows that xoxx, Ix71=1
for each x € G. The last equality means that xp belongs to the center of G.
However, by assumption of the theorem, G is centerless, hence xy = 1. We
obtained a contradiction.
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Since the subgroup H is functionally complete, the existence of an element
(x1, %) € S such that x;, x, € H, x] # X, entails that H> < S by the observation
after Proposition 6.5

Now let k=3, and let S < (G+)k be non-diagonal. It is clear that H*NSis a
subuniverse of (H+)’C . On the other hand, from what we have proved for k = 2,
we see that for any 1 < i < j < k, the 2-fold projection (H*n S)ij= H?.

Since H is functionally complete, H has a majority term. In 1975, Baker and
Pixley discovered that for a finite algebra A with a majority term, every sub-
algebra of AF (with k>2) is completely determined by all of its 2-fold projec-
tions ([2]). Observe that H* is a subuniverse of (H*)* and (Hk)ij = H? for all
1 <i < j < k. Altogether, we conclude H*nS=H*, and thus H* ¢ S. O

Theorem 6.7. Let Hy and H, be finite simple non-abelian groups, A a finite
abelian group and G, and G, extensions of H; and Hy by A, respectively. If G
and G are centerless, then they are p-categorically equivalent.

Proof. We apply Theorem and show that the relation algebras R(G}) and
R(G;) are isomorphic. The invariant relations of an algebra are the non-
empty subuniverses of its finite direct powers, so for a group G with the re-
quired properties, we examine the subalgebras of (GHF for any positive inte-
ger k. Let H be a simple non-abelian normal subgroup of G such that G/H = A.
By Lemma H* is contained in any non-diagonal subalgebra of GHE.
Since H is a normal subgroup of G, H* is a normal subgroup of G*. By one of
the classical isomorphism theorems, there is a natural bijection between the
subgroups of G* containing H ¥ and the subgroups of G*/H* ~ A*. This bijec-
tion takes a subgroup S < Gr containing a diagonal element (a,...,a), a€ G,
to a subgroup Fg < GF/Hk containing (aH,...,aH). Altogether we obtain a bi-
jection between the non-diagonal subalgebras of (GH¥ and the subalgebras of
(AN, i.e. the subgroups of A, which contain all diagonal elements (a,...,a),
ace A.

Now we consider all subalgebras of (G*).

Let x(¢) denote the number of equivalence classes of an equivalence rela-
tion € on the set k = {1,...,k}. For each equivalence class of €, we take the
smallest number that occurs in this class. We obtain the x(¢)-tuple A, =
(ay,ap,...,ax(), where we additionally require a; < ay < ... < ax). Note that
a; = 1. We also define a function f; on k as follows:

fe)=j < ica,.
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Take any subalgebra S of (GHF. Let e5 be the equivalence relation on the set
{1,...,k} defined by

(i,jJees < x;=xjforall x=(x,...,x¢) €S.

Now for the equivalence relation €g, take the tuple A = (ay, ay, ..., dxey), and
consider the set

C(S) = {(xapxagy---;xa,((gs)) | (xly xz»u-yxk) € S}~

This is the universe of a non-diagonal subalgebra of the algebra (G")*®%). As
discussed above, there is a subalgebra Fg = F,(s) < (A")*€s),

So we obtain a mapping
@r:Sub(G"* — {(¢,B) | e € Eqk, B € Sub(A)*®}

defined by @ (S) = (es,Fs). This is actually a bijective mapping. To see this,
we take an equivalence relation € on k and a subalgebra F of (A")¥, to which
uniquely corresponds some non-diagonal subalgebra §' of (G*)*©). We define

S={(s1,-,SK) 1S Sye) €S 181 =87 ), 1< i<k}

Then € = €5, and F = Fg since S’ = ¢(S).

Using this bijective mapping we can define in a natural way a bijection be-
tween the subalgebras of (G;)* and (G}) for all k> 1. Let

@1,: Sub(GNH* — {(¢,B) | € Eqk, B Sub(A)*®},
®2,: Sub(G))* — {(¢,B) | e Eqk, B € Sub(A")*¥}

and let ® = (pgqu;lk : Sub(G)* — Sub(G;)*. We verify that the bijection ®
induces an isomorphism between the algebras R(G]) and R(G3).

In the trivial case k = 1, the only subalgebra of G; (i = 1,2) is G] itself. Thus
there is only one unary invariant relation of G/, which we denote by 1. We
have ¢(1g) = 1g, T(1g) = 1g, A(1g) = 1g, and 1ol = Aol = A for any A €
R(G)), i=1,2.

Now consider the general case k # 1. For a centerless extension G of a finite
simple non-abelian group H by A, any invariant relation 6 € R(G"), as a sub-
universe of some direct power of G*, is mapped bijectively to the pair (g, Fy),
where Fy is a subuniverse of (A+)K(£9), as defined above. We describe how the
basic operations of R(G") act on the pair (g, Fg). Since this description is
valid for both G = G; and G = G, the isomorphism follows immediately.
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First, take the operation 523, We have 523 = {{1},12,3}} and Fsuzs = A%
Now let 6 € R(G") be k-ary, k = 2.

Take the operation 7. The equivalence relation £, is obtained from ¢y by
exchanging 1 — 2. If (1,2) € ¢y, then F; ) = Fp, otherwise

Fro)=1(82,81,83,---,8(e) | (8§1,82,---, 8k(e)) € Fp}-

Take the operation ¢. The equivalence relation ¢ is obtained from &g by the
substitution 2 — 1,3 — 2,...,k — (k—1),1 — k. To describe F; @), consider two
cases.

Case 1. Number 1 is the only element in its equivalence class in €g. Then

Fro) =1{(82,83,---» 8x(e), 81) | (81,82, -+, &k(e)) € Fpl.
Case 2. There is j # 1 such that (1, j) € &9. Let q:= f,, (k). Then

FT(@) = {(g2)g3»'”ygqygl)gq+ly---)gK(E)) | (glng)'--)gK({;‘)) € FH}-

Take the operation A. We define

Eé) = {(Z_I»J_l)l(i»])eggyzsi)j})
e = {(-1Lj-DI1,i)eeq & (2,)) €y, 2<1, ]},

GD1G,Heed.
The relation £, ) is the equivalence relation on the set {1,..., k—1}:
Eng) = €EgUE UE,
where &' U’ stands for joining the equivalence classes of 1 and 2; when (1,2) €
€9, it is just the subset of ¢j,.

To describe Fa ), consider two cases.
Case 1. (1,2) € €g. Then Fp) = Fy.
Case 2. (1,2) € eg. Then

FA(Q) = {(gly---)gK(é‘g)—l) | (gl»glr---)gK(é‘g)—l) € FG}-

Finally, let 8,1 € R(G"), where 6 is k-ary and A is [-ary, k,[ = 2, and consider
the operation o. We define

gy = {0, DG, j)eeq, i,j<k-1},
€y = {i+k=-2,j+k-2)|0,j)eey, 2<1,j},

e = {6, j+k-2 |G, eeg &, j)eey, i<k-1,2<j},
= {G,PIG Deeh
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The relation €y, is the equivalence relation on the set {1,...,k+[—2}:
Egor =EgUEL UE UE,

where ¢ U & stands for joining the equivalence classes of k in € and of 1 in
€. For Fp,), there are three cases.

Case 1. Number k is the only element in its equivalence class in €y, and 1 is
the only element in its equivalence class in ¢,. In this case

Fgop = 1(81,82)---) 8(e)+x(n)-2) | I8 € A (81,..., 8x(e)-1,8) € Fo
& (8, 8x(e)r--+» Bxle)+x(V)-2) € Fa}.
Case 2. Number k is the only element in its equivalence class in g, and there

is j # 1 such that (1, j) € ). Let g := f,., (j + k—2), i.e. q is the position of the
equivalence class of 1 from ¢, in the combined equivalence relation. We get

F@O/l = {(gl;gZy”'!gK(£)+K(A)—1) | (glng)---!gK(E)—l)gq) EFG
& (8q)8x(e)r-+-18q-1,8q+1»-+-» x(e)+xM)—1) € Fa}.

Case 3. Number k is not the only element in its equivalence class in €g. Let
q := fe, (k). We get

Fgop = {(8€1,82---) 8@ +xn)-1) | (81,825---, 8x(e)) € Foy
& (g, 8x(e)+1r--+» 8x(e)+x(W)-1) € Fa}.

O

The following simple proposition can be found in any group theory textbook,
e.g. [38].

Proposition 6.8. Let G be a group, H, and H; its normal subgroups, G = Hy H,
and Hyn Hy, ={1}. Then G = H; xH,.

We call an extension G of H by A direct, if G=H x A.

Lemma 6.9. LetH be a simple non-abelian group and A a simple abelian group
(i.e. a cyclic group of prime order). Then any non-direct extension of H by A is
centerless.

Proof. Let G be a non-direct extension of H by A. The center Z(G) is a normal
subgroup of G. Therefore Hn Z(G) and H- Z(G) are normal subgroups of G,
too. Since H is a minimal normal subgroup of G and it is abelian, we have
Hn Z(G) ={1}. Now, if Z(G) # {1} then Z(G) € H and simplicity of G/H implies
H-Z(G) = G. Thus, by Proposition 6.8, we have G = Z(G) xH and Z(G) = G/H =
A. O
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Theorem [6.7]and Lemma [6.9] imply the following corollary.

Corollary 6.10. Let H, and Hy be finite simple non-abelian groups and A a
finite simple abelian group. Then non-direct extensions of Hy and H, by A are
p-categorically equivalent.

Corollary 6.11. Symmetric groups S, and S,, where m,n = 5, are p-
categorically equivalent.

Proof. For n = 5, the symmetric group S, is an extension of the alternating
group A, by Z, but S, # A, x Zs. O

Remark 6.12. It is easy to see that a non-direct extension G of a finite sim-
ple non-abelian group H by a finite simple abelian group A cannot be p-
categorically equivalent to the direct extension of H by A. The direct product
H x A has two non-trivial normal subgroups, isomorphic to H and A, while the
only non-trivial normal subgroup of G is H. If there were any other non-trivial
normal subgroup, say H', then HnH' = {1} and G = HH', because H and A are
simple. Proposition 6.8/ would imply G =~ H x H' yielding H' ~ G/H ~ A.

6.4 Arithmetical varieties

An algebra is called arithmetical if it is congruence distributive and congru-
ence permutable. A variety is arithmetical if each of its members is arithmeti-
cal. An algebra A is called congruence primal if every congruence compatible
operation on A is a term operation of A, and affine complete if every congru-
ence compatible operation on A is a polynomial operation of A. Again, a vari-
ety is affine complete if each of its members is affine complete.

For example, a variety of rings is arithmetical iff it is generated by a finite num-
ber of finite fields ([22], p. 33). An important example of an affine complete
variety is the variety of Boolean algebras ([22], p. 157). This variety is also
arithmetical ([22], p. 33).

Theorem 6.13 ([5, Cor. 4.5],[7, Cor. 2.4]). Let A be a finite arithmetical congru-
ence primal algebra and B any algebra. Then A =; B if and only if B is finite
arithmetical congruence primal and ConA = ConB.

An algebra A is called strictly locally affine complete if any congruence com-
patible finite partial function on A is a restriction of a polynomial function of
A. A variety, all of whose members have this property, is called by the same
name.
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We need the following important facts about strictly locally affine complete
algebras and varieties (see [22], Section 3.4.3).

Theorem 6.14. A finite algebra is strictly locally affine complete if and only if it
is arithmetical and affine complete. A variety is strictly locally affine complete
if and only if it is arithmetical.

Observe that an algebra A is affine complete iff A" is congruence primal, and
that A is arithmetical iff so is A*.

Now we apply Theorem to get the following result.

Theorem 6.15. Let A be a finite strictly locally affine complete algebra and B
any algebra. Then A =), B if and only if B is finite strictly locally affine complete
and ConA = ConB.

Proof. Assume first that A =, B, hence A" = B. By Theorem the alge-
bra A is affine complete, implying that A* is congruence primal. Now, The-
orem implies that the algebra B is finite, arithmetical and congruence
primal, and ConA = ConB. Applying again Theorem [6.14} we conclude that B
is strictly locally affine complete.

For the converse, assume that a finite algebra B is strictly locally affine com-
plete and ConA = ConB. Then by Theorem the algebras A and B are
affine complete and arithmetical. Hence, A* and B* are congruence primal
and Theorem applies to conclude that A=, B O

Corollary 6.16. Let A and B be finite algebras generating arithmetical varieties.
Then A =), B if and only if ConA =~ ConB.

6.5 Sublattices of the direct square

Next we are going to consider p-categorical equivalence of lattices. Before that
we make one general observation about sublattices of the direct square of a
lattice, that will be useful later.

A tolerance of an algebra A is a binary relation on A that is reflexive, symmetric
and compatible with all basic operations.

For a lattice L, a tolerance is a subuniverse of L? which is reflexive and sym-
metric as a binary relation. The set TolL of all tolerances of a lattice L is a
lattice under set theoretic inclusion.
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The following notion and its basic properties are taken from [21].

By an adjunction between two (partially) ordered sets A= (A,<) and B= (B, <)
we call a Galois connection between these two sets, i.e. a pair of mappings
¢:A— B, y:B— A, such that

asybh) < ¢@@<bhb (6.1)
forallae A, beB.
An adjunction between (A, <) and (4, <) is called a self-adjunction of (A, <).

If (¢, v) is an adjunction between complete lattices K and M, then ¢ preserves
all (also infinite) joins and i preserves all meets. It follows that ¢ and v are
order preserving.

Moreover, given any join preserving mapping ¢ : K — M (meet preserving
mapping ¥ : M — K), there exists a unique mapping ¥ : M — K (¢ : K— M)
such that the pair (¢, ) is an adjunction between K and M.

Theorem 6.17 ([21]). Let L be a subdirect product of two finite lattices K and
M. Then there exist join preserving mappings ¢ : K — M, a : M — K and meet
preserving mappings ¥ :M — K, :K— M such that

e <sysp}=L={x,Nlaly) sx<sy}, (6.2)
where (p,v) and (a, B) are adjunctions.
For a lattice K, we call a sublattice of K* diagonal, if it is reflexive as a binary
relation on K. We call a function f : K — K decreasing if f(x) < x for every

x € K. If in Theorem [6.17| we take K =M and assume that L is diagonal, we
immediately obtain that a and ¢ must be decreasing.

Furthermore, keeping in mind that (¢, ¥) and (a, B) are adjunctions, we obtain
the following result for the diagonal sublattices of a finite lattice.

Theorem 6.18. Let K be a finite lattice and L be a diagonal sublattice of K°.
Then there exist join preserving decreasing mappings ¢, a : K — K, such that

L={x, 1k <y aly) <z} (6.3)
We denote the set of all join preserving decreasing mappings on K by FunK.
Clearly, the set FunK is a lattice with respect to pointwise order.

Theorem 6.19 ([21]). The tolerances of a finite lattice K are precisely the sub-
lattices of K x K of the form

T={, M) <sysy@}={x,MNlex)<y ¢y <x}. (6.4)

where (@, ) is a self-adjunction of K with the function ¢ decreasing.
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We will observe in the next lemma that this correspondence between toler-
ances and join preserving decreasing mappings is an anti-isomorphism of lat-
tices.

By S,4(K) we denote the lattice of all diagonal sublattices of K* with respect to
inclusion.

Lemma 6.20. For any finite lattice K, S4(K) =4 (Fun K)? and TolK =, Funk.

Proof. For both statements we show that there is an order reversing bijection
between corresponding lattices.

In the first case, we define, for any (¢, ) € (FunK)?, a diagonal sublattice of
K by
Lip,a) =1(x, M) px) <y, aly) < x}. (6.5)

Since ¢ and a are join preserving, it is straightforward to verify that this is a
sublattice of K. Since ¢ and a are decreasing, it is diagonal.

By Theorem [6.18, this correspondence is surjective. We verify that it is order
reversing, this will also imply injectivity.

Let ¢1,a1,@2,a2 € FunK and

Li=L,a1)  L2=Lgyay

Then
Liclh < (p1(0<y, a1()) <x = @a(x) <y, a2(y) < x). (6.6)

Since ¢, and «a; are decreasing, (x,@1(x)) € L1, as well as (a;(x), x) € L, for
any x € K. Hence L; < L, implies that ¢,(x) < ¢;(x)) and az(x) < a;(x)) for
any x € K. On the other hand, if ¢, < ¢; and a» < a4, then the right hand side
of is fulfilled, hence L; < L.

Finally, if Ly, a1) = L(g,,a,), then (@1, a1) < (@2, a2) and (@2, @2) < (¢1,a1) hold

simultaneously, hence (@1, a1) = (@2, az).

For the second anti-isomorphism, for any ¢ € FunK, we define a tolerance of
K by
Ty ={x, ) <y, @) < x}. (6.7)

By this definition, T, is actually a diagonal sublattice of K? defined by (¢, ¢),
that is, Ty = L(y,¢). It is clear from definition that T, is also symmetric.

By Theorem [6.19} this correspondence is surjective. We show that it is also
order reversing and injective.
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Let ¢1, ¢, € FunK and

T = Lig,,p)> T = Ligy,¢0)-

Then
Th € Tr <= (¢1,91) = (P2, P2) <= @Y1 = @2,

and if Ty, = T,,, then ¢; = ¢ and ¢; < ¢, hold simultaneously, hence ¢; =
Q2. ]

The following theorem is a direct corollary of Lemma6.20
Theorem 6.21. For any finite lattice K, S»4(K) = (TolK)2.

Remark 6.22. Theorem and Theorem were actually proved in [21]
for complete lattices and complete tolerances of a complete lattice. The re-
sults we obtained in this section, Theorem Lemma [6.20| and Theorem
hold also for complete diagonal sublattices and complete tolerances of
a complete lattice. However, for finite lattices these results have a stronger
form, and in the following section we will use them just for finite lattices.

6.6 Strictly locally order affine complete lattices

In Chapter |3} we showed that two lattices are categorically equivalent if and
only if they are isomorphic or dually isomorphic. For p-categorical equiva-
lence of lattices, we will obtain a result similar to Theorem which will
give us a series of non-trivial examples.

Actually, there are no strictly locally affine complete lattices, so we cannot ap-
ply Theorem directly. But we can modify the requirements for the com-
patible functions.

We call a lattice L strictly locally order affine complete if, for any m and every
finite subuniverse X of (L";A), every congruence compatible order preserv-
ing function from X to L is a restriction of a polynomial function of L. This
notion was first introduced and investigated in [23]. For example, all relatively
complemented lattices are strictly locally order affine complete (by [23], this
containment is strict).

Proposition 6.23. Let L be a strictly locally order affine complete lattice. Then:

(1) L is congruence permutable ([22], Theorem 5.3.32)
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(2) every tolerance of L is a congruence ([22], Theorem 5.3.30).
Corollary 6.24. Let T and T, be tolerances of a strictly locally order affine com-
plete lattice L. Then Ty 0T, = Ty v T, (join in the lattice Tol L).

In [22], Section 5.3.3, the following two binary relations on a lattice are de-
fined. Let S and T be two tolerances of a lattice K:

S<={(a,b) € S|a< b};
S*T={(a,c)eK?|(aVvc,anc)eSoT}.
Binary relation S * T is a tolerance of K itself.

Lemma 6.25 ([22, Lemma 5.3.17]). If S and T are tolerances of a lattice, then
they are equal iff S< = T<.

Lemma 6.26 ([22, p. 268]). If S and T are tolerances of a lattice, then (S* T)< =
(So <.

Lemma 6.27. In a strictly locally order affine complete lattice, S+ T = So T for
any tolerances S and T.

Proof. Let S and T be tolerances of a strictly locally order affine complete lat-
tice L. Then S* T is a tolerance of L and by Proposition[6.23} SoT is a tolerance
of L, too. Now, the equality S* T = So T follows from the two previous lemmas.

O

Let K be any lattice. By ¢ we denote the join preserving decreasing function
on K corresponding to a tolerance T in the anti-isomorphism (6.7). From (6.7)
it is easy to note that

pr(x) = A\lyeKl(x,y) e T}

Lemma 6.28 ([22, Lemma 5.3.26]). Let K be a lattice of finite height and S, T
be tolerances of K. Then @s.T = @1@s.

Lemma 6.29. Let K be a strictly locally order affine complete lattice of finite
height. Then @1@2 = @1 A @2 for any @1, 2 € FunK.

Proof. Let ¢1 = @1, and ¢, = ¢7,. Then by Lemma [6.28} Lemma [6.27, Corol-
lary[6.24} and Lemma [6.20]

P1P2 =P P, =PIy =Py =PTIVEL =P NPT, = P1 A Q2.
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Now we prove the main result of this section.

Theorem 6.30. Let Ky be a finite strictly locally order affine complete lattice
and Ky any lattice. Then K, =, Ky iff Ky is finite strictly locally order affine
complete and ConK; = ConKj.

Proof. Let K; =, K. Then, by Theorem K, is finite and ConKj = ConKo,.
Also TolK; = TolKj. The last isomorphism follows in general case from the
proof of the Proposition 3.1 in [I1], but in our finite case it is also a di-
rect corollary from Theorem and Theorem By Proposition for
strictly locally order affine complete lattices every tolerance is a congruence.
Hence K; is also strictly locally order affine complete.

Now assume that K; and K, are finite strictly locally order affine complete
lattices and there is a lattice isomorphism ® : ConK; — ConKj,. Since lattices
are majority algebras, we apply Theorem and show that S(K}) and S(K3)
are isomorphic. Note that for any lattice K, Sub(Kf)2 = S524(Ky) U {@}. We will
actually show that

(Sub(K})?%n,0,”, A, V) = (Sub(K})%n,0,7, A, V),

the isomorphism S(K;) = S(K3) follows immediately from this.

We define a bijection between Sub(K;)* and Sub(K})? via the isomorphisms
of lattices
S2a(K1) =4 (FunKy)? = (TolK;)? = (ConK;)” =

(6.8)
= (ConK3)? = (TolK3)? =4 (FunK,)? = S4(Ky),

and the empty subuniverse is mapped to the empty subuniverse.

Compatibility with A,V and n is trivial. Compatibility with o is trivial, too,
if we show that o actually coincides with the lattice operation v in S;(K}),
i=1,2.Let Ly, Ly € S(K{) and let L; = Ly, a,), i = 1,2.

Since L; and L, are diagonal, Ly € Lijoly and L1 € LioL;. Hence Ly Vv Ly <
Ly oLy. On the other hand, by Lemmas and [6.20}
LioLy,={(x,y)|3z€K: (x,2) € L1, (z,y) € Ly}
={(x,Y)|FzeK: p1(x) <z, ¢92(2) <y, a1(2) < x, a2(y) < z}
SH{ W 201(X) < y, ayaa(y) < x}
={x (@1 AP2)(xX) <y, (@1 Aao)(y) < x}

= L((PIA(PZval/\aZ) = L((Plyafl)/\((PZyCQ)
= L((Plral) \ L(tpz,az) =LV L.
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It remains to prove compatibility with ~. This actually follows from two ob-
servations. First, if the composite mapping maps Lg,,q,) € S2(K{) to
Ligyap € S2(K3) then (®(Ty,),¢(Ta,)) = (Tp,, Tay). Second, if L = Ly, ay) €
Sg(KI—) then L™ = L(aly(Pl)’ ]

Now we draw some corollaries from Theorem [6.30

In [23] it is shown that a finite modular lattice is strictly locally order affine
complete iff it is relatively complemented. It is well known that a bounded
modular lattice is relatively complemented iff it is complemented (see, for in-
stance, [17], Lemma 99). Hence, in particular, every Boolean lattice is strictly
locally order affine complete. On the other hand, the congruence lattice of a
finite modular lattice is Boolean ([17], Theorem 357). We obtain the following
result.

Corollary 6.31. A finite modular lattice is p-categorically equivalent to some
Boolean lattice iff it is complemented.

Furthermore, if a finite lattice B is Boolean, then B = ConB. This implies an
interesting observation.

Corollary 6.32. For every finite complemented modular lattice L, the lattices L
and ConL are p-categorically equivalent.

A lattice L is called order functionally complete, if all order preserving func-
tions on L are polynomial functions. A finite lattice L is order functionally
complete iff L? and A; are the only tolerances of L ([22], Theorem 5.3.40).
Hence, finite order functionally complete lattices are strictly locally order
affine complete. Since two-element chain is order functionally complete, we
get the following corollary.

Corollary 6.33. A lattice is p-categorically equivalent to the 2-element chain iff
it is finite and order functionally complete.

One example of p-categorically equivalent lattices is shown in Figure 6.1.

Figure 6.1: The lattices C, and M3 are p-categorically equivalent.
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Kategoorne ekvivalents algebras

Kokkuvote

Algebrate muutkonda saab vaadelda kategooriana loomulikul viisil: objekti-
deks on muutkonna algebrad ja morfismideks nendevahelised homomorfis-
mid. Kahte algebrat A ja B nimetatakse kategoorselt ekvivalentseteks, kui nen-
de poolt tekitatud muutkonnad on ekvivalentsed kui kategooriad, ning kate-
goorse ekvivalentsi funktor kujutab algebra A algebraks B.

Esimeseks klassikaliseks algebrate kategoorse ekvivalentsi nditeks on T. K. Hu
1969. aastal toestatud teoreem, mille kohaselt on iga primaalne algebra kate-
goorselt ekvivalentne kaheelemendilise Boole’i algebraga. (Loplikku algebrat
nimetatakse primaalseks, kui iga operatsioon tema pdhihulgal on termfunkt-
sioon, st, superpositsioon selle algebra tehetest ja projektsioonidest.)

Kéesoleva viitekirja eesmérgiks on uurida algebrate kategoorset ekvivalentsi
klassikaliste algebrate (riihmad, ringid, poolriihmad, véred) muutkondade pii-
res. Vditekirja ldhtekohtadena voib nimetada jargmisi tulemusi:

Teoreem 5.1. (C. Bergman, J. Bergman, 1996, [5]) Kahe algarvu p ja g korral
on loplikud korpused Fym ja Fgn kategoorselt ekvivalentsed parajasti siis kui
m=n.

Teoreem 2.11. (L. Zadori, 1997, [42]) Kaks Ioplikku rithma on kategoorselt ek-
vivalentsed parajasti siis, kui nad on norgalt isomorfsed.

Teoreem 2.12. Kaks 16plikku poolrithma on kategoorselt ekvivalentsed para-
jasti siis, kui nad on norgalt isomorfsed. (Konverentsil ette kantud 2012. aastal
M. Behrischi ja T. Waldhauseri poolt, kuid pole veel avaldatud.)

Viitekiri koosneb kuuest peatiikist.

Esimene peatiikk sisaldab liihitilevaadet probleemi ajaloost, viitekirja kokku-
votet ning viitekirjas kasutatud tdhistuste ja kokkulepete kirjeldust.

Teises peatiikis antakse iilevaade olulistest tulemustest, mida t6ds kasuta-
takse. Peatiiki alguses defineeritakse kategoorne ekvivalents, termekvivalents
ning tuuakse esimesed niited. Jargnevas loetletakse algebralised omadused,
mis sdilivad kategoorse ekvivalentsi korral, ning tutvustatakse erinevaid mee-
todeid kategoorse ekvivalentsi uurimiseks. Peatiiki 16pus tutvustatakse tu-
lemusi 16plike rithmade ja poolrithmade kohta, mis pakuvad motivatsiooni
termekvivalentsete poolrithmade uurimiseks neljandas peatiikis.
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Kolmandas peatiikis ndidatakse, et kategoorsete ekvivalentsi tingimus on vo-
rede ja (poolrithmade) normaalsete sidumite korral (ka I6pmatul juhul) védga
tugev: kaks voret on kategoorselt ekvivalentsed siis ja ainult siis, kui nad on
isomorfsed voi duaalsed; kaks normaalset sidumit on kategoorselt ekvivalent-
sed siis ja ainult siis, kui nad on isomorfsed v6i antiisomorfsed. Jareldusena
tuuakse vilja, et kaks poolvoret on kategoorselt ekvivalentsed siis ja ainult siis,
kui nad on isomorfsed.

Neljandas peatiikis uuritakse poolriithmade termekvivalentsi. Leitakse palju
poolrithmade omadusi, mis sédilivad termekvivalentsi korral. Mone poolriih-
made klassi (nditeks kommutatiivsed poolrithmad v6i idempotentsed pool-
rithmad) on termekvivalents triviaalne: poolriihmad peavad olema identsed
vOi duaalsed teineteisega. Uldjuhul leidub aga ka mittetriviaalse termekviva-
lentsi néiteid. Eraldi kisitletakse tdielikult regulaarseid ja tdielikult 0-lihtsaid
poolrithmi.

Viiendas peatiikis vaadeldakse loplike iihikuga ringide kategoorset ekvivalent-
si. Alguses taandatakse {ildine probleem juhule, kus ringide karakteristika on
algarvu aste. Nédidatakse, et poollihtsus sdilib kategoorse ekvivalentsi korral
ning lahendatakse probleem tiielikult kahe 16pliku poollihtsa ringi jaoks. Sa-
muti ndidatakse, et kui kahe ringi karakteristikad on {ihistegurita, siis saavad
nad olla kategoorselt ekvivalentsed ainult siis, kui nad on poollihtsad. Sama
karakteristikaga ringide juht jddb lahtiseks.

Konstantide lisamine algebra péhitehetele voib anda huvitavaid mittetri-
viaalseid kategoorse ekvivalentsi nditeid. Kuuendas peatiikis tuuakse sisse p-
kategoorse ekvivalentsi moiste. Oeldakse, et kaks algebrat on p-kategoorselt
ekvivalentsed, kui algebrad, mis saadakse neist uute konstantsete tehete lisa-
misega iga elemendi jaoks, on kategoorselt ekvivalentsed. TGestatakse, et kahe
16pliku lihtsa mittekommutatiivse rithma tsentrivabad laiendid 16pliku Abeli
rithma abil on p-kategoorselt ekvivalentsed. Konkreetse nditena on kaks stim-
meetrilist rithma S,, ja Sy, kus m, n > 4, p-kategoorselt ekvivalentsed.

Samuti leitakse p-kategoorse ekvivalentsi tingimus 1oplike rangelt lokaal-
selt afiinselt tdielike algebrate ning 16plike rangelt lokaalselt jdrjestusafiinselt
tdielike vorede jaoks. Viimasest tulenevad mittetriviaalsed niited vorede p-
kategoorse ekvivalentsi kohta.

Kolmanda peatiiki aluseks on artikkel [26]. Neljas peatiikk on siindinud koos-
toos Peter Mayriga Johannes Kepleri Ulikoolist (Linz, Austria). Viies peatiikk
on siindinud koosttds Kalle Kaarli ja Taméds Waldhauseriga Szegedi Ulikoolist
(Ungari).
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