
DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS 
 

58 

 
 



 



 

DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS 
 

58 

 
 
 

 
 
 

ANTS KAASIK 
 

 

Estimating ruin probabilities 
in the Cramér-Lundberg model 

with heavy-tailed claims 
 

        
 
 
 
 
 
 
 
 
 
 
 

 
  

 



Institute of Mathematical Statistics, Faculty of Mathematics and Computer Sci-

ence, University of Tartu, Tartu

Dissertation is accepted for the commencement of the degree of Doctor of Philos-

ophy (Ph. D.) in mathematical statistics on October 16, 2009, by the Council of

the Institute of Mathematical Statistics, University of Tartu

Supervisor:

Professor, Cand.Sc. Kalev Pärna

University of Tartu

Tartu, Estonia

Opponents:

Professor, Ph.D. Görän Högnäs

Åbo Akademi

Turku, Finland

Professor RNDr., Dr.Sc. Tomá² Cipra

Charles University of Prague

Prague, Czech Republic

The public defence will take place on November, 26, 2009.

Publication of the dissertation is �nanced by the Institute of Mathematical Statis-

tics, University of Tartu (ESF grants 7044 and 7313 and target �nanced research

project SF0182724s06).

ISSN 1024-4212

ISBN 978-9949-19-245-8 (trükis)

ISBN 978-9949-19-246-5 (PDF)

Autoriõigus Ants Kaasik 2009

Tartu Ülikooli Kirjastus

Tellimus nr. 427

www.tyk.ee



Margitile





Contents

Acknowledgements 9

List of original publications 10

Introduction 11

1 Preliminaries 16

1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Light and heavy-tailed distributions . . . . . . . . . . . . . . . . . 17

1.3 Basics of extreme-value theory . . . . . . . . . . . . . . . . . . . . 19

1.4 Assessing the quality of an estimator in simulation . . . . . . . . . 21

1.5 Basics of the theory of empirical processes . . . . . . . . . . . . . . 22

2 Cramér-Lundberg insurance risk model and ruin probabilities 24

2.1 De�nition of the Cramér-Lundberg insurance risk model . . . . . . 24

2.2 Two representations of the ruin probability . . . . . . . . . . . . . 25

2.3 Steady-state waiting time for a M/G/1 queue . . . . . . . . . . . . 27

2.4 Claim size distribution . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Ruin probability estimation when the claim size distribution is

known 30

3.1 Some properties of the integrated tail distribution . . . . . . . . . 30

3.2 Subexponential distributions . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Subexponentiality of the integrated tail distribution . . . . 34

3.2.2 Examples of subexponential distributions . . . . . . . . . . 34

3.3 Simulating from the integrated tail distribution . . . . . . . . . . . 35

3.4 Simulating a random sum with heavy-tailed summands . . . . . . . 39

3.4.1 Algorithm for simulating a sum with heavy-tailed summands 39

7



4 Ruin probability estimation when the claim size distribution is

unknown 43

4.1 Testing for a heavy-tail of the itd . . . . . . . . . . . . . . . . . . . 43

4.1.1 QQ-plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.2 The ratio of maximum and sum . . . . . . . . . . . . . . . . 44

4.1.3 Mean excess of loss plot . . . . . . . . . . . . . . . . . . . . 45

4.2 Empirical approximation of the integrated tail distribution . . . . . 45

4.3 GPD approximation of the integrated tail distribution . . . . . . . 50

4.4 Selections for the GPD approximation . . . . . . . . . . . . . . . . 56

4.4.1 Threshold selection . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.2 Parameter estimation methodology . . . . . . . . . . . . . . 57

4.5 Asymptotic distribution of the GPD parameter estimates . . . . . 59

5 Simulation study 62

5.1 Methodology of comparison . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Simulation results for the initial approximations . . . . . . . . . . . 64

5.2.1 Pareto case . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.2 Weibull case . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.3 Log-normal case . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Combined approximations of the integrated tail distribution . . . . 68

5.4 Numerical comparison of the combined approximations . . . . . . . 70

5.4.1 Pareto case . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.2 Weibull case . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4.3 Log-normal case . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Ruin probability estimation using real world data 75

6.1 Overview of the claim data . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Threshold selection and parameter estimation . . . . . . . . . . . . 78

6.3 Constructing the combined approximations . . . . . . . . . . . . . 80

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7 Conclusions 84

Bibliography 90

Kokkuvõte (Summary in Estonian) 91

8



Acknowledgements

I wish to expect my gratitude to my supervisor Professor Kalev Pärna who has

helped me make this thesis a reality. Many fruitful (and sometimes very long)

discussions and helpful remarks have surely led to a better dissertation. Dr. Jüri

Lember has also often showed me the way when I have lost (or have not been able

to �nd the right) direction.

I am also thankful to all my teachers and colleagues for their support and for

building the foundation that has enabled my successful studies in the Institute of

Mathematical Statistics.

Finally, I wish to thank my family and friends for speeding up the doctoral studies

with frequent inquiries about the date of the dissertation defence. Extra motiva-

tion was gained this way.

The work is partially supported by Estonian Science Foundation grants 7044 and

7313.

9



List of original publications

I Kaasik, A. and K. Pärna: 2008, `Approximating the integrated tail distri-

bution'. Acta et Commentationes Universitatis Tartuensis de Mathematica

12, 79�87.

II Kaasik, A.: 2009a, `An extreme value approximation to the integrated

tail distribution'. In: D. Konstantinides (ed.): Proceedings of the

5th Conference in Actuarial Science and Finance on Samos. pp. 1�

8, http://www.actuar.aegean.gr/samos2008/ Abstracts/Proceedings08.pdf.

4�7 September 2008, Karlovassi, Greece.

III Kaasik, A.: 2009b, `Simulating the integrated tail distribution in the heavy-

tailed setting'. In: K. Hangos (ed.): Proceedings of the 28th IASTED Inter-

national Conference on Modelling, Identi�cation and Control. pp. 28�31,

ACTA Press. 16�18 February 2009, Innsbruck, Austria.

IV Kaasik, A. and K. Pärna: 2009, `On simulation of ruin using integrated tail

distribution'. In: E. K. Z. Leonidas Sakalauskas, Christos Skiadas (ed.): The

XII Conference on Applied Stochastic Models and Data Analysis: Selected

papers. pp. 45�50, Vilnius Gediminas Technical University Press. 30 June

� 3 July 2009, Vilnius, Lithuania.

10



Introduction

Ruin probability is the quantity of prime importance in the risk management of

an insurance company and a crucial indicator of an unbalanced cash �ow and/or

insu�cient operating capital. To realistically capture the nature of the cash �ow,

many non-life insurance risk models have been proposed. The simplest classical

model, named Cramér-Lundberg model, considers only the income due to insur-

ance premiums and outcome due to covered claims, but ignores e.g. investment

of the surplus capital. Assumption of independent and identically distributed

claims is also made while income in a �xed time unit is constant. The history of

this model dates back to the thesis [Lundberg, 1903]. In [Back et al., 2004: pp.

128�129] other prominent insurance risk models are discussed. This includes the

Sparre-Andresen model and the Markov modulated risk model both possibly en-

hanced with interest earned on the free operating capital. The former model was

introduced in [Sparre Andersen, 1957] and one of the �rst papers that considers

the latter in the insurance context is [Reinhard, 1984], while a similar model was

in use in the queueing theory before that as is evidenced by the paper [Ross, 1978].

While a simpli�ed model, there are real-life situations where the Cramér-Lundberg

model seems su�cient and is still of practical interest. As was discovered in [Pol-

laczek, 1930a] and [Pollaczek, 1930b] the ruin probability for the Cramér-Lundberg

model can be expressed as the probability that the random sum of independent

random variables, each having the integrated tail distribution of the claim distri-

bution, exceeds the operating capital. That is the ruin probability

ψ(u) = P{X1 + . . .+XN > u},

where u is the operating capital, N is a geometric random variable and the distri-
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bution function of each Xi is expressed as

FI(x) =

∫ x
0
F (y)dy∫∞

0
F (y)dy

, x > 0,

where F is the distribution function of the claims and F = 1−F . As the parame-

ter of the geometric random variable is not hard to estimate, the approximation of

the integrated tail distribution is the key component in estimating the ruin proba-

bilities. In the last two decades multitude of important papers like [Heidelberger,

1995], [Asmussen et al., 2000], [Boots and Shahabuddin, 2001], [Asmussen et al.,

2005], [Asmussen and Kroese, 2006], [Blanchet and Glynn, 2008] dealing with the

simulation of the ruin probabilities which may not be trivial when u is large,

have been published. Another direction has been the development of asymptotic

approximations, that are expressions ψ∗(u) which satisfy

lim
u→∞

ψ∗(u)
ψ(u)

= 1.

A crucial paper in this context is [Embrechts and Veraverbeke, 1982] but nowa-

days a text-book treatment of this direction is available (e.g. [Grandell, 1991] and

[Asmussen, 2003]).

In this thesis a di�erent problem � approximation of FI � is considered. Clearly

the approximation of the integrated tail distribution must be based on claim size

data. While it may seem that this problem is just a special case of a distribution

approximation, results for the integral functionals of the empirical distribution

function from [Csörgö et al., 1986] show that the approximating quality is not

the same when the ordinary empirical distribution function is considered. In the

thesis theoretical and practical aspects of two possible approaches are studied �

it is intuitive to consider either the empirical distribution function of the claims

or its combination with the generalized Pareto distribution as the candidate for

approximating claim size distribution. Generalized Pareto distribution is a basic

extreme-value tool that is justi�ed as a model of the tail of of a probability distri-

bution under rather general assumptions.

In the most classical context it is also assumed that the claims come from a prob-

ability distribution that has moments of any order which is typically violated in
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practice. In the thesis the opposite (i.e. heavy-tailed claim size distribution) is

assumed.

The goal of the thesis is to describe and study a complete methodology for estimat-

ing the ruin probabilities in the heavy-tailed setting starting from the assumption

of the Cramér-Lundberg model and observed claim size data together with time

of occurrence. For this the following sub-goals are set.

− to describe the Cramér-Lundberg model and di�erences in ruin probability

estimation for light and heavy-tailed claims;

− to study the properties of the integrated tail distribution of a given orig-

inal distribution including generation of independent realizations from the

former;

− to rigorously de�ne approximations of the integrated tail distribution and to

study their approximation qualities theoretically and using simulation;

− to illustrate the methodology proposed in the thesis using real world data as

a practical example.

Chapter 1 gives an overview of the used notation, relevant de�nitions and impor-

tant known results. This includes the practical di�erences between the distribu-

tions with light and heavy tails and subclasses of the latter of which subexponen-

tial distributions are the most prominent. The extreme value theorem essentially

equating the generalized extreme value distribution and the generalized Pareto

distribution as limit distributions of the sample maximum and conditional tail, re-

spectively, is also presented. Means for comparing estimators in simulation are also

given and the role of Brownian bridges in empirical processes theory is highlighted.

Chapter 2 gives the formal de�nition of the Cramér-Lundberg insurance risk pro-

cess and ruin probability. Various representations for the latter are presented,

most notably the Pollaczeck-Khinchine formula which allows to estimate the ruin

probability as a probability of a sum with random number of summands exceed-

ing a �xed threshold. The integrated tail distribution of an original distribution is

properly de�ned. Implications of the tail weight of the claims for ruin probabilities

are considered. A key observation is the fact that subexponentiality of the inte-

grated tail distribution allows the approximation of the ruin probability by means
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of the tail of that distribution (for large values of initial capital).

Chapter 3 begins with author's results about the relationship between the moments

of the original distribution and its integrated tail distribution that are incorporated

into Proposition 3.1 and Proposition 3.2 originating from [Kaasik, 2009b]. Three

subexponential distributions � Pareto, Weibull and log-normal distribution � used

as examples throughout the thesis are formally introduced. A general methodol-

ogy for simulating from the integrated tail distribution ([Kaasik, 2009b]) is also

proposed. This iterative methodology makes use of Newton-Raphson method and

has a quadratic rate of convergence as shown by the author with Proposition 3.4.

Proposition 3.5 is also a result from [Kaasik, 2009b] about the relation between the

integrated tail distribution of Weibull and the transformed gamma distribution.

In the remainder a simple conditional Monte-Carlo simulation algorithm from the

literature for simulating a sum of independent heavy-tailed random variables ex-

ceeding sum �xed value is presented and its application for Pollaczeck-Khinchine

formula considered.

Chapter 4 starts with a summary of methods that allow to check whether the

integrated tail distribution is subexponential. Empirical approximation of the in-

tegrated tail distribution is given and its almost sure uniform convergence is proved

in Proposition 4.1 originating from [Kaasik and Pärna, 2008]. Respective empir-

ical process has an approximation process as shown by Proposition 4.2 which is

a novel result. Another approximation of the integrated tail distribution is then

presented. As shown in Proposition 4.3 from [Kaasik, 2009a], this extreme value

approximation is justi�ed when the tail of the original distribution behaves like a

generalized Pareto distribution. In addition, the parameters of the approximat-

ing distribution can be calculated using the parameters of the distribution that

approximates the claim size distribution. The methods of maximum likelihood

and probability weighted moments are discussed in the context of the generalized

Pareto distribution. Asymptotic normality of the parameter estimates of the in-

tegrated tail distribution is shown in Proposition 4.7.

Chapter 5 is dedicated to numerical comparison of the empirical and extreme

value approach when the original distribution is subexponential. Results from

[Kaasik and Pärna, 2009] show that the approximation making use of the gen-
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eralized Pareto distribution outperforms the empirical approximation in the tail

region. Combining the two approximations by using the empirical approximation

in the main part and the extreme value approximation in the tail part yields a

new approximation that might not be continuous when the parameters have been

estimated using the method of maximum likelihood as shown in Proposition 5.1.

To remedy this yet another approximation is presented. This new approximation

coincides with the previous one when the method of probability weighted moments

is used for parameter estimation and is continuous when maximum likelihood is

used. Two combined approximations are compared numerically at the end of the

chapter.

Chapter 6 consists of an example that makes used of the machinery described in

the previous chapters for estimating the ruin probability based on a real world

insurance claims data. It turns out that the methodology proposed is adequate

for modeling the actual insurance risk process and thus it is tempting to believe

that the ruin probability estimates obtained by making use of the combined ap-

proximations and the simulation algorithm are relatively accurate.

Chapter 7 summarizes the novel results obtained in the thesis and discusses the

goals achieved.

In the thesis it is noted on several occasions that the Cramér-Lundberg risk process

model is closely related with the workload process of a simple �rst in �rst out

queueing system with a single server. In modern times when parallel processing

is becoming the industry standard for large tasks it might also be of interest to

consider the proposed methodology for analyzing and planning the performance

of a server network to avoid large delays.
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Chapter 1

Preliminaries

1.1. Notation

In the thesis the following notation is used.

• Capital letters typically stand for random variables. Thus X is a random

variable. Suppose that X is de�ned on a probability space (Ω,F ,P). The

notation X is a shortened notation for X(ω), where ω ∈ Ω. Random variable

with a sub-index is just member of a sequence of random variables. Thus Yi
is the i-th random variable in a �nite or countable sequence.

• Random processes are also denoted with capital letters but notation also

includes an argument as in N(t). Again, the argument ω is omitted.

• Probability distributions (referred to only as distributions) are also denoted

with a capital letter, but for that purpose only letters F , G and H (possibly

with an index) are used.

• A cumulative distribution function (cdf) can also be denoted with the same

capital letters but notation also includes an argument as in F (x). When

speaking about the fact that X has distribution G it is also meant that

X has a cdf G(x) = P{X 6 x} (if X was de�ned on a probability space

with measure P). The converse is also used � if Y has a cdf F (x) then the

distribution of Y is F .

• SupposeX1, . . . , Xn are independent and identically distributed (iid) random

variables with distribution F . Then their sum has distribution F ∗n, that is

F ∗n denotes the n-fold convolution of F .

• Notation F (x) stands for a complementary cdf i.e. F (x) := 1− F (x)
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• Expectation is denoted with E and variance with V ar. Thus the mean of X

is EX while V ar(X) = E(X2)− (EX)2.

• Symbol ∼ stands for asymptotic equivalence in the speci�ed process. Thus

a(x) ∼ b(x), x→∞ denotes the fact that limx→∞ a(x)/b(x) = 1.

• Acronyms GPD and CLM refer respectively to generalized Pareto distribu-

tion from De�nition 1.9 and Cramér-Lundberg insurance risk model de�ned

in Section 2.1.

Additional notation is explained after its introduction.

1.2. Light and heavy-tailed distributions

The following de�nitions and results are all well-known and are collected from

[Embrechts et al., 1997: pp. 49�57], [Klugman et al., 2004: pp. 39�114] and [Sig-

man, 1999].

Consider a probability space (Ω,F ,P) and a random variable X with distribution

F that has support (0,∞).

De�nition 1.1. If the moment generating function (mgf) of X de�ned as E exp{tX}
is �nite for some t > 0 then we say that X is a light-tailed random variable. Oth-

erwise X is a heavy-tailed random variable. We also say that F is, respectively, a

light-tailed or a heavy-tailed distribution.

Finite mgf for some positive argument guarantees the existence of all moments.

However, it is possible that the mgf of a random variable is in�nite for all t > 0,
but the random variable still possesses all moments.

De�nition 1.2. If for all y > 0 it holds that

F (x+ y) ∼ F (x), x→∞, (1.1)

then we say that the distribution F belongs to the class of long-tailed distributions

and denote this by F ∈ L. Alternatively, we say that X is a long-tailed random

variable.

F ∈ L implies that F is a heavy-tailed distribution. Thus long-tailed distributions

form a sub-class of heavy-tailed distributions.
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De�nition 1.3. If for all n > 2 we have that

Fn∗(x) ∼ nF (x) (1.2)

then we say that F belongs to the class of subexponential distributions and denote

it with F ∈ S. Alternatively, we say that X is a subexponential random variable.

F ∈ S implies that F ∈ L. Thus subexponential distributions form a sub-class of

long-tailed distributions. It is also known that L is a proper sub-class of heavy-

tailed distributions and S is a proper sub-class of L. Still, majority of the well-

known heavy-tailed distributions are also subexponential. Class S includes, for

example, Pareto, Weibull, log-normal, Burr, log-gamma and Benktander distribu-

tions.

De�nition 1.4. We say that F is a dominatedly varying distribution if

lim sup
x→∞

F (x/2)
F (x)

<∞. (1.3)

and denote it by F ∈ D.

Class D is also a sub-class of heavy-tailed distributions.

De�nition 1.5. We say that F is a regularly varying distribution with index −α,
where α > 0, if for every t > 0 it holds that

lim
x→∞

F (tx)
F (x)

= t−α. (1.4)

and denote it by F ∈ R−α.

Class R de�ned as ∪α>0R−α is a proper sub-class of both S and D.
There are also other means to classify the tails of distributions.

De�nition 1.6. The function

a(x) = E(X − x|X > x) =

∫∞
x
F (y)dy
F (x)

, (1.5)

de�ned for x > 0 is the mean excess of loss function for X (or mean excess of loss

function for F ).

18



Suppose now that X also has a density function f(x) = F ′(x).

De�nition 1.7. The function

h(x) =
f(x)
F (x)

, (1.6)

is called the hazard rate of X (or hazard rate of distribution F ).

Typically a heavy-tailed distribution has an eventually increasing mean excess of

loss function (sometimes also referenced as mean residual life function) and an

eventually decreasing hazard rate, that is, there exist x1 > 0 and x2 > 0 such

that its mean excess of loss function is increasing in (x1,∞) and its hazard rate is

decreasing in (x2,∞). These facts can be easily interpreted if X is considered to

be the size of an insurance claim. Consider a threshold x > 0 that we can adjust.

Increasing a(x) would mean that the average of the claims that exceed a threshold

x is growing faster than x itself. Decreasing h(x) would roughly mean that the the

claims which exceed a threshold x are less likely to be close to x when we increase

the threshold.

1.3. Basics of extreme-value theory

The following de�nitions and results are all well-known and are collected from

[Embrechts et al., 1997: pp. 113�168] and [De Haan and Ferreira, 2006: pp. 6�12].

Consider a probability space (Ω,F ,P) and a random variable X with distribution

F that has support (0,∞).

De�nition 1.8. The conditional distribution function of X − u given that X > u

is denoted by Fu(y) and de�ned as

Fu(y) =
F (u+ y)− F (u)

F (u)
, u > 0, y > 0. (1.7)

De�nition 1.9. The cdf of the generalized Pareto distribution (GPD) is de�ned

as

Gξ,σ(y) =

1−
(

1 + ξy
σ

)−1/ξ

, ξ 6= 0, σ > 0

1− exp
(
− y
σ

)
, ξ = 0, σ > 0,

(1.8)

where 0 < y < −σ/ξ for ξ < 0 and 0 < y <∞ for ξ > 0.
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Note that the case ξ = 0 can be thought of as a limit because

lim
ξ→0

Gξ,σ(y) = G0,σ(y), y > 0. (1.9)

The mean of the GPD is σ/(1− ξ) if ξ < 1 and in�nite otherwise.

Theorem 1.1. Suppose that there exist constants an > 0 and bn such that

lim
n→∞

Fn(anx+ bn) = exp
(
−(1 + ξx)−1/ξ

)
(1.10)

for some ξ > 0 and for all x, where the case ξ = 0 is considered as ξ → 0. Then
and only then exists a positive function a(x) such that

lim
u→∞

sup
x>0
|Fu(xa(u))−Gξ,1(x)| = 0. (1.11)

The distribution function that appears on the right hand side of (1.10) is known as

the generalized extreme value distribution and is the only possible non-degenerate

distribution that can appear as a limit in (1.10). The parameter ξ can be negative

for certain distributions but a generalized extreme value distribution with ξ < 0
cannot appear as a limit when F has support (0,∞) and is thus not relevant here.

In the case when ξ = 0 the mean excess of loss function can be used in the role of

function a(x), while a(x) = ξx is a possible choice for the case ξ > 0.
The existence of constants an and bn so that (1.10) holds is usually referred to

as the fact that the extreme value (EV) condition is satis�ed (for the distribution

F ). As a non-degenerate limit is not always attainable, several conditions for the

checking the EV condition are available (e.g. in [De Haan and Ferreira, 2006: pp.

15�23]). For example, the distributions satisfying the EV condition with ξ > 0
are the ones with regularly varying tail. More precisely F ∈ R−α if and only

if it satis�es the EV condition with ξ = 1/α and thus when F has �nite mean,

necessarily ξ < 1.
Note that (1.11) can also be presented as

lim
u→∞

sup
x>0
|Fu(x)−Gξ,σ(u)(x)| = 0, (1.12)

with σ(u) = a(u). This formulation dating back to [Pickands III, 1975] is the basis

for approximating the tails of distributions.

In general, the EV condition is satis�ed for distributions with continuous cdf and

thus the assumption that there exist such ξ and σ(u) that (1.12) holds is typically
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not restrictive in practice.

1.4. Assessing the quality of an estimator in simulation

Suppose we want to know the probability of some event Au in a situation which we

can simulate and that probability depends on some initial parameter u. Denote

this probability as γ(u) and further assume that γ(u) → 0 as u → ∞. The naive

way of estimating the probability γ(u) would be to simulate the situation and set

I1 = 1 if Au occurs and I1 = 0 otherwise. This can be repeated n times and we

would have an unbiased estimator of γ(u) in the form of

Q1(u) :=
1
n

n∑
i=1

Ii, (1.13)

due to the law of large numbers. Moreover, the central limit theorem allows us to

calculate an approximate (1− α)100% con�dence interval (CI) for γ(u) as

Q1(u)± zα/2

√
V ar(Ii)

n
, (1.14)

where zα/2 is the 1− α/2 quantile of the standard normal distribution.

We now analyze the relative error of the estimator de�ned as half-width of the CI

relative to the size of γ(u) to �nd the required number of replications n. Because

V ar(Ii) = γ(u)(1− γ(u)), we have that the relative error is expressible as

zα/2

√
1− γ(u)
γ(u)n

. (1.15)

The following de�nitions are from [Juneja and Shahabuddin, 2006].

De�nition 1.10. An unbiased estimator Q(u) of probability γ(u) has bounded

relative error if the quotient
V ar(Q(u))

[γ(u)]2
(1.16)

is bounded in u.

De�nition 1.11. An unbiased estimator Q(u) of probability γ(u) is asymptotically
e�cient if

lim
u→∞

log E([Q(u)]2)
2 log γ(u)

= 1, (1.17)
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Bounded relative error means that there is a �xed number of replications that

guarantees desired relative accuracy (regardless of the value u). Asymptotic e�-

ciency means that the estimator is asymptotically optimal on a logarithmic scale.

Bounded relative error implies asymptotic e�ciency. The estimator Q1 de�ned in

(1.13) is not an estimator with a bounded relative error as is seen from (1.15).

Furthermore, we have that Q is not even asymptotically e�cient as we have that

lim
u→∞

log E([Q(u)]2)
2 log γ(u)

= lim
u→∞

log
(
γ(u)(1−γ(u))

n + [γ(u)]2
)

2 log γ(u)
=

1
2
.

1.5. Basics of the theory of empirical processes

We now list some of the well-known facts from the theory of empirical processes

that are useful in what follows. The key result is from [Komlós et al., 1975].

De�nition 1.12. A Gaussian random process B(t) de�ned for t ∈ [0, 1] is called
a Brownian bridge if EB(t) = 0 for each t and EB(s)B(t) = s(1 − t) whenever

s 6 t and the process has continuous trajectories.

If we suppose that X1, X2, . . . are iid with continuous cdf F (x) then we can �rst

de�ne an empirical cdf Fn(x) as

Fn(x) =
{#Xi : Xi 6 x, i = 1, . . . , n}

n
(1.18)

for each n and then the uniform empirical process

αn(y) =
√
n[y − Fn(F−1(y))] (1.19)

which can be approximated by a standardized sum of independent Brownian

bridges as is made precise by the following statement slightly tailored for our

context.

Theorem 1.2. There exists a probability space (Ω,F ,P) such that X1, X2, . . . are

iid random variables with a continuous distribution function F (x) and independent
Brownian bridges Bn(t) de�ned on that probability space and

P
(

lim sup
n→∞

√
n

(log n)2
sup

06y61
|αn(y)−Bn(y)| 6 C

)
= 1 (1.20)

for some positive constant C.
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While a much stronger result, one of the key conclusions from Theorem 1.2 is that

the absolute di�erence between F (x) and Fn(x) in�ated
√
n times has roughly the

same distribution as a Brownian bridge at F (x) for large values of n.
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Chapter 2

Cramér-Lundberg insurance risk model and

ruin probabilities

2.1. De�nition of the Cramér-Lundberg insurance risk model

Consider a probability space (Ω,F ,P) and introduce a stochastic process

Uu(t) = u+ ct− S(t), S(t) =
N(t)∑
i=1

Xi, t > 0, (2.1)

where u > 0 and c > 0 are constants, Xi are independent and identically dis-

tributed (iid) random variables with distribution F that has �nite mean and sup-

port (0,∞) while N(t) is a counting process. Process (2.1) is the classical model

for insurance risk: u stands for the initial capital of the insurance company, c

for the premium rate in a time unit, Xi are the claims from the insured subjects

and N(t) equals the number of claims made in time interval [0, t]. This model

is also known as the Sparre-Andersen model. A simpli�cation of (2.1) is known

as the Cramér-Lundberg insurance risk model (CLM) where the process N(t) is

assumed to be a Poisson counting process independent of all the Xi with intensity

λ > 0. This means, among other things, that the process has independent incre-

ments and the (random) number of claims occurring in a time interval of arbitrary

length t∗ > 0 has a Poisson distribution with mean λt∗ i.e.

∀s > 0, P{N(t∗ + s)−N(s) = n} =
(λt∗)n

n!
exp{−λt∗}, n = 0, 1, 2, . . . .

If we denote the arrival time of the i-th claim by Ti (i.e. Ti = inf{t > 0|N(t) = i})
and take T0 = 0 then the consequence of CLM is that random variables Yi :=
Ti − Ti−1 de�ned for i = 1, 2, . . . are iid with exponential distribution and mean
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1/λ [Klugman et al., 2004: p. 224]. Further let Θ := {T1, T2, . . .}. In the following

we will assume the CLM.

The object of interest is the probability

ψ(u) := P{∃t <∞ : Uu(t) < 0}, (2.2)

known as the (ultimate) ruin probability which can be interpreted as a chance that

an insurance company with initial capital u will eventually go bankrupt.

Remark 2.1. It is possible to de�ne �a new time� by changing t→ t/c i.e. we set

a new time unit so that the premium rate in one new time unit is equal to one.

For this new process we also have the change λ→ λ/c. Probability (2.2), however,

remains unchanged, and thus in what follows it is assumed that c = 1.

To avoid the situation where ψ(u) = 1, it is assumed that E[S(t)] < t which means

that

ρ :=
1

λEX
− 1 > 0. (2.3)

Constant ρ is known as the safety loading coe�cient and it holds that

ψ(0) =
1

1 + ρ
(2.4)

(see e.g. [Klugman et al., 2004: pp. 236�237]).

Remark 2.2. One can also consider the �nite-time ruin probability i.e.

ψ(u, T ) := P{∃t < T : Uu(t) < 0}. (2.5)

Clearly ψ(u, T ) 6 ψ(u).

In�nite time ruin probability can be expressed in a more convenient way than (2.2)

and the next section is devoted to these representations.

2.2. Two representations of the ruin probability

Suppose Uu(t) < 0 for some t <∞ i.e the company has ruined. Then by (2.1) it is

clear that the time instant when the ruin occurs (i.e. τ := inf{t > 0|Uu(t) < 0})
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must belong to the set Θ. Denote

R0 = 0, Rn =
n∑
k=1

(Xk − Yk), n > 1, (2.6)

which is a random walk with a negative drift due to fact that ρ > 0. We can then

give the random walk representation of the ruin probability

ψ(u) = P
{

sup
n>0

Rn > u

}
(2.7)

to be found e.g. in [Embrechts et al., 1997: p. 26]. Departing from this equation,

another useful representation can be deduced by the following argument, presented

precisely in [Klugman et al., 2004: pp. 240�241]. Suppose there is a Ti such that

Uu(Ti) < u while for k < i we have Uu(Tk) > u. Probability that such a Ti exists is
ψ(0) by (2.7). It turns out that the positive random variable u−Uu(Ti), provided
it is de�ned, has a cumulative distribution function (cdf)

FI(x) =

∫ x
0
F (y)dy
EX

, x > 0. (2.8)

This distribution is called the integrated tail distribution (itd) of F . Because Yi are

iid exponential random variables and independent of random variables Xi, process

Uu(t) can be �restarted� at any instant. Thus the probability that there is a Tj
with j > i such that Uu(Tj) < U(Ti) while for i < k < j we have Uu(Tk) > Uu(Ti)
is again ψ(0). Moreover Uu(Tj)−Uu(Ti) has also the itd of F and is independent

of u− Uu(Ti). The number of �new records�, N , is thus geometrically distributed

i.e.

P{N = n} =
(

1
1 + ρ

)n(
ρ

1 + ρ

)
, n = 0, 1, 2, . . . ,

because of (2.4), and we have

ψ(u) = P{Z1 + . . .+ ZN > u}, (2.9)

where random variables Zi are iid with distribution FI . This representation of

the ruin probability is known as the Pollaczeck-Khinchine formula and will be one

of the starting points of the thesis. We will see in the next section that the ruin

probability coincides with another important probability from queueing theory.
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2.3. Steady-state waiting time for a M/G/1 queue

M/G/1 queue process is a probabilistic model for a service system. There is

one server and the service times of the customers are iid random variables Xi.

The times between arrivals of subsequent customers are iid exponential random

variables Yi independent of service times (Yi is the time between the arrivals of

customers i and i + 1 and the �rst customer enters the system instantly, also

EYi > EXi). The serving order principle is �rst in - �rst out. Thus if a customer

i enters the system and there are still unserved customers there will be a positive

waiting timeWi till the service of customer i begins. It can be expected that when

i grows large the waiting time Wi will reach an equilibrium distribution i.e. the

queue process will enter a steady state (because the workload in the system (the

total time required to complete serving all the customers currently in the system)

is a Markov process [Asmussen, 2003: p. 96] and the steady state workload and

the waiting time have the same distribution [Asmussen, 2003: pp. 108�109]).

Let us �nd that equilibrium distribution using the following reasoning. Denote

ξi = Xi − Yi for i = 1, 2, . . .. Now W1 = 0 and Wi+1 = (Wi + ξi)+ for i = 2, 3, . . .,
where W+ := max{W, 0}, and thus recursively

Wi+1 = max{ξ1 + . . .+ ξi, ξ2 + . . .+ ξi, . . . , ξi, 0}.

Note that ξi are iid random variables and thus the distribution of Wi+1 is that of

max{0, ξ1, ξ1 + ξ2, . . . , ξ1 + . . .+ ξi}. The steady-state is reached when i→∞ and

this leads us to (2.7) with R0 = 0 and Rn =
∑n
i=1 ξi.

We can conclude that whenever we speak about the ruin probability in the CLM

context with initial capital u, we might as well think about the probability that

the steady state waiting time of a M/G/1 queue exceeds u, given that the claim

size distribution and service time distribution are the same and the intensities of

claim and customer arrival are also equal.

Remark 2.3. It can be shown that the duality discussed previously remains intact

when we consider a more general insurance risk model (2.1) where N(t) may not

be a Poisson process. The in�nite horizon ruin probability then corresponds to the

steady-state waiting time of aG/G/1 queue � a service system where times between

arrivals of subsequent customers are not necessarily exponential [Asmussen, 2003:

pp. 399-400].
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2.4. Claim size distribution

So far we have mentioned only the requirement EXi <∞. In the classical setting

it is further assumed that there exists a κ > 0 such that

λ

∫ ∞
0

eκxF (x)dx = 1,

where κ is known as the adjustment coe�cient [Embrechts et al., 1997: p. 32].

With this additional requirement two important results can be proved: �rstly the

Lundberg inequality stating that

ψ(u) 6 e−κu

for all u > 0 and secondly, the Cramér-Lundberg approximation formula

ψ(u) ∼ Ce−κu, u→∞ (2.10)

where 0 < C 6 1 is an explicit constant [Klugman et al., 2004: pp. 230�244].

Existence of the adjustment coe�cient implies the existence of the moment gen-

erating function for some t > 0 [Klugman et al., 2004: p. 226] which in turn

implies the existence of all moments. As noted in [Embrechts et al., 1997: pp.

32�34], distributions that satisfy this assumption are usually not good models for

real claim data and thus the use of the classical results is limited in practice.

Using (2.9) we may write

ψ(u) =
ρ

1 + ρ

∞∑
n=0

Fn∗I (u)
(1 + ρ)n

(2.11)

and if we would have FI ∈ S then

ψ(u) ∼ FI(u)
ρ

, u→∞, (2.12)

because it is known that for FI ∈ S interchanging limit and sum is justi�ed in the

previous situation [Embrechts et al., 1997: p. 41].

Remark 2.4. Note that (2.11) holds regardless of the tail of F , but the subexpo-

nentiality requirement FI ∈ S is necessary for (2.12). Methodology developed in
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the thesis is applicable for both heavy and light tails but in examples only subex-

ponential distributions, as possible candidates for modeling real world data, are

used in the role of F .

Remark 2.5. It can be shown that if FI ∈ S and F ∈ L then the asymptotic

relation (2.12) holds also for the classical insurance risk model (2.1) i.e. even when

N(t) is not a Poisson process [Asmussen, 2000: pp. 261�264].
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Chapter 3

Ruin probability estimation when the claim

size distribution is known

Suppose we have observed a process governed by the CLM for some time during

which n claims have arrived. Perhaps we have u units of capital left and we want

to determine the premium rate c so that ψ(u) is smaller than some desired level,

say α. Another possibility is that we would like to know how much initial capital

is required to have the ruin probability smaller than α with c �xed. In either case

we expect the relation (2.9) to help us answer these questions as direct simulation

using either (2.1) or (2.7) is not possible due to the in�nite time horizon and

in�nite number of summands, respectively. The goal of this chapter is to show

how to use the Pollaczeck-Khinchine formula (2.9) for ruin probability estimation

via Monte-Carlo method when the distribution of the claims F is known and has

a heavy tail. Main ingredients needed are the skill to simulate from the integrated

tail distribution of F and a good simulation algorithm to achieve a precise result

with minimum e�ort.

3.1. Some properties of the integrated tail distribution

Suppose we know both F (thus also EX) and λ. Using Cramér-Lundberg ap-

proximation (2.10) is one possibility for estimating the ruin probability in the

light-tailed context and even better approximations are available for this type of

claims [Klugman et al., 2004: pp. 245�250]. If FI ∈ S then we can use (2.12) to

provide an estimate for the ruin probability. It can be the case, however, that the

approximation (2.12) is rather inaccurate for moderate u as shown in [Mikosch

and Nagaev, 1998]. However, in any case (2.9) can be used to estimate ψ(u). As
it is typically (but not always, see e.g. [Klugman et al., 2004: p. 154]) impossible
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to �nd an analytical solution, simulation must be used to generate Z1, . . . , ZN

with distribution FI . For a light-tailed distribution e�cient simulation is rather

straightforward as importance sampling can be used with mgf determining the

optimal distribution, see e.g. [Heidelberger, 1995], [Ross, 2002: pp. 166�179]. As

the mgf does not exist for heavy-tailed distributions, better understanding of FI is

required for e�cient simulation. We will see that the itd FI typically has an even

heavier tail than the original distribution F which should imply that algorithms

working well for heavy-tailed F provide good results for FI .

The fact that FI typically has a heavier tail can be expected because of the fol-

lowing result presented in [Kaasik, 2009b], which says that the moment of order

n+ 1 of the original distribution F always needs to exist for the moment of order

n of FI to exist.

Proposition 3.1. Let X be a non-negative random variable with distribution

function F and �nite mean. LetXI be another random variable with the integrated

tail distribution of F . Then for any n ∈ {1, 2, . . .}, for which EXn
I < ∞, it holds

that

EXn
I =

EXn+1

(n+ 1)EX
. (3.1)

For the proof we use the following simple result.

Lemma 3.1. For a non-negative random variable X with distribution function F

and �nite n-th moment it holds that

EXn = n

∫ ∞
0

xn−1F (x)dx. (3.2)

Proof of Lemma 3.1. Partial integration gives

n

∫ ∞
0

xn−1F (x)dx = lim
x→∞

xnF (x) +
∫ ∞

0

xndF (x),

but

lim
x→∞

xnF (x) = lim
x→∞

xn
∫ ∞
x

dF (y) 6 lim
x→∞

∫ ∞
x

yndF (y) = 0,

because
∫∞

0
yndF (y) is assumed to be �nite.
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Proof of Proposition 3.1. We write

EXn
I =

∫∞
0
xnF (x)dx
EX

=
EXn+1

(n+ 1)EX

using Lemma 3.1.

The result can be extended as follows.

Proposition 3.2. Let X be a non-negative random variable with distribution

function F and �nite m-th moment. Set FI0 = F and FI1 = FI and denote by

FIm(x) =

∫ x
0
F Im−1(y)dy
EXIm−1

,

the m-th order integrated tail distribution of F where XIm−1 is a random variable

with distribution FIm−1 . Then for any n ∈ {1, 2, . . .} for which E(XIm)n < ∞ it

holds that

EXn
Im =

(
m+ n

m

)−1 EXm+n

EXm
. (3.3)

Proof of Proposition 3.2. The statement can be proved by induction. Proposition

3.1 shows that the statement holds true for m = 1. Suppose it holds also for

m = k. Then we can write

EXn
Ik+1

=
EXn+1

Ik

(n+ 1)EXIk

=
k!(n+ 1)!(k + 1)!

(k + n+ 1)!k!(n+ 1)
EXk+n+1

EXk+1

=
(
k + n+ 1
k + 1

)−1 EXk+n+1

EXk+1

as required.

Class L is important because if either F ∈ L or FI ∈ L then FI has a heavier tail

than F in a sense that

lim
x→∞

FI(x)
F (x)

=∞ (3.4)

holds [Sigman, 1999]. One of the consequences of (3.4) is the fact that for heavy-

tailed claims ψ(u) is not a sharp upper bound for the �nite time ruin probability

ψ(u, T ) when u is large. This is made precise by the following statement which

has not been found in the literature.
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Corollary 3.1. Suppose CLM holds with F ∈ S and FI ∈ S. Then ∀T > 0 we

have

lim
u→∞

ψ(u, T )
ψ(u)

= 0. (3.5)

Proof. Without a loss of generality we consider the setup of CLM with c = 1. A
well known fact to be found e.g. in [Sigman, 1999] with notation from (2.1) gives
us that

P{S(T ) > u} ∼ λTF (u), ∀T > 0,

but we have also that

P{S(T ) > u} ∼ P{S(T ) > u+ T}, ∀T > 0,

because F ∈ L. The probabilities in the previous relation are an upper and a lower
bound, respectively, for ψ(u, T ). This can be seen by noting that ruin could not

have happened in [0, T ] if S(T ) 6 u while if S(T ) > u+T then ruin has de�nitely

occurred in [0, T ]. Hence we have also that

ψ(u, T ) ∼ λTF (u), ∀T > 0.

This, together with (2.12) and (3.4), proves the statement.

3.2. Subexponential distributions

If we were to use (2.12) it would be important to know whether FI is subexponen-

tial. A key observation about the class (apart from the fact that it arises naturally

in the ruin theory context as was shown in Section 2.4) is the following. Let Mn

be the maximum of n iid random variables Xi with a subexponential distribution

F . Then we have for all n that

P{X1 + . . .+Xn > x} ∼ P{Mn > x}, x→∞, (3.6)

because P{Mn > x} ∼ nF (x) in the process x→∞. This means intuitively that

the sum grows very large due to a single large summand which in our context

highlights the fact that a single very large claim can be the cause of ruin when we

deal with subexponential claims.
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3.2.1. Subexponentiality of the integrated tail distribution

Using the de�nition to check whether a distribution is subexponential is usually not

possible. However, there are several su�cient conditions for F to check whether

FI ∈ S. For example, it su�ces to show that F ∈ D (which is considerably

simpler) to have FI ∈ S [Embrechts et al., 1997: pp. 52�53]. Su�cient conditions

based on the hazard rate of F also exist [Klüppelberg, 1989].

Since H ∈ S together with H(x) ∼ cG(x) and c > 0 implies that G ∈ S (see e.g.

[Sigman, 1999]), it follows from (2.12) that the random variable Z1 + . . .+ ZN in

(2.9) is subexponential if FI ∈ S.

3.2.2. Examples of subexponential distributions

The three examples used throughout the thesis in the role of F are the Pareto dis-

tribution, the (heavy-tailed) Weibull distribution and the log-normal distribution.

All three are subexponential distributions, as noted before. Furthermore FI ∈ S
in each case [Embrechts et al., 1997: p. 56].

1. Pareto distribution has a tail F (x) = (1 + x)−α with α > 0 and �nite mean

when α > 1.

2. Weibull distribution has a tail F (x) = e−x
β

with 0 < β < 1. It is possible to
consider the distribution with β > 1 but then the distribution is no longer

heavy-tailed.

3. Log-normal distribution has a tail F (x) = Φ((log x)/σ) with parameter σ >

0, where Φ(x) is the cdf of a standard normal random variable.

Those three distributions illustrate richness of the class S as the contrast between

the Pareto and Weibull distribution is rather strong � for the Pareto distribution

with parameter α the moments of order n > α do not exist [Balakrishnan and

Nevzorov, 2003: p. 154] while the Weibull distribution has moments of all or-

ders regardless of the parameter β [Sigman, 1999]. The lognormal distribution is

between the two others in terms of heaviness of the tail.

Proposition 3.3. If we have F1(x) = (1 +x)−α, F2(x) = exp{−xβ} and F3(x) =
Φ((log x)/σ) for x > 0, where a > 0, 0 < β < 1 and σ > 0, then

lim
x→∞

F1(x)
F3(x)

=∞, lim
x→∞

F2(x)
F3(x)

= 0. (3.7)
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Proof. Using the l'Hôpital's rule repeatedly we obtain that

lim
x→∞

F1(x)
F3(x)

= lim
x→∞

(1 + x)−α

Φ
(

log x
σ

) = lim
x→∞

ασ
√

2πx exp{ (log x)2

2σ2 }
(1 + x)α+1

=∞

and that

lim
x→∞

F2(x)
F3(x)

= lim
x→∞

exp{−xβ}

Φ
(

log x
σ

) = lim
x→∞

βσ
√

2πxβ exp{−xβ +
(log x)2

2σ2
} = 0.

Remark 3.1. We could consider the mentioned distributions with more parame-

ters by introducing location and scale parameters. However the location parameter

would cause the distributions support to change from the desired (0,∞) and the

scale parameter would not change the tail behavior in terms of heaviness which is

the main object of interest in the simulations presented in the thesis.

3.3. Simulating from the integrated tail distribution

Relation (2.9) shows that we will have to simulate from the itd which might not be

a trivial task. Firstly, the analytical inversion method is not be applicable if the

cdf is not analytically invertible. Secondly, the rejection method requires careful

selection of the bounding density to guarantee a decent acceptance rate, due to

the heavy tail of the distribution (see e.g. [Ross, 2002: pp. 63�72] for the two

mentioned random variable generation methods).

Note that because of its de�nition (2.8) the itd FI , also known as the equilibrium

distribution [Klugman et al., 2004: p. 53], always has a density

fI(x) :=
F (x)
EX

, x > 0. (3.8)

The existence of a monotone density function implies that e�ective numerical in-

version of the cdf is possible as explained in [Kaasik, 2009b]. Namely, the following

statement holds.

Proposition 3.4. Suppose the distribution F with support (0,∞) has a continu-
ous cdf F (x). Let u be a random number from the standard uniform distribution.
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Then the iteration process

xi+1 = xi +
µ
[
FI(xi)− u

]
F (xi)

, i = 0, 1, 2, . . .

with initial value x0 = µ(1 − u) leads to the solution of the equation FI(x) = u.

The rate of convergence is quadratic.

Proof. The proof is based on the properties of the Newton-Raphson method from

the numerical analysis, description of which is available e.g. in [Booth, 1955: pp.

148�151]. Denote g(x) := FI(x) − u and we are interested in �nding the x∗ for

which g(x∗) = 0 holds. First note that g(x) is a strictly convex function. This is

because [
FI(x)− u

]′′
=
[
−F (x)/µ

]′
> 0.

as F (x) was assumed to be continuous and support of F was assumed to be

unbounded. Iteration (3.4), which is just the Newton's method applied for this

speci�c g(x), is now guaranteed to converge for any non-negative starting point in

the left neighborhood of x∗ because we have further that g(x) > 0 and g′(x) 6= 0
for x < x∗. The starting point proposed in the statement of the theorem is the

x1 of the iteration process when the starting point is zero. As g(x) is continu-

ously di�erentiable (F (x) is continuous) and the g′(x∗) 6= 0 the quadratic rate of

convergence follows.

If u is generated from the standard uniform distribution then the root of the

equation FI(x) − u = 0 is a random number from the distribution FI [Ross,

2002: p. 63] and the proposition o�ers a possible method for simulating form the

integrated tail distribution. Because of the quadratic rate of convergence, usually

just a couple of steps are required for a good approximation of the root.

Remark 3.2. The described methodology for generating independent random

variables from the itd is universal. However, because the method is based on an

iterative algorithm, analytical inversion method remains preferable whenever it

can be used.

For the Pareto distribution the random variable generation from its itd is straight-

forward because when α > 1 we have from (2.8) by direct calculation that

FI(x) = 1− 1
(1 + x)α−1

, (3.9)
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meaning that the itd also has a Pareto distribution but with parameter α − 1.
Thus we can use the analytic inversion method.

For the simulation of the itd of Weibull distribution one can exploit the fact that

its distribution coincides with a transformed gamma random variable as shown in

[Kaasik, 2009b]. First recall the gamma function

Γ(t) =
∫ ∞

0

tk−1 exp{−y}dt

and the cdf of a gamma distribution that has the form

G(x) =
1

skΓ(k)

∫ x

0

yk−1 exp
{
−y
s

}
dy,

for x > 0 with k > 0, s > 0 respectively the shape and the scale parameter.

Proposition 3.5. The integrated tail distribution of the Weibull distribution with

parameter 0 < β < 1 is that of X1/β if X has the gamma distribution with shape

parameter 1/β and scale parameter 1.

Proof. Let FI(x) be the cdf of the itd andG(x) the cdf of a gamma random variable

with shape parameter 1/β and scale parameter 1. Then we have by calculation

that

FI(x) =

∫ x
0

exp{−yβ}dy
Γ(1 + 1

β )
=

∫ xβ
0

z
1−β
β exp{−z}dz

βΓ(1 + 1
β )

=
G(xβ)Γ( 1

β )

βΓ(1 + 1
β )

= G(xβ).

(3.10)

Simulation from the gamma distribution is usually incorporated into statistical

software, but the algorithm based on rejection sampling is also easy to implement

[Ross, 2002: pp. 69�70]

For illustrative purposes, the simulation of the itd of log-normal distribution using

the iterative generation algorithm explained in Proposition 3.4 is demonstrated

below. First we generate u from the standard uniform distribution. We know that

the mean value of the log-normal distribution introduced in the previous section
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is exp{σ2/2} (see e.g. [Balakrishnan and Nevzorov, 2003: p. 234]). Thus we can

take x0 = exp{σ2/2}(1− u). Direct calculation yields that

FI(x) = x exp{−σ2/2}Φ[(log x)/σ] + Φ[(log x)/σ − σ], (3.11)

as is con�rmed by [Asmussen and Binswanger, 1997]. We can then write the

iteration step as

xi+1 = xi +
exp{σ2/2}

[
1− xi exp{−σ2/2}Φ[(log xi)/σ]− Φ[(log xi)/σ − σ]− u

]
Φ[(log xi)/σ]

= exp{σ2/2}Φ[(log xi)/σ − σ]− u
Φ((log xi)/σ)

.

(3.12)

Example 3.1. The process of convergence when simulating the itd of the log-

normal distribution is now demonstrated for di�erent values of u from the stan-

dard uniform distribution. It is clear that when solving FI(x) − u = 0 the

largest roots will occur when u is close to zero. For simplicity, let σ = 1. Then

x0 = exp{1/2}(1−u) and the initial value of the iteration process is also decreasing
in u i.e. it gets larger when u is closer to zero. For all subexponential distribu-

tions, however, the complementary cdf tends to zero slower than any exponential,

as noted e.g. in [Sigman, 1999], thus for the inverse of the complementary cdf the

decrease is very rapid when the argument is close to zero.

Suppose �rst that u = 0.5. One can check that FI(1.132244) = 0.5. Sequential

values of the iteration process (starting from x0) are 0.82436, 1.096885, 1.131761,
1.132244, which means that the iteration process converges in three steps. Based

on the previous argumentation, in this example at least half of the random num-

bers to be generated are obtained in just three steps or less.

Now let u = 0.0001. This means that a smaller value of u is to be expected

once in every 10 000 simulations. We have FI(74.027445) = 0.0001. Now val-

ues 1.648556, 3.694176, 6.540136, 10.368623, 15.377210, 21.774585, 29.748997,
39.370493, 50.329222, 61.384745, 69.892441, 73.533508, 74.020051, 74.027444 and

74.027445 form the iteration process and thus the solution is reached in fourteen

steps.

�
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3.4. Simulating a random sum with heavy-tailed summands

Suppose we know the distribution (or can estimate the distribution) of the number

of random summands in the case of estimating ψ(u) with the help of (2.9). Then
we can begin each simulation run by generating a number from that distribution.

Then we have to simulate

γ(u) = P{X1 + . . .+Xk > u}, (3.13)

where the number of terms k is �xed.

This is the reason why in the last ten years a large variety of simulating algo-

rithms to estimate the probability (3.13), where the summands are independent

heavy-tailed random variables with distribution G, have been proposed. Because

typically u is large, we have that γ(u) is a very small probability and its accurate

estimation requires a good simulation algorithm in the sense that the simulation

error should be as small as possible. Otherwise a huge number of simulation runs

would be required. This is why the naive estimator from (1.13) is not suitable.

3.4.1. Algorithm for simulating a sum with heavy-tailed sum-

mands

Next we present an easily implementable simulation algorithm that has a bounded

relative error whenever the random variables Xi from (3.13) belong to a large sub-

class of S.

As mentioned in the beginning of the Section 3.1, variance reduction ideas based

on the mgf are not feasible in the heavy-tailed case. First asymptotically e�cient

simulation algorithm which made use of conditional Monte-Carlo was presented

in [Asmussen and Binswanger, 1997]. Later arguments arising from either infor-

mation theory as in [Asmussen et al., 2005] or arguments based on the twisting of

the hazard rate (1.6) as in [Juneja and Shahabuddin, 2002] were used. The algo-

rithm presented here was the �rst to have a bounded relative error for a sub-class

of subexponential distributions. It was presented in [Asmussen and Kroese, 2006]

and is known as the AK algorithm. The AK algorithm is also based on conditional

Monte-Carlo. Even though an alternative algorithm that has bounded relative er-
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ror for a larger sub-class of S has now been proposed in [Blanchet and Glynn,

2008], the AK algorithm still has the bene�ts of much easier implementation and

computational simplicity which we demonstrate in the following.

We note that

P(X1 + . . .+Xk > u) = kP(X1 + . . .+Xk > u,Xk = max{X1, . . . , Xk}). (3.14)

Thus we could also generate k independent random variables X1, . . . , Xk from

distribution G and set

J1 =

1, X1 + . . .+Xk > u and Xk = max{X1, . . . , Xk},

0, otherwise.
(3.15)

Now set Mk−1 = max{X1, . . . , Xk−1} and Sk−1 = X1 + . . .+Xk−1. Then we have

that

E(kJ1|X1, . . . , Xk−1) = kP(Xk > u− Sk−1, Xk > Mk−1)

= kG(max{Mk−1, u− Sk−1}),

but because

E[E(kJ1|X1, . . . , Xk−1)] = E(kJ1) = γ(u)

we have that

Q2(u) := kG(max{Mk−1, u− Sk−1}) (3.16)

is (another) unbiased estimator of γ(u).

Let us explain the idea why the estimator Q2 has very little variability in the pres-

ence of subexponential tails and large u. Using the properties of subexponential

distributions we can reason as follows. When we generate X1, . . . , Xk−1 there are

basically two likely outcomes:

1. Usually all of them are �small� and Sk−1 << u which means that we have

max{Mk−1, u− Sk−1} = u− Sk−1 and Q2(u) ≈ kG(u).

2. Sometimes one of them is �big� and then typically Sk−1 > u which means

that max{Mk−1, u − Sk−1} = Mk−1 while because of (3.6) typically also

Mk−1 > u. Then, again Q2(u) ≈ kG(u), because S ⊂ L and thus the
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probabilities P{Xk > u} and P{Xk > Mk−1|Mk−1 > u} are close for a large
u.

When we consider a random sum there are two more things to take into account.

To explain them in detail let us now consider our simulation problem (2.9), where

Zi are independent and have distribution FI , while N has a geometric distribution.

Let us develop (2.11) a bit further. We have

ψ(u) =
ρ

1 + ρ

∞∑
n=0

Fn∗I (u)
(1 + ρ)n

=
1

1 + ρ

∞∑
n=1

ρFn∗I (u)
(1 + ρ)n

=
1

1 + ρ
P{Z1 + . . .+ ZN∗ > u},

(3.17)

where

P{N∗ = n} =
ρ

(1 + ρ)n
, n = 1, 2, 3, . . . .

Implementing the AK algorithm for simulating (2.9) using N∗ as a control variate
(see e.g. [Ross, 2002: pp. 139�140]) requires the knowledge of EN∗ and (option-

ally) V ar(N∗). Distribution of N∗ coincides with Y + 1 where Y is a geometric

random variable with parameter (1 + ρ)−1 and we get from [Balakrishnan and

Nevzorov, 2003: pp. 64�66] that EN∗ = (1 + ρ)ρ−1 and V ar(N∗) = (1 + ρ)ρ−2.

Implementation of the AK algorithm can now be summarized as follows.

1. Fix the distribution FI , the value of the safety loading coe�cient ρ and u.

2. Simulate N∗ so that P(N∗ = n) = ρ(1 + ρ)−n for n ∈ {1, 2, . . .}. If N∗ = 1
put Y = (1 +ρ)−1FI(u), else simulate N∗− 1 independent random variables

from FI , calculate their maximum M and sum S and put Y = N∗(1 +
ρ)−1FI(max{M,u− S}).

3. Repeat the previous step t1−1 times and estimate the optimality constant c

for the control variate de�ned as c = −[E(Y N∗) − EY EN∗]/V ar(N∗) from
the sample of size t1 using the exact values for EN∗ and V ar(N∗) and denote
it as ĉ.

4. Simulate N∗ as in step 2, but if N∗ = 1 set Y = (1 + ρ)−1FI(u) − ĉρ−1,

else simulate N∗ − 1 independent random variables from FI , calculate their

maximum M and sum S and put Y = N∗(1 + ρ)−1FI(max{M,u − S}) +
ĉ(N∗ − (1 + ρ)ρ−1).
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5. Repeat the previous step t2 − 1 times and estimate ψ(u) as an average of

Y 's over the sample of size t2.

As noted in [Asmussen and Kroese, 2006], the AK algorithm is speci�cally con-

structed with heavy-tails in mind and its authors demonstrate its good perfor-

mance for the situations when FI is either Pareto or Weibull distribution. It

would make more sense to consider those distributions in the role of F and then

their integrated tail distributions in the role of FI . This is so because as noted in

[Asmussen and Kroese, 2006], when FI is assumed to be a Weibull distribution,

there is no corresponding original distribution F in a sense that equation (2.8)

would hold. In [Kaasik, 2009b] Pareto, Weibull and log-normal distribution are

used in the role of the original distribution F in a simulation study. The study con-

siders the relative error for di�erent combinations of ρ and u and the conclusions

are that the algorithm performs very well for the itd of Pareto and log-normal, but

no so good for the itd of Weibull when the parameter of the original distribution

is close to 1 (which is the borderline with light tails).
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Chapter 4

Ruin probability estimation when the claim

size distribution is unknown

Suppose we have observed a risk process governed by the CLM for some time.

According to (2.9), we would be able to estimate the ruin probability in the CLM

if we would know λ � the intensity of the claims and FI � the itd of the claim

size distribution. Because estimation of λ is simply a parameter estimation, e.g.

maximum likelihood can be used to obtain the reciprocal of the sample mean as

the estimate. At the same time, estimating FI is not trivial and will be the main

challenge tackled in this chapter. As noted in Remark 2.4 we can also use (2.12)
for ruin probability estimation if FI is subexponential. The latter needs to be

tested in practice.

4.1. Testing for a heavy-tail of the itd

Suppose we have iid data X1, . . . , Xn from the original distribution F and we need

to check whether use of the asymptotic approximation (2.12) for estimating the

ruin probability is justi�ed. That is, we ask the question: does FI ∈ S hold?

There are, however, no known statistical tests to check the subexponentiality of

the integrated tail distribution FI from the sample that is from the distribution

F . We could try to check some condition for F , presented in Section 3.2, to have

FI ∈ S. We could also take heart from the fact that most known heavy-tailed

distributions are included in S. Because of Proposition 3.1 we have a justi�ed

expectation that a heavy-tailed F would mean a heavy-tailed FI which in turn is

typically a member of S. Testing whether iid data are indeed from a heavy-tailed

distribution is typically judgment based.
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4.1.1. QQ-plot

A common technique is plotting the sample order statistics against quantiles of the

exponential distribution (as exponential distribution is seen as the heaviest of the

light-tailed distributions due to its constant hazard rate and mean excess of loss

function). That is, increasingly ordered data points are denoted as X(1), . . . , X(n)

and points {
X(i), H

−1

(
i

n+ 1

)}
, i = 1, . . . , n (4.1)

are plotted, where H−1 is the inverse of the exponential cdf. This way the sample

maximum X(n) forms a point with the n/(n+ 1)-th exponential quantile. Heavy-

tails are suspected when the points show concave departure from the straight line

that joins the �rst and last point plotted (see e.g. [Embrechts et al., 1997: pp.

290�294] for details). Of course, the inverse cdf need not be that of the exponential

distribution � when we know the parametric class of distributions from which the

iid data have come from, we can use that speci�c cdf in the role of H in (4.1).

This way it is possible to estimate location and scale parameters from the QQ-plot

and for example when regularly varying tails are considered (i.e. data are from

a distribution in R) one can estimate the tail index α based on the QQ-plot as

demonstrated in [Kratz and Resnick, 1996].

4.1.2. The ratio of maximum and sum

The following reasoning is taken from [Embrechts et al., 1997: pp. 309�310].

It is known that the ratio of the maximum and the sum of the iid sample converges

to zero almost surely if and only if the mean of the distribution is �nite. We

consider only positive random variables and denote

Sn(p) = Xp
1 + . . .+Xp

n, Mn(p) = max{Xp
1 , . . . , X

p
n}, (4.2)

where X1, . . . , Xn is the theoretical sample and p > 0. Then the ratio of the

maximum and sum Rn(p) = Mn(p)/Sn(p) converges to zero almost surely if and

only if the p-th moment of the distribution is �nite. This result enables us to plot

Rn(p) for di�erent positive values of p and check whether the ratio tends to zero

or not as the sample size increases. If Rn(p) deviates from zero signi�cantly for

large values of n then this can be seen as a proof that the considered moment p

does not exist and thus the distribution has a heavy-tail.
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4.1.3. Mean excess of loss plot

As discussed in Section 1.2, heavy-tailed distributions have an (eventually) increas-
ing mean excess of loss function and (eventually) decreasing hazard rate. As mean

excess of loss function is simply based on conditional expectation, its empirical

counterpart is readily available � we can plot the points{
X(i),

1
n− i

(
X(i+1) + . . .+X(n) − (n− i)X(i)

)}
, i = 1, . . . , n (4.3)

and perhaps add con�dence intervals assuming the (approximate) normality of the

conditional means.

The key why mean excess of loss plot is in some sense more informative than

the previously considered techniques is the fact that the hazard rate of the itd for

each argument x is the reciprocal of the mean excess of loss function of the original

distribution (also evaluated at x) as shown e.g. in [Klugman et al., 2004: p. 53].

This means that by checking a property of the original distribution we can be sure

that it carries over for the itd of that distribution i.e. if the mean excess of loss

function of the original distribution is eventually increasing then the hazard rate

of the itd is, in fact, eventually decreasing.

As is usually the case with functions that depend on sample mean, mean excess

of loss function is not robust in a sense that it is very sensitive to large values

of data. Heavy-tail of the underlying distribution assures that these large values

are most likely not outliers but the interpretation of the mean excess of loss plot

is more complicated nonetheless. This is why more robust alternatives like the

median excess plot described e.g. in [Rootzén and Tajvidi, 1997] can be used.

4.2. Empirical approximation of the integrated tail distribu-

tion

SupposeX1, . . . , Xn is an iid sample from the original distribution F . An empirical

cdf Fn(x) can be constructed as in (1.18) and the Glivenko-Cantelli theorem states

that

P
(

sup
x
|Fn(x)− F (x)| → 0

)
= 1. (4.4)
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Thus for a large sample Fn(x) should be good approximation for F (x). However,
our aim is to estimate itd de�ned by (2.8) which we can write as

FI(x) =

∫ x
0
F (y)dy
EX

=

∫ x
0
F (y)dy∫∞

0
F (y)dy

, x > 0. (4.5)

In view of (4.4), a natural estimator for FI(x) would be

F empnI (x) =

∫ x
0
Fn(y)dy∫∞

0
Fn(y)dy

=

∫ x
0
Fn(y)dy
µn

, x > 0, (4.6)

where µn = (X1 + . . . , Xn)/n is the theoretical sample mean. This approximation,

dubbed the empirical approximation, was analyzed in [Kaasik and Pärna, 2008]

and the following result, complementing (4.4), was proved.

Proposition 4.1. Let Xn be a sequence of independent identically distributed

positive random variables with a �nite mean µ and cumulative distribution func-

tion F with Fn its empirical counterpart. Then the following result holds

P

(
sup
x

∣∣∣∣∣
∫ x

0
Fn(y)dy
µn

−
∫ x

0
F (y)dy
µ

∣∣∣∣∣ n−→ 0

)
= 1. (4.7)

Proof. SLLN and Glivenko-Cantelli theorem hold simultaneously on a set which

has probability one. Fix an ω from that set and also �x an ε > 0. Because µ is

�nite, there exists a K > 0 such that∫ ∞
K

F (y)dy <
εµ

6
. (4.8)

Due to SLLN we have that there exist n1, n2 and n3 such that when n > n1

|µn − µ| < min{εµ
6
, µ
−1 +

√
1 + 2ε/3
2

}, (4.9)

when n > n2

|Fn(K)− F (K)| < εµ

12K
, (4.10)

and when n > n3 ∣∣∣∣∫ ∞
K

ydFn(y)−
∫ ∞
K

ydF (y)
∣∣∣∣ < εµ

12
. (4.11)
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Also, due to Glivenko-Cantelli theorem, there exists n4 such that when n > n4

sup
y
|Fn(y)− F (y)| < εµ

6K
(4.12)

holds. Thus when n > max{n1, n2, n3, n4} we have that

1
µ

sup
x

∣∣∣∣ µµn
∫ x

0

Fn(y)dy −
∫ x

0

F (y)dy
∣∣∣∣

<
1
µ

sup
x

∣∣∣∣ µµn
∫ x

0

Fn(y)dy −
∫ x

0

Fn(y)dy
∣∣∣∣+

1
µ

sup
x

∣∣∣∣∫ x

0

Fn(y)dy −
∫ x

0

F (y)dy
∣∣∣∣

(4.9)
<

ε

6
+

1
µ

sup
x

∣∣∣∣∫ x

0

Fn(y)dy −
∫ x

0

F (y)dy
∣∣∣∣

6
ε

6
+

1
µ

sup
x6K

∫ x

0

∣∣Fn(y)dy − F (y)
∣∣ dy +

1
µ

sup
x>K

∣∣∣∣∫ x

0

Fn(y)dy −
∫ x

0

F (y)dy
∣∣∣∣

(4.12)
<

ε

3
+

1
µ

sup
x>K

∣∣∣∣∫ x

0

Fn(y)dy −
∫ x

0

F (y)dy
∣∣∣∣

6
ε

3
+

1
µ

sup
x>K
|µn − µ|+

1
µ

∫ ∞
K

Fn(y)dy +
1
µ

∫ ∞
K

F (y)dy

(4.8),(4.9)
<

2ε
3

+
1
µ

∫ ∞
K

Fn(y)dy

=
2ε
3
− K

µ
Fn(K) +

1
µ

∫ ∞
K

y dFn(y)

(4.10),(4.11)
<

5ε
6

+
1
µ

∫ ∞
K

F (y)dy

(4.8)
< ε,

as required.

When we are willing to assume that the distribution of interest has �nite variance

then a stronger result than Proposition 4.1 can be proved. We �rst denote the

integrated tail process as ψn and then make some manipulations

ψn(x) :=
√
n

(∫∞
x
Fn(y)dy
µn

−
∫∞
x
F (y)dy
µ

)
=
√
n

µn

∫ ∞
x

(
Fn(y)− µn

µ
F (y)

)
dy

=
√
n

µn

∫ ∞
x

(
Fn(y)− F (y)

)
dy +

√
n

µn

∫ ∞
x

(
F (y)− µn

µ
F (y)

)
dy

=
1
µn

∫ ∞
x

√
n
(
Fn(y)− F (y)

)
dy +

1
µn
FI(x)(µ− µn).

(4.13)

47



Now we can prove the following statement.

Proposition 4.2. With the setup from Theorem 1.2 and E(X2) < ∞ we have

that

sup
x
|ψn(x)−Ψn(x)| P→ 0, (4.14)

where

Ψn(x) =
1
µ

∫ ∞
x

Bn(F (y))dy +
1
µ
FI(x)

∫ ∞
0

Bn(F (y))dy. (4.15)

Proof. The key for the proof is Theorem 1.2. Building on that while assuming the

�nite second moment, [Csörgö et al., 1986: pp. 35�37] proved that

sup
x

∣∣∣∣√n∫ x

0

(
Fn(y)− F (y)

)
dy −

∫ x

0

Bn(F (y))dy
∣∣∣∣ P→ 0. (4.16)

Now using the representation (4.13) and the de�nition of Ψn(x) we have that

sup
x
|ψn(x)−Ψn(x)| 6 sup

x

∣∣∣∣ 1
µn

∫ ∞
x

√
n
(
Fn(y)− F (y)

)
dy − 1

µ

∫ ∞
x

Bn(F (y))dy
∣∣∣∣

+ sup
x

∣∣∣∣ 1
µn
FI(x)

√
n(µ− µn)− 1

µ
FI(x)

∫ ∞
0

Bn(F (y))dy
∣∣∣∣ .
(4.17)

Hence it su�ces to show that

sup
x

∣∣∣∣ 1
µn

∫ ∞
x

√
n
(
Fn(y)− F (y)

)
dy − 1

µ

∫ ∞
x

Bn(F (y))dy
∣∣∣∣ P→ 0 (4.18)

and

sup
x

∣∣∣∣ 1
µn
FI(x)

√
n(µ− µn)− 1

µ
FI(x)

∫ ∞
0

Bn(F (y))dy
∣∣∣∣ P→ 0. (4.19)

We begin with the former. Adding and subtracting µ−1
n

∫∞
x
Bn(F (y))dy, we obtain

that

sup
x

∣∣∣∣ 1
µn

∫ ∞
x

√
n
(
Fn(y)− F (y)

)
dy − 1

µ

∫ ∞
x

Bn(F (y))dy
∣∣∣∣

6
1
µn

sup
x

∣∣∣∣∫ ∞
x

√
n
(
Fn(y)− F (y)

)
dy −

∫ ∞
x

Bn(F (y))dy
∣∣∣∣

+
∣∣∣∣ 1
µn
− 1
µ

∣∣∣∣ sup
x

∣∣∣∣∫ ∞
x

Bn(F (y))dy
∣∣∣∣ .

(4.20)

As (µn)−1 tends to µ−1 <∞ almost surely due to the SLLN, we can make use of
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(4.16) twice to see that the �rst summand converges to zero in probability. For

the second summand we note that the random variable

sup
x

∣∣∣∣∫ ∞
x

Bn(F (y))dy
∣∣∣∣ (4.21)

has the same distribution for all n because the integrands are all Brownian bridges.

Also, as shown in [Csörgö et al., 1986: p. 35], �nite second moment implies that

(4.21) is �nite almost surely. Thus the second summand from (4.20) converges to

zero in probability by Slutsky theorem (and the fact that for a constant limit con-

vergence in probability is equivalent with convergence in distribution) as µ−1
n −µ−1

tends to zero almost surely (and hence also in distribution). Thus we do indeed

have (4.18).

Proving (4.19) is similar. We �rst note that

sup
x

∣∣∣∣ 1
µn
FI(x)

√
n(µ− µn)− 1

µ
FI(x)

∫ ∞
0

Bn(F (y))dy
∣∣∣∣

6 sup
x

∣∣FI(x)
∣∣ ∣∣∣∣ 1
µn

√
n(µ− µn)− 1

µ

∫ ∞
0

Bn(F (y))dy
∣∣∣∣

=
∣∣∣∣ 1
µn

√
n(µ− µn)− 1

µ

∫ ∞
0

Bn(F (y))dy
∣∣∣∣ ,

(4.22)

but the latter is a special case of (4.18) as the empirical and actual mean can be

represented as an improper integral of Fn and F , respectively, and thus (4.19) also

holds.

One of the the practical meanings of Proposition 4.2 is the fact that for large n it

allows us to estimate

P{|F empnI (x)− FI(x)| > ε} (4.23)

as

P
{
n−1/2

∣∣∣∣ 1µ
∫ ∞
x

Bn(F (y))dy +
1
µ
FI(x)

∫ ∞
0

Bn(F (y))dy
∣∣∣∣ > ε

}
. (4.24)

It is known that

P(sup
x
|F (x)− Fn(x)| > ε) 6 2e−2nε2 , (4.25)
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as proved in [Dvoretzky et al., 1956] and [Massart, 1990]. This kind of result en-

ables us to construct a �con�dence tube� for the whole distribution function Fn(x)
such that with high probability the actual cdf F (x) lies inside this tube for all

values of x. We can deduce from (4.25) that when the sample size n increases, the

radius of the tube (so that it would still include the original cdf with that high

(�xed) probability) decreases as 1/
√
n. Simulations in [Kaasik and Pärna, 2008]

show that the rate of convergence in (4.7) is also of the order 1/
√
n for subexpo-

nential distributions as is also suggested by Proposition 4.2. However this rate is

not achieved instantly � for very heavy tails the rate is extremely slow at �rst. This

means that a huge sample size may be needed to achieve a decent approximation

for the cdf F (x) when using the empirical approximation.

Serious issue with the empirical approximation (4.6) arises in practice, however,

when we would like to use it for ruin probability estimation. The estimator Q2

de�ned in (3.16) typically uses the complementary cdf of the itd for large argument

values that are comparable with the size of initial capital u as explained in Section

3.4. For such arguments the value of the complementary cdf of the itd might

perhaps be in the region of 10−4 . . . 10−6 and it would require an outrageously

large sample size to provide a con�dence tube that would be meaningful for this

part of the complementary cdf. For example, in [Kaasik and Pärna, 2008] the

95% con�dence tubes produced (using repetitive simulation) had the radius in the

region of 10−2 . . . 10−3 when the sample size was 100 000. Thus, at least for the

large argument values, a better approximation technique for the cdf of the itd is

required.

4.3. GPD approximation of the integrated tail distribution

The idea of using the GPD as an approximation of the conditional distribution of

the claim sizes and this way proceeding to the approximation of the distribution

function of the itd was introduced in [Kaasik, 2009a]. The theoretical foundations

are as follows. Suppose a positive random variable X with distribution F that has

�nite mean and support (0,∞) satis�es the EV condition (1.10). Then, according

to Theorem 1.1, there exist ξ ∈ [0, 1) and positive function σ(u) such that

lim
u→∞

sup
x>0
|Fu(x)−Gξ,σ(u)(x)| = 0, (4.26)
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holds with Fu(x) de�ned as in (1.7). Now if X1, . . . , Xn is an independent sample

from F we can set the threshold u at a high level, and form a new sample for

the estimation of the parameters of the GPD. Namely suppose that #{Xi : Xi >

u} = N and let Θu = {i : Xi > u} be the set of indexes i for which Xi > u. Now

set Yj = Xj∗ − u for all j ∈ Θu, where Xj∗ is the member of the original sample

whose index is j-th in the set Θu, thus forming a new sample of size N which we

call the sample of exceedances. If ξ̂ and σ̂ are estimates of the GPD parameters

based on the sample Y1, . . . , YN then we can assume that for y > 0 we have

F (u+ y) = F (u)Fu(y) ≈ N

n

(
1 +

ξ̂y

σ̂

)−1/ξ̂

, (4.27)

as N/n should be close to F (u). When (4.27) holds as an equality, the following

statement from [Kaasik and Pärna, 2009] holds, essentially saying that the tail of

the itd has GPD form if this is true for the original distribution.

Proposition 4.3. Let X be a non-negative random variable with distribution F

that has support (0,∞). If there exists u > 0 such that the conditional distribution
of X − u given that X > u has a general Pareto distribution (that is Fu(x) =
Gξ,σ(x) holds for all x with ξ ∈ [0, 1) and σ > 0), then for every y > 0 it holds

that

FI(u+ y) =
F (u)σ∗Gξ∗,σ∗(y)

E(X|X 6 u)F (u) + (u+ σ∗)F (u)
, (4.28)

where σ∗ = σ/(1− ξ) and ξ∗ = ξ/(1− ξ).

Proof. Let us start analyzing the numerator of (4.28). We can write

FI(u+ y) =

∫∞
u+y

F (z)dz

EX
=

∫∞
y
F (u)Fu(z)dz

EX
=
F (u)

∫∞
y
Gξ,σ(z)dz

EX
(4.29)

as Fu(x) = Gξ,σ(x) for all x. Now suppose �rst that ξ ∈ (0, 1) so that 1/ξ ∈ (1,∞)
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and we have for all y > 0 that

∫ ∞
y

Gξ,σ(z)dz =
∫ ∞
y

(
1 +

ξz

σ

)−1/ξ

dz =
σ

ξ

∫ ∞
y

(
1 +

ξz

σ

)−1/ξ

d

(
1 +

ξz

σ

)
=
σ

ξ

(
−1
ξ

+ 1
)(

1 +
ξz

σ

)−1/ξ+1 ∣∣∣∣∞
y

=
σ

ξ

(
1
ξ
− 1
)(

1 +
ξy

σ

)−1/ξ+1

=
σ

1− ξ

(
1 +

ξy

σ

)−(1−ξ)/ξ

= σ∗
(

1 +
ξ∗y

σ∗

)−1/ξ∗

= σ∗Gξ∗,σ∗(y)

(4.30)

by making use of the fact that the ratio of ξ and σ is equal to the ratio of ξ∗ and

σ∗ by de�nition. If instead ξ = 0, then∫ ∞
y

Gξ,σ(z)dz =
∫ ∞
y

exp
(
− z
σ

)
dz = −σ

∫ ∞
y

exp
(
− z
σ

)
d
(
− z
σ

)
= −σ exp

(
− z
σ

) ∣∣∣∣∞
y

= σ exp
(
− y
σ

)
= σ∗ exp

(
− y

σ∗

)
,

(4.31)

because 1 − ξ = 0 and thus σ = σ∗ and ξ = ξ∗. Now we switch our attention to

the denominator of (4.28). First we write the expectation as

EX = E(X|X 6 u)F (u) + E(X|X > u)F (u). (4.32)

Then we have E(X|X > u) = u + E(X − u|X > u). Noting that the conditional

random variable X − u|X > u has a GPD with mean σ/(1− ξ) as pointed out in

Section 1.3 completes the proof.

Remark 4.1. The expression in the denominator of (4.28) is in fact basis for

an estimator for the mean that was introduced in [Johansson, 2003]. Initially it

might seem, as if we could use another type of estimator for EX, e.g. sample mean.

However, if we would like to use the GPD as an approximation for the right tail of

F in the numerator of (4.29) then it must be also used in the denominator because

of (4.5), as otherwise we would not have a guarantee that the approximation would

behave like a distribution function in terms of its value range.

The following result describes a natural estimator for the denominator of (4.28).

Proposition 4.4. Denote M = E(X|X 6 u)F (u) + (u+ σ∗)F (u) with threshold

u > 0 �xed and suppose we have an independent sample X1, . . . , Xn from the
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distribution F . If σ̃∗ is an unbiased estimator of σ∗ that is uncorrelated with N ,

the size of the sample of exceedances Y1, . . . , YN , then

M̂ =
∑n
i=1Xi −

∑N
i=1 Yi + σ̃∗N

n
(4.33)

is an unbiased estimator of M .

Proof. Because of the de�nition of sample of Y -s we can rewrite the proposed

estimator as

M̂ =

∑
i:Xi6u

Xi +
∑
i:Xi>u

Xi −
∑
i:Xi>u

Xi +Nu+Nσ̃∗

n

=

∑
i:Xi6u

Xi

n
+ (u+ σ̃∗)

N

n
.

(4.34)

It holds that

EX = E(XI{X6u})+E(XI{X>u}) = E(X|X 6 u)F (u)+E(X|X > u)F (u) (4.35)

and thus
∑
iXiI{Xi6u}/n =

∑
i:Xi6u

Xi/n and
∑
iXiI{Xi>u}/n =

∑
i:Xi>u

Xi/n

are respective unbiased estimators. Also, EI{X>u} = F (u) has an unbiased esti-

mator in
∑
i I{Xi>u}/n = N/n which is uncorrelated with σ̃∗ by the assumption.

Hence

M̂ = E
[∑

i:Xi6u
Xi

n
+ (u+ σ̃∗)

N

n

]
= E(X|X 6 u)F (u) + (u+ σ∗)F (u) = M,

(4.36)

as stated.

As typically (4.27) does not hold as an equality for any �nite u, and thus it would

be important to know whether approximating with the GPD should provide good

results. If we suppose �rst that ξ ∈ (0, 1) then we can recall from Section 1.3 that

necessarily F ∈ R−α, with 1/ξ = α ∈ (1,∞). But then according to Karamata's

theorem (see e.g. [Embrechts et al., 1997: p. 567]) the integral of the complemen-

tary cdf is again regularly varying and FI ∈ R−α+1. So the EV condition (1.10)

is once again satis�ed (this time for FI) and Theorem 1.1 is applicable.

Previous paragraph also gives us another possible idea how to check the heavy-

tailedness (actually, even subexponentiality) of the itd in addition to the ap-

proaches discussed in Section 4.1.
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Corollary 4.1. Suppose a distribution F satis�es EV condition (1.10) with 0 <
ξ < 1. Then FI ∈ S

Proof. According to the previous reasoning EV condition with 0 < ξ < 1 would

mean that FI ∈ R−α1 with α1 = (1 − ξ)/ξ. But regularly varying distributions

are subexponential as noted in Section 1.2.

Thus we can estimate the GPD parameters based on the sample of exceedances

and check whether ξ is positive (e.g. on the basis of a con�dence interval) to check

whether FI ∈ S. Several statistical tests for testing ξ > 0 are also available and

described in [Neves and Alves, 2008]. However, in such tests the null hypothesis

is typically ξ = 0 which does not rule out a heavy tail.

Now suppose ξ = 0. We can argue that in (4.29) where we need the assumption of

the exact GPD tail (i.e. Fu(x) = Gξ,σ(x) for all x > 0) the question is essentially

about the di�erence between the two integrals
∫∞
y
Fu(z)dz and

∫∞
y
Gξ,σ(z)dz. The

following result from [Kaasik, 2009a] holds.

Proposition 4.5. Suppose that for a positive random variable with distribution

F the EV condition (1.10) holds with ξ = 0. Let a(x) be the mean excess of loss

function, de�ned in (1.5), of that random variable. If there exist an u0 and K such

that for u > u0 we have

Fu(ya(u)) < Fu0(ya(u0)) (4.37)

for all y > K, then it also holds that
∫∞
x
Fu(ya(u))dy converges uniformly to∫∞

x
Gξ,1(y)dy and

sup
x>0

∣∣∣∣∫ ∞
x

Fu(y)dy −
∫ ∞
x

Gξ,a(u)(y)dy
∣∣∣∣ = o(a(u)), (4.38)

where a(x) is the mean excess of loss function of F .

Proof. By the assumption

lim
u→∞

sup
x>0
|Fu(xa(u))−Gξ,1(x)| = 0 (4.39)

holds with ξ = 0. Denote fu(x) :=
∫∞
x
Fu(ya(u))dy and g(x) :=

∫∞
x
Gξ,1(y)dy,

where x > 0. Function g(x) is well-de�ned (it is a cdf of an exponential distribution
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multiplied by a constant) as is fu(x) for every positive u, because

∫ ∞
x

Fu(ya(u))dy =
∫ ∞
x

F (u+ ya(u))dy
F (u)

=

∫∞
u+xa(u)

F (z)dz

a(u)F (u)

=

∫∞
u+xa(u)

F (z)dz∫∞
u
F (z)dz

6 1

(4.40)

by using a change of variables and the mentioned representation of the mean

excess of loss function. The existence of such u0 and K that (4.37) holds for all

y > K guarantees that we can construct an integrable dominating function and

thus allows the application of the dominated convergence theorem. Thus we have

lim
u→∞

fu(0) = g(0). (4.41)

thanks to (4.39). Now Sche�e lemma can be used to deduce that

lim
u→∞

∫ ∞
0

∣∣Fu(ya(u))−Gξ,1(y)
∣∣ dy = 0. (4.42)

and because

sup
x>0

∣∣∣∣∫ ∞
x

Fu(ya(u))dy −
∫ ∞
x

Gξ,1(y)dy
∣∣∣∣ 6 ∫ ∞

0

∣∣Fu(ya(u))−Gξ,1(y)
∣∣ dy, (4.43)

we have that fu(x) converges to g(x) uniformly on (0,∞). A change of variable

in (4.42) proves (4.38).

Remark 4.2. The critical assumption in Proposition 4.5 is the eventual bound-

edness (4.37). This condition can be translated to the terms of the hazard rate

h(x), de�ned in (1.6). Namely the existence of K and u0, such that when u > u0

we have ∫ u+ya(u)

u

h(t)dt >
∫ u0+ya(u0)

u0

h(t)dt (4.44)

whenever y > K. This is based on the representation of the conditional cdf as

a function of the hazard rate found e.g. in [Klugman et al., 2004: p. 52]. With

a(x) eventually increasing and h(x) eventually decreasing it is somewhat more

intuitive to assume that we can choose a large enough K so that the domain of

integration in the left-hand side of (4.44) grows fast enough to o�set the decrease

of the integrand as the argument increases.
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Corollary 4.2. The statements of Proposition 4.5 would continue to hold if the

assumption of the existence of constants u0 and K would be replaced by an as-

sumption of the existence of constants u∗0 and K∗ such that for every u1 and u2

for which u1 > u2 > u∗0 holds we have

Fu1(ya(u1)) > Fu2(ya(u2)) (4.45)

for y > K∗.

Proof. This new assumption means that the convergence of Fu(a(u)y) to a com-

plementary cdf of a GPD is monotone (in the tail part) and monotone convergence

theorem is applicable, thus (4.41) still holds and the proof of Proposition 4.5 can

be repeated.

4.4. Selections for the GPD approximation

Before comparing the performance of the approximation (4.6) and the one based on

(4.28) it is worth noting that while the former is a non-parametric approximation,

the latter is a semi-parametric one and decisions about method of inference have

to be made. Even more, the GPD approximation will only be used for a tail region

starting from some threshold value u. If u is too low then (4.27) is not reliable

while higher threshold clearly reduces the size of the sample of exceedances. This

aspect is known as the bias versus variance trade-o� from [Smith, 1987].

4.4.1. Threshold selection

A variety of judgment based threshold selection techniques are available. Most

common of them are presented e.g. in [Coles, 2001: pp. 78�84]. For example,

the fact that a GPD has a linear mean excess of loss function [Embrechts et al.,

1997: p. 165] is the basis of the technique which selects the appropriate threshold

value u as the smallest point after which the empirical mean excess of loss plot

is approximately linear. The decision of whether an empirical residual life plot is

approximately linear from some point onwards (taking into account the con�dence

intervals) cannot be easily automated and the concerns about lack of robustness,

mentioned in Section 4.1, are also present. An automatic threshold selection al-

gorithm is presented in [Dupuis, 1999] but the author's practical experience has

shown that the algorithm lacks in stability.
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One straightforward approach for threshold selection can be described as follows.

When the conditional tail of F has a GPD for some large u then for any larger

threshold the distribution is once again a GPD with the same shape parameter

ξ (but a di�erent scale parameter σ). Thus we could decrease the sample of ex-

ceedances and every time estimate the GPD parameters. Threshold u can then be

selected thresholds after which the estimate of the parameter ξ remains constant.

This approach is used e.g. in [Kaasik and Pärna, 2009]. Parameter estimates

are complemented with the respective con�dence intervals. One of the improve-

ments of this approach is the ease of automation which is important when the

performance of the GPD approximation is tested using simulation.

4.4.2. Parameter estimation methodology

The classical tool for inference � maximum likelihood (ML) method � can be used

for the estimation of the GPD parameters. That is, the log-likelihood

`(ξ, σ) = log
N∏
i=1

[
1
σ

(
1 +

ξ · Yi
σ

)−(1+ξ)/ξ
]

= log
1
σN

+
N∑
i=1

log
(

1 +
ξ · Yi
σ

)−(1+ξ)/ξ

=−N · log σ −
(

1 + ξ

ξ

) N∑
i=1

log
(

1 +
ξ · Yi
σ

)
,

(4.46)

where Y1, . . . , YN is the sample of exceedances, is numerically maximized for ξ and

σ (with possible constraints arising from De�nition 1.9) yielding the estimates for

the GPD parameters. Once again the case ξ = 0 can be considered as a limit.

As mentioned in [Smith, 1987], the ML estimators are asymptotically normal for

ξ > −1/2 which is likely to be satis�ed for the typical claim size distributions

(in our case the assumption is ξ ∈ [0, 1)). While asymptotically e�cient the ML

estimator might not be the best candidate for small samples. There is a multitude

of possible estimators for estimating the shape parameter ξ which are summarized

in [Embrechts et al., 1997: pp. 327�340]. Another estimator for both of the

GPD parameters is the method of probability-weighted moments (PWM) from

[Hosking and Wallis, 1987] for which the asymptotic normality can be established

when ξ 6 1/2. The method of PWM is based on equating the empirical and

theoretical linear combinations of L-moments (of a given distribution) as described

57



in [Hosking, 1990]. Because L-moments themselves are linear functions of the data,

estimators deduced this way are typically more robust than the ones based on the

conventional method of moments. Let X have a GPD with parameters σ and ξ.

In the GPD context the method of PWM equates

E (X) =
σ

1− ξ
(4.47)

and

E
[
XGσ,ξ(X)

]
=

σ

2(2− ξ)
, (4.48)

with respective unbiased empirical estimators that are sample mean and

1
n

n∑
j=1

n− j
n− 1

X(j). (4.49)

Unbiasedness of the latter was shown in [Greenwood et al., 1979]. In practice,

asymptotically equivalent empirical estimators are used as e.g. in [Hosking and

Wallis, 1987] it is advised to use

1
n

n∑
j=1

n− j + 0.35
n

X(j) (4.50)

instead of (4.49).

As demonstrated in [Hosking and Wallis, 1987], PWM estimators can perform bet-

ter than ML estimators when the sample size is not very large. Because typically

the threshold value will be set as high as possible, the size of the sample of ex-

ceedances is not very large and thus the small sample properties are more crucial

than the asymptotic results. Even though the method of PWM can sometimes

produce non-sensible parameter estimates (i.e. data lies outside of the support of

the distribution de�ned by the parameter estimates), this problem is unlikely in

our case when ξ is non-negative as shown in [Castillo and Hadi, 1997].

Another important concern is that we have assumed that the data are from a

distribution which satis�es the EV condition (1.10) with ξ ∈ [0, 1) and thus not

all values obtained in the estimation process are suitable. We can overcome this

obstacle as follows. Suppose �rst that we obtain the point estimate of ξ that is
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negative. Then we set ξ = 0 and maximizing the log-likelihood `(0, σ) from (4.46)

which is

−N · lnσ − 1
σ

N∑
i=1

Yi, (4.51)

leads to the estimator

σ̂ =
N∑
i=1

Yi/N. (4.52)

In the case of ξ = 0 the estimator M̂ in (4.33) has a simple form.

Corollary 4.3. Suppose ξ = 0 and we use estimator σ̂ from (4.52) to estimate

σ∗, that is σ̃∗ = σ̂ in (4.33). Then M̂ =
∑n
i=1Xi/n.

Proof. We write

M̂ =
∑n
i=1Xi −

∑N
i=1 Yi + σ̃∗N

n
=
∑n
i=1Xi −

∑N
i=1 Yi +N

∑N
i=1 Yi/N

n

=
∑n
i=1Xi

n
.

(4.53)

Now if instead the point estimate of ξ is greater or equal than one then we can �x

a small ε > 0 and set ξ = 1− ε. A new estimate for σ is obtained as

arg max
σ>0

`(1− ε, σ) (4.54)

in the ML context. When using the method of PWM, (4.54) is not used. Instead

a single equation is produced that equates the mean of the sample of exceedances

with the mean of the GPD yielding an estimator

ε

N∑
i=1

Yi/N. (4.55)

4.5. Asymptotic distribution of the GPD parameter esti-

mates

As stated in the previous section, GPD parameter estimators are asymptotically

normal if the actual value ξ is in a suitable region. In our case a function of these

parameters is the object of interest as we want to estimate σ∗ = σ/(1 − ξ) and
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ξ∗ = ξ/(1 − ξ). Using the estimators of the original GPD parameters leads to

estimators that are also asymptotically normal as is made precise by the following

statements.

Proposition 4.6. Consider a vector-valued function q(x, y) = (x/(1−y), y/(1−y))
and suppose that a vector estimator (σ̇n, ξ̇n) of the true vector parameter (σ, ξ) ∈
[0,∞)× (0, 1) is asymptotically normal i.e.

√
n
(
σ̇n − σ, ξ̇n − ξ

)
d→ N (0,Σ), (4.56)

where N (0,Σ) denotes a bivariate normal distribution with zero mean and covari-

ance matrix Σ and d→ denotes convergence in distribution. Then we have

√
n
(
q(σ̇n, ξ̇n)− q(σ, ξ)

)
d→ N (0,Σq), (4.57)

where

Σq =

(
1

1−ξ
σ

(1−ξ)2

0 1
(1−ξ)2

)
Σ

(
1

1−ξ 0
σ

(1−ξ)2
1

(1−ξ)2

)
. (4.58)

Proof. The statement of the proposition is a direct application of the delta method

(see e.g. [Bilodeau and Brenner, 1999: p. 79]) for the speci�c case when the

function applied to the estimator is q. The matrix of partial derivatives of q

valued at (σ, ξ) is precisely (
1

1−ξ
σ

(1−ξ)2

0 1
(1−ξ)2

)
,

as can be easily veri�ed. As the partial derivatives are all continuous for (σ, ξ) ∈
[0,∞)× (0, 1), delta method is applicable.

Proposition 4.7. Let σ̂ and ξ̂ be the ML estimators and σ̌ and ξ̌ the PWM

estimators of the GPD parameters σ ∈ [0,∞) and ξ ∈ (0, 1). Then

√
n

 σ̂
1−ξ̂
− σ

1−ξ
ξ̂

1−ξ̂
− ξ

1−ξ

 d→ N (0,ΣML), (4.59)

with

ΣML =
1 + ξ

(1− ξ)4

(
(1− ξ)2(1 + ξ)− 2(1− ξ)σ2 + 2σ4 2σ3 − σ(1− ξ)

2σ3 − σ(1− ξ) 2σ2

)
. (4.60)
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If ξ < 1/2, then
√
n

(
σ̌

1−ξ̌ −
σ

1−ξ
ξ̌

1−ξ̌ −
ξ

1−ξ

)
d→ N (0,ΣPWM ), (4.61)

with

ΣPWM =
1

C4(ξ)

(
C1(ξ) + 2σ2C2(ξ) + σ4C3(ξ) σC2(ξ) + σ3C3(ξ)

σC2(ξ) + σ3C3(ξ) σ2C3(ξ)

)
, (4.62)

where

C1(ξ) = (1− ξ)3(2− ξ)2(1− ξ + 2ξ2),

C2(ξ) = (1− ξ)(2− ξ)(2− 6ξ + 7ξ2 − 2ξ3),

C3(ξ) = 7− 18ξ + 11ξ2 − 2ξ3,

C4(ξ) = (1− ξ)4(1− 2ξ)(3− 2ξ).

Proof. The proof is an application of Proposition 4.6 and utilizes the facts that

when ξ > −1/2 we have that

√
n

(
σ̂ − σ
ξ̂ − ξ

)
d→ N (0,Σ1), (4.63)

where

Σ1 = (1 + ξ)

(
(1 + ξ) −σ
−σ 2σ2

)
(4.64)

and when ξ < 1/2 we have that

√
n

(
σ̌ − σ
ξ̌ − ξ

)
d→ N (0,Σ2), (4.65)

where

Σ2 =
1

(1− 2ξ)(3− 2ξ)

(
C1(ξ)
(1−ξ)2

σC2(ξ)
1−ξ

σC2(ξ)
1−ξ σ2C3(ξ)

)
, (4.66)

from [Smith, 1987] and [Hosking and Wallis, 1987], respectively.
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Chapter 5

Simulation study

Suppose we have an independent sample X1, . . . , Xn from the distribution F and

we wish to estimate the cdf of the itd of F (that is FI(x)). We have assumed that

the support of the (theoretical) itd is (0,∞) but it is immediately clear that the

approximations proposed in the previous chapter have certain limitations. The

empirical approximation F empnI (x) de�ned in (4.6) is equal to one if x > X(n),

where X(n) = max{X1, . . . , Xn}. This essentially means that the approximation

cannot be used outside of the sample range which is a serious drawback. The GPD

approximation, based on (4.28) and (4.33), has the form

F gpdnI (x) =
∑n
i=1Xi −

∑N
i=1 Yi + σ∗NGξ∗,σ∗(x− u)∑n

i=1Xi −
∑N
i=1 Yi + σ∗N

, x > u, (5.1)

where Y1, . . . , YN is the sample of exceedances (when the threshold value is u),

G(x) is the cdf of a GPD distribution and σ∗ = σ/(1 − ξ) and ξ∗ = ξ/(1 − ξ)
are given the values according to the point estimates obtained for σ and ξ using

the sample of exceedances. Thus the GPD approximation is less than one for

x > X(n), but it is not de�ned for x < u. This means that it is only reasonable to

compare the two approximations in the region (u,X(n)), which will be our aim in

this chapter. If the results favor the GPD approximation then it seems natural to

make use of them both to produce a combined approximation with support (0,∞).

5.1. Methodology of comparison

The following methodology and some of the results are presented in [Kaasik and

Pärna, 2009]. Fix n and let x1, . . . , xn be the simulated sample from F , which
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in sorted form is denoted as x(1) < . . . < x(n). Our �rst concern is to specify a

threshold u for the GPD approximation. A natural choice for u is the minimum

of thresholds after which the shape parameter ξ of the GPD remains constant as

explained in Section 4.4. Let us build a sequence of candidate thresholds {ui} as
follows. Assume that it is not reasonable to have more than 300 or less than 20
members in the sample of exceedances y1, . . . , yN as parameter estimation should

not be attempted using a very small sample while the GPD will surely not �t

to the sample of exceedances if that sample makes up a large part of the whole

sample. Required size for the sample of exceedances is guaranteed if we require

that x(n−300) < u 6 x(n−20). Then we split the interval (x(n−300), x(n−20)) of

length L into 200 subintervals using cutting points

ui = x(n−300) +
(i− 1)L

200
, i = 1, . . . , 200. (5.2)

Given the sequence of candidate thresholds {ui} we �rst estimate, using some pre-

speci�ed methodology, the GPD parameters based on the sample of exceedances

with the largest threshold u200 and obtain a point estimate of ξ (which we denote as

ξ200) and its standard error (which we denote as sξ200). We �x a k > 0 and produce
a con�dence interval for ξ as (ξl200, ξ

u
200) = (ξ200− ksξ200 , ξ200 + ksξ200). After that

we form another interval (ξl, ξu), where ξl = max{ξl200, 0} and ξu = min{ξu200, 1}
and start a cycle with i = 1 as follows.

1. Set u200−i as the threshold value to �nd the sample of exceedances and �nd

the con�dence interval (ξl200−i, ξ
u
200−i) for ξ analogously as before.

2. Set ξl = max{ξl, ξl200−i} and ξu = min{ξu, ξu200−i}.

3. If ξu < ξl then break the cycle and select u200−i+1 as the threshold value

that will be used in the simulations, otherwise restart the cycle with i = i+1
unless i = 199 in which case break the cycle and select u1 as the threshold

value that will be used in the simulations.

Estimation of the GPD parameters and con�dence interval estimation is carried

out using the tools in [Coles, 2006] when the method of ML is used and those of

[McNeil, 2008] when the method of PWM is used. For the latter case the thresh-

old value is still selected according to the standard errors provided by maximum

likelihood as the asymptotic normality for parameter estimates has not been es-

tablished for the method of PWM when ξ > 0.5 and the con�dence intervals based

on bootstrap techniques are reported to provide unreliable con�dence intervals for
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the GPD parameters as reported by [Tajvidi, 2003]. The con�dence intervals pro-

duced by the tools used are based on (4.63) and (4.65), respectively.

The error of an approximation is de�ned as the mean relative error of the approx-

imation in terms of the complementary cdf. That is, if the actual integrated tail

distribution has a complementary cdf FI(x) then we are interested in the random

variables

Aempnk =
1

X(n) − u

∫ X(n)

u

|F empnI (x)− FI(x)|
FI(x)

dx (5.3)

and

Agpdnk =
1

X(n) − u

∫ X(n)

u

|F gpdnI (x)− FI(x)|
FI(x)

dx, (5.4)

where k is the constant from the previously explained threshold selection algo-

rithm. More speci�cally we will be estimating P(Agpdnk < Aempnk ) for di�erent

values of k and n for our model distributions. Each estimate is based on 1000 repli-
cations and is complemented with 95% con�dence intervals based on the normal

approximation. The model parameters in the tables are of the original distribution

F from which the integrated tail distribution is formed.

5.2. Simulation results for the initial approximations

5.2.1. Pareto case

Simulation results for the Pareto case presented in the Tables 5.1 and 5.2 seem

to suggest the superiority of the extreme value approximation F gpdnI (x) in the

upper part of the sample range. Of course, as for the Pareto distribution the

integrated tail distribution is also Pareto which in turn is included in the class of

generalized Pareto distributions, it comes as a little surprise that the performance

of the proposed approximation based on the GPD is solid. It is also intuitive that

as we increase the value of k and the size of the sample of exceedances grows,

the parameter estimation process gives us more precise results (which for the

Pareto distribution are free from the bias that usually arises because the tail is

only approximately distributed as the GPD). However even for the smallest used

constant value k = 1/4, the empirical approximation is typically outperformed.

This is even more so when the method of PWM is used for parameter estimation.
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The di�erence is not so strong as reported in the results of [Kaasik, 2009a], however

there the supremum error was considered and the methodology was also somewhat

di�erent as the automatic threshold selection was not used and in each replication

the sample of exceedances consisted of a pre-speci�ed (�xed) number of members.

The impression that the GPD approximation, when the basis of inference is the

method of PWM, seems to perform better for heavier tails (smaller values of α

in the Pareto distribution context), however, was also apparent in the previously

mentioned article.

Table 5.1: P̂(Agpdnk < Aempnk ) in the Pareto case with ML

α n k = 1/4 k = 1/2 k = 1 k = 2
1.5 1000 0.584±0.031 0.563±0.031 0.625±0.030 0.696±0.029

10000 0.545±0.031 0.548±0.031 0.602±0.030 0.678±0.029
100000 0.545±0.031 0.578±0.031 0.615±0.030 0.686±0.029

2.5 1000 0.596±0.030 0.574±0.031 0.640±0.030 0.684±0.029
10000 0.590±0.030 0.558±0.031 0.606±0.030 0.658±0.029
100000 0.579±0.031 0.574±0.031 0.630±0.030 0.664±0.029

Table 5.2: P̂(Agpdnk < Aempnk ) in the Pareto case with PWM

α n k = 1/4 k = 1/2 k = 1 k = 2
1.5 1000 0.834±0.023 0.806±0.025 0.783±0.026 0.832±0.023

10000 0.786±0.026 0.772±0.026 0.802±0.025 0.829±0.023
100000 0.794±0.025 0.797±0.025 0.799±0.025 0.792±0.025

2.5 1000 0.676±0.029 0.670±0.029 0.701±0.028 0.740±0.027
10000 0.672±0.029 0.625±0.030 0.702±0.028 0.749±0.027
100000 0.697±0.028 0.666±0.029 0.685±0.029 0.716±0.028

5.2.2. Weibull case

Things are a little di�erent when the Weibull case is considered. The results

presented in Tables 5.3 and 5.4 show that when the threshold value is set too high

i.e. for big values of k the GPD no longer has an advantage over the empirical

approach. When the overall sample size is in the region of thousand elements

then even a small value of k can cause the situation where the bias introduced

by approximating the conditional tail distribution with the GPD is big enough

to cause the GPD approximation to give poor results. This is especially true for

heavier tails (smaller values of β) when the method of ML is used. The method of
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PWM seems to give better results, at least when the critical cases (small overall

sample size and thus a relatively low threshold) are concerned. The di�erences

from the results in [Kaasik, 2009a] seem to suggest that the automatic threshold

selection using the ML method for producing the con�dence intervals might not be

too useful. However as previously explained, PWM based con�dence intervals are

not always available and judgement based threshold selection is out of the question

when simulation is concerned. The interesting bias-variance trade-o�, arguably

visible also in [Kaasik, 2009a], for the method of PWM is that the method performs

better for heavier tails when the samples of exceedances are small but when the

threshold is decreased the situation is reversed as the bias for the heavier tails seems

to play a bigger role while in the situation with lighter tails the improvement due

to increased information available for the parameter estimation process seems to

be more important.

Table 5.3: P̂(Agpdnk < Aempnk ) in the Weibull case with ML

β n k = 1/4 k = 1/2 k = 1 k = 2
0.25 1000 0.474±0.031 0.467±0.031 0.266±0.027 0.057±0.014

10000 0.563±0.031 0.525±0.031 0.416±0.031 0.276±0.028
100000 0.571±0.031 0.564±0.031 0.505±0.031 0.485±0.031

0.50 1000 0.596±0.030 0.544±0.031 0.502±0.031 0.307±0.029
10000 0.619±0.030 0.603±0.030 0.613±0.031 0.574±0.031
100000 0.610±0.030 0.634±0.030 0.633±0.030 0.600±0.029

0.75 1000 0.599±0.030 0.598±0.030 0.612±0.030 0.560±0.031
10000 0.575±0.030 0.608±0.030 0.623±0.030 0.645±0.030
100000 0.596±0.030 0.596±0.030 0.649±0.030 0.700±0.028

Table 5.4: P̂(Agpdnk < Aempnk ) in the Weibull case with PWM

β n k = 1/4 k = 1/2 k = 1 k = 2
0.25 1000 0.664±0.029 0.644±0.030 0.559±0.031 0.447±0.031

10000 0.671±0.029 0.585±0.031 0.566±0.031 0.450±0.031
100000 0.603±0.030 0.578±0.031 0.573±0.031 0.549±0.031

0.50 1000 0.609±0.030 0.601±0.030 0.514±0.031 0.404±0.030
10000 0.591±0.030 0.616±0.030 0.555±0.031 0.548±0.031
100000 0.579±0.030 0.616±0.030 0.603±0.030 0.607±0.030

0.75 1000 0.568±0.031 0.607±0.030 0.595±0.030 0.527±0.031
10000 0.587±0.031 0.584±0.031 0.644±0.030 0.613±0.030
100000 0.567±0.031 0.595±0.030 0.647±0.030 0.639±0.030
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5.2.3. Log-normal case

The simulation results for the integrated tail of the log-normal distribution are in

the Tables 5.5 and 5.6. The conclusions are somewhat similar to the Weibull case.

Namely the method of ML based GPD approximation is unreliable for the heavier

tails (larger values of σ). This is especially the case when the overall sample is

not very large (in thousands) while the sample of exceedances of considerable size

(in hundreds). If the sample size is very large then the issue does not seem to

exist. Again, the extreme value approach based on the PWM inference seems to

outperform the one that uses the method of ML and the dominance over the em-

pirical approximation increases with the tail weight. The probabilities are again

somewhat smaller than the ones presented in [Kaasik, 2009a]. The width of the

con�dence intervals (and the amount of di�erent experiments which roughly speak-

ing allows two con�dence intervals in every table that do not include the actual

probability) does not allow to draw clear conclusions whether there are situations

where lowering the threshold to increase the size of the sample of exceedances

pays o�. The safe option of keeping the sample of exceedances as small as possible

seems to be the rule of thumb.

Table 5.5: P̂(Agpdnk < Aempnk ) in the log-normal case with ML

σ n k = 1/4 k = 1/2 k = 1 k = 2
1 1000 0.615±0.030 0.566±0.031 0.609±0.030 0.619±0.030

10000 0.602±0.030 0.606±0.030 0.637±0.030 0.615±0.030
100000 0.609±0.030 0.631±0.030 0.643±0.030 0.625±0.030

2 1000 0.541±0.031 0.489±0.031 0.398±0.030 0.197±0.024
10000 0.559±0.031 0.541±0.031 0.506±0.031 0.430±0.031
100000 0.552±0.031 0.540±0.031 0.527±0.031 0.523±0.031

3 1000 0.465±0.031 0.363±0.030 0.205±0.027 0.088±0.018
10000 0.569±0.031 0.530±0.031 0.366±0.030 0.170±0.023
100000 0.649±0.030 0.612±0.030 0.629±0.030 0.605±0.030

Conclusions from all of the simulation results are as follows. Suppose we have an

iid sample from distribution F with size n. When we are considering estimating

the cdf of the integrated tail distribution of F for the arguments that are below

but close to the sample maximum then the extreme value approximation should be

preferred to the empirical approximation. However, the minimum sample size for

which such an idea can be considered should be in the region of 1000. The value
of the threshold, u, can be set so that number of members in the the sample of
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Table 5.6: P̂(Agpdnk < Aempnk ) in the log-normal case with PWM

σ n k = 1/4 k = 1/2 k = 1 k = 2
1 1000 0.651±0.030 0.616±0.030 0.607±0.030 0.573±0.031

10000 0.629±0.030 0.571±0.031 0.619±0.030 0.643±0.030
100000 0.619±0.030 0.621±0.030 0.646±0.030 0.602±0.030

2 1000 0.694±0.029 0.706±0.028 0.622±0.030 0.569±0.031
10000 0.709±0.028 0.648±0.030 0.625±0.030 0.613±0.030
100000 0.671±0.029 0.665±0.029 0.652±0.029 0.654±0.029

3 1000 0.837±0.023 0.849±0.022 0.812±0.024 0.728±0.028
10000 0.795±0.025 0.780±0.026 0.754±0.027 0.700±0.028
100000 0.737±0.027 0.753±0.027 0.734±0.028 0.786±0.025

exceedances is in the region of 100, and u should rather be set higher than lower.

For such sample size the method of PWM typically gives better results than the

method of ML in the estimation process of the parameters of the GPD.

The GPD approximation (5.1) is usable only for arguments that are above the

threshold value. It can be used for ruin probability estimation via (2.12) which

works with large argument values. However since the AK algorithm requires de�-

nition of the cdf on the whole interval (0,∞) the two approximations need to be

combined. In view of the simulation results, we should use the empirical approxi-

mation in the interval (0, u] and GPD approximation in the interval (u,∞).

5.3. Combined approximations of the integrated tail distri-

bution

As the cdf of an itd (2.8) is a continuous function, we expect that its approximation

also has this property. We can prove the following.

Proposition 5.1. Suppose that the estimators F empnI (x) and F gpdnI (x) have

been constructed based on the sample X1, . . . , Xn and the sample of exceedances

Y1, . . . , YN with the threshold value equal to u. Then, if ξ is estimated as zero

and the estimation of σ is based on maximum likelihood (4.52), the combined

approximation EGP1, de�ned as

F egp1nI (x) = F empnI (x)I{x6u} + F gpdnI (x)I{x>u}, (5.5)
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is continuous.

Proof. The proof begins by noting that the empirical approximation can also be

written out with the help of the sample of exceedances. Namely

F empnI (u) =
∑n
i=1Xi −

∑N
i=1 Yi∑n

i=1Xi
, (5.6)

as pointed out in [Asmussen and Klüppelberg, 1996]. From the other side, since

ξ = 0 and σ = σ∗ =
∑N
i=1 Yi/N we have that

lim
x→u+

F gpdnI (x) = lim
x→u+

∑n
i=1Xi −

∑N
i=1 Yi + σ∗NGξ∗,σ∗(x− u)∑n

i=1Xi −
∑N
i=1 Yi + σ∗N

=
∑n
i=1Xi −

∑N
i=1 Yi∑n

i=1Xi

(5.7)

because the cdf of a GPD, denoted by G, is continuous and equal to zero for

non-positive arguments. As the empirical approximation and the extreme value

approximation are both continuous, so is the combined approximation.

In general, however, when the method of ML is used there is no guarantee that

the cdf F egp1nI (x) that is de�ned in (5.5) is continuous thus making this combined

approximation problematic in practice. A possible solution can be given using the

conditional distribution. As we can write

F gpdnI (x) =
σ∗NGξ∗,σ∗(x− u)∑n

i=1Xi −
∑N
i=1 Yi + σ∗N

, x > u, (5.8)

we might also deduce that the conditional distribution has the form

F gpdnIu (y) =
F gpdnI (u+ y)

F gpdnI (u)
= Gξ∗,σ∗(y) (5.9)

when y > 0. Now we can de�ne a combined approximation EGP2 with

F egp2nI (x) = F empnI (x)I{x6u} +
[
1− F empnI (u)Gξ∗,σ∗(x− u)

]
I{x>u} (5.10)

which is continuous regardless of the method used for parameter estimation of the

GPD because

lim
x→u+

Gξ∗,σ∗(x− u) = 1.
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When the method of PWM is used for parameter estimation then F egp1nI (x) is

continuous as well because of the following statement.

Proposition 5.2. Suppose that the estimators F empnI (x) and F gpdnI (x) have

been constructed based on the sample X1, . . . , Xn and the sample of exceedances

Y1, . . . , YN with the threshold value equal to u. Then if the estimation of GPD

parameters is based on the method of PWM we have that

F egp1nI (x) = F egp2nI (x). (5.11)

Proof. Based on the de�nitions (5.5) and (5.10) we just have to check whether

1− F empnI (u)Gξ∗,σ∗(x− u) = F gpdnI (x) (5.12)

holds for all x > u when the parameters are of the GPD are estimated using the

method of PWM. Using (5.6) and some simple algebra we see that the left-hand

side of (5.12) is equal to∑n
i=1Xi −

∑N
i=1 YiGξ∗,σ∗(x− u)∑n
i=1Xi

. (5.13)

The right-hand side is given by (5.1). If we suppose that σ∗ =
∑N
i=1 Yi/N then

we would have

F gpdnI (x) =
∑n
i=1Xi −

∑N
i=1 Yi +

∑N
i=1 YiGξ∗,σ∗(x− u)∑n

i=1Xi −
∑N
i=1 Yi +

∑N
i=1 Yi

=
∑n
i=1Xi −

∑N
i=1 YiGξ∗,σ∗(x− u)∑n
i=1Xi

,

as required. The fact that we indeed do have σ∗ =
∑N
i=1 Yi/N for the method

of PWM is due to the fact that σ∗ = σ/(1 − ξ) is the mean of the GPD while∑N
i=1 Yi/N is the mean of the sample of exceedances and for PWM the �rst equa-

tion for parameter estimation is obtained by equating the theoretical and sample

mean as in the classical method of moments.

5.4. Numerical comparison of the combined approximations

In the previous section two combined approximations were introduced � EGP1 and

EGP2 de�ned by (5.5) and (5.10) respectively � which give identical results for
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arguments that are below the threshold value but typically di�er in the tail part

when maximum likelihood is used for parameter estimation. As was seen previ-

ously, the approximation using the method of PWM seemed to perform better in

the tail part when EGP1 was compared to the empirical approximation. However

as EGP1 is typically not continuous when the method of ML is used, EGP2 is the

approximation that should be used with that method. Thus it is also necessary

to compare the EGP2 approximations in the tail region for the two di�erent pa-

rameter estimation methods. This is even more so because the comparison with

the empirical approximation might not correctly re�ect the balance between the

two � it might be the case that when the approximation with ML outperforms

the empirical approximation, it also typically outperforms the approximation with

PWM and the situation typically stays the same when both are outperformed by

the empirical approximation.

We do not use the automatic threshold selection as it is unclear whether it helps or

hinders the approximation when the parameters are estimated using the method of

PWM. Additional simulation results (not presented) indicate that the estimates of

the probabilities do not change much when automatic threshold selection is used

for both approximations. The comparison is carried out in two intervals as in

[Kaasik and Pärna, 2009]. The �rst one, (u,X(n)), still has the same form, but

now N is �xed beforehand and u selected accordingly. The second interval has

the form (X(n), T ), where T is dependent on the sample size n in such a way that

the probability of X(n) exceeding T is �xed at 1/100. This latter region serves

as an example when predicting outside of the sample range. We note that it can

happen that the second region has, in fact, X(n) > T , but this cannot be avoided

if we want to keep the length of the region from growing very large. The error

of an approximation is de�ned as before. That is, if the actual integrated tail

distribution has a complementary cdf FI(x) then we are interested in the random

variables

Aegp1nN =
1

X(n) − u

∫ X(n)

u

|F egp1nI (x)− FI(x)|
FI(x)

dx (5.14)

and

Aegp2nN =
1

X(n) − u

∫ X(n)

u

|F egp2nI (x)− FI(x)|
FI(x)

dx, (5.15)
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when the �rst interval is considered and random variables

Begp1nN =
1

T −X(n)

∫ T

X(n)

|F egp1nI (x)− FI(x)|
FI(x)

dx (5.16)

and

Begp2nN =
1

T −X(n)

∫ T

X(n)

|F egp2nI (x)− FI(x)|
FI(x)

dx, (5.17)

when the second interval is considered, where on both instances F egp1nI is found

using the method of PWM, F egp2nI is found using the method of ML and N is the

pre-speci�ed size of the sample of exceedances. We will be estimating P(Aegp1nN <

Aegp2nN ) and P(Begp1nN < Begp2nN ) for di�erent values of N and n for our model

distributions. Each estimate is based on 1000 replications and is complemented

with 95% con�dence intervals based on the normal approximation. The model

parameters in the tables are once again of the original distribution F from which

the integrated tail distribution is formed.

5.4.1. Pareto case

Results for the Pareto case, presented in the Tables 5.7 and 5.8, show that when

the size of the sample exceedances increases the asymptotic properties of the ML

method can be seen and EGP2 with method of ML should be preferred. For the

Pareto distribution with lighter tail and a sample of exceedances with size not

exceeding 50 gives the advantage to EGP1. It seems that the latter typically im-

proves over EGP2 when approximation outside of the sample range is considered.

Table 5.7: P̂(Aegp1nN < Aegp2nN ) in the Pareto case

α n N = 25 N = 50 N = 100 N = 300
1.5 1000 0.469±0.031 0.434±0.031 0.403±0.030 0.343±0.029

10000 0.534±0.031 0.411±0.030 0.381±0.030 0.351±0.030
100000 0.530±0.031 0.399±0.030 0.365±0.030 0.359±0.030

2.5 1000 0.642±0.030 0.592±0.030 0.519±0.031 0.435±0.031
10000 0.659±0.029 0.558±0.031 0.486±0.031 0.459±0.031
100000 0.678±0.029 0.607±0.030 0.520±0.031 0.416±0.031
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Table 5.8: P̂(Begp1nN < Begp2nN ) in the Pareto case

α n N = 25 N = 50 N = 100 N = 300
1.5 1000 0.499±0.031 0.474±0.031 0.424±0.031 0.385±0.030

10000 0.533±0.031 0.463±0.031 0.412±0.031 0.384±0.030
100000 0.542±0.031 0.424±0.031 0.393±0.030 0.385±0.030

2.5 1000 0.625±0.030 0.604±0.030 0.551±0.031 0.445±0.031
10000 0.627±0.030 0.579±0.031 0.504±0.031 0.486±0.031
100000 0.646±0.030 0.613±0.030 0.529±0.031 0.438±0.031

5.4.2. Weibull case

When the Weibull case is considered the balance is instead shifted in favor of the

EGP1 when heavier tails are considered as is demonstrated by Tables 5.9 and 5.10.

When β = 0.75 approximation EGP2 seems to have the upper hand. It is hard to

spot any deterministic patterns when comparing the relative performance of the

approximations inside and outside of the sample range.

Table 5.9: P̂(Aegp1nN < Aegp2nN )in the Weibull case

β n N = 25 N = 50 N = 100 N = 300
0.25 1000 0.652±0.030 0.601±0.030 0.806±0.025 1.000±0.000

10000 0.697±0.028 0.631±0.030 0.607±0.030 0.813±0.024
100000 0.688±0.029 0.652±0.030 0.640±0.030 0.644±0.030

0.50 1000 0.589±0.030 0.647±0.030 0.702±0.028 0.868±0.021
10000 0.558±0.031 0.567±0.031 0.561±0.031 0.565±0.031
100000 0.549±0.031 0.550±0.031 0.541±0.031 0.508±0.031

0.75 1000 0.503±0.031 0.533±0.031 0.474±0.031 0.458±0.031
10000 0.459±0.031 0.459±0.031 0.456±0.031 0.454±0.031
100000 0.500±0.031 0.478±0.031 0.517±0.031 0.474±0.031

5.4.3. Log-normal case

The results for the log-normal case are in Tables 5.11 and 5.12. This time EGP1

seems to perform better on almost every occasion. Contrast is the largest for

heavier tails and results seem to suggest that EGP2 with ML is especially poor

when the itd is approximated outside of the sample range.

In conclusion, it must be noted that the order of preference between the approx-

imation EGP1 and EGP2 is by no means clear-cut. Instead it seems reasonable

to try out both approximations and perhaps use the more conservative end-result

(i.e. a larger ruin probability).
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Table 5.10: P̂(Begp1nN < Begp2nN ) in the Weibull case

β n N = 25 N = 50 N = 100 N = 300
0.25 1000 0.745±0.027 0.792±0.025 0.947±0.014 0.988±0.007

10000 0.715±0.028 0.734±0.029 0.755±0.027 0.942±0.014
100000 0.681±0.029 0.702±0.029 0.756±0.027 0.829±0.023

0.50 1000 0.529±0.031 0.615±0.030 0.706±0.028 0.953±0.013
10000 0.533±0.031 0.531±0.031 0.528±0.031 0.520±0.031
100000 0.524±0.031 0.519±0.031 0.511±0.031 0.481±0.031

0.75 1000 0.441±0.031 0.475±0.031 0.419±0.031 0.385±0.030
10000 0.422±0.031 0.425±0.031 0.426±0.031 0.427±0.031
100000 0.446±0.031 0.425±0.031 0.491±0.031 0.455±0.031

Table 5.11: P̂(Aegp1nN < Aegp2nN ) in the log-normal case

σ n N = 25 N = 50 N = 100 N = 300
1 1000 0.642±0.030 0.678±0.029 0.680±0.029 0.654±0.029

10000 0.587±0.031 0.615±0.030 0.668±0.029 0.629±0.030
100000 0.565±0.031 0.628±0.030 0.622±0.030 0.591±0.030

2 1000 0.608±0.030 0.506±0.031 0.562±0.031 0.917±0.017
10000 0.636±0.030 0.564±0.031 0.543±0.031 0.632±0.030
100000 0.676±0.029 0.592±0.030 0.539±0.031 0.530±0.031

3 1000 0.516±0.031 0.560±0.031 0.784±0.026 0.983±0.008
10000 0.498±0.031 0.520±0.031 0.587±0.031 0.846±0.022
100000 0.546±0.031 0.477±0.031 0.471±0.031 0.653±0.030

Table 5.12: P̂(Begp1nN < Begp2nN ) in the log-normal case

σ n N = 25 N = 50 N = 100 N = 300
1 1000 0.587±0.031 0.665±0.029 0.696±0.029 0.744±0.027

10000 0.595±0.030 0.600±0.030 0.664±0.029 0.656±0.029
100000 0.599±0.030 0.618±0.030 0.623±0.030 0.595±0.030

2 1000 0.663±0.029 0.631±0.030 0.733±0.027 0.979±0.009
10000 0.682±0.029 0.650±0.030 0.661±0.029 0.786±0.025
100000 0.689±0.029 0.643±0.030 0.620±0.030 0.656±0.029

3 1000 0.664±0.029 0.699±0.028 0.937±0.015 0.995±0.004
10000 0.610±0.030 0.608±0.030 0.722±0.028 0.962±0.012
100000 0.589±0.030 0.563±0.031 0.596±0.030 0.822±0.024
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Chapter 6

Ruin probability estimation using real world

data

Finally, we use the developed methodology to approximate ruin probabilities when

real world data is considered. The Danish �re insurance data from Copenhagen

Re available in [McNeil, 2008] is used for this purpose. These data are well-known

in the extreme value analysis and are used as an example in [Embrechts et al.,

1997], [McNeil, 1997], [Resnick, 1997], to name a few. The data set consists of

2156 large insurance claims in Danish Krone (currently 1 EUR = 7.460 DKK)

that exceed the threshold of one million. The arrival times of the claims are �xed

with daily precision. The size of the claims will be considered in millions to avoid

large numbers. The claims span the time period from the year 1980 to the year

1990. We will be using only the latter part � namely the last 1323 claims that

cover the years from 1985 to 1990. We do this because it has been pointed out e.g.

in [Cizek et al., 2005] that the arrival times of the claims cannot be considered as a

realization of the homogeneous Poisson process. Also, because of our assumptions

about the claim size distribution, we subtract 1 from the data. Our goal is to

estimate the ruin probability of the company.

6.1. Overview of the claim data

The time series of the claims is plotted on Figure 6.1. First impression suggests

that the data is indeed from a heavy-tailed distribution because of the high peaks

that are well above the majority of the data. The assumption of whether the data

could be iid is discussed in [Resnick, 1997] and the conclusion is that there is little

evidence for the iid assumption to be rejected. As mentioned before, the arrival

times of the claims for the whole sample are not in a good agreement with a homo-
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Figure 6.1: Adjusted �re insurance claim size data from the period 1985�1990.

geneous Poisson process. The new time period consists of 2191 days making the

expected daily intensity of the Poisson process equal to 0.604. As seen in Figure

6.2 the expected number of claims is well matched by the actual cumulative claim

amount making the homogeneous Poisson process plausible for this part of the

time series.
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Figure 6.2: Cumulative number of claims from the period 1985�1990. Expected
number is represented by the solid and actual number by the dashed line.

The mean of the adjusted claim size is 2.320 and the median is 0.690 with the

sample maximum equal to 151.413. These sample characteristics further con�rm
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that the data is from a heavy-tailed distribution. This conclusion is also suggested

by the concave QQ-plot and increasing mean excess of loss function presented

in Figure 6.3. When the ratio of sample maximum and sum is plotted heavy-

tailedness is once again suggested � according to Figure 6.4 it seems plausible that

the distribution of the data does not have �nite variance. On the other hand the

crucial assumption of �nite mean seems plausible because the left-most function

seems to be converging to zero.
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Figure 6.3: QQ-plot (left) and mean excess of loss plot with 95% con�dence in-
tervals (right) of the adjusted claim size data from the period 1985�1990. The
maximum threshold at which the mean excess of loss function has been calculated
is the fourth-largest member of the sample.
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Figure 6.4: The ratio of the maximum and the sum for the sample elements raised
to the power 1 (left), 1.5 (center) and 2 (right).

Overall conclusion from the plotted �gures is that the claim data are likely to be

realizations of a heavy-tailed random variable. That the arrival times of the claims

is governed by a homogeneous Poisson process also seems plausible. These facts

coupled with the iid assumption of the claims con�rm that CLM is valid for this

scenario.
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The non-restrictive assumption of having the premium rate c equal to one also

needs addressing. As the estimated expected daily claim amount is equal to 1.401,
having c = 1 is not likely in such a situation as that would mean almost sure

eventual bankruptcy. To �x this, we double the time between successive claims

and thus halving the intensity to 0.302 and then take c = 1. This way the estimate

of the safety loading coe�cient ρ takes the value 0.427. The time period is thus

(arti�cially) doubled by considering di�erent time units, but for convenience we

speak of the new time units with old names. That is the length of the time period

is 12 years and the daily intensity of the claims is 0.302.

6.2. Threshold selection and parameter estimation

We now proceed to �t the GPD to the right tail of the sample. First possible tool

for threshold selection, the mean excess of loss plot, suggests that values 6 and 15
are perhaps likely candidates. The smaller value seems like the �rst point from

which on the function seems roughly linear as there seems to be a decrease in the

gradient at this point. The value 15 can arguably also be seen as a point where

the gradient of the function changes.
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Figure 6.5: Estimates of the GPD shape parameter with 95% con�dence intervals
by increasing the threshold u (upper horizontal axis) and decreasing number of
exceedances (lower horizontal axis). In total 200 models are �tted.

Estimating the shape parameter using the method of ML for di�erent threshold

values yields Figure 6.5. Thresholds 6 and 15 are supported by the graph as the

estimate of the shape parameter seems rather constant for threshold values larger

than 6.
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Using the automatic threshold selection methodology described in the previous

chapter gives the results in Table 6.1.

Table 6.1: Automatically selected thresholds for di�erent values of constant k

k = 1/4 k = 1/2 k = 1 k = 2
u 20.26 10.14 4.47 2.15

Results obtained when estimating the parameters of the GPD are summarized in

the Table 6.2. The contrast between the parameter estimates for the methods of

maximum likelihood and probability-weighted moments is rather small. With a

smaller threshold value, a less-heavy tailed GPD is deemed better for modeling

the tail of the claim data. Achieved �t is analyzed on Figure 6.6. Only the GPD

corresponding to the parameter estimates of the ML method are plotted as the

PWM variant is hardly separable. It seems that the GPD �ts the tail of the data

rather well.

Table 6.2: Estimates of the GPD parameters with standard errors (where available)

u N ML PWM
6 95 ξ = 0.36(0.13), σ = 7.62(1.24) ξ = 0.38(0.17), σ = 7.57(1.35)
15 38 ξ = 0.56(0.25), σ = 7.74(2.21) ξ = 0.51, σ = 7.94
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Figure 6.6: In the left-hand plot the GPD is �tted to the 95 exceedances of the
threshold 6 and in the right-hand plot the GPD is �tted to the 38 exceedances of
the threshold 15. The arguments are plotted on a log-scale. On both occasions
the GPD parameters are estimated using the method of ML.
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6.3. Constructing the combined approximations

Based on Table 6.2 we can also calculate the estimates for ξ∗ and σ∗ using the

formulae from (4.28). The results are summarized in Table 6.3. We see that for

the higher threshold value the mean of the itd does not exist as the estimate of

the shape parameter ξ is greater than one. Also, the standard errors accompanied

with the parameter estimates are very large caused by estimates of ξ that are close

to 1.

Table 6.3: Estimates of the GPD parameters for the integrated tail distribution
with standard errors (where available)

u N ML PWM
6 95 ξ∗ = 0.57(3.16), σ∗ = 11.92(23.92) ξ∗ = 0.60(3.46), σ∗ = 12.13(26.40)
15 38 ξ∗ = 1.25(11.18), σ∗ = 17.40(86.25) ξ∗ = 1.03, σ∗ = 16.14

We can now numerically �nd the four approximations for the itd of the claims

(EGP1 and EGP2 for both threshold values). Due to de�nition, the left part of

those distributions is identical. For EGP1 the parameters from the method of

PWM are used and for EGP2 the parameters from the method of ML are used.

Simulations show that for the threshold u = 6 estimates of the mean of the ap-

proximations are close to 14.8 while the estimated mean from (3.1) is equal to

12.7. But if we decide that the second moment of the claims does not exist from

Figure 6.4 then the mean of the itd would also cease to exist.

Table 6.4: Estimates of the ruin probability using the asymptotic approximation
for heavy tails

uIC u EGP1 EGP2
50 6 0.129 0.120

15 0.150 0.171
100 6 0.049 0.044

15 0.077 0.097
200 6 0.017 0.014

15 0.040 0.056

To compare the approximations we estimate the ruin probabilities using the asymp-

totic formula (2.12). The results are given in Table 6.4. Based on these asymptotic

results, it seems that the smallest initial capital level considered is not high enough

to secure the survival of the company with high probability as even the most opti-
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mistic ruin probability estimate exceeds 12%. The highest level on the other hand

guarantees a ruin probability below 6% even with the most conservative approxi-

mation.
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Figure 6.7: Real vs simulated risk processes. Claim size distribution is approxi-
mated using thresholds u = 6 (up) and u = 15 (down) with the method of ML
(left) and the method of PWM (right). Thick solid line is the real risk process.
The dotted lines are the sample 0.01, 0.05, 0.25, 0.50, 0.75, 0.95, 0.99 quantiles.

Simulated risk process quantiles on Figure 6.7 seem to con�rm the higher threshold

level as a better choice for approximation. For u = 6 the real risk process trajec-

tory is not totally contained between the 0.05 and 0.95 sample quantiles while this

is the case for u = 15. The di�erence between EGP1 and EGP2 (respectively based
on PWM and ML) is visible (especially for the higher threshold), but the simu-
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lation results do not di�er too much (as was to be expected based on the rather

close GPD parameter estimates as well as the ruin probability approximations).

In conclusion, all the four approximations seem consistent with the data (perhaps

due to a careful threshold selection process). The heavy-tail characteristic of one

large claim causing the ruin can be well illustrated as even though the capital of

the insurance company is in the region of 1 300, the probability of a single ruin

exceeding that value is still in the region of 0.5% for the approximations using

u = 15. This is perhaps counterintuitive from the Figure 6.7 according to which

it seems (according to the real process trajectory) as if the company is �safe for

sure� after 12 years.

Finally, we �nd the real ruin probabilities corresponding to the approximated claim

distributions using the AK algorithm. The results are presented in the Table 6.5

and the �rst observation is that the asymptotic formula (2.12) does not provide

good results in the current case as the results di�er signi�cantly from the ones in

Table 6.4. This is not surprising in the light of the comments made in the beginning

of Section 3.1 about the accuracy of the asymptotic approximation for moderate

values of initial capital. Actual ruin probabilities are roughly two times larger

than the ones obtained before showing that even with the highest level of initial

capital considered ruin can occur with a relatively large probability according to

the most conservative estimate.
Table 6.5: Estimates of the ruin probability using simulation

uIC u EGP1 EGP2
50 6 0.211 0.235

15 0.211 0.289
100 6 0.103 0.118

15 0.121 0.197
200 6 0.037 0.041

15 0.061 0.121

6.4. Discussion

In conclusion, the real world data example shows the applicability of the proposed

methodology in practice. It seems that the GPD �ts the tail of the original dis-

tribution rather well and the constructed combined estimators are good models

for the integrated tail distribution of the claims as suggested by Figure 6.7. Even
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though a strong asymptotical result, like Proposition 4.1, might hold, accurately

approximating the integrated tail distribution from a limited sample remains a

formidable task and the empirical distribution function is not usable in the tail

region. The GPD approach also has its limitations � con�dence intervals of the

modi�ed GPD parameters can be wide and ruin probability estimates can change

up to two or three times when a di�erent threshold value is considered. However,

in authors opinion, using theoretically justi�ed extreme-value methodology de-

scribed in the thesis should be preferred tool for estimating the ruin probabilities

as long as no additional information is available.
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Chapter 7

Conclusions

In the thesis a complete approach for estimating the in�nite time ruin probability

for a Cramér-Lundberg insurance risk model is proposed with emphasis on heavy-

tailed claims. The key part of the approach are the two general Pareto distribution

based approximations of the integrated tail distribution, derived for the case when

the claim size distribution with �nite mean belongs to the domain of attraction of

some extreme value distribution and has support that coincides with the positive

part of the real line. The following signi�cant contributions by the author should

be mentioned:

. moments of the integrated tail distribution were expressed in terms of the

moments of the original distribution;

. relationship between the integrated tail distribution of a Weibull distribution

and a transformed gamma distribution was discovered allowing fast simula-

tion of the former by using known simulation algorithms for the latter;

. a general iterative simulation algorithm based on the numerical inversion

of the cumulative distribution function was proposed for the integrated tail

distribution and the rate of convergence was shown to be quadratic with only

a few iteration steps typically required;

. an empirical approximation of the integrated tail distribution was proposed

and was shown to be uniformly convergent, moreover the approximation of

the integrated tail process was deduced;

. for the tail part of the integrated tail distribution another approximation

based on the generalized Pareto distribution was proposed; asymptotic nor-

mality of the parameter estimates of the new approximation was established;
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simulation results con�rmed that the new approximation is indeed an im-

provement over the empirical approximation when heavy-tailed distributions

are considered;

. the empirical approximation and the approximation by the generalized Pareto

distribution were combined into a joint continuous approximation of the in-

tegrated tail distribution;

. the derived methodology was shown to be applicable for real world insurance

data.

The goals set in the introduction where achieved. Finally, it should be mentioned

that the extreme value methodology cannot perform miracles � extrapolation of

the tail of a distribution based on a small tail sample is always coupled with a

moderate amount of uncertainty. This uncertainty remains when the estimates of

ruin probabilities are calculated and thus it is always good practice to thoroughly

consider all the obtained estimates and perhaps take the conservative route and

select the highest of them as the one on which the decisions will be based.
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Kokkuvõte

Laostumistõenäosuste hindamine raske sabaga kahjunõuetega

Cramér-Lundbergi riskiprotsessi korral

Riskiteoorias on levinuimaks kindlustuskompanii varanduslikku seisu kirjeldavaks

mudeliks Cramér-Lundbergi riskiprotsess. Olulisim huvipakkuv suurus on seeju-

ures kompanii laostumistõenäosus, mille leidmisel on võtmekomponendiks kahjunõuete

jaotuse integreeritud saba jaotus. Mitmed allikad nagu [Asmussen, 2003], [As-

mussen and Kroese, 2006], [Blanchet and Glynn, 2008] on muuhulgas pühendatud

laostumistõenäosuse leidmisele kui kahjunõuete jaotuse integreeritud saba jaotus

või selle jaotuse saba-osa asümptootika on küllalt täpselt teada.

Käesoleva dissertatsiooni põhieesmärgiks on kahjunõuete integreeritud saba jao-

tuse modelleerimine empiiriliste andmete põhjal, kusjuures sobiv mudeljaotus peab

olema teoreetiliselt õigustatud (ning seejuures ka pidev ja kandjaga, mis langeb

kokku reaaltelje positiivse osaga). Seejuures on kahjunõuete jaotusele seatud eel-

dused võimalikult üldised � eeldatakse, et kahjud on lõpliku keskväärtusega pideva

mittenegatiivse juhusliku suuruse realisatsioonid. Ehkki kogu metoodika jääb ka-

sutatavaks ka kergete sabadega kahjuandmete korral, on teravdatud tähelepanu all

(ja näiterakendustes kasutusel) raskete sabadega jaotused kui realistlikud kahju-

jaotuste kandidaadid.

Eesmärgi saavutamiseks kasutatakse artiklis [Pickands III, 1975] välja pakutud

ekstremaalväärtuste teooria üht põhiteoreemi, mis muuhulgas põhjendab üldis-

tatud Pareto jaotuse sobivust pideva juhusliku suuruse sabaosa tingliku jaotuse

mudelina. Üldistatud Pareto jaotus on kaheparameetriline tõenäosusjaotus, mida

rakendatakse väga erinevates eluvaldkondades esile kerkivate juhuslike suuruste

jaotuse sabaosade modelleerimiseks. Rakendustest saab põgusa ülevaate näiteks
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raamatust [Finkenstadt and Rootzen, 2004].

Esimene peatükk annab lühiülevaate töös kasutatavatest tähistustest ja vajalikest

mõistetest ja tulemustest. Kirjeldatakse kergete ja raskete sabadega tõenäosusjao-

tuste erinevust ning raskete sabadega jaotuste alamklasse, muuhukgas regulaarselt

varieeruva sabaga jaotuseid ja subeksponentsiaalseid jaotuseid. Ära on toodud üks

ekstremaalväärtuste teooria põhiteoreeme, mis sätestab samaväärsena üldistatud

ekstremaalväärtuste jaotuse valimimaksimumi piirjaotusena ja üldistatud Pareto

jaotuse saba tingliku jaotuse piirjaotusena.

Teises peatükis antakse Cramér-Lundbergi riskiprotsessi ja laostumistõenäosuse

de�nitsioon. Vaadeldakse laostumistõenäosuse erinevaid võimalikke esitusi, nende

hulgas ka Pollaczeck-Khinchine'i valemit. Esitatakse laostumistõenäosuse duaalne

interpretatsioon järjekorrateoorias. Analüüsitakse kahju jaotuse raske saba mõju

laostumistõenäosusele ja selle hindamisele.

Kolmandas peatükis tuletatakse ja sõnastatakse mitmed integreeritud saba jao-

tuse teoreetilised omadused. Autori panuseks on Teoreem 3.1 ja selle üldistus

Teoreem 3.2 artiklist [Kaasik, 2009b], mis näitavad kuidas avalduvad integreeritud

saba jaotuse momendid originaaljaotuse momentide kaudu ja kinnitavad fakti, et

integreeritud saba jaotus on tüüpiliselt orginaaljaotusest raskema sabaga. Tutvus-

tatakse põgusalt kolme subeksponentsiaalsete jaotuste klassi kuuluvat tõenäosus-

jaotust: Pareto, Weibulli ja lognormaalset jaotust. Artikli [Kaasik, 2009b] põh-

jal pakutakse välja iteratiivne eeskiri integreeritud saba jaotusest genereerimiseks

ning tõestatakse iteratsiooniprotsessi ruutkoonduvus. Ka seos Weibulli jaotuse

ja gamma jaotuse teisenduse vahel on uus tulemus, mis pärineb eelnimetatud

artiklist. Peatüki lõpus käsitletakse artiklis [Asmussen and Kroese, 2006] välja

pakutud Pollaczeck-Khinchine'i valemist lähtuvat, niinimetatud AK algoritmi, mis

võimaldab laostumistõenäosust raske sabaga integreeritud saba jaotuse korral efek-

tiivselt leida simuleerimise teel.

Neljandas peatükis uuritakse esmalt, kuidas kontrollida, kas integreeritud saba jao-

tus on raske sabaga. Seejärel vaadeldakse integreeritud saba jaotuse lähendi leid-

mist empiirilise jaotusfunktsiooni abil. Autor tõestab antud lähendi ühtlase koon-
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duvuse Teoreemis 4.1, mis pärineb artiklist [Kaasik and Pärna, 2008] ja vaatleb

vastava empiirilise protsessi lähendamist Teoreemis 4.2. Järgnevalt tõestab au-

tor Teoreemis 4.3, et integreeritud saba jaotuse sabaosa modelleerimine üldistatud

Pareto jaotusega on õigustatud, kui originaaljaotuse sabaosa käitub nagu üldis-

tatud Pareto jaotus, seejuures avalduvad integreeritud saba jaotuse lähendjaotuse

parameetrid originaaljaotuse lähendjaotuse parameetrite kaudu. Viimane tule-

mus on esmakordselt publitseeritud artiklis [Kaasik, 2009a]. Peatüki lõpus vaadel-

dakse suurima tõepära meetodi ja tõnäosusega kaalutud momentide meetodi ka-

sutamist üldistatud Pareto jaotuse parameetrite hindamisel ning autor tuletab

Teoreemis 4.7 integreeritud saba jaotuse lähendjaotuse parameetrite hinnagute

asümptootilise normaalsuse.

Viies peatükk on pühendatud empiirilise jaotusfunktsiooni abil ja üldistatud Pareto

jaotuse abil saadud lähendite võrdlemisele subeksponentsiaalse originaaljaotuse

korral. Võrdlemine viiakse läbi simulatsioonieksperimendina, mille tulemused näi-

tavad üldistatud Pareto jaotusel põhineva lähendi paremust integreeritud saba jao-

tuse sabaosas. Eksperimendi tulemused on avaldatud artiklis [Kaasik and Pärna,

2009]. Nende kahe lähendi baasil on konstrueeritud uus lähend, mis paraku ei

pruugi olla pidev, kui üldistatud Pareto jaotuse parameetrite hinnangud on lei-

tud suurima tõepära meetodi abil. Sellest tulenevalt pakutakse välja ka teine

kombineeritud lähend, mis tõenäosusega kaalutud momentide meetodi kasutamise

korral langeb kokku eelnevaga, suurima tõepära meetodi korral aga on alati pidev.

Peatüki lõpus võrreldakse kahte kombineeritud lähendit simuleerimise teel.

Kuuendas peatükis kasutatakse eespool tuletatud metodoloogiat reaalsetel kahjukind-

lustuse andmetel kindlustuskompanii laostumistõenäosuse leidmiseks. Selgub, et

töös välja pakutud metoodika võimaldab hästi modelleerida tegelikku riskiprot-

sessi ja seeläbi on alust arvata, et ka kombineeritud lähendite ja AK algoritmi

koostöös leitud laostumistõenäosuste hinnangud on küllalt täpsed.

Viimases peatükis võetakse kokku töö käigus saavutatu ning tõdetakse, et igasug-

une jaotuse sabaosa lähendamine väljaspool tegelikku valimit (ja seeläbi ka näiteks

laostumistõenäosuse hindamine kui kahjude jaotus ei ole teada) on oma olemuselt

riskantne tegevus, ent töös kasutatud ekstremaalväärtuste teooria vahendid paku-

vad selleks parimad võimalikud tööriistad.
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