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Introduction

The cell of a living organism is perhaps one of the most studied and at the same
time the least understood objects on our planet. Processes that take place in this
tiny piece of matter are strikingly complex, yet concurring in harmony together
they in�uence the lifecycle of the whole organism. Understanding these processes
is therefore one of the ultimate goals of contemporary medical and biological
studies, that may lead to better treatment of diseases and new discoveries.

Current biological knowledge suggests that most of the regulatory processes in
the cell are related to certain molecules, mainly proteins. Despite the diversity of
di�erent proteins (hormones, enzymes, transport proteins, etc), on the molecular
level their structure is generally the same: each protein can be costructed as
a linear chain of amino-acids. These linear chains are encoded by the DNA
molecules, stored in the chromosomes of the cell. Studying the DNA and the
relationships among the proteins may therefore provide the keys to the inner
workings of the cell.

Microbiological research during the last years has produced a considerable
amount of data concerning DNA sequences and mutual in�uences among pro-
teins. Of particular interest are the results of the microarray hybridization ex-
periments. This microarray data, however, consists of indirect measurements
and therefore sophisticated methods are required to infer biologically meaningful
conclusions from it. In fact, quite a small number of techiques are currently capa-
ble of extracting plausible biological hypotheses from microarray data [1]. Even
less methods manage to combine this data with additional external information,
such as DNA sequences. That's why the search for new computational methods
for complex analysis of microarray data is currently a rather hot topic in the
bioinformatics community (some examples are [2, 3, 4, 5, 6, 7, 8]).

This thesis proposes a novel analysis technique based on a simple linear model
that combines microarray measurements with DNA sequence data. The approach
can be regarded as both a predictive model for the expression values of the genes,
as well as a descriptive model, that can potentially provide some insight into
genetic transcriptional regulation. The model can be applied in the context of
both linear regression and linear classi�cation, and in both cases it should be
capable of extracting useful information.
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The main text of the thesis consists of four chapters. The �rst chapter gives
a brief biological background required for the understanding of the thesis, the
second provides basic introduction to the topics of machine learning and linear
models. The reader familiar with the subject may skip immediately to the third
chapter, where a speci�c linear model for gene expression data is proposed and
its applications to the analysis of microarray data are discussed. The last chapter
illustrates the method using a toy example, and examines its performance on a
large arti�cial dataset.
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Chapter 1

Biological Background

People are DNA's way of making more DNA.

Edward O. Wilson

1.1 The DNA

The cell is the fundamental unit of any living organism. The smallest or-
ganisms such as bacteria might consist of a single cell, larger beings may contain
millions of di�erent cells organised in organs and tissues. Despite the small size, a
cell is a very complex system on its own and is composed of yet smaller functional
units called organelles. Most of the regulation of the work of the organelles, as
well as inter-cellullar communication is performed by protein molecules. Proteins
vary greatly in their functions, yet they all are constructed in the same way: as
linear chains of amino-acids. The exact order of amino-acids is therefore enough
to specify any protein. This order is encoded in the strands of the DNA molecules,
which form the genetic material of the cell.

The DNA (desoxyribose nucleic acid) is a long spiral-shaped molecule consist-
ing of two complementary strands of nucleotides. Each nucleotide consists of a
phosphate group, sugar desoxyribose and a nitrogenous base: adenine, thymine,
cytosine or guanine. Depending on the base, nucleotides are usually denoted by
letters A, T, C and G respectively. A DNA strand can be therefore encoded as
a string of these four letters. The second, complementary strand of the same
molecule is uniquely de�ned by the �rst one. The order of the nucleotides in the
DNA determines the order of the amino-acids in the proteins of the cell. It is
known that each amino-acid is encoded by a certain triple of nucleotides, and
there are certain nucleotide triples that usually denote the start and the end of
the coding region (e.g. ATG, TAG).
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The DNA is believed to store all the information relevant for the organism.
DNA is replicated together with the cells, and, in case of heterosexual organisms,
the DNA in the cells of the o�spring is usually a mixed version of the DNAs of
the parents. The DNA of every organism is di�erent, but for a given species the
di�erences between the DNA's are localized to a very small subset that determines
some basic traits only. We may therefore say that every species has its unique
DNA code. The full DNA has been sequenced for many di�erent species.

DNA is usually divided into regions referred to as genes. The set of all genes in
a cell is called the cell's genome. Each gene encodes one or more proteins and the
set of all proteins synthesized from a genome is called proteome. Some regions
of the genome are devoted to control mechanisms, and a substantial amount
of genomes of higher-order organisms appears to serve no purpose at all (the
so-called junk DNA) [1]. The coding regions of the DNA sequence are usually
referred to as exons and the non-coding regions � as introns (when within genes)
or intergenic regions (outside of genes).

1.2 Transcription and Translation, Gene Expres-

sion

The proteins encoded in the DNA are produced in two stages: transcription
and translation. In the process of transcription, a large molecular complex called
RNA-polymerase attaches itself to the segment of DNA containing a certain pro-
moter sequence, and starts copying DNA from that point producing an equivalent
RNA molecule. RNA (ribose nucleic acid) molecule is very similar to the DNA:
it is also a chain of nucleotides, the only di�erence is that the sugar ribose is
used, and base thymine is replaced by its cousin uracil. Contrary to the DNA,
however, RNA molecules are much less stable and get hydrolised in the cell within
minutes, this is an important feature of the RNA.

The transcription process stops when a certain terminator-sequence is found,
and releases an RNA encoding exactly the same information as that on the corre-
sponding region of the DNA. Not all of this information might encode a protein,
there might be introns inside. These introns get removed with the help of even
more complex molecular machinery (a process known as splicing), and in the end
an RNA strand ready to be translated to proteins is produced. This RNA is often
called mRNA (short for matrix-RNA).

Next another large molecular complex, the ribosome, attaches itself to a cer-
tain sequence on the mRNA, and starts reading the mRNA producing the corre-
sponding protein. This process is known as translation.

Together, the production of proteins from genes is referred to as gene expres-
sion. Not all genes of the genome are expressed in a cell at once. The regulation
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of which gene will be expressed and which will not is a very complex process. An
important role in expression regulation is played by certain proteins, called tran-
scription factors or TF -s, that attach themselves to certain sequences (motifs)
in the DNA and provoke (or prevent) RNA-polymerase to bind there, thus in-
ducing (or suppressing) the transcription of the corresponding gene. Much more
complex transcription regulation patterns take place: certain TF-s will attach to
the DNA only in presence of some other TF-s, and certain TF-s, when attached,
may block other TF-s from binding there.

Transcription regulation is not the only part of expression regulation. After
being transcribed to mRNA, the gene will be translated to proteins only under
certain circumstances, when all the machinery (i.e. proteins) needed for splicing
and translation is there. Depending on the conditions, the mRNA of the gene may
be translated to one or another protein. At last, the same protein molecule may
sometimes (although rarely) obtain di�erent tertiary structure (i.e. 3D shape) in
di�erent conditions, and therefore have di�erent function.

In general, the production of any given protein by the cell depends on the
amount of other proteins as well as the environmental conditions (heat, acid-
ity, etc). The relationships among proteins, that govern gene expression, are
often called genetic networks, and the problem of determining them is crucial to
explaining cell's lifecycle.

1.3 Microarray Experiments

DNA hybridization microarrays are a relatively recent development that al-
lows to study genome-wide patterns of gene expression. A typical experiment
is the following: �rst an array is prepared, which is a glass or membrane sup-
port with a set of DNA fragments attached to it. The fragments are carefully
arranged in spots : each spot contains the fragments of a certain gene only. Next,
two cell cultures are selected: a �reference� culture, and a culture of cells under
certain stress or environmental conditions (�test� culture). All the RNA from the
cells is reverse-transcribed to create strands of �uorescent-labeled (or radioac-
tive) complementary DNA. Labeling of the cDNA di�ers for the two cultures.
The obtained cDNA is then purged onto the array where it hybridizes with the
DNA in the spots of the array. As a result, all the cDNA-s should end up on
the spots with matching DNA fragments. Due to the labeling of the cDNA, the
colour (or radiation spectrum) of each spot will indicate the ratio of the cDNA
amounts from the �rst and the second culture attached to it, hence the ratio of
RNA amounts of the corresponding gene produced in the di�erent cultures. The
amount of RNA for a gene may be regarded as an indicator of the expression of
that gene. Of course, as noted above, transcription is not the only aspect of gene
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expression, so this is a rather rough indicator indeed. Despite that, a microarray
experiment measures the �expression levels� of many genes at the same time.

1.4 Microarray Data

Ultimately, a microarray experiment reports a single real value for each gene.
Data from several arrays is usually represented as a matrix with rows correspond-
ing to genes and columns to arrays. Each entry speci�es the expression of a gene
in a given array. Microarray experiments are rather di�cult to set up, however
every experiment measures the expression levels of thousands of genes at the
same time. It is therefore typical for the matrix to have thousands of rows, but
only about a hundred or so columns. It is this expression matrix, that is in the
focus of this thesis.

1.5 Genome Analysis

Although a decent amount of microarray data is available together with some
fully sequenced genomes, no universally good analysis methods for this data exist.
The main problem is that we still don't understand all aspects of gene expres-
sion at the molecular level. Several mathematical formalisms have been applied
to genetic networks: boolean networks, continuous recurrent networks, bayesian
networks , but none of them appears to capture all the dimensions of gene regula-
tion [9]. The available data is too scarce to allow inferring complex models from
it, but the few examples of regulatory circuits for which detailed information is
available, all appear to be complex.

To the moment, machine learning techniques seem to provide some of the best
results in inferring information from microarray data. This thesis documents yet
another attempt of that kind.
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Chapter 2

Linear Models

If you ask somone a harmless question, and they scream at
you, then it is a reasonable metaphor to say they �went non-
linear� because your input created a disproportionate output.

Rob MacLachlan

This chapter provides basic introduction to machine learning in general and
linear regression and classi�cation in particular. We present a brief tour of the
methods for �tting common linear models. Only the most basic ideas are pro-
vided, avoiding detailed explanations as this would require hundreds of pages, far
more than is in the scope of this work. For a more thorough introduction on the
topic the reader is referred to textbooks on the subject, such as [10, 11, 12, 13, 14].

2.1 Machine Learning

The task of inferring functional relationships between the variables in the data
is often referred to as �machine learning�. A common formulation for the task is
the following:

Given a training set of labeled data examples S = {(x1, y1), (x2, y2),

. . . , (xn, yn)}, xi ∈ X , yi ∈ Y , �nd the function f : X → Y that
describes the relation between X and Y �best�.

The function f may then be used to predict values of y for previously unseen val-
ues of x (regression, classi�cation). Some machine learning algorithms construct
a human-comprehensible model of f (e.g. a decision tree), that may be used to
�explain� the relationship and �nd its underlying factors. Finally, the machine
learning task can also be formulated as a density estimation problem:

Given a sample S generated i.i.d from some unknown probability dis-
tribution F on X × Y , estimate this distribution.

10



It can be shown that it is impossible to construct f using only the data and
making no assumptions about the underlying distribution [11]. The assumptions
made by the algorithm are called its inductive bias. For most algorithms the
inductive bias can be expressed in terms of a parameterized model: given that
model, the algorithm searches for such parameter values, with which the model
�ts the data best.

Perhaps the most simple, but at the same time the most stable (and often the
most robust) is the linear model. In the following, we describe some algorithms
for �tting linear models, that will be used in the analysis further on.

2.2 Linear Regression

Suppose X = Rm and Y = R. The idea of linear regression is, given the
training set {(x1, y1), . . . , (xn, yn)}1, �nd a linear function f that �ts the data
best. By a linear function we mean here a function of the form2

f(x) = wTx =
m∑

j=1

wjxj .

The problem consists in �nding the best parameter vector w.
Which function is the best? Intuitively, the best function is the one which

has the least error on the training data, for example, the one that minimizes the
sum of error squares:

E(f) =
n∑

i=1

(f(xi)− yi)
2

Minimizing this sum is indeed a sensible choice and it can be demonstrated
by a more formalised argument. Suppose that x are sampled from a uniform
distribution on some closed subset of Rm, and for each x the corresponding y

is obtained as y = ωTx + ε, where ε denotes zero-mean gaussian noise that is
independent of x. In this case the parameter w that minimizes sum of error
squares

E(w) =
n∑

i=1

(wTxi − yi)
2

gives an unbiased estimate of true ω.
1In the following we denote elements of Rm by bold letters (x, w, etc) and treat them as if

they were n× 1 matrices. xT denotes matrix transpose and xT y�matrix multiplication of xT

and y, i.e. the inner product of x and y. Elements of x are denoted as x1, x2, etc.
2Note that a linear function is often de�ned as a function of the form f(x) = wT x + b.

However, the intercept term b can always be simulated by adding one more constant coordinate
to all the x-s so we prefer to ignore it here. This is standard practice in multivariate statistics,
see [10] for example.
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Figure 2.1: Linear regression. The points denote training data (one-dimensional
variable x and the corresponding y). The line is a linear function f(x) = wx that
minimizes the sum of error squares for the training points.

Denote by X the matrix that contains vectors xT
i as its rows (the design

matrix, as it is commonly called) and by y the column vector (y1, y2, . . . , yn)T .
Then, for a given w the sum of error squares can be expressed as ‖Xw−y‖2. By
minimizing this expression with respect to w, we obtain the following solution to
the linear regression problem:

w = (XTX)−1XTy

which is always de�ned when rank(X) = m.
The coe�cients of the obtained linear regression model have a simple inter-

pretation: a large value for wj for some j indicates that the variable xj has a
certain signi�cant �in�uence� on the result y. If wj > 0, this in�uence is positive
(larger values of xj indicate larger values of y) and if wj < 0 then the variable xj

has a negative e�ect on y.

2.3 Linear Classi�cation

Classi�cation can be considered as a particular case of regression, where Y is
a �nite set. Here we shall deal with binary classi�cation only, that is, |Y| = 2. It
is particularly convenient to choose Y = {−1, +1}. Linear (binary) classi�cation
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then refers to �nding a function f : Rm → {−1, +1} of the form3

f(x) = sign(wTx + b) = sign

(
m∑

j=1

wjxj + b

)

that has the best precision on the training data.
Having trained a linear classi�er, we can use it to interpret the importance

of variables in exactly the same way as in the case of a trained linear regression
model: variables with larger coe�cients should be considered more important
than variables with coe�cients closer to zero.

It is convenient to think of a linear classi�er as a hyperplane in Rm, that
separates the points of the two classes well. Indeed, the set of points x, satisfying
wTx+b = 0 forms a hyperplane in Rm. Points, for which wTx+b > 0 are located
to one side of that hyperplane, and those, for which wTx + b < 0 �to the other
side. By minimizing the error rate of the classi�er we �nd the hyperplane that
separates the points of the two classes best. In the following we shall therefore
sometimes use the term separating hyperplane instead of linear classi�er.

There are several algorithms for learning linear classi�ers: Rosenblatt's per-
ceptron [15], Fisher's determinant, logistic regression and support vector ma-
chines [16] are the most famous of them. This thesis deals primarily with sup-
port vector machines because they have a �rm advantage over the others from
the standpoint of performance. This type of classi�ers has guaranteed bounds
on generalization error and is supported by Vapnik's statistical learning theory
[17]. They are easily representable as a kernel method and this allows to apply
them more conveniently on the particular type of data we use. The only disad-
vantage is the nearly quadratic computational complexity of SVM training. In
the following we shall discuss this method in a bit more detail.

2.4 Support Vector Machines

2.4.1 Maximal Margin Classi�er

Let S = {(x1, y1), (x2, y2), . . . , (xn, yn)}, xi ∈ Rm, yi ∈ {−1, +1} denote,
as before, the training set. Suppose for the moment, that the data is linearly
separable. That means, there exists some linear classi�er that can classify all the
training points perfectly:

∃(w, b)∀i, 1 ≤ i ≤ n sign(wTxi + b) = yi

3Note that unlike the case of linear regression, it is more convenient to explicitly include the
intercept term b here.
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Figure 2.2: Maximal margin separating hyperplane. The �gure displays the
points of two classes and the maximal margin classi�er separating them. Points
that have the least margin mi (the support vectors) are marked.

The idea of the support vector machine method is to �nd a linear classi�er
that not only separates the classes perfectly, but also has the largest margin. By
margin we denote the distance to the closest training point. More formally, for
a �xed hyperplane (w, b), denote the margin mi of a training sample (xi, yi) as
the distance of the point xi to the hyperplane:

mi = dist(x, (w, b)) =
|wTxi + b|
‖w‖

where the latter fraction is a well-known formula for the distance of a point to a
plane.

The margin m of the separating hyperplane with the respect to the whole
training set S is the smallest margin of an instance of the training set:

m = min
i

mi

Finally, the maximal margin separating hyperplane for a training set S is the
separating hyperplane having the maximal margin with respect to this training
set. In case of linearly separable data, training of SVM consists of �nding this
maximal margin separating hyperplane.

2.4.2 Maximal Margin Classi�er Training

In order to �nd the maximal margin separating hyperplane for a given training
sample we have to �nd the parameters (w, b) that maximize the margin m. It
is easy to see that the hyperplane given by parameters (w, b) is the same as the
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hyperplane (kw, kb), therefore we may constrain our search by only considering
canonical hyperplanes: those, for which

min
i
|wTxi + b| = 1

It is also possible to show, that the canonical hyperplane with the maximal margin
has minimal ‖w‖. Finding the maximal margin classi�er therefore reduces to the
following constrained minimization problem:

Minimize 1
2
wTw under the conditions

gi(w, b) ≤ 0, i = 1, 2, . . . , n (2.1)
where g(w, b) := 1− yi(w

Txi + b).
It turns out, that the solution of this minimization problem can be found in the
saddle point of the Lagrangian function

L(w, b, α) =
1

2
wTw +

n∑
i=1

αigi(w, b)

The saddle point of interest is a point (w∗, b∗, α∗) where L is maximized with
respect to α ≥ 0 and minimized with respect to (w, b). In order to see that,
consider the function

f(w, b) = max
α≥0

L(w, b, α) =

{
1
2
wTw if w satis�es the constraints
∞ otherwise

The sought parameters (w, b) minimize f(w, b), and we can therefore express
them as a saddle point:

(w, b) = argmin
w,b

max
α≥0

L(w, b, α)

It follows from theKuhn-Tucker theorem [18], that the saddle point (w∗, b∗, α∗)

is precisely the point, for which the following relations hold true:
∂L(w∗, b∗, α∗)

∂w
= 0 (2.2)

∂L(w∗, b∗, α∗)

∂b
= 0 (2.3)

α∗
i gi(w

∗, b∗) = 0, i = 1, . . . ,m (2.4)
gi(w

∗, b∗) ≤ 0, i = 1, . . . ,m (2.5)
α∗

i ≥ 0, i = 1, . . . ,m . (2.6)
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By applying the �rst two equations we get

w =
m∑

i=1

αiyixi 0 =
m∑

i=1

αiyi (2.7)

and
L(w, b, α) =

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyjx
T
i xj = fT α− 1

2
αTHα

where f = (1, 1, . . . , 1)T and (H)ij = yiyjx
T
i xj.

As a result, we eliminated the variables w and b, and obtained a quadratic
function that has to be maximised with respect to α > 0,∑m

i=1 αiyi = 0. This is
a standard quadratic programming problem with linear constraints, that can be
solved by well-known interative techniques (e.g. interior point methods [19]).

To summarize, the maximal margin classi�er for a linearly separable training
set can be found by solving the following maximization problem:

max
α

(
fT α− 1

2
αTHα

)
, α ≥ 0,

m∑
i=1

αiyi = 0 . (2.8)

Having found α, we can calculate w and b using the relations (2.4) and (2.7).
Usually, most of the coe�cients αi are equal to zero, because of the relation

(2.4) and the fact that for many training points the constraints (2.1) hold with
strict inequalities. The data points i, for which αi 6= 0 are called support vectors
(see �gure 2.2). The small number of support vectors is what makes the maximal
margin separating hyperplane very stable and robust in practical classi�cation
problems.

2.4.3 Soft-margin Classi�er

The solution derived above is only applicable to linearly separable data, but it
is easily extended to the linearly nonseparable case by introducing slack variables
ξi. Instead of requiring that yi(w

Txi + b) ≥ 1 for each i, we allow the classi�er
to violate the constraint by ξi:

yi(w
Txi + b) ≥ 1− ξi .

We also incorporate the slack variables in the function to be minimized: instead of
minimizing 1

2
wTw we minimize 1

2
wTw+C

∑n
i=1 ξi. The parameter C controls the

�cost� of errors. The resulting classi�er is called soft margin classi�er. It turns
out that in order to �nd the soft margin classi�er the following maximization
problem must be solved:

max
α

(
fT α− 1

2
αTHα

)
, C ≥ α ≥ 0,

m∑
i=1

αiyi = 0 . (2.9)
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The only di�erence from the hard-margin case (2.8) is the additional upper bound
constraint C on all the αi.

2.4.4 The Kernel Trick

Note that in order to �nd the maximal margin or the soft-margin classi�ers we
only need the inner products xT

i xj between the data points (in the maximization
problems the points xi are only present in the entries of the matrix H in the form
of pairwise inner products). Also, the solution vector w is represented as a linear
combination of the data points: w =

∑
i αiyixi. These two observations allow to

apply an interesting idea, commonly called the kernel trick.
Let φ : Rm → Rk be a nonlinear function that maps the training points to a

very high-dimensional space Rk. Denote by K(x,y) the inner product φ(x)T φ(y)

and suppose that we can calculate the function K e�ciently, perhaps without
the need of explicitly mapping the points x to their corresponding images φ(x).
As a simple example consider the function K(x,y) = (xTy)2:

K(x,y) =

(
m∑

i=1

xiyi

)2

=
m∑

i,j=1

xiyixjyj =
∑
i,j

(xixj)(yiyj) = φ(x)T φ(y)

where φ(x) := (x1x1, x1x2, x1x3, . . . , x2x1, x2x2, . . . , xmxm), i.e. φ maps a given
vector to a vector of pairwise products of its elements. The function K is called
a kernel.

Given such a map φ and a corresponding kernel K, we can e�ciently apply the
support vector machine training algorithm on the data points transformed by this
map, φ(xi). Indeed, let us substitute φ(xi) for xi everywhere in the algorithms
above. That will change the de�nition of (H)ij to yiyjK(xi,xj), therefore we
shall still be able to calculate this matrix e�ciently. The vector w will become∑m

i=i yiφ(xi), and it will no longer be possible to calculate w e�ciently, but that
is not a problem because in order to perform classi�cation it is enough to know
the variables αi only:

sign(wT φ(x) + b) = sign

(
n∑

i=1

αiyiφ(xi)
T φ(x) + b

)

= sign

(
n∑

i=1

αiyiK(xi,x) + b

)
.

It is this kernelized version of the soft-margin classi�er that is usually meant
under the term support vector machine (SVM). Here is a quick summary of SVM
training and classi�cation procedures:

• Training
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� Given: training set S, kernel function K

� Find: α and b by solving (2.9) and applying (2.4)
• Classi�cation

� Given: training set S, kernel function K, trained classi�er (α, b), a
point to be classi�ed x.

� Return: the classi�cation y of point x calculated as

y = sign

(
n∑

i=1

αiyiK(xi,x) + b

)
.

It is interesting to note that the function φ is present in the algorithm only
indirectly, via the kernel K. We may therefore choose a kernel function K with-
out even knowing what is the corresponding feature map φ. We only need to
check that K satis�es the condition of the Mercer's theorem, that states that a
symmetric function K(x,y) can be expressed as an inner product φ(x)T φ(y) for
some φ i� K(x,y) is positive semide�nite, i.e.∫

K(x,y)g(x)g(y) dx dy ≥ 0 for any g .

This condition is equivalent to the requirement that for any set of points
{xi | i = 1 . . . n} the kernel matrix K, (K)ij = K(xi,xj) is positive semide�nite.
The condition has been veri�ed for several common kernel-functions, such as
the polynomial kernel K(x,y) = (xTy + 1)k, the gaussian kernel K(x,y) =

exp(−‖x−y‖2
2σ2 ) and some other [14, 13].

2.4.5 SVM in Practice

As already mentioned, the main problem of the SVM method is its computa-
tional complexity. Training has quadratic memory requirements (an n×n matrix
needs to be stored) and the solution of the quadratic programming problem is
nearly quadratic in complexity even with SVM-speci�c optimization algorithms
like SMO (sequential minimal optimization, [20]) . This limits this method to the
training sets of not much more than about 10000 elements.

There is certainly more that can be said on the subject of support vector
machines and kernel methods, but we stop here and refer the reader to the books
[12, 13, 14] for further information.
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Chapter 3

A Linear Model for Gene

Expression

I just got lost in thought. It was an unfamiliar territory.

This chapter introduces the main result of this thesis: a linear model for gene
expression analysis that incorporates both microarray data and DNA sequence
information. First, some motivation for such analysis is presented, that is followed
by a more precise statement of the problem. Next the design of a speci�c model
is discussed and an algorithm is derived for �nding a least-squares �t for it.

3.1 Motivation

Microarray experiments produce a vast amount of data. The analysis of this
data is, however, not straightforward, as the biological mechanisms underlying
gene expression are not completely understood. Moreover, the goal of microarray
data analysis is often seen in the determination of these mechanisms.

In particular, some insight may be obtained by learning predictive models on
the data, that is, models that can predict the expression level of a given gene
from the expression levels of other genes. Such a model may be used to identify
genes playing important role in transcription regulation in at least two ways.
Firstly, the model itself may be descriptive and explicitly specify which genes are
important for prediction. The classical example of such a model is a decision tree.
Indeed, attempts were made to build decision trees on microarray data, reporting
satisfactory results [4, 5]. Another way to infer information from a model is to
examine its prediction performance when trained on di�erent sets of predictor
genes. The set of genes that shows the best performance should be considered
biologically important.
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However, the statistical signi�cance of a model built on solely the expression
data is questionable. If we want to predict expression of a gene from expressions
of other genes we have to consider the columns of the expression matrix as the
instances (training points) given to the algorithm. The number of columns in
a typical expression matrix is often prohibitively small (about hundred or so),
and it is not clear whether a machine learning algorithm will be able to infer
meaningful results from such scarce data. Adding some external information,
such as DNA sequence data, might improve the situation.

There exist di�erent possibilities for the analysis of data, that combines mi-
croarray measurements with DNA sequences. Examples are combinatorial anal-
ysis of motif correlation [3], two-dimensional regression trees [2] and ADT-trees
[6]. In the following we propose yet another approach, based on a speci�c linear
model. Exposition follows in a top-down manner, �rst presenting the problems
and ideas and concluding with the speci�cation of the method itself.

3.2 Notation

In the following we di�erentiate between two kinds of genes: the ones that
correspond to actual or putative transcription factors and all the rest. We call
the former TF -s (or predictor genes) and designate them as tk, k ∈ {1, 2, . . . , nt}
where nt denotes the number of TF-s. To the remaining genes we refer simply as
genes and denote them as gi, i ∈ {1, 2, . . . , ng} where ng is the number of genes.

Microarray experiment data is usually represented as an expression matrix E

with rows corresponding to genes, and columns to arrays (or conditions). Denote
by na the number of arrays in this matrix and the arrays themselves by aj,
j ∈ {1, 2, . . . , na}. We group all the rows of the matrix E corresponding to TF -s
in a separate TF expression matrix, T, and all the remaining rows in a gene
expression matrix, G. So Gij denotes the expression level of gene gi in the array
aj and Tkj is the expression level of tk in aj.

Besides microarray data we also have the DNA sequences. Although it is
not impossible to use raw character sequences in the analysis, it is much more
convenient to work with numeric data, so we transform each sequence to a vector
of counts of certain motifs in that sequence. A motif is such a subsequence of
the DNA for which it is known (or supposed) that certain TF-s attach there1.
In our analysis we �x a certain set of motifs: ml, l ∈ {1, 2, . . . , nm} and for each
gene gi and motif ml we calculate the number of times Mil this motif is present
in the promoter region of that gene. This results in a motif matrix M.

The matrices T, G and M make up the data to be analyzed. Figure 3.1 shows
1In practice motifs are usually represented as probabilistic objects by means of position

weight matrices [21] or hidden markov models [9]
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TF expression data

(column attributes)

Arrays

a1 a2 a3 ....

TF-s

TF1

TF2

TF3

...

Gene expression data

Gene1

Gene2

Gene3

...

Genes

Motif counts in genes

(row attributes)

m1 m2 m3 ...

Motifs

Figure 3.1: The matrices T (top), G (bottom left) and M (bottom right). Each
row of G corresponds to a certain gene, as does each row of M. Each column
of G corresponds to a certain array, as does each column of T. The rows of M

therefore provide �additional information� about the rows of G and the columns
of T provide additional information about the columns of G.

a convenient way to visualize these matrices. Following [2] we call the rows of
the motif matrix row attributes of G, and the columns of T � column attributes
of G.

In the derivation of the algorithm we need to refer to separate rows and
columns of the matrices M and T. We denote the i-th row of the matrix M by
Mi∗ and treat it as a row vector. The l-th column of the matrix M is denoted
by M∗l and is treated as a column vector. Analogously, we refer to the k-th row
and j-th column of the matrix T as Tk∗ and T∗j respectively.

3.3 Modeling the Expression of Genes

Now we can formulate our task more precisely. We shall try to �nd a model
that can predict the expression Gij of gene gi on the array aj, given the description
of the gene as a vector of its motif counts Mi∗ = (Mi1, Mi2, . . . ,Minm), and the
speci�cation of the array as a vector of the expression levels of the TF-s on that
array: T∗j = (T1j, T2j, . . . , Tntj)

T . In other words, we shall be predicting the
value in a cell of G given the corresponding row of M (row-attributes) and the
corresponding column of T (column-attributes). Such formulation was borrowed
from [2] and [6].

In order to design the model we make some assumptions concerning the pro-
cesses that underlie microarray experiments:
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1. We assume that gene expression is regulated by TF proteins. Each gene's
expression may be expressed as a function of the expressions of its regula-
tors.

2. We assume that TF-s perform their regulatory function by attaching to
certain motifs in the promoter region of the gene. A TF, when attached to
a motif, may thus induce or suppress the transcription of the corresponding
gene. Some genes require an ensemble of TF-s to be attached to their
promoter in order to get expressed. If the promoter region of the gene does
not contain a motif, to which a given TF might attach itself, this TF does
not participate in the regulation of the gene.

If we knew all the underlying regulatory rules, the relations between motifs and
TF-s, and the states of all the regulators, we could in principle precisely predict
the expression state of all the genes. That is, if we knew the rules, we could
calculate the matrix G given M and T. The problem under consideration is,
however, precisely the inverse: knowing the matrices G, T and M we attempt to
restore the regulatory relations.

3.4 Design of the Model

As noted above, we use the assumption that the expression level of each gene
can be expressed as a rule depending on the expression levels of the TF-s. Let
us also assume for now that there are two expression states: upregulated and
downregulated, and use the predicate up to denote expression state of a gene.
That is, we say that up(g) is true when g is upregulated and false otherwise. A
regulatory rule for a gene g might then look for example like that:

up(g) = (up(t1) &¬up(t2)) |up(t3) .

Let T1, T2, T3 and G be real numbers such that:

G =

{ 1, if up(g)

0, otherwise Tk =

{ 1, if up(tk)

0, otherwise k ∈ {1, 2, 3} .

It is then easy to see that the above rule is equivalent to
G = H(T1 not(T2) + T3)

where not(x) = 1−x and H is the Heaviside step function, i.e. H(x) = 1 if x > 0

and 0 otherwise.
Due to our second assumption, there must exist a binding site ml for each TF

tk that participates in the regulation of the gene, and the rule may be trivially
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rewritten as
up(g) = (up(t1) &hasmotif(g,m1) &binds(t1, m1) &

&¬up(t2) &hasmotif(g,m2) &binds(m2, t2)) |
| (up(t3) &hasmotif(g,m3) &binds(m3, t3))

where hasmotif(g,m) denotes that gene g has the motif m, and binds(m, t)

denotes that TF t binds to the motif m. Let Mil be the numeric representation
of hasmotif(gi, ml) (i.e. Mil = 1 if the corresponding predicate is true nad
Mil = 0 otherwise), and let α′

lk be the numeric representation of binds(ml, tk).
The above rule is then equivalent to

G = H(α′
11M1T1α

′
22M2 not(T2) + α′

33M3T3)

It is clear that we may express the regulatory rule for any gene in the same
way, which is in its most general form

G = H

 ∑
K={k1,...,kc}⊂{1,...,nt}

∑
F=(f1,...,fc)∈{id,not}c

d(K, F )
nm∑
l=1

c∏
i=1

α′
lki

Mlfi(Tki
)


where id is the identity function and d is a parameter of the model. Such model,
although biologically motivated, is far too complex to be �tted using the available
data. In order to reduce the complexity we drop all the terms from the outermost
sum where |K| > 1 and obtain

G = H

(
nt∑

k=1

nm∑
l=1

(d(k, id)α′
lkMlTk + d(k, not)α′

lkMl not(Tk))

)
which is equivalent to

G = H

(
nt∑

k=1

nm∑
l=1

αlkMlTk +
nm∑
l=1

αl0Ml + b

)
for some choice of αlk and b.

Note, that although the variables αlk here do not directly correspond to the
predicate binds anymore, they still express the importance of the relation be-
tween a motif and a TF. Also note, that the presence of H and the discretization
of expression states are not necessarily needed. Finally, we may drop the sum2∑nm

l=1 αl0Ml. It will still make sense to search for parameters αlk and b that de-
scribe the (continuous) expression value G as a linear combination of pairwise
products MlTk.

G =
∑
l,k

αlkMlTk + b . (3.1)

2Or we may simulate it by adding a TF with a constant expression level of 1
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where Tk are continuonus TF expression values.
It is this model that we shall be �tting. The model is descriptive in the sense

that we can search for putative relations between TF-s and motifs by examining
the values of the coe�cients αlk. The model is also predictive as it can be used
to predict the gene expression values of previously unseen genes. The model is
linear with respect to the products MlTk and has a reasonably small number of
parameters, so that we may hope that it won't over�t the data too much.

It should also make sense to apply the model in the context of linear classi�-
cation, where the expression levels are discretized to +1 and −1. In this case the
model equation (3.1) takes the form of

G = sign

(∑
l,k

αlkMlTk + b

)
(3.2)

We shall refer to this variation as the classi�cation version and to the variation
de�ned by equation (3.1) as the regression version.

It is clear from the preceding discussion that neither version of the model takes
into account the �crosstalk� of di�erent TF-s, so the regulatory rules containing
lots of conjunctions of the form up(t1) &up(t2) will probably cause problems
for the model. Rules with such conjunctions could be perhaps better modeled
by including the products of the form T1T2 in the design, but in this case the
number of model parameters would grow in an unmanageable manner.

The parameters of the model may be �tted using standard techniques like
linear regression or support-vector machines. In the following we also derive an
especially e�cient way of calculating the least-squares �t for the parameters of
the regression version of the model.

3.5 Least-Squares Fit for the Model

Let A denote the matrix of the parameters αlk, that is, (A)lk = αlk. We
assume here without loss of generality that the data is centered, so b = 0. The
problem is to �nd the least-squares �t for the parameters αlk, given the matrices
G, M and T.

Let us �x some value for the parameter matrix A. Consider a gene gi and an
array aj. The gene gi is in our setting described by its motif vector Mi∗ and the
array tj is given by the corresponding TF expression vector T∗j. Given this data,
the model would predict the expression value Ĝij of gene gi in array aj as

Ĝij =
∑
l,k

αlkMilTkj .

By using the fact, that for any matrix M and column-vectors x, y of the appro-
priate size, the equation xTMy =

∑
i,j(M)ijxiyj holds true, we may conveniently
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rewrite the former formula in a more compact way:
Ĝij =

∑
l,k

αlkMilTkj = Mi∗AT∗j .

Next we group the equations for all possible i and j in one single matrix equation
Ĝ = MAT .

Finding the least squares �t for the parameter matrix means �nding a matrix A

that minimizes the sum of squares of errors in the predictions Ĝij

E(A) =
∑
i,j

(Gij − Ĝij)
2 .

In other words, we wish to �nd the matrix A for which the predicted expression
matrix Ĝ is as close as possible to the true matrix G. This idea allows to express
the task in a simple manner:

Find A for which
G ≈ MAT

This equation suggests the codename G-MAT for the model.
In order to �nd the minimum of E(A) (which is unique here, as E is a quadratic

function) we set the partial derivatives of E to zero and get:
∂E(A)

∂αlk

= 2
∑
i,j

(Gij −Mi∗AT∗j)(−MilTkj) = 0 ∀ l, k

∑
i,j

Mi∗AT∗jMilTkj =
∑
i,j

GijMilTkj ∀ l, k .

This corresponds to the matrix equation
MT

∗lMATT T
k∗ = MT

∗lGT T
k∗ ∀ l, k .

Grouping the equations for all l and k together into one matrix equation, we get
MTMATTT = MTGTT

from which it follows that
A = (MTM)−1MTGTT (TTT )−1 . (3.3)

The number of rows of the matrix M is usually much greater than the number
of its columns (ng > nm). Therefore, rank(M) = nm, which is the necessary
and su�cient condition for MTM to be invertible. The matrix TTT , however,
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will often be singular, because the number of TF-s nt might be greater than the
number of arrays na. In order to make it invertible, we may either reduce the
number of TF-s in the analysis, or regularize TTT by adding a small number λ

to the diagonal elements (a trick known as ridge regression, [22]). The solution
(3.3) then obtains the form

A = (MTM)−1MTGTT (TTT + λI)−1 . (3.4)
The time complexity of the calculation of A depends linearly on ng and na,

and is cubic in max(nt, nm). Memory requirements are quadratic in max(nm, nt)

and linear in ng. This is very e�cient when compared to the naïve attempt of
applying standard techniques on the dataset of ng × na points (one data point
per each cell of G) and nm × nt attributes (one attribute per pair (motif,TF)).

3.6 Support Vector Machine Version

It is common to discretize the expression levels into two or three states (up-
regulated/downregulated/normal). In this case the classi�cation version (3.2) of
the model is more applicable.

We shall apply the support-vector machine classi�er algorithm to �t the pa-
rameters of the model. Unfortunately, SVM training is computationally demand-
ing: for a training set of size n it requires solving a quadratic programme with a
n × n Hessian matrix. In our case the size of the training set would be ngna as
there is one training instance per each entry of the matrix G. Solving such a large
quadratic problem is completely unfeasible, and we didn't �nd a way to adapt
the SVM algorithm to our special case to achieve any signi�cant speedup. We
shall therefore have to use a smaller set of size ntrain to train the algorithm. That
means, we shall choose a set I of pairs of indices (i, j) refering to the elements of
the matrix G:

I ⊂ {1, . . . , ng} × {1, . . . , na}, |S| = ntrain

and for each element s = (i, j) of I we de�ne the corresponding training sample
(xs, ys) as

xs = (Mi1T1j, Mi1T2j, . . . ,Mi2T1j, Mi2T2j, . . . ,MinmTntj), ys = Gij .

We then feed these training instances to the SVM training algorithm.
There is one optimization we can make, however. The SVM algorithm does

not require the training samples xs as input, but rather their inner products. It
turns out that we may calculate inner products of the training instances in a
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way that is more e�cient than the straightforward approach. Let s1 = (i1, j1),
s2 = (i2, j2). Consider the inner product xT

s1
xs2 :

xT
s1
xs2 =

∑
l,k

Mi1lTkj1Mi2lTkj2 =

(∑
l

Mi1lMi2l

)(∑
k

Tkj1Tkj2

)
= (Mi1∗M

T
i2∗)(T

T
∗j1T∗j2) .

Besides being more e�cient to calculate, such representation allows to plug in any
kernels instead of the inner products Mi1∗M

T
i2∗ and T T

∗j1T∗j2 . In particular, the
inner product of the motif vectors might be replaced by a string kernel calculated
on the corresponding DNA sequences.

3.7 Interpretation

As already noted, both the regression and the classi�cation versions of the
model have a rather clear interpretation. Namely, a large positive or negative
value of αlk should indicate the possibility for some biological connection to
exist between the TF tk and the motif ml. It is not easy to derive a precise
statistical test on the signi�cance of a particular value of αlk, but we may estimate
signi�cance using randomization tests (introduced later).

Finally, the error of the model E(A) might indicate the �goodness� of the
chosen set of predictor genes. We may optimize this �goodness� and thus �nd a
set of genes that should afterwards be examined for biological signi�cance.
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Chapter 4

Experiments

Experience is something you don't get until just after you
need it.

In this chapter we �rst present a toy example illustrating the ideas of the
method, and then attempt to apply the technique on a larger arti�cial dataset
that simulates, to some extent, the real-life situation.1.

4.1 A Toy Example

Let us design a small example of the �regulatory network� that works in ac-
cordance with the proposed model, and examine the capabilities of the method
to restore the regulatory relations given the �microarray measurements� and �se-
quence data�.

Suppose that there exist 5 transcription factors tk, 5 motifs ml, and that the
following relations hold among them:

• TF t1 is a transcriptional activator that binds to motif m1.
• t2 is a strong transcriptional suppressor, it binds to motif m2.
• The TF t3 also binds to m2, but unlike t2 acts as an activator.
• t4 can bind to m3 and m4 and acts as an activator when bound to m3 and
as a suppressor when bound to m4.

• t5 is an activator that can bind to both m4 and m5, but its activity is
stronger when it is bound to m5.

1Unfortunately, a thorough analysis of the performance of the method on a real dataset was
not completed in this work due to lack of timely access to data, late-to-discover bugs in the
analysis and some other mistakes of the author.
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m1 m2 m3 m4 m5

...ACTACT... ...AGTCAT... ...GACTAC... ...AAATTT... ...GGTAAT...

t1 t2 t3 t4 t5

activate
suppress

activate

activate activate
suppress

activate

Figure 4.1: The regulatory rules of the toy example. Arrows indicate which TF-s
bind to which motifs and what e�ect they have on transcription regulation.

These relations are depicted in the �gure 4.1.
The relations are described by the following matrix Atrue:

t1 t2 t3 t4 t5
m1 1 0 0 0 0

m2 0 −2 1 0 0

m3 0 0 0 1 0

m4 0 0 0 −1 1

m5 0 0 0 0 2

.

A positive entry αlk = (Atrue)lk indicates that TF tk induces transcription when
bound to motif ml. A negative entry denotes the suppressive e�ect of the corre-
sponding TF. Larger values indicate stronger e�ect.

Suppose we have a set of 5 genes, described by the following motif matrix M:
m1 m2 m3 m4 m5

g1 1 1 0 0 0

g2 0 0 1 1 0

g3 0 1 0 1 0

g4 0 0 1 0 0

g5 0 0 1 0 1

.

That is, the promoter region of gene g1 contains motifs m1 and m2, the promoter
region of g2 contains m3 and m4, etc.

Imagine that we performed 4 microarray experiments a1, a2, a3, a4, and the
expression levels of the TF-s in these experiments are given by the following TF
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expression matrix T:
a1 a2 a3 a4

t1 1 0 1 0

t2 0 1 0 1

t3 1 1 0 1

t4 0 0 1 0

t5 0 1 0 0

.

It means that TF t1 was upregulated in the experiments a1 and a3, TF t2 was
upregulated in the experiments a2 and a4, etc.

At last, suppose that genetic regulation indeed follows the proposed model:
the expression of a gene can be written as a sum of the �e�ects� of the TF-s that
bind to the gene's promoter. The e�ect of each TF tk depends on its expression
level Tk and the motif ml to which it binds. The parameters αlk describe the
e�ect of a TF tk bound to motif ml.

Having all the information, we can determine the expression of each gi in
each experiment aj. For example, the gene g1 contains motifs m1 and m2 and is
therefore regulated by the TF-s t1, t2 and t3. In the experiment a1 the TF-s t1
and t2 are upregulated. Each of them has an e�ect of 1 on the gene. Therefore
the total expression level of g1 in a1 is 1 + 1 = 2. As another example, consider
the expression of g1 in a2. Here the TF-s t2, t3 and t5 are upregulated. TF t2 has
the e�ect of −2 on the expression level of g1, the e�ect of t3 is 1, and the TF t5
cannot bind to g1 and thus has no in�uence on it. The total expression level of
g1 is therefore −2 + 1 = −1. Continuing in the same manner we can calculate
the full expression matrix G:

a1 a2 a3 a4

g1 2 −1 1 −1

g2 0 1 0 0

g3 1 0 −1 −1

g4 0 0 1 0

g5 0 2 1 0

.

.
We shall now illustrate how the proposed analysis method can restore the

�regulatory relations� Atrue, from the matrices G, M and T. We cannot use the
equation (3.3) here because the number of TF-s is greater than the number of
arrays and the matrix TTT is thus singular. It means that there is not enough
information about the matrix Atrue in the data, and the best we can do is attempt
the regularized equation (3.4). We apply that formula with λ = 0.01 and obtain
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the following solution A:

A =

t1 t2 t3 t4 t5
m1 0.75 −0.25 0.25 0.25 0

m2 0.74 −1.23 −0.24 −0.73 −0.01

m3 0.25 0.24 −0.25 0.74 0

m4 −0.25 −0.23 0.25 −0.74 0.98

m5 0 0.01 0 0 1.96

.

Due to incomplete data, the obtained result is not precisely equal to the true
Atrue underlying our genetic network. To obtain more interpretable results we
round the values to closest integers and obtain

A =

t1 t2 t3 t4 t5
m1 1 0 0 0 0

m2 1 −1 0 −1 0

m3 0 0 0 1 0

m4 0 0 0 −1 1

m5 0 0 0 0 2

.

It is easy to con�rm that this matrix is rather close to the original Atrue. There
are some mistakes, however. For example, the regulatory role of TF t3 was not
detected. The reason might lie in the fact that in the generated �experiments� this
TF was too often upregulated together with t2. The two TF-s bind to the same
motif m2, but the suppressing e�ect of t2 is stronger than the inducing e�ect of t3.
This is probably also the reason why t2 was detected as only a weak suppressor.
One more mistake is the spurious identi�cation of the pair (m2, t4). Despite these
errors, the precision of the obtained results is in general quite satisfactory.

If we add one more experiment a5 to the analysis, the problem becomes well-
de�ned and we may use the formula (3.3) to restoreAtrue. In this case the restored
matrix A is, of course, precisely equal to the original Atrue.

In the following we shall attempt to apply the method on a larger dataset,
that is not generated using the same model that we are �tting.

4.2 The Synthetic Dataset

We examine the ability of the model to detect TF-motif relations �hidden� in
a synthetic dataset, created in the following manner:

• There are 100 TF-s, of which 80 are assumed to participate in the regulatory
process (call them important).

• There are 100 motifs, of which 80 are considered important.
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• The relationship of the 80 important TF-s and motifs is described by a
randomly initialized �binding matrix� B. A nonzero entry Blk identi�es
that a TF tk may bind to motif ml. About 2% of entries in the matrix are
nonzero.

• A set of 3000 genes is used, of which 2500 are regulated via certain rules.
A motif vector is initialized randomly for each gene.

• For each of the 2500 correctly regulated genes a random regulatory rule is
created in the following manner
� A random subset of important TF-s that can bind to the gene is chosen.
� Each TF in the chosen subset is assigned either positive in�uence or

negative in�uence.
� The rule is the following: a gene is upregulated if there are more upreg-
ulated TF-s with positive in�uence than there are TF-s with negative
in�uence; the gene is downregulated if there are more upregulated TF-s
with negative in�uence; otherwise the gene is in normal state.

• 200 arrays are simulated. In each array the expression levels of the TF-s
are chosen at random, the expression levels of the 2500 regulated genes are
calculated using the corresponding rules, and the expression levels of the
remaining genes are selected at random.

• At last, data of 20 important TF-s and 20 important motifs is removed.
Such a dataset corresponds, to some extent, to our assumptions about the tran-
scription regulation processes, but at the same time it is not generated using
the same model that we shall be �tting. There are no complex rules that could
completely confuse a linear model but there is some data missing and a consid-
erable amount of noise present. The point of interest is the ability of the model
to restore the information in the binding matrix. We assume that the model's
parameter matrix A will provide this information.

4.3 Linear Regression

We start by �tting the linear version of the model using the equation (3.3).
After obtaining the matrix A we need to analyze which entries of αlk indicate
signi�cant connection between the corresponding TF and motif. In order to do
that we use a randomization test : we shu�e the rows of the motif matrix M

and the columns of the TF expression matrix T and try to �t the model on this
randomized data obtaining the matrix Ã. Due to the random shu�ing of motifs
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Figure 4.2: Distributions of the entries of the matrix A for a linear regression
model �tted on a synthetic dataset (left) and on the same data with motifs and
TF-s randomized (right).

and TF-s there is no �biological� information in the data anymore, therefore we
might consider entries of the matrix Ã as purely random. By comparing the
distributions of the entries of the matrices A and Ã (�gure 4.2) we see that
the former has slightly heavier �tails�. The di�erence is tiny indeed, but its
presence can be veri�ed by repeating the experiment many times. The tails of
the distribution of true αlk always turn out to be a bit heavier. We assume that
these �tails� contain the values that we should consider signi�cant.

More precisely, let ql and qh be the 0.5 and the 99.5 quantiles of the distribu-
tion of Ã correspondingly. It means that in the random case, 99% of entries fall
into the interval [ql, qh]. We consider as signi�cant all the values of A, that are
not in this interval. That is, if for some l and k, αlk /∈ [ql, qh], we state that the
corresponding entry of the binding matrix is nonzero.

We consider two indicators for the obtained result:
• Speci�city: The percentage of the predicted entries αlk, that turned out to
be correct (i.e. for which the corresponding entry of the binding matrix is
nonzero).

• Sensitivity: The percentage of the entries of the binding matrix, that were
correctly detected by the model.

In the performed experiments the speci�city turned out to be about 10-15%
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on average, and the sensitivity about 20-25%. Although the number is not very
impressive, it is still a rather good result. It means, that every eighth relation
predicted by the method holds true, and that the method managed to determine
20% of all relations. Due to the way the data was generated, the probability
of �nding a related pair (ml, tk) by making a random choice is less than 2%.
Therefore �nding 20% of such pairs with 10% precision is indeed a reasonable
achievement.

4.4 Support Vector Machine Classi�cation

The support vector machine classi�er version of the model did not do as well
in the same kind of analysis. Both sensitivity and speci�city of the predictions
of the binding matrix were less than 5%. The reason for such performance lies
probably in the fact that we had to select a relatively small training sample
for the analysis�less than 2000 instances out of the maximum possible set of
3000× 200 = 600000 instances. Otherwise the training just takes too much time.

In order to still be able to examine the usefulness of the SVM version of the
model we created a really small dataset consisting of 100 genes, 10 arrays, 30 TF-
s and 30 motifs, and �lling about 7% of the entries in the binding matrix. We
performed the analysis using the SVM classi�er on this dataset. Unfortunately,
the results were unsatisfactory: both sensitivity and the speci�city of the trained
model were under 10%. In the case of this small dataset it is not signi�cantly
better than a random selection of pairs.
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Conclusion

A conclusion is the place where you got tired of thinking.

To summarize, a new method for analysis of microarray data has been devel-
oped, that combines microarray data with DNA sequence data. The idea of the
method is to �t a certain linear model to the data and examine its coe�cients.
The method was tested on a synthetic dataset where it reported satisfactory
performance.

There are basically two variations of the method: one based on linear re-
gression and the other � on linear classi�cation. In the �rst case, an e�cient
algorithm for �tting the model was developed. In the second case no such algo-
rithm has yet been found. An attempt to use the SVM algorithm for �tting the
classi�er model failed due to the complexity of this algorithm. However, there
are still several possibilities that can be tested such as the Fisher's determinant
and logistic regression.
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A Linear Model of Genetic Transcription Regulation that

Combines Microarray and Genome Sequence Data

Bachelor thesis

Konstantin Tretyakov

Abstract

The thesis proposes a novel method for the analysis of microarray data based
on �tting a speci�c linear model that combines microarray data with DNA se-
quence information. The model is both descriptive and predictive: its coe�cients
provide insight into the structure of the genetic regulatory networks, and its pre-
dictive performance may be used to �nd a set of genes that play important role
in transcription regulation (transcription factors). An e�cient algorithm is pro-
posed for calculating the least-squares �t for the parameters of the model.

The proposed method is tested on a synthetic dataset and the results indicate
that the approach is capable of detecting interesting relations in the data.
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Lineaarne mudel geeni ekspressiooni andmete

analüüsi jaoks

Bakalaureusetöö (10 ap)

Konstantin Tretjakov

Resümee

DNA mikrokiipide abil saadud geeni ekspressiooni andmete analüüsitehnikate
väljatöötamine on praegu üks olulisematest uurimissuundadest bioinformaatikas.
Antud töö pakub uue meetodi geeni ekspressiooni andmete analüüsimiseks, mis
põhineb teatud lineaarse mudeli sobitamises geeni ekspressiooni ja DNA järjen-
dite andmetele.

Vaatleme geenide hulka {gi | i = 1 . . . ng}, transkriptsioonifaktorite (TF-ide)
hulka {tk | k = 1 . . . nt}, eksperimentide hulka {aj | j = 1 . . . na} ning DNA-
motiivide hulka {ml | l = 1 . . . nm}. Kasutame järgmisi tähistusi:

• G tähistab geenide ekspressiooni maatriksit, mille read vastavad geenidele
gi, veerud � eksperimentidele aj, ning iga väärtus Gij näitab geeni gi eks-
pressioonitaset eksperimendis aj.

• T tähistab tranksriptsioonifaktorite ekspressiooni maatriksit, mis on analoogne
G-le, kuid read vastavad TF-idele, mitte geenidele.

• M on motiivide maatriks, kus Mil näitab kui mitu korda esineb motiiv ml

geeni gi promootor piirkonnas.
Meetodi idee on leida lineaarne regressioon, mis suudab ennustada iga geeni

ekspressioonitaset G teades iga motiivi ml jaoks selle motiivi esinemiste arvu Ml

selle geeni promootoris ning iga TF tk jaoks tema ekspressioonitaset Tk. Mudel
omab kuju

G =
nm∑
l=1

nk∑
k=1

αlkMlTk .

Alternatiivselt võib üritada sobitada ka klassi�tseerija-mudelit

G = sign

(
nm∑
l=1

nk∑
k=1

αlkMlTk

)
.
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mis ennustab geeni jaoks kas see on �sisse� või �välja� lülitatud.
Töös esitatakse mitteformaalsed põhjendused, miks sellise mudeli otsimine

võib omada mõtet bioloogia seisukohast.
Mudeli parameetrite αlk jaoks saab regressiooni puhul suhteliselt efektiivselt

leida vähimruutude hinnangu andmetestG, M jaT. KuiA tähistab parameetrite
maatriksit ((A)lk = αlk) siis osutub, et parameetrite hinnang avaldub

A = (MTM)−1MTGTT (TTT )−1 .

Klassi�tseerija-põhise mudeli sobitamiseks efektiivset algoritmi käesolevas töös
kahjuks ei leitud.

Treenitud mudeli parameetrid on lihtsasti interpreteeritavad. Juhul kui mõni
parameeter αlk omab suurt absoluutväärtust, tähendab see, et motiivi ml ja TF-i
tk vahel võib olla bioloogiline seos.

Töö lõpus hinnatakse mudeli headust lihtsa sünteetilise andmestiku peal. Os-
utus et regressioonil põhinev mudel suudab teatud määral tuvastada andmetes
peidetud seosed. Klassi�tseerija-mudeli sobitamist prooviti tugivektor masina
(SVM) algoritmi abil. See katse kukkus kahjuks läbi eelkõige selle algoritmi
ajalise keerukuse tõttu.
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