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1. INTRODUCTION 

Humans have long enjoyed living where the land and water meet; it is in-
vigorating for the spirit. Water bodies are valued as sources of the water supply 
for domestic life and agricultural and industrial production, supporters of 
biodiversity, and providers of fishing and recreation opportunities. At the same 
time, the impact of human activities close to inland waters and coastal areas has 
increased, which has caused the deterioration of water bodies. Therefore, the 
state of a water body requires constant monitoring to assess the magnitude of 
the impact of human activity and to respond when needed. Traditional water 
monitoring programs are mainly based on in situ measurements; however, 
considering that water bodies are dynamic in nature, this method may not reflect 
the status of the whole water body. Also, the monitoring frequency is often not 
sufficient to capture changes or to detect them early enough to ameliorate water 
quality. Therefore, it is important to implement techniques that allow more 
operative monitoring of the aquatic environment. 

Remote sensing offers effective ways to observe spatial and/or temporal 
variations in water quality, which is vital for the comprehensive assessment and 
management of water bodies [1]. In remote sensing, the physical characteristics 
of an area are monitored by measuring reflected and emitted radiation at a 
distance (e.g. using data from satellites, aircraft, towers, hand-held devices, 
etc.). Water quality can be estimated using a passive remote sensing technique 
by measuring sunlight that has been backscattered within the water in the 
visible and near-infrared (NIR) part of the spectrum. Sunlight altered by water 
masses is influenced by optically significant constituents (OSC) such as 
phytoplankton, coloured dissolved organic matter (CDOM), and total suspended 
matter (TSM). As inland and coastal waters contain greatly and independently 
varying amounts of different OSC, remote sensing of inland and coastal waters 
is very challenging [2]. 

Phytoplankton consists of single-celled, free-floating, photosynthetic orga-
nisms that form the base of the aquatic food web and are an important com-
ponent of the carbon cycle, which has a major impact on water quality. Seasonal 
phytoplankton blooms are natural processes in the aquatic environment [3]. 
However, a rise in phytoplankton biomass may also be a sign of eutrophication, 
which indicates increased nutrient inputs [4,5], all of which, in turn, leads to 
drastic changes in the aquatic ecosystem (e.g., altered species composition, 
hypoxia, decreased water transparency, toxins, problems for fishes) [6,7]. 
Phytoplankton is primarily responsible for determining the optical properties of 
most oceanic waters. The photosynthetic phytoplankton pigment chlorophyll-a 
(Chl-a) is typically used as a proxy for phytoplankton biomass [8]. Chl-a 
strongly absorbs light in the blue and red regions of the visible spectrum [2]. 
Simple remote sensing algorithms for the retrieval of Chl-a are based on the 
ratios of reflectance, such as the blue-green ratio [9], which are empirically 
related to the Chl-a concentration. However, this is not often valid for optically 
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complex waters, where CDOM and TSM also affect the optical properties of 
water. Several studies have suggested the use of various combinations of NIR 
and red band combinations instead [10–12]. 

TSM is divided into suspended particulate organic matter (SPOM) and 
suspended particulate inorganic matter (SPIM). It is used as an indicator of 
physical forcing, for instance, wind-driven resuspension, land runoff, as well as 
dredging operations, which lead to much higher TSM concentrations in the area 
[13,14]. SPOM contains a mixture of planktonic organisms (e.g., phyto-
plankton, bacterioplankton, etc.,) and non-living organic matter, and its optical 
properties are similar to those of CDOM [15]. The presence of terrigenous 
particles in the water often accounts for the bulk of SPIM. SPIM scatters light, 
whereas the scattering depends on the size and shape of the particles—particles 
< 1 µm scatter more strongly at shorter wavelengths, while in the case of larger 
particles, the wavelength dependence is weak [15,16]. This limits the accuracy 
of algorithms for estimating TSM. The use of red and/or NIR wavelengths is 
suggested to quantify the SPIM due to strong water absorption in the NIR 
wavelengths [17]. 

CDOM is an optically active fraction of dissolved organic matter [18]. It 
may have a local origin, for instance, from degradation of phytoplankton cells, 
or it may be advected from a distant source, for example, from organic-rich 
rivers. CDOM can be used as a proxy for assessing dissolved organic carbon 
dynamics, identifying organic pollution in agricultural and urban catchments, 
and detecting influences of anthropogenic activities (e.g., land-use change) [19]. 
Light absorption by CDOM is the strongest at shorter wavelengths of the 
spectrum. Absorbance increases exponentially with decreasing wavelengths and 
diminishes to near-zero in the red wavelength region [20]. Therefore, a 
wavelength of 440 nm is often used to estimate absorption by CDOM from 
remote sensing data [21,22]. 

The European Space Agency (ESA) has recently launched two Earth 
observation missions under the Copernicus program [23] that are suitable for 
monitoring the optical properties of inland and coastal waters. Sentinel-2 is a 
land monitoring mission that consists of two satellites (A and B, launched in 
2015 and 2017, respectively) carrying the Multispectral Instrument (MSI), 
which offers high spatial resolution (10, 20, and 60 m) with 13 spectral bands 
[24]. MSI has opened new opportunities to investigate smaller water bodies [25] 
and different phenomena in more detail (e.g., filaments and eddies of biological 
activity) [26,27]. Sentinel-3 is an ocean and land mission that currently consists 
of two satellites (A and B, launched in 2016 and 2018, respectively). These 
carry the Ocean and Land Colour Instrument (OLCI), which has medium 
resolution (300 m) and 21 well-placed spectral bands to measure ocean colour 
over optically complex water bodies [28]. However, the rather low spatial 
resolution of OLCI allows the study of only about 1000 of the largest lakes on 
Earth [29] out of 117 million [30]. The free availability of Copernicus data with 
high spectral, spatial, and temporal resolution and with continuity plans for at 
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least a couple of decades has generated wide interest in the use of remote 
sensing capabilities to monitor water quality in inland and coastal waters. 

Different approaches have been used to evaluate four main optical water 
quality parameters, such as concentrations of Chl-a and TSM, the absorption 
coefficient of CDOM at a wavelength of 442 nm (aCDOM(442)), and Secchi disk 
depth (ZSD) from these sensors [31–34]. In the case of optically complex 
waters where optical properties are more diverse and can vary over short spans 
of time and space, standard remote sensing products often fail [31,35–37], 
which has led to the development of regionally specific algorithms [38]. 
However, regional algorithms also do not show consistency in terms of changes 
in their optical properties [31]. The possible solution could be to use remote 
sensing algorithms based on the classification of optical water types (OWTs). 

Classification approaches are widely used in the remote sensing of land, and 
their popularity in water remote sensing has grown in recent years. For several 
decades, the Case 1 and Case 2 system by Morel and Prieur [39] was the most 
widely used classification for aquatic applications. Case 1 represents waters 
whose optical properties depend on phytoplankton, and Case 2 represents 
waters whose optical properties depend on independent sources of phyto-
plankton, suspended sediments, and dissolved organic matter. Optically 
complex coastal and inland waters mainly belong to Case 2. However, these 
optically complex waters show great variability in optical properties, and their 
monitoring therefore requires a more detailed approach. Different approaches 
have been used to classify waters, such as using the diffuse attenuation 
coefficient of downwelling light [40], concentrations of OSC [41], inherent 
optical properties (IOP) [42], production of organic matter [43], water colour 
[44], and water-body health state [1]. However, due to the desire to move 
toward classifying waters based on satellite data, the most popular property 
used for classification has recently become reflectance spectra [45–52]. 
Reflectance spectra carry valuable information on the composition and amount 
of in-water constituents [53]. A variety of OWTs based on reflectance have 
been developed for ocean and marine waters [45,47,48,50,51]; the classification 
of OWTs for lakes has also recently come into focus [46,47,49,52]. However, it 
is difficult to find an already existing OWT classification applicable for the 
wide range of the boreal region’s inland and coastal waters. 
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2. AIMS 

The main aim of this thesis was to develop an approach to estimating the optical 
water quality parameters for boreal region inland and coastal waters, such as 
concentrations of Chl-a and TSM, aCDOM(442), and ZSD, from remote sensing 
data. 

The specific aims of the thesis were: 

• to investigate the impact of the measurement environment on the 
variability of in situ measurements of reflectance (I, V); 

• to develop an OWT classification based on reflectance spectra that is 
applicable to data from OLCI and MSI (I, VI); 

• to develop a solution to estimate optical water quality parameters from 
reflectance spectra with different spectral scales (III, IV); 

• to compare the OWTs derived from OLCI and MSI to understand if the 
classifications of OWTs from both satellites are compatible (II); 

• to find the most suitable OLCI and MSI processing steps to monitor 
temporal and spatial variability of water quality parameters (I, II, III, 
IV, V). 
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3. MATERIAL AND METHODS 

3.1. Study Area 
The study area includes Estonian, Finnish, and Latvian lakes and the Baltic Sea, 
all of which belong to the northern boreal region’s inland and coastal waters 
(Figure 1). In addition, the Wadden Sea was included to expand the ranges of 
optical water properties. 

In situ lake data was mainly collected from various Estonian lakes (42 
lakes), ranging from small lakes, such as Lake Holstre (0.04 km2), to large 
lakes, such as Lake Peipus (3555 km2), and from highly transparent lakes, such 
as Lake Nohipalo Valgjärv (ZSD 5 m), to very brown lakes, such as Nohipalo 
Mustjärv (ZSD 0.3 m). In addition, three lakes in Latvia and eight lakes in 
Finland were included in the study. 

 

Figure 1. Location of water bodies included in the study. Inland waters are marked with 
red circles and coastal waters with blue diamonds. The location of the Wadden Sea is 
not shown on this map. 
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The Baltic Sea is a shallow, brackish intra-continental sea with limited water 
exchange with the North Sea. Three regions of the Baltic Sea were included in 
this study. Pärnu Bay is located on the west coast of Estonia, where the mean 
depth is 4.7 m (maximum 8 m) and the water is well mixed. Since Pärnu Bay is 
shallow, open to winds, and has a sandy, clayey, and muddy bottom, wind-
derived resuspension can lead to quite high and quickly changing conditions of 
TSM concentrations. The second area is located in the Gulf of Finland region, 
where the mean depth is 37 m with a maximum of 123 m (Paldiski Deep), and 
where the water column is vertically stratified [16]. The area is prone to 
upwelling and downwelling events in the summer and autumn [54,55]. The 
third area is located in the Western Gotland Basin close to the coast of Sweden. 
Also located in the Western Gotland Basin is the Baltic Sea’s deepest place, 
Landsort Deep (459 m), but in our measurement stations, the water depth was 
up to 30 m. 

The Wadden Sea is a coastal sea between the North Sea and the mainland of 
the Netherlands, Germany, and Denmark. The area is shallow (maximum 12 m) 
and strongly affected by tides. The variation in water sources, such as tidal 
inlets from the North Sea and discharges from the rivers Rhine, Ems, Jade, 
Weser, and Elde, causes optical properties of water to change widely and 
quickly [56]. 

 

3.2. In Situ Dataset 
The study was based on in situ measurements gathered from 53 Estonian (I, III, 
IV, V, VI), Finnish (III), and Latvian lakes (IV), from three coastal locations in 
the Baltic Sea (I, III, V), and from the Wadden Sea (I) during 2003–2006 and 
2012–2019. The in situ dataset contained measurements of reflectance, 
concentrations of OSC (such as the concentration of Chl-a and TSM, and 
aCDOM(442)), ZSD, and different environmental parameters (such as wind speed, 
wave height, cloudiness, and visibility of the sun). ZSDs were measured on the 
shadow side of the vessel using a white disk with a 30 cm diameter or a white 
disk with holes and a 20 cm diameter. The wind speed was measured with a 
handheld mechanical anemometer. The wave height, cloudiness, and visibility 
of the sun were estimated by visual inspection. 
 

3.2.1. Measurements of Reflectance 

Three reflectance measurement setups were used in this study according to 
specific goals: an above-water system with three TriOS-RAMSES hyperspectral 
radiometers (I, III, V), a profiling system with two TriOS-RAMSES hyper-
spectral radiometers (III, VI), and an above-water system with a PSR-3500 
spectrometer (IV). 

For the first setup, the above-water system consisted of three TriOS-
RAMSES hyperspectral radiometers: two radiance sensors measuring spectral 
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upwelling radiance (Lt(λ)) and spectral downwelling radiance (Lsky(λ)) in the 
same azimuthal plane, and one irradiance sensor measuring spectral down-
welling irradiance (Ed(λ)). The radiance sensor's nadir/zenith angles of 40° were 
fixed in the frame. The measured spectral range was 350–900 nm. The 
recording interval was once per 10-second interval. The solar azimuth angle 
was kept between 90° and 180° and was adjusted manually during measure-
ments. The calculation of spectral water-leaving reflectance (R(λ)) followed the 
protocol of REVAMP [57] and included the following steps. First, all measured 
radiance and irradiance spectra were linearly interpolated to a 1 nm step. 
Secondly, R(λ) was calculated as 

 𝑅(λ) = 𝜋 ௅೟(ఒ)ିఘ(௪)௅ೞೖ೤(ఒ)ா೏(ఒ) , (1) 

 
where 𝜌(𝑤) is the air-sea interface reflection coefficient as function of wind speed 
(w, m·s-1) and calculated as 𝜌(𝑤) = 0.0256 + 0.00039𝑤 + 0.000034𝑤ଶ[57]. 
Finally, the median R(λ) was calculated and used as the representative of the in 
situ measurement station. In Paper V, the calculation also included the stray 
light [58,59] and the NIR similarity corrections steps [60]. 

For the second setup, the profiling system consisted of two TriOS-RAMSES 
hyperspectral radiometers: one irradiance sensor measuring spectral down-
welling irradiance (Ed(λ)) and one radiance sensor measuring spectral upwelling 
radiance (Lu(λ)). Measurements were made above the water, below the water 
surface, and at different depths in the water column. In this study, only above-
water measurements were used. The measured spectral range was 350–900 nm. 
At every depth, five recordings were taken. The R(λ) calculations included three 
steps. First, all measured spectra were linearly interpolated to a 1 nm step. 
Secondly, R(λ) was calculated as 

 𝑅(λ) = 𝜋 ௅ೠ(ఒ)ா೏(ఒ). (2) 

 
Finally, the median R(λ) was calculated and used as the representative of the in 
situ measurement station. 

For the third setup, the spectral remote sensing reflectance (Rrs(λ)) was 
measured above the surface (about 10 cm) using the hand-held spectrometer 
PSR-3500. The spectral range was 348–1000 nm, and a spectral sampling 
interval of approximately 1.5 nm. Rrs(λ) was calculated as the ratio of radiance 
from water to radiance from a white standard Spectralon reference panel. 
Finally, the average Rrs(λ) was calculated and used as representative of the in 
situ measurement station. 

To understand the impact of the measurement environment on the variability 
of in situ measurements of R(λ), logistic regression model analysis (I) and 
principal component analysis (PCA) (V) were performed with R software [61]. 
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To study the implementation capacity of the OWTs (I, III, IV) or to validate 
satellite products (IV, V), the specific spectral response functions (SRFs) of the 
satellite sensor bands were used to convolve hyperspectral reflectance spectra 
representing the in situ measurement stations with certain satellite band data and 
calculated according to Paper I. The SRFs for the OLCI and MSI were taken 
from [62] and [63], respectively. 

 

3.2.2. Measurements of Optical Water Quality Parameters 

Water samples for measurements of the concentrations of OSC were collected 
from the water surface (up to 0.5 m depth) according to ISO 5667-3 [64] and 
analysed according to ISO 10260 [65]. For Chl-a, samples were filtered through 
Whatman GF/F filters, pigments were extracted with 5 ml of 96% ethanol and 
measured spectrophotometrically with a Hitachi U-3010 spectrophotometer, and 
calculated according to Jeffrey and Humphrey [66] (I, III, IV, V, VI), or the 
Thermo Helios γ spectrophotometer was used and the concentrations of Chl-a 
were calculated according to Lorenzen [67] (III). For TSM, samples were 
filtered through pre-washed, pre-ashed, and pre-weighed Whatman GF/F filters 
(I, III, IV, V, VI) or Millipore membrane filters with a pore size of 0.45 µm 
(III) and measured gravimetrically. For CDOM, samples were filtered through a 
filter with a pore size of 0.2 µm, measured in a 5 cm optical cuvette against 
distilled water with a Hitachi U-3010 spectrophotometer, and calculated 
according to Lindell et al. [68] (I, III, IV, V, VI). 
 

3.3. Satellite Dataset 
OLCI, onboard the Sentinel-3 satellite, full-resolution Level-1 (I, II, III, IV, V) 
and Level-2 (I, V) images and MSI, onboard the Sentinel-2, full-resolution 
Level-1 (I, II, IV) images acquired in 2016–2019 were used. OLCI Level-1 
images were processed with the C2RCC [69] (I, II, III, IV, V), ALTNN [70] (I, 
V), and POLYMER [71] (V) atmospheric correction (AC) processors. MSI 
Level-1 images were processed with ACOLITE [72] (I), C2RCC (I, II, IV), 
C2X [70] (IV), POLYMER (I), and Sen2Cor [73] (I) AC processors. Detailed 
information on image downloading, processing steps, pixel quality control, and 
requirements for match-ups (I, IV, V) were described separately in each 
publication (I, II, III, IV, V). 
 

3.4. OWT Classification 
The aim of the classification was to ensure that every OWT was linked to 
specific bio-optical conditions in order to reflect on the dominance of individual 
or group OSC concentrations. Based on our experience, the blind clustering of 
the in situ measurement data was not giving desirable results as it was not 
linked to the physical properties of water. A previous study [41] presented the 



16 

OWT classification for boreal region lakes and linked the OWTs to the OSC 
concentrations, and the corresponding reflectance spectra were derived only for 
reference. The OWT classification (I) introduced in this thesis completes 
reflectance spectra from that study [41] with an understanding of how the OSC 
concentrations influence the shape of R(λ) spectra. The developed OWT 
classification divides inland and coastal waters in the boreal region into five 
OWTs: Clear, Moderate, Turbid, Very Turbid, and Brown. The wavelength of 
the maximum, the slopes, and the amplitude of R(λ) were chosen as key 
features, and the key aspects to distinguish between the OWTs were as follows:  

• Spectra of the Clear and Moderate OWTs both had global maximum 
reflectance at wavelengths between 540 and 580 nm.  

• For the Clear OWT, the reflectance at 500 nm was higher than at  
650 nm, and it was higher than the reflectance at 500 nm for the 
Moderate OWT. 

• The spectra of the Turbid OWT had a reflectance maximum between 
580 and 605 nm, while the spectra of the Very Turbid OWT had a 
reflectance maximum at wavelengths between 685 and 715 nm. 

• The spectra of the Brown OWT were characterized by a maximum in 
the red part of the spectrum and reflectance values below 0.006. 

The OWT for each R(λ) spectrum was determined by the maximum likelihood 
of individual spectra to OWT reference reflectance spectra, using spectral 
correlation similarity (SCS) and modified spectral angle similarity (MSAS), and 
was calculated as 
 𝛿௝ = 10(𝑆𝐶𝑆 + ଵିெௌ஺ௌଶ ), (3) 

where SCS and MSAS are calculated as described by Homayouni and Roux 
[74] and j denotes the OWT. The measured R(λ) were classified into the OWT 
which has the highest δ value (I, II, III, IV). 

Local sensitivity analysis was used to investigate the robustness of the OWT 
classification (I). Local sensitivity analysis shows how a small perturbation of 
input value influences the output value. The one-factor-at-a-time (OAT) method 
[75] was used in this study. The R(λ) values in wavelength ranges of 400–
500 nm, 500–700 nm, and 700–900 nm were considered as factors, and the 
perturbation range was set from –90% to +100%. Furthermore, additional 
sensitivity analyses were performed by using the OLCI and MSI bands as 
factors. 
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3.5. Retrieving Optical Water Quality Parameters 
An OWT guided approach was used for finding models to estimate the optical 
water quality parameters, such as the concentration of Chl-a and TSM, 
aCDOM(442), and ZSD from R(λ) spectra (III, IV). Since AC over inland and 
coastal waters is difficult and can contain large errors, in Paper III, the in situ 
measured R(λ) spectra with 1 nm step resolution (Ramses) and for OLCI and 
MSI in situ measured R(λ) convolved into OLCI and MSI bands using SRFs 
were used. 132 previously published algorithms, including 60 for Chl-a, 39 for 
TSM, 21 for CDOM, and 12 for ZSD, were tested to find the best model for 
each OWT. Details of the algorithms used are shown in Table A1 in Paper III. 
Repeated K-fold Cross-validation [76] was the statistical method used to build 
and select the model using published algorithms for the optical water quality 
parameter, and the R package caret [77] by Max Kuhn was used for imple-
mentation. The ranking system used a combination of scaled and threshold-
based statistical metrics to select the model for retrieving the optical water 
quality parameter from R(λ) per OWTs. To also find the best solutions for the 
OLCI and MSI sensors’ R(λ) spectral scale, all calculations were made 
separately on the R(λ) spectral scale with a 1 nm step, R(λ) spectra convolved 
into OLCI sensor bands, and R(λ) spectra convolved into MSI sensor bands. 

To look for the best solution to estimate optical water quality parameters in 
Baltic lakes using actual OLCI and MSI data (IV), either readymade products 
from different AC processors or band ratio algorithms using C2RCC, C2X, or 
top-of-atmosphere (TOA) reflectances were used to find the best method for 
each OWT. Thus, 42 different methods, including 16 for Chl-a, 9 for TSM, 5 
for CDOM, and 12 for ZSD, were tested for OLCI  and 66 different methods, 
including 21 for Chl-a, 14 for TSM, 10 for CDOM, and 21 for ZSD, were tested 
for MSI. Details of the methods used are shown in Table 1 in Paper IV. 
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4. RESULTS AND DISCUSSION 

4.1. Impact of the Measurement Environment on the 
Variability of R(λ) 

Uncertainties of in situ measured R(λ) were lower between the 500–700 nm 
spectral ranges and lowest around 560 nm (Figure 1 in V). As R(λ) depends on 
OSC concentrations, light conditions above the water surface, and water surface 
roughness [2], the impact of the measurement environment was studied with a 
logistic regression model (I) and PCA (V). According to the logistic regression 
model results, the wave height (p-value=0.007), wind speed (p-value=0.03), 
cloudiness (p-value=0.0005) and partial covering of the sun (p-value=0.02) 
were important parameters affecting the probability of a rise in the measurement 
uncertainty of R(λ). Also, PCA results agreed that measurements with lower 
uncertainty were associated with lower wave height, lower wind speed, and 
good illumination conditions. In the measurement stations with high wind speed 
or waves, the shape of the R(λ) spectrum remained the same; however, the 
values of R(λ) varied strongly in all spectral areas (Table 1 in I). Whenever 
whitecaps started to appear on the water surface, the values of R(λ) at shorter 
wavelengths increased and the shape of the R(λ) spectrum changed. 

In the measurement stations under changing cloud conditions, the R(λ) usually 
started to vary, and data analysis was often difficult. For example, in the case 
shown in Figure 2(a), measurements started with an almost clear sky, although 
for 19 minutes, the whole sky contained clouds while the sun remained visible. 
The measured R(λ) varied by 84% between 500–700 nm and by over 100% at 
shorter and longer wavelengths. However, the all sky camera images revealed that 
the presence of clouds did not always ruin the measurements. For example, in the 
case shown in Figure 2(b), clouds passed in front of the sun during the 
measurement, but they did not pass through the instrument’s field of view (which 
is located at the top of the pictures). The variability of the radiance and irradiance 
measurements around 500 nm were 15% and 17.7%, respectively, while the 
deviation of R(λ) stayed within 4.6%. 

 
 

 
Figure 2. Changing cloud conditions during the R(λ) measurements captured by all sky 
cameras in stations with (a) big and (b) small variability of R(λ). Four images cover a 
time span of approximately 20 minutes (I). 
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4.2. Developed OWT Classification 
The developed OWT classification (I) based on reflectance spectrum features 
divided inland and coastal waters into five classes: Clear, Moderate, Turbid, 
Very Turbid, and Brown. As shown in Figure 3, each OWT had a different R(λ) 
spectra and was associated with a specific bio-optical condition. 

The maximum R(λ) of the Clear OWT occurred at wavelengths between 540 
and 580 nm, and the absorption influence from OSC was lowest in the blue part 
of the spectrum compared to other OWTs. This OWT corresponds to water with 
low OSC concentrations and the highest water transparency. As for the Clear 
OWT, the maximum R(λ) of the Moderate OWT occurred at wavelengths 
between 540 and 580 nm; however, the slope of R(λ) was sharper in the 
Moderate OWT due to the larger influence of OSC absorption. The OSC 
concentrations increased, but none of them dominated. 

In the Turbid OWT, the maximum R(λ) was in the green part of the 
spectrum, and the values of R(λ), between approximately 500 and 700 nm, were 
the highest of all OWTs. TSM was the dominant OSC in Turbid waters. In the 
Very Turbid OWT, the maximum R(λ) occurred between 685 and 715 nm; this 
is due to the strong Chl-a peak which was associated with phytoplankton 
blooms. Chl-a was the dominant OSC in Very Turbid waters. The R(λ) of the 
Brown OWT had very low values and reached the maximum in the red part of 
spectrum. Waters appeared dark or reddish and were dominated by CDOM. 

Figure 3. R(λ) for each OWT (left) and R(λ) by OLCI, and MSI bands calculated with 
sensor-specific SRFs. 

 

The spectral scales of both OLCI and MSI preserved key features of the OWT 
classification. For OLCI and MSI bands, the R(λ) values of the OWTs were 
calculated using sensor-specific SRFs. OLCI has 21 bands, including four bands 
in the red part of the spectrum, where the Chl-a absorption peak is located. MSI 
was designed for the remote sensing of terrain and has a better spatial 
resolution; although it has fewer bands, it nevertheless captures differences in 
reflectance between the OWTs to a high degree. The well-placed spectral bands 
allow MSI to be successfully implemented in water monitoring. Although the 
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Moderate Resolution Imaging Spectroradiometer (MODIS) has a similar 
number of bands to MSI, the MODIS band central wavelengths are different; 
therefore, a strong maximum R(λ) in the red part of the spectrum was no longer 
observed, and the reflectance spectra of the Turbid and Very Turbid OWTs 
were similar (Figure 2 in I). 
 

4.2.1. Classification sensitivity 

Sensitivity analyses (I) showed, as expected, that the OWT classification was 
sensitive to changes in the input R(λ). The sensitivity of the determination of 
OWTs was influenced differently by the OWT, sensor type, and spectral range. 
Figure 4 shows a detailed local sensitivity analysis of the OWT results. 

The Clear OWT was the most sensitive to a decrease of R(λ) values in the 
wavelength range of 400–500 nm (local sensitivity factor 1). Changing the R(λ) 
values in the wavelength range of 400–500 nm more than 40% caused the OWT 
to change to Moderate OWT. The Moderate OWT was sensitive to sensor type 
and spectral range. A decrease of R(λ) values in the wavelength range of 400–
500 nm or 500–700 nm (factor 2) could cause the spectra to be classified as 
Turbid, Very Turbid, or Brown. Regarding sensor type, for Ramses, a change of 
input parameter values of more than 60% was required to output a different 
OWT, while a change of just 20% was required for MSI. 

The Turbid OWT was the most sensitive to changes in R(λ) values in the 
wavelength range of 700–900 nm (factor 3). A decrease of factor 3 (e.g., 10% 
for MSI) changes the OWT to Moderate, while an increase of factor 3 changes 
the OWT into Very Turbid. The Very Turbid OWT was less sensitive to 
changes in the blue part of the spectrum and most sensitive to changes in the red 
part of the spectrum. The Brown OWT was sensitive to increases of factor 2 and 
decreases of factor 3. Changes of factor 1 had a minimal impact on the 
classification of the Brown OWT.  
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Figure 4. Local sensitivity analysis for OWT classification for sensors with different 
spectral scales. First row: Ramses; second row: OLCI; third row: MSI. Column 1: local 
sensitivity factor 1 (400–500 nm); column 2: factor 2 (500–700 nm); column 3: factor 3 
(700–900 nm). The original OWTs are indicated by different colours (determined at 
parameter deviation of 0%), and the sensitivity analysis of OWT output is denoted as 
transitions between the OWTs. Input parameters vary from –90% to +100% on the x-
axes (I). 

 

Analysis treating satellite sensor bands as factors revealed that OLCI spectra 
were less sensitive to changes in input than MSI spectra. For OLCI spectra, the 
most sensitive OWT was Turbid when observed with bands 6 and 7, when a 
30% change of input value would make an output OWT different. Usually, a 
change of input value of less than 70% does not change the classification 
assessment. MSI spectra were more sensitive to any input variation. This is 
especially true for MSI bands 3 and 5, where an input variation of more than 
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30% changes the designated OWT, except for the Clear and Moderate OWTs, 
where a variation of 70% and 20% is required to affect the classification result. 
However, Papers I, IV, and V showed that the variability in the in situ measured 
or satellite-derived R(λ) can be more than 40% for certain spectral ranges. 
 

4.3. OWT Classification Applied to In Situ Measured R(λ) 
The classification of OWT applied on in situ measurements of R(λ) at 180 
stations (I) are shown in Figure 5, and the range of the variation of the OSC 
concentrations and ZSD for OWTs are shown in Table 2 in I. The OWT for 
each measurement station was determined by the maximum likelihood of an 
individual spectrum to type averages. 
 

 

Figure 5. In situ measured R(λ) classified into various OWTs by maximum likelihood 
calculated as (3) (I). 

 
The Clear OWT was assigned to the R(λ) of 39 measurement stations. The 
maximum of R(λ) spectra was between 540 and 580 nm. These waters were the 
most transparent (maximum ZSD of 6.5 m) and with the lowest OSC 
concentrations. The Moderate OWT was assigned to the R(λ) of 34 stations, 
with maximum similarly to the Clear OWT between 540 and 580 nm, with a 
slightly steeper slope in the blue part of the spectrum. OSC concentrations were 
slightly higher than for the Clear OWT; however, no particular OSC dominated 
over the others. The Turbid OWT was assigned to the R(λ) of 76 stations. This 
OWT was dominated by TSM (maximum TSM of 62.4 mg·l-1) and had the 
highest absolute values of the R(λ) of all the OWTs; however, the maximum 
value of R(λ) varied greatly within this OWT. 

The Very Turbid OWT was assigned to the R(λ) of 24 stations. These spectra 
had a maximum in the red part of the spectrum and showed a clear Chl-a peak. 
These stations were dominated by Chl-a (maximum value of 71.8 mg·m-3). The 
Brown OWT was the least frequent of all OWTs, being assigned to the R(λ) of 
seven stations. These stations had very low R(λ) values (under 0.005), having a 
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maximum in the red part of the spectrum, and were dominated by CDOM 
(CDOM values at 380 nm of between 4.3 and 14.7 m-1). 

The accuracies of OWT estimations, based on in situ measurements of R(λ) 
convolved into OLCI and MSI sensor bands using sensor-specific SRFs, were 
95% for both. As the goal was to develop an OWT classification that could be 
used in an OWT guided approach to retrieve optical water quality parameters 
from OLCI and MSI data, it was important to understand the capability to 
assign the same OWT based on in situ measurements of R(λ) regardless of 
spectral scale (Ramses, and OLCI and MSI bands). Confusion matrices were 
constructed between the OWTs assigned based on in situ measurements of R(λ) 
(set as the true OWT value) and those which were assigned based on in situ 
measurements of R(λ) convolved into OLCI and MSI sensor bands (set as the 
predicted OWT value). As shown in Figure 6, the OLCI confusion matrix 
illustrates that a strong distinction was made between the Clear and Brown 
OWTs (100% correct assignment), while the lowest assignment accuracy (92%) 
was observed for the Very Turbid OWT, with 8% of spectra being misclassified 
as Turbid. The MSI confusion matrix demonstrates a strong distinction for the 
Clear, Very Turbid, and Brown OWTs (100% correct assignment); however, 
some Turbid spectra were misclassified as Very Turbid (7%) and Moderate 
(1%). 

 

 
 

Figure 6. Normalized confusion matrices showing the accuracy of OWT assignment 
using in situ measurements of R(λ) convolved into OLCI, and MSI bands. Rows show 
the true OWTs determined from in situ measurements of R(λ) using Ramses, and 
columns show the predicted OWTs determined from the convolved R(λ). The diagonal 
elements represent situations in which the predicted OWT is the same as the true OWT 
(i.e., correct classification). 

 

4.4. OWT Guided Approach 
In Paper III, the OWT guided approach for boreal region inland and coastal 
waters was introduced to estimate optical water quality parameters, such as the 
concentration of Chl-a and TSM, aCDOM(442), and ZSD, from hyperspectral, 
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OLCI, and MSI reflectance data. 132 various published empirical algorithms 
(Tabel A1 in III) were tested to find the best algorithm for every OWT for 
different spectral scales for different optical water quality parameters. As the 
R(λ) spectra are the basis for all future calculations and developments, the error 
in R(λ) may multiply in the final product or lead to incorrect conclusions [78]. 
Moreover, it is known that AC over inland and coastal areas is difficult [79–81], 
and the result still can contain large errors (I, IV) [31,82,83]. Therefore, we 
used in situ measured reflectance spectra and in situ measured reflectance 
spectra convolved into OLCI and MSI bands using sensor SRFs. However, it is 
still important to remember that in situ measured R(λ) is not the absolute truth 
and can contain large errors (I, IV, V) [84]. Development was based on data 
from 51 Estonian and Finnish lakes and from the Baltic Sea coastal area, 
altogether 415 in situ measurement stations, which covered a wide range of 
variation of optical water quality parameters (Chl-a: 0.5–215.2 mg·m−3; TSM: 
0.6–46.0 mg·L−1; aCDOM(442): 0.4–43.7 m−1; and ZSD: 0.2–12.2 m). 
 

4.4.1. Predictive Models for Concentration of Chl-a 

For Chl-a, 60 published empirical algorithms were tested to retrieve the con-
centration of Chl-a from the R(λ) spectra, and the best models for each OWT 
and each spectral scale, such as Ramses, and OLCI and MSI bands, were 
defined in Table 1. The linear regression models showed better performance in 
all cases. Compared to other optical water quality parameter model selections, 
Chl-a models varied the most between OWTs and the spectral scales. The 
widely used [10,85–92] ratio 700/670 nm, with a high correlation for high-
biomass waters, was the best model only for Turbid OWT with a Ramses 
spectral scale. However, the two-variable ratio models were the best for all the 
spectral scales in Brown OWT, for OLCI and MSI in Moderate OWT, for 
Ramses in Turbid OWT, and for MSI in Very Turbid OWT. In our best-
performing models, all variables were selected from the red and NIR spectral 
range, with different combinations. Moreover, broadly used [10,31,86,93–95] 
algorithms that include chlorophyll fluorescence information using values of 
reflectance spectra around 681 nm were not the best in any cases. For Brown 
OWT, retrieving the concentration of Chl-a from R(λ) was the most difficult, 
and the coefficient of determination suggested that the regression model 
explained about 40% of the variance observed in the in situ measured data; this 
needs future investigation and improvement. The correlations shown in Figure 7 
between the concentration of Chl-a predicted using OWT based models and the 
in situ measured concentration of Chl-a were strong, such as 0.93 for Ramses 
and OLCI and 0.92 for MSI. 
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Table 1. The best published Chl-a predictive models tested in this thesis for each OWT 
and for sensors with different spectral scales. Descriptions of the algorithms used for 
these models are found in Table A1 in Paper III. The band central wavelength is used to 
mark the OLCI and MSI models’ bands. 

OWT Model Formula R2 AR 1 
Ramses    

Clear 𝐶ℎ𝑙𝑎 = 5956.0 · ൬𝑅709 − 𝑅665 + 𝑅7542 ൰ + 3.84 0.79 [96] 

Moderate 𝐶ℎ𝑙𝑎 = −84.42 · ൬൬ 1𝑅705 − 1𝑅665൰ ൬ 1𝑅705 + 1𝑅665൰൘ ൰ + 18.69 0.62 [97] 

Turbid 𝐶ℎ𝑙𝑎 = 55.85 · ൬𝑅702𝑅674൰ − 43.08 0.79 [92] 

Very Turbid 𝐶ℎ𝑙𝑎 = −180.6 · ൬൬ 1𝑅705 − 1𝑅665൰ ൬ 1𝑅705 + 1𝑅665൰൘ ൰ + 19.89 0.88 [97] 

Brown 𝐶ℎ𝑙𝑎 = 46.56 · ൬𝑅748𝑅667൰ − 8.310 0.41 [91] 
OLCI    

Clear 𝐶ℎ𝑙𝑎 = 6097.2 · ൬𝑅708.75 − 𝑅665 + 𝑅753.752 ൰ + 3.998 0.78 [96] 

Moderate 𝐶ℎ𝑙𝑎 = −33.91 · ൬𝑅673.75𝑅708.75൰ + 54.07 0.67 [31] 

Turbid 𝐶ℎ𝑙𝑎 = 177.4 · ൬ 1𝑅673.75 − 1𝑅708.75൰ · 𝑅753.75 + 20.68 0.79 [98] 

Very Turbid 𝐶ℎ𝑙𝑎 = −173.6 · ൬൬ 1𝑅708.75 − 1𝑅665൰ ൬ 1𝑅708.75 + 1𝑅665൰൘ ൰ + 25.6 0.89 [97] 

Brown 𝐶ℎ𝑙𝑎 = 42.96 · ൬𝑅753.75𝑅665 ൰ − 5.470 0.38 [91] 
MSI    

Clear 𝐶ℎ𝑙𝑎 = 4367.1 · ൭𝑅705 − 𝑅665 − 705 − 665740 − 665 · (𝑅740 − 𝑅665)൱ + 2.658 0.61 [95] 

Moderate 𝐶ℎ𝑙𝑎 = −40.83 · ൬𝑅665𝑅705൰ + 61.71 0.60 [31] 

Turbid 𝐶ℎ𝑙𝑎 = −184.1 · ൬𝑅740𝑅705 − 𝑅740𝑅665൰ + 21.20 0.63 [11] 

Very Turbid 𝐶ℎ𝑙𝑎 = −171.4 · ൬𝑅665𝑅705൰ + 183.6 0.89 [31] 

Brown 𝐶ℎ𝑙𝑎 = 46.98 · ൬𝑅740𝑅665൰ − 9.360 0.40 [91] 
1 Algorithm reference. 
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Figure 7. Comparison of concentrations of Chl-a estimated from in situ measured R(λ) 
spectra using the OWT guided approach and in situ measured concentrations of Chl-a 
for different spectral scales: (left to right) Ramses, OLCI, and MSI. OWTs are indicated 
by colours, and the line shows a 1:1 relationship (III). 
 
 

4.4.2. Predictive Models for Concentration of TSM 

For TSM, 39 published  empirical algorithms were tested to retrieve the 
concentration of TSM from the R(λ) spectra, and the best models for each OWT 
and each spectral scale were defined in Table 2. The model using the Kutser et 
al. [99] algorithm, based on a reflectance peak at 810 nm, was the best for MSI 
for Turbid, Very Turbid, and Brown OWTs. It also suited the Ramses and OLCI 
Turbid, Very Turbid, and Brown OWTs. Similarly, previous studies [100–102] 
have pointed out the usefulness of the NIR spectral part for retrieving the TSM 
in turbid waters with high amounts of mineral particles. However, despite being 
developed in waters with high amounts of mineral particles, Kutser et al. [99] 
showed the usefulness of the NIR part of the spectra in waters where the 
majority of TSM was organic, as in our dataset. For the Clear OWT, the model 
using Zhang et al. [103], a developed log-transformed multiple linear regression 
algorithm based on a combination of 488, 555, and 645 nm information, was the 
best for all sensors. Zhang et al. [103] demonstrated that reflectance at 550 nm 
is sensitive to TSM changes in less turbid waters and reflectance at 645 nm is 
sensitive in turbid waters. The correlations between concentrations of TSM 
predicted using OWT based models and in situ measured concentrations of 
TSM values were strong: 0.87, 0.89, 0.88 for Ramses, OLCI, and MSI 
respectively. The Moderate OWT had the lowest coefficient of determination 
for all the spectral scales from all the OWTs, and as shown in Figure 8, that 
model for Moderate OWT tends to strongly underestimate points with high 
TSM values (from 15 to 25 mg·L-1). 
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Table 2. The best published TSM predictive models tested in this thesis for each OWT 
and for sensors with different spectral scales. Descriptions of the algorithms used for 
these models are found in Table A1 in Paper III. The band central wavelength is used to 
mark the OLCI and MSI models’ bands. 

OWT Model Formula R2 AR 1 
Ramses    

Clear log 𝑇𝑆𝑀 = −30.20 · 𝑅555 + 74.14 · 𝑅645 − 0.991 · 𝑅488𝑅555 + 0.784 0.47 [103] 
Moderate log 𝑇𝑆𝑀 = 0.264 · log𝑅555 + 14.71 · 𝑅645 − 0.189 · log𝑅488𝑅555 + 0.941 0.36 [104] 

Turbid ln 𝑇𝑆𝑀 = 0.685 · ln 𝑅620 · 𝑅681𝑅510 + 4.852 0.69 [105] 

Very Turbid 𝑇𝑆𝑀 = 3748.6 · ൬𝑅810 − 𝑅770 + 𝑅8402 ൰ + 5.515 0.68 [99] 

Brown 𝑇𝑆𝑀 = 5673.9 · ൬𝑅810 − 𝑅770 + 𝑅8402 ൰ + 2.178 0.61 [99] 
OLCI    

Clear log 𝑇𝑆𝑀 = −24.36 · 𝑅560 + 80.66 · 𝑅665 − 1.096 · 𝑅490𝑅560 + 0.840 0.47 [103] 

Moderate 𝑇𝑆𝑀 = −8090.1 · ൬𝑅865 − 𝑅778.75 + 𝑅8652 ൰ + 1.825 0.45 [99] 

Turbid 𝑇𝑆𝑀 = −7664.9 · ൬𝑅865 − 𝑅778.75 + 𝑅8652 ൰ + 3.250 0.69 [99] 

Very Turbid log 𝑇𝑆𝑀 = −0.249 · log𝑅560 + 26.20 · 𝑅665 − 0.483 · log𝑅490𝑅560 + 0.095 0.60 [104] 

Brown ln 𝑇𝑆𝑀 = 311.8 · ൬𝑅708.75 − 𝑅753.75 + 𝑅6652 ൰ + 1.165 0.49 [106] 
MSI    

Clear log 𝑇𝑆𝑀 = −24.0 · 𝑅560 + 79.02 · 𝑅665 − 1.152 · 𝑅490𝑅560 + 0.892 0.49 [103] 
Moderate log 𝑇𝑆𝑀 = 0.279 · log𝑅560 + 16.24 · 𝑅665 − 0.215 · log𝑅490𝑅560 + 0.958 0.36 [104] 

Turbid 𝑇𝑆𝑀 = 7037.6 · ൬𝑅783 − 𝑅783 + 𝑅8652 ൰ + 3.464 0.64 [99] 

Very Turbid 𝑇𝑆𝑀 = 5416.1 · ൬𝑅783 − 𝑅783 + 𝑅8652 ൰ + 6.259 0.68 [99] 

Brown 𝑇𝑆𝑀 = 7573.5 · ൬𝑅783 − 𝑅783 + 𝑅8652 ൰ + 2.748 0.54 [99] 
    

1 Algorithm reference. 

 
Figure 8. Comparison of concentrations of TSM estimated from in situ measured R(λ) 
spectra using the OWT guided approach and in situ measured concentrations of TSM 
for sensors with different spectral scales: (from left) Ramses, OLCI, and MSI. OWTs 
are indicated by colours, and the line shows a 1:1 relationship (III). 
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4.4.3. Predictive Models for Absorption Coefficient of CDOM 

For aCDOM(442), 21 published empirical algorithms were tested to retrieve 
aCDOM(442) values from the R(λ) spectra, and the best models for each OWT 
and for each spectral scale were defined in Table 3. The power regression 
models (referred also as a log–log regression model) of the reflectance ratio 
showed better performance for all the spectral scales in the Clear, Moderate, and 
Turbid OWTs. For instance, the reflectance ratio 665/560 nm was the best for 
OLCI and MSI; however, for Ramses, the model using the ratio 560/660 nm 
was preferred. These ratios are quite commonly used for predictions; however, 
they are used with different statistical techniques, such as linear regression 
[85,90,107–109] and power regression [107–110]. For the Brown OWT, the 
log-transformed multiple linear regression model using the Brezonik et al. [111] 
algorithm, using 488 nm and 830 nm, showed the highest results for all spectral 
scales. However, Figure 9 shows that the capability to estimate the Brown OWT 
high CDOM values over 20 m-1 was non-existent. Therefore, future work is 
needed to find or develop algorithms that are suitable for this kind of humic 
water. Since uncertainties of R(λ) in the Brown OWT were higher in the blue 
part of the spectrum, the longer wavelengths would be recommended as 
preferred for algorithms. 
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Table 3. The best published CDOM predictive models tested in this study for each 
OWT and for sensors with different spectral scales. Descriptions of the algorithms used 
for these models are found in Table A1 in Paper III. The band central wavelength is 
used to mark the OLCI and MSI models’ bands. 

OWT Model Formula R2 AR 1 
Ramses    

Clear ln 𝐶𝐷𝑂𝑀 = −1.4124 · ln ൬𝑅560𝑅660൰ + 1.042 0.74 [109] 

Moderate ln 𝐶𝐷𝑂𝑀 = −1.470 · ln ൬𝑅570𝑅655൰ + 1.111 0.36 [110] 

Turbid ln 𝐶𝐷𝑂𝑀 = −2.187 · ln ൬𝑅570𝑅655൰ + 1.225 0.45 [110] 

Very Turbid 𝐶𝐷𝑂𝑀 = 3.063 · 𝑅664𝑅550 + 1.096 0.42 [85] 

Brown ln 𝐶𝐷𝑂𝑀 = −107.8 · 𝑅485 − 0.245 · 𝑅485830 + 3.371 0.38 [112] 
OLCI    

Clear ln 𝐶𝐷𝑂𝑀 = 1.352 · ln ൬𝑅665𝑅560൰ + 1.070 0.74 [108] 

Moderate ln 𝐶𝐷𝑂𝑀 = 1.108 · ln ൬𝑅665𝑅560൰ + 1.070 0.33 [108] 

Turbid ln 𝐶𝐷𝑂𝑀 = 1.490 · ln ൬𝑅665𝑅560൰ + 1.265 0.32 [108] 

Very Turbid 𝐶𝐷𝑂𝑀 = 3.128 · 𝑅665𝑅560 + 1.266 0.38 [85] 

Brown ln 𝐶𝐷𝑂𝑀 = −127.6 · 𝑅485 − 0.140 · 𝑅485830 + 3.377 0.41 [112] 
MSI    

Clear ln 𝐶𝐷𝑂𝑀 = 1.429 · ln 𝑅665𝑅560+1.059 0.74 [108] 

Moderate ln 𝐶𝐷𝑂𝑀 = 1.330 · ln 𝑅665𝑅560+1.086 0.42 [108] 

Turbid ln 𝐶𝐷𝑂𝑀 = 1.338 · ln 𝑅665𝑅560 + 1.151 0.31 [108] 

Very Turbid 𝐶𝐷𝑂𝑀 = 3.292 · 𝑅665𝑅560 + 0.947 0.39 [85] 

Brown ln 𝐶𝐷𝑂𝑀 = −62.93 · 𝑅665 − 0.020 · 𝑅560𝑅490 + 3.107 0.41 [113] 
1 Algorithm reference. 
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Figure 9. Comparison of aCDOM(442) estimated from the in situ measured R(λ) spectra 
using the OWT guided approach and in situ measured aCDOM(442) for sensors with 
different spectral scales: (from left) Ramses, OLCI, and MSI. OWTs are indicated by 
colours, and the line shows a 1:1 relationship (III). 
 

4.4.4. Predictive Models for ZSD 

For ZSD, 12 published empirical algorithms were tested to retrieve ZSD from 
the R(λ) spectra. The best models for each OWT and for each sensor with 
different spectral scales are defined in Table 4. The model using the Kloiber et 
al. [114] algorithm based on log-transformed multiple regression of form 
485/660 nm ratio and the additional 485 nm, was the best model for all spectral 
scales in the Clear, Moderate, and Turbid OWTs. The algorithm was developed 
for values up to 5 m, and 96% of the Clear, Moderate and Turbid OWT 
measurements fitted within the limits. However, the maximum measured ZSD 
in our dataset was 12.2 m and was measured during an upwelling event in the 
Gulf of Finland. Also, Figure 10 shows a lower accuracy predicting high ZSDs. 
However, studies [112,115] have demonstrated that this algorithm can be used 
up to 15 m. Therefore, the optically extreme and different conditions of the 
upwelling can be the reason for the lower prediction accuracy. For the Brown 
OWT, retrieving ZSD from R(λ) was the most difficult, and the coefficient of 
determination was around 0.28 for the best model based on reflectance at  
660 nm. Also, Matthews [102] suggested a single band algorithm for humic 
lakes. Overall, the Brown OWT models need future work. 
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Table 4. The best ZSD predictive models using published algorithms tested in this 
thesis for each OWT and for sensors with different spectral scales. Descriptions of the 
algorithms used for these models are found in Table A1 in Paper III. The band central 
wavelength is used to mark the OLCI and MSI models’ bands. 

OWT Model Formula R2 AR 1 
Ramses    

Clear ln 𝑍𝑆𝐷 = 0.617 · 𝑅485𝑅660 − 43.58 · 𝑅485 + 0.759 0.60 [114] 

Moderate ln 𝑍𝑆𝐷 = 1.685 · 𝑅485𝑅660 − 63.01 · 𝑅485 − 0.265 0.64 [114] 

Turbid ln 𝑍𝑆𝐷 = 2.98 · 𝑅485𝑅660 − 41.32 · 𝑅485 − 1.294 0.74 [114] 

Very Turbid 𝑍𝑆𝐷 = −5.63𝑒−07 · ln 𝑅555𝑅488 − 0.018 · 𝑅645 + 𝑅858𝑅469 − 15.57 · 𝑅555+ 1.07 0.48 [116] 

Brown ln 𝑍𝑆𝐷 = 0.268 · ln 𝑅660 + 1.024 0.27 [117] 
OLCI    

Clear ln 𝑍𝑆𝐷 = 0.573 · 𝑅490𝑅665 − 42.89 · 𝑅490 + 0.742 0.62 [114] 

Moderate ln 𝑍𝑆𝐷 = 1.801 · 𝑅490𝑅665 − 60.42 · 𝑅490 − 0.510 0.65 [114] 

Turbid ln 𝑍𝑆𝐷 = 2.960 · 𝑅490𝑅665 − 39.95 · 𝑅490 − 1.451 0.69 [114] 

Very Turbid 𝑍𝑆𝐷 = −7.03𝑒−06 · ln 𝑅560𝑅490 − 0.027 · 𝑅645 + 𝑅858𝑅469 − 14.63 · 𝑅555+ 1.08 0.48 [116] 

Brown ln 𝑍𝑆𝐷 = 0.269 · ln 𝑅665 + 1.037 0.28 [117] 
MSI    

Clear ln 𝑍𝑆𝐷 = 0.602 · 𝑅490𝑅665 − 45.09 · 𝑅490 + 0.728 0.64 [114] 

Moderate ln 𝑍𝑆𝐷 = 1.821 · 𝑅490𝑅665 − 63.25 · 𝑅490 − 0.478 0.68 [114] 

Turbid ln 𝑍𝑆𝐷 = 2.784 · 𝑅490𝑅665 − 38.22 · 𝑅490 − 1.367 0.63 [114] 

Very Turbid 𝑍𝑆𝐷 = −6.81𝑒−06 · ln 𝑅560𝑅490 − 0.030 · 𝑅645 + 𝑅858𝑅469 − 17.11 · 𝑅555+ 1.14 0.51 [116] 

Brown ln 𝑍𝑆𝐷 = 0.271 · ln 𝑅665 + 1.033 0.29 [117] 
1 Algorithm reference. 
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Figure 10. Comparison of ZSD estimated from in situ measured R(λ) spectra using the 
OWT guided approach and in situ measured ZSD for sensors with different spectral 
scales: (from left) Ramses, OLCI, and MSI. OWTs are indicated by colours, and the 
line shows a 1:1 relationship (III). 
 

4.5. OWT Guided Approach Implementation with  
Satellite Data 

4.5.1. Selection of AC Processor 

Accurate AC over inland and coastal areas is difficult [79–81], and at the 
moment, there is no one universally correct choice. Therefore, it is necessary to 
select the best available AC processor for the region of interest and for the 
sensor of interest. However, it is important to keep in mind that AC processors 
are constantly developed and improved; therefore, aspects of the suitable AC 
processor for the region of interest can change quickly. Generally, the green 
bands were estimated most accurately, and the blue bands had the highest 
deviations (I, IV, V). In Paper I, the C2RCC AC processor was suggested for 
both MSI and OLCI based on available R(λ) match-ups. 

For OLCI image match-ups, the values of R(λ) derived from images processed 
with ALTNN and C2RCC AC processors were more accurate than those derived 
from images processed with the standard L2 AC processor. L2 strongly 
underestimated R(λ) at short wavelengths, sometimes even giving negative 
values; however, the L2 AC processor was the best to capture the maximum in 
the red part of spectrum in the Very Turbid OWT (Figure 8 in I). 

Comparison of OWTs determined based on in situ measured R(λ) and OWTs 
determined using R(λ) derived from OLCI images processed with different ACs 
showed that the C2RCC had the highest classification accuracy. L2 had the 
lowest classification accuracy for OWTs; the Very Turbid or Brown OWT was 
assigned mainly because the first maximum of R(λ) at 550–580 nm was strongly 
underestimated, and therefore the resulting spectral shape of R(λ) was distorted. 
Moreover, sensitivity analyses confirmed that a decrease of the R(λ) values at 
500–700 nm caused Moderate and Turbid OWTs to be assigned as Very Turbid 
or Brown. 
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For MSI match-up points away from the shore, the C2RCC, POLYMER, and 
Sen2Cor AC processors gave quite similar values of R(λ), while the ACOLITE 
AC processor commonly overestimated R(λ). However, C2RCC was not able to 
capture the maximum R(λ) in the red part of the spectrum. For small lakes, AC 
processors’ values of R(λ) differed more (Table A1 in I), and in some cases, AC 
processors did not provide any results. For example, only the C2RCC AC 
processor was able to derive data for small humic lakes. 

Comparison between OWTs obtained from in situ measured R(λ) and OWTs 
obtained from MSI images processed with different ACs (Table A1 and Figure 7 
in I) showed that POLYMER had the highest number of correct classifications; 
however, the C2RCC AC processor was suggested for MSI since POLYMER 
was not able to retrieve R(λ) for 43% of match-ups. 

In Paper IV, for MSI, the C2X AC processor was suggested for Baltic lakes 
based on available R(λ) match-ups. Comparison of the spectral bands, the visual 
inspection of the general shape of spectra (Figures A2-A4 in IV), and accuracy of 
derived OWTs (72%) were the basis for the decision. For OLCI, the C2RCC AC 
processor was used similarly, as suggested in Paper I. In Paper V, the newly 
tested POLYMER AC processor was suggested for Estonian inland and coastal 
waters for OLCI images based on available R(λ) match-ups (Table 3 in V). 
Similarly, in Paper I, it was noted that the agreement between the AC processors 
increased further away from the shore. 

 

4.5.2. Comparability of OWTs 

The two satellite sensors, OLCI and MSI, generally agreed on the dominant 
OWT (II) in the studied Latvian and Estonian lakes based on all the valid pixels 
of the cloud-free scenes of the lakes during 2017 (152 OLCI and 45 MSI 
images) (Figure 2 and Table 2 in II). The Latvian shallow, brown-water Lake 
Burtnieks [118] was dominated by the Brown OWT. The Turbid OWT was 
dominant in Lake Lubans and Lake Võrtsjärv and the Clear OWT in Lake 
Razna. However, the distributions of non-dominant OWTs differ on sensors. 
For example, in Lake Võrtsjärv, 91% of the pixels in OLCI images were 
determined as the Turbid OWT, but in MSI images, 50% of the pixels were 
determined as the Turbid OWT. Overall, MSI data showed more variability in 
different OWTs, while OLCI tended to be homogenous in the OWTs. 
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Figure 11. The distribution of OWTs for all OLCI (S3) and MSI (S2) matching cases 
(II). 
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31 cases with both OLCI and MSI cloud-free images from the same day were 
analyzed to compare lakes’ OWTs derived from OLCI and MSI images (II). As 
shown in Figure 11, the best agreement between the two sensors’ distribution of 
the OWTs were in Lake Razna and Lake Lubans. The most disagreements in 
determining the OWT were in Lake Võrtsjärv, where in half of the matching 
days, there were the differences between OWTs determined from OLCI and 
MSI images. Since the determination of OWTs depended on R(λ) derived from 
satellite sensor images, AC can impact the result of retrieval of the OWTs. AC 
over inland and coastal waters is challenging because about 90% of the signal 
received by the sensor is not affected by the water itself [119]. Even though the 
same C2RCC AC processor was used for both sensors, the sensors have 
different spectral scales, and sensitivity analysis of OWT classification (I) 
showed that MSI was more sensitive to changes in input reflectance. The 
correlation between prevalent OWT derived from OLCI and MSI images was 
0.74 (without outlier: 0.87) (Figure 4 in II). 
 

4.5.3. Spatial and Temporal Variability of OWTs 

OLCI and MSI spatial and temporal resolution are some of the advantages that 
remote sensing capabilities have over traditional in situ monitoring to monitor 
water quality in inland and coastal waters. As shown in Figure 12, the MSI with 
higher spatial resolution was able to monitor finer patterns and also smaller 
lakes. Generally, for Lake Burtnieks, both sensors agreed on the spatial 
variability of the OWTs but quite often disagreed on the OWT itself. Lake 
Burtnieks is a brown-water lake with frequent heavy blooms [120], which can 
lead to quickly changing spatial variability of the OWT. In the case of Lake 
Võrtsjärv, the water was homogeneous according to the OLCI data. Addi-
tionally, the literature describes the lake as having homogenous waters, 
meaning that a single measurement point describes 90% of the lake [121]. 
However, the OWT determined from MSI images demonstrated fine patterns of 
different OWTs. Typically, the narrow southern part had a Very Turbid and 
Brown OWTs, and the northern part was classified into Moderate, Turbid, and 
some Very Turbid OWTs. The pattern of spatial variation of OWTs from the 
MSI images agrees with the characteristics of the lake bottom [122]. The most 
agreement between both satellites was found in Lake Razna. 
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Figure 12. Comparison of the spatial variability of OWTs between OLCI and MSI in 
four different lakes on selected dates. The upper row for each lake shows the enhanced 
true colour images, the second shows the spatial variability of the OWTs, and the third 
row shows the percentages of each OWT of the given scene (II). 
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Figure 13. Temporal variability and the distribution of OWTs derived from OLCI and 
MSI in different lakes during 2017. The lower panel of each sub-figure shows the 
frequency of the acquired data (II). 
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The temporal variability of the OWT distributions in Figure 13 illustrates a 
change in the lake optical properties during one ice-free period (II). In Lake 
Burtnieks, the OWTs changed quite rapidly from the Brown to Very Turbid 
OWT or vice versa. That was most likely due to fluctuations in concentrations 
of Chl-a or the combination of water level fluxes and intensive agriculture 
[120]. Additionally, for the CDOM-rich water, the AC was difficult to perform 
well, and over- or underestimation of deriving R(λ) from satellite images can 
exceed classification sensitivity and can lead to misclassification of OWTs. 

Lake Lubans and Lake Razna showed more stability of the OWTs and a 
similar pattern. The influence of infrequent data was shown most clearly on 
Lake Võrtsjärv, where the overall temporal variability was affected by one June 
MSI image (Figure 13). Since there were 47 OLCI images and only 9 MSI 
images from Lake Võrtsjärv over 2017, the MSI one-day image had more 
proportional weight in the result. As shown in Figure 13, using fewer than 10 
images per year made the temporal variability analysis of OWTs in dynamic 
water bodies quite unreliable. However, in monitoring programs, conclusions 
are often made about water conditions with even lower temporal resolution. 
From over 2000 Latvian lakes, only a small part of them are monitored 
monthly, and nearly 300 lakes have just one sampling during a 3-year period 
[123]. In Estonia, from over 2300 lakes, only Lake Võrtsjärv is monitored 
monthly. Twelve other lakes are monitored up to five times per year. There are 
90 other lakes that are monitored up to twice over a five-year period [124]. 

Figure 14. Examples of temporal variability and the distribution of OWTs derived from 
OLCI and MSI in Lake Peipus during 2017. 

 
In Lake Peipus, all OWTs were present throughout the season, but the dis-
tribution of OWTs changed. The lake is a large, shallow, optically complex, and 
very dynamic water body, and it has a strong north–south OSC concentration 
gradient. In mid-summer, the OSC concentrations in the northern part of Lake 
Peipus were lower, and its waters were mainly classified as the Clear or 
Moderate OWTs. At the same time, water in the narrower southern part of Lake 
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Peipus was classified as the Turbid OWT on MSI and Very Turbid OWT on 
OLCI images. At the end of August when OSC concentrations increase, the 
waters were more widely classified as Turbid OWT in the northern part of Lake 
Peipus and as Brown OWT in the southern part. As shown on Figure 14, the 
variation in OWTs obtained with MSI and OLCI images (I) was similar to that 
obtained in Paper VI, in which OWT classification [41] was performed based 
on OSC concentrations. Overall, the dynamics of OWTs obtained from MSI and 
OLCI images are comparable. 
 

4.5.4. Detecting Ecosystem Changes by Using  
the OWT Guided Approach (an example) 

The OWT guided approach to estimate optical water quality parameters was 
applied to OLCI images acquired in the Pärnu Bay region to investigate 
ecosystem seasonal and spatial changes and responses to weather effects. As 
shown in Figure 15, the left column includes OWT estimations and optical 
water quality parameters derived images taken during the most common 
situations when higher values were present close to the coast; however, the bay 
was mainly classified into the Clear OWT. There was a storm event with a daily 
average wind speed of 11.2 m·s-1 and gusts over 21 m·s-1 on 22 June 2018. The 
image captured the day after the storm showed the changes in the bay. As the 
bay is shallow with a soft bottom, the wind caused resuspension of sediments 
into the water column, and as a result, the bay was then classified into the 
Turbid or Moderate OWTs. Derived images (Figure 15) showed an increase of 
TSM concentration (due to both inorganic and organic particulates) and a 
drastic decrease in ZSD. This indicates changes in the underwater light field. 
The Chl-a values rose, but we do not have a reason to believe that this was 
actually true in this case, and we assume the overprediction of the Chl-a due to 
a TSM side-effect. Firstly, finding empirical algorithms that effectively separate 
the signals from TSM and Chl-a can be challenging [102], and secondly, the 
datasets used to develop this approach mainly include TSM dominated by 
SPOM in situ measurements. In the future, it is necessary to add more SPIM-
dominated in situ measurements to train our Turbid OWT models. Five days 
later (right column of Figure 15), conditions had returned to near those on the 
17th, although with higher Chl-a values, possibly due to due to added nutrients 
from the sediments. These changes are quick in nature and often remain 
uncaptured by traditional monitoring programs, adding more value to remote 
sensing possibilities. 
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Figure 15. Changing OWTs and optical water quality parameters (such as the Chl-a, 
TSM, CDOM, and ZSD) before and after a strong wind (day average wind speed 
11.2 m·s-1 and the gust over 21 m·s-1) event on 22 June 2018 in Pärnu Bay, captured 
by OLCI images processed with the C2RCC AC processor. Water quality parameters 
are estimated from R(λ) using OWT based algorithms (III). 
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5. CONCLUSIONS 

• The uncertainties of in situ measured R(λ) were lower, between 500–
700 nm. The wave height, wind speed, and changing illumination condi-
tions were important parameters affecting the probability of a rise in the 
measurement uncertainty of R(λ). Also, the correct geometric positioning 
of radiometers during the in situ measured R (λ) was essential. 

• The OWT classification was developed for boreal region inland and coastal 
waters. It takes R(λ) as input and uses key spectral features, such as the 
wavelength of the maximum, the slopes, and the amplitude of R(λ), to 
divide water into five OWTs: Clear, Moderate, Turbid, Very Turbid, and 
Brown. Each OWT has different reflectance spectra which reflect different 
bio-optical conditions. OLCI, onboard the Sentinel-3, and MSI, onboard 
the Sentinel-2, can distinguish all five OWTs. Moreover, the high spatial 
resolution of MSI allows for monitoring the changes of OWTs by remote 
sensing even in smaller water bodies. 

• For boreal region inland and coastal waters, using the OWT guided 
approach was suggested to estimate optical water quality parameters, such 
as the concentration of Chl-a and TSM, aCDOM(442), and ZSD from the 
R(λ) spectra with different spectral scales, such as hyperspectral with a 1 
nm step, OLCI bands, and MSI bands. 

• The dominant OWT in a lake obtained from MSI and OLCI data generally 
agreed. However, OWTs obtained from MSI data showed more variability, 
while OWTs obtained from OLCI data tended to be more homogenous. 
The differences were caused by several factors, like the AC processor used 
to derive R(λ) from satellite data, the differences in the spatial resolution of 
the two sensors, and the sensitivity of the OWT model due to the sensors’ 
different spectral scales. 

• The choice of an AC processor suitable for the region and sensor of interest 
is the first step to estimate optical water quality parameters from OLCI and 
MSI data. C2RCC and POLYMER AC processors were found to be the 
most accurate and reliable for use with OLCI images, and for MSI images, 
the C2RCC and C2X AC processors were most suitable. The second step is 
to determine the OWT for each water pixel. The third is to apply the most 
suitable model for each OWT to estimate optical water quality parameters. 

• CDOM-rich waters which were classified into the Brown OWT need 
additional investigation in the future. For instance, the in situ measure-
ments of R(λ) were difficult to perform well, and R(λ) spectra derived from 
the satellite sensor strongly overestimates the blue region of spectra, which 
can lead to misclassification of OWTs. Also, predictive models for optical 
water quality parameters had the lowest coefficients of determinations 
between 0.27–0.61. 



42 

• The OWT guided approach appeared to be suitable to provide a basis for 
understanding the seasonal and spatial variabilities of water bodies and can 
be an additional technique in water monitoring programs to improve the 
quality of monitoring of the optical water quality parameters.   
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SUMMARY IN ESTONIAN 

Optiliste veetüüpide põhine lähenemine  
sise- ja rannikuvee veekvaliteedi hindamiseks 

Inimestele on meeldinud ajast aega elada seal, kus maa ja vesi kohtuvad. Vee-
kogud on vajalikud nii põllumajanduse, majapidamise kui ka tööstuse veevarus-
tuseks, bioloogilise mitmekesisuse toetamiseks ning kalapüügi- ja puhkamis-
võimalusteks. Suurenenud inimtegevuse mõju on põhjustanud veekogude sei-
sundi muutumist. Seisundi pidev jälgimine aitab kaardistada olukorda, hinnata 
inimtegevuse mõju ulatust ja vajadust reageerida. Pikaajalised veeseireprogram-
mid põhinevad suurel hulgal in situ punktmõõtmistel. See meetod ei suuda 
kajastada kogu veekogu kiiresti muutuvaid omadusi ja reaalselt seisundit. See-
tõttu on oluline lisaks rakendada veekeskkonna operatiivse jälgimise meetodeid, 
milles kaugseire on üks võimsamaid. 

Kaugseire pakub tõhusaid viise veekvaliteedi ruumiliste ja ajaliste erinevuste 
jälgimiseks. Euroopa Liidu ja Euroopa Kosmoseagentuuri Copernicuse pro-
grammi raames on loodud Sentinel seeria satelliidid. Praegu on toimimas kaks 
Maa vaatlusmissiooni, mis sobivad sise- ja rannikuvee optiliste omaduste jälgi-
miseks. Sentinel-3 seeria satelliitide pardal on keskmise ruumilise lahutusvõime 
(300 m) ja 21 spektraalkanaliga sensor OLCI. OLCI kanalite asukohad on 
valitud veevärvuse mõõtmiseks, aga tema ruumiline lahutusvõime lubab seirata 
umbes 1000 suurimat järve maailma 117 miljonist järvest. Sentinel-2 seeria 
satelliitide pardal oleval sensoril MSI on 13 spektraalkanalit ja oluliselt kõrgem 
ruumiline lahutusvõime (10, 20 ja 60 m), mis võimaldab väiksemate veekogude 
ja erinevate nähtuste (nt bioloogilise aktiivsuse filamentide ja keeriste) üksik-
asjalikumat uurimist. 

Copernicuse programmi suure spektraalse, ruumilise ja ajalise lahutusvõime-
ga andmete tasuta kättesaadavus ning plaanitud edasine järjepidevus vähemalt 
paarikümne aasta jooksul on tekitanud huvi kasutada kaugseire võimalusi sise- 
ja rannikuvete veekvaliteedi jälgimiseks. Need veed on optiliselt keerukad, kuna 
vee optilised omadused on mõjutatud erinevate optiliselt aktiivsete ainete 
(värvunud lahustunud orgaaniline aine (CDOM), klorofüll ja heljum) poolt 
sõltumatult. Seetõttu on optiliselt keerukate vete kaugseire komplitseeritum ja 
standardsed kaugseire tulemid sageli ei tööta neis vetes. Vee klassifitseerimine 
võib olla võtmelahendus optiliselt keerukate veekogude funktsionaalsete kaug-
seire algoritmide väljatöötamiseks. Klassifikatsioone kasutatakse laialdaselt 
maastiku kaugseires ja selle meetodi rakendamine on ka vee kaugseires vii-
mastel aastatel kasvanud. Siiski on raske leida optiliste veetüüpide klassifi-
katsiooni, mis sobiks boreaalse piirkonna sise- ja rannikuvetele. 

Doktoritöö peaeesmärgiks oli arendada kaugseire andmetel põhinevat 
boreaalse piirkonna sise- ja rannikuvete veekvaliteedi hindamismetoodikat. 
Konkreetsemateks eesmärkideks olid (1) uurida mõõtmiskeskkonna mõju in situ 
mõõdetud vee peegeldumisspektri varieeruvusele; (2) arendada optiliste vee-
tüüpide klassifikatsioon, mida saaks rakendada nii OLCI kui ka MSI andmetele; 
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(3) töötada välja lahendus veekvaliteedi optiliste parameetrite (klorofüll a, 
heljum, CDOM ja Secchi ketta sügavus) hindamiseks peegeldumisspektritest; 
(4) võrrelda OLCI ja MSI andmetest tuletatud optiliste veetüüpide võrreldavust; 
ja (5) leida kõige sobivamad OLCI ja MSI andmete töötlemise sammud. 

Boreaalse piirkonna sise- ja rannikuvete jaoks loodi optiliste veetüüpide 
klassifikatsioon, mis põhineb vee peegeldumisspektril ja jaotab veed viide opti-
lisse veetüüpi: Selge, Mõõdukas, Sogane, Väga sogane ja Pruun. Loodud klassi-
fikatsioon on rakendatav nii OLCI kui ka MSI andmetele. Tänu MSI kõrgele 
ruumilisele lahutusvõimele on võimalik jälgida optiliste veetüüpide muutust 
nüüd ka väiksemates veekogudes. 

Klassifikatsiooni aluseks oleva parameetri – peegeldumisspektri – mõõtmise 
kvaliteedil on oluline roll tulemusele. Leiti, et in situ mõõdetud peegeldumis-
spektri määramatused olid madalamad vahemikus 500–700 nm. Seejuures 
mõõtmiskeskkonna tingimused, nagu laine kõrgus, tuule kiirus ja muutuvad 
valgustingimused, olid olulised parameetrid, mis mõjutasid peegeldumisspektri 
mõõtemääramatuse suurenemise tõenäosust. 

Kaugseire andmetest veekvaliteedi optiliste parameetrite – klorofüll a, 
heljumi, CDOM’i ja Secchi ketta sügavuse – hindamiseks soovitati kasutada 
optiliste veetüüpide põhist lähenemist, kus iga parameetri jaoks leiti igale optili-
sele veetüübile kõige sobilikum algoritm kaugseire andmete interpreteeri-
miseks. 

OLCI ja MSI andmetest tuletatud järved domineerivad optilised veetüübid 
olid omavahel kooskõlas. MSI andmetest saadud optilised veetüübid näitasid 
suuremat varieeruvust kui OLCI andmetest määratud veetüübid.  Erinevused 
olid põhjustatud näiteks atmosfääri korrektsiooni protsessorist, mida kasutati 
satelliidi andmetest peegeldumisspektri tuletamiseks, OLCI ja MSI erinevast 
ruumilisest lahutusvõimest ning optiliste veetüüpide klassifikatsiooni tundlik-
kusest erinevatel sensoritel. 

Veekvaliteedi optiliste parameetrite hindamise esimeseks sammuks OLCI ja 
MSI andmetest oli piirkonna ja sensori jaoks sobiliku atmosfääri korrektsiooni 
protsessori valimine. Leiti, et atmosfääri korrektsiooni protsessorid C2RCC ja 
POLYMER olid kõige täpsemad ja usaldusväärsemad OLCI andmetele ning 
C2RCC ja C2X sensori MSI andmetele. Teise sammuna määrati optiline vee-
tüüp igale veepikslile. Lõpuks rakendati veekvaliteedi optiliste parameetrite 
hindamiseks optiliste veetüüpide põhiseid algoritme. 

CDOM-rikkad veed, mis klassifitseeriti Pruuni optilisse veetüüpi, vajavad 
tulevikus täiendavat uurimist, sest nende veekvaliteedi optiliste parameetrite 
algoritmidel olid madalad determinatsioonikordajad (vahemikus 0.27–0.61). 
Lisaks leiti, et satelliidi andmetest tuletatud vee peegeldumisspektrid tihti 
spektri sinises osas olid tugevalt ülehinnatud, mis võib põhjustada spektrite 
valesti klassifitseerimist Selgesse optilisse veetüüpi. 

Käesoleva töö peamine väärtus seisneb automatiseeritud algoritmi välja-
arendamises, mis võimaldab algatada Eesti ja meie lähipiirkonna veekogude 
kaugseire integreerimist operatiivsesse seiresse. 
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