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Quantum Position Verification in the Random Oracle
Model

Abstract:

Consider a situation where we wish to verify an entity solely by its location.
This is called position verification. The simplest form of position verification
is distance bounding where the verifier is located in the middle of the provers
region, he sends information to the prover and checks how long it takes
for the prover to respond. Since this is not always desirable one can place
verifiers around the provers region forming a kind of triangulation. This
thesis improves on the precision of the quantum position verification protocol
form [Dominique Unruh, Quantum position verification in the random oracle
model, CRYPTO 2014] i.e. presents a modification of the protocol that is
sound for a smaller region. This is done by adding an additional receiving
verifier. The previous result uses a two-player monogamy game. We define
the three player monogamy game needed for the proof of the new protocol
and explain our progress on the proof of this monogamy game. We also
compare different three-player monogamy games and prove some results on
their winning probabilities.

Keywords:

Quantum cryptography, monogamy of entanglement, quantum position
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Mathematical and general theoretical physics, classical mechanics, quantum
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Kvantkrüptograafiline positsiooni verifitseerimine juhus-
liku oraakli mudelis

Lühikokkuvõte:

Juhul kui kasutaja õigsuse kontrollimiseks on võimalik kasutada ainult tema
asukohta, nimetatakse seda positsiooni verifitseerimiseks. Lihtsaim viis
positsiooni verifitseerimisest on kasutaja kauguse mõõtmine keskpunktist
(distance bounding). Verifitseerija paikneb kontrollitava ala keskel, saadab
informatsiooni tõestajale ning kontrollib vastuse aega. Kuna selline ülesehi-
tus ei ole alati soovitud, on võimalik kasutada ka teistsugust verifitseerijate
asetust. Verifitseerijaid saab seada ümber tõestatava piirkonna, teatud
liiki triangulatsioonis. Antud lõputöö muudab artiklis [Dominique Unruh,
Quantum position verification in the random oracle model, CRYPTO 2014]
esitatud positsiooni verifitseerimise protokolli, esitades uue versiooni pro-
tokollist, mis on turvaline väiksemal tõestataval piirkonnal. Algse protokolli
turvalisuse tõestus kasutab kahe mängijaga põimunud kvantsüsteemide
monogaamsuse mängu teoreemi. Lisades juurde ühe verifitseerija, defineer-
ime uue kolme mängijaga põimunud kvantsüsteemide monogaamsuse mängu.
Tõestame et muudetud protokolli turvalisus sõltub uue kolme mängijaga
mängu võidu tõenäosusest. Selgitame probleeme ja edusamme antud
monogaamsuse mängu tõestamisel. Võrdleme erinevaid kolme mängijaga
monogaamsuse mänge ning tõestame mõned võidu tõenäosuste tulemused.

Võtmesõnad:

Kvantkrüptograafia, positisiooni verifitseerimine, põimumise monogaamsus,
juhusliku oraakli mudel

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine
(automaatjuhtimisteooria), P190 Matemaatiline ja üldine teoreetiline
füüsika, klassikaline mehaanika, kvantmehaanika, relatiivsus, gravitatsioon,
statistiline füüsika, termodünaamika
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Introduction

Position verification

Consider a situation where we wish to verify an entity solely by its loca-
tion. This might be the case when we wish to provide services in a specific
area, for example a sports stadium. Let us imagine that we have a sports
stadium that wishes to stream replays of key moments of the game to spec-
tators smartphones. Organisers are concerned that it is not possible to use
passwords printed on the tickets as these might still be distributed outside of
the stadium. Since it is crucial that no-one outside of the stadium is able to
access this information they decided to verify the devices by their location.

The simplest way of achieving position verification is to place a device
(the verifier) in the middle of the stadium. Let Victor take over the role
of the verifier and let the time unit be such that light reaches the border
of the stadium (i.e. the border of the provers region) at time t = 1. If
Alice wishes to prove that she is indeed inside the stadium she starts the
verification procedure. Victor sends a token x to Alice at time t = 0. Alice
receives the token at time t ≤ 1 and immediately sends the token back to
Victor. Victor receives the token from Alice at time t ≤ 2 and accepts. If
Victor received the token back from Alice at time t > 2, then Victor would
assume that Alice is too far away and would not accept.This kind of position
verification is called distance bounding [1].

It is not always possible or desirable to have one verifier in the center of a
spherical region. Another approach to position verification is to use multiple
verifiers Vi (i = 1, . . . , r) that are placed around the provers region (i.e. the
provers region is in the convex hull of the verifiers locations). Now let us
consider the following protocol:

1. Let H be a function that takes r inputs. Verifiers Vi (i = 1, . . . , r)
choose random bit-strings xi.

2. At time t = 0 they send these bit-strings to the prover P ◦.
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3. At time t = 1 prover receives all xi and calculates y = H(x1, . . . , xr).
He then sends y to all the verifiers.

4. At time t = 2 verifiers Vi each receive a bit-string yi. They check if
yi = H(xi, . . . , xr) for all i. If this is true and the bit-strings indeed
arrived on time they accept.

In a 2D world the position of the verifiers and the provers region might
look as in Figure 1.

The most important property of a position verification protocol is sound-
ness. We say that a protocol is sound for a region P if malicious provers
outside of that region are not able to impersonate a honest prover inside the
provers region. Unfortunately the protocol above cannot be secure in the
classical setting. The impossibility of position verification in the classical
setting was shown in [3].

The ability to keep a copy of the bit-string and forward copies of the
bit-string to the other malicious provers is what makes it easy for multiple
malicious provers to impersonate a honest prover. Since it is not possible
to make copies of arbitrary quantum states there was hope that position
verification might be possible in the quantum setting. It was shown in [2]
that information-theoretically secure position verification protocols are not
possible but it was shown in [2] and [3] that secure position verification pro-
tocols exist if we assume restrictions on the amount of allowed entanglement
or provers storage capabilities. That secure position verification is possible
in the random oracle model was shown in [9].

To show that position verification is possible in the random oracle model
[9] introduced the following protocol

1. A random function H : {0, 1}ℓ → {0, 1}n is chosen. Verifiers Vi pick
random bit-strings xi of length ℓ and a random bit-string ŷ of length
n.

2. Verifiers encode ŷ in the basis θ = H(x1 ⊕ · · · ⊕ xr) in the quantum
state |Ψ⟩. Verifiers V1 sends |Ψ⟩ to the prover.

3. At time t = 0 verifiers Vi send xi to the prover P ◦.

4. At time t = 1 prover receives all xi and calculates θ = H(x1⊕ · · ·⊕xr).
He measures |Ψ⟩ in the basis θ and gets the result y. He then sends y
to verifiers V1 and V2.

5. At time t = 2 verifiers V1 and V2 receive y1 and y2. They check if
y1 = y2 = ŷ. If yes, and y1 and y2 were indeed received on time they
accept.

8



◦V
P ◦
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◦

V1

V2

V3

P

Figure 1: Location of verifiers and provers region for distance bounding vs. using
multiple verifiers.

This protocol is sound for the region P , where all xi are known and it is
still possible for information to reach the verifiers V1 and V2. The region P
is illustrated in Figure 2, where dotted lines show where xi are known and
solid lines show from where information can reach Vi.

Goal and contribution

A crucial point in the proof of the position verification theorem from [9] was
taking advantage of the monogamy of quantum entanglement. Entanglement
is a phenomenon where one quantum state cannot be described without de-
scribing another state that is entangled with it. As an important property
entangled states influence each others measurements outcomes and can there-
fore be used to achieve the same measurement outcome on two systems with-
out additional communication. Monogamy of entanglement means that if we
have two parties Alice and Bob, that are fully entangled then Alice cannot
be entangled with a third party Charlie. The monogamy game result form
[6] stated that there is no strategy that lets Bob and Charlie always measure
the same outcome as the referee Alice if the basis of Alice’s measurement is
revealed after Bob and Charlie agree on a common strategy.

Since the monogamy game theorem from [6] holds for two adversaries
it could be used for the position verification theorem with two receiving
verifiers. [9] listed it as an open problem if the result could be generalised to
three receiving verifiers and if this could improve the precision of the protocol
i.e. make the provers region smaller.
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Figure 2: Provers region P . Intersection of spacetime at around time t = 1.

Goal of thesis

The goal of this thesis was to prove the soundness of the protocol with one
added verifier and to define the monogamy game needed to prove the sound-
ness of the new protocol. Under the assumption that the probability of
winning this new monogamy game is indeed low we intended to give a proof
for the soundness of the protocol and to show that it has indeed a higher
precision.

Contribution

We investigate different three party monogamy games and prove that for
multiple of these games the winning probability is negligible. We compare
different 3 player games and discuss the different assumptions needed for the
proofs.

We give a new protocol definition with an additional verifier, give a defi-
nition for the monogamy game needed so that the soundness of the protocol
can be proven for a smaller provers region. We also give a formal proof for
the position verification theorem with the new protocol that is dependent on
the winning probability of the new monogamy game.

We also present our progress on the proof of the three-player monogamy
game and explain the intuition behind the missing parts of the proof.
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Open questions

We present current progress on the monogamy game theorem needed for the
new position verification protocol. This proof is still an open problem. It is
important to notice, that the current progress works in the one qubit case.
We would like that the winning probability would decrease fast if the number
of qubits grows, but it is not clear if this will be the case. If the probability
will increase fast, then we can use the monogamy game theorem straight in
the position verification proof. If the probability will not decrease fast with
growing qubit numbers, then we would have to repeat the protocol itself.
This would also result in the overall probability of malicious provers being
able to impersonate a honest prover to be small, but the round complexity
of the protocol would increase.

The position verification protocol in [9] allows an error rate. This is
important as sending quantum states is not error free. For this the monogamy
game has to be generalised to allow error rates as the monogamy game form
[6] does.

We investigated the case where we added an additional receiving verifier
to the protocol. It is important to notice, that three receiving verifiers is
not the optimal case. In 3D four receiving verifiers will result in the highest
precision. Adding an additional verifier should be possible in a similar man-
ner as adding the third verifier. This means that the three party monogamy
game has to be generalised to four parties. This was out of the scope of this
thesis, but it seems that if the proof for the new monogamy game theorem
works out as described it should be generalisable to four parties.

Thesis structure

The first chapter explains mathematical preliminaries. We present important
well known definitions and some important known results without proof. This
chapter is mainly meant for readers that lack mathematical background but
would like to understand the proofs in detail.

Second chapter explains background in quantum information. We will
discuss the differences of classical and quantum information. We will also
briefly explain quantum states, measurements and entanglement. This chap-
ter serves as mathematical background for readers who wish to look up math-
ematical definition used in other chapters.

Third chapter explains the monogamy game theorem from [6] and dis-
cusses different possibilities to generalise the monogamy game theorem to
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more adversaries. We prove multiple versions of generalised monogamy the-
orems and explain the intuition behind the monogamy game theorem needed
for the position verification proof. Unfortunately we were not yet able to
prove this theorem.

In Chapter 4 we explain how position verification works. We also give
a proof sketch for the position verification theorem from [9] and a proof
sketch for a position verification theorem with 3 receiving verifiers. The
proof sketches underline which parts of the proof had to be changed to ac-
commodate an additional verifier and how we obtain a smaller provers region.

Chapter 5 gives a formal proof for the new position verification theorem
and the last chapter gives a conclusion.
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1. Mathematical preliminaries

Before introducing the quantum mechanical concepts used in this thesis we
will will introduce some of the mathematical background needed. We will
introduce frequently used definitions and some known results without proof.

1.1 Vector space

A nonempty set V with relations

+ : V × V → V

and

· : C× V → V

is called a complex vector space, if ∀x, y, z ∈ V and a, b ∈ C

x+ (y + z) = (x+ y) + z

x+ y = y + x

∃0 ∈ V : x+ 0 = x

∃ − x ∈ V : x+ (−x) = 0

a · (b · x) = (ab) · x
1 · x = x

a · (x+ y) = a · x+ a · y
(a+ b) · x = a · x+ b · x

In the following by ax we denote the scalar product a · x. A basis of a
vector space V is a set of elements {vi}, vi ∈ V such that every element x of
V can be represented as a combination of the basis elements i.e. there are
elements ai ∈ C such that ∑

i

aivi = x.
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We say that a vector space is n dimensional , if its basis has n elements.
It is important to notice that a vector space can have multiple bases, but
they all contain the same number of elements. It is also well known that
every finite dimensional vector space has a basis. In the following we will
only work with finite dimensional vector spaces.

Let x be an element of an n-dimensional vector space V and let
{v0, . . . , vn} be a basis of V . This means, that there are elements ai ∈ C,
such that

∑

i aivi = x. Since ai uniquely define x we can represent the vector
space element (vector) x as

x =

⎛

⎜
⎜
⎜
⎝

a0
a1
...
an

⎞

⎟
⎟
⎟
⎠

.

The conjugate transpose of the vector x is given by

x† =
(

a0 a1 · · · an
)

,

where x denotes the complex conjugate of x. I.e. if x = a+bi, where a, b ∈ R,
then x = a − bi. We can now define the inner product ⟨x, y⟩ of two vectors
x and y by

⟨x, y⟩ = x†y,

Notice that the inner product of two vectors is not a vector, but a complex
number.

In the following are some properties of the inner product. Let x, y, z be
vectors and a, b complex numbers, then

⟨x, y⟩ = ⟨x, y⟩
⟨ax+ bz, y⟩ = a⟨x, y⟩+ b⟨z, y⟩
⟨x, x⟩ ≥ 0.

A norm ∥·∥ is a function on a vector space V

∥·∥ : V → R,

with following properties. For every x, y ∈ V and a ∈ C

∥ax∥ = |a|·∥x∥
∥x+ y∥ ≤ ∥x∥+ ∥y∥
∥x∥ = 0⇒ x = 0.

14



Notice that ∥x∥ =
√

⟨x, x⟩ is a valid norm on any vector space with an inner
product.

Using the norm we can also define a distance measure d(x, y) as d(x, y) =
∥x − y∥. We call a set M a metric space if we can calculate the distance
d(x, y) for every element x, y ∈M . We say that a metric space is complete if
every Cauchy sequence has a limit, that is also in M . This basically means,
that if we have a sequence that converges, for example

1,
1

2
,
1

3
,
1

4
, · · · , 1

n

then the limit 0 also has to belong to the set. To complete the example, the
set (0, 1] is not complete, as the limit of the sequence given above is outside
of the set.

1.2 Hilbert space

We are now able to define Hilbert spaces.

Definition 1.1. A vector space H with inner product ⟨·, ·⟩ is called a Hilbert
space if the norm induced by the inner product

∥x∥ =
√

⟨x, x⟩

turns the vector space into a complete metric space.

Let A and B be two matrices, such that

A =

⎛

⎜
⎜
⎜
⎝

a11 · · · a1n
a21 · · · a2n
...

...
an1 · · · ann

⎞

⎟
⎟
⎟
⎠

, B =

⎛

⎜
⎜
⎜
⎝

b11 · · · b1n
b21 · · · b2n
...

...
bn1 · · · bnn

⎞

⎟
⎟
⎟
⎠

.

Then the tensor product A⊗ B of A and B is given as

A⊗ B =

⎛

⎜
⎜
⎜
⎝

a11B · · · a1nB
a21B · · · a2nB

...
...

an1B · · · annB

⎞

⎟
⎟
⎟
⎠

This means, that if we have vectors x and y in a Hilbert space H, such that

x =

⎛

⎜
⎜
⎝

x1

x2

. . .
xn

⎞

⎟
⎟
⎠

, y =

⎛

⎜
⎜
⎝

y1
y2
. . .
yn

⎞

⎟
⎟
⎠

,
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then the tensor product x⊗ y is given by

x⊗ y =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1y1
x1y2

...
x1yn
x2y1

...
x2yn

...
xnyn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

We can also calculate the tensor product of two Hilber spaces H1 and H2.
The tensor product H = H1 ⊗H2 is then equal to

{x⊗ y|x ∈ H1 and y ∈ H2}.

Notice that H is again a Hilbert space. If {v1, . . . , vn} is the basis of the
n-dimensional Hilbert space H1 and {u1, . . . , um} is the basis of the m-
dimensional Hilbert space H2, then the basis of H is

{v1u1, v1u2, . . . , v1um, v2u1, . . . , vnum}.

This means that H is nm-dimensional.

1.3 Operators

Let H be a Hilbert space. A transformation O : H→ H is called linear if it
preserves both addition and scalar multiplication. This means that for every
x, y ∈ H and a ∈ C

O(x+ y) = O(x) +O(y)

O(ax) = aO(x).

We call these transformations operators on H. It is important to notice that
if we agree on a basis for the n-dimensional Hilbert space H, then there is
a one-to-one correspondence between operators on H and n × n matrixes.
Therefore we will mostly use the matrix notation for operators if we have a
fixed basis.

In the following we will recall some special types of operators. Let H
be an n-dimensional Hilbert space and let the basis be fixed, such that all

16



operators can be represented by n×n matrices. We denote by 1H the identity
operator on H. This operator is such that for every vector x ∈ H

1Hx = x.

Definition 1.2. An operator P , that satisfies PP = P is called a projector.

Definition 1.3. An operator P is called positive semi-definite, if for every
vector x

x†Px ≥ 0.

Lemma 1.1. For any matrix C the matrix C†C is positive semi-definite,
where if C = {aij}, C† = {aji}.

Definition 1.4. We say that an operator H is hermitian if H = H†.

Definition 1.5. We say that an operator U is unitary if UU † = 1H, where
1H is the identity operator.

When we analyse operators then we often want to know which vectors
they do not affect. These vectors are called eigenvectors. Let O be an
operator. If

Ox = ax

for some vector x ∈ H and a ∈ C, then x is called an eigenvector of O and a
is called an eigenvalue of O.

Another important property of an operator is the trace. Let O = {oij}
be an operator, then

Tr(O) =
∑

i

oii.

The trace of an operator is cyclic. This means that if we have operators A, B
and C, then Tr(ABC) = Tr(CAB). Trace is also additive i.e. Tr(A + B) =
Tr(A) + Tr(B) and preserves the scalar product: Tr(aA) = aTr(A), whrere
a ∈ C.

Definition 1.6. The Hadamard operator H is given by

1√
2

(

1 1
1 −1

)

.
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1.4 Norm

In section 1.1 we encountered the vector norm induced by the inner product.
We will now introduce a norm for operators. Let A be an operator on the
Hilbert space H then the usual operator norm is given by

∥A∥ = inf{c ≥ 0 | ∥Av∥ ≤ c∥v∥ for all v ∈ H}.

This norm is also called the Schatten ∞-norm.
We say that A ≥ B if A−B is a positive semi-definite operator.

Lemma 1.2. [6] Let A1, A2, . . ., An be positive semi-definite projectors, and
let {πk}k∈[n] be a set of n mutually orthogonal permutations of [n]. Then

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

∑

i∈[n]

Ai

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

≤
∑

k∈[n]

max
∣
∣
∣
∣AiAπk(i)

∣
∣
∣
∣ .
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2. Quantum computing

In this chapter we will discuss what quantum information is and why we need
it, what are the alternatives and what are the differences between quantum
information and other types of information. A good introduction to quantum
information is given in [8] another nice introduction in relation to quantum
cryptography is given in [5].

2.1 Background of quantum physics

Let us consider an experiment given in [4]. The setting consists of a photon
source, two beam splitters, two photon detectors and two mirrors. The pho-
ton source sends single photons onto the beam splitter. The beam splitter is
located at such an angle that half of the photons are sent through the beam
splitter and half of the photons are reflected upwards. In both directions
photons hit a mirror and are reflected at 45 degrees. Both of the streams of
photons now meet and hit a beam splitter at 45 degrees from opposite sides.
Photon detectors are located so that they can register from which side of the
beam splitter photons come from. See Figure 2.1 for a graphical description.

A beam splitter can be considered as flipping a coin and then reflect-
ing or letting a photon through randomly. Measurement statistics for this
experiment show that all photons arrive at photon detector B.

In the following we will discuss the result of the experience and see how
it can be can be described in different models of information. The 0 and 1
paths are shown in Figure 2.2. The beam splitter can be seen as an operator
that flips the bit with probability 1

2 . The starting state, as seen in Figure
2.2, is 0.

2.1.1 Classical information

Classical information is modelled as a bit. The value of a bit can be either 0
or 1. Almost everything that computers do today is translated into 0-s and
1-s.
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photon!source beam!splitter mirror

photon!detector

A

B

Figure 2.1: Setup of experiment. Figure reproduced from [4].

(a) The 1 path (b) The 0 path

Figure 2.2: Paths for 0 and 1. Figures reproduced from [4].
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The starting state is 0. The beam splitter flips the bit with probability
1
2 , which means that with probability 1

2 the state is equal to 0 and with
probability 1

2 equal to 1. We cannot represent this state with just 0 and 1.
To include the probabilities we need a more complex state description than
0 and 1.

2.1.2 Probabilistic information

A probabilistic bit is given by s = p0 · 0 + p1 · 1, where p0 and p1 are
the probabilities of the value of s being 0 and 1 respectively. This means
p0 + p1 = 1 and p0, p1 ≥ 0. These probabilistic bits lie on the line between
zero and one. This means that after the beam splitter the state is equal to
1
2 · 0+ 1

2 · 1. Applying the second beamsplitter will result in

1

2

(
1

2
· 0 +

1

2
· 1

)

+
1

2

(
1

2
· 0+

1

2
· 1

)

=
1

2
· 0+

1

2
· 1 ̸= 0.

This means that the result does not coincide with the result of the exper-
iment.

2.1.3 Quantum information

Quantum information is similar to probabilistic information, but the qubit
(quantum bit) does not lie on the line between zero and one. It lies on the
surface of the sphere, whose north pole lies on 1 and south pole on 0. In
the following we will follow [4] to describe the experiment in the quantum

information setting. Let

(

1
0

)

be the 0 state and

(

0
1

)

the 1 state. A quantum

state is given by

α

(

1
0

)

+ β

(

0
1

)

,

where α and β are complex numbers. The probability of measuring 0 is
equal to |α|2 and the probability of measuring 1 is equal to |β|2. Since these
probabilities should add up to 1, we have |α|2 + |β|2 = 1.

In this setting the beam splitter can be modelled by multiplying the
quantum state with the matrix

1√
2

(

1 i
i 1

)

.
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The state is equal to 0 in the beginning. After passing the beam splitter
the state is equal to

1√
2

(

1 i
i 1

)(

1
0

)

=
1√
2

(

1
i

)

=
1√
2

(

1
0

)

+
i√
2

(

0
1

)

.

This means that the state is a superposition of 0 and 1. If we were to mea-
sure the state after the beam splitter the result would be 0 with probability
| 1√

2
|2 = 1

2 and the result would be 1 with probability | i√
2
|2 = 1

2 .
If we do not measure the state before the second beam spitter, the state

after the second beam splitter would be

1√
2

(

1 i
i 1

)
1√
2

(

1
i

)

=

(

0
i

)

= 0

(

1
0

)

+ i

(

0
1

)

.

Now the probability of measuring 0 is |0|2 = 0 and the probability of
measuring 1 is |i|2 = 1. This corresponds with the experimental result that
all photons are measured by the B photon detector.

In the given experiment information was "encoded" as paths of the pho-
tons, but there are other ways to encode quantum information as well. Quan-
tum information can, for example, be encodes as the spin of an electron or
polarisation of a photon. In the following we will not concern us with the
exact physical representation, but will concentrate on the mathematical ab-
straction.

2.2 Quantum computing

In the following we will discuss the mathematics of quantum computing.

2.2.1 Qubits

As discussed in the previous section a qubit is represented as

α

(

1
0

)

+ β

(

0
1

)

.

In the following we will use a different notation, the Dirac or bra-ket
notation, where

(

1
0

)

=: |0⟩ and

(

0
1

)

=: |1⟩.

This means that we can write any qubit as

α|0⟩+ β|1⟩,
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where |α|2 + |β|2 = 1.
In the bra-ket notation |·⟩ is called a ket, ⟨·| is called a bra and ⟨·|·⟩ is

called a bracket. Here ⟨s| denotes the conjugate transpose of quantum state
|s⟩. Hence ⟨s|t⟩ is the inner product of quantum states |s⟩ and |t⟩. Which
means we can write the norm of the quantum state as ∥|s⟩∥ =

√

⟨s|s⟩.
When we talk about quantum states we assume a Hilbert space H, then

a quantum state |s⟩ is an element of H. In the following we will always
assume that Hilbert spaces are finite dimensional. This means that the given
Hilbert space has a basis. Let us assume that the given Hilbert space is n
dimensional, then one suitable basis is

n

⎧

⎪
⎪
⎪
⎪
⎪⎨

⎪
⎪
⎪⎪
⎪
⎩

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
0
0
...
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
1
0
...
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
0
1
...
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, · · · ,

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
...
1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

In the following we will see how this can be expressed in the bra-ket notation.
For this we will calculate tensor products between |0⟩ and |1⟩

|00⟩ = |0⟩ ⊗ |0⟩ =
(

1
0

)

⊗
(

1
0

)

=

⎛

⎜
⎜
⎝

1
0
0
0

⎞

⎟
⎟
⎠

|01⟩ = |0⟩ ⊗ |1⟩ =
(

1
0

)

⊗
(

0
1

)

=

⎛

⎜
⎜
⎝

0
1
0
0

⎞

⎟
⎟
⎠

|10⟩ = |1⟩ ⊗ |0⟩ =
(

0
1

)

⊗
(

1
0

)

=

⎛

⎜
⎜
⎝

0
0
1
0

⎞

⎟
⎟
⎠

|11⟩ = |1⟩ ⊗ |1⟩ =
(

0
1

)

⊗
(

0
1

)

=

⎛

⎜
⎜
⎝

0
0
0
1

⎞

⎟
⎟
⎠

This means that if we have a Hilbert space with dimension 2n, then a basis
of the Hilbert space is given by

|0 · · ·000⟩, |0 · · ·001⟩, |0 · · ·010⟩, |0 · · ·011⟩, . . . , |1 · · ·111⟩
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Definition 2.1. A density matrix ρ is an n× n matrix with unit trace that
is Hermitian and positive semi-definite.

The density matrix of a quantum state |s⟩ is |s⟩⟨s|. It is important to
notice that not all density matrices are of the form |s⟩⟨s|. Quantum states
whose density matrices are of the form |s⟩⟨s| are called pure states i.e. they
can be written as |s⟩.

There are also more general quantum states, whose density matrices can-
not be written as the outer product of a pure state. These states are called
mixed and they are a statical ensemble of different states. We can purify any
mixed quantum state ρ in Hilbert space H by taking a big enough extension
H̄ of the Hilbert space H [8]. Let H̄ = H ⊗HR, then there is a pure state
|s⟩, such that

TrR(|s⟩⟨s|) = ρ.

Where TrR is the partial trace over HR. This is also called tracing out the
system HR.

2.2.2 Measurements

We will now explain the mathematics behind quantum measurements.

Definition 2.2. A projective measurement is a set of projectors {Pi}, where
Pi are projectors that sum to the identity operator i.e.

∑

i Pi = 1H.

Let H = C2 and let |s⟩ ∈ H. The quantum state |s⟩ can be written as
|s⟩ = α|0⟩+β|1⟩, where |α|2+ |β|2 = 1. We want to measure if the sate |s⟩ is
|0⟩ or |1⟩. Such a measurement is given by {P0, P1}, where P0 = |0⟩⟨0| and
P1 = |1⟩⟨1|. We can calculate the probability of measuring |0⟩ by

⟨s|P0|s⟩ =
(

ᾱ⟨0|+ β̄⟨1|
)

|0⟩⟨0| (α|0⟩+ β|1⟩)
=

(

ᾱ⟨0|0⟩+ β̄⟨1|0⟩
)

(α⟨0|0⟩+ β⟨0|1⟩)

Since ⟨0|1⟩ = ⟨1|0⟩ = 0 and ⟨0|0⟩ = ⟨1|1⟩ = 1 we have

⟨s|P0|s⟩ = ᾱα = |α|2.

And analogously

⟨s|P1|s⟩ = β̄β = |β|2.

We see that the outcomes are as expected.
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In a general case, when we are given a measurement {Pi}, then the prob-
ability of measuring i on a quantum state |s⟩ is

Pr["Measurement outcome is i"] = ⟨s|Pi|s⟩.

Measurements on classical systems would be mere observations. Mea-
surements on a quantum system on the other hand disturb states. If the
measurement outcome is i, then |s⟩ will be in state

Pi|s⟩
√

⟨s|Pi|s⟩

after the measurement. This means that if we perform the {|0⟩⟨0|, |1⟩⟨1|}
measurement on the state |s⟩ = α|0⟩+ β|1⟩ and the outcome is |0⟩, then |s⟩
will be in state |0⟩ after the measurement. We say that the measurement
collapses the state |s⟩.

We can also perform projective measurements on mixed states. Let ρ be
a mixed quantum state. In this case the probability of measuring i is

Tr(Piρ).

One important property of projective measurements is that they are re-
peatable, since PiPj = δijPi. More general measurements that are not re-
peatable exist as well.

Definition 2.3. Positive operator valued measure (POVM) is a measure-
ment on an n dimensional Hilbert space is a set of k operators {Ek} such
that ∑

i

Ei = 1H and ∀i Ei = E†
i , Ei ≥ 0.

Given a specific situation we sometimes like to measure a state in a certain
basis for example in the computational or Hadamard basis. We say that we
measure a qubit in the computational basis, if we perform the measurement
{|0⟩⟨0|, |1⟩⟨1|} and we say that we measure in the Hadamard basis if we

perform the measurement {H†|0⟩⟨0|H,H†|1⟩⟨1|H}, where H = 1√
2

(

1 1
1 −1

)

is the Hadamard matrix. This means that for the Hadamard basis the basis
vectors are 1√

2
(|0⟩+ |1⟩) and 1√

2
(|0⟩ − |1⟩).

An interesting aspect about these bases is that if we measure 1√
2
(|0⟩ +

|1⟩) and 1√
2
(|0⟩ − |1⟩) in the computational basis, the probability for both

outcomes is 1
2 . And if we measure |0⟩ and |1⟩ in the Hadamard basis, the

probability for both outcomes is again 1
2 . This means that if we do not know
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HA UAB Ax

HB

HC UC

UABC

BCx

Figure 2.3: Example of a quantum circuit

in which of the two basis information is encoded, we cannot measure this
information with certainty.

If we look at an 2n-dimensional Hilbert space H = C
2 ⊗ · · ·⊗ C

2
︸ ︷︷ ︸

n

we can

define what it means to measure in the basis θ ∈ {0, 1}n.

Definition 2.4. We say that we measure in basis θ ∈ {0, 1}n if we perform
the measurement {|xθ⟩⟨xθ|}x∈{0,1}n , where

xθ = Hθ1x1 ⊗Hθ1x2 ⊗ · · ·⊗Hθnxn

2.2.3 Quantum circuits

In the following when we talk about measurements and other operators on
quantum states we will often illustrate them with images that show quantum
circuits. A quantum circuit consists of wires, quantum gates and measure-
ments. Quantum gates are always reversible and therefore correspond to
unitary operators. Quantum measurements are not reversible and they have
two outputs, a classical output for the measurement outcome and a quantum
output for the quantum state after the measurement.

Quantum wires can be seen as the tensor product presentation of a Hilbert
space. This means that if we perform operations on a Hilbert space H =
HA ⊗HB ⊗HC with unitary operators UAB, UC , UABC acting on HA ⊗HB,
HC and H respectively, and measurements {Ax} and {BCx} acting on HA

and HB⊗HC respectively, we can represent this as a quantum circuit shown
in Figure 2.3.

2.3 Entanglement

Entanglement is an interesting property of quantum states. Let HA and HB

be Hilbert spaces.
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Definition 2.5. We say that the quantum state |s⟩ ∈ HA⊗HB is entangled,
if it cannot be written as

|s⟩ = |sa⟩ ⊗ |sb⟩,
where |sa⟩ ∈ HA and |sb⟩ ∈ HB.

Four famous entangled states are the EPR pairs:

|β00⟩ =
1√
2
(|00⟩+ |11⟩) ,

|β01⟩ =
1√
2
(|01⟩+ |10⟩) ,

|β10⟩ =
1√
2
(|00⟩ − |11⟩) ,

|β01⟩ =
1√
2
(|00⟩ − |11⟩) .

We will now see what happens if we measure the first qubit of the first
EPR pair in the computational basis. This means that we will perform the
measurement {|0⟩⟨0|⊗ 1, |1⟩⟨1|⊗ 1}. The probability of measuring |0⟩ is

⟨β00| (|0⟩⟨0|⊗ 1) |β00⟩ =
(

1√
2
(⟨00|+ ⟨11|)

)

(|0⟩⟨0|⊗ 1))

(
1√
2
(|00⟩+ |11⟩)

)

=
1

2

(

⟨0|0⟩⟨0|+ ⟨1|0⟩⟨1|
)(

⟨0|0⟩|0⟩+ ⟨0|1⟩|1⟩
)

=
1

2
⟨0|0⟩ = 1

2
.

Since probabilities add up to 1, then the probability of measuring |1⟩ on the
first qubit is 1

2 as well. The state of the EPR pair after measuring the first
qubit, given that the measurment outcome was |0⟩, is

√
2 (|0⟩⟨0|⊗ 1)

(
1√
2
(|00⟩+ |11⟩)

)

= (|0⟩⟨0|0⟩|0⟩+ |0⟩⟨0|1⟩|1⟩) = |00⟩.

Now if we measure the second qubit in the computational basis the re-
sult is |0⟩ with probability 1. We get the same result if we measure in the
Hadamard basis. This means that the measurement on one half of the system
determines the result on the other half of the system. The measurement out-
comes on β00 and β10 are always correlated and the measurement outcomes
on β01 and β11 are always anticorrelated.

An important property about entanglement is that it is monogamous. If
states ρ and ψ are fully entangled, then state ψ cannot be fully entangled
with a third state φ. We discuss monogamy of entanglement in the next
chapter.
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3. Monogamy of entanglement

games

In this chapter we introduce different three-player monogamy of entangle-
ment games.

3.1 General setting

In the following we will always assume, that HA, HB, HC and HF are Hilbert
spaces. Moreover Alice, Bob and Charlie are adversaries that have access to
spaces HA, HB and HC respectively. The referee has access to the Hilbert
space HF .

Monogamy of entanglement games will consist of a referee and adversaries.
Before the game starts adversaries agree on a strategy of how to measure their
spaces once the basis is revealed and choose a starting state of their liking that
is then distributed to the referee and adversaries. Then the referee chooses
a uniformly random basis and reveals it to the adversaries. Adversaries and
referee perform measurements on their parts of the space and output values
yA, yB (in case we have two adversaries A, B) and yF . If yA = yB = yF
adversaries win the game.

We will define game and strategy specifically in the following.

Definition 3.1. A monogamy of entanglement game G = {HF , {F θ
x}} con-

sists of a Hilbert space HF and a set of projective measurements {F θ
x} on

this space.

In the following we will assume that {F θ
x} is a measurement in basis θ. We

will distinguish different monogamy of entanglement games by the strategies
allowed by the game. In the following we will introduce the monogamy of
entanglement game defined and analysed in [6].
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A Aθ
x

B Bθ
x

F F θ
x

Figure 3.1: MG0

3.2 Original monogamy of entanglement game

MG0

Definition 3.2. By MG0 we denote a monogamy of entanglement game
where the allowed strategies are of the form S = {|s⟩, {Aθ

x}, {Bθ
x}}, where

|s⟩ is the starting state and {Aθ
x} and {Bθ

x} are projective measurements on
HA and HB respectively. By MG0n we denote an MG0 game where {F θ

x} is
a measurement on an n−qubit state.

The quantum circuit corresponding to a MG0 strategy is shown in Figure
3.1.

Definition 3.3. By Pwin(G, S) we denote the probability that adversaries
with strategy S win the game G.

Definition 3.4. The maximal winning probability of a monogamy of entan-
glement game is given by Pwin(G) = supS(Pwin(G, S)), where supremum is
taken over all allowed strategies S.

It is important to notice that although we consider projective measure-
ments and pure starting states these results hold as well for more general
measurements POVM-s and mixed states. Namely any POVM can be repre-
sented as a projective measurement if we consider Hilbert spaces with more
dimensions. The same holds for pure and mixed quantum states. [6]

In [6] it was shown that Pwin(MG0n) =
(

1
2 +

1
2
√
2

)n
. Here the optimal

strategy is that both Alice and Bob guess 0 independent of the basis and
choose |s⟩ = |s0⟩ ⊗ . . .⊗ |sn⟩, where si = cos π

8 |0⟩+ sin π
8 |1⟩. It is easy to see
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that then

Pwin(MG0n, S) =
∑

θ∈Θ

1

|Θ|⟨s|F
θ
0 |s⟩

=
∑

θ∈Θ

1

|Θ|
⟨s|

(

|0θ0⟩⟨0θ0|⊗ . . .⊗ |0θn⟩⟨0θn|
)

|s⟩

=
∑

θ∈Θ

1

|Θ|⟨s0|0
θ0⟩⟨0θ0|s0⟩ ⊗ . . .⊗ ⟨sn|0θn⟩⟨0θn|sn⟩

=
∑

θ∈Θ

1

|Θ|

(
1

2
+

1

2
√
2

)n

=

(
1

2
+

1

2
√
2

)n

.

Here we use that

⟨si|0⟩⟨0|si⟩ =
(

cos
π

8

)2
=

1

2
+

1

2
√
2

and

⟨si|H|0⟩⟨0|H|si⟩ =
1

2

(

cos2
π

8
+ cos

π

8
sin

π

8
+ cos

π

8
sin

π

8
+ sin2 π

8

)

=
1

2
+

1

2
√
2
.

The monogamy game MG0 works with two adversaries. In the following
sections we are analysing monogamy of entanglement games that allow more
adversaries. We also consider games that allow unitary transformations on
shared registers that are performed before the measurements and in some
cases measurements that are performed on multiple registers at the same
time.

3.3 MG1 and MG2 games

Definition 3.5. By MG1 we denote a monogamy of entanglement game that
accepts strategies of the form S = {|s⟩, {Aθ

x}, {Bθ
x}, {Cθ

x}}, where {Aθ
x}, {Bθ

x}
and {Cθ

x} are projective measurements on HA, HB and HC respectively.

A diagram of MG1 is given in Figure 3.2.
It is evident that MG1 is a special case of MG0, therefore Pwin(MG1) ≤

Pwin(MG0). Furthermore the optimal strategy given for MG0 in the begin-
ning of this chapter is a valid strategy for MG1 as well. The third adversary
will guess 0 as do the other adversaries. Therefore Pwin(MG1) = Pwin(MG0).
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A Aθ
x

B Bθ
x

C Cθ
x

F F θ
x

A

B

C

F F θ
x

ABθ
x

BCθ
x

ACθ
x

Figure 3.2: MG1 and MG2

We will now introduce another monogamy of entanglement game that
allows measurements on overlapping spaces.

Definition 3.6. By MG2 we denote a monogamy of entanglement game
that accepts strategies of the form S = {|s⟩, {ABθ

x}, {BCθ
x}, {ACθ

x}}, where
{ABθ

x}, {BCθ
x} and {ACθ

x} are projective measurements on HA⊗HB, HB ⊗
HC and HA ⊗HC respectively.

A diagram of MG2 is given in Figure 3.2.

Theorem 3.1. Pwin(MG2n) = 1.

Proof. Consider the strategy shown in Figure 3.3. Here one of the adver-
saries shares a fully entangled state with the referee and measures the state
in the same basis as the referee does. This guarantees that the results of the
adversary and the referee are identical. Now the first adversary can com-
municate the measurement outcome to the next adversary by preparing a
state containing the same information in the given basis and outputting the
state on the next wire. The second referee does the same. This guarantees a
win.

To prevent adversaries from communicating with each other directly, we
can assume that for a given basis θ the measurements will have to commute.

In the following we will consider different restrictions on the measure-
ments {ABθ

x}, {BCθ
x} and {ACθ

x}.

3.4 MG3, MG4 and MG5 games

Definition 3.7. We say that the first commutative property holds for mea-
surements {P θ

x} and {Qθ
x} if for every θ, x and y: P θ

xQ
θ
y = Qθ

yP
θ
x .
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A Mθ Transfer x to B

B Mθ Transfer x to C

C Mθ

F F θ
x

Transfer x to B

Transfer x to C

Figure 3.3: MG3 with no restrictions.

Definition 3.8. We say that the second commutative property holds for
measurements {P θ

x}, {Qθ
x} and {Rθ

x} if the first commutative property holds
and for every x, y, θ and θ′: P θ′

x and Qθ
yR

θ
y commute.

Definition 3.9. We say that the third commutative property holds for mea-
surements {P θ

x} and {Qθ
x} if for every x, y, θ, θ′ we have that P θ

xQ
θ′
y = Qθ′

y P
θ
x .

It is easy to see that the 3rd commutative property implies the 2nd com-
mutative property and the 2nd commutative property implies the 1st com-
mutative property.

In the following we will define games based on these commutative prop-
erties.

Definition 3.10. Let MG3 be a monogamy game of type MG2, where the
measurements fulfil the first commutative property.

Definition 3.11. Let MG4 be a monogamy game of type MG2, where the
measurements fulfil the second commutative property.

Definition 3.12. Let MG5 be a monogamy game of type MG2, where the
measurements fulfil the third commutative property.

Given the implications between the commutative properties and that the
optimal strategy for MG1 can also be used for MG3, MG4 and MG5 the
following lemma holds.

Lemma 3.2. It holds that
(

1
2 +

1
2
√
2

)n

≤ Pwin(MG5n) ≤ Pwin(MG4n) ≤
Pwin(MG3n) ≤ Pwin(MG2n).

We phrase the monogamy game theorem for MG4.

Theorem 3.3. Pwin(MG4n) =
(

1
2 +

1
2
√
2

)n
.
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Figure 3.4: MG5’ and winning strategy for MG5’

The proof of Theorem 3.3 is analogous to MG0 game theorem in [6] and
is given in the Appendix A.

Based on Theorem 3.3 and Lemma 3.2 we have

Corollary 3.4. Pwin(MG5n) =
(

1
2 +

1
2
√
2

)n

.

3.5 Concerns and assumptions for MG4 and

MG5

We proved that the winning probability for the monogamy games MG4 and
MG5 is low, since we assume that the measurements fulfil the second com-
mutative property. It is reasonable to question the choice of restriction on
the measurements.

3.5.1 First commutative property

The first commutative property ensures that the adversaries are not allowed
to communicate with each other directly. They may transfer and share in-
formation through entanglement though.

3.5.2 Third commutative property

In the following let us consider what assuming the 3rd commutative property
for MG5 implies. For this let us look at a modified game MG5’ (see figure
3.4), that accepts strategies of the form S = {|s⟩, {ABθ

x}, {BCθ
x}}. It is

basically a MG5 game where we drop the requirement of the third adversary
outputting the correct value.
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X Aθ
x Bθ
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F F θ
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Figure 3.5: Alternative form of MG2, assuming the second commutative property

Looking at Figure 3.4 we see that it would be fairly easy to win the
game MG5’ without transferring any information between the wires. The
adversary can simply create a set of EPR-paris, give the set of first qubits
to the adversary and the other qubits to the B-wire. Both adversaries will
measure the B-wire in basis θ. Unfortunately this simple strategy is not
allowed, as the measurements do not fulfil the third commutative property.
This suggest that the 3rd commutative property might be too strong for a
reasonable game.

3.5.3 Second commutative property

The proof for Theorem 3.3 assumes that the second commutative property
holds. Second commutative property is slightly weaker than the third prop-
erty, but still stronger than the first commutative property, which rises the
question if it is reasonable to assume.

Another concern regarding Theorem 3.3 is that the second commuta-
tive property implies that the game expects strategies of the form S =
{|s⟩, {Aθ

x}, {Bθ
x}}, where {Aθ

x} and {Bθ
x} are both measurements on a com-

mon space HX and for every θ, θ′, x and y we have that Aθ
x and Bθ′

y commute.
An illustration is given in Figure 3.5. This is very similar to MG0 and the
question arises if using measurements fulfilling the third commutative prop-
erty is equivalent to using measurements that are carried out on separate
wires.

3.6 MG6 and MG7 games

The following section will discuss a special case of MG2.

Definition 3.13. By MG6 we denote a monogamy game that allows strate-
gies of the form S = {|s⟩, {ABθ}, {BCθ}, {ACθ}, {Aθ

x}, {Bθ
x}, {Cθ

x}}, where
ABθ, BCθ and ACθ are unitary transformations on HA⊗HB, HB⊗HC and
HA⊗HC respectively and {Aθ

x}, {Bθ
x} and {Cθ

x} are projective measurements
on HA, HB and HC respectively.
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F F θ
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Figure 3.6: Game MG6

Monogamy game MG6 is illustrated in Figure 3.6. It is clear that inde-
pendent from chosen unitary transformations and measurements the given
unitary transformations commute and the measurements commute since they
act on separate wires. For the same reason for every x, θ and θ′ we have that
ABθ and Cθ′

x commute, BCθ and Aθ′
x commute and ACθ and Bθ′

x commute.
The winning probability for the game MG6 is given by

Pwin(MG6, S) =
∑

θ∈Θ

1

|Θ|
∑

x∈X

⟨s|(ABθACθBCθ)†Aθ
xB

θ
xC

θ
x(AB

θACθBCθ)|s⟩.

It is easy to see that the optimal winning strategy from Section 3.3 is
allowed for MG6 as well. We simply take ABθ, ACθ and BCθ to be identities

on the given Hilbert spaces. Therefore Pwin(MG6n) ≥
(

1
2 +

1
2
√
2

)n
.

Definition 3.14. By MG7 we denote a MG6 game, where one of the unitary
transformations does not depend on the basis. I.e. an allowed strategy is of
the form S = {|s⟩, {ABθ}, {BCθ}, {AC}, {Aθ

x}, {Bθ
x}, {Cθ

x}}.

Theorem 3.5. Pwin(MG7n) =
(

1
2 +

1
2
√
2

)n

Proof. Let S = {|s⟩, {ABθ}, {BCθ}, {AC}, {Aθ
x}, {Bθ

x}, {Cθ
x}} be the given

strategy for MG7n. Since AC does not depend on the basis we can assume,
that the adversary has carried it out before supplying the state |s⟩. Therefore
we can assume, that it is part of the starting state and AC = 1AC. See
Figure 3.7. When we discard the B measurement, then the quantum circuits
looks as in Figure 3.8. Since this game is now equivalent to MG0n, we have

MG7n ≤MG0n =
(

1
2 +

1
2
√
2

)n
.

Theorem 3.5 can also be proven analogously to Theorem 3.3, this proof
is given in Appendix B.
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Figure 3.7: Game MG7

AB ABθ Aθ
x

BC BCθ Cθ
x

F F θ
x

Figure 3.8: Game MG7 without B

3.7 Progress on MG6 proof

In this section we describe the progress on the proof of the MG6 game theo-
rem and identify the gaps that need to be filled. We also explain our intuition
behind the missing parts and where the difficulties lie in filling them.

3.7.1 Intuition

Proof. Given the referee F with measurements {F θ
x = |xθ⟩⟨xθ|} assume that

Pwin(MG6) = 1. This means that there exists a state |ψ⟩ and adversaries A,
B and C with measurements {Āθ

x}, {B̄θ
x} and {C̄θ

x} such that they guess the
correct outcome with probability 1. Here

Āθ
x := (ABθACθ)†(Aθ

x)(AB
θACθ),

B̄θ
x := (ABθBCθ)†(Bθ

x)(AB
θBCθ),

C̄θ
x := (ACθBCθ)†(Cθ

x)(AC
θBCθ).

Our goal is to show that this leads to a contradiction.
If we were looking at a modified game MG6’, that only required two

adversaries A′ and B′ and the allowed strategies would be analogous, then it
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Figure 3.9: Game MG6 and modified game MG6’

would be easy to win the game. We would choose |ψ⟩ as |junk⟩BC,AC |ψ+⟩F,AB,
where |ψ+⟩ = 1

2(|00⟩ + |11⟩). We would then use AB′θ to measure |ψx⟩ and
forward the result encode in the basis θ to A′ and B′. The comparison
between games MG6 and MG6’ is illustrated in Figure 3.9.

Intuition says that when A and B guess the correct answer in MG6 as
well, then the input state |ψ⟩ should be somehow related to |junk⟩AC,AB|ψx⟩.

3.7.2 Steering game

This is indeed true. To show this we use Theorem 1 from [7], which sates
that

Theorem 3.6. [7] Suppose that from the observed correlations, one can
deduce the existence of local observables {X ′

F , Z
′
F} (functions of F ), and

{X ′
A, Z

′
A} (functions of A) with eigenvalues ±1, which act on the bipartite

state |Ψ⟩ such that

∥(X ′
FZ

′
F + Z ′

FX
′
F )|Ψ⟩∥ ≤ 2γ1, (3.1)

∥(X ′
AZ

′
A + Z ′

AX
′
A)|Ψ⟩∥ ≤ 2γ1, (3.2)

∥(X ′
A −X ′

F )|Ψ⟩∥ ≤ γ2, (3.3)

∥(Z ′
A − Z ′

F )|Ψ⟩∥ ≤ γ2. (3.4)

Then there exists a local isometry Φ = ΦF ⊗ ΦA and a state |junk⟩FA such
that

∥Φ(M ′N ′|Ψ⟩)− |junk⟩MN |ψ+⟩∥≤ ε (3.5)

for M,N ∈ {I,X, Z} and ε = (11γ1 + 5γ2)/2.
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We will first explain some of the notations in the above theorem in relation
to MG6. The observable corresponding to measurements {Āθ

x}, {B̄θ
x} and

{C̄θ
x} are

Z ′
A = Ā0

0 − Ā0
1, X ′

B = B̄0
0 − B̄0

1 , X ′
C = C̄0

0 − C̄0
1 ,

X ′
A = Ā0

1 − Ā1
1, Z ′

B = B̄0
1 − B̄1

1 , Z ′
C = C̄0

1 − C̄1
1

The observables for the referee are Pauli Z and X gates

ZF = Z =

(

1 0
0 −1

)

= |0⟩⟨0|− |1⟩⟨1|

XF = X =

(

0 1
1 0

)

= H†|0⟩⟨0|H −H†|1⟩⟨1|H

It is important to notice, that ZF and XF anticommute.
For all P ∈ {A,B,C, F} the square of the observables XP and YP is the

identity:

ZPZP = (P 0
0 − P 0

1 )(P
0
0 − P 0

1 )

= P 0
0P

0
0 − P 0

0P
0
1 − P 0

1P
0
0 + P 0

1P
0
1

= P 0
0 + P 0

1

= 1P .

(3.6)

Analogously this holds for XP as well.

3.7.3 Application of steering game

We will now show that the assumptions of Theorem 3.6 hold. Let |ψ⟩ be
the input state and let the probability of the adversary A guessing correctly
be 1 − 1

2ε (for adversaries B and C the following holds analogously). This
means

2− ε ≥ ⟨ψ|(F 0
0 Ā

0
0 + F 0

1 Ā
0
1 + F 1

0 Ā
1
0 + F 1

1 Ā
1
1)|ψ⟩

≥ ⟨ψ|(F 0
0 Ā

0
0 − F 0

0 Ā
0
1 − F 0

1 Ā
0
0 + F 0

1 Ā
0
1 + F 1

0 Ā
1
0 − F 1

0 Ā
1
1 − F 1

1 Ā
1
0 + F 1

1 Ā
1
1)|ψ⟩

= ⟨ψ|((F 0
0 − F 0

1 )(Ā
0
0 − Ā1

0) + (F 1
0 − F 1

1 )(Ā
1
0 − Ā1

1))|ψ⟩
= ⟨ψ|(ZFZA +XFXA)|ψ⟩.

Since the value of ⟨ψ|ZFZA|ψ⟩ and ⟨ψ|XFXA|ψ⟩ is between −1 and 1, we
have

⟨ψ|ZFZA|ψ⟩ ≥ 1− ε
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and

⟨ψ|XFXA|ψ⟩ ≥ 1− ε
We can now calculate the vector norm of the difference between the ob-

servables for inequality (3.3) and (3.4)

∥(XA −XF )|ψ⟩∥2 = ⟨ψ|(XA −XF )
†(XA −XF )|ψ⟩

= ⟨ψ|(XA −XF )(XA −XF )|ψ⟩
= ⟨ψ|(XAXA −XAXF −XFXA +XFXA)|ψ⟩
= 2⟨ψ|(1−XFXA)|ψ⟩
= 2− 2⟨ψ|XFXA|ψ⟩
≤ 2− 2(1− ε)
= 2ε.

Above we used that XA and XF commute, as they operate on separate wires.
Analogously ∥(ZA − ZF )|ψ⟩∥2 ≤ 2ε, therefore

∥(ZA − ZF )|ψ⟩∥ ≤
√
2ε,

∥(XA −XF )|ψ⟩∥ ≤
√
2ε.

(3.7)

Since XF and ZF anticommute we have ∥(XFZF+ZFXF )|ψ⟩∥ = 0. Using
this and inequality 3.7 we can calculate the norm in equation (3.2)

∥XAZA + ZAXA∥ ≤ 2
√
2ε∥XAZF + ZAXF∥

= 2
√
2ε∥ZFXA +XFZA∥

≤ 4
√
2ε∥ZFXF +XFZF∥

= 4
√
2ε.

This means that we have observables XF , ZF , XA and ZA with eigenvalues
1 and −1 such that

∥(XFZF + ZFXF )|ψ⟩∥ = 0 ≤ 4
√
2ε = 2γ1,

∥(X ′
AZ

′
A + Z ′

AX
′
A)|ψ⟩∥ ≤ 4

√
2ε = 2γ1

∥(X ′
A −X ′

F )|ψ⟩∥ ≤
√
2ε = γ2

∥(Z ′
A − Z ′

F )|ψ⟩∥ ≤
√
2ε = γ2

Therefore the assumptions of Theorem 3.6 hold and there exists a local
isometry Φ = ΦF ⊗ ΦA and a state |junk⟩AB such that

∥Φ(MFN
′
A|ψ⟩)− |junk⟩FAMN |φ+⟩∥ ≤ γ (3.8)

for M,N ∈ {X,Z, 1} and γ = 11
2 γ1+

5
2γ2. Using the equalities above we have

γ = 11
√
2ε+ 5

2

√
2ε = 27

2

√
2ε.
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3.7.4 Implications

The isometry used in the proof of Theorem 3.6 in [7] is of the form

Φ(|ψ⟩) = 1

4
(1 + ZF )(1 + Z ′

A)|ψ⟩|00⟩

+
1

4
X ′

A(1 + ZF )(1− Z ′
A)|ψ⟩|01⟩

+
1

4
XF (1− ZF )(1 + Z ′

A)|ψ⟩|10⟩

+
1

4
XFX

′
A(1− ZF )(1− Z ′

A)|ψ⟩|11⟩.

(3.9)

And the state |junk⟩FA is close to (in case ε = 0 equal to)
(1+ZF )(1+Z′

A
)

2
√
2

|ψ⟩|φ+⟩. Note that 1 + ZF = F 1
0 + F 1

1 + F 1
0 − F 1

1 = 2F 1
0 , analo-

gously 1 + ZA = 2Ā1
0.

We see from (3.9) that Φ does not affect the BC wire. The preparation
of |junk⟩ and the quantum circuit are illustrated in Figure 3.10.

We see that the wires BCB and BCC cannot be entangled with the F wire.
If we now work under the assumption, that adversary B guesses correctly
then we end up with an analogous isometry ΦB that does not affect the ACA

and ACC wires showing that these wires cannot be entangled with the F
wire. This follows the intuition that the entangled states comes through the
ABA and ABB wires as shown in Figure 3.9.

The difficulty here is, that the BCB and BCC wires can still be entangled
with ABA, ABB, ACA and ACC wires. If this was not the case we could
simply leave away the BCB and BCC wires, which would result in MG7.
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x

|φ⟩+

Φ−1
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|ψ⟩|φ+⟩ |junk⟩|φ+⟩ |ψ⟩

Figure 3.10: Circuit showing application of isometry Φ.
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4. Position verification

The property that entanglement is monogamous can be used in situations
where it is important to show that multiple parties, separated by space, can-
not trivially impersonate a third person located at a specific place. This
means that monogamy of entanglement is useful in quantum position verifi-
cation.

4.1 Position verification

A position verification protocol is a protocol that verifies prover by its lo-
cation only. It was shown that such a protocol can not be secure in the
classical setting [3]. To demonstrate this we will use a simple protocol in the
one dimensional case.

4.1.1 Impossibility in classical setting

Let there be two verifiers V1 and V2 that wish to verify that the location of a
prover is exactly in the center of the line connecting these two verifiers. We
assume that the verifiers have a secure communication channel so that they
can agree on the starting information and verify the results. As a preparation
they will randomly chooses bit-strings x1 and x2. Then at time t = 0 verifier
V1 sends x1 to the prover and verifier V2 sends x2 to the prover. At time
t = 1 prover receives both bit-strings. Prover then performs a calculation,
say function F(a,b), on x1 and x2 resulting in y1 = y2 = F (x1, x2). He then
sends y1 to the verifier V1 and y2 to the verifier V2. At time t = 2 verifiers V1

and V2 receive the information y1 and y2 respectively. They then compare
if y1 = y2 = F (x1, x2) over a secure channel. The protocol is illustrated in
Figure 4.1.

In the classical setting such a protocol is very insecure. To show that the
protocol is insecure we have to show that an adversary, or a set of adversaries,
would be able to convince the verifiers that he is located in the honest provers
location, that is in the center of the line between the verifiers. Let there be
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x1 x2

y1 y2

time = 0

time = 1

time = 2

V1 P V2

time

Figure 4.1: Position verification in one dimension

two adversaries A1 and A2. Let A1 be located between verifier V1 and the
honest provers location and A2 be located between V2 and the honest provers
location. Now at time t0 both verifiers send out bit-strings x1 and x2. At
time t = 1

2 adversary A1 receives x1 and adversary A2 receives x2. Both
adversaries will make a copy of this information and send the original to the
other verifier. At time t = 3

2 adversary A1 receives x2 and adversary A2

receives x1. They are now both able to calculate F (x1, x2). Adversary A1

sends y1 = F (x1, x2) to verifier V1 and adversary A2 sends y2 = F (x1, x2) to
verifier V2. At time t = 2, as expected, verifiers V1 and V2 receive y1 and y2
respectively. They then compare the results. But since y1 = F (x1, x2) = y2
they will accept.

In the classical setting it is easy for two adversaries, located at any point
in the line, to trick the verifiers, as long as one adversary is at the right
hand side of the honest provers location and the other on the left hand side
of the honest provers location. The question arises if this is also the case
in the quantum setting. The main reason why the adversaries were able to
impersonate a honest prover that easily was that they could keep a copy
of the information. This is not possible in the quantum setting due to the
no-cloning theorem. Namely one cannot copy an unknown quantum state
without disturbing the original state.

4.1.2 Quantum setting

Unfortunately it was shown in [2] that information-theoretically secure po-
sition verification is not possible in the quantum setting if adversaries are
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allowed to share any amount of entangled states. It is shown in [2] that posi-
tion verification is possible if no entanglement between adversaries is allowed
and it was shown in [9] that position verification is possible in the random or-
acle model. Random oracle model is a model where we model hash functions
as random oracles. When we model a hash function as a random oracle it
means that we model it as a random function. We assume that the adversary
has limited computational power and will query the random oracle a limited
number of times. In such a setting the probability of guessing the hash value
of x is close to guessing x itself.

The result in [9] uses the monogamy game MG0 to show that adversaries
located outside the honest provers region can calculate the correct result and
send it to the verifiers with negligible probability only. Since MG0 has two
adversaries the number of receiving verifiers in [9] is limited to two verifiers
as well. A monogamy game result with multiple adversaries and overlapping
measurements can be used to prove a position verification result with more
than two receiving verifiers and therefore tighten the honest provers region.

In the following section we will look at the position verification protocol
introduced in [9].

4.2 Position verification with two receiving ver-

ifiers

In the following we will discuss the position verification protocol from [9] and
sketch the proof given in [9]. The definitions given in this section are not
precise but give an intuition for the protocol and the proof.

In the following we see all actions related to the protocol as spacetime
circuits. Spacetime circuits can be seen as quantum circuits that are located
at a specific place in spacetime. The location in spacetime specifies when
and where the gate is executed. In a spacetime circuit there is a wire from
gate A to gate B if information can travel from A to B without defying the
laws of physics.

We say that a position verification protocol is sound for a region P in
spacetime if the probability that the verifiers accept an adversary that has
no gates in P is negligible.

Definition 4.1 (Position verification protocol). [9] Let V1, . . . , Vr be verifiers.
Let n be the number of qubits and ℓ the length of classical challenges. Let
0 ≤ γ ≤ 1 be the fraction of allowed errors. Let H : {0, 1}ℓ → {0, 1}n be a
hash function (we model it as a random oracle). Then the protocol execution
is following:
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1. Verifiers choose random bit-strings x1, . . . , xr of length ℓ. They also
choose a random bit-string ŷ of length n.

2. V1 prepares the quantum state |Ψ⟩ by encoding ŷ in the basis θ =
H(x1 ⊕ · · ·⊕ xr). V1 sends |Ψ⟩ to the prover.

3. Each verifier Vi sends the bi-tstring xi to the prover.

4. Prover receives all xi and |Ψ⟩. He calculates the basis θ = H(x1⊕ · · ·⊕
xr) and uses it to measure |Ψ⟩. He obtains the outcome y. He then
sends y to verifiers V1 and V2.

5. Verifiers V1 and V2 receive y1 and y2 respectively. They check if y1 =
y2 = ŷ If this holds and both y1 and y2 were also received in time they
accept.

Theorem 4.1 (Soundness of PV protocol). [9] There is no event in spacetime
outside of P at which one can receive the messages xi from all Vi, and send
messages that will be received in time by V1, V2. (If the malicious prover is
allowed to perform at most q queries, then the soundness error is at most

ν :=
(

1
2 +

1
2
√
2

)n
+ 2q2−

ℓ

2 .)

Here P is the region in spacetime where all xi can be received from the
verifiers and there is still enough time to send the result to verifiers V1 and
V2. In any location in spacetime that is outside of P either one of xi is not
known or there is not enough time to send the result to one of the verifiers.

The definition of P may sound as if it is clear that malicious provers
outside of this point cannot get the verifiers to accept (as they cannot at the
same time receive all xi and still have enough time to send the result to the
verifiers). Yet when we look back at the previous section where we looked
at position verification in the classical setting the region P would have been
the point in spacetime located in the center of V1 and V2 at time 1. It was
fairly simple to construct malicious provers that can send the correct y to
the verifiers by simply copying and forwarding the classical challenges.

It is also important to notice that if we expect the prover to answer
instantaneously then the region P becomes a single point in spacetime.

4.2.1 Proof sketch

Proof. In the following we will sketch the proof of Theorem 4.1. Assume
that we have a malicious prover that is not located in the spacetime region
P . This means that there will be no gates in P and there will be sub-circuits
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x⃗ P ∗
1 V1 y1

|y⟩θ P ∗
2 V2 y2

P ∗
pre P ∗

post

Figure 4.2: Circuit for position verification protocol. Figure reproduced from [9].

where the malicious prover calculates y1 and y2. We can therefore divide all
gates between sub-circuits as follows.

Subcircuit Intuition
P ∗
pre Pre-computation
P ∗
P Gates in P (empty)

P ∗
1 Computing y1

P ∗
2 Computing y2

P ∗
post After protocol end

Sub-circuit P ∗
pre involves steps 1 − 3 of the protocol. Sub-circuit P ∗

P is
empty. Sub-circuits P ∗

1 and P ∗
2 involve step 4 of the circuit and sub-circuit

P ∗
post is everything that is done after the protocol ends. Sub-circuits V1 and V2

are verifiers measuring the result sent by the prover. This circuit is illustrated
in figure 4.2.

It is fairly clear the there are no wires coming into P ∗
pre as everything in

P ∗
pre happens before the other circuits. It is also clear that there can be no

wires leaving P ∗
post as P ∗

post is executed after protocol end. After the circuit
P ∗
pre all xi are known. Therefore there are no wires between P ∗

1 and P ∗
2 , as

P ∗
1 can only send information to V1 and P ∗

2 only to V2. If this was not the
case circuits P ∗

1 and P ∗
2 would be located in P .

We will now use games to estimate the probability of the verifiers accept-
ing.

Game 1 (Protocol execution). Pick random bitstrings xi of lenght ℓ and
random bistring y of lenght n. Pick a random function H : {0, 1}ℓ → {0, 1}n.
Execute circuit from figure 4.2 with output y1 and y2. Accept if y1 = y2 = ŷ.

First we can get rid of P ∗
post, as it has no effect on the results of V1 and

V2. Our next goal is to delay the choice of the basis θ. Currently it is used
before executing the protocol. To delay this we will use EPR pairs instead of
preparing the state |y⟩θ. An EPR pair is a fully entangled 2-qubit state that
when measured on either qubit (either in the computational or diagonal basis)
gives a uniformly random output 0 or 1. Furthermore when performing the
same measurement on the other qubit, the results are the same. Therefore
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x⃗ P ∗
1 V1 y1

|epr⟩ P ∗
2 V1 y2

Mθ ŷ

P ∗
pre

Figure 4.3: Circuit for protocol in Game 2. Figure reproduced form [9].

picking a random y and preparing the state |y⟩θ is equivalent to preparing
EPR paris and measuring last half of the qubits in the basis θ to obtain y.

Game 2 (Using EPR paris). Pick random bitstrings xi of lenght ℓ. Pick a
random function H : {0, 1}ℓ → {0, 1}n. Prepare EPR pairs. Execute circuit
form Figure 4.3 with outputs y1, y2 and ŷ. Accept if y1 = y2 = ŷ.

We have

Pr[accept = 1 : Game 1 ] = Pr[accept = 1 : Game 2 ].

We have now delayed the use of basis θ but it is still chosen early. To
fix this we will reprogram the random oracle H to be a completely random
function in the beginning but from a given point in time to return θ on
the input x1 ⊕ · · · ⊕ xr. The prover will not notice this unless he queries
H(x1 ⊕ · · ·⊕ xr) before the random oracle is reprogrammed. Results on the
quantum random oracle (see [9]) show that the probability of this happening
is equivalent to 2q times the square root of the probability of the prover
guessing the value x1 ⊕ · · ·⊕ xr without knowing all xi.

Game 3 (Reprogramming H). Pick random bitstring xi of lenght ℓ. Pick
a random function H : {0, 1}ℓ → {0, 1}n. Prepare EPR pairs. Execute
circuit form Figure 4.3 until the wiggly line. Now reprogram H, so that
H(x1 ⊕ · · ·⊕ xr) = θ. Run the circuit from Figure 4.3 after the wiggly line
with outputs y1, y2 and ŷ. Accept if y1 = y2 = ŷ.

Game 4 (Guessing x1⊕ · · ·⊕xr). Pick random bitstrings xi of lenght ℓ. Pick
a random function H : {0, 1}ℓ → {0, 1}n. Prepare EPR pairs. Execute P ∗

pre

until the j-th query to H. Measure the argument x′ of that query.
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We have

|Pr[accept = 1 : Game 2 ]− Pr[accept = 1 : Game 3 ]|
≤ 2q

√

Pr[x1 ⊕ · · ·⊕ xr = x′ : Game 4]

≤ 2q
√
2−ℓ = 2q2−ℓ/2.

We will now look at Game 3. Looking at Figure 4.3 we see that there are
3 separate registers at the wiggly line. Let the registers be called A, B and
F . Let ψ be the quantum state at the wiggly line. Let A refer to the part of
ψ on the wire entering P ∗

1 , let B refer to the part of ψ on the wire entering
P ∗
2 and let F be the lowest wire containing qubits from the EPR paris. Let

Mθ
A be the measurement consisting of P ∗

1 and V1 and Mθ
B the measurement

consisting of P ∗
2 and V2. In general these measurements are POVM-s and ψ

might be a mixed state, but without loss of generality we can assume that
ψ is a pure state and the given measurements are projective as this can be
done by increasing the underlying Hilbert spaces [6].

Game 5 (Monogamy game). Prepare |ψ⟩. Pick random basis θ. Perform
measurement Mθ

A, Mθ
B and Mθ

F resulting in y1, y2 and ŷ. Accept if y1 = y2 =
ŷ.

Then Pr[accept = 1 : Game 3] = Pr[accept = 1 : Game 5]. We see that
Game 5 is an n-times parallelly repeated MG0 game. Therefore

Pr[accept = 1 : Game 5] ≤
(
1

2
+

1

2
√
2

)n

.

Combining all games we get

Pr[accept = 1 : Game 1] ≤
(
1

2
+

1

2
√
2

)n

+ 2q2ℓ/2.

4.2.2 Size of the provers region

The provers region P is the region in spacetime where all xi are known and
there is still enough time for information to reach both verifiers. If we expect
the prover to answer instantaneously then the region P becomes a single
point in spacetime [9]. The region becomes larger when we give the prover
more time for calculations. In the 1 dimensional case the provers region with
additional time ε is illustrated in Figure 4.4.
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•

•

V1

•
P

•

•

V2

t = 0

t = 1
t = 1 + ε

t = 2 + ε

time

P

Figure 4.4: Size of the provers region in 1D. Figure reproduced from [9].

When we go into more dimensions the shape of the provers region becomes
more complicated. As in 1D the region P is the intersection of light cones
originating from Vi at time t = 0 showing where light can travel from the
verifiers and light cones originating from V1 and V2 at time t = 2+ ε showing
from where information can reach the verifiers. For a better intuition Figure
4.5 (a) shows the intersection of spacetime at time t = 1 + 2

3ε.
Now let us imagine what would happen if we were able to add a third

receiving verifier. If the provers region in this setting would still be the
intersection of the future light cones of sending verifiers and past light cones
of receiving verifiers, then the provers region would become smaller. Looking
at Figure 4.5 we can compare the two setting in (a) and (b). We see that
there is a region between V1 and V2 where all xi are known and both verifiers
can be reached, but verifier V3 would be out of reach.

Therefore the question arises if the position verification protocol would
be sound for this smaller region if we add a third receiving verifier. We will
look into this in the following section.
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◦
◦

◦

V1

V2

V3

(a) 2 verifiers

◦
◦

◦

V1

V2

V3

(b) 3 verifiers

Region where information can receive verifier Vi

Region where xi is known
Area where information can reach 2 verifiers

Area where all xi are known
Provers region

Figure 4.5: Size of the provers region in 2D, intersection of spacetime at t = 1+ 2
3ε.

Setting with 2 verifiers vs. 3 verifiers receiving.
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4.3 Position verification with three receiving

verifiers

In this section we define a new position verification protocol that uses three
receiving verifiers instead of two. We state under which assumptions the
protocol is sound and give a proof sketch. The definition in this section are
again not precise but give a good intuition. Full proof with precise definitions
is given in the next chapter.

Definition 4.2 (Position verification protocol). Let V1, . . . , Vr be verifiers.
Let n be the number of qubits and ℓ the lenght of classical challenges. Let
0 ≤ γ ≤ 1 be the fraction of allowed errors. Let H : {0, 1}ℓ → {0, 1}n be a
hash function (we model it as a random oracle). Then the protocol execution
is following:

1. Verifiers choose random bitstrings x1, . . . , xr of length ℓ. They also
choose a random bitstring ŷ of length n.

2. V1 prepares the quantum state |Ψ⟩ by encoding ŷ in the basis θ =
H(x1 ⊕ · · ·⊕ xr). V1 sends |Ψ⟩ to the prover.

3. Each verifier Vi sends the bitstring xi to the prover.

4. Prover receives all xi and |Ψ⟩. He calculates the basis θ = H(x1⊕ · · ·⊕
xr) and uses it to measure |Ψ⟩. He obtains the outcome y. He then
sends y to verifiers V1 and V2.

5. Verifiers V1, V2 and V3 receive y1, y2 and y3 respectively. They check
if y1 = y2 = y3 and if y1 = ŷ If this holds and both y1, y2 and y3 were
also received in time they accept.

Theorem 4.2 (Soundness of PV protocol). There is no event in spacetime
outside of P at which one can receive the messages xi from all Vi, and send
messages that will be received in time by V1, V2 and V3. (If the malicious
prover is allowed to perform at most q queries, then the soundness error is
at most ν := Pwin(MG6n) + 2q2−

ℓ

2 .)

Here P is the region in spacetime where all xi can be received from the
verifiers and there is still enough time to send the result to verifiers V1, V2

and V3. In any location in spacetime that is outside of P either one of xi

is not known or there is not enough time to send the result to one of the
verifiers.

As we discussed in the previous section the position verification protocol
with 3 receiving verifiers has a higher precision than the protocol with 2
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receiving verifiers that is the provers region for the 3 verifier protocol is
smaller. See Figure 4.5.

4.3.1 Proof sketch

Proof. In the following we will sketch the proof of Theorem 4.2. The proof
is very similar to the proof of Theorem 4.1 with a few key differences that
we will emphasise.

Assume that we have a malicious prover that is not located in the space-
time region P . This means that there will be no gates in P and there will be
subcircuits where the malicious prover calculates y1,y2 and y3. We would like
to divide all gates between subcircuits as was done in the proof of Theorem
4.1. If we just added a gate P ∗

3 and used the division

Subcircuit Intuition
P ∗
pre Precomputation
P ∗
P Gates in P (empty)

P ∗
1 Computing y1

P ∗
2 Computing y2

P ∗
3 Computing y3

P ∗
post After protocol end

we would end up with a larger provers region than we did with 2 receiving
verifiers. Notice that for P ∗

1 , P ∗
2 and P ∗

3 to be separated subcircuits that
have no wires between them we would have to include the spacetime region
where all xi are known and information can reach two verifiers in the region
P . Figure 4.6 illustrates region P for 2 receiving verifiers and 3 receiving
verifiers as an intersection at time t = 1 + 2

3ε in this setting.
This means that we will have subcircuits that have wires to two P ∗

i and
P ∗
j each. We can interpret these subcircuits as preparing the quantum state

before calculation of yi and yj. This way we can partition the quantum circuit
into following subcircuits
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◦
◦

◦

V1

V2

V3

(a) 2 verifiers

◦
◦

◦

V1

V2

V3

(b) 3 verifiers

Region where information can receive verifier Vi

Region where xi is known
Provers region

Figure 4.6: Size of the provers region in 2D, intersection of spacetime at t = 1+ 2
3ε.

Setting with 2 verifiers vs. 3 verifiers receiving.
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x⃗ P ∗
1 V1 y1

|y⟩θ P ∗
2 V2 y2

P ∗
3 V3 y3

P ∗
pre P ∗

post

P12

P13

P23

Figure 4.7: Circuit for protocol with 3 receiving verifiers.

Subcircuit Intuition
P ∗
pre Precomputation
P ∗
P Gates in P (empty)

P12 Preparing for y1 and y2 computation
P13 Preparing for y1 and y3 computation
P23 Preparing for y2 and y3 computation
P ∗
1 Computing y1

P ∗
2 Computing y2

P ∗
3 Computing y3

P ∗
post After protocol end

This circuit is illustrated in Figure 4.7.
It is fairly clear the there are no wires coming into P ∗

pre as everything in
P ∗
pre happens before the other circuits. It is also clear that there can be no

wires leaving P ∗
post as P ∗

post is executed after protocol end. After the circuit
P ∗
pre all xi are known. There are no wires between P ∗

1 , P ∗
2 and P ∗

3 , as P ∗
1 can

only send information to V1, P ∗
2 only to V2 and P ∗

3 only to V3. If this was not
the case and there was a wire for example form P ∗

1 to P ∗
2 , then P ∗

1 would be
located in P12. There are also no wires from P12 to P ∗

3 , from P13 to P23 to
P1 because otherwise they would be located in P .

We will now use games to estimate the probability of the verifiers accept-
ing.

Game 1 (Protocol execution). Pick random bitstrings xi of lenght ℓ and
random bistring y of lenght n. Pick a random function H : {0, 1}ℓ → {0, 1}n.
Execute circuit from figure 4.7 with output y1, y2 and y3. Accept if y1 = y2 =
y3 = ŷ.

First we can get rid of P ∗
post, as it has no effect on the results of V1, V2 and

V3. Our next goal is to delay the choice of the basis θ. Currently it is used
before executing the protocol. To delay this we will use EPR pairs instead
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x⃗ P ∗
1 V1 y1

P ∗
2 V2 y2

|epr⟩ P ∗
3 V3 y3

Mθ ŷ

P ∗
pre

P12

P13

P23

Figure 4.8: Circuit for protocol with 3 receiving verifiers for Game 2.

of preparing the state |y⟩θ. Picking a random y and preparing the state |y⟩θ
is equivalent to preparing EPR paris and measuring last half of the qubits in
the basis θ to obtain y.

Game 2 (Using EPR pairs). Pick random bit-strings xi of length ℓ. Pick a
random function H : {0, 1}ℓ → {0, 1}n. Prepare EPR pairs. Execute circuit
form Figure 4.8 with outputs y1, y2, y3 and ŷ. Accept if y1 = y2 = y3 = ŷ.

We have

Pr[accept = 1 : Game 1 ] = Pr[accept = 1 : Game 2 ].

As in the proof sketch in the previous section we have now delayed the
use of basis θ but it is still chosen early. To fix this we will reprogram the
random oracle H to be a completely random function in the beginning but
from a given point in time to return θ on the input x1 ⊕ · · ·⊕ xr.

Game 3 (Reprogramming H). Pick random bit-string xi of length ℓ. Pick
a random function H : {0, 1}ℓ → {0, 1}n. Prepare EPR pairs. Execute
circuit form Figure 4.8 until the wiggly line. Now reprogram H, so that
H(x1 ⊕ · · ·⊕ xr) = θ. Run the circuit from Figure 4.3 after the wiggly line
with outputs y1, y2, y3 and ŷ. Accept if y1 = y2 = y3 = ŷ .

Game 4 (Guessing x1 ⊕ · · · ⊕ xr). Pick random bit-strings xi of length ℓ.
Pick a random function H : {0, 1}ℓ → {0, 1}n. Prepare EPR pairs. Execute
P ∗
pre until the j-th query to H. Measure the argument x′ of that query.

55



We have

|Pr[accept = 1 : Game 2 ]− Pr[accept = 1 : Game 3 ]|
≤ 2q

√

Pr[x1 ⊕ · · ·⊕ xr = x′ : Game 4]

≤ 2q
√
2−l = 2q2−l/2.

We will now look at Game 3. Sub-circuits P12, P13 and P23 prepare the
state for P ∗

1 and P ∗
2 for P ∗

1 and P ∗
3 and for P ∗

2 and P ∗
3 respectively. Let Mθ

A,
Mθ

B and Mθ
C refer to the measurements consisting of P ∗

1 and V1, of P ∗
2 and

V2 and of P ∗
3 and V3 respectively. Then P12, P13 and P23 can be modelled as

unitary operators ABθ, BCθ and ACθ. This way we get three measurements

(ABθACθ)†Mθ
A(AB

θACθ),

(ABθBCθ)†Mθ
B(AB

θBCθ)

and

(ACθBCθ)†Mθ
C(AC

θBCθ).

We somewhat abuse the notation here as for an operator A on space HA

we still write A if the underlying space becomes HA⊗HB, although it would
be correct to write A⊗ 1B.

Notice that performing the conjugate transpose of the unitary operators
after the measurement won’t change the outcome, but will ensure that the
measurements remain projective if Mθ

i is projective. Performing all the mea-
surements is equivalent to

(ABθACθ)†Mθ
A(AB

θACθ)(ABθBCθ)†Mθ
B(AB

θBCθ)(ACθBCθ)†Mθ
C(AC

θBCθ)

= (ABθACθBCθ)†(Mθ
AM

θ
BM

θ
C)(AB

θACθBCθ).

As in the previous section with 2 receiving verifiers we can assume that
the measurements Mθ

A, Mθ
B and Mθ

C are projective.

Game 5 (Monogamy game). Prepare |ψ⟩. Pick random basis θ. Perform
measurement (ABθACθ)†Mθ

A(AB
θACθ), (ABθBCθ)†Mθ

B(AB
θBCθ),

(ACθBCθ)†Mθ
C(AC

θBCθ) and Mθ
F resulting in y1, y2, y3 and ŷ. Accept if

y1 = y2 = y3 = ŷ.

Then Pr[accept = 1 : Game 3] = Pr[accept = 1 : Game 5]. We see
that Game 5 is an n-times parallelly repeated MG6 game. Therefore if we
can show that

Pwin(MG6n) ≤ ε
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then we have

Pr[accept = 1 : Game 1] ≤ Pr[accept = 1 : Game 5] + 2q2l/2

≤ ε+ 2q2l/2.
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5. Full proof of position

verification theorem with three

receiving verifiers

In Chapter 4 we gave a proof sketch for the position verification protocol with
2 receiving verifiers from [9] and a proof sketch for the position verification
theorem with 3 receiving verifiers. In this chapter we formalise the proof of
the position verification theorem with 3 receiving verifiers.

5.1 Definitions and Theorem statement

We say that a protocol is sound for a region P in space time iff for any
spacetime circuit P ∗ that has no gates in P , the following holds: In an
interaction between the verifiers and P ∗, the probability that the verifiers
accept (the soundness error) is negligible [9]. We say that a protocol is more
precise if the region P of the prover is smaller.

Definition 5.1. (Position verification protocol) Let P be a prover, and P ◦ an
event in spacetime (P ◦ specifies where and when the honest prover performs
its computation). Let V1, . . . , Vr be verifiers. Let V +

1 , . . . , V +
r be events

in spacetime that causally precede P ◦. (V +
i specifies where and when the

verifier Vi sends its challenge.) Let V −
1 , V −

2 and V −
3 be events in spacetime

such that P ◦ causally precedes V −
1 , V −

2 and V −
3 . (V −

i specifies where and
when Vi expects the prover’s response.) Let n (number of qubits) and ℓ (bit
length of classical challenges) be integers. Let H : {0, 1}ℓ → {0, 1}n be a
hash function (modeled as a quantum random oracle).

1. The verifiers choose uniform x1, . . . , xr ∈ {0, 1}ℓ, ŷ ∈ {0, 1}n. (By
communicating over secure channels.)

2. At some event that causally precedes P ◦, V0 sends |Ψ⟩ to P . Here
θ := H(x1 ⊗ · · ·⊗ x2), |Ψ⟩ := |ŷ⟩θ.
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3. For i = 1, . . . , r: Vi sends xi to P at event V +
i .

4. At event P ◦,P will have |Ψ⟩, x1, . . . , xr. Then P computes θ := H(xi⊗
· · · ⊗ xr), measures |Ψ⟩ in basis θ to obtain outcome y1, and sends y1
to V1, y2 := y1 to V2 and y3 := y1 to V3.

5. At events V −
1 , V −

2 , V −
3 verifiers V1, V2 and V3 receive y1,y2 and y3. Using

secure channels, the verifiers check whether y1 = y2 = y3 = ŷ. If so
(and y1, y2, y3 indeed arrived at V −

1 , V −
2 , V −

3 ), the verifiers accept.

In the following by C+(A) we denote the casual future of event A i.e.
the light cone that shows where information can be sent from event A. By
C−(A) we denote the casual past of event A i.e. the light cone that shows
from where information can reach the event A.

Theorem 5.1. The PV protocol from Definition 5.1 is sound for P :=
∩ri=1C

+(V +
i )∩C−(V −

1 )∩C−(V −
2 )∩C−(V −

3 ). (In words: There is no event in
spacetime outside of P at which one can receive the messages xi from all Vi,
and send messages that will be received in time by V1, V2 and V3.) Concretely,
if the malicious prover performs at most q oracle queries, then the soundness
error is at most ν = Pwin(MG6n) + 2q2−

ℓ

2 .

Proof. To shorten the notation we write C+
i for C+(V +

i ), C−
i for C−(V +

i ), ∪
for ∪ri=1 and ∩ for ∩ri=1.

5.2 Quantum circuit

We divide all gates between sub-circuits as follows.

Subcircuit Region in spacetime Intuition
P ∗
pre (C−

1 ∪ C−
2 ∪ C−

3 ) \∩C+
i Precomputation

P ∗
P ∩C+

i ∩ C−
1 ∩ C−

2 ∩ C−
3 Gates in P (empty)

P12 ∩C+
i ∩ C−

1 ∩ C−
2 \ C−

3 Preparing for y1 and y2 computation
P13 ∩C+

i ∩ C−
1 ∩ C−

3 \ C−
2 Preparing for y1 and y3 computation

P23 ∩C+
i ∩ C−

2 ∩ C−
3 \ C−

1 Preparing for y2 and y3 computation
P ∗
1 ∩C+

i ∩ C−
1 \ (C−

2 ∪ C−
3 ) Computing y1

P ∗
2 ∩C+

i ∩ C−
2 \ (C−

1 ∪ C−
3 ) Computing y2

P ∗
3 ∩C+

i ∩ C−
3 \ (C−

1 ∪ C−
2 ) Computing y3

P ∗
post Ω \∪C−

i \ P ∗
pre After protocol end

There can be a wire from one specetime circuit A to a specetime circuit
B, if A and B are at events EA and EB respectively and EA casually precedes

59



x⃗ P ∗
1 V1 y1

|y⟩θ P ∗
2 V2 y2

P ∗
3 V3 y3

P ∗
pre P ∗

post

P12

P13

P23

Figure 5.1: Circuit for protocol with 3 receiving verifiers.

EB (denoted EA ≺ EB). Note that ≺ is transitive. Therefore we have that
there can be no wires leaving C−

i and there are no wires entering C+
i . Given

these preconditions we would like, that all sub-circuits are disjoint and their
union is Ω. We will show that the following equalities hold

P ∗
pre ∩ P ∗

P = ∅ (5.1)

P ∗
pre ∩ P12 = ∅ (5.2)

P ∗
pre ∩ P ∗

1 = ∅ (5.3)

P12 ∩ P ∗
1 = ∅ (5.4)

P12 ∩ P ∗
3 = ∅ (5.5)

P ∗
pre ∩ P ∗

post = ∅ (5.6)

P12 ∩ P ∗
post = ∅ (5.7)

P ∗
1 ∩ P ∗

post = ∅. (5.8)

Equality (5.1) holds trivially as P ∗
P = ∅ by assumption. Assume that

P ∗
pre ∩ P12 ̸= ∅, then ∃x ∈ P ∗

pre ∩ P12, which means x /∈ ∩C+
i and x ∈ ∩C+

i ,
which is a contradiction. Therefore equality (5.2) holds. Equality (5.3) holds
for the same reasoning. Assume P12 ∩ P ∗

1 ̸= ∅, then ∃x ∈ P12 ∩ P ∗
1 , which

means x ∈ C−
2 and x /∈ C−

2 , which is a contradiction, therefore equality (5.4)
holds. Assume P12 ∩ P ∗

3 ̸= ∅, then ∃x ∈ P12 ∩ P ∗
3 , which means x ∈ C−

1 and
x /∈ C−

1 , which is a contradiction. Therefore equality (5.5) holds. Equality
(5.6) holds by definition of P ∗

post. Assume P12∩P ∗
post ̸= ∅, then ∃x ∈ P12∩P ∗

post,
which means x ∈ C−

1 and x /∈ C−
1 . Therefore equality (5.7) holds. Equality

(5.8) holds for the same reasoning. All other equalities needed for the sub-
circuits to be disjoint can be proven analogously.

We will now show that the union of the sub-circuits is Ω. The union of
sub-circuits is trivially a subset of Ω. Therefore we have to show that Ω is
also a subset of the union of sub-circuits. Assume that ∃x ∈ Ω such that
x is not in the union of sub-circuits. This means x /∈ Ppre, which means
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x ∈ ∩C+
i . Since x /∈ Ppost, we have x ∈ ∪C−

i , which means that ∃j such
that x ∈ C−

j . Without loss of generality we can assume that j = 1 (we can
always simple rename the circuits). Since x /∈ P ∗

1 we have x ∈ C−
2 ∪ C−

3 . If
x ∈ C−

2 and x /∈ C−
3 then x ∈ P12, which is a contradiction. If x /∈ C−

2 and
x ∈ C−

3 then x ∈ P12, which is again a contradiction. This means x ∈ C−
2

and x ∈ C−
3 which means x ∈ ∩C+

i ∩C−
1 ∩C−

2 ∩C−
3 , therefore x ∈ P ∗. This

is again a contradiction. This means that the union of sub-circuits is Ω.
The quantum circuits is shown in Figure 5.1. We will show that no other

wires than the ones shown in Figure 5.1 exist. I.e. for every i, j, k ∈ {1, 2, 3},
i ̸= j, k ̸= j the following holds

Pij ! Pkj (unless k = i), P ∗
i , Pij, P

∗
post ! P ∗

pre, P ∗
i ! P ∗

j

Pjk ! P ∗
i (if j ̸= i ̸= k), P ∗

post ! P ∗
i , Pij, P ∗

i ! Pjk

(5.9)

Here A ! B denotes that there can be no wire going from A to B. Let
A and B be two sub-circuits. A → B means that ∃a ∈ A, b ∈ B such that
a→ b i.e. there are events a and b such that b follows a.

Assume P ∗
j → P ∗

pre. This means that ∃x ∈ P ∗
j ⊆ ∩C+

i and y ∈ Ω \ ∩C+
i

such that y follows x. This is a contradiction, since x ∈ C+
i , x → y implies

y ∈ C+
i . With the same argument there is also no wire from Pij to P ∗

pre.
Assume there is a wire P ∗

post → P ∗
pre. This means ∃x ∈ Ppost ⊆ Ω \ ∪C−

i

and ∃y ∈ Ppre ⊆ ∪C−
i such that x → y. This is a contradiction, since

y ∈ C−
i , x → y implies x ∈ C−

i . This argument for all the other wires in
equation (5.9).

In the following we can treat the spacetime circuit as a quantum circuit.
If we perform permitted operations on the quantum circuit the result is again
a quantum circuit but may not be a spacetime circuit anymore.

5.3 EPR pairs and reprogramming the random

oracle

In the following we will analyse the execution of the protocol as a sequence
of games. The games are analogous to the games in [9].

Game 1 (Protocol execution). Pick x1, . . . , xr
$←− {0, 1}ℓ, ŷ $←− {0, 1}n, H $←−

Fun where Fun is the set of functions {0, 1}ℓ → {0, 1}n. Let θ := H(x1 ⊕
· · ·⊕ xr). Execute circuit resulting in y1, y2, y3. Let accept := 1 iff y1 = y2 =
y3 = ŷ.

61



x⃗ P ∗
1 V1 y1

P ∗
2 V2 y2

|epr⟩ P ∗
3 V3 y3

Mθ ŷ

P ∗
pre

P12

P13

P23

Figure 5.2: Circuit for protocol with 3 receiving verifiers for Game 2.

In the following we will show that Pr[accept = 1 : Game 1] ≤ ν. Game
2 will delay the choice of x⃗ by using EPR pairs. Verifiers send first qubits
of the EPR paris to the prover and keep the second qubits of the pairs. It’s
also possible to remove the P ∗

post circuit without affecting the outcomes y1,
y2 and y3.

Game 2 (Using EPR pairs). Pick x1, . . . , xr
$←− {0, 1}ℓ, H $←− Fun. Let

θ := H(x1⊕ · · ·⊕xr). Execute circuit in Figure 5.2 resulting in y1, y2, y3 and
ŷ. Let accept:= 1 iff y1 = y2 = y3 = ŷ.

In Figure 5.2 we have |epr⟩ = 2−
n

2

∑

x∈{0,1}n |x⟩ ⊗ |x⟩. The upper wire
from |epr⟩ carries the first n qubits and the lower wire the last n qubits. The
gate Mθ measures n qubits in bases θ ∈ {0, 1}n.

We have Pr[accept = 1 : Game 1] = Pr[accept = 1 : Game 2] since
preparing X = |y⟩θ for a random y ∈ {0, 1} is perfectly indistinguishable
from preparing an EPR pair XY and measuring Y in basis θ.

The next step is to reprogram the random oracle. This means that the
basis θ will not be calculated as H(x1 ⊗ · · ·⊗ xr) but at some point in time
H is reprogrammed to return H(x1 ⊗ · · · ⊗ xr) = θ. The idea behind this
is that up to a certain point in time the probability that someone tries to
query H(x1 ⊗ · · ·⊗ xr) is negligible. This means that with high probability
the adversary won’t notice that the random oracle has been reprogrammed,
which makes it possible to delay the choice of the basis.

The random oracle will be reprogrammed just after P ∗
pre. The time of

reprogramming is illustrated in Figure 5.2 with a wiggly line. It makes sense
to reprogram the oracle at this time, as all gates in P ∗

pre are outside of ∩C+
i ,

which means that there is no point in spacetime left of the wiggly line where
all xi are known. To show that this indeed holds Lemma 5.2 is used.
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Lemma 5.2. [9] Let H : {0, 1}ℓ → {0, 1}n be a random oracle. Let (A1, A2)
be oracle algorithms sharing state between invocations that perform at most
q queries to H. Let C1 be an oracle algorithm that on input (j, x) does the
following: Run AH

1 (x) till the j-th query to H, then measure the argument of
that query in the computational basis, and output the measurement outcome.
(Or ⊥ if no j-th query occurs.) Let

P 1
A := Pr[b′ = 1 :H

$←− ({0, 1}l → {0, 1}n), x← {0, 1}ℓ,
AH

1 (x), b
′ ← AH

2 (x,H(x))]

P 2
A := Pr[b′ = 1 :H

$←− ({0, 1}l → {0, 1}n), x← {0, 1}ℓ,

B
$←− {0, 1}n, AH

1 (x), H(x) := B, b← AH
2 (x,B)]

PC := Pr[x = x′ :H
$←− ({0, 1}l → {0, 1}n), x← {0, 1}ℓ,

j
$←− {1, . . . , q}, x′ ← C1H(j, x)]

Then |P 1
A − P 2

A| ≤ 2q
√
PC.

We now take AH
1 (x) to be the machine that executes the circuit in Figure

4.3 until the wiggly line. Let B be θ. And let AH
2 (x,B) be the oracle

machine, that takes in the oracle state from AH
1 and executes the part of the

circuit left of the wiggly line with the reprogrammed oracle. AH
2 returns 1 if

y1 = y2 = y3 = ŷ. By construction we have P 1
A = Pr[accept = 1 : Game 2]

and P 2
A = Pr[accept = 1 : Game 3] for the following game

Game 3 (Reprogramming H). Pick x1, . . . , xr
$←− {0, 1}ℓ, H $←− Fun. Exe-

cute circuit from Figure 5.2 until the wiggly line (with oracle access to H).

Pick θ
$←− {0, 1}n. Execute the circuit after the wiggly line (with oracle access

to modified H with H(x) := θ) resulting in y1, y2, y3, ŷ. Let accept:= 1 iff
y1 = y2 = y3 = ŷ.

PC from lemma 5.2 can be expressed as PC = Pr[x′ = x1 ⊕ · · · ⊕ xr :
Game 4] for game

Game 4 (Guessing x = x1 ⊕ · · · ⊕ xr). Pick x1, . . . , xr
$←− {0, 1}ℓ, H $←−

Fun, j
$←− {1, . . . , q}. Prepare |epr⟩ and execute circuit P ∗

pre until the j-th
query to H. Measure the argument x′ of that query.

Lemma 5.2 then says |P 1
A − P 2

A| ≤ 2q
√
PC , wich means

|Pr[accept = 1 : Game 2]− Pr[accept = 1 : Game 3]|
≤ 2q

√

Pr[x′ = x1 ⊕ · · ·⊕ xr : Game 4]
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5.4 Monogamy game

We will now look at Game 3. Sub-circuits P12, P13 and P23 prepare the state
for P ∗

1 and P ∗
2 for P ∗

1 and P ∗
3 and for P ∗

2 and P ∗
3 respectively. Let Mθ

A, Mθ
B

and Mθ
C refer to the measurements consisting of P ∗

1 and V1, of P ∗
2 and V2 and

of P ∗
3 and V3 respectively. Then P12, P13 and P23 can be modelled as unitary

operators ABθ, BCθ and ACθ. This way we get three measurements

(ABθACθ)†Mθ
A(AB

θACθ),

(ABθBCθ)†Mθ
B(AB

θBCθ)

and

(ACθBCθ)†Mθ
C(AC

θBCθ).

We again somewhat abuse the notation here as for an operator A on space
HA we still write A if the underlying space becomes HA ⊗HB, although it
would be correct to write A⊗ 1B.

Performing the conjugate transpose of the unitary operators after the
measurement won’t change the outcome, but will ensure that the measure-
ments remain projective if Mθ

i is projective. Performing all the measurements
is equivalent to

(ABθACθ)†Mθ
A(AB

θACθ)(ABθBCθ)†Mθ
B(AB

θBCθ)(ACθBCθ)†Mθ
C(AC

θBCθ)

= (ABθACθBCθ)†(Mθ
AM

θ
BM

θ
C)(AB

θACθBCθ).

Without loss of generality we can assume that Mθ
A, Mθ

B and Mθ
C are

projective and ψ is a pure state [6].

Game 5 (Monogamy game). Prepare state |ψ⟩. Pick θ
$←− {1, . . . , n}. Per-

form measurements (ABθACθ)†Mθ
A(AB

θACθ), (ABθBCθ)†Mθ
B(AB

θBCθ),
(ACθBCθ)†Mθ

C(AC
θBCθ) and Mθ

F resulting in y1, y2, y3 and ŷ. Accept if
y1 = y2 = y3 = ŷ.

As we see Game 5 is a n times parallelly repeated MG6 game. Therefore

Pr[accept := 1 : Game 3] ≤ Pwin(MG6n).

5.5 Guessing x

We will now define what it means to guess x in Game 4. Execution of Game
4 will perform j ∈ {1, . . . , q} queries to the oracle. We want to show that
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the probability of one of these queries being H(x1⊕ · · ·⊕ xr) is low. We can
look at every query as a separate gate in P ∗

pre. Let Ei be the event at which
the gate of performing the i-th query is located. Since P ∗

pre ⊂ Ω \ (∩C+
i ) we

have that for every Ei there is a k ∈ {1, . . . , r} such that Ei /∈ C+
k . This

means that xk is not known to Ei. We can now partition the set {1, . . . , q}
into disjoint subsets Jk, k ∈ {1, . . . , q} such that for every i ∈ Jk we have
Ei /∈ C+

k .
Let Game 4i be like Game 4, which the only difference that j is not chosen

form {1, . . . , q} but from Ji. We can then express Game 4 as follows

Pr[x′ = x1 ⊕ · · ·⊕ xr : Game 4] =
r

∑

i=1

|Ji|
q

Pr[x′ = x1 ⊕ · · ·⊕ xr : Game 4i].

For every i ∈ {1, . . . , q} we not divide P ∗
pre into two subcircuits P i

low and
P i
high. Let P i

low be the subcircuit that has no access to xi and P i
high the

subcircuit that has access to xi. Executing circuit P ∗
pre is equivalent to first

executing circuit P i
low and then executing circuit P i

high. Notice that for every
j ∈ Ji measuring the j-th query of P ∗

pre is equivalent to measuring the j-th
query of P i

low, since Ej is outside of C+
i . Therefore Game 4i is equivalent to

the following Game 6i

Game 6i (Executing P i
low only). Pick x1, . . . , xr

$←− {0, 1}ℓ, H $←− Fun, j
$←−

Ji. Prepare |epr⟩ and execute circuit P i
low until the j-th query to H. Measure

the argument x′ of that query.

We have Pr[x′ = x1 ⊕ · · · ⊕ xr : Game 4i] = Pr[x′ = x1 ⊕ · · · ⊕ xr :
Game 6i]. Since xi cannot be accessed in P i

low we have that in Game 6i xi

is randomly chosen and never accessed. This leads to Pr[x′ = x1⊕ · · ·⊕ xr :
Game 6i] ≤ 2−ℓ. Therefore

Pr[x′ = x1 ⊕ · · ·⊕ xr : Game 4] =
r

∑

i=1

|Ji|
q

Pr[x′ = x1 ⊕ · · ·⊕ xr : Game 4i]

≤
r

∑

i=1

|Ji|
q

2−ℓ = 2−ℓ.

This means

Pr[accept = 1 : Game 1] ≤ Pwin(MG6n) + 2q2−l/2 = ν.
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6. Conclusion

With the intention to increase the precision of the position verification proto-
col form [9] we defined a modified position verification protocol and showed
that it is sound for a smaller region than the original protocol if the winning
probability Pwin(MG6n) is small. We were not able to prove the monogamy
game theorem for MG6, but described our progress and the intuitive idea be-
hind the proof attempt. This means that proving the MG6 theorem remains
an open question. We also compared different three player monogamy games
and gave some results about their winning probabilities.

If the proof of MG6 works out using [7] then the next step would be to
generalise Theorem 1 in [7] to n ≥ 1. If this would not give a probability
that declines fast with growing n, then one would have to use the 1 qubit
monogamy game and repeat the position verification protocol. This way we
get a small bound for the soundness but also increase the round complexity
of the protocol.

The position verification theorem from [9] includes a possible error rate
as well. This is something we haven’t considered in the monogamy games
presented in Chapter 3. It is also not very clear how this can be done using
Theorem 1 form [7] since this theorem is only usable if the probability of the
adversary guessing the correct result is rather high.

Currently we looked into three-player monogamy games. To achieve the
highest precision in 3D we would need four-player monogamy games and a
protocol with four receiving verifiers. This was out of the scope of this theses.
If the proof for MG6 works out as intended, then it should be possible to
generalise it to four adversaries.

In [9] it was shown that the proof of the position verification theorem
introduced in [2] does not hold in higher dimensions than 1D. Proof of this
theorem for 2D was shown in personal communication between Dominique
Unruh and Serge Fehr [10]. The generalised monogamy game MG6 might be
useful in the 3D case.

66



Appendices
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A. Proof of MG4 theorem

Proof. Let yx be the measurement outcome on Hx. Then Pwin(G, S) =
Pr(yF = yAB = yBC = yAC). We can calculate

Pr(yF = yAB = yBC = yAC) =

=
∑

θ

1

|Θ|Pr(yF = yAB = yBC = yAC |θ)

=
∑

θ

1

|Θ|
∑

x

Pr(yF = x ∧ yAB = x ∧ yBC = x ∧ yAC = x|θ)

=
∑

θ

1

|Θ|
∑

x

Pr(yF = x|yAB = x ∧ yBC = x ∧ yAC = x ∧ θ)

Pr(yAB = x ∧ yBC = x ∧ yAC = x|θ)

=
∑

θ

1

|Θ|
∑

x

Pr(yF = x|yAB = x ∧ yBC = x ∧ yAC = x ∧ θ)

Pr(yAB = x|yBC = x ∧ yAC = x ∧ θ)Pr(yBC = x ∧ yAC = x|θ)

=
∑

θ

1

|Θ|
∑

x

Pr(yF = x|yAB = x ∧ yBC = x ∧ yAC = x ∧ θ)

Pr(yAB = x|yBC = x ∧ yAC = x ∧ θ)Pr(yBC = x|yAC = x ∧ θ)Pr(yAC = x|θ).

For fixed x and θ let us define

PF = Pr(yF |yAB = x ∧ yBC = x ∧ yAC = x ∧ θ)
PAB = Pr(yAB = x|yBC = x ∧ yAC = x ∧ θ)
PBC = Pr(yBC = x|yAC = x ∧ θ)
PAC = Pr(yAC = x|θ)

And let |sAB⟩ be the quantum state after measurement AB, |sBC⟩ the quan-
tum state after the measurement BC and |sAC⟩ the quantum state after the

68



measurement AC. Then we have

|sAC⟩ =
(1F ⊗ ACθ

x ⊗ 1B)|ρ⟩
√

⟨ρ|1F ⊗ ACθ
x ⊗ 1B|ρ⟩

=
1√
PAC

(1F ⊗ACθ
x ⊗ 1B)|ρ⟩

|sBC⟩ =
(1F ⊗ 1A ⊗BCθ

x)|sAC⟩
√

⟨sAC |1F ⊗ 1A ⊗BCθ
x|sAC⟩

=
1√
PBC

(1F ⊗ 1A ⊗ BCθ
x)|sAC⟩

|sAB⟩ =
(1F ⊗ ABθ

x ⊗ 1C)|sBC⟩
√

⟨sBC |1F ⊗ABθx ⊗ 1C |sBC⟩
=

1√
PAB

(1F ⊗ABθ
x ⊗ 1C)|sBC⟩

=
1√

PABPBC

(1F ⊗ (ABθ
x ⊗ 1C)(1A ⊗ BCθ

x))|sAC⟩

=
1√

PABPBCPAC
(1F ⊗ (ABθ

x ⊗ 1C)(1A ⊗ BCθ
x)(AC

θ
x ⊗ 1B))|ρ⟩

Using this we get

PF = ⟨sAC |F θ
x ⊕ 1ABC |sAC⟩

=
1

PABPBCPAC
⟨ρ|(1F ⊗ ((ABθ

x ⊗ 1C)(AC
θ
x ⊗ 1B)(1A ⊗ BCθ

x)))
†F θ

x ⊗ 1ABC

(1F ⊗ ((ABθ
x ⊗ 1C)(AC

θ
x ⊗ 1B)(1A ⊗ BCθ

x))|ρ⟩

=
1

PABPBCPAC
⟨ρ|(1F ⊗ (1A ⊗ BCθ

x)(AC
θ
x ⊗ 1B)(AB

θ
x ⊗ 1C))(F

θ
x ⊗ 1ABC)

(1F ⊗ (ABθ
x ⊗ 1C)(AC

θ
x ⊗ 1B)(1A ⊗ BCθ

x))|ρ⟩

Using the third commutative property we get

PF =
1

PABPBCPAC
⟨ρ|1F ⊗ (ABθ

x ⊗ 1C)(AC
θ
x ⊗ 1B)(1A ⊗ BCθ

x)|ρ⟩

Therefore

PFPABPBCPAC = ⟨ρ|1F ⊗ (ABθ
x ⊗ 1C)(AC

θ
x ⊗ 1B)(1A ⊗ BCθ

x)|ρ⟩

And we have

Pr(yF = yAB = yBC = yAC) =

=
∑

θ

1

|Θ|
∑

x

⟨ρ|F θ
x ⊗ (ABθ

x ⊗ 1C)(AC
θ
x ⊗ 1B)(1A ⊗ BCθ

x)|ρ⟩

Now following the proof of theorem 3 in [6] let us denote Πθ =
∑

x 1F ⊗
(ABθ

x ⊗ 1C)(ACθ
x ⊗ 1B)(1A ⊗ BCθ

x). Then pwin(G, S) =
∑

θ
1
|Θ|⟨ρ|Π

θ|ρ⟩ =
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∑

θ
1
|Θ|tr(Π

θ|ρ⟩⟨ρ|). From the definition of the norm we have tr(Πθ|ρ⟩⟨ρ|) ≤
∥Πθ∥. Using Lemma 2 from [6] we have

pwin(G, S) =
∑

θ

1

2n
tr(Πθ|ρ⟩⟨ρ|) ≤ 1

2n
∥
∑

θ

Πθ∥ ≤ 1

2n

∑

k

max
θ
∥ΠθΠπk(θ)∥.

Optimal permutations πk are determined later. We will now bound the norm
∥ΠθΠθ′∥, where θ′ = πk(θ). For fixed θ and k, we denote by τ the set of indices
where θ and θ′ differ. By τ c we denote its complement and by t the Hamming
distance between θ and θ′, which means |τ | = t. Now we define the following
projectors:

P̄ =
∑

x

|xθ
τ ⟩⟨xθ

τ |⊗ 1τc ⊗ (ACθ
x ⊗ 1B)(1A ⊗ BCθ

x)

and

Q̄ =
∑

x

|xθ′

τ ⟩⟨xθ′

τ |⊗ 1τc ⊗ ABθ′

x ⊗ 1C

Now we will show that Πθ ≤ P̄ and Πθ′ ≤ Q̄. Recall that A ≤ B if B − A
is positive semi-definite. We know that for any matrix C, C†C is positive
semi-definite. Therefore we will show that (P̄ −Πθ)(P̄ −Πθ) = (P̄ −Πθ) and
(Q̄−Πθ′)(Q̄− Πθ′) = (Q̄−Πθ′).

Q̄−Πθ′ =
∑

x

|xθ′

τ ⟩⟨cθ
′

τ |⊗ 1τc ⊗ABθ′

x ⊗ 1C

−
∑

x

|xθ′⟩⟨xθ′ |⊗ (ABθ′

x ⊗ 1C)(AC
θ′

x ⊗ 1B)(1A ⊗BCθ′

x )

=
∑

x

|xθ′

τ ⟩⟨xθ′

τ |⊗
[(

(1τc ⊗ (ABθ′

x ⊗ 1C)
)

−
(

|xθ′

τc⟩⟨xθ′

τc|⊗ (ABθ′

x ⊗ 1C)(AC
θ′

x ⊗ 1B)(1A ⊗BCθ′

x ))
)]

=
∑

x

|xθ′

τ ⟩⟨xθ′

τ |⊗
[(

1τc ⊗ (ABθ′

x ⊗ 1C)
)

−
(

1τc ⊗ (ABθ′

x ⊗ 1C)
)(

|xθ′

τc⟩⟨xθ′

τc|⊗ (ACθ′

x ⊗ 1B)(1A ⊗BCθ′

x )
)]

=
∑

x

|xθ′

τ ⟩⟨xθ′

τ |⊗
(

1τc ⊗ (ABθ′

x ⊗ 1C)
)

(

1τc ⊗ 1ABC − |xθ′

τc⟩⟨xθ′

τc|⊗ (ACθ′

x ⊗ 1B)(1A ⊗ BCθ′

x )
)
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Now let us calculate the product:

(Q̄−Πθ′)(Q̄− Πθ′) =

=
∑

x

|xθ′

τ ⟩⟨xθ′

τ |⊗
(

1τc ⊗ (ABθ′

x ⊗ 1C)
)

(

1τc ⊗ 1ABC − |xθ′

τc⟩⟨xθ′

τc|⊗ (ACθ′

x ⊗ 1B)(1A ⊗ BCθ′

x )
)

∑

y

|yθ′τ ⟩⟨yθ
′

τ |⊗
(

1τc ⊗ (ABθ′

y ⊗ 1C)
)

(

1τc ⊗ 1ABC − |yθ′τc⟩⟨yθ
′

τc|⊗ (ACθ′

y ⊗ 1B)(1A ⊗ BCθ′

y )
)

=
∑

xy

|xθ′

τ ⟩⟨xθ′

τ |yθ
′

τ ⟩⟨yθ
′

τ |⊗
(

(1τc ⊗ABθ′

x ⊗ 1C)(1τc ⊗ 1ABC − |xθ′

τc⟩⟨xθ′

τc|⊗ (ACθ′

x ⊗ 1B)(1A ⊗ BCθ′

x ))

(1τc ⊗ABθ′

y ⊗ 1C)(1τc ⊗ 1ABC − |yθ′τc⟩⟨yθ
′

τc|⊗ (ACθ′

y ⊗ 1B)(1A ⊗BCθ′

y )
)

=
∑

x

|xθ′

τ ⟩⟨xθ′

τ | ⊗
(

(1τc ⊗ABθ′

x ⊗ 1C)(1τc ⊗ 1ABC − |xθ′

τc⟩⟨xθ′

τc|⊗ (ACθ′

x ⊗ 1B)(1A ⊗ BCθ′

x ))

(1τc ⊗ABθ′

x ⊗ 1C)(1τc ⊗ 1ABC − |xθ′

τc⟩⟨xθ′

τc|⊗ (ACθ′

x ⊗ 1B)(1A ⊗ BCθ′

x )
)

Using the third commutative property we have

(Q̄−Πθ′)(Q̄− Πθ′) =

=
∑

x

|xθ′

τ ⟩⟨xθ′

τ | ⊗
(

(1τc ⊗ ABθ′

x ⊗ 1C)(1τc ⊗ ABθ′

x ⊗ 1C)

(1τc ⊗ 1ABC − |xθ′

τc⟩⟨xθ′

τc|⊗ (ACθ′

x ⊗ 1B)(1A ⊗BCθ′

x ))

(1τc ⊗ 1ABC − |xθ′

τc⟩⟨xθ′

τc|⊗ (ACθ′

x ⊗ 1B)(1A ⊗BCθ′

x )
)

=
∑

x

|xθ′

τ ⟩⟨xθ′

τ | ⊗
(

(1τc ⊗ ABθ′

x ⊗ 1C)

(1τc ⊗ 1ABC − |xθ′

τc⟩⟨xθ′

τc|⊗ (ACθ′

x ⊗ 1B)(1A ⊗BCθ′

x ))

(1τc ⊗ 1ABC − |xθ′

τc⟩⟨xθ′

τc|⊗ (ACθ′

x ⊗ 1B)(1A ⊗BCθ′

x )
)

Now notice that if we have two operators 1 and A, where 1 is the identity
operator and A is a projector. Then

(1−A)(1− A) = 1− A− A+ A = 1− A
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Using this property we have that

(Q̄−Πθ′)(Q̄− Πθ′) =
∑

x

|xθ′

τ ⟩⟨xθ′

τ | ⊗
(

(1τc ⊗ABθ′

x ⊗ 1C)

(1τc ⊗ 1ABC − |xθ′

τc⟩⟨xθ′

τc|⊗ (ACθ′

x ⊗ 1B)(1A ⊗BCθ′

x ))
)

= Q̄− Πθ′.

Therefore Q̄ − Πθ′ is positive semi-definite, which gives us Πθ′ ≤ Q̄. Analo-
gously we also have Πθ ≤ P̄ .

Now since Πθ ≤ P̄ and Πθ′ ≤ Q̄ we can bound ∥ΠθΠθ′∥2 ≤ ∥P̄ Q̄∥2 =
∥P̄ Q̄P̄∥ using Lemma 1.2. We now bound the norm ∥P̄ Q̄P̄∥.

P̄ Q̄P̄ =
∑

xyz

|xθ
τ ⟩⟨xθ

τ |yθ
′

τ ⟩⟨yθ
′

τ |zθτ ⟩⟨zθτ |⊗ 1τc ⊗ (ACθ
x ⊗ 1B)(1A ⊗ BCθ

x)(AB
θ′

y ⊗ 1C)

(ACθ
z ⊗ 1B)(1A ⊗ BCθ

z )

=
∑

xyz

|xθ
τ ⟩⟨xθ

τ |yθ
′

τ ⟩⟨yθ
′

τ |zθτ ⟩⟨zθτ |⊗ 1τc ⊗ (ABθ′

y ⊗ 1C)(AC
θ
x ⊗ 1B)(1A ⊗ BCθ

x)

(ACθ
z ⊗ 1B)(1A ⊗ BCθ

z )

=
∑

xy

|xθ
τ ⟩⟨xθ

τ |yθ
′

τ ⟩⟨yθ
′

τ |xθ
τ ⟩⟨xθ

τ |⊗ 1τc ⊗ (ABθ′

y ⊗ 1C)(AC
θ
x ⊗ 1B)(1A ⊗BCθ

x)

=
∑

xy

|⟨xθ
τ |yθ

′

τ ⟩|2|xθ
τ ⟩⟨xθ

τ |⊗ 1τc ⊗ (ABθ′

y ⊗ 1C)(AC
θ
x ⊗ 1B)(1A ⊗ BCθ

x)

= 2−t
∑

x

|xθ
τ ⟩⟨xθ

τ |⊗ 1τc ⊗ (ACθ
x ⊗ 1B)(1A ⊗ BCθ

x).

Here we used that the operators fulfil the third commutative property,
ACθ

xAC
θ
z = δxzACθ

x and |⟨xθ
τ |yθ

′

τ ⟩|2 = 2−t. This means that ∥P̄ Q̄P̄∥≤ 2−t.
When choosing the permutations the same way as in [6] we get

pwin(G, S) ≤ 1

2n

∑

k

max
θ
∥ΠθΠπk(θ)∥ ≤ 1

2n

n∑

t=0

(
n

t

)(
1√
2

)t

=

(
1

2
+

1

2
√
2

)n

.
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B. Another proof of MG7

theorem

For the proof we will again follow the proof of Theorem 3 in [6]. Where
useful for a transformation X on HX we will use the same name X if the
transformation is carried out on HX ⊗HY instead of X ⊗ 1Y , if the affected
space is clear from the context.

Let us denote

Πθ =
∑

x

1F ⊗
(

(ABθ ⊗ ACθ ⊗ BCθ)†Aθ
x ⊗Bθ

x ⊗ Cθ
x(AB

θ ⊗ ACθ ⊗ BCθ)
)

.

Then

Pwin(G, S) =
∑

θ

1

|Θ|
⟨s|Πθ|s⟩ =

∑

θ

1

|Θ|
tr(Πθ|s⟩⟨s|).

From the definition of the norm we have tr(Πθ|s⟩⟨s|) ≤ ∥Πθ∥. Using Lemma
2 from the article we have

Pwin(G, S) =
∑

θ

1

2n
tr(Πθ|s⟩⟨s|) ≤ 1

2n
∥
∑

θ

Πθ∥ ≤ 1

2n

∑

k

max
θ
∥ΠθΠπk(θ)∥.

Optimal permutations πk are determined later. We will now bound the norm
∥ΠθΠθ′∥, where θ′ = πk(θ). For fixed θ and k, we denote by τ the set of indices
where θ and θ′ differ. By τ c we denote its complement and by t the Hamming
distance between θ and θ′, which means |τ | = t. Now we define the following
projectors:

P =
∑

x

|xθ
τ ⟩⟨xθ

τ |⊗ 1τC ⊗ (ACθ ⊗ BCθ)†Cθ
x(AC

θ ⊗BCθ)

Q =
∑

x

|xθ′

τ ⟩⟨xθ′

τ |⊗ 1τC ⊗ (ABθ′ ⊗ACθ′)†Aθ′

x (AB
θ′ ⊗ ACθ′)

R =
∑

x

|xθ
τ ⟩⟨xθ

τ |⊗ 1τC ⊗ (ABθ ⊗BCθ)†Bθ
x(AB

θ ⊗ BCθ).
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In the following we will show that Π < P , for this we show that P −Π is
positive semi definite. First we calculate P −Π.

P − Π =
∑

x

|xτ ⟩⟨xτ |⊗
[

(1τC ⊗ (ACθ ⊗ BCθ)†Cθ
x(AC

θ ⊗BCθ))

−|xτC ⟩⟨xτC |⊗ (ABθ ⊗BCθ ⊗ ACθ)†(Aθ
x ⊗Bθ

x ⊗ Cθ
x)(AB

θ ⊗BCθ ⊗ ACθ)
]

=
∑

x

|xτ ⟩⟨xτ |⊗ (1τC ⊗ ACθ† ⊗BCθ†)
(

1τC ⊗ Cθ
x

−|xτC ⟩⟨xτC |⊗ (ABθ†)(Aθ
x ⊗ Bθ

x ⊗ Cθ
x)(AB

θ)
)

(1τC ⊗ ACθ ⊗ BCθ)

In the following we will calculate (P −Π)(P −Π) if the product is equal
to P − Π then Lemma 1.1 says that P −Π is positive semi-definite.

(P − Π)(P −Π) =

=

[

∑

x

|xτ ⟩⟨xτ |⊗ (1τC ⊗ ACθ† ⊗BCθ†)
(

1τC ⊗ Cθ
x

−|xτC ⟩⟨xτC |⊗ (ABθ†)(Aθ
x ⊗Bθ

x ⊗ Cθ
x)(AB

θ)
)

(1τC ⊗ ACθ ⊗BCθ)

]

·

[

∑

y

|yτ ⟩⟨yτ |⊗ (1τC ⊗ ACθ† ⊗ BCθ†)
(

1τC ⊗ Cθ
y

−|yτC ⟩⟨yτC |⊗ (ABθ†)(Aθ
y ⊗ Bθ

y ⊗ Cθ
y)(AB

θ)
)

(1τC ⊗ACθ ⊗BCθ)

]

=
∑

x

∑

y

|xτ ⟩⟨xτ |yτ⟩⟨yτ |⊗

[

(1τC ⊗ ACθ† ⊗BCθ†)
(

1τC ⊗ Cθ
x
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−|xτC ⟩⟨xτC |⊗ (ABθ†)(Aθ
x ⊗Bθ

x ⊗ Cθ
x)(AB

θ)
)

(1τC ⊗ ACθ ⊗BCθ)

]

·

[

(1τC ⊗ ACθ† ⊗ BCθ†)
(

1τC ⊗ Cθ
y − |yτC⟩⟨yτC |⊗ (ABθ†)(Aθ

y ⊗ Bθ
y ⊗ Cθ

y)(AB
θ)
)

(1τC ⊗ ACθ ⊗BCθ)

]

=
∑

x

|xτ ⟩⟨xτ |⊗

[

(1τC ⊗ ACθ† ⊗BCθ†)

(

1τC ⊗ Cθ
x − |xτC ⟩⟨xτC |⊗ (ABθ†)(Aθ

x ⊗ Bθ
x ⊗ Cθ

x)(AB
θ)
)

(

1τC ⊗ Cθ
x − |xτC ⟩⟨xτC |⊗ (ABθ†)(Aθ

x ⊗ Bθ
x ⊗ Cθ

x)(AB
θ)
)

(1τC ⊗ ACθ ⊗ BCθ)

]

Now notice that if we have two operators A and B, where A and B are
projectors and AB = BA = B, then

(A− B)(A− B) = A− B − B +B = A−B

Using this property we have that

(P −Π)(P − Π) =

=
∑

x

|xτ ⟩⟨xτ |⊗

[

(1τC ⊗ ACθ† ⊗BCθ†)

(

1τC ⊗ Cθ
x − |xτC ⟩⟨xτC |⊗ (ABθ†)(Aθ

x ⊗Bθ
x ⊗ Cθ

x)(AB
θ)
)

(1τC ⊗ ACθ ⊗BCθ)

]

= P −Π.

Therefore we have that P − Π is positive semi-definite, which means that
P ≥ Π. Analogously we have Q ≥ Π and R ≥ Π.

In the following we will estimate ∥PQRQP∥. We have
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PQP =
∑

xyz

|xθ
τ ⟩⟨xθ

τ |yθ
′

τ ⟩⟨yθ
′

τ |zθτ ⟩⟨zθτ |⊗ 1τC ⊗ (ACθ ⊗BCθ)†Cθ
x(AC

θ ⊗ BCθ)

(ABθ′ ⊗ ACθ′)†Aθ′

y (AB
θ′ ⊗ACθ′)(ACθ ⊗ BCθ)†Cθ

z (AC
θ ⊗ BCθ)

=
∑

xyz

|xθ
τ ⟩⟨xθ

τ |yθ
′

τ ⟩⟨yθ
′

τ |zθτ ⟩⟨zθτ |⊗ 1τC ⊗ (ABθ′ ⊗ ACθ ⊗ BCθ)†Cθ
x(AC

θACθ′†)

Aθ′

y (AC
θ′ ⊗ ACθ†)Cθ

z (AB
θ′ ⊗ ACθ ⊗ BCθ)

Since ACθ = ACθ′ we have

PQP =
∑

xyz

|xθ
τ ⟩⟨xθ

τ |yθ
′

τ ⟩⟨yθ
′

τ |zθτ ⟩⟨zθτ |⊗ 1τC ⊗ (ABθ′ ⊗ ACθ ⊗ BCθ)†Cθ
x

Aθ′

y C
θ
z (AB

θ′ ⊗ ACθ ⊗ BCθ)

Now since Cθ
xC

θ
z = δxzCθ we get

PQP =
∑

xy

|xθ
τ ⟩⟨xθ

τ |yθ
′

τ ⟩⟨yθ
′

τ |xθ
τ ⟩⟨xθ

τ |⊗ 1τC ⊗ (ABθ′ ⊗ ACθ ⊗BCθ)†Cθ
x

Aθ′

y (AB
θ′ ⊗ ACθ ⊗ BCθ)

=
∑

xy

|⟨xθ
τ |yθ

′

τ ⟩|2|xθ
τ ⟩⟨xθ

τ |⊗ 1τC ⊗ (ABθ′ ⊗ACθ ⊗ BCθ)†Cθ
x

Aθ′

y (AB
θ′ ⊗ ACθ ⊗ BCθ)

= 2−t
∑

xy

|xθ
τ ⟩⟨xθ

τ |⊗ 1τC ⊗ (ABθ′ ⊗ACθ ⊗BCθ)†Cθ
xA

θ′

y (AB
θ′ ⊗ ACθ ⊗ BCθ)

Now since Πθ ≤ P and Πθ′ ≤ Q we can bound ∥ΠθΠθ′∥2 ≤ ∥P̄ Q̄∥2 =
∥P̄ Q̄P̄∥ using Lemma 1.2. We now bound the norm ∥P̄ Q̄P̄∥.
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