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INTRODUCTION

The concept of a rigid-plastic body has received a great deal of attention
among researches in the field of mechanical engineering and practical en-
gineers. This concept is useful not only in the theory of applied plasticity
but in the limit analysis as well as in the dynamic plasticity of inelas-
tic structures. Foundations of theoretical concepts and solutions of prac-
tical problems of limit analysis can be found in the books by Calladine
(1985), Horne (1971), Kaliszky (1989), Martin (1975), Skrzypek and Het-
narski (1993), Życzkowski (1981), Johnson and Mellor (1986), Chakrabarty
(2000). Many authors like Hodge (1981), Erkhov (1978), Sawczuk (1989),
Sawczuk and Sokól-Supel (1993), Yu and Zang (1996), Lin (1968), Save,
Massonnet, Saxce (1997) and others concentrated on the thin walled plate
and shell problems; applications of the limit analysis in the soil mechanics
have studied by Chen and Liu (1990). Various aspects of dynamic loading
of structures and media are presented in books by Jones (1989), Jones and
Wierzbicki (1983, 1989), Stronge and Yu (1993), Lepik (1982), Komarov
and Nemirovsky (1984), Campbell (1972) and of shakedown analysis by
Nguyen Dang (1995).

Analytical solutions for dynamically loaded beams fixed at both ends
are given by Symonds (see Jones (1989)) making use of the hypothesis of the
classical bending theory of plates. Beams subjected to impulsive loading
and resting on n+ 2 supports were considered by Lellep (1978).

Comparison of theoretical predictions with experimental data lead to
the conclusion that the transverse shear forces can exercise an important
role in the dynamic plastic behaviour of beams, plates and shells as dis-
cussed by Jones (1989), Stronge and Yu (1993) and others. The influence
of the transverse shear on the dynamic behaviour of rigid-plastic beams has
been studied by several authors. Symonds (1968) has examined the influ-
ence of shear forces on the plastic response of an infinitely long beam struck
by a mass travelling with an initial velocity. In the paper by Symonds
(1968) a fully clamped beam of finite length that is subjected to an im-
pulsive pressure loading has been studied also. Symonds (1968) used an
approximte square instead of the exact yield locus. He concluded that a
transverse shear hinge is always stationary in a rigid perfectly plastic beam.
This implies that transverse shear is localized within the initially formed
zone when material strain hardening is neglected. Later Symonds’ conclu-
sion has been extended to arbitrary regular and singular yield conditions.
Li (2000) showed that this is true for symmetrically loaded circular plates
and cylindrical shells, as well. Nonaka (1967, 1977) has presented the solu-
tions for simply supported beams subjected to uniformly distributed blast
pressure loading. Nonakas results were extended to the case when the
blast pressure loading is uniformly distributed over a portion of the span
by Jones and Song (1986). Nine different patterns of motion are obtained
whereas the cases of rectangular, triangular and exponential pulse loadings
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are examined. Theoretical solutions for fully clamped beams subjected to
the blast pressure loading are presented by Li and Jones (1995), clamped
beams under impulsive loading are studied by Yu and Chen (2000).

In these studies the bending moment as well as the transverse shear force
are retained in the yield curve which is presented as a square yield curve.
The accuracy of this approximation of the yield condition is discussed by
de Oliveira and Jones (1978) on the basis of I-beams.

The influence of the rotatory inertia and transverse shear forces on the
dynamic plastic response of rigid-plastic beams has been examined by Jones
and de Oliveira (1979a,b). Jones (1985) has demonstrated that the simple
bound theorems which were developed for rigid-plastic continua provide
excellent estimates of the response durations and permanent displacements
of impulsively loaded beams, circular plates and cylindrical shells when
transverse shear effects are taken into account.

Jones and de Oliveira (1983), also Li and Jones (1995) have studied the
plastic response of cylindrical shells to impulsive and blast loadings. The
influence of transverse shear effects on the behaviour of circular plates was
investigated by Jones and de Oliveira (1980) and by Li and Jones (1994).

In the investigations cited above the both ends of the beams under consi-
derations are simply supported or fully clamped, respectively. In the paper
by Lellep and Torn (2005) dynamic plastic response of beams clamped at
left ends and simply supported at right hand ends will be investigated. The
influence of the transverse shear is retained in the yield condition.

The first analytical work on dynamic plastic response of cylindrical shells
was conducted by Hodge (1955). Song and Wang (1965) considered can-
tilever cylindrical shells.

In the paper by Lellep (1984) circular cylindrical shells reinforced with
circumferetnial ribs were studied. Circular ribs were treated as absolutely
rigid ring supports.

The influence of transverse shear forces on the dynamic plastic be-
haviour of beams, plates and shells subjected to impulsive and impact
loading has attracted the interest of many researchers as discussed by Jones
(1985, 1989a, b), Stronge and Yu (1993), Yu and Chen (2000).

The influence of shear forces on the limit load of cylindrical shells was
investigated by Shablii and Zuk (1974), also by Haydl and Sherbourne
(1973, 1979) making use of different non-linear approximations of the exact
yield surface corresponding to Mises yield condition (Ilyushin, 1957).

The influence of both, transverse shear and rotatory inertia on the dy-
namic plastic behaviour of beams and circular plates was studied by Jones
and Gomes de Oliveira (1979, 1980). Circular cylindrical shells subjected
to impulsive and blast loading are studied by Duffey (1989), Li and Jones
(1995), Jones and Oliveira (1983). In the above mentioned studies, the
both ends of beams or cylindrical shells are fixed in the same manner. The
exceptions are papers Lellep, Torn (2000) and Song, Wang (1965). In the
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paper Lellep, Torn (2004), beams simply supported at the left and clamped
at the right-hand end are considered. In the paper by Lellep, Torn (2005)
the results of the previous paper are extended to circular cylindrical shells
and in paper [46] - to annular plates.

The studies on dynamic plastic response of axisymmetric plates got
its start by papers of Hopkins and Prager (1954) and Wang (1955). In
these papers simply supported and clamped cicrular plates subjected to
distributed loading and initial impulsive loading were studied resorting to
the classical plate theory.

Hopkins and Prager considered circular plates made of an ideal rigid-
plastic material which obeys Tresca’s yield condtion and associated flow
law. This solution has been extended to plastes subjected to the uniformly
distributed transverse pressure and radial tension at the edge by Lellep
(1971). It was assumed that the material of plate was an anisotropic ma-
terial with different yield stresses in tension and compression.

Rigid-plastic annular plates (e.g. circular plates with a central hole) sub-
jected to dynamical loadings have been considered by Jones (1968, 1989),
Mroz (1958), Aggarwal and Ablow (1971), Mazalov and Nemirovsky (1976)
using the bending theory of plates. In the case of a rigid-plastic material
this concept includes stationary and moving hinge circles separating adja-
cent annuli of the plate which can deform in different manner.

An annular plate clamped at the inner boundary with its free outer edge
given a constant velocity for a short time was studied by Shapiro (1959).
Later an annular plate with a uniform transverse impulse on a narrow annu-
lar area near the outer edge was investigated by Florence (1965). Florence
considered the annular plate clamped at the inner edge with free outer edge
using Trescas’s yield hexagon. In the subsequent papers by Florence (1966,
1977) rigid-plastic circular plates subjected blast loadings distributed over
the entire plate or over a central area, respectively, are investigated. An-
nular plates fixed at the inner edge were studied also by Niepostyn and
Stańczyk (1979, 1982) in the cases of various loadings.

Recently Guowei Ma etal (1999), Yan-bin Wang etal (2005) empolyed
the concept of a unified strength theory in the analysis of dynamic plastic
response of circular plates.

Wen, Yu, Reddy (1995,b) developed an approximate theory to examine
the dynamic inelastic deformation and failure of clamped circular plates
subjected to uniformly distributed impulsive loads. Resorting to the pre-
vious work by Wen, Yu, Reddy (1995,a) it was shown that the failure modes
are: large inelastic deformations (Mode I), tensile tearing (Mode II) and
transverse shear (Mode III).

The influence of shear forces on the static collapse pressure was investi-
gated by Sawczuk and Duszek (1963), Haydl and Sherbourne (1973, 1979),
Zhuk and Shablii (1972, 1973), Mohaghegh and Coon (1973), Dinno and
Robinson (1976).
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Shablii and Zhuk (1974) investigated problems of limit analysis of cir-
cular cylindrical shells accounting for shear forces.

Probably the first paper devoted to the investigation of rigid-plastic
motion of axisymmetric plates accounting for transverse shear effects is
due to Nemirovski and Skovoroda (1978). In this paper fully clamped
and simplu supported circular plates subjected to a distributed transverse
loading are considered. The time history of the load intensity is assumed
to be prescribed with a non-increasing function.

Jones and Oliveira (1980) studied the influence of the rotatory iner-
tia and shear forces on the dynamic plastic response of circular plates to
dynamic loads. This study revealed the influence of shear forces on the
behaviour of plates in the case of small values of the parameter ν. Li and
Jones (1994) investigated clamped circular plates subjected to blast loa-
ding distributed uniformly over the entire area of the plate. Theoretical
solutions are obtained for a general blast loading for a plate made of a
Johansen’s material. The effects of different boundary conditions, pressure
pulse loading shapes and the influence of the transverse shear force on the
dynamic plastic response of circular plates are explored. The applicability
of Youngdahl’s correlation parameter is stated for circular plates. The case
of a central pressure pulse distributed over a central part was investigated
by Liu and Stronge (1996). Komarov and Nemirovski (1984), resorting to
the paper by Nemirovski and Skovoroda (1978) gave solutions for clamped
circular plates accounting for shear stresses.

The motion of a simply supported circular plate subjected to a rectangu-
lar loading was studied by Kumar and Krishka Reddy (1986). In a similar
study under taken by Jones and Oliveira (1980) for circular plates subjected
to blast loading idealized by an instantaneous uniform velocity, it was con-
cluded that the velocity pattern depends on a parameter ν = RQ0/2M0.
Here R is the radius of the plate, Q0 and M0 stand for the limit shear force
and limit bending moment, respectively. Following a procedure similar to
that by Jones and Oliveira (1980) the expressions for the shear force, ben-
ding moment and the plate deflection have been obtained. It appeared that
the solution of the problem including shear showed greater radial moments
throughout the plate when compared with the pure bending solution. The
transverse shear failure of infinitely large circular plates with a central boss
which is subjected to an initial impulsive velocity was studied by Zhao etal
(1994).

Clamped circular plates made of work-hardening materials were studied
by Wen (1998). An approximate theory was developed to predict the de-
formations and tearing of plates for power-law stress-strain relationship.
Theoretical predictions are shown to be in good agreement with experi-
mental data. Viscoplastic metallic circular plates subjected to impulsive
loading are considered by Zaera, Arias and Navarro (2002) making use of
various non-linear approximations of the actual yield surface.

Li and Jones (2000,a), also Hu (2000) used the dimensionless damage
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number D = ρV 2
0 /σ0 (where ρ is material density, V0 - initial velocity and

σ0 - yield sress) in order to assess the dynamic behaviour of plastic plates.
The dynamic plastic response number was generalized for spherical and
cylindrical shells by Shi and Gao (2001).

Li and Jones (2000,b) investigated the formation of a transverse shear
localization (shear hinge) in a structural element made of a ductile material
and subjected to transverse loading. A rigid-plastic beam element is con-
sidered in a greater detail. The current conclusions are applied to circular
plates and cylindrical shells.

Li and Huang (1989, 1990) considered the case of a simply supported
circular plate subjected to a uniformly distributed transverse pressure loa-
ding of rectangular shape. The basic equations established retain transverse
shear forces and bending moments for an arbitrary loading case. Theore-
tical solutions are given for a rectangular shaped pressure loading and the
effects of transverse shear and rotatory inertia are revealed in the compa-
risons with other solutions.

A theoretical study on the dynamic plastic response of aluminium alloy
and mild steel circular plates struck normally by blunt solid cylindrical
masses at the center of the plate is presented by Jones, Kim, Li (1997).
Different failure mechanisms which have been revealed in previous expe-
rimental studies on aluminium and mild steel plates are compared by the
proposed theory.

Dynamic bending of piece-wise non-homogeneous beams and circular
plates has been investigated under different assumptions by Lepik (1982),
Mazalov and Nemirovski (1973). The method of mode form motions sug-
gested by Martin and Symonds (see Martin (1975)) was used in the dynamic
plastic analysis of circular and annular plates by Lellep and Mürk (2003)
and of reinforced cylindrical tubes by Lellep and Sakkov (1996).

In the present study dynamic plastic response of beams, annular plates
and cylindrical shells is considered. The aim of the work is to investigate the
influence of shear forces on the dynamic behaviour of structural elements.
The attention is focused on beams and tubes with non-symmetrical end
conditions, also on annular plates with supported outer edge and free inner
edge.

Current study consists of the introduction and four chapters. In the in-
troduction review of existing literature in this area is presented. The mate-
rial presented in Chapter 1 is compiled on the basis of books by Chakrabarty
(2000), Jones (1989), Kaliszky (1989), Skrzypek and Hetnarski (1993). In
Chapters 2-4 corresponding papers of the author are presented; the paper
regarding to annular plates (Chapter 3) is in press.
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CHAPTER 1

Basic equations



In this chapter governing equations for investigation of the dynamic plastic
behaviour of beams, plates and shells are presented. When preparing the
material of this chapter the books by Jones (1989) etc where used.

1.1 Beams

1.1.1 Geometry of the beam

Let us consider beams of length l with different end conditions as shown in
Fig. 1.1-1.4.

1.1.2 Equilibrium equations

The equations of motion of the beam may be written as (Jones, 1989)

∂M

∂x
− Q = 0 (1.1)

∂Q

∂x
= m̄

∂2W

∂t2
− P.

Here M and Q stand for the bending moment and shear force, respectively.
Here P is the intensity of distributed transverse loading, whereas m̄ is the
mass per unit length of the beam and W is the transverse displacement.

When deriving (1.1) shear forces are retained in the analysis but the ro-
tatory inertia is neglected. The equilibrium equations will be solved making
use of appropriate boundary conditions. Boundary conditions are following.

1) In the case of a beam simply supported at both ends (Fig. 1.1) one
has

M(0, t) = M(l, t) = 0.

Kinematical boundary conditions are

W (0, t) = 0

if |Q(0, t)| 6= Q0 and

W (l, t) = 0

if |Q(l, t)| 6= Q0 where Q0 is the limit value of the shear force.
If
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Q(0, t) = ±Q0

or

Q(l, t) = ±Q0

then shear sliding takes place at supports and W (0, t) 6= 0, W (l, t) 6= 0.
2) In the case of a beam simply supported at the right end and fully

clamped at the left end (Fig. 1.2) one has

M(l, t) = 0, M(0, t) = −M0.

Kinematical boundary conditions are

W (0, t) = 0

if |Q(0, t)| 6= Q0 and

W (l, t) = 0

if |Q(l, t)| 6= Q0.
3) In the case of a beam fully clamped at both ends (Fig. 1.3) one has

M(0, t) = M(l, t) = −M0.

Kinematical boundary conditions are

W (0, t) = 0

if |Q(0, t)| 6= Q0 and

W (l, t) = 0

if |Q(l, t)| 6= Q0.
4) In the case of a beam fully clamped at the left end and free at the

right hand end (Fig. 1.4) one has

M(0, t) = −M0, M(l, t) = 0, Q(l, t) = 0.

Kinematical boundary conditions are

W (0, t) = 0

if |Q(0, t)| 6= 0.
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1.1.3 Strain components

In the classical bending theory the only deformation component is the cur-
vature of the middle line of the beam

κ = −∂
2W

∂x2
. (1.2)

However, if shear forces are taken into account then one has two components
- κ and γ where

γ =
∂W

∂x
+ ψ, κ =

∂ψ

∂x
. (1.3)

Here ψ is the rotation of an element of the center line due to bending only.
It can be easily seen from (1.2), (1.3) that when γ = 0, then ψ =

−∂W/∂x and κ is given by (1.2).

1.1.4 Principle of virtual work

Let the dissipation of the internal energy be denoted by Ḋint and the power
of external loads by Ḋext.

Evidently in the case of a distributed loading p(x, t) the rate of the
external work can be calculated as

Ḋext =
∫ l

0
(p− m̄

∂2W

∂t2
)Ẇdx. (1.4)

The internal energy rate can be defined as

Ḋint =
∫ l

0
(Mκ̇+Qγ̇)dx− (Mψ̇ +QẆ )|l0. (1.5)

The principle of virtual work states that for each body being in an
equilibrium state (Jones, 1989)

Ḋint = Ḋext. (1.6)

It appears that the principle of virtual work can be employed for deriving
strain rate components making use of equilibrium equations. Indeed, it
follows from (1.1) that

−∂M
∂x

+ Q = 0 (1.7)

−∂Q
∂x

+ m̄
∂2W

∂t2
− P = 0.
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Multiplying the first equation in (1.7) with ψ̇, the second with Ẇ and
integrating one obtains∫ l

0

{
(− ∂M

∂x
+Q)ψ̇ + (− ∂Q

∂x
+ m̄

∂2W

∂t2
− P )Ẇ

}
dx = 0.

Integrating by parts in the last equation yields

∫ l

0

{
M
∂ψ̇

∂x
+Q(ψ̇+

∂Ẇ

∂x
)
}
dt−(Mψ̇+QẆ )|l0 =

∫ l

0
(P−m̄∂2W

∂t2
)Ẇdx. (1.8)

Comparing (1.8) with (1.4)-(1.6) one obtains

κ̇ =
∂ψ̇

∂x
, γ̇ = ψ̇ +

∂Ẇ

∂x

as it was predicted by (1.3).

1.1.5 Yield surfaces and associated flow law

Various yield curves are suggested for plastic beams by different authors
(Fig. 1.5, 1.6). In Fig. 1.5 solid line 1 corresponds to Hodge (1981) yield
curve, solid line 2 to square yield curve, dot-dashed line to Heyman (1970),
dashed line to lower bound after Neal. Ing Fig. 1.6 solid line 1 corresponds
to the approximation be Ilyushin and Shapiro (1957), dot-dashed line to
Robinson (2000), dashed line to Drucker (1956), solid line 4 to Reckling
(Zyczkowski, 1981).

Drucker (1956) suggested the yield curve for a beam of rectangular
cross-section as

|M
M0

|+ (
Q

Q0
)4 − 1 = 0

whereas Landgraf (1968) developed a curve in the form

(
M

M0
)2 +

2
3
(
Q

Q0
)2 +

1
3
(
Q

Q0
)4 = 1.

Robinson (1973, 2000) examined various approximations of the exact yield
surface for beams and found that a reasonable approximation is

(
M

M0
)2 + (

Q

Q0
)2 = 1.

Heyman (1970) found for I-beams the yield curve
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M = M1 +
[
1− (

Q

Q0
)2
]
M2

where M1 +M2 = M0.
It was established by Jones (1989) that the yield condition in the form

of a square (Fig. 1.7) is a good approximation for engineering applications.
It will be used in the present paper.

Let the yield curve be in a general form as

Φ(M,Q) = 0.

According to the associated flow law the strain rate vector is directed
along the outward normal to the yield curve at regular points of the curve.
However, at a non-regular (Fig. 1.8) point the vector ~̇e must lie inside
the angle formed by normals to the curve in both sides intercecting at the
non-regular point. Thus

γ̇ = λ
∂Φ
∂Q

κ̇ = λ
∂Φ
∂M

where κ̇, γ̇ are corresponding strain rates and λ stands for a non-negative
scalar multiplier.

For instance, for the side Q = Q0 of the square (Fig. 1.7) it can be
easily obtained

γ̇ = λ, κ̇ = 0.

Similarily, for the side M = M0 one has

γ̇ = 0, κ̇ = λ.

Admissible directions of the strain rate vector ~̇e at non-regular points
of the yield curve are shown on Fig. 1.8.

1.2 Annular and circular plates

1.2.1 Geometry of the plate

Let us consider an annular plate of radius R and inner radius a as shown
in Fig. 1.9-1.10. The thickness of the plate is h.
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1.2.2 Equilibrium equations

Neglecting the effect of rotatory inertia one can present equations of equi-
librium of a plate element as (see Jones (1989))

∂

∂r
(rQr) = −pr + rµ

∂2W

∂t2
(1.9)

∂

∂r
(rMr) − Mθ + rQr = 0.

Here p stands for the intensity of a transverse loading.
1) In the case of a plate clamped at the outer edge and free at the inner

edge boundary conditions at the inner edge are

M(a, t) = 0, Qr(a, t) = 0. (1.10)

At the outer edge one has

W (R, t) = 0 (1.11)

if |Qr(R, t)| 6= Q0 and

M(R, t) = −M0 (1.12)

2) In the case of a plate simply supported at the outer edge one has

M(R, t) = 0

whereas the conditions (1.10) and (1.11) hold good as well.

1.2.3 Strain components

When shear deformations are neglected the strain rate components are

κ̇r = −∂
2W

∂r2
(1.13)

κ̇θ = −1
r

∂W

∂r
.

However, when shear forces are retained in the yield condition one has

γ̇ = ψ̇ +
∂Ẇ

∂r
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κ̇r =
∂ψ̇

∂r
(1.14)

κ̇θ =
ψ̇

r
.

1.2.4 Principle of virtual work

Similarily to the case of inelastic beams the principle of virtual work (1.6)
holds good in the case of plates and shells, as well. For annular plates the
rate of the work done by external forces can be defined as

Ḋext = 2π
∫ R

a
(p− µ

∂2W

∂t2
)Ẇ rdr. (1.15)

The dissipation of the internal energy is

Ḋint = 2π
∫ R

a
(Mrκ̇r +Mθκ̇θ +Qrγ̇)rdr − 2π(rMrψ̇ + rQrẆ )|ra. (1.16)

Multiplying equations (1.9) with Ẇ and ψ̇, respectively, after integra-
tion one obtains

2π
∫ R

a
{ − ∂Ẇ

∂r
Qr −Mr

∂ψ̇

∂r
−Mθ

ψ̇

r
−Qrψ̇}rdr + (1.17)

+ 2π
∫ R

a
(p− µ

∂2W

∂t2
)rdr + 2π(rQ

∂Ẇ

∂r
+ rMr

∂ψ̇

∂r
)|Ra = 0.

When comparing (1.17) with (1.6) and taking (1.15), (1.16) into account
one can see that the strain rate components have the form (1.14).

1.2.5 Yield condition

In the present study the yield surface in the form of a cube will be used.
However, in a general case a yield surface for axisymmetric plates can be
presented as

Φ(Mr,Mθ, Qr) = 0 (1.18)

provided membrane forces can be neglected. According to the associated
flow law at a regular point of the yield surface (Jones, 1989)
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κ̇r = λ
∂Φ
∂Mr

,

κ̇θ = λ
∂Φ
∂Mθ

, (1.19)

γ̇ = λ
∂Φ
∂Qr

,

where λ is a non-negative scalar multiplier. At non-regular points of the
yield surface the vector ~̇e = (κ̇r, κ̇θ, γ̇) lies inside the angle formed by nor-
mals to the adjacent parts of the surface.

1.3 Circular cylindrical shells

1.3.1 Geometry of the shell

Consider a circular cylindrical shell with different end conditions as shown
in Fig. 1.11-1.12.

1.3.2 Equilibrium equations

Neglecting rotatory inertia effects the dynamic equilibrium equations for a
shell element may be written in the form

∂Mx

∂x
+ Q = 0, (1.20)

∂Q

∂x
− Nθ

R
+ p− µ

∂2W

∂t2
= 0.

Here M and Q stand for the bending moment and shear force, respectively.
The quantity N is the circumferential membrane force, R is the radius of
the middle surface, whereas µ is the mass per unit length of the shell and
W is the transverse displacement.

The equilibrium equations will be solved making use of boundary con-
ditions and these are following.

1) In the case of a shell simply supported at both ends one has

Mx(0, t) = Mx(l, t) = 0.

Kinematical boundary conditions are

W (0, t) = 0
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if |Q(0, t)| 6= Q0 and

W (l, t) = 0

if |Q(l, t)| 6= Q0. The quantity Q0 is the limit value of the shear force.
If

Q(0, t) = ±Q0

or

Q(l, t) = ±Q0

then shear sliding takes place at supports and W (0, t) 6= 0, W (l, t) 6= 0.
2) In the case of a shell fully clamped at both ends (Fig. 1.11) one has

Mx(0, t) = Mx(l, t) = M0.

Kinematical boundary conditions are

W (0, t) = 0

if |Q(0, t)| 6= Q0 and

W (l, t) = 0

if |Q(l, t)| 6= Q0.
3) In the case of a shell simply supported at the left hand end and fully

clamped at the right end one has

Mx(0, t) = 0, Mx(l, t) = M0

.
Kinematical boundary conditions are

W (0, t) = 0

if |Q(0, t)| 6= Q0 and

W (l, t) = 0

if |Q(l, t)| 6= Q0.
4) In the case of a shell fully clamped at the left end and free at the

right hand end (Fig. 1.12) one has

Mx(0, t) = M0, Mx(l, t) = 0, Q(l, t) = 0.

Kinematical boundary condition is
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W (0, t) = 0

if |Q(0, t)| 6= Q0.

1.3.3 Strain components

In the classical bending theory the deformation components are

κx =
∂2W

∂x2
, εθ =

W

R

When the shear forces are taken into account then the deformation
components are

γ =
∂W

∂x
− ψ, εθ =

W

R
, κx =

∂ψ

∂x
.

1.3.4 Principle of virtual work

Similarily to the case of inelastic beams the principle of virtual work (1.6)
holds good in the case of shells. For circular cylindrical shells the rate of
the external work can be defined as

Ḋext =
∫ l

0
(p− µ

∂2W

∂t2
)2πRdx. (1.21)

The internal energy rate can be defined as

Ḋint =
∫ l

0
(Qγ̇ +Mxκ̇x +Nθε̇θ)2πRdx− (Mxψ̇ +QẆ )|l02πR. (1.22)

Multiplying the equilibrium equations (3.1) with ψ̇ and Ẇ , respectively
and integrating by parts one obtains

2πR

(∫ l

0
(Mx

∂ψ̇

∂x
+Q(ψ̇ +

∂Ẇ

∂x
)−Nθ

∂Ẇ

R
)dx−

− (Mxψ̇ +QẆ )|l0

)
= 2πR

∫ l

0
(p− µ

∂2W

∂t2
)Ẇdx. (1.23)

Comparing the last equation (1.23) with (1.21) and (1.22) one obtains
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κ̇x =
∂ψ̇

∂x

γ̇ =
∂Ẇ

∂x
− ψ̇ (1.24)

ε̇θ =
Ẇ

r
.

1.3.5 Yield surface and associated flow law

In the present study the yield surface is presented in the form of a cube
(Fig. 1.13) when shear forces are taken into account. This approach was
suggested by Jones (1989) and it was used by many researches.

The associated flow law is similar to that discussed in the case of axi-
symmetric plates.

If, for instance, the equation of the yield surface is

Φ(Mx, Nθ, Q) = 0

then at regular points of the surface

κ̇x = λ
∂Φ
∂Mx

ε̇θ = λ
∂Φ
∂Nθ

γ̇ = λ
∂Φ
∂Q

.

Consider the particular case of the yield surface in the form of a cube (Fig.
1.13).

If the stress state corresponds to the plane

Nθ = N0

then one has

κ̇x = 0, γ̇ = 0, ε̇θ ≥ 0,

provided the current point is located in the internal region of this face.
At the edge of the cube the direction of the strain rate vector is not

unique, as in the case of plates.
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Figure 1.1: Simply supported beam.

Figure 1.2: supported at the right end and fully clamped at the left end beam.

Figure 1.3: Fully clamped beam.

Figure 1.4: Cantilever beam.
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Figure 1.5: Approximations of the yield condition.

Figure 1.6: Comparison of yield curves
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Figure 1.7: Square yield condition.

Figure 1.8: Associated flow law.

Figure 1.9: Plate clamped at the outer edge.

Figure 1.10: Plate simply supported at the outer edge.
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Figure 1.11: Fully clamped circular cylindrical shell.

Figure 1.12: Cantilever cylindrical shell.

Figure 1.13: Cubic yield condition.
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Shear and bending response of a rigid-plastic
beam subjected to impulsive loading

J. Lellep and K. Torn

Institute of Applied Mathematics, University of Tartu,
Tartu, 50409, 2 Liivi str., Estonia

Abstract

The dynamic response of a rigid-plastic beam is considered. The beam is
subjected to the initial impulsive loading. Plastic yielding of the material in
controlled by the square yield criterion which retains the transverse shear
force as well as the bending moment. The beam under consideration is
clamped at the left and simply supported at the right hand end.

Keywords:
Beam; Impulsive loading; Dynamic plasticity: Shear forces

Nomenclature

l - length of the beam
m = M/M0 - non-dimensional moment
m̄ - mass per unit length
t - time
uf

i - final displacements
v0 - initial velocity
w = M0W/m̄v

2
0l

2 - non-dimensional displacement
ẇ0, ẇ1, ẇ2 - transverse velocities
ẅ0, ẅ1, ẅ2 - accelerations
x - coordinate
K0 - kinetic energy
M - bending moment
M0 - yield moment
P - distributed loading
Q - shear force
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Q0 - limit value of shear force
Ti - surface tractions
W - displacement
Wf - residual deflection
β1 = 6/ν - stationary hinge
β2 = 1− 3/ν - stationary hinge
γ - transverse shear
η, η1, η2 - travelling hinges
ν = Q0l/M0 - parameter
ξ = x/l - non-dimensional coordinate
ξ0, ξ∗ - fixed points
τ = M0t/m̄v0l

2 - new time-variable
τ1, τ2, τ3, τ4 - moments of time
ψ - rotation angle

2.1 Introduction

It appeared that the transverse shear forces can exercise an important role
in the dynamic plastic behaviour of beams, plates and shells as discussed by
Jones [1, 2], Stronge and Yu [3] and others. The influence of the transverse
shear on the dynamic behaviour of rigid-plastic beams has been studied by
several authors. Symonds [4] has examined the influence of shear forces on
the plastic response of an infinitely long beam struck by a mass travelling
with an initial velocity. In [4] a fully clamped beam of finite length that is
subjected to an impulsive pressure loading has been studied also. Nonaka
[5, 6] has presented the solutions for simply supported beams subjected
to uniformly distributed blast pressure loading. Nonakas results were ex-
tended to the case when the blast pressure loading is uniformly distributed
over a portion of the span by Jones and Song [7]. Nine different patterns
of motion are obtained whereas the cases of rectangular, triangular and
exponential pulse loadings are examined. Theoretical solutions for fully
clamped beams subjected to the blast pressure loading are presented by Li
and Jones [8].

In these studies the bending moment as well as the transverse shear force
are retained in the yield curve which is presented as a square yield curve.
The accuracy of this approximation of the yield condition is discussed by
de Oliveira and Jones [9] on the basis of I-beams.

The influence of the rotatory inertia and transverse shear forces on the
dynamic plastic response of rigid-plastic beams has been examined by Jones
and de Oliveira [10, 11]. Jones [12] has demonstrated that the simple
bound theorems which were developed for rigid-plastic continua provide
excellent estimates of the response durations and permanent displacements
of impulsively loaded beams, circular plates and cylindrical shells when
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transverse shear effects are taken into account.
Jones and de Oliveira [13], also Li and Jones [14] have studied the

plastic response of cylindrical shells to impulsive and blast loadings. The
influence of transverse shear effects on the behaviour of circular plates was
investigated by Jones and de Oliveira [15] and by Li and Jones [16].

In the investigations cited above the both ends of the beams under
considerations are simply supported or fully clamped, respectively. In the
present study dynamic plastic response of beams clamped at left ends and
simply supported at right hand ends will be investigated. The influence of
the transverse shear is retained in the yield condition.

2.2 Basic equations

Let us consider a beam of length l fully clamped at the left end and simply
supported at the right end as shown in Fig. 2.1.

When rotatory inertia is neglected the equations of motion of the beam
may be written as

∂M

∂x
− Q = 0, (2.1)

∂Q

∂x
= m̄

∂2W

∂t2
− P

where M and Q stand for the bending moment and shear force, respec-
tively. Here P is the intensity of the distributed transverse loading whereas
m̄ stands for mass per unit length of the beam and W is the transverse
displacement.

Since we shall consider the case of an impulsive loading of the beam one
can take P = 0 in (2.1) whereas the initial impulsive velocity is v0.

The total slope of the axis of the beam is

∂W

∂x
= ψ + γ

as shown in [1, 2]. Here ψ is the rotation of line elements along the center
line due to bending and γ is the transverse shear strain.

The continuity requirements at a discontinuity interface have been dis-
cussed by Jones [1], Symonds [4] and others. When rotatory inertia is
neglected but transverse shear effects are retained in the basic equations
then the bending moment and shear force are continuous at travelling and
stationary bending hinges as well as at shear slides [1]. However, the trans-
verse displacement and displacement velocity are continouous at the ben-
ding hinges not at the shear slides.
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The square yield curve presented in Fig. 2.2 will be used in the sub-
sequent theoretical analysis. A detailed discussion on the accuracy of the
square yield criterion is given by Jones and de Oliveira [9].

It appears to be convenient to use the following non-dimensional quan-
tities

ξ =
x

l
, m =

M

M0
, q =

Q

Q0
, (2.2)

w =
M0W

m̄v2
0l

2
, τ =

M0t

m̄v0l2
, ν =

Q0l

M0

where M0 and Q0 stand for the fully plastic capacity of a cross-section when
subjected to a bending moment or transverse shear force, respectively.

Making use of the non-dimensional quantities the equilibrium equations
(2.1) may be presented in the form

m′ = νq, q′ =
1
ν
ẅ (2.3)

where primes denote differentiation with respect to ξ and dots with respect
to τ . Evidently w = w(ξ, τ) and

w(ξ, 0) = 0, ẇ(ξ, 0) = 1.

2.3 Theoretical solution for the beam subjected
to an impulsive velocity

It turns out that the pattern of initial motion of the beam depends on the
parameter ν as it might be expected (see Refs [1, 2, 8]).

2.3.1 Case I

2.3.1.1 First phase of motion

If ν ≥ 1 and ν ≤ ν2 where ν is defined by (2.2) then the plastic response
of the beam is governed by shear effects. It will be shown later that ν2 =
5.6166. The results are independent of rotatory inertia.

During the first phase shear sliding occurs at the supports. The trans-
verse velocity distribution for this phase is presented in Fig. 2.3. According
to Fig. 2.3 ψ = 0 and the transverse velocity may be written as

ẇ = ẇ1 + (ẇ2 − ẇ1)ξ. (2.4)

Here the quantities ẇ1 and ẇ2 depend only on τ . Thus the acceleration is
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ẅ = ẅ1 + (ẅ2 − ẅ1)ξ, (2.5)

where ẅ1 and ẅ2 stand for the accelerations at the end points of the beam.
Substituting (2.5) in (2.3) and integrating with respect to the coordinate

ξ under the conditions q(0, τ) = 1, q(1, τ) = −1 one obtains

q =
1
ν
ẅ1ξ +

1
2ν

(ẅ2 − ẅ1)ξ2 + 1 (2.6)

and

1
ν
ẅ1 +

1
2ν

(ẅ2 − ẅ1) + 1 = −1. (2.7)

Making use of (2.6) and integrating the first equation in (2.3) leads to
the relation

m =
ẅ1

2
ξ2 +

1
6
(ẅ2 − ẅ1)ξ3 + νξ − 1, (2.8)

where the boundary condition m(0, τ) = −1 is taken into account. Since
bending moment must vanish at the simply supported end at ξ = 1 accor-
ding to (2.8) one has

1
2
ẅ1 +

1
6
(ẅ2 − ẅ1) + ν − 1 = 0. (2.9)

The set of equations (2.7), (2.9) may be solved with respect to the
quantities ẅ1 and ẅ2. After certain algebraic transformations one easily
obtains

ẅ1 = −2ν + 6 (2.10)

and

ẅ2 = −2ν − 6. (2.11)

According to the initial condition ẇ(ξ, 0) = 1 one has

ẇ1(0) = 1, ẇ2(0) = 1. (2.12)

Since the beam is straight at the initial moment and shear sliding has not
taken place yet one has

w1(0) = 0, w2(0) = 0. (2.13)

Integrating the equations (2.10) and (2.11) twice with respect to τ and
satisfying the requirements (2.12), (2.13) one eventually obtains
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ẇj(τ) = ẅjτ + 1 (2.14)

and

wj(τ) =
1
2
ẅjτ

2 + τ (2.15)

where the index j takes the values 1 and 2.
Evidently the first phase of motion ends when ẇ2 vanishes. Let this

happen at τ = τ1. Thus it follows from (2.10), (2.11), (2.14), (2.15) that

τ1 =
1

2(ν + 3)
(2.16)

and

ẇ1(τ1) =
6

ν + 3
, w1(τ1) =

ν + 9
4(ν + 3)2

. (2.17)

Displacement at the right hand end of the beam becomes at the end of the
first phase

w2(τ1) =
1

4(ν + 3)
. (2.18)

2.3.1.2 Second phase of motion

During the second phase of motion shear sliding continues at the clamped
edge and no shear occurs at the simply supported edge. Corresponding
velocity distribution is depicted in Fig. 2.4. Thus the relations (2.4), (2.5),
(2.6) and (2.8) hold good in the present case, provided ẇ2 = ẅ2 = 0. Since
q(1, τ) 6= −1 and m(1, τ) = 0 instead of (2.7) and (2.11) one has now a
single equation

ẅ1 = 3(−ν + 1). (2.19)

Integrating (2.19) with respect to τ and taking (2.17) into account leads
to the relations

ẇ1 = 3(1− ν)(τ − τ1) +
6

ν + 3
(2.20)

and

w1 =
3
2
(1− ν)(τ − τ1)2 +

6
ν + 3

(τ − τ1) +
ν + 9

4(ν + 3)2
. (2.21)

The shear sliding at the left end of the beam ceases at the time τ = τ2
when ẇ1(τ2) = 0. According to (2.20)
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τ2 = τ1 +
2

(ν − 1)(ν + 3)
. (2.22)

Making use of (2.21), (2.22) one can find the maximal residual displace-
ment at the clamped edge

w1(τ2) =
(ν − 1)(ν + 9) + 24
4(ν − 1)(ν + 3)2

. (2.23)

The case I takes place for such values of the parameter ν for which the
bending moment does not exceed unity. It can be seen from (2.10) that if
ν ≥ 3 then ẅ1 ≤ 0 in the present case.

It follows from (2.8)-(2.11) that the maximum of bending moment du-
ring the first phase is located at the point

ξ0 =
1
6
(3− ν +

√
9 + ν2). (2.24)

Making use of (2.8), (2.10), (2.11) and (2.24) one can check that the
inequality m(ξ, τ) ≤ 1 is satisfied if m(ξ0, τ) ≤ 1, or

1
3
ν4 − 2ν3 + 3ν2 − 72 ≤ 0, (2.25)

e.g. for ν ≤ ν2 where ν2 = 5.6166.

2.3.2 Case II

2.3.2.1 First phase of motion

Assume that now ν > ν2. During the first phase of motion shear sliding
occurs at the both ends of the beam. At ξ = ξ∗ a stationary plastic hinge
is located (Fig. 2.5). Thus the velocity distribution may be presented as

ẇ =
1
ξ∗

[ẇ1(ξ∗ − ξ) + ẇ0ξ] (2.26)

for ξ ∈ [0, ξ∗] and

ẇ =
1

1− ξ∗
[ẇ2(ξ − ξ∗) + ẇ0(1− ξ)] (2.27)

for ξ ∈ [ξ∗, 1].
The set of equilibrium equations (2.3) will be integrated separately in

the regions [0, ξ∗] and [ξ∗, 1], respectively, defining preliminarily the acce-
lerations according to (2.26) and (2.27). For ξ ∈ [0, ξ∗] the equations of
motion (2.3) give
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q =
ẅ1

ν
ξ +

ẅ0 − ẅ1

2νξ∗
ξ2 + 1 (2.28)

and
m =

ẅ1

2
ξ2 +

ẅ0 − ẅ1

6ξ∗
ξ3 + νξ − 1. (2.29)

When deriving (2.28) and (2.29) boundary conditions q(0, τ) = 1 and
m(0, τ) = −1 are taken into account.

Similarily one eventually obtains for ξ ∈ [ξ∗, 1]

q =
1
ν
ẅ2(ξ − 1) +

ẅ0 − ẅ2

2ν(ξ∗ − 1)
(ξ − 1)2 − 1 (2.30)

and
m =

1
2
ẅ2(ξ − 1)2 +

ẅ0 − ẅ2

6(ξ∗ − 1)
(ξ − 1)3 − ν(ξ − 1). (2.31)

Evidently, (2.30), (2.31) meet the requirements q(1, τ) = −1 andm(1, τ) =
0. Since bending moment has its maximum at ξ = ξ∗ the requirements
q(ξ∗, τ) = 0, m(ξ∗, τ) = 1 have to be satisfied also. The latters with (2.28)-
(2.31) give respectively

ẅ1 = −4ν
ξ∗

+
12
ξ2∗
, (2.32)

ẅ0 =
2ν
ξ∗
− 12
ξ2∗

and

ẅ2 =
4ν

(ξ∗ − 1)
+

6
(ξ∗ − 1)2

, (2.33)

ẅ0 = − 2ν
(ξ∗ − 1)

− 6
(ξ∗ − 1)2

.

Due to uniqueness of the acceleration ẅ0 it follows from (2.32) and
(2.33) that ξ∗ must satisfy the equation

2νξ3∗ − 3(1 + ν)ξ2∗ + (ν + 12)ξ∗ − 6 = 0. (2.34)

Numerical values of the quantity ξ∗ are presented for several values of the
parameter ν in Table 2.1. It may be seen from Table 1 that ξ∗ > 1/2 for
each value of ν.

According to (2.32), (2.33) ẅj = const, where j = 0, 1, 2. Thus the
velocities and displacements may be presented by (2.14) and (2.15) where
the appropriate initial conditions are taken into account.

40



The first phase of motion ends at the moment τ = τ1 when ẇ2(τ1) = 0.
Therefore (2.14) leads to the durability of the first phase

τ1 =
(1− ξ∗)2

4ν(1− ξ∗)− 6
. (2.35)

At the final moment of the first phase according to (2.32)-(2.35) one has

ẇ0(τ1) =
(2ν
ξ∗
− 12
ξ2∗

)
τ1 + 1,

w0(τ1) =
( ν
ξ∗
− 6
ξ2∗

)
τ2
1 + τ1, (2.36)

ẇ1(τ1) =
(−4ν
ξ∗

+
12
ξ2∗

)
τ1 + 1,

w1(τ1) =
(−2ν
ξ∗

+
6
ξ2∗

)
τ2
1 + τ1,

and
w2(τ1) =

( 2ν
ξ∗ − 1

+
3

(ξ∗ − 1)2
)
τ2
1 + τ1. (2.37)

Note that the relations (2.36), (2.37) serve for the next phase of motion as
initial conditions for appropriate displacements and velocities.

2.3.2.2 Second phase of motion

During the second phase of motion the plastic hinge which is located at
ξ = ξ∗ when the first phase ends moves towards the clamped end. Corres-
ponding distribution of velocities is presented in Fig. 2.6. Thus

ẇ =
1
η
[ẇ1(η − ξ) + ẇ0ξ] (2.38)

for ξ ∈ [0, η] and

ẇ = ẇ0
ξ − 1
η − 1

(2.39)

for ξ ∈ [η, 1].
Differentiating (2.38) and (2.39) with respect to time one easily obtains

the acceleration

ẅ = ẅ1 + (ẅ0 − ẅ1)
ξ

η
− η̇

η2
(ẇ0 − ẇ1)ξ (2.40)

for ξ ∈ [0, η] and
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ẅ = ẅ0
ξ − 1
η − 1

− ẇ0(ξ − 1)
(η − 1)2

η̇ (2.41)

for ξ ∈ [η, 1].
Substituting (2.40) in (2.3) and integrating with respect to ξ leads to

relations

q =
ẅ1

ν
ξ + (ẅ0 − ẅ1)

ξ2

2νη
− η̇

2νη2
(ẇ0 − ẇ1)ξ2 + 1 (2.42)

and

m =
1
2
ẅ1ξ

2 + (ẅ0 − ẅ1)
ξ3

6η
− η̇

6η2
(ẇ0 − ẇ1)ξ3 + νξ − 1 (2.43)

for ξ ∈ [0, η], where the conditions q(0, τ) = 1 and m(0, τ) = −1 are met.
Making use of (2.41) similarily one obtains for ξ ∈ [η, 1]

q =
1
ν

[ ẅ0

η − 1
− ẇ0η̇

(η − 1)2
](1

2
ξ2 +

1
2
− ξ

)
+A (2.44)

and

m =
1
6

[ ẅ0

η − 1
− ẇ0η̇

(η − 1)2
]
(ξ − 1)3 + ν(ξ − 1)A (2.45)

whereA is an unknown constant. In (2.45) the boundary conditionm(1, τ) =
0 is taken into account.

Satisfying the requirements q(η, τ) = 0, m(η, τ) = 1 one can get from
(2.42)-(2.45)

ẅ1η + (ẅ0 − ẅ1)
η

2
− η̇

2
(ẇ0 − ẇ1) + ν = 0,

1
2ν

( ẅ0

η − 1
− ẇ0η̇

(η − 1)2
)
(η − 1)2 +A = 0, (2.46)

1
2
ẅ1η

2 +
1
6
(ẅ0 − ẅ1)η2 − 1

6
η̇η(ẇ0 − ẇ1) + νη − 2 = 0,

1
6

( ẅ0

η − 1
− ẇ0η̇

(η − 1)2
)
(η − 1)3 + ν(η − 1)A− 1 = 0.

It easily follows from (2.46) that

A =
3

2ν(η − 1)
(2.47)
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and

η̇ =
2(η − 1)(ν − 6

η ) + 3η
η−1

ηẇ0 − (ẇ1 − ẇ0)(1− η)
,

ẅ0 = − 3
(1− η)2

+
ẇ0η̇

η − 1
, (2.48)

ẅ1 = −4ν
η

+
12
η2
.

The system of equations (2.48) is to be integrated numerically under the
initial conditions (2.36) and η(τ1) = ξ∗. Integrating the set (2.48) at the
time interval [τ1, τ2] one obtains the values w0(τ2), ẇ0(τ2), w1(τ2), η(τ2)
which serve as the initial values of corresponding variables for the next
phase of motion.

The second phase of motion ends at the moment when the non-stationary
hinge at ξ = η disappears. Thus the velocity field becomes that depicted
in Fig. 2.4 and

ẇ0(τ2) = ẇ1(τ2)(1− η(τ2)). (2.49)

The condition (2.49) with the solution of (2.48) enables to define the final
moment τ2 of the second phase.

2.3.2.3 Third phase of motion

During the third phase the motion of the beam corresponds to triangular
velocity pattern (Fig. 2.4). This type of motion was considered earlier
(case I, second phase of motion). Thus the relation (2.19) holds good in
the present case and

ẇ1 = 3(1− ν)(τ − τ2) + ẇ1(τ2), (2.50)

w1 =
3
2
(1− ν)(τ − τ2)2 + ẇ1(τ2)(τ − τ2) + w1(τ2).

The third phase ends when motion stops, e.g. ẇ(τ3) = 0. Evidently,
according to (2.50)

τ3 = τ2 +
ẇ1(τ2)

3(ν − 1)
and

w1(τ3) = −1
2
ẇ2

1(τ2)
ẅ1

+ w1(τ2).
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Statical admissibility of the stress state can be evaluated numerically.
Calculations carried out showed that the bending moment satisfies the re-
quirement |m| ≤ 1, if ν2 ≤ ν ≤ ν3 where ν3 = 6.45.

2.3.3 Case III

2.3.3.1 First phase of motion

The first phase of motion coincides completely with that corresponding to
the case II. Thus the relations (2.26)-(2.37) hold good in the present case,
as well.

2.3.3.2 Second phase of motion

The second phase of motion is also similar to the case 2.3.2.2. Thus the
formulae (2.38)-(2.49) remain valid in the present case also. However, the
second phase terminates now at the moment when the sliding stops at the
clamped end of the beam. Thus at the final moment of the second phase
ẇ1(τ2) = 0.

2.3.3.3 Third phase of motion

Now the deformation of the beam takes place with a single moving hinge
located at ξ = η (Fig. 2.7). Thus the velocity distribution is specified by

ẇ =
1
η
ẇ0ξ (2.51)

for ξ ∈ [0, η] and by (2.39) for ξ ∈ [η, 1]. Accelerations are defined by

ẅ = ẅ0
ξ

η
− ẇ0η̇

η2
ξ (2.52)

for ξ ∈ [0, η] and by (2.41) for ξ ∈ [η, 1].
Substituting (2.41) and (2.52) in (2.3) and integrating twice with respect

to ξ leads to the bending moment

m =
( ẅ0

η
− ẇ0η̇

η2

)(ξ3
6
− η3

6
− η2

2
(ξ − η)

)
+ 1 (2.53)

for ξ ∈ [0, η] and

m =
1

(η − 1)2
(ẅ0(η−1)−ẇ0η̇)

(ξ3
6
− η3

6
− η2

2
(ξ−η)− 1

2
(ξ−η)2

)
+1 (2.54)
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for ξ ∈ [η, 1]. In (2.53), (2.54) the requirements m′(η, τ) = 0, m(η, τ) = 1
are taken into account. Taking m(0, τ) = −1 and m(1, τ) = 0 in (2.53) and
(2.54), respectively, leads to a set of differential equations which may be
presented as

ẅ0 = 3
(−2
η
− 1

1− η

)
(2.55)

η̇ =
−3
ẇ0

(2(η − 1)
η

− η

1− η

)
.

The system of equations (2.55) is integrated numerically. This phase of
motion ends at the moment τ = τ3 when η(τ3) = β, where β =

√
2/(1+

√
2).

When integrating (2.55) one can find the values w0(τ3) and ẇ0(τ3) which
serve as initial conditions for the next phase of motion.

2.3.3.4 Fourth phase of motion

During this phase the plastic hinge is stationary, e.g. η = β = const. Now
the velocity pattern remains the same as presented in Fig. 2.7. However,
accelerations are defined as

ẅ =
ẅ0

β
ξ (2.56)

for ξ ∈ [0, β] and

ẅ = ẅ0
ξ − 1
β − 1

(2.57)

for ξ ∈ [β, 1].
Integrating the equations of motion taking (2.56) and (2.57) into account

one obtains

ẅ0 = − 6
β2
. (2.58)

It follows from (2.58) that the displacement takes the form

w0(τ) = −3
2
(1 +

√
2)2(τ − τ3)2 + ẇ0(τ3)(τ − τ3) + w0(τ3). (2.59)

The motion of the beam ceases at the moment τ = τ4 when ẇ0(τ4)
vanishes. Thus the maximal displacement may be presented as

w0(τ4) =
1

6(1 +
√

2)2
(ẇ0(τ3))2 + w0(τ3). (2.60)
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In (2.59) and (2.60) the quantities w0(τ3) and ẇ0(τ3) are the values of the
solution of the system (2.55) at τ = τ3.

2.3.4 Case IV

2.3.4.1 First phase of motion

If ν ≥ ν4, where ν4 = 9 then the motion of the beam takes place during five
stages. In the first phase of motion shear sliding occurs at the supports.
The corresponding transverse velocity distribution is presented in Fig. 2.8.
Here β1 and β2 stand for locations of stationary plastic hinges. Thus

ẅ = ẅ1
β1 − ξ

β1
(2.61)

for ξ ∈ [0, β1] and

ẅ = ẅ2
β2 − ξ

β2 − 1
(2.62)

for ξ ∈ [β2, 1]. Evidently, ẇ ≡ 1 if ξ ∈ [β1, β2].
Substituting (2.61) in the equations of motion and integrating with res-

pect to ξ one obtains for ξ ∈ [0, β1]

q =
ẅ1

ν
ξ − ẅ1

2νβ1
ξ2 + 1 (2.63)

and
m =

ẅ1

2
ξ2 − ẅ1

6β1
ξ3 + νξ − 1 (2.64)

where the conditions q(0, τ) = 1 and m(0, τ) = −1 are taken into account.
Making use of the accelerations (2.62) and boundary conditions q(1, τ) =

−1, m(1, τ) = 0 one can similarily obtain for ξ ∈ [β2, 1]

q =
1
ν
ẅ2(ξ − 1)− ẅ2

2ν(β2 − 1)
(ξ − 1)2 − 1 (2.65)

and
m =

ẅ2

2
(ξ − 1)2 − ẅ2

6(β2 − 1)
(ξ − 1)3 − ν(ξ − 1). (2.66)

Satisfying the requirements q(β1, τ) = 0, q(β2, τ) = 0, m(β1, τ) = 1,
m(β2, τ) = 1 in (2.62)-(2.66) leads to the relations

ẅ1 = −4ν
β1

+
12
β2

1

(2.67)

ẅ2 =
4ν

β2 − 1
+

6
(β1 − 1)2
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and

β1 =
6
ν
, β2 = 1− 3

ν
. (2.68)

It immediately follows from (2.68) that β1 ≤ β2, if ν ≥ 9. Therefore,
ν4 = 9.

The first phase of motion ends at the moment τ = τ1 when ẇ2(τ1) = 0.
Since ẅ1 = const, ẅ2 = const one can integrate the equations (2.67) twice
with respect to time. Making use of the appropriate initial conditions one
easily obtains

ẇ1(τ1) =
4
β1

(
− ν +

3
β1

)
τ1 + 1,

w1(τ1) =
2
β1

(
− ν +

3
β1

)
τ2
1 + τ1, (2.69)

w2(τ1) =
1

(β2 − 1)

(
2ν +

3
(β2 − 1

)
τ2
1 + τ1,

whereas

τ1 =
(1− β2)2

4ν(1− β2)− 6
. (2.70)

2.3.4.2 Second phase of motion

During the second phase of motion the plastic hinge being stationary at
ξ = β2 during the first phase moves towards the center of the beam. The
plastic hinge at ξ = β1 remains stationary (Fig. 2.9).

Thus for ξ ∈ [η2, 1] the accelerations becomes as

ẅ = − η̇2

(η2 − 1)2
(ξ − 1). (2.71)

Substituting (2.71) in (2.2) leads to the bending moment

m = − η̇2

6(η2 − 1)2
[(ξ − 1)3 − 3(η2 − 1)2(ξ − 1)]. (2.72)

Taking m(η2) = 1 one obtains

η̇2(η2 − 1) = 3. (2.73)

Integrating (2.73) under the initial condition η2(τ1) = β2 leads to the rela-
tion
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η2 = 1−
√

6(τ − τ1) +
9
ν2
. (2.74)

However, the equations obtained for the region (0, β1) for the first phase
of motion remain valid for this stage also. Therefore ẅ1 = −ν2/3 and

ẇ1 = −ν
2

3
τ + 1,

w1 = −ν
2

6
τ2 + τ. (2.75)

The second phase of motion ends at the moment when η2(τ2) = β1.
This condition with (2.68) and (2.74) gives the final moment of this phase

τ2 =
1

6ν2
(ν − 6)2. (2.76)

2.3.4.3 Third phase of motion

This phase of motion is similar to the second phase for case III. Now the
velocity pattern is presented in Fig. 2.6 where η2 = η. Thus the relations
(2.38)-(2.48) obtained above remain valid for this stage of motion. The
quantities η, w0 and w1 may be obtained when integrating the system
(2.48) numerically. This phase of motion ends at τ = τ3 when ẇ1(τ3) = 0.

2.3.4.4 Fourth phase of motion

During this phase of motion the velocity pattern is prescribed with single
moving hinge (Fig. 2.7). This type of motion has been studied considering
the third phase of motion in the case III. Thus the formulae (2.51)-(2.55)
remain valid for the present case also.

2.3.4.5 Fifth phase of motion

The final phase of motion takes place with the stationary plastic hinge
located at η =

√
2/(1 +

√
2). This phase of motion corresponds to the

fourth phase in case III. So the relations (2.56)-(2.60) remain valid provided
τ3 and τ4 are substituted with τ4 and τ5, respectively.

Making use of (2.63)-(2.68) one can show that |m| ≤ 1. Thus the
solution is statically admissible. Case IV takes place if ν ≤ ν = 6 + 3

√
2.
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2.3.5 Case V

2.3.5.1 First phase of motion

If ν > 6+3
√

2 then the motion of the beam may be divided into five stages
like in the previous case. Moreover, the first phase of motion coincides with
that studied in the case IV (Fig. 2.8). Thus the formulae (2.61)-(2.70) hold
good in the present case also.

2.3.5.2 Second phase of motion

Now the velocity distribution corresponds to Fig. 2.9 where we have a mo-
ving plastic hinges at ξ = η2 and a stationary hinge at ξ = β1. The central
part of the beam has constant velocity ẇ0 = 1 as in case IV. Therefore the
relations (2.71)-(2.75) remain valid in the present case.

However, in the present case the second phase of motion terminates at
τ = τ2 when ẇ1(τ2) = 0. Thus at the final moment of this stage according
to (2.74) and (2.70)

η2(τ2) = 1− 3
2

√
2. (2.77)

It follows from (2.68), (2.75) and (2.77) that

τ2 =
3
ν2

(2.78)

and

w1(τ2) =
3

2ν2
. (2.79)

2.3.5.3 Third phase of motion

When the transverse shear motion at the clamped end of the beam ceases
then the plastic hinge located during the second phase at ξ = β1 becomes
non stationary. Corresponding velocity distribution is depicted in Fig. 2.10.
Here, both, η1 and η2 stand for moving hinges.

According to Fig. 2.10 for ξ ∈ [0, η1] one has

ẅ = − η̇1

η2
1

ξ. (2.80)

Substituting (2.80) in (2.2) and integrating with appropriate boundary con-
ditions one obtains

η̇1 =
6
η1
. (2.81)
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Integrating (2.81) with respect to time and satisfying the initial condition
η1(τ2) = β1 leads to the relation

η1 =
√

12(τ − τ2) +
36
ν2
. (2.82)

Evidently, for ξ ∈ [η2, 1] the acceleration field is given by (2.71). Thus
the relations (2.71)-(2.74) derived earlier hold good in the present case also.

The third phase of motion terminates at τ = τ3 when η1(τ3) = η2(τ3).
Making use of (2.68), (2.70), (2.74) and (2.82) one can state that

τ3 =
1
2
−
√

2
3
. (2.83)

2.3.5.4 Fourth phase of motion

In this phase of motion the velocity pattern is presented in Fig. 2.7 (tri-
angular velocity field with single moving hinge). Thus this phase coincides
with the fourth phase of motion studied in the case IV.

2.3.5.5 Fifth phase of motion

Evidently, this phase of motion coincides with the fifth phase in the case
IV.

2.4 Discussion

The results of calculations are presented in Table 2.1 and Fig. 2.11-2.17.
In Table 2.1 the values of ξ0 and ξ∗ are presented for different values of the
parameter ν.

Bending moment and shear force are depicted in Fig. 2.11-2.13 corres-
ponding to case I, case II and case V, respectively. Calculations carried out
showed that m and q do not exceed the limit values.

The displacements w0, w1 and w2 as functions of time are presented in
Fig. 2.14 and 2.15. Fig. 2.14 corresponds to the case I whereas Fig. 2.15
is associated with the case III. Solid lines in Fig. 2.14, 2.15 correspond to
theoretical and numerical predictions obtained in the present paper; the
dashed line in Fig. 2.16 presents an upper bound on displacements [1, 12].

The results in Fig. 2.14 reveal that shear sliding at supports leads to
greater displacements in the case of smaller values of the parameter ν. The
deflection of the central part of the beam is greater for larger values of ν,
as might be expected (Fig. 2.15).
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The upper bound is obtained according to Martin’s upper bound theo-
rem for permanent displacements [1]. It states that the final displacement
field uf

i satisfies the inequality∫
S
Tiu

f
i dS ≤ K0 (2.84)

whereK0 is the initial kinetic energy and Ti is a set of safe time-independent
surface tractions [12].

If, in particular case Ts is a concentrated load applied at the point where
the displacement Wf is estimated then (2.84) takes the form

Wf ≤
K0

Ts
. (2.85)

Note that in (2.85) Ts is the limit static load applied at ξ = ξ∗ whereas
Wf = W (ξ∗, τf ). Evidently,

K0 =
1
2
m̄v2

0l.

It is easy to recheck that the maximal safe value for a concentrated load
subjected to a beam simply supported at the right hand end and clamped
at the left end is

Ts = 2Q0 (2.86)

if ν ≤ 1 +
√

2

Ts =
[
1− 1

ν(ξ∗ − 1)

]
Q0 (2.87)

if 1 +
√

2 ≤ ν ≤ 2 +
√

2

Ts =
1
ν

( 2
ξ∗
− 1
ξ∗ − 1

)
Q0 (2.88)

if ν ≥ 2 +
√

2.
The limit value (2.86) holds good in the case if shear sliding takes place

at both ends of the beam whereas (2.87) corresponds to the situation where
shear does not occur at the simply supported end and it does at the clamped
end. Finally, (2.88) corresponds to the pure bending theory with bending
hinges at the clamped end and at ξ = ξ∗.

According to (2.85)-(2.88) the maximal permanent deflections are boun-
ded by

wf =
1
4ν
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if ν ≤ 1 +
√

2

wf =
1

2ν − 1
ξ∗−1

if 1 +
√

2 ≤ ν ≤ 2 +
√

2 and

wf =
ξ∗(ξ∗ − 1)
2(ξ∗ − 2)

if ν ≥ 2 +
√

2.
When calculating the upper bounds for cases IV and V one has to take

ξ∗ = β, evidently. The values of ξ∗ for cases II and III are accommodated
in Table 2.1.

Maximal displacements versus ν are plotted in Fig. 2.16, 2.17. Solid
lines in Fig. 2.16, 2.17 correspond to numerical solutions obtained in the
present paper. The upper bound is presented by the dashed line. It can be
seen from Fig. 2.16 that for greater values of ν the maximal deflection does
not depend on ν. The same matter was pointed out by N. Jones [1] in the
case of simply supported beams and cylindrical shells. It also can be seen
from Fig. 2.17 that the deflections tend to zero when ν tends to infinity.

Note that according to (2.19)-(2.23) the case I can not take place for
very short beams for ν ≤ 1. However, in this case the ratio l/h < 0.5 and
evidently the usual assumptions of the beam theory are also violated. In
the present paper only moderately short beams are considered, assuming
ν > 1.

The case II takes place for ν2 = 5.6166 ≤ ν ≤ ν3. The value of ν3 is
calculated as max ν so that τ2 ≤ τ23 where τ2 is the solution of the equation

ẇ0(τ2)
ẇ1(τ2)

= 1− η(τ2)

and τ23 meets the constraint ẇ1(τ23) = 0. Here ẇ0,ẇ1 and η are to be
integrated according to (2.48), Calculations showed that

ν3 = 6.4515.

The case III holds good for ν ≤ ν4 where ν4 = 9 and case IV for ν ≤ ν5

where ν5 = max ν for which η2 reaches the value β1 earlier than shear
sliding stops at the clamped end of the beam. Making use of (2.74), (2.75),
(2.78) one easily obtains

ν5 = 6 + 3
√

2.

The dependence of velocities on the parameter ν is presented on Fig.
2.18-2.20. The distributions of velocities are calculated at τ = τ1. Fig. 2.18
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corresponds to case I whereas Fig. 2.19 and Fig. 2.20 are associated with
cases III and IV, respectively.

2.5 Concluding remarks

A method for investigation of rigid-plastic beams subjected to impulsive
loading is developed. Theoretical solutions have been derived for beams
made of a perfectly plastic material obeying the square yield condition. It
is assumed that the left end of the beam is clamped whereas the right hand
end is simply supported.

It is some what surprising that the present solution substantially dif-
fers from the solutions obtained for beams with both, simply supported or
clamped ends, respectively.

Calculations carried out showed that the shear sliding is more essential
for shorter beams. On the other hand, the first phase of motion includes
shear sliding at supports equally in the case of short and long beams. How-
ever, the contribution of the shear sliding in the bulk deformation is less
important for longer beams (for large values of the parameter ν).

Table 2.1. Values of ξ0 and ξ∗

ν ξ0 ξ∗
3 0.7071 -
3.5 0.6849 -
4 0.6667 -
4.5 0.6514 -
5 0.6385 -
5.6166 0.6252 0.6252
6 - 0.6290
6.5 - 0.6344
7 - 0.6404
7.5 - 0.6464
8 - 0.6256
8.5 - 0.6594
9 - 0.6667
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Figure 2.1: Geometry of the beam.

Figure 2.2: The yield surface.

Figure 2.3: Velocity field for Case I, phase I.

Figure 2.4: Velocity field for Case I, phase II.

Figure 2.5: Velocity field for Case II, phase I.
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Figure 2.6: Velocity field for Case II, phase II.

Figure 2.7: Velocity field for Case III, phase III.

Figure 2.8: Velocity field for Case IV, phase I.

Figure 2.9: Velocity field for Case IV, phase II.
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Figure 2.10: Velocity field for Case V, phase III.

Figure 2.11: Bending moment and shear force (case I).
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Figure 2.12: Bending moment and shear force (case III).

Figure 2.13: Bending moment and shear force (case V).
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Figure 2.14: Maximal deflections (case I).

Figure 2.15: Maximal deflections (case III).
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Figure 2.16: Maximal residual displacements.

Figure 2.17: Displacements w1, w2, w0 versus ν.
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Figure 2.18: Velocity field at the end of the first stage (case I).

Figure 2.19: Velocity field at the end of the first stage (case III).
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Figure 2.20: Velocity field at the end of the first stage (case IV).
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Abstract

The dynamic response of a rigid-plastic annular plate clamped at the
outer edge and free at the inner edge is considered.

The plate is subjected to initial impulsive loading so that at the initial
moment of time all points of the plate have the uniform transverse velocity.
It is assumed that the behaviour of a rigid perfectly plastic material is
controlled by a cubic yield condition and the associated flow law in the
space of bending moments and the transverse shear force.

Theoretical predictions are developed and compared with an upper
bound solution.

Key words:
Annular plate; Plasticity; Impulsive loading; Shear stresses

Notation

a - inner radius of annular plate
h - thickness of the plate
m1,m2, q - non-dimensional stress resultants
r - current radius
t, τ - time
u̇0

i - initial velocity
uf

i - final displacement
v0 - initial transverse velocity
w - non-dimensional deflection
w0, w1, w2 - transverse deflections at fixed points
wf - residual deflection
K0 - kinetic energy
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Mr,Mθ - bending moment
Qr - shear force
R - radius of annular plate
S - middle surface
Ti - surface tractions
V - volume
W - deflection
α = a/R - non-dimensional coordinate
γ - transverse shear
ρ = r/R - non-dimensional coordinate
η(τ), η0(τ) - travelling hinges
µ - mass per unit length
σ0, τ0 - yield stresses
ν - parameters
τ1, τ2, τ3 - moments of time
ψ - rotation due to bending

3.1 Introduction

Analytical investigations of dynamic plastic response of axisymmetric plates
made of an ideal plastic Tresca material got its start by papers of Hopkins
and Prager (1954); Wang and Hopkins (1955). In these papers simply
supported and clamped cicrular plates subjected to distributed loading and
initial impulsive loading were studied resorting to the classical plate theory.

Rigid-plastic annular plates (e.g. circular plates with a central hole)
subjected to dynamical loadings have been considered by Mroz (1958),
Jones (1968, 1970, 1989) using the bending theory of plates. In the case of
a rigid-plastic material this concept includes stationary and moving hinge
circles separating adjacent annuli of the plate which can deform in different
manner. Aggarwal and Ablow (1971) developed simplified approximate
solution procedures for simply supported and clamped annular plates of
a Tresca material subjected to initial impulsive loading; Mazalov and Ne-
mirovski (1976) concentrated on the annular plates subjected to distributed
transverse loadings.

An annular plate clamped at the inner boundary with its free outer
edge given a constant velocity for a short time was studied by Shapiro
(1959). Later an annular plate with a uniform transverse impulse on a nar-
row annular area near the outer edge was investigated by Florence (1965).
Florence considered the annular plate clamped at the inner edge with free
outer edge using Trescas’s yield hexagon. Annular plates fixed at the inner
edge were studied also by Niepostyn and Stańczyk (1979), Stańczyk (1982)
in the cases of various loadings.

Recently Guowei Ma etal (1999), Yan-bin Wang etal (2005) empolyed
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the concept of a unified strength theory in the analysis of dynamic plastic
response of circular plates.

Clamped circular plates made of work-hardening materials were studied
by Wen (1998). An approximate theory was developed to predict the de-
formations and tearing of plates for power-law stress-strain relationship.
Theoretical predictions are shown to be in good agreement with experi-
mental data. Viscoplastic metallic circular plates subjected to impulsive
loading are considered by Zaera, Arias and Navarro (2002) making use of
various non-linear approximations of the actual yield surface.

Wen, Yu, Reddy (1995,b) developed an approximate theory to examine
the dynamic inelastic deformation and failure of clamped circular plates
subjected to uniformly distributed impulsive loads. Resorting to the previ-
ous work by Wen, Yu, Reddy (1995,a) it was shown that the failure modes
are: large inelastic deformations (Mode I), tensile tearing (Mode II) and
transverse shear (Mode III).

Experiments conducted on circular plates made of metallic materials
revealed significant discrepancies between theoretical predictions according
to the bending theory and experimental data. This involves the need for
retention of shear forces in the yield condition together with bending mo-
ments (and membrane forces in the case of large deflections).

The influence of shear forces on the static collapse pressure was investi-
gated by Sawczuk and Duszek (1963), Haydl and Sherbourne (1979), Zhuk
and Shablii (1973), Mohaghegh and Coon (1973), Dinno and Robinson
(1976).

Jones and Oliveira (1980) studied the influence of the rotatory inertia
and shear forces on the dynamic plastic response of simply supported circu-
lar plates to impulsive loading. This study revealed the influence of shear
forces on the behaviour of plates in the case of small values of the parameter
ν. Li and Jones (1994) investigated clamped circular plates subjected to
blast loading distributed uniformly over the entire area of the plate. Theo-
retical solutions are obtained for a general blast loading for a plate made of
a Johansen’s material. The effects of different boundary conditions, pres-
sure pulse loading shapes and the influence of the transverse shear force
on the dynamic plastic response of circular plates are explored. The appli-
cability of Youngdahl’s correlation parameter is stated for circular plates.
The case of a central pressure pulse distributed over a central part was
investigated by Liu and Stronge (1996). Li and Huang (1989) considered
the case of a uniformly distributed rectangular pulse loading; Komarov and
Nemirovski (1984) gave solutions for clamped circular plates accounting for
shear stresses.

The motion of a simply supported circular plate subjected to a rectangu-
lar loading was studied by Kumar and Krishka Reddy (1986). In a similar
study under taken by Jones and Oliveira (1980) for circular plates subjected
to blast loading idealized by an instantaneous uniform velocity, it was con-
cluded that the velocity pattern depends on a parameter ν = RQ0/2M0.
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Following a procedure similar to that by Jones and Oliveira (1980) the ex-
pressions for the shear force, bending moment and the plate deflection have
been obtained. It appeared that the solution of the problem including shear
showed greater radial moments throughout the plate when compared with
the pure bending solution. The transverse shear failure of infinitely large
circular plates with a central boss which is subjected to an initial impulsive
velocity was studied by Zhao etal (1994).

Shen and Jones (1993) presented a theoretical investigation on plastic
response and failure of clamped circular plates under impulsive loading em-
ploying an interaction yield surface which combines the bending moments,
membrane force and transverse shear force. Cowper-Symonds constitutive
equation was used to cater for material strain rate effects.

It is somewhat surprising that despite a lot of attention is paid in the
literature to beams, cylindrical shells and circular plates in the case when
shear force is retained in the yield surface there are no works regarding to
annular plates. In the case of annular plates yield mechanisms are often
completely different from those taking place in the case of circular plates.

In earlier works by Lellep and Torn (2004, 2005) rigid plastic beams
and circular cylindrical shells with non-symmetric end conditions have been
studied accounting for shear forces in the yield condition. In the present
study this concept is extended to circular plates with cutouts having free
interior and clamped exterior edge, respectively.

3.2 Governing equations

Let us consider an annular plate of radius R and inner radius a (Fig. 3.1).
The thickness of the plate is h. The plate is clamped at the outer edge and
free at the inner edge.

Assume that at the initial moment of deformation the plate has a con-
stant transverse velocity v0 and the initial kinetic energy

K0 = µ
π

2
(R2 − a2)v2

0. (3.1)

Here µ stands for the mass per unit area of the plate.
The kinetic energy K0 will be absorbed into plastic work which will be

done by internal forces during subsequent plastic deformation of the plate.
The generalized stresses contributing to the plastic dissipation are shear
force Qr and bending moments Mr, Mθ. Corresponding strain components
are the transverse shear [5]

γ =
∂W

∂r
+ ψ (3.2)

and curvatures in the radial and circumferential directions, respectively
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Kr =
∂ψ

∂r
, (3.3)

Kθ =
ψ

r

where W = W (r, t) is the transverse displacement.
In (3.2) and (3.3) ψ = ψ(r, t) is usual rotation of an element due to

bending alone, while γ(x, t) is the shear angle of the center line due to the
transverse shear force alone. Here r stands for the current radius and t is
time.

Neglecting the effect of rotatory inertia one can present equations of
equilibrium of a plate element as [5]

∂

∂r
(rQr) = −pr + rµ

∂2W

∂t2
(3.4)

∂

∂r
(rMr) − Mθ + rQr = 0.

In (3.4) p stands for the intensity of a transverse loading. In the present
case p = 0 as we are concentrating on the motion of the plate due to inertia
only.

Let M0, Q0 stand for limit values of bending moments and the shear
force, respectively. It appears that it will be reasonable to use following
variables

ρ =
r

R
, α =

a

R
, m1 =

Mr

M0
, m2 =

Mθ

M0
,

q =
Qr

Q0
, ν =

Q0R

M0
, w =

M0W

µv2
0R

2
, τ =

M0t

µv0R2
. (3.5)

Making use of (3.5) one can present equations of motion (3.4)

(ρm1)′ − m2 = νρq, (3.6)

(ρq)′ =
ρ

ν
ẅ.

where dots denote differentiation with respect to τ , whereas primes - with
respect to ρ.

Assume that the yield surface in the space m1, m2, q is approximated
by a cube of unit volume (Fig. 3.2).
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The theoretical analysis shows that the stress profile can be either inside
of the cube or lie on the face m2 = 1. On this face |m1| ≤ 1 and |q| ≤ 1.
According to the associated flow law

K̇r = 0, γ̇ = 0, K̇θ ≥ 0.

Therefore,

∂ψ̇

∂r
= 0,

∂Ẇ

∂r
= −ψ̇. (3.7)

It follows from (3.7) that

ẇ = C1ρ+ C2. (3.8)

In other words, the transverse velocity distribution must be piece wise linear
with respect to ρ.

Making use of (3.5) one can present the initial conditions as

w(ρ, 0) = 0, ẇ(ρ, 0) = 1, (3.9)

provided w = w(ρ, τ).
Boundary conditions are

m1(α, τ) = 0, q(α, τ) = 0 (3.10)

at the free edge and

q(1, τ) = −1 (3.11)

if shear sliding takes place at the clamped edge. Otherwise

w(1, τ) = 0, ẇ(1, τ) = 0 (3.12)

and
m(1, τ) = −1. (3.13)

3.3 Solution of governing equations

3.3.1 Case I

If 1 ≤ ν ≤ 6.75 then during this case of motion the transverse velocity
distribution is given by

ẇ = ẇ0 (3.14)

for the plate element (Fig. 3.3). In (3.14) ẇ0 is certain function of time.
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Differentiating (3.14) with respect to τ and substituting into (3.6) one
can integrate the set (3.6) with respect to the coordinate ρ. Making use of
boundary conditions q(α, τ) = 0 one has

q =
ẅ0

2νρ
(ρ2 − α2). (3.15)

Making use of (3.15) and integrating the first equation in (3.6) leads to
the relation

m1 = 1− ν

1− α2

(ρ2

3
− α2

)
+

1
ρ

(
− α− 2να3

3(1− α2)

)
, (3.16)

where the boundary condition m(α, τ) = 0 is taken into account.
Taking ρ = 1 in the equation (3.15) after certain algebraic transforma-

tion one easily obtains

ẅ0 =
−2ν

1− α2
. (3.17)

The motion of the plate according to case I ends at the moment τ1 when
the motion stops. Evidently (see Fig. 3.3, 3.8) case I takes place when
m1(1, τ) ≥ −1. Calculations carried out showed that this requirement is
satisfied, if ν < ν1 = 6.75.

3.3.2 Case II

3.3.2.1 First phase of motion

Assume that now ν > ν1 = 6.75. During the first phase of motion shear
sliding occurs at the clamped edge of the plate. The transverse velocity
distribution for this phase is presented in Fig. 3.4. According to Fig. 3.4
the acceleration may be written as

ẅ = ẅ0
1− ρ

1− α
+ ẅ1

ρ− α

1− α
, (3.18)

where ẅ0 and ẅ1 stand for the accelerations of points lying at the internal
and external boundary, respectively.

Substituting (3.18) in (3.6) and integrating with respect to coordinate
ρ under the conditions q(α, τ) = 0, q(1, τ) = −1 one obtains

ρq =
1

ν(1− α)

[
ẅ0(

ρ2

2
− α2

2
− ρ3

3
+
α3

3
)+ẅ1(

ρ3

3
− α3

3
− α

2
(ρ2−α2))

]
(3.19)

and
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1
ν(1− α)

[ ẅ0

6
(3(1−α2)−2+2α3)+

ẅ1

6
(2−2α3−3α(1−α2))

]
= −1. (3.20)

Making use of (3.19) and integrating the first equation in (3.6) leads to
the relation

m1 = 1 +
1

ρ(1− α)

{
ẅ0[

ρ3

6
− α3

6
− α2

2
(ρ− α)− ρ4

12
+
α4

12
+
α3

3
(ρ− α)] +

+ ẅ1[
ρ4

12
− α4

12
− α

6
(ρ3 − α3) +

α3

6
(ρ− α)]

}
− α

ρ
(3.21)

where the boundary condition m(α, τ) = 0 is taken into account. Making
use of boundary condition m(1, τ) = −1 one has

ẅ0

[1
6
(1 + α+ α2)− α2

2
− (1 + α)(1 + α2)

1
12

+
α3

3

]
+ (3.22)

+ ẅ1

[ 1
12

(1 + α)(1 + α2)− α2

6
− (1 + α+ α2) +

α3

6

]
− α = −2.

The set of equations (3.20), (3.22) with respect to the quantities ẅ0 and
ẅ1 may be presented as

ẅ0(1 + 2α) + ẅ1(α+ 2) = − 6ν
1− α

(3.23)

and

ẅ0(1 + 3α) + ẅ1(1 + α) =
12(α− 2)
(1− α)2

. (3.24)

It follows from (3.23), (3.24) that the accelerations can be defined as

ẅ0 =
6[ν(1− α2) + 2(α2 − 4)]
(1− α)2(1 + 4α+ α2)

ẅ1 =
6[ν(1 + 3α)(1− α) + 2(α− 2)(1 + 2α)]

(1− α)2(1− 4α− α2)
. (3.25)

The first phase of motion ends at the moment τ = τ1 when ẇ1(τ1) = 0.
Since ẅj(τ) = const one has

ẇj = ẅjτ + 1 (3.26)
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and

wj = ẅj
τ2

2
+ τ.

Here j = 0, 1 and the initial conditions (3.9) are taken into account. Thus
the first phase terminates at the moment when ẇ1(τ1) = 0, e.g.

τ1 = − 1
ẅ1
.

Displacements at boundaries of the plate at moment τ1 are

w1(τ1) = − 1
2ẅ1

w0(τ1) = − 1
2ẅ0

3.3.2.2 Second phase of motion

During the second phase of motion the acceleration may be written as (Fig.
3.5)

ẅ = ẅ0
1− ρ

1− α
(3.27)

Making use of (3.27) and integrating the system of equations (3.6) with
modified boundary conditions (3.10)-(3.13) one obtains

q =
ẅ0

ρν(1− α)

(ρ2

2
− α2

2
− ρ3

3
+
α3

3

)
(3.28)

m1 = 1 +
ẅ0

ρ(1− α)

(ρ3

6
− α3

3
− α2

2
(ρ− α)− ρ4

12
+
α4

12
+
α3

3
(ρ− α)

)
− α

ρ

and
ẅ0 =

12(α− 2)
(1− α)2(1 + 3α)

. (3.29)

From the last equation one can easily find

ẇ0 =
12(α− 2)

(1− α)2(1 + 3α)
(τ − τ1) + ẇ0(τ1), (3.30)

w0 =
6(α− 2)

(1− α)2(1 + 3α)
(τ − τ1)2 + ẇ0(τ1)(τ − τ1) + w0(τ1)
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where the initial values ẇ0(τ1), w0(τ1) are defined by corresponding quan-
tities obtained for the first phase of motion.

The second phase of motion persists as long as ẇ0(τ2) = 0. According
to (3.30) the time of motion is

τ2 = τ1 −
ẇ0(τ1)
ẅ0

.

Maximal residual deflection at the free edge of the plate equals

w0(τ1) = − ẇ
2
0(τ1)
2ẅ0

+ w0(τ1).

3.3.3 Case III

3.3.3.1 First phase of motion

If ν ≥ ν2 = 22.1503 the inequality |m(ρ, τ)| < 1 is not satisfied for each
ρ ∈ [α, 1]. Calculations show that the maximum of m(ρ, τ) takes place at
ρ = η0. This means that at ρ = η0 a hinge circle crops up. During the
subsequent motion for τ ∈ [0, τ1] the hinge circle remains stationary.

For the first phase of motion the transverse velocity distribution is pre-
sented in Fig. 3.6, where ẇ0, ẇ1 and ẇ2 denote displacement rates at
ρ = α, ρ = η0 and ρ = 1, respectively. As it reveals from Fig. 3.6 pure
shear sliding takes place at the outer edge of the plate. According Fig. 3.6

ẇ =
1

η0 − α
[ẇ2(ρ− α)− ẇ0(ρ− η0)] (3.31)

for ρ ∈ [α, η0] and

ẇ =
1

1− η0
[ẇ1(ρ− η0)− ẇ2(ρ− 1)] (3.32)

for ρ ∈ [η0, 1].
Note that the acceleration distribution can easily be obtained from

(3.31), (3.32) replacing velocities ẇ0, ẇ1, ẇ2 by the accelerations ẅ0, ẅ1,
ẅ2, respectively.

Substituting (3.31) in (3.6) and integrating with respect to ρ one obtains
the shear force

q =
1

6ρν(η0 − α)
{2(ẅ2 − ẅ0)(ρ3 − α3)− 3ẅ0(α− η0)(ρ2 − α2)} (3.33)

and the bending moment
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m1 = 1− α

ρ
+

1
12ρ(η0 − α)

{(ẅ2 − ẅ0)[ρ4 − α4 − 4α3(ρ− α)] +

+ 2(η0ẅ0 − αẅ2)[ρ3 − α3 − 3α2(ρ− α)]} (3.34)

for ρ ∈ [α, η0]. Note that when the system (3.6) is integrated boundary
conditions (3.10) have been taken into account. At ρ = η0 a stationary
hinge circle is located. Thus q(η0, τ) = 0, m1(η0, τ) = 1 and according to
(3.33), (3.34) one has

(ẅ2 − ẅ0)[η4
0 − α4 − 4α3(η0 − α)] + 2(η0ẅ0 −

− αẅ2)[η3
0 − α3 − 3α2(η0 − α)] = 12α(η0 − α) (3.35)

2(ẅ2 − ẅ0)(η3
0 − α3) + 3(η0ẅ0 − αẅ2)(η2

0 − α2) = 0.

Similarily, substituting (3.32) in (3.6) and taking into account that
m1(η0, τ) = 1, q(η0, τ) = 0 yields for ρ ∈ [η0, 1]

q =
1

νρ(1− η0)
{ ẅ1

3
[ρ3−η3

0−
3
2
η0(ρ2−η2

0)]−
ẅ2

3
[ρ3−η3

0−
3
2
(ρ2−η2

0)]} (3.36)

and

m1 = 1 +
1

12ρ(1− η0)
{ẅ1[ρ4 − η4

0 + 2η3
0(ρ− η0)− 2η0(ρ3 − η3

0)]−

− ẅ2[ρ4 − η4
0 − 4η3

0(ρ− η0)− 2(ρ3 − η3
0) + 6η2

0(ρ− η0)]}. (3.37)

The boundary conditions (3.11) and (3.13) with (3.36) and (3.37) lead
to the equations

ẅ1[2(1− η3
0) − 3η0(1− η2

0)]− ẅ2[2(1− η3
0)− 3(1− η2

0)] = −6ν(1− η0)
ẅ1[1− η4

0 − 2η0(1− η3
0) + 2η3

0(1− η0)]− ẅ2[1− η4
0 − 4η3

0(1− η0) +
+ 6η2

0(1− η0)− 2(1− η3
0)] = −24(1− η0). (3.38)

Solving equations (3.35) and (3.38) with respect to ẅj , where j = 0, 1, 2
and η0 one obtains

ẅ0 =
12α(2η0 + α)

(η0 − α)2(η2
0 + 4αη0 + α2)

ẅ1 =
−6ν

(1− η0)(2 + η0)
+

12α(η0 + 2α)(2η0 + 1)
(η0 − α)2(η2

0 + 4αη0 + α2)(2 + η0)

ẅ2 =
−12α(η0 + 2α)

(η0 − α)2(η2
0 + 4αη0 + α2)

(3.39)
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and

4(η0 − α)2(η2
0 + 4αη0 + α2) +

[ −ν(η0 − α)2

(1− η0)(2 + η0)
(η2

0 + 4αη0 + α2) +

+
2α

2 + η0
(η0 + 2α)(2η0 + 1)

]
(1− η0)2)(1 + η0)− (3.40)

− 2α(η0 + 2α)(1− η0)2(1 + 3η0) = 0.

The last equation is to be solved numerically with tespect to η0.
The accelerations ẅj are constant as it can be seen from (3.39). Thus

the relations (3.26) obtained for the Case II hold good for each j = 0, 1, 2
and

w0(τ) =
6α(2η0 + α)τ2

(η0 − α)2(η2
0 + 4αη0 + α2)

+ τ

w1(τ) =
[ −3ν
(1− η0)(2 + η0)

+
6α(η0 + 2α)(2η0 + 1)

(η0 − α)2(η2
0 + 4αη0 + α2)(2 + η0)

]
τ2 + τ

w2(τ) =
−6α(η0 + 2α)

(η0 − α)2(η2
0 + 4αη0 + α2)

τ2 + τ. (3.41)

The first phase of motion is completed at the time instant τ1 when
ẇ1(τ1) = 0. According to (3.41)

τ1 = [
6ν

(1− η0)(2 + η0)
− 12α(η0 + 2α)(2η0 + 1)

(η0 − α)2(η2
0 + 4αη0 + α2)(2 + η0)

]−1. (3.42)

The values of displacements at τ = τ1 can be obtained from (3.41) and
(3.42).

3.3.3.2 Second phase of motion

During the second phase of motion there is no more shear sliding at the
clamped edge. However, a travelling bending hinge reveals at ρ = η(τ)
(Fig. 3.7). The velocity distribution can be presented as

ẇ =
1

η − α
[ẇ2(ρ− α)− ẇ0(ρ− η)] (3.43)

for ρ ∈ [α, η] and

ẇ = ẇ2
ρ− 1
η − 1

(3.44)
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for ρ ∈ [η, 1].
Differentiating (3.43) and (3.44) with respect to time τ leads to the

accelerations

ẅ =
1

(η − α)2
{[ẅ2(ρ−α)−ẅ0(ρ−η)+η̇ẇ0](η−α)−η̇[ẇ2(ρ−α)−ẇ0(ρ−η)]}

(3.45)
for ρ ∈ (α, η) and

ẅ =
ρ− 1

(η − 1)2
[ẅ2(η − 1)− ẇ2η̇] (3.46)

for ρ ∈ (η, 1).
Substituting (3.45) in (3.6) and integrating the system of equations with

boundary conditions in (3.10) gives the shear force

q =
1

νρ(η − α)2
{
[
1
3
(ẅ2 − ẅ0)(ρ3 − α3) +

1
2
(ẅ0η − ẅ2α+ η̇ẇ0)(ρ2 −

− α2)](η − α)− η̇[
1
3
(ẇ2 − ẇ0)(ρ3 − α3) +

1
2
(ẇ0η − ẇ2α)(ρ2 − α2)]

}
(3.47)

and the bending moment

m1 = 1 +
1

12ρ(η − α)2
{
[(ẅ2 − ẅ0)(ρ4 − η4 − 4α3(ρ− η)) +

+ 2(ẅ0η − ẅ2α+ ẇ0η̇)(ρ3 − η3 − 3α2(ρ− η))](η − α)− (3.48)
− η̇[(ẇ2 − ẇ0)(ρ4 − η4 − 4α3(ρ− η)) + 2(ẇ0η − ẇ2α)(ρ3 −
− η3 − 3α2(ρ− η))]

}
for ρ ∈ [α, η].

Similarily, the accelerations field (3.46) with equations of motion (3.6)
yield the shear force

q =
1

6νρ
[ẅ2(η − 1)− ẇ2η̇][2(ρ3 − η3)− 3(ρ2 − η2)] (3.49)

and

m1 = 1+
1

12ρ
[ẅ2(η−1)−ẇ2η̇][ρ4−η4−2(ρ3−η3)+(6η2−4η3)(ρ−η)] (3.50)
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for ρ ∈ [η, 1]. When deriving (3.48), (3.49), (3.50) the boundary condtions
pertinent to plastic hinges

q(η, τ) = 0, m1(η, τ) = 1 (3.51)

are satisfied.
Applying the first condition in (3.10) to (3.48), the first requirement in

(3.51) to (3.47) and the boundary condition (3.13) to (3.50), respectively,
yields [

(ẅ2 − ẅ0)(α4 − η4 − 4α3(α− η)) + 2(ẅ0η − ẅ2α+ ẇ0η̇)(α3 − η3 −
− 3α2(α− η))

]
(η − α)− η̇

[
(ẇ2 − ẇ0)(α4 − η4 − 4α3(α− η)) + 2(ẇ0η −

− ẇ2α)(α3 − η3 − 3α2(α− η))
]

= −12α(η − α)2,
(3.52)

[ẅ2(η − 1)− ẇ2η̇][1− η4 − 2(1− η3) + (6η2 − 4η3)(1− η)] = −24(η − 1)2,

[
2(ẅ2 − ẅ0)(η3 − α3) + 3(ẅ0η − ẅ2α+ ẇ0η̇)(η2 − α2)

]
(η − α)−

− η̇
[
2(ẇ2 − ẇ0)(η3 − α3) + 3(ẇ0η − ẇ2α)(η2 − α2)

]
= 0.

The obtained set of equations can be solved with respect to accelerations
ẅ0, ẅ2 and the velocity of the travelling hinge η̇. It can be rechecked that
one obtains from (3.52) accelerations

ẅ0 =
η̇(2η + α)

(η − 1)(η − α)(η + 2α)
[ẇ2(α− 1)− ẇ0(η − 1)] +

24(2η + α)
(1− η)2(1 + 3η)(η + 2α)

,

ẅ2 =
ẇ2η̇

η − 1
− 24

(1− η)2(1 + 3η)
(3.53)

where as η̇ satisfies the equation

η̇

(η − 1)(η − α)(η + 2α)
{ẇ2(η + 3α)(2η + α)(α− 1) +

+ ẇ2(η + α)(η + 2α)(1− α) + ẇ0(η − 1)(−η2 − 4αη − α2)} =

=
12α

(η − α)2
+

24(−η2 − 4αη − α2)
(1− η)2(1 + 3η)(η + 2α)

. (3.54)

The system of equations (3.53), (3.54) is to be integrated numerically.
The initial values w0(τ1), ẇ0(τ1), w2(τ1), ẇ2(τ1) can be obtained from
(3.41), (3.42) for the final time instant of the first phase of motion. Evi-
dently, η(τ1) = η0, where η0 is defined by the solution for the first phase.

Let the second phase of motion be completed at τ = τ2, whereas τ2 is
defined from the condition η(τ2) = α.
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Integrating (3.53), (3.54) on can determine quantities w0(τ), w2(τ) at
each moment τ ∈ [τ1, τ2] and particularly values w0(τ2), ẇ0(τ2) which can
be considered as initial values for the next phase of motion.

3.3.3.3 Third phase of motion

During the third phase of motion the velocity pattern coresponds to Fig.
3.5. Now the only hinge circle is located at the external edge of the plate.
Thus

ẇ(ρ, τ) = ẇ0
1− ρ

1− α

and the acceleration distribution corresponds to that for the second phase
of motion for the case II. Evidently, relations (3.27)-(3.29) remain valid in
the present case, as well.

However, instead of (3.30) on has now

ẇ0 =
−12(2− α)

(1− α)2(1 + 3α)
(τ − τ2) + ẇ0(τ2), (3.55)

w0 =
−6(2− α)

(1− α)2(1 + 3α)
(τ − τ2)2 + ẇ0(τ2)(τ − τ2) + w0(τ2)

where the quantities ẇ0(τ2) and w0(τ2) are defined by the solution for the
second phase of motion.

The motion of the plate ceases at the instant τ = τ3, when ẇ0 vanishes.
Thus

τ3 = τ2 +
(1− α)2(1 + 3α)

12(2− α)
ẇ0(τ2) (3.56)

and the maximal residual displacement at the free edge of the plate attains
the value

w0(τ3) =
(1− α)2(1 + 3α)

24(2− α)
[ẇ0(τ2)]2 + w0(τ2).

3.4 Discussion

Results of calculations are presented in Tables 3.1, 3.2 and Fig. 3.8-3.20.
In Table 1 the values of the radius of the stationary hinge circle η0 (Case
III) are presented for different values of the parameter ν. Table 3.1 corres-
ponds to the plate with the internal radius a = 0.5R whereas Table 3.2 is
associated with a = 0.3R.
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Bending moment m1 and shear force q are depicted in Fig. 3.8, Fig. 3.9
and Fig. 3.10 for initial stages of Cases I, II and III, respectively for plates
with α = 0.5. It transpires from Fig. 3.8 that the value of the radial bending
moment at the clamped edge reaches to the limit vlue when the parameter
ν tends to the value 6,75 (Case I, phase I). If the value ν1 = 6.75 is achieved
then the motion takes place according to the velocity pattern for Case II
(Fig. 3.4). Within the limits of Case II (ν1 ≤ ν ≤ ν2) m1(1, τ) = −1,
q(1, τ) = −1 and |m1(ρ, τ)| < 1, q(ρ, τ)| < 1 elsewhere as it can be seen
from Fig. 3.9. However, for a critical value ν = ν2 = 22.1503 bending
moment m1 attains the upper limit at a certain point, e.g. m1(η0, τ) = 1,
if ν ≥ ν2 (Fig. 3.9). Such distributions of the bending moment m1 and
shear force q correspond to Case III with the velocity pattern presented in
Figs 3.5-3.7. It can be seen from Fig. 3.8-3.10 that the stress distribution
for Cases I-III are statically admissible, eg. the yield condition is violated
nowhere.

Figs 3.8 and 3.9 show that for smaller and intermediate values of ν (cases
I and II) shear force monotonically decreases from zero to -1. However, if
ν > 22.1503 then the shear force slowly increases near the free edge of the
plate (Fig. 3.10). One can see from Fig. 3.10 that the point of maximum
ρ = η0 of the radial bending moment moves towards the outer edge when
parameter ν increases.

The motion of points lying at the free edge of the plate is described
in Figs 3.11-3.13 for Cases I-III, respectively. Distributions of transverse
velocities during the first phase of motion are depicted in Fig. 3.14-3.18
for Case I-III. Maximal residual displacements at the free edge are plotted
against ν in Fig. 3.19 (solid line). The dashed line in Fig. 3.19 presents an
upper bound of Martin (1975) which is extended to the case when shear
forces are retained in the yield condition by Jones (1985).

Upper bounds on the maximal residual deflection at the free edge of the
plate are depicted in Fig. 3.20 for different ratios of internal and external
radii, respectively.

Upper bounds on maximal displacements of structures subjected to ini-
tial impulsive loading are stated by Martin’s upper bound theorems [34].
According to these theorems any kinematically admissible final displace-
ment field uf

i satisfies the inequality∫
S
Tiu

f
i dS ≤

∫
V

µ

2
u̇0

i u̇
0
i dV

where u̇0
i stand for the initial transverse velocities, S is the surface of the

structure, V - its volume and Ti - surface tractions. It is reasonable to
evaluate the final transverse displacements of the free edge of the plate and
to present the last inequality as

2π
∫ R

a
Twfrdr ≤ K0
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where K0 is the initial kinetic energy corresponding to the given initial
velocity field.

Let T be the intensity of the ring load applied at the inner edge of the
plate and wf corresponding final displacement. Then evidently

2πaTwf ≤ K0

and the upper bound can be defined as

w̄f =
K0

2πTa
. (3.57)

The load carrying capacity of the plate subjected to the ring load of
intensity T will be evaluated in the cases of pure shear sliding with the
velocity distribution presented in Fig. 3.3 and the triangular velocity dis-
tribution (Fig. 3.5), respectively. In the first case the kinematical method
gives

T =
RQ0

a
. (3.58)

In the second case (Fig. 3.5) when deformations are caused by bending
actions only one obtains the statical limit load as

T =
M0

a

2R− a

R− a
. (3.59)

Direct calculations show that the velocity pattern depicted in Fig. 3.3 gives
the kinetic energy

K0 =
µ

2
πhv2

0(R
2 − a2) (3.60)

whereas the second case is associated with

K0 =
µπ

2
v2
0R

2 R2

(R− a)2
. (3.61)

The upper bound defined by (3.57)-(3.61) is presented by the dashed
line in Fig. 3.19 for α = 0.5 and by solid lines in Fig. 20 for α = 0.2;
α = 0.3; α = 0.5; α = 0.6.

Variation of the transverse velocity at the free edge in time is depicted
in Fig. 3.11-3.13 for a = R/2. Fig. 11 corresponds to the Case I whereas
Fig. 3.12 and 3.13 are associated with Cases II and III, respectively. It
transpires from Fig. 3.13 that during the first phase the motion is not very
sensitive with respect to the parameter ν. This matter can be explained
by the obstacle that the early phase of motion is comparatively short and
during this phase the most of the energy dissipation is caused by the shear
sliding at the external support. Although the accelerations ẅ0 and ẅ1
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explicitly do not depend on ν (see (3.39)) actually they do depend because
the coordinate η0 is a function of ν, as it can be seen from Tables 3.1, 3.2.
Thus the lines corresponding to different values of ν are very near each
other in the zone of small values of τ so that their coincidence is to be
explained by the exactness of figures.

Variations of velocity patterns in time are presented in Fig. 3.14-3.18
for Cases I-III.

3.5 Concluding remarks

A theoretical solution has been developed for annular plates subjected to
initial impulsive loading when the transverse shear force and bending mo-
ments are retained in the yield condition. It was shown that depending
on the value of the parameter ν = Q0R/M0 three different types of the
solution exist in the case of the uniform initial impulse. However, when
the applied impulse is linear with respect to the coordinate the single yield
mechanism takes place. In this case shear sliding occurs at the outer edge
of the plate during the first phase whereas the motion is a modal one during
the final phase.

Calculations carried out revealed the matter that shear stresses have
greater influence on the plastic response of annular plates in the case of
smaller values of the parameter ν. Maximal residual deflections have been
compared with the upper bound method developed by J. Martin.

Numericl results showed that the solutions developed were statically
admissible.
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Tabel 3.1. Values of η0 (α = 0.5)

ν η0

22.1503 0.7759
25 0.7909
30 0.8153
35 0.8365
40 0.8542
45 0.8689
50 0.8812
55 0.8915
60 0.9002
65 0.9077
70 0.9142
75 0.9198
80 0.9248
85 0.9291
90 0.9331
95 0.9367
100 0.9397

Tabel 3.2. Values of η0 (α = 0.3)

ν η0

15.45941 0.6636
20 0.7157
25 0.7634
30 0.7997
35 0.8272
40 0.8484
45 0.8651
50 0.8786
55 0.8896
60 0.8988
65 0.9067
70 0.9134
75 0.9192
80 0.9243
85 0.9287
90 0.9327
95 0.9363
100 0.9395
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Figure 3.1: Annular plate.

Figure 3.2: The yield surface.

Figure 3.3: Velocity field for Case I.

Figure 3.4: Velocity field for Case II, phase I.

Figure 3.5: Velocity field for Case II, phase II and Case III, phase III.

87



Figure 3.6: Velocity field for Case III, phase I.

Figure 3.7: Velocity field for Case III, phase II.

Figure 3.8: Bending moment and shear force (case I).
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Figure 3.9: Bending moment and shear force (case II).

Figure.3.10: Bending moment and shear force (case III).
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Figure 3.11: Maximal deflections (case I).

Figure 3.12: Maximal deflections (case II).
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Figure 3.13: Maximal deflections (case III).

Figure 3.14: Velocity pattern Case II ν = 8.
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Figure 3.15: Velocity pattern Case II ν = 10.

Figure 3.16: Velocity pattern Case II ν = 22.1503.
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Figure 3.17: Velocity pattern Case II ν = 30.

Figure 3.18: Velocity pattern Case III, phase 2.
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Figure 3.19: Maximal residual displacements.

Figure 3.20: Upper bounds.

94



CHAPTER 4

Plastic response of a circluar
cylindrical shell to dynamic
loadings



International Journal of Impact Engineering 2004; 30(5): 555-576.



Plastic response of a circular cylindrical
shell to dynamic loadings

J. Lellep and K. Torn

Institute of Applied Mathematics, University of Tartu,
Tartu, 51014, 46 Vanemuise str., Estonia

Abstract

The dynamic plastic behaviour of a circular cylindrical shell subjected
to an initial impulsive loading is studied. It is assumed that the thin walled
tube is clamped at the left end and simply supported at the right-hand end.
The behaviour of the rigid, perfectly plastic material is controlled by a cu-
bic yield condition which retains the axial bending moment, circumferential
membrane force as well as the transverse shear force. Theoretical predic-
tions are presented for a wide range of geometrical and material parameters
of the shell.

Keywords:
Cylindrical shell; Plasticity; Impulsive loading; Shear stresses

Notation

h - thickness of the shell wall
k - curvature
l - length of the shell
m,n, q - non-dimensional stress resultants
t, τ - time
w - non-dimensional deflection
w0, w1, w2 - transverse deflections at fixed points
x - coordinate
Ė - energy dissipation
M - bending momeent
M0 - yield moment
N - circumferential membrane force
N0, Q0 - limit values of N , Q
Pj - generalized stresses
Q - shear force
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R - radius of the middle surface
W - deflection
β, β1, β2 - stationary hinges
γ - transverse shear
δj - generalized strains
ε - deformation component
ξ0, ξ∗ - specific values of ξ
ξ = x/l - non-dimensional coordinate
η(τ), η1(τ), η2(τ) - travelling hinges
µ - mass per unit length
σ0, τ0 - yield stresses
ν, ω - parameters
v0 - initial transverse velocity
τ1, τ2, τ3, τ4 - moments of time
ψ - rotation due to bending

4.1 Introduction

The first analytical work on dynamic plastic response of cylindrical shells
was conducted by Hodge [1]. Song and Wang [2] considered cantilever
cylindrical shells.

The influence of transverse shear forces on the dynamic plastic be-
haviour of beams, plates and shells subjected to impulsive and impact
loading has attracted the interest of many researchers as discussed by Jones
[3-5], Stronge and Yu [6], Yu and Chen [7].

Symonds [8] has examined th ebehaviour of a fully clamped beam sub-
jected to impulsive loading and an infinitely long beam struck by a mass
taking shear forces in the yield condition into account. Later different cases
of beams subjected to distributed blast-type loadings were considered by
Nonaka [9], Li and Jones [10], Jones and Song [11].

The influence of both, transverse shear and rotatory inertia on the dy-
namic plastic behaviour of beams and circular plates was studied by Jones
and Gomes de Oliveira [12, 13]. Circular cylindrical shells subjected to
impulsive and blast loading are studied by Duffey [14], Li and Jones [15],
Jones and Oliveira [16]. In the above mentioned studies, the both ends of
beams or cylindrical shells are fixed in the same manner. The exceptions
are papers [17, 2]. In the paper [17], beams simply supported at the left
and clamped at the right-hand end are considered. In the present paper
the results of [17] are extended to circular cylindrical shells.
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4.2 Governing equations

Consider a circular cylindrical shell clamped at the left end and simply
supported at the right-hand end (Fig. 4.1). Assume that the shell is sub-
jected to the uniformly distributed impulsive loading which imparts to a
shell generator an initial transverse velocity v0.

Neglecting rotatory inertia effects but taking shear sliding caused by
the shear force Q into account one can present the deflection slope as

∂W

∂x
= ψ + γ. (4.1)

Here γ stands for the transverse shear strain and ψ is the rotation of the
mid-surface due to bending.

The dynamic equilibrium equation for a shell element may be written
in the form

∂M

∂x
+ Q = 0, (4.2)

∂Q

∂x
− N

R
− µ

∂2W

∂t2
= 0.

The limit values of M , N and Q are

M0 =
σ0

4
h2, N0 = σ0h, Q0 = τ0h

for a solid shell wall with thickness h.
Making use of non-dimensional quantities

m =
M

M0
, q =

Q

Q0
, n =

N

N0
,

ν =
Q0l

M0
, ω =

N0l
2

M0R
, ξ =

x

l
, (4.3)

w =
M0W

µv2
0l

2
, τ =

M0t

µv0l2

one can present the equations of motion (4.2) as

m′ = −νq, (4.4)

q′ =
1
ν

(ẅ + ωn).
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In Eq. (4.4) and henceforth primes and dots denote the differentiation
with respect to ξ and τ , respectively.

As the shell is not deformed at the intial moment τ = 0, but each point
of a generator has velocity v0 initial conditions to the system of Eqs. (4.4)
have according to (4.3) the form

w(ξ, 0) = 0, ẇ(ξ, 0) = 1. (4.5)

Boundary conditions for the clamped and simply supported end of the
shell, respectively, are

m(0, τ) = 1, m(1, τ) = 0. (4.6)

If shear sliding takes place at supports then one has

q(0, τ) = 1, q(1, τ) = −1. (4.7)

Yield surfaces for circular cylindrical shells which retain circumferential
membrane force and longitudinal bending moment as well as the transverse
shear force have been discussed by Haydl and Sherbourne [18], Ilyushin [19],
Jones [3], Robinson [20], Zyczkowski [21]. However, as it was mentioned by
Li and Jones [10] the most of theoretical studies on the dynamic response of
rigid-plastic shells which retain transverse shear force effects have employed
a simplified yield surface in order to obtain a complete theoretical solution
of the problem. Following this idea in the present paper the cubic-shaped
yield surface (Fig. 4.2) will be used.

According to the associated flow law the strain rate vector with compo-
nents

ε̇ =
Ẇ

R
, κ̇ =

∂ψ̇

∂x
, γ̇ =

∂ẇ

∂x
− ψ̇ (4.8)

is to be directed along the outward normal to the surface at the current
point.

On the edges of the cube the strain rate vector must lie between normals
to adjacent faces of the edge.

It is reasonable to assume that Ẇ ≥ 0 and ε̇ ≥ 0. Thus the stress state
of the tube corresponds to the face n = 1 of the yield surface. This face can
be depicted as a square |m| ≤ 1, |q| ≤ 1 on m− q plane. At each interiour
point of the square according to the flow law one has

κ̇ = γ̇ = 0. (4.9)

It immidiately follows from (4.8) and (4.9) that ẇ′′ = 0. Thus

ẇ = C1ξ + C2. (4.10)

100



According to (4.10) in the following analysis it is assumed that the trans-
verse velocity distribution is piece wise linear with respect to the axial
coordinate ξ. Particular form of the velocity distribution depends on the
value of the parameter ν.

4.3 Theoretical prediction of the response to im-
pulsive loading

4.3.1 Case I

4.3.1.1 First phase of motion

If 2 ≤ ν ≤ 5.6166 then during the first stage of motion the transverse
velocity distribution is given by

ẇ = ẇ1 + (ẇ2 − ẇ1)ξ (4.11)

for entire shell (Fig. 4.3). In Eq. (4.11) ẇ1 and ẇ2 are certain functions of
time. Thus shear sliding takes place at both ends of the shell until the end
of the first phase.

Differentiating (4.11) with respect to τ and substituting into (4.4) one
can integrate the set (4.4) with respect to the coordinate ξ. Making use of
boundary conditions (4.6) and (4.7) one has

q =
1
ν

(
ẅ1ξ + (ẅ2 − ẅ1)

ξ2

2
+ ωξ

)
+ 1, (4.12)

m = − ẅ1

2
ξ2 + (ẅ1 − ẅ2)

ξ3

6
− ω

2
ξ2 − νξ + 1

and

ẅ1 + ẅ2 = −2(2ν + ω), (4.13)

2ẅ1 + ẅ2 = 6(−ν − ω

2
+ 1).

It follows from (4.13) that the accelerations ẅ1 and ẅ2 are constant,
e.g.

ẅ1 = −2ν − ω + 6, (4.14)
ẅ2 = −2ν − ω − 6.

Integrating (4.14) with respect to time τ and taking into account that
according to (4.5)
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ẇ1(0) = ẇ2(0) = 1 (4.15)

and

w1(0) = w2(0) = 0 (4.16)

one easily obtains

ẇ1 = (−2ν − ω + 6)τ + 1, (4.17)
ẇ2 = (−2ν − ω − 6)τ + 1

and

w1 = (−2ν − ω + 6)
τ2

2
+ τ, (4.18)

w2 = (−2ν − ω − 6)
τ2

2
+ τ.

The first phase ends at the moment τ1 when the motion at the simply
supported end stops. Thus

τ1 =
1

2ν + ω + 6
(4.19)

and

w1(τ1) =
2ν + ω + 18

2(2ν + ω + 6)2
, ẇ1(τ1) =

12
2ν + ω + 6

,

w2(τ1) =
1

2(2ν + ω + 6)
, ẇ2(τ1) = 0. (4.20)

4.3.1.2 Second phase of motion

During the second phase of motion shear sliding continues at the clamped
end. At the same time each generator of the shell rotates around the
simply supported right end (Fig. 4.4). The transverse velocity field can be
presented as

ẇ = ẇ1(τ)(1− ξ) (4.21)

for ξ ∈ (0, 1).
Making use of (4.21) and integrating the system of Eqs. (4.4) with

modified boundary conditions (4.6) and (4.7) (where q(1, τ) 6= −1) one
obtains
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q =
1
ν

[
ωξ + ẅ1(ξ −

ξ2

2
)
]
+ 1, (4.22)

m = −ω
2
ξ2 − ẅ1

6
(2ξ2 − ξ3)− νξ + 1

and
ẅ1 = −3ν − 3

2
ω + 3. (4.23)

From (4.23) one can easily find

ẇ1 = (− 3ν − 3
2
ω + 3)(τ − τ1) + ẇ1(τ1), (4.24)

w1 =
1
2
(− 3ν − 3

2
ω + 3)(τ − τ1)2 + ẇ1(τ1)(τ − τ1) + w1(τ1)

where the initial values ẇ1(τ1), w1(τ1) are defined by (4.17)-(4.20).
The second phase of motion persists as long as ẇ1(τ2) = 0. According

to (4.24) the time of motion is

τ2 = τ1 +
ẇ1(τ1)

3ν + 3
2ω − 3

. (4.25)

The motion prescribed in case I takes place if the limit moment is main-
tained elsewhere than at the clamped end of the shell. Making use of (4.12)
and (4.22) it can be shown that an extremum of m is located at

ξ0 =
1
6
(3− ν +

√
9 + ν2) (4.26)

and the inequality |m(ξ, τ)| ≤ 1 is satisfied if

ν4 − 6ν3 + 9ν2 − 216 ≤ 0. (4.27)

It is interesting to remark that (4.26) and (4.27) coincide with those
obtained for rigid-plastic beams loaded and fixed at the same manner as
the considered shell [11].

The inequality (4.27) is satisfied if 0 ≤ ν ≤ 5.6166.

4.3.2 Case II

4.3.2.1 First phase of motion

If ν ≥ ν2 = 5.6166 the inequality |m| < 1 is not satisfied at ξ = ξ∗, where
ξ∗ is a coordinate which depends on geometrical and material parameters
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of the shell. Now at ξ = ξ∗ a plastic hinge circle crops up which remains
stationary during the first phase of motion. The transverse velocity distri-
bution can be presented as (Fig. 4.5)

ẇ =
1
ξ∗

[ẇ1(ξ∗ − ξ) + ẇ0ξ] (4.28)

for ξ ∈ (0, ξ∗) and

ẇ =
1

(1− ξ∗)
[ẇ2(ξ − ξ∗) + ẇ0(1− ξ)] (4.29)

for ξ ∈ (ξ∗, 1).
Substituting (4.28), (4.29) in (4.4) and integrating with appropriate

boundary (4.6), (4.7) leads to

q =
1
ν

[
(ω + ẅ1)ξ +

ẅ0 − ẅ1

2ξ∗
ξ2 + ν

]
, (4.30)

m = −ξ
2

2
(ω + ẅ1)−

ẅ0 − ẅ1

6ξ∗
ξ3 − νξ + 1

for ξ ∈ (0, ξ∗) and

q =
1
ν

[
ω + ẅ2 +

ẅ0 − ẅ2

2
(ξ∗ − 1)

]
(ξ − 1)− 1, (4.31)

m = −1
2
(ω + ẅ2)(ξ − 1)2 − ẅ0 − ẅ2

6(ξ∗ − 1)
(ξ − 1)3 + ν(ξ − 1)

for ξ ∈ (ξ∗, 1).
Inserting q(ξ∗, τ) = 0, m(ξ∗, τ) = −1 in Eqs. (4.30) and (4.31), respec-

tively, one obtains

ẅ0 = −ω +
2ν
ξ∗
− 12
ξ2∗
, (4.32)

ẅ1 = −ω − 4ν
ξ∗

+
12
ξ2∗

and

ẅ0 = −ω − 2ν
ξ∗ − 1

− 6
(ξ∗ − 1)2

, (4.33)

ẅ1 = −ω +
4ν

ξ∗ − 1
+

6
(ξ∗ − 1)2

.
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The acceleration ẅ0 presented by (4.32) and (4.33) has a unique value
if

2νξ3∗ − 3(1 + ν)ξ2∗ + (12 + ν)ξ − 6 = 0. (4.34)

The first phase lasts as long as shear sliding takes place at the simply
supported edge. Let the sliding stop at τ = τ1, e.g. ẇ2(τ1) = 0. Integrating
(4.32) and (4.33) and satisfying initial conditions one can recheck that

τ1 =
(1− ξ∗)2

−4ν(ξ∗ − 1) + ω(1− ξ∗)2 − 6
(4.35)

and

ẇ0(τ) =
(2ν
ξ∗
− ω +

12
ξ2∗

)
τ + 1,

w0(τ) =
(2ν
ξ∗
− ω +

12
ξ2∗

)τ2

2
+ τ,

ẇ1(τ) =
(
− 4ν
ξ∗
− ω +

12
ξ2∗

)
τ + 1,

w1(τ) =
(
− 4ν
ξ∗
− ω +

12
ξ2∗

)τ2

2
+ τ, (4.36)

ẇ2(τ) =
( 4ν
(ξ∗ − 1)

− ω +
6

(ξ∗ − 1)2
)
τ + 1,

w2(τ) =
( 4ν
(ξ∗ − 1)

− ω +
6

(ξ∗ − 1)2
)τ2

2
+ τ.

Relations (4.35) and (4.36) are to be considered as initial conditions
for the subsequent motion. No more sliding takes place at ξ = 1 and a
generator of the shell turns around the simply supported edge.

4.3.2.2 Second phase of motion

During the second phase of motion shear sliding continues at the clamped
end and a travelling bending hinge occurs at η = η(τ) (Fig. 4.6). The
velocity field can be presented as

ẇ =
1
η
[ẇ1(η − ξ) + ẇ0ξ] (4.37)

for ξ ∈ (0, η) and

ẇ = ẇ0
ξ − 1
η − 1

(4.38)
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for ξ ∈ (η, 1).
From (4.37) and (4.38) one easily obtains the transverse acceleration as

ẅ = ẅ1 + (ẅ0 − ẅ1)
ξ

η
− η̇

η2
(ẇ0 − ẇ1)ξ, (4.39)

for ξ ∈ (0, η) and

ẅ = ẅ0
ξ − 1
η − 1

− η̇ẇ0

(η − 1)2
(ξ − 1), (4.40)

for ξ ∈ (η, 1).
Inserting (4.39), (4.40) in (4.4) and making use of (4.6), (4.7) yields

q =
1
ν

[
(ω + ẅ1)ξ + (ẅ0 − ẅ1)

ξ2

2η
− η̇

2η2
(ẇ0 − ẇ1)ξ2 + ν

]
, (4.41)

m = −1
2
(ω + ẅ1)ξ2 − (ẅ0 − ẅ1)

ξ3

6η
+

η̇

6η2
(ẇ0 − ẇ1)ξ3 − νξ + 1,

for ξ ∈ (0, η) and

q =
1
ν

[
ω(ξ − 1) + ẅ0

(ξ − 1)2

2(η − 1)2
− η̇ẇ0

2(η − 1)2
(ξ − 1)2 + C

]
, (4.42)

m = −1
2
ω(ξ − 1)2 − ẅ0

(ξ − 1)3

6(η − 1)
+

η̇ẇ0

6(η − 1)2
(ξ − 1)3 − C(ξ − 1),

for ξ ∈ (η, 1), where C is an arbitrary constant.
Transverse velocity and acceleration fields (4.37)-(4.40) envisage a plas-

tic hinge at ξ = η(τ). Thus m(η, τ) = −1, q(η, τ) = 0 and according to
(4.41), (4.42)

C =
3

2(η − 1)
− ω

4
(η − 1) (4.43)

and

ẅ0 =
−3

(η − 1)2
+

η̇ẇ0

η − 1
− 3

2
ω,

ẅ1 =
12
η2
− 4ν

η
− ω, (4.44)

η̇ =
3η

η−1 + 2(η − 1)(ν + ω
4 η −

6
η )

ẇ0η − (1− η)(ẇ1 − ẇ0)
.
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The system of Eqs. (4.44) can be integrated numerically accounting for
the initial conditions (4.35), (4.36) and η(τ1) = ξ∗. The second phase of
motion terminates at the moment τ = τ2 when the bending hinge at η(τ)
disappears. The time τ2 can be found numerically from the equation

ẇ0(τ2) = ẇ1(τ2)(1− η(τ2)). (4.45)

4.3.2.3 Third phase of motion

During the third phase the velocity distribution is presented as (Fig. 4.4)

ẇ = ẇ1(τ)(1− ξ). (4.46)

It is easy to recheck that the subsequent motion coincides with that cor-
responding to the case I, phase 2. Thus, (4.21)-(4.23) hold good in present
case, as well. However, in Eqs. (4.24) and (4.25) τ1 and τ2 must be replaced
by τ2 and τ3, respectively. Here τ3 stands for the final moment of motion
when ẇ1(τ3) = 0. It easily follows from (4.23)-(4.25) that

τ3 = τ2 +
ẇ1(τ2)

3ν + 3
2ω − 3

. (4.47)

and

w1(τ3) =
ẇ2

1(τ2)
2(3ν + 3

2ω − 3)
+ w1(τ2). (4.48)

4.3.3 Case III

4.3.3.1 First phase of motion

The first phase (case III) coincides with the first phase of case II. Relations
(4.28)-(4.36) hold good in the present case.

4.3.3.2 Second phase of motion

Also the second phase of motion is similar to the second phase in case II
so that (4.37)-(4.44) remain valid in the present case. However, the second
phase persists as long as shear sliding at the clamped end ceases. Thus the
motion is prescribed by the system of Eqs. (4.44) until ẇ1(τ2) = 0.

4.3.3.3 Third phase of motion

During the third phase no shear sliding takes place at supports. The trans-
verse velocity distribution corresponds to the triangular pattern (Fig. 4.7).
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Now at ξ = η(τ) a travelling bending hinge is located. The velocity distri-
bution can be presented as

ẇ =
1
η
ẇ0ξ (4.49)

for ξ ∈ (0, η) and

ẇ = ẇ0
ξ − 1
η − 1

(4.50)

for ξ ∈ (η, 1). The acceleration field corresponding to (4.49) and (4.50) can
be presented as

ẅ =
( ẅ0

η
− η̇ẇ0

η2

)
ξ (4.51)

for ξ ∈ (0, η) and

ẅ =
( ẅ0

(η − 1)
− η̇ẇ0

(η − 1)2
)
(ξ − 1) (4.52)

for ξ ∈ (η, 1).
Inserting (4.51), (4.52) in the equations of motion (4.4) and integrating

under appropriate boundary conditions (now nowhere |q| = 1) leads to the
expressions for the shear force and bending moment. Taking into account
that at ξ = η a plastic hinge circle is located, e.g. m(η, τ) = −1, q(η, τ) = 0
one has

ẅ0 = 3
(
− 2
η
− 1

1− η
− ω

2

)
, (4.53)

η̇ =
−3
ẇ0

(2(η − 1)
η

+
η

1− η

)
.

The third phase of motion terminates at the moment when the travelling
hinge reaches the modal position, e.g.

η(τ3) = β =
√

2
1 +

√
2
. (4.54)

4.3.3.4 Fourth phase of motion

The subsequent motion is a modal form motion with triangular velocity
distribution (Fig. 4.7), where η = const = β.

Now the velocity distribution is
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ẇ =
ẇ0(τ)
β

ξ (4.55)

for ξ ∈ (0, β) and

ẇ = ẇ0(τ)
ξ − 1
β − 1

(4.56)

for ξ ∈ (β, 1). The acceleration can be obtained when differentiating (4.55)
and (4.56) with respect to time.

The equilibrium Eqs. (4.4) with Eqs. (4.55) and (4.56) lead to the
relations

ẅ0 = −3ω
2
− 6
β2

=
−3

(β − 1)2
− 3ω

2
(4.57)

which in turn yield

ẇ0(τ) =
(
− 6
β2

− 3ω
2

)
(τ − τ3) + ẇ0(τ3) (4.58)

w0(tau) =
(
− 6
β2

− 3ω
2

)(τ − τ3)2

2
+ ẇ0(τ3)(τ − τ3) + w0(τ3).

The motion stops at the moment τ4 when ẇ0(τ4) = 0. Thus

τ4 = τ3 +
2β2ẇ0(τ3)
12 + 3ωβ2

. (4.59)

4.3.4 Case IV

4.3.4.1 First phase of motion

During the first phase (Fig. 4.8)

ẇ = ẇ1
β1 − ξ

β1
+

ξ

β1
(4.60)

for ξ ∈ (0, β1) and

ẇ = ẇ2
β2 − ξ

β2 − 1
+

ξ − 1
β2 − 1

(4.61)

for ξ ∈ (β2, 1), whereas in the central part of the shell ẇ = 1. In Eqs. (4.60)
and (4.61) β1 = const, β2 = const whereas ẇ1 and ẇ2 are certain functions
of time. Making use of (4.60), (4.61) and (4.4) it is easy to recheck that
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q =
1
ν

[
(ω + ẅ1)ξ −

ẅ1

2β1
ξ2 + ν

]
, (4.62)

m = −ξ
2

2
(ω + ẅ1) +

ẅ1

6β1
ξ3 − νξ + 1

for ξ ∈ (0, β1) and

q =
1
ν

[
(ω + ẅ2)(ξ − 1)− ẅ2

2(β2 − 1)
(ξ − 1)2 − ν

]
, (4.63)

m = −(ξ − 1)2

2
(ω + ẅ2) +

ẅ2

6(β2 − 1)
(ξ − 1)3 + ν(ξ − 1)

for ξ ∈ (β2, 1). In the central part of the shell q = 0, m = 1, n = 0.
Inserting q(βj , τ) = 0, m(βj , τ) = −1 in Eqs. (4.62) and (4.63) leads to

the relations (here j = 1, 2)

ẅ1 = −ω +
12
β2

1

− 4ν
β1
, (4.64)

ẅ2 = −ω +
6

(β2 − 1)2
+

4ν
β2 − 1

and

β1 =
ν −

√
ν2 − 12ω
ω

, (4.65)

β2 =
ω − ν +

√
ν2 − 6ω

ω
.

It is worthwhile to mention that the accelerations ẅ1, ẅ2 in Eq. (4.64)
are similar to those for the first phase of case II (formulae (4.32) and (4.33)).
The first phase of motion ends when ẇ2(τ1) = 0. Thus

τ1 =
(1− β2)2

4ν(1− β2) + ω(1− β2)2 − 6
(4.66)

and

ẇj(τ1) = ẅjτ1 + 1 (4.67)
whereas

wj(τ1) = ẅj

τ2
j

2
+ τ1. (4.68)

Here j = 1, 2.
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4.3.4.2 Second phase of motion

Now a bending hinge starting from the position η(τ1) = β2 moves towards
the center of the shell. The another bending hinge remains stationary at
ξ = β1 (Fig. 4.9). Shear sliding also takes place at the clamped end of the
shell.

The motion of the left part of the shell for ξ ∈ (0, β1) is similar to the
former phase. Thus the relations (4.60) and (4.62) remain valid for the
present case as well. For ξ ∈ (β2, 1) instead of (4.61) and (4.63) one has

ẇ =
ξ − 1
η2 − 1

, ẅ =
−η̇2

(η2 − 1)2
(ξ − 1) (4.69)

and

q =
1
ν

[
ω(ξ − η2)−

η̇2

2(η2 − 1)2
[(ξ − η2)2 + 2(ξ − η2)(η2 − 1)]

]
, (4.70)

m = −ω
2

(ξ − η2)2 +
η̇2

6(η2 − 1)2
[(ξ − η2)3 + 3(ξ − η2)2(η2 − 1)]− 1

where conditions q(η2, τ) = 0, m(η2, τ) = −1 are taken into account.
Inserting the boundary conditions m(1, τ) = 0 and η2(τ1) = β2 in Eq.

(4.70) leads to the relation

η2 = 1−
√
− 2
ω

+
[ 2
ω

+ (β2 − 1)2
]
e3ω(τ−τ1). (4.71)

Assume that the second phase of motion end at τ = τ2 when the travel-
ling hinge at ξ = η2 reaches the position ξ = β1. Making use of (4.71) one
can define the time

τ2 =
1
3ω
ln

2 + ω(β1 − 1)2

2 + ω(β2 − 1)2
+ τ1 (4.72)

where β1, β2 are given by (4.65) and τ1 by (4.66).
Evidently, the central displacement w0(τ) = τ and according to (4.64)-

(4.68)

ẇ1(τ2) =
(
− ω +

12
β2

1

− 4ν
β1

)
τ2 + 1,

w1(τ2) =
(
− ω +

12
β2

1

− 4ν
β1

)τ2
2

2
+ τ2, (4.73)

ẇ0(τ2) = 1, w0(τ2) = τ2, η(τ2) = β1.
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4.3.4.3 Third phase of motion

During this phase the bending hinge η(τ) being at ξ = β1 initially moves
towards the clamped end. At the same time shear sliding takes place at
the clamped end. This deformation mechanism coincides with that of the
second phase of case III (Fig. 4.6). Now ηe = η.

For determination of quantities w0, w1 and η one can use the system
(4.44) which corresponds to the velocity pattern presented in Fig. 6. How-
ever, initial conditions for the set (4.44) are given by (4.72) and (4.73).
This phase of motion terminates at the moment τ = τ3 when shear sliding
ceases, e.g. ẇ1(τ3) = 0.

4.3.4.4 Fourth phase of motion

During this phase the velocity distribution has a triangular shape with the
single moving hinge travelling towards the clamped end (Fig. 4.7). This
type of motion coincides with that of the third phase of case III. Thus the
relations (4.49)-(4.54) hold good in the present case, as well. However, the
time τ3 in (4.54) is to be replaced by τ4, for which η(τ4) = β.

4.3.4.5 Fifth phase of motion

This phase of motion coincides with the fourth phase of case III. Thus
(4.55)-(4.58) hold good, provided τ3 is replaced by τ4. The motion stops at
τ5 when ẇ0(τ5) = 0. It follows from (4.58) that

τ5 = τ4 +
2β2ẇ0(τ4)
12 + 3ωβ2

. (4.74)

4.3.5 Case V

4.3.5.1 First phase of motion

This phase of motion coincides with the first phase of case IV. Thus the
relations (4.60)-(4.68) hold good in the present case.

4.3.5.2 Second phase of motion

The motion of the shell during the second phase also coincides with that
corresponding to the second phase of case IV. However, the second phase
terminates now at the moment when shear sliding stops at the clamped
end, e.g. ẇ1(τ2) = 0, or

τ2 =
β2

1

ωβ2
1 + 4νβ1 − 12

(4.75)
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and

w1(τ2) =
β2

1

2(ωβ2
1 + 4νβ1 − 12)

. (4.76)

Note that during the second phase of motion relations (4.69)-(4.71) hold
good for the right-hand part and (4.60) and (4.62) for the left hand part of
the shell.

4.3.5.3 Third phase of motion

At the moment τ2 defined by (4.75) the third phase of motion can be
promulgated. Now the deformation mechanism follows the scheme depicted
in Fig. 4.10. Both hinges, located at ξ = η1 and ξ = η2, respectively, are
travelling hinges.

For the region ξ ∈ (η2, 1) relations (4.69)-(4.71) remain valid in the
present case as well. However, for ξ ∈ (0, η) on has (Fig. 4.10)

ẇ =
ξ

η1
, ẅ = − η̇1

η2
1

ξ. (4.77)

The acceleration (4.77) and equations of motion (4.4) lead to stress
distributions

q =
1
ν

[
ωξ − η̇1

2η2
1

ξ2 +
η̇1

2
− ωη1

]
, (4.78)

m = −ω
2
ξ2 +

η̇1

6η2
1

ξ3 +
(
ωη1 −

η̇1

2

)
ξ

where

η̇1 =
3
2
ωη1 +

6
η1
. (4.79)

The solution of (4.79) satisfying the initial condition η1(τ2) = β1 can be
presented as

η1 =
√
− 4
ω

+
( 4
ω

+ β2
1

)
e3ω(τ−τ2). (4.80)

The third phase of motion ends at the moment τ = τ3 when the travel-
ling hinges meet each other, e.g. η1(τ3) = η2(τ3). Making use of (4.71) and
(4.80) one can recheck that

e3ω(τ3−τ2) =
1
A

[
B ±

√
B2 −A

[
8
ω

+
(
1 +

2
ω

)2
]]

(4.81)
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where

A =
[ 2
ω

+ β2
1 − (β2 − 1)2

]2
, (4.82)

B =
(
1 +

2
ω

)( 2
ω

+ β2
1

)
+ (β2 − 1)2

(
1− 2

ω

)
+

4
ω
.

From (4.81) on easily obtains

τ3 = τ2 +
1
3ω
ln

{
B ±

√
B2 −A

[
8
ω

+
(
1 +

2
ω

)2
]}

− lnA

3ω
. (4.83)

At the final moment of the third phase of motion

ẇ0(τ3) = 1, w0(τ3) = τ3.

4.3.5.4 Fourth phase of motion

Now the motion takes place with a single moving hinge. The transverse ve-
locity pattern corresponds to Fig. 4.7. This type of motion was considered
earlier (the phase four, case IV).

4.3.5.5 Fifth phase of motion

This phase of motion coincides with the fifth phase of case IV.

4.4 Discussion

The results of calculations are presented in Table 4.1 and 4.2 and Figs.
4.11-4.15.

In Table 4.1 the values of the coordinates ξ0 and ξ∗ are presented for
different values of the parameter ν. Here ω = 2.

Distributions of the longitudinal bending moment m and shear force q
at the initial moment of time are presented in Figs. 4.11-4.13. Fig. 4.11
corresponds to the case I, Fig. 4.12 to the case III and Fig. 4.13 to the
case V. It can be seen from Figs. 4.11-4.13 that the stress distributions do
not exceed the limits of admissible values. Calculations carried out showed
that the stress distributions varied only slightly in time.

Maximal displacements as functions of time τ are presented in Figs.
4.14 and 4.15. Fig. 4.14 corresponds to the case I whereas Fig. 4.15 is
associated with the cases II and III.
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It can be seen from Figs. 4.12-4.15 that the bending moment, shear force
and permanent transverse deflecctions are more sensitive to the parameter
ν in the case of smaller values of ν.

On the other hand, the results of calculations bear out the corrollary
that shear effects become more important for shorter shells and less im-
portant for longer shells. The same conclusion was drown by Jones and
Oliveira [16] and Li and Jones [15] when studying cylindrical shells with
symmetrical boundary conditions, subjected to impulsive and blast load-
ing, respectively. Similar observations have been found previously by Li
and Jones [10, 22] for clamped beams and circular plates subjected to dis-
tributed blast loadings of finite intensity.

Following Li an Jones [10] the cubic yield surface was used in the present
study. Li and Jones [10, 22] suggested extension of the yield surface cor-
responding to the Tresca yield criterion to include the transverse shear
force as an independent quantity. This yield surface circumscribes other
proposed yield surface to give an upper bound solution. A lower bound so-
lution may be obtained when the size of the cubic yield surface is multiplied
by 0.75.

Theoretical predictions presented above are valid under the assumption
that the stress distribution is admissible everywhere and the flow law is
violated nowhere. This means that the bending moment and the shear
force must meet inequalities |m(ξ, τ)| ≤ 1, |q(ξ, τ)| ≤ 1, provided the yield
regime corresponds to the face n = 1 of the yield surface. The kimematical
admissibility of the solution is controlled by the energy criterion

Ėj = Pj δ̇j ≥ 0 (4.84)

at each hinge circle. Here Ėk stands for energy dissipation rate at a hinge
circle ξ = ξj , Pj is a generalized stress (bending moment or shear force)
and δ̇j stands for the corresponding generalized strain.

It is assumed herein that the shells under consideration are short but
remaining ”reasonably short” so that the length of the tube cannot be
much less than the thickness of the shell wall. Using the notations (4.3) we
confined our attention to shells with ν > 1. The minimum value of ν = ν1

is obtained from the condition that ẅ1 < 0 during the final phase of case
I. From (4.23) it follows that

ν1 = 1− 1
2
ω.

The values of ν = νj , such that for νj ≤ ν ≤ νj+1 for j = 1, 2, 3, 4, 5 the
solution corresponds to the case number j, are accommodated in Table 2
for different values of the parameter ω. Although ν1 = 0 in Table 2 for
smaller values of ω one has ν1 > 0. For instance, in the case when ω = 1
evidently ν1 = 0.5.
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As it was mentioned above ν2 is obtained as a solution of (4.27) whereas
ν3 is defined as maxν for which τ22 ≤ τ23. Here τ22 stands for the solution
of (4.44) with respect to τ2 and τ23 satisfies the equation ẇ1(τ2) = 0.
However, ν4 is determined according to the requirement β1 = β2 and ν5

from the condition that the travelling hinge η2 reaches the position β1

earlier than shear sliding stops at the clamped edge. Thus according to
(4.66), (4.71)-(4.73) and (4.75) ν5 = maxν for which

1
3ω
ln

2 + ω(β1 − 1)2

2 + ω(β2 − 1)2
+

(1− β2)2

4ν(1− β2) + ω(1− β2)2 − 6
≤ β2

1

ωβ2
1 + 4νβ1 − 12

.

It is worthwhile to mention that the final modal form stage of motion
(the third phase for case II, the fourth phase for case III and the firfth phase
for case IV and case V) is very short in time. Due to this the contribution
of last phase in the total permanent displacements is small. It is somewhat
surprising because in the pure bending theory the modal form motions are
predominant among others [3].

4.5 Concluding remarks

The dynamic plastic response of rigid-plastic cylindrical shells to initial
impulsive loadings is studied above. The transverse shear force, the cir-
cumferential membrane force and the longitudinal bneding moment are
retained in the simplified yield condition. Theoretical solutions are obtained
for cylindrical shells clamped at the left and simply supported at the right-
hand end.

It is interesting to note that the obtained solutions substantially differ
from those corresponding to shells with both simply supported or clamped
ends, respectively. It was noted by Li and Jones [15] that in the case
of tubes with identical supports at both ends the solution (except of the
longitudinal bending moment) is not sensitive to the support conditions.
The same regards to beams and circular plates [10, 22].

The solution procedure revealed the matter that shear sliding is more
essential for shorter shells as might be expected. On the other hand, defor-
mation proces begins with shear sliding at supports in each shell subjected
to the impulsive loading. However, the share of shear in the bulk deforma-
tion is less in the case of longer shells.
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Tabel 4.1. Values of ξ0 and ξ∗

ν ξ0 ξ∗
2 0.7676 -
2.5 0.7342 -
3 0.7071 -
3.5 0.6849 -
4 0.6667 -
4.5 0.6514 -
5 0.6385 -
5.6166 0.6252 0.6252
6 - 0.6290
6.5 - 0.6344
7 - 0.6404
7.5 - 0.6464
8 - 0.6256
8.5 - 0.6594
9 - 0.6667
9.5614 - 0.6752

Tabel 4.2. Boundaries of cases I-V

ω ν1 ν2 ν3 ν4 ν5

2 0 5.6166 6.79 9.5614 10.7017
3 0 5.6166 6.78 9.8468 10.9386
4 0 5.6166 6.78 10.242 11.1805
5 0 5.6166 6.78 10.4289 11.42771
6 0 5.6166 6.78 10.7261 11.6785
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Figure 4.1: A cylindrical shell.

Figure 4.2: The yield surface.

Figure 4.3: Velocity field for Case I, phase I.
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Figure 4.4: Velocity field for Case I, phase II.

Figure 4.5: Velocity field for Case II, phase I.

Figure 4.6: Velocity field for Case II, phase II.

Figure 4.7: Velocity field for Case III, phase III.
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Figure 4.8: Velocity field for Case IV, phase I.

Figure 4.9: Velocity field for Case IV, phase II.

Figure 4.10: Velocity field for Case V, phase III.
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Figure 4.11: Bending moment and shear force (case I).

Figure 4.12: Bending moment and shear force (case III).
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Figure 4.13: Bending moment and shear force (case V).
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Figure 4.14: Maximal deflections (case I).

Figure 4.15: Maximal deflections (case III).
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kinematyczne. Biul WAT 1979; 28(10): 77-88.

[67] Nonaka T. Some interaction effects in a problem of plastic beam dy-
namics. Parts 1-3. ASME J Appl Mech 1967; 34: 623-643.

[68] Nonaka T. Shear and bending response of a rigid-plastic beam to blast-
type loading. Ing Arch 1977; 46: 35-52.

[69] de Oliveira JG, Jones N. Some remarks on the influence of transverse
shear on the plastic yielding of structures, Int J Mech Sci 1978; 20:
759-765.

[70] de Oliveira JG, Jones N. A numerical procedure for the dynamic plastic
response of beams with rotatory inertia and transverse shear effects. J
Struct Mech 1979; 7: 193-2230.

[71] Robinson M. The effect of transverse shear stresses on the yield surface
for thin shells. Int J Solids and Struct 1973; 9(7): 819-828.

[72] Robinson M. An evaluation of the errors in the yield surface for a
rotationally symmetric thin shell due to neglecting transverse normal
stress and shell curvature. Int J Mech Sci 2000; 42(6): 1087-1095.

[73] Save MA, Massonnet CE, Saxce GDe. Plastic Limit Analysis of Plates,
Shells and Disks. Amsterdam: Elsevier 1997.

[74] Sawczuk A, Duszek M. A note on the interaction of shear and bending
in plastic plates. Arch Mech Stosow 1963; 15: 411-426.

[75] Sawczuk A. Mechanics and Plasticity of Structures. PWN - Ellis Hor-
wood, Chichester 1989.

131



[76] Sawczuk A, Sokól-Supel J. Limit Analysis of Plates. Warzawa: PWN
1993.

[77] Shen WQ, Jones N. Dynamic response and failure of fully clamped
circular plates under impulsive loading. Int J Impact Eng 1993; 13(2):
259-278.

[78] Shi XH, Gao YG. Generalization of response number for dynamic plas-
tic response of shells subjected to impulsive loading. Int J Pressure
Vessels Piping 2001; 78: 453-459.

[79] Skrzypek J, Hetnarski RB. Plasticity and Creep. Theory, Examples
and Problems. London, Tokyo: CRC press, Boca Raton 1993.

[80] Song GH, Wang R. Rigid plastic analysis of cantilever cylindrical shells
under transverse and axial impact. Proceeding of the First Symposium
on Limit Analysis and Plasticity Theory. Beijing: Science Press 1965;
77-85.
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SUMMARY

In the present study problems of dynamic plastic behaviour of structural
elements subjected to impulsive loading are studied. The attention is fo-
cosed on structures (beams, annular plates, circular cylindrical shells) with
non-symmetrical end condtions accounting for shear deformations. The
latter means that in contrast to classical solutions shear forces are retained
in the equations of yield surfaces and associated flow law.

In the introduction a review of existing literature in this area is pre-
sented.

In the first chapter equations for analysis of beams, axisymmetric plates
and circular cylindrical shells are presented. Basic equations consist of a
set of equilibrium equations and the yield surface with the associated flow
law.

In the second chapter the dynamic response of a rigid-plastic beam is
considered. The beam is subjected to the initial impulsive loading. Plastic
yielding of the material in controlled by the square yield criterion which
retains the transverse shear force as well as the bending moment. The
beam under consideration is clamped at the left and simply supported at
the right hand end.

In the third chapter the dynamic response of a rigid-plastic annular
plate clamped at the outer edge and free at the inner edge is considered.
The plate is subjected to initial impulsive loading so that at the initial
moment of time all points of the plate have the uniform transverse velocity.
It is assumed that the behaviour of a rigid perfectly plastic material is
controlled by a cubic yield condition and the associated flow law in the
space of bending moments and the transverse shear force. Theoretical
predictions are developed and compared with an upper bound solution.

In the fourth chapter the dynamic plastic behaviour of a circular cylin-
drical shell subjected to an initial impulsive loading is studied. It is assumed
that the thin walled tube is clamped at the left end and simply supported
at the right-hand end. The behaviour of the rigid, perfectly plastic mate-
rial is controlled by a cubic yield condition which retains the axial bending
moment, circumferential membrane force as well as the transverse shear
force. Theoretical predictions are presented for a wide range of geometrical
and material parameters of the shell.

The Chapters 2-4 consist of three original journal papers published in
recent years.
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KOKKUVÕTE

Impulsiivselt koormatud konstruktsioonide
käitumine arvestades nihkepingeid

Käesolevas töös uuritakse impulsiivselt koormatud plastsete kehade dü-
naamilist käitumist. Tähelepanu all on konstruktsioonid (talad, ümarplaa-
did, ringsilindrilised koorikud), millel on mittesümmeetrilised rajatingimu-
sed ja mille korral võetakse arvesse nihkepinged. See tähendab, et erinevalt
klassikalistest lahendustest nihkepinged jäävad voolavuspinna ja assotsee-
ritud voolavusseaduse võrranditesse.

Sissejuhatuses on toodud ülevaade plastsete talade, plaatide ja koorikute
dünaamilist koormamist käsitleva kirjanduse kohta.

Esimese peatükis on toodud põhivõrrandid talade, ümarplaatide ja ring-
silindriliste koorikute kohta. Põhivõrrandid koosnevad tasakaaluvõrrandi-
test, voolavustingimustest ja assotseeritud voolavusseadusest.

Teises peatükis on vaadeldud jäik-plastsete talade dünaamilist käitumist.
Tala on impulsiivselt koormatud. Eeldatakse, et materjali käitumine vastab
ruudukujulisele voolavustingimusele. Tala üks ots on vabalt toetatud ja
teine on jäigalt kinnitatud. Töös näidatakse, et sõltuvalt parameetri ν =
Q0l/M0 väärtusest võib deformatsiooni mehhanism olla erinev, ent kõigil
juhtudel lõpeb liikumine modaalse liikumise faasiga. Huvitav on märkida,
et antud tala korral, st kui tala üks ots on jäigalt kinnitatud ja teine vabalt
toetatud, on deformeerumise mehhanism täiesti erinev sellest juhust, kui
tala mõlemad otsad on ühte moodi kinnitatud.

Samale järeldusele jõutakse ka ringsilindrilise kooriku ja rõngasplaadi
uurimise korral. Rõngasplaadi korral oleks sümmeetriliselt kinnitatud plaa-
diks ümarplaat.

Kolmandas peatükis on uuritud jäik-plastse rõngasplaadi dünaamilist
käitumist. Plaadi välisserv on jäigalt kinnitatud ja siseserv vabalt toetatud.
Plaadile on rakendatud impulsiivne koormus, mis tähendab, et liikumise
algmomendil on plaadi kõikidele punktidele rakendatud ühtlane kiirus. Eel-
datakse, et materjali plastsust kontrollitakse kuubikujulise voolavustingi-
musega.

Neljandas peatükis käsitletakse impulsiivselt koormatud ringsilindrilise
kooriku dünaamilist käitumist. Eeldatakse, et kooriku üks ots on jäigalt
kinnitatud ja teine vabalt toetatud.

Käesoleva töö teine, kolmas ja neljas peatükk on iseseisva uurimistöö
tulemus, mis on avaldatud trükis 3 artiklina.
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