TARTU ÜLIKOOL Loodus- ja täppisteaduste valdkond Ökoloogia ja maateaduste instituut Geoloogia osakond

Rasmus Kont

Jälgelemendid Uljaste sulfiidse mineralisatsiooni ilmingutes

Magistritöö geoloogias (30 EAP)

Juhendajad: Peeter Somelar Siim Nirgi

Kaitsmisele lubatud:	
Juhendaja:	
	allkiri, kuupäev

Tartu 2022

Jälgelemendid Uljaste sulfiidse mineralisatsiooni ilmingutes

Kirde-Eestis leviva Alutaguse vööndi sulfiid-grafiitgneisside levialal asuv Uljaste polümetalne anomaalia on pakkunud teadlastele huvi 1960. aastatest alates. Uljaste grafiitgneissides on kõrged grafiidi ja erinevate sulfiidide (peamiselt pürrotiini) sisaldused. Juba varasemalt on mainitud, et lisaks sulfiididele esineb grafiitgneissides madalates kogustes väärismetalle, mida on seostatud hüdrotermaalsete sündmustega. Lõuna-Soomes ja Kesk-Rootsis, mis moodustavad Eesti territooriumiga ühtse aluskorra ploki, kaevandatakse just neid samu metalle. Seetõttu ei ole välistatud, et ka Eesti maapõu võib peita endas perspektiivseid maagialasid. Käesoleva magistritöö eesmärgiks on uurida Uljaste puursüdamiku F188 sulfiidse maagistumisega seotud polümetallide levikut, mineraloogilisi assotsiatsioone ja geneesi ning hinnata mineralisatsiooni sündmuste vanuseid kasutades U/Pb keemilist dateerimist. Analüüside käigus tuvastati, et sügavustel 200.75–201.3, 213.4; 331.4 ja 344 m esines intervalle, mis on intensiivselt läbistunud hüdrotermaalsetest soontest. Just nendes intervallides tuvastati ümbritsevast kõrgemaid väärismetallide (Ag, Au) ja nendega kaasnevate elementide (Te, Bi) sisaldusi. Keemilise dateerimise tulemuste põhjal saame väita, et uraniniidi terad on valdavalt tekkinud ajavahemikus $1708-1783 \pm 40$ Ma, mis lubab oletada, et uraniniitide tekkega seotud hüdrotermaalsed protsessid on seotud Svekofenni orogeeni lõpufaasi ja postorogeense faasi algusega.

Märksõnad: Sulfiidid, jälgelemendid, grafiitgneiss, Uljaste polümetalne anomaalia CERCS kood: P420 – petroloogia, mineraloogia, geokeemia

Trace elements in the Uljaste sulphidic mineralization occurrences

The Uljaste polymetallic anomaly in the sulphide-graphite gneiss bearing Alutaguse zone in North-East Estonia has been of interest to scientists since the 1960s. Uljaste graphite gneisses are enriched in graphite and different sulphide minerals, mainly pyrrhotite. It has previously already been established that in addition to sulphides, Uljaste graphite gneisses contain lesser amounts of precious metals, which are associated with hydrothermal activity. Those same ores are mined in the bedrock of Southern Finland and Central Sweden, which together with the bedrock of Estonia form a single unit, hence there is a possibility that the crust of Estonia could also contain undiscovered prospective areas. The aim of this masters thesis is to analyze the occurrence of polymetals, mineralogical associations and genesis of the sulphidic ores using the Uljaste F188 drillcore and also to date the mineralization events using U/Pb chemical

dating. Results show an increase of hydrothermal veins at the depths of 200.75–201.3; 213.4; 331.4 and 344 m. The same intervals also show increased amounts of precious metals (Ag, Au) and associating elements (Te, Bi). Based on the results of chemical dating, uraninite grains were mainly formed $1708-1783 \pm 40$ My ago. Through these ages it can be assumed that the hydrothermal activity responsible for the formation of the uraninites are associated with the transitionl phase from orogenic to postorogenic.

Keywords: *Sulphides, trace elements, U/Pb chemical dating, Uljaste polymetallic anomaly* **CERCS code:** P420 – petrology, mineralogy, geochemistry

Sisukord

Sissejuhatus	5
1. Geoloogiline taust	7
2. Uljaste maagiilmingute varasem uuritus	10
3. Materjalid ja meetodid	14
3.1 Käsi-XRF mõõtmised	14
3.2 Kogukivimi geokeemiline analüüs ICP-ga	15
3.3 Röntgendifraktsioon (XRD) analüüs	15
3.4 Skaneeriv elektronmikroskoopia (SEM) analüüs	16
3.5 Uraniniitide U/Pb keemiline dateerimine	16
4. Tulemused	18
4.1 Kogukivimi mineraloogia (XRD)	18
4.2 Üldkeemia (Kogukivimi ICP keemia ja käsi-XRF)	19
4.3 SEM analüüs	23
4.3.1 Grafiitgneisid	23
4.3.2 Pürokseenkivim	24
4.3.3 Kvartsiit	
4.3.4 Graniitsed sooned/pegmatiidid	27
4.3.5 Sulfiidide esinemine ja nendega kaasnevad mineraalid/elemendid	
4.3.6 Fosfaadid ja uraniniidid	
4.4 Uraniniitide U/Pb dateering	37
5. Diskussioon	
5.1 Uraniniitide vanuste interpretatsioon ning määrangute täpsus	
5.2 Sulfiidide ja kaasnevate mineraalide võrdlus Soomega	40
6. Kokkuvõte	43
Summary	44
Tänuavaldused	45
Kasutatud allikad	46
Interneti allikad	53
Lisad	54

Sissejuhatus

Eesti aluskorras on kõige märkimisväärsemad sulfiidse ja polümetalse maagistumise ilmingud seotud Alutaguse, Tallinna ja Jõhvi vöönditega. Praeguse uurituse juures asub suurim perspektiiv Eesti aluskorras metallide leidmiseks Kirde-Eesti piirkonnas (sealhulgas Sonda ja Uljaste aladel). Eesti kristalses aluskorras on olulisemad sulfiidse maagistumise ilmingud valdavalt seotud sulfiide ja grafiiti sisaldavate grafiitgneissidega, mida on kutsutud ka "mustadeks kiltadeks". Eesti kristalses aluskorras leidub grafiitgneisse Saue-Värska joonest kirde jääval alal, olles valdavalt Tallinna ja Alutaguse vööndi piirides. Leiuala laieneb ida suunas Pihkva ja Leningradi oblastini ning põhja suunas Lõuna-Soomeni. (Petersell *et al.*, 1991)

Ajalooliselt on terminit "mustad kildad" kasutatud ka meie aluspõhjas leiduva settekivimi graptoliitargilliidi puhul, kuid neid ei tohiks omavahel segamini ajada. (Petersell *et al.*, 1991). Mustad kildad (ingl *black schist*) on savikiltade (*black shale*) (nt. graptoliitargillidi) moondel tekkinud metasetted, mille grafiidi ning väävli sisaldused on üle ühe protsendi (Loukola-Ruskeeniemi ja Heino, 1996). Seega on sobilik Uljaste grafiitgneisside puhul seda terminit ka kasutada.

Öpik (1942), Luha (1946) ja Petersell *et al.* (1991) keemiliste, mineraloogiliste ning dateerimiste andmete alusel moodustavad Eesti aluskorra kivimid jätku Kesk-Rootsis ja Lõuna-Soomes levivatele struktuuridele ja kivimitele. Mis tähendab, et sarnaselt Rootsile ja Soomele on ka meil teoreetiline võimalus oma aluskorrast leida metallide (nt raua, nikli, koobalti, tsingi, plii, vase ja väärismetallide nagu kulla või hõbeda) kõrgenenud sisaldusi (Petersell *et al.*, 1991). Lõuna-Soomes leiduvad grafiitgneisid on oma moondetingimuste, tekkeaja ning tekkeprotsesside (Palosaari *et al.*, 2020) poolest sarnased Uljaste grafiitgneissidega. Mõlemal juhul on tegemist amfiboliitse ja/või granuliitse faatsiese läbinud kivimitega. (Palosaari *et al.*, 2020).

Uurimustöö keskendub Uljaste puuraugu F188 sulfiidse maagistumise ilmingute mineraloogilistele assotsatsioonidele ja jälgelementidele. Uurimustöö eesmärgiks on selgitada Uljaste sulfiidse maagistumisega seotud polümetallide leviku seaduspärasusi ja geneesi ning võrrelda saadud tulemusi Soome maagistumisilmingutega. Lisaks katsetatakse esmakordselt *in-situ* keemilist dateerimist, kasutades uuritavas läbilõikes esinevaid U ja Pb sisaldavaid

uraniniidi teri. Keemilise dateerimise eesmärgiks on dateerida ja seostada regionaalgeoloogiliste sündmustega võimalikke hüdrotermaalseid mineralisatsiooni sündmuseid. Saadud andmed võivad aidata mõista Eesti aluskorra sulfiidsete maagistumisilmingute geeneesi.

1. Geoloogiline taust

Eesti asub Fennoskandia kilbi lõunanõlval, mida katab 100 kuni 800 meetri paksune Paleosoikumi- ja Neoproterosoikumi-aegne settekivimite kiht. Kristalne aluskord koosneb peamiselt 1.9–1.7 miljardit aastat vanadest Svekofenni orogeneesi käigus saarkaarte subduktsiooni situatsioonis tekkinud sün- ja postorogeensetest Paleoproterosoikumi tard- ja moondekivimitest, mida läbistavad 1.6–1.5 miljardi aasta vanused Mesoproterosoikumi intrusioonilised graniitsed plutoonid (Koppelmaa, 2002; Kirs *et al.*, 2009). Sellele järgnenud umbes miljard aastat kestnud kulutusprotsessid andsid aluskorrale oma tänapäevase lõunasuunalise kallakusega reljeefi. Sarnaste petrofüüsikaliste ja geokeemiliste omadustega Eesti aluskorda peetakse üheks ja samaks üksuseks Lõuna-Soomes paljanduvate Svekofenniaegsete kivimitega. Eesti aluskord jaotub kaheks geoloogiliseks üksuseks: Põhja-Eesti amfiboliitseks faasieseks ja Lõuna-Eesti granuliitseks faatsieseks, mida eraldab Paldiski-Pihkva tektooniline rikkevöönd. Need üksused jagunevad omakorda geneesi, moondeastme ja koostise järgi erinevateks üksusteks: Lääne-Eesti vöönd, Tallinna vöönd, Alutaguse vöönd, Jõhvi vöönd, Tapa vöönd ja Lõuna-Eesti vöönd. (Koppelmaa, 2002)

Käesolevas töös uuritav Uljaste piirkond asub Alutaguse vööndis (Joonis 1). Alutaguse vööndit iseloomustab amfiboliitse faatsiese kivimite järk-järguline üleminek granuliitsesse faatsiesse (Bogdanova *et al.*, 2015). Mis tähendab, et maksimaalne moondeaegne temperatuur ja rõhk jäid 600–800 °C ning 3–6 kbar vahele (Klein, 1986; Koistinen, 1996; Hölttä ja Klein, 1991). Alutaguse vööndis laialt levivate grafiitgneisside viimaseks moondeetapiks on siiski loetud amfiboliitsele faatsiesele iseloomulikke moondetingimusi (Soesoo *et al.*, 2020). Nii Haljala kui ka Uljaste jäänukstruktuuri alal on täheldatud temperatuuri ja rõhu gradiendi suurenemist struktuuri keskpunkti suunas (Puura *et al.*, 2004).

Alutaguse vööndile on iseloomulikud üldiselt madalad nullilähedased raskusjõu ja kergelt negatiivsed magnetvälja anomaaliad (Soesoo *et al.*, 2020). Lokaalsed positiivsed anomaaliad esinevad Sonda-Uljaste ja Assamalla jäänukstruktuuride näol ja ka Haljala ning Luusika piirkonnas (All *et al.*, 2004; Dmitrijeva *et al.*, 2018; Krull, 2021), kust peale tüüpiliste vilgugneisside võib leida sulfiid-grafiitgneisse, kvartsiite, karbonaatseid skarne ja pürokseengneisse (Soesoo *et al.*, 2020).

Joonis 1. Eesti kristalse aluskorra kivimkomplekside ja struktuursete vööndite leviku kaart (Koppelmaa, 2002).

Alutaguse vööndi kivimid koosnevad peamiselt alumiiniumirikastest vilgugneissidest (Joonis 1) ning biotiit-plagioklass-gneissidest. Oluliselt väiksemal määral leidub amfiboolgneisse, amfiboliite, kvartsiite. pürokseengneisse, skarnistunud marmorit ja graniitseid/migmatiidistunud sooni (Klein, 1986). Kivimite puhul arvatakse, et algselt on tegemist olnud enamjaolt settelist päritolu turbitiidega, mis on läbinud moondeprotsesse (Soesoo et al., 2020). Väiksemal määral esineb ka vulkaanilist päritolu moondekivimeid. Vilgugneisse iseloomustab punakas ja tumehall värvus ning vöödiline või kildaline tekstuur, enamasti on tegemist keskmiseteralise, kohati tugevalt migmatiidistunud kivimmaterjaliga, kus võib esineda õhukeste vahekihtidena peeneteralist kvartsi sisaldavat migmatiseerumata gneissi. Kordieriit ja granaat on iseloomulikud jämedateralisele materjalile. Sillimaniit on nõelja struktuuriga ning esineb sageli kordieriidi suletisena. Haruldase leiuna on tuvastatud ka andalusiiti. Plagioklass päevakivi on tüüpiliselt andesiini ja/või oligoklassi tüüpi, K-päevakivi on mikrokliini tüüpi. Aktsessoorsetest mineraalidest leidub vilgugneissidest tsirkooni, apatiiti, väiksemal määral ka monatsiiti, spinelli ja turmaliini. Maakmineraalidest on esindatud magnetiit, ilmeniit, pürit, pürrotiin, hematiit ja kalkopüriit. Maakmineraale levib rohkem Uljaste ja Jõhvi aladel leiduvates vilgugneissides. (Koppelmaa, 2002)

Varasemate kirjelduste alusel esinevad uuritud piirkonna kivimites karbonaatsed kivimid ja pürokseenskarnid väikeste vahekihtidena kvartsiitides. Karbonaatseteks kivimiteks olevad silikaatmarmorid sisaldavad kaltsiiti (65–80%), forsteriiti, diopsiidi, flogopiiti, aktinoliiti, klinohumiiti ning maakmineraalidest pürrotiini (sisaldused maksimaalselt 15–20%). Tegemist on keskmise- kuni jämedateralise kirjuvärvilise massiivse kivimiga. Pürokseenskarnid on sarnase terasuurusega ja samuti massiivsed, tumerohelist värvi ning koosnevad enamjaolt diopsiidist (65–95%), aga ka aktinoliidist, kaltsiidist, raua sulfiididest, aluselisest plagioklassist, kvartsist ja aktsessoorsest apatiidist. Kvartsiidid on tavaliselt keskmise- või jämedateralised hallika, roheka, pruunika või roosaka värvusega kivimid, mis sisaldavad kvartsi (85–95%) pürokseeni, amfibooli, kaltsiiti, sulfiide (enamasti pürrotiini), magnetiiti, aluselist plagioklassi ja granaati. Alutaguse vööndis spetsiifiliselt on täheldatud ka sillimaniitkvartsiiti. (Koppelmaa, 2002)

Selles vööndis, konkreetselt Haljala, Assamalla ja Uljaste aladel on täheldatud polümetalset maagistumist kõrgenenud sisaldustega sidero- ja kalkofiilsete rauaga seotud mineraalide näol (suuremad Cu, Pb ja Zn sisaldused), mis moodustavad sulfiidseid grafiitgneisse (Vaher *et al.*, 1962). Alutaguse vöönd moodustab ühe osa Kirde-Eesti kalkofiilsest piirkonnast, mida kirjeldab Ca, P, Ba, Sr defitsiit ja rikastumine Si, K ja kalkofiilsete elementide nagu S, Zn, Pb, Cu, Mo ja Ag-ga (Koppelmaa, 2002). Sulfiid-grafiitgneisid ehk "mustad kildad" on sarnased vilgugneissidele, kuid neis esineb kõrgenenud sisaldusega grafiiti ja maakmineraale, peamiselt pürrotiini, aga ka sfaleriiti, galeniiti, püriiti, kalkopüriiti, magnetiiti, hematiiti ja molübdeniiti (Koppelmaa, 2002). Sulfiidide ja grafiidi kogusisaldus jääb enamasti 10–15% vahemikku (Koppelmaa, 2002). Sulfiid-grafiitgneisid on peene- kuni keskmiseteralised, kildalise tekstuuriga ning värvuselt mustad kuni tumehallid kivimid (Koppelmaa, 2002), mis on tekkinud enamjaolt orgaanikat, aga ka vulkaanilist päritolu maaki sisaldavate savikate setete moondumisel (Kivisilla, 1987). Kivim avastati esmakordselt Eesti aluskorras just Uljaste magnetilise anomaalia piirkonnas (Vaher *et al.*, 1964).

2. Uljaste maagiilmingute varasem uuritus

Esimesteks konkreetselt Uljaste jäänukstruktuuriga seonduvateks maagiilmingute uuringuteks võib pidada Puura *et al.* (1963) ja Vaher *et al.* (1964) töid. Grafiitgneisse ja grafiiti sisaldavate kivimite keemiline ja mineraloogiline koostis ning sellega kaasnev sulfiidne maagistumine on suuremal või väiksemal määral läbi käinud paljude erinevate autorite töödest: Kivisilla *et al.* (1999); Koppelmaa (2002); Petersell (1976, 1991); Petersell *et al.* (1982, 1985, 1991); Puura *et al.* (1967, 1977, 1983); Vaher *et al.* (1962). Eesti kristalse aluskorra maavarade perspektiivi on hakatud taas uurima alates 2018. aastast Eesti Geoloogiateenistuse poolt. Sonda-Uljaste piirkond on esindatud 16 puurauguga, millest 14-nes esinevad anomaalselt kõrged Zn, Cu või Pb sisaldused (Petersell *et al.*, 1991).

Sonda-Uljaste jäänukstruktuuridest (plakantiklinaalidest) avastati esimesena 1930. aastate esimesel poolel just Uljaste jäänuk, mis on oma amplituudi poolest (130 m) oluliselt kõrgem teistest piirkonnas esinevatest jäänukitest (Reinwald, 1935; Vaher et al., 1964). Kõik Sonda-Uljaste jäänukstruktuurid on ida-lääne suunalised (Pirrus, 1981). Jäänukstruktuuride nõlvakalded on vahemikus 5–15° (Pirrus, 1981). Uljaste struktuuri läbimõõduks on 1.2*2.8 km (Kattai et al., 2000). Alles 40 aastat hiljem, 1970-ndatel avastati süvakaardistamise tulemusel ka Nüri, Satsu ja Sonda jäänukid (Joonis 3), mida sarnaselt Uljaste jäänukiga on uuritud aluskorda välja ulatuvate puuraukudega (Puura et al., 1977). Varasemalt on arvatud, et jäänukstruktuurid (varasemalt nimetatud kerkestruktuurideks) on seotud aluskorraplokkide konsedimentatsioonilise kerkimisega enne Lontova iga (Reinwald, 1935; Vaher et al., 1964; Puura et al., 1977; Puura ja Kala, 1978). Hilisemalt on neid kerkeid peetud monadnock-ideks, ehk erosioonilise tegevuse käigus alles jäänud vastupidavamast materjalist saar- või jäänukmägedeks (Krull, 2021). Hiljem neid katvad settekihid on erineva paksusega struktuuri tipus ja selle ümbruses, mille tõttu toimub ka erineva tugevusega vajumine, mis jätab mulje, nagu struktuur oleks kerkinud (Afanasjev ja Volkolakov, 1981; Saadre et al., 1984; Puura ja Vaher, 1997).

Uljaste jäänuksruktuuri katab umbes 110–210 m paksune Ediacara, Kambriumi ja Ordoviitsiumi settekivimite kiht (Suuroja *et al.*, 2007). Settekivimite all lasuva kristalse aluskorra ülemise osa moodustab murenemiskoorik. Piirkonnas laialdaselt esinevaid kergesti murenevaid vilgugneisse ja sulfiid-grafiitgneisse iseloomustavad keskmisest kõrgemad murenemiskooriku paksused (keskmiselt 27.4 m ja 34.2 m vastavalt) (Koppelmaa, 2002).

Lisaks esineb Uljaste vilgugneissides sagedasti hästi murenevaid mineraale nagu näiteks kordieriiti (Koppelmaa, 2002). Grafiitgneisside tekstuuride puhul on hinnatud aluskorra kivimkihtide kallakuseks 65–90°, harvematel juhtudel kuni 50° (Petersell *et al.*, 1991).

Uljaste piirkonna grafiitgneisside polümetalne maagistumine väljendub peamiselt pürrotiini ja püriidi vaheldumisega, aga esineb ka sfaleriiti, kalkopüriiti ja galeniiti (Petersell, 1976; Petersell et al., 1991; Puura et al., 1967; Vaher et al., 1964). Mineraalidest võib tihti esineda ka molübdeniiti ja kaltsiiti, harvem turmaliini ja barüüti. Pürrotiini ja sfaleriidi kristallid ja kihid on tihtipeale subparalleelsed kivimi üldise gneisilise tekstuuriga. Pürrotiini terad võivad olla ümardunud ning sisaldada kalkopüriidi ja sfaleriidi suletisi. Grafiitgneisside väävli sisaldused on väga varieeruvad, vaheldudes 0.62-10.02% vahel. Grafiidi sisaldused grafiitgneissides on samuti väga muutlikud, varieerudes peamiselt 5-15% vahel. Rauasulfiidide kogusisaldused võivad kohati ulatuda kuni 39%-ni. Puuraugus F188 ulatuvad Zn, Cu ja Pb kogusisaldused kuni 5.6%-ni (Joonis 2) ühe meetrise intervalli kohta. Uljaste piirkonna polümetallide sisaldused ületavad maakoore keskmisi sisaldusi (Vinogradov, 1962) kuni seitsme kordselt. Samuti on märgata kekmisest kõrgemaid U sisaldusi. Tüüpiliselt on grafiitgneissides esinev pürrotiin Ni, Co, Cu ja Zn rikas, kuid Cr ja Pb poolest vaene. Lisaks on grafiitgneissides täheldatud üksikuid anomaalselt kõrgeid Ag (4.3 mg/kg), Cd (26 mg/kg), Mo (24 mg/kg) ja Se (12 mg/kg) sisaldusi. Au puhul on sisaldused enamjaolt madalad (0.002 kuni 0.008 mg/kg), kuid üksikutes proovides ulatuvad maksimaalsed sisaldused 0.6-1 mg/kg kohta (Petersell et al., 1991).

Joonis 2. Polümetalse maagistumise levik Sonda-Uljaste alal. Aluskorra andmed: Maa-amet. Elementide sisalduste spektraalandmestik: Petersell *et al.*, (1991).

Grafiitgneisside mikroelementide suhete alusel on leitud, et algselt on tegemist olnud ilmselt süvaveeliste setetega. Mustades kiltades laialdaselt leviva pürrotiini kõrgete Ni, Co ja Cu sisalduste ja S isotoop (δ^{34} S -5 kuni 7‰) andmed viitavad, et grafiitgneisside algne materjali teke on seotud mere põhja süvarikete vööndite läheduses olevate enamasti hüdrotermaalse ja vulkaanilise tegevusega, aga ka mudarikaste setete settimisega. Seniste uuringute põhjal arvatakse, et Uljaste polümetalne maagistumine on seotud vähemalt kahe erineva etapiga. Sellele viitab süngeneetilist pürrotiini ja püriiti lõikavad hilisemad sekundaarsete protsessidega tekkinud sfaleriidi, kalkopüriidi ja galeniidi sooned (Petersell, 1976; Petersell *et al.*, 1985, 1991; Puura *et al.*, 1967, 1983; Vaher *et al.*, 1964). Esimese etapi maagistumine on enamasti seotud grafiitgneissidega ja ultraaluseliste metavulkaniitidega, mis omavad kõrgemaid Cr, Ni, Co ja Cu sisaldusi ja viitavad süvarikete olemasolule. Polümetalse maagistumise teise, oluliselt väiksemamahulise etapi hilisemat iseloomu selgitab sfaleriidi, galeniidi, kalkopüriidi või neid mineraale sidaldavate karbonaatsete mineraalide esinemine kivimit lõikuvate soontena bretšastunud intervallides. Sekundaarses etapis on tavalisem, et kivimitel on selgesti määratletavad lõhed või kavernid (Vaher *et al.*, 1964). Ka teine etapp on tõenäoliselt süvapäritolu, millele viitab sulfiidide lõikuv iseloom plagiomikrokliingraniitides. Polümetalset maagistumist on märgata ka Uljaste piirkonna Ordoviitsiumi lubjakivides, kus arvatakse, et tegemist on Kaledoniidide mäetekke lõppfaasiga seotud hüdrotermaalsete protsessiga (Vaher *et al.*, 1964). Sellele võivad viidata Uljaste ala aluskorra ja aluspõhja karbonaatsete kivimite δ^{13} C väärtused (-9.5‰ ja -12.2‰ vastavalt), mis on märkimisväärselt sarnased. (Petersell *et al.*, 1991)

3. Materjalid ja meetodid

Töös kasutatud proovid on kogutud Uljaste F188 (Joonis 3) puuraugust, mis asub Ida-Virumaal Lüganuse vallas Uljaste külas (koordinaadid x: 6582601; y: 657272). Puuraugu suudme absoluutkõrgus on 71.2 m ja sügavuseks 351.1 m. Puursüdamikus F188 algab aluskord murenemiskoorikuga 150 m sügavuselt. Töö käigus kasutati erinevaid meetodeid uuritava kivimi mineraloogilise ja keemilise koostise määramiseks. Uljaste F188 puursüdamikust on varasemalt tehtud keemilisi ja mineraloogilisi analüüse, kuid valdavalt on tegemist üksikute proovidega, mis ei anna pidevat ülevaadet puursüdamikus toimuvate muutuste kohta.

Joonis 3. Sonda-Uljaste jäänukstruktuuride asukohaskeem koos aluskorra puuraukudega. Sinisega on näidatud töös uuritavat Uljaste jäänukit, roosaga on näidatud teisi (Nüri, Satsu ja Sonda) Sonda-Uljaste piirkonna jäänukstruktuure. Aluskaart ja andmed: Maa-amet.

3.1 Käsi-XRF mõõtmised

Uljaste puuraugu esialgseks keemilise koostise kirjeldamiseks kasutati käsi-XRF seadet. Mõõtmised teostati 2020. a lõpus Eesti Geoloogiateenistuse Arbavere puursüdamike hoidlas ja kokku teostati 755 punktmõõtmist. Analüüsid viidi läbi Brukeri käsi-XRF seadmega TRACER 5i, mis on võimeline tuvastama elemente magneesiumist uraanini. Kollimaatori ava oli mõõtmisperioodil 8 mm. Mõõtmisteks kasutati Geo Exploration režiimi. Mõõtmised toimusid kolmes etapis: esimeses etapis mõõdeti raskeid elemente: K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Hf, W, Ta, Au, Tl ja Se. Teises etapis mõõdeti raskeid elemente: As, Se, Rb, Sr, Y, Zr, Nb, Mo, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, Ba, La, Ta, Pt, Au, Hg, Pb, Bi, Ce, Th, U. Ning kolmandas etapis mõõdeti kergemaid elemente: Mg, K, Ca, Al, Si, P, S, Cl. Iga etapi mõõtmisajaks oli 15 sekundit. Punktmõõtmised toimusid üldiselt iga meetri tagant. Sulfiidide rikkamates intervallides ja kivimi ilme muutumise korral toimusid mõõtmised tihedamalt.

3.2 Kogukivimi geokeemiline analüüs ICP-ga

Maagistumispotentsiaalsete intervallide leidmiseks tellis EGT 2020. a lõpus Uljaste-Sonda puursüdamike logimise teenuse, mille teostajaks oli Aurora Exploration, kes valis analüüsimiseks üldjuhul ühe meetrised lõigud, kus visuaalsel hindamisel täheldati kõrgema sisaldusega sulfiidseid mineraale. Töö põhieesmärk oli kogukivimi maagistumise laialdasem uuring. Kuna proovid koguti arhiveeritud puursüdamiku materjalist, mida on ka varasematel uuringutel proovitud, ei olnud võimalik kõikidest intervallidest 1/2 puursüdamikust koguda. Seetõttu otsustati prooviks võtta südamikukastis olevast säilinud materjalist pool, mis homogeniseeriti jahvatamise teel. Proovid valmistati ette Soome ALS laboris ning analüüsid toimusid Iirimaa ALS laboris. Töös kasutati kokku 62 analüüsi tulemusi. Keemilise koostise määramiseks kasutati nelja happe (HCl, HNO₃, HF, ja HClO₄) lahustamismeetodit ja analüüsid teostati ICP-MS ja ICP-AES seadmetega. Siinkohal tuleks mainida, et nelja happe lahustusmeetodil ei pruugi osad mineraalid täielikult lahustuda ning elemendid, nagu näiteks As, Sb, Au, U, Sn, Cr, REE-d, millest mõningaid käsitletakse selles uurimustöös lähemalt, võivad ebaühtlaselt lenduda ning saadud kogused ei pruugi seetõttu olla täpsed (Actlabsi nelja lahustamismeetodi kirjeldus). Nelja happe lahustamismeetodil kasutatud happe vesinikfluoriidhappe (HF) tõttu ei olnud võimalik määrata Si sisaldust, kuna happega reageerides tekib SiF₄, mis oma gaasilise oleku tõttu proovide ettevalmistamise käigus lendub.

3.3 Röntgendifraktsioon (XRD) analüüs

Kogukivimi mineraloogilise koostise määramiseks koguti kokku 21 proovi (Lisa 1), mis esindasid puuraugu litoloogilisi muutuseid. Kogukivimi mineraloogia määramiseks kasutati Tartu Ülikooli geoloogia osakonna röntgenlabori röntgendifraktomeetrit Bruker D8 Advance. Mõõtmiseks kasutati Ni-filtreeritud CuKα kiirgust, mõõtmisvahemikku 3–75 kraadi 20. Kogukivimi kvantitatiivne mineraloogiline koostis määrati programmiga Siroquant-3, mis põhineb kogudifraktogrammi Rietveld'i analüüsil (Taylor, 1991).

3.4 Skaneeriv elektronmikroskoopia (SEM) analüüs

Keemiliste ja mineraloogiliste analüüside alusel valiti EGT prooviarhiivist varasemalt olemasolevate poleeride seast kokku 11 lihvi (sügavustelt 204.2; 213.4; 257.9; 268.0; 280.2; 284.6; 287.7; 292.9; 299.3 331.3 ja 344.0 m) ja lisaks võeti neli uut lisaproovi vahemikest, kus puudusid varasemad poleerid (sügavustelt 200.75; 200.85; 201.2 ja 201.3 m) (Lisa 3). Kuna geoloogiateenistuse arhiivis olevad poleerid on kaetud lakikihiga, lihviti neid ühe µm monokristalse teemant-abrasiivgeeliga umbes viis minutit. Nelja lisaproovi pindasid lihviti ja poleeriti MetaServ 3000 lihvimismasinaga, kasutades erineva karedusega liivapabereid. Analüüsid teostati skanneriva elektronmikroskoobiga ZEISS EVO 15MA. Analüüsid toimusid kõrgvaakum keskkonnas ja proovid olid kaetud süsinikuga. Proovi keemilise koostise analüüsimiseks kasutati energiadispersiivset (EDS) detektorit.

3.5 Uraniniitide U/Pb keemiline dateerimine

Uraniniiti kasutatakse laialdaselt keemilisel dateerimisel. Uraniniidi kõrged U ja Pb sisaldused on lihtsalt mõõdetavad elektronmikroskoobiga ja võivad anda täpseid tulemusi (Finger *et al.*, 2017; Pal ja Rhede, 2013; Kempe, 2003; Förster, 1999). Kombineerides keemilist dateerimist uraniniidi detailsete tekstuursete ja keemiliste analüüsidega võimaldub taastada erinevate hüdrotermaalsete sündmuste ja erinevate (vääris)metallide ümberjaotumise ajalugu uuritavates kivimites. Meetodi käigus arvutatakse keemiline vanus, mis põhineb teadmisel, et looduslik uraan (U) ja toorium (Th) sisaldavad radioaktiivseid isotoope, mis lagunevad lõpuks pliiks (Pb). Välja töödatud meetodi põhimõte oli pakkuda kiiremat ja odavamat alternatiivi klassikalistele ICP isotoopvanuste määrangutele. (Bowles, 2015)

Uraaniumi esineb looduses põhiliselt kahe isotoobi ²³⁸U (99.27%) ja ²³⁵U (0.7204%) näol (Bowles, 2015). ²³⁸U poolestusaeg on 4468 miljonit aastat ning lõpp-produktiks on ²⁰⁶Pb (lagunemiskonstant $\lambda_{U238} = 1.55125 * 10^{-10}$) ning ²³⁵U poolestusaeg on 703.8 miljonit aastat ja lõpp-produktiks on ²⁰⁷Pb (lagunemiskonstant $\lambda_{U235} = 9.8485 * 10^{-10}$) (Jaffey *et al.*, 1971). Pb hulka, mis on tekkinud ²³⁸U lagunemisel saab arvutada järgmise valemiga:

$$Pb = {}^{238}U(e^{\lambda_{U238}t} - 1), \qquad (Valem 1)$$

kus Pb ja ²³⁸U on esitatud aatommassina ning t on vanus. Teades Pb ja ²³⁸U koguseid, saame leida t (Ma) järgmise valemiga:

$$t = \frac{\ln\left(\left(\frac{Pb}{238U}\right) + 1\right)}{\lambda_{U238}}.$$
 (Valem 2)

Teades t väärtust tuleb seejärel leida summaarne Pb kogus, mis on tekkinud erinevate U isotoopide lagunemisel kasutades valemit:

$$Pb = {}^{238}U(e^{\lambda U238t} - 1) + {}^{235}U(e^{\lambda U235t} - 1).$$
 (Valem 3)

Kuna kogu looduses levivast uraanist moodustab 238 U 99.27% ja 235 U 0.7204%, siis tuleb valemites kasutada ka vastavaid koefitsiente U 235 = 0.992739 ja U 238 = 0.007204. Valem 3-st tagasi arvutatud Pb sisaldust tuleb võrrelda SEM mõõtmiste käigus saadud Pb kogusega. Kui saadud tulemused ühtivad, siis t väärtust ei pea korrigeerima. Kui tulemused ei ühti, siis tuleb t väärtust kas vähendada või suurendada nii, et tulemused hakkaks ühtima mõõdetub Pb sisaldustega. Alles siis võib t väärtust lugeda usaldusväärseks. (Bowles, 2015)

4. Tulemused

4.1 Kogukivimi mineraloogia (XRD)

Uljaste (F188) puuraugu kristalsete kivimite erinevaid litoloogiilisi üksuseid esindavad kogukivimi mineraloogia tulemused on esitatud joonisel 4 ja lisas 1. XRD tulemuste alusel saab puuraugus levivad kivimid laias laastus jagada neljaks: grafiitgneisid, pürokseenkivimid (skarn), kvartsiidid ja graniitsed sooned (pegmatiidid).

Grafiitgneissides esineb kõige enam K-päevakivi (vahemikus 8.3–44.4%, keskmiselt 26.48%) (Joonis 4). Sellele järgneb kvarts (vahemikus 10.6–30.4%, keskmiselt 20.61%), pürrotiin (vahemikus 0–43.1%, keskmiselt 17.1%), grafiit (5.3–12%, keskmiselt 8.43%), plagioklass (vahemikus 0–21.4%, keskmiselt 6.61%), biotiit (vahemikus 0.9–6.7%, keskmiselt 4.07%), dolomiit (vahemikus 0–17.4%, keskmiselt 3.91%) ja kloriit (vahemikus 0–6.8%, keskmiselt 1.63%). Ülejäänud mineraalid nagu püriit, kordieriit, kips, kaltsiit ja talk on keskmiselt kõik alla 1.5% sisaldusega ning esinevad tavaliselt ainult üksikutes intervallides. Sfaleriidi sisaldusi (5.1%) täheldati ainult sügavusvahemikus 167–168 m. Grafiitgneisid sisaldavad kaoliniiti kuni 16.6%, keskmiselt 7.5%. Kaoliniit näitab profiili ülaosa suunas kasvu, mis on seotud kristalse aluskorra ülaosas paikneva murenemiskoorikuga.

Kvartsiitide puhul jääb kvartsi sisaldus vahemikku 73–90.8%, keskmiselt 83.47% (Joonis 4). Sellele järgneb pürrotiin (vahemikus 1–7.9%, keskmiselt 5.03%), pürokseen (0–14.5%, keskmiselt 4.83%), kaoliniit (vahemikus 0–3.9%, keskmiselt 1.77%), amfibool (vahemikus 0– 2.1%, keskmiselt 1.13%) ja kaltsiit (vahemikus 0.6–1.8%, keskmiselt 1.07%). Alla 1.5% sisaldusega esines biotiiti, K-päevakivi, püriiti, magnetiiti ja dolomiiti.

Pürokseenkivimis domineerisid pürokseeni sisaldused (vahemikus 22.3–59.5%, keskmiselt 41.22%) (Joonis 4). Sellele järgnesid pürrotiin (vahemikus 13–25.3%, keskmiselt 20.45%), kvarts (vahemikus 0.4–45.8%, keskmiselt 17.6%), amfibool (vahemikus 3.5–23.3%, keskmiselt 8.2%), kaltsiit (vahemikus 1.4–13.6%, keskmiselt 7.18%), talk (vahemikus 0–5%, keskmiselt 2.28%), K-päevakivi, biotiidi ja püriidi sisaldused jäävad alla 1.5%.

Lisaks grafiitgneissidele, kvartsiitidele ja pürokseenkivimitele levib puursüdamikus ka hajusalt graniitseid/pegmatiitseid sooni (Joonis 4). Sooned on mõnikümmend sentimeetrit kuni meeter paksud. Pegmatiitseid sooni kirjeldas ainult üks XRD analüüs. Pegmatiitsetele soontele on

iseloomulikud kõrgemad kvartsi (kuni 29%), K-päevakivi (kuni 20%), plagioklassi (kuni 11.4%) ja pürrotiini (kuni 7.8%) sisaldused. Alla 2.5% esines kivimis kaoliniiti, biotiiti ja kordieriiti.

Joonis 4. Puursüdamiku F188 mineraloogia. Tulemused on saadud XRD analüüsil.

4.2 Üldkeemia (Kogukivimi ICP keemia ja käsi-XRF)

Puursüdamiku F188 ICP ja käsi-XRF mõõtmistulemused on välja toodud joonistel 5–7 ja lisas 4 ja 5. Põhielemendid (Si, Al, Mg, Ca, K, Na ja Ti) järgivad mineraloogilisi muutuseid puursüdamikus (Joonis 5). ICP ja käsi-XRF tulemused järgivad sarnaseid trende ja langevad kokku kivimi koostise muutustega.

Si, Al, K, Mg, Ca, Na sisaldused on uuritud profiilis konstantsed (Joonis 5). Erandiks on vahemik 268–309 m, kus Si, Ca, Mg sisaldused kasvavad, aga seevastu Al, K, Na sisaldused kahanevad. Si, Mg, Ca keskmised sisaldused vahemikus 160–268 m ja 309–342 m on vastavalt 13.82%; 1.58% ning 1.22%, vahemikus 268–309 m on sisaldused vastavalt 25.77%; 3.4% ja

7.37%. Al, K ja Na keskmised sisaldused vahemikus 160–268 m ja 309–342 m on vastavalt 6.78%; 3.52% ja 0.47%, vahemikus 268–309 m on vastavalt 0.49%; 0.24% ja 0.12%.

Joonis 5. Puursüdamiku F188 põhielementide Si, Al, Mg, Ca, K, Na sisaldused. ICP tulemuste puhul on joonisel välja toodud meetrise prooviintervalli keskmine sügavus.

S, Fe, Cu, Ni, As ja Co maksimaalsed sisaldused jäävad vahemikku 200–215 m (Joonis 6). Vahemikus 268–309 m Zn, Pb, Cu, Ni, Sn, Mo, ja Cr sisaldused kahanevad, seevastu S, Fe, As, Co ja Ba näitavad kohati keskmisest kõrgemaid sisaldusi. Zn, Pb, Cu, Ni, Sn, Mo ja Cr keskmised sisaldused vahemikus 160–268 m ja 309–342 m on vastavalt 1297.25 ppm; 884.14 ppm; 238.63 ppm; 157.24 ppm; 1.58 ppm; 14.65 ppm ja 88.42 ppm, vahemikus 268–309 m on samade elementide sisaldused vastavalt 95.79 ppm; 11.78 ppm; 89.51 ppm; 31.29 ppm; 0.74 ppm; 3.84 ppm ja 38.64 ppm. S, Fe, As, Co ja Ba keskmised sisaldused vahemikus 160–268 m ja 309–342 m on vastavalt 5.45%; 11.26%; 12.14 ppm; 27.6 ppm ja 416.67 ppm, vahemikus 268–309 m on samade elementide sisaldused vastavalt 3.54%; 8.83%; 15.84 ppm; 24.48 ppm ja 284.29 ppm.

Hõbeda (Ag) ja vismuti (Bi) maksimaalsed väärtused jäävad vahemikku 200–206 m ulatudes vastavalt 3.28 ppm ja 1.28 ppm-ni (Joonis 7). Telluuri kõrgemad sisaldused jäävad aga intervalli 282–308 m ulatudes maksimaalselt 1.52 ppm-ni. Ag ja Bi keskmised sisaldused vahemikus 160–268 m ning 309–342 m on vastavalt 1.32 ppm ja 0.52 ppm, vahemikus 268–309 on sisaldused vastavalt 0.3 ppm ja 0.17 ppm. Te keskmine sisaldus vahemikus 160–268 m ning 309–342 m on 0.16 ppm ning vahemikus 268–309 m 0.61 ppm.

U ja P sisaldavad maksimaalseid väärtusi vahemikus 268–309 m (Joonis 7), milleks on 16.8 ppm ja 3450 ppm vastavalt. Th sisaldab samas vahemikus madalamaid väärtuseid. U ja P keskmised sisaldused vahemikus 160–268 m ning 309–342 m on vastavalt 5.01 ppm ja 422.71 ppm, vahemikus 268–309 m on sisaldused vastavalt 4.96 ppm ja 610 ppm. Th keskmine sisaldus vahemikus 160–268 m ning 268–309 m on 12.77 ppm ning vahemikus 268–309 m 1.22 ppm

Joonis 6. Puursüdamiku F188 põhielementide S, Fe (%) ning jälgelementide Zn, Pb, Cu, Ni, Sn, As, Co, Mn, Mo, Cr ja Ba (ppm) sisaldused. ICP tulemuste puhul on joonisel välja toodud meetrise prooviintervalli keskmine sügavus.

Joonis 7. Puursüdamiku F188 jälgelementide Ag, Bi, Te, U, Th ja P sisaldused. ICP tulemuste puhul on joonisel välja toodud meetrise prooviintervalli keskmine sügavus.

4.3 SEM analüüs

SEM tulemused toetavad kogukivimi mineraloogilisi ja keemilisi analüüse ja annavad pigem informatsiooni mineraalide morfoloogia ja XRD mõõtmise käigus tuvastamata jäänud madalate sisaldustega kaasnevate mineraalide leviku kohta.

4.3.1 Grafiitgneisid

Grafiitgneisside puhul moodustavad põhimassi K-päevakivi ja kvarts (Joonis 8). K-päevakivi kõrval on tavaline ka plagioklass päevakivi. Kõikidele vaadeldud grafiitgneisside intervallidele on iseloomulik grafiidi esinemine. Grafiit esineb valdavalt liblelisena, kuid harva ka ebakorrapärase kujuga teradena. Grafiidiliblede pikkused jäävad üldiselt alla 0.5 mm, kuid pikemad libled võivad ulatuda paari mm pikkusteks. Grafiidiga sarnaselt on vaadeldud lihvidele iseloomulik pürrotiini ja väiksemal määral püriidi esinemine. Pürrotiin ja püriit esinevad tüüpiliselt erineva suurusega teradena (Joonised 8b, 8c ja 8d) või soontena (Joonis 8a,

8d). Harvem esineb koos pürrotiini soontega ka sfaleriidi ja kalkopüriidi sooni ning teri (Joonised 8b, 13d, 13e). Kaasnevate mineraalidena esineb grafiitgneissides tsirkooni, rutiili, erinevaid monatsiidi, ksenotiimi ja apatiidi tüüpi fosfaate. Lisaks tuvastati väikestes kogustes molübdeniiti, arsenopüriiti, galeniiti ja barüüti ning üksikutes intervallides uraniniiti, antimoniiti, erinevaid Ag-Te, Ag-Bi ühendeid, Fe, Pb, Bi ja Sn oksiide/hüdroksiide ja elektrumit (Ag-Au).

Joonis 8. Grafiitgneisside tagasihajunud elektronide kujutised. A. 200.75 m, B. 257.9 m, C. 268.0 m, D. 344.0 m.

4.3.2 Pürokseenkivim

Pürokseenkivimites esines enamasti erineva koostisega pürokseenide vaheldumist (Joonis 9 ja 10). Kuid kõigil juhtudel on tegemist diopsiidi-hedenbergiidi rea pürokseenidega. Kas siis puhta CaMg pürokseeni (diopsiid) või CaMgFe pürokseeniga. Kohati esines ka amfibooli, kaltsiiti, dolomiiti ja harvem kvartsi, plagioklassi ning K-päevakivi. Intervallis sügavusel 284.6 m tuvastati uuritud proovist ka grafiidiliblesid (Joonis 10) kuigi XRD tulemuste põhjal

pürokseenkivimis grafiiti ei täheldatud. Lisaks on pürokseenkivimis ohtralt pürrotiini. Grafiiti sisaldavas proovis tuvastati ka vähesel määral erinevaid Y-fosfaate (ksenotiim), REE-fosfaate (monatsiidid) REE-karbonaate ja REE ühendeid. Sügavusel 292.4 m tuvastati Pb-Te ühendeid (Joonis 14h) Lisaks tuvastati üksikuid Ag-Te, Bi-Te ühendeid (Joonis 17), uraniniidi teri (Joonis 19f) ja Ag-Au (elektrumi) tera (Joonis 17). Pürrotiin esines peamiselt teradena. Kohati esines üksikuid sooni, mis koosnesid kaltsiidist, pürokseenist, kalkopüriidist või sfaleriidist (Joonis 10), harva oli näha ka galeniiti. Lisaks arsenopüriidile leiti grafiiti sisaldavast proovist löllingiiti (Joonis 10), mida grafiitgneissides ei täheldatud. Pürokseenkivimites leidus ka puhast raua(hüdro)oksiidi (Joonis 11), esinedes tõenäoliselt kas hematiidi või götiidi näol, mis võis tekkida hoopis proovi oksüdeerumise käigus pärast puurimist.

Joonis 9. Tagasihajunud elektronide kujutis (A) ja elementkaart (B). Kalkopüriitne soon pürokseenkivimis sügavusel 287.7 m.

Joonis 10. Tagasihajunud elektronide kujutis (A) ja elementkaart (B). Pürokseenkivimis kvartsi põhimassiga soon koos grafiidilibledega sügavusel 284.6 m.

4.3.3 Kvartsiit

Kvartsiitides leidus kõige enam massiivset kvartsi (Joonis 11). Esines ka kaltsiiti, K-päevakivi ja dolomiiti, amfibooli ja pürokseeni. Pürrotiini ja püriiti, mis olid sulfiididest ainsana esindatud, esines oluliselt vähem võrreldes grafiitgneissidega. Väiksel määral leidus ka barüüti. Sulfiidne materjal esines teradena, sooni kvartsiitsetes vahemikes ei täheldatud.

Joonis 11. Kvartsiitide tagasihajunud elektronide kujutised sügavuselt 280.2 m. Põhimass koosneb kvartsist, milles üksikud püriidi ümardunud terad (A) või ebakorrapärased (B) massid koos kaltsiidi ja/või pürokseeniga.

4.3.4 Graniitsed sooned/pegmatiidid

Graniitsetes soontes/pegmatiitides esineb massiliselt K-päevakivi ja kvartsi (Joonis 12). Kohati leidub ka plagioklassi. Pürrotiin ja püriit on ainukesed sulfiidsed mineraalid, mis esinevad väikeste kogumikena K-päevakivis, kvartsis või plagioklassis. Leidub ka sulfiidseid sooni, kuid nende esinemistihedus on oluliselt madalam kui grafiitgneissides (Joonis 12b).

Joonis 12. Graniitsete soonte/pegmatiitide tagasihajunud elektronide kujutised sügavusel 299.3 m. Põhimassi moodustavad kvarts ja K-päevakivi. Püriit esineb metasomaatiliselt asendunud plagioklass päevakivis (A) või soontena (B).

4.3.5 Sulfiidide esinemine ja nendega kaasnevad mineraalid/elemendid

Uuritud lihvides on valdavaks sulfiidiks pürrotiin (Joonis 13). Pürrotiini järel tuvastati sageli ka püriiti. Pürrotiin esineb tihti väga varieeruva suurusega teradena, mis võivad ulatuda mõnest sajast nanomeetrist kuni mõne mm pikkusteks (Joonis 13). Ei ole haruldased ka juhud, kus pürrotiin ja püriit esinevad soontena. Valdavalt grafiitgneissides, aga kohati ka teistes kivimites, leidub lisaks pürrotiinile ja püriidile teisi väävlit sisaldavaid mineraale nagu sfaleriiti, kalkopüriiti, galeniiti, molübdeniiti, arsenopüriiti, barüüti ja antimoniiti.

Analüüsitud grafiitgneissetes proovides tuvastati kõigis pürrotiini, püriidi ja sfaleriidi sooni, teistes kivimites leidus neid sooni oluliselt harvem. Kõige enim hüdrotermaalselt muutunud ja tugevalt hüdrotermaalsetest soontest läbitud intervallid asusid sügavustel 200.75–201.3; 213.4; 331.4 ning 344 m. Soonte koostiseks oli peamiselt pürrotiin ja püriit. Soonte mõõtmed olid väga varieeruvad, pikkused on valdavalt ühe mm juures, ulatudes kuni 5 mm-ni. Laiused on keskmiselt 10 kuni 100 µm. Harvem esines sfaleriitseid ja kalkopüriitseid sooni, neid esines ka kuni mõnekümne mikromeetri suuruste teradena (Joonis 13d), üksikutel juhtudel on sfaleriidi terad kuni 0.5 mm suurused.

Sfaleriiti ja kalkopüriiti esines kõige rohkem sügavusel 200.85 m, kus soonte pikkused ulatusid kohati üle 0.3 mm (Joonis 15). Kalkopüriitseid sooni ja terasid oli sfaleriidist näha mõnevõrra vähem ning galeniiti nähti vaid osades uuritud proovides. Galeniit esineb tavaliselt väikeste, kuni mõnekümne mikromeetri suuruste ümarate teradena. Kõige rohkem galeniiti leiti proovis sügavusel 331.3 m. Kalkopüriiti, galeniiti ja sfaleriiti võib leiduda püriidi ja pürrotiini terade ja soonte äärtes või suletistena nende sees (Joonised 15, 16). Väiksemal määral esines vaadeldud vahemikes molübdeniiti, mis esineb tavaliselt mõnekümne mikromeetri suuruste piklike teradena, üksikud ulatuvad kuni 0.2 mm pikkusteks või harvem esinevad soontena. Arsenopüriiti leidub samuti kuni mõnekümne mikromeetri suuruste teradena. Nii arsenopüriiti kui molübdeniiti leidub suletistena pürrotiinis (sügavustel 200.75; 201.2; 201,3; 213.4 ja 331.3 m). Barüüte esineb enamikes grafiitgneisside proovides, nad on ebakorrapärase kujuga ning tavaliselt alla kümne mikromeetri suurusei Üksikutel juhtudel, tavaliselt galeniidi läheduses, märgati mõne mikromeetri suuruseid pliioksiidi teri.

Joonis 13. Grafiitgneissides sulfiidsete mineraalide (pürrotiin, püriit, sfaleriit, kalkopüriit) tagasihajunud elektronide kujutised. Sulfiidid esinevad nii soontena kui teradena. A. 201.2 m, B. 213.4 m, C. 213.4 m, D. 331.3 m, E. 331.3 m, F. 344.0 m.

Analüüside käigus tuvastati ka väärismetalle, milleks olid hõbe ja kuld ning nendega kaasnevaid elemente ja mineraale (Joonis 14). Hõbedat ja kulda ning erinevaid Au ja Ag ühendeid (Bi ja Te-ga koos) tuvastati rohkem sügavustel 200.75; 200.85; 201.2; 201.3; 213.4;

ning 344 m. Need on ka vahemikud, mis on visuaalselt hüdrotermaalsetest soontest kõige rohkem läbistatud.

Leitud hõbeda terad on väikesed, kuni 20 µm pikkused, tavaliselt alla 10 µm (Joonis 14). Terad on tihti pikliku kujuga ja ümardunud nurkadega mõnedel juhtudel ebakorrapäralised ja/või nurgelised. Hõbe esineb valdavalt koos telluuri, vismuti või sulamina koos kullaga (elektrum) (Joonised 14c ja 14d), aga üksikutel juhtudel ka ehedana (Joonis 14f). Hõbe koos Te või Bi-ga esineb sagedamini tugevalt lõhedest läbistatud intervallides (Joonised 15 ja 16). Tüüpiliselt esineb hõbe teradena sulfiidsete soonte tippudes ja äärtes või soonte ümbruses (Joonised 15 ja 16). Väiksemal määral leidub hõbedat suletistena kas pürrotiinis, püriidis, grafiidis või eelpool mainitute servades (Joonis 14e, 14f ja 14g). Sageli kaasneb hõbe sfaleriidi või kalkopüriidi soontega (Joonised 14a, 14b, 15 ja 16). Hõbeda läheduses võis leida vismutoksiidi, mida esines ainult lõhestunud püriidi teras ning grafiidilibles. Nagu ka ehe hõbe ja teised hõbeda ühendid, esinesid elektrumi terad koos sfaleriitsete, kalkopüriitsete ja püriitsete soontega, välja arvatud sügavusel 292.4 m olevas pürokseenkivimis, kus elektrum koos sooneliste sulfiididega ei esinenud (Joonis 17).

Pürokseenkivimis sügavusel 292.4 m leidus telluuri ja plii ühendeid, mis olid tavaliselt kalkopüriitsete või pürrotiinsete terade otstes (Joonis 14h). Nad on kuni 10 μ m pikkused ning ebakorrapärase kujuga terad. Ehedat kulda leiti kahest proovist sügavustelt 213.4 m ning 344.0 m. 213.4 m sügavuselt leitud kuld on 10 μ m piklik kolmnurkne tera suletisena pürrotiini teras.

Joonis 14. Väärismetallide tagasihajunud elektronide kujutised. Väärimsetalle esineb nii eraldi teradena või suletistena teistes terades või soontes. A. 201.3 m, B. 200.75 m, C. 200.75 m, D. 200.75 m, E. 201.2 m, F. 200.85 m, G. 200.85 m, H. 292.4 m.

Joonis 15. Tagasihajunud elektronide kujutis (A) ja elementkaart (B). Sfaleriitsete, kalkopüriitsete ja pürrotiinsete soonte esinemine koos hõbeda ja telluuri ühendiga ning tinaoksiidiga, sügavusel 200.85 m.

Joonis 16. Tagasihajunud elektronide kujutis (A) ja elementkaart (B). Sfaleriitsete, kalkopüriitsete ja pürrotiinsete soonte esinemine koos hõbeda ja telluuri ühendiga, sügavusel 213.4 m.

Joonis 17. Tagasihajunud elektronide kujutis (A) ja elementkaart (B). Pürokseenkivimist leitud elektrum ja Bi-Te terad, sügavusel 292.4 m.

4.3.6 Fosfaadid ja uraniniidid

Kõikides analüüsitud proovides leidus erineva koostise, kuju ja suurusega fosfaate (Joonis 18). Fosfaadi terad on valdavalt ümardunud äärtega kas piklikud, harvem ümarad või korrapäratud. Nende mõõtmed varieerusid mõnedest mikromeetritest kuni paarisaja mikromeetrini, keskmiselt jäid suurused 30–70 μm vahele. Fosfaadid saab jagada laias laastus kolmeks: apatiidi tüüpi (Ca₅(PO₄)₃F) (Joonis 18d), ksenotiimi tüüpi (YPO₄REE) (Joonis 18c) ja monatsiidi tüüpi (Ce,La(PO₄)REE) (Joonis 18b). Apatiiti tuvastati kõigis vaadeldud proovides. Apatiidile oli iseloomulik läbivalt sama keemiline koostis ning fosfaatidest olid apatiid tavaliselt kõige suuremad. Monatsiidi tüüpi fosfaadid seevastu on väga mitmekesise koostisega sisaldades erinevaid haruldasi muldmetalle (REE-sid, *rare earth elements*). REE-dest esines kõige enam Ce, La ja Nd-d. Domineeris Ce, mida oli tavaliselt üle 20%, La-d tavaliselt üle 10% ning Nd-d alla 10%. Lisaks Ce, La ja Nd olid tavaliselt esindatud ka madalamate sisaldustena teised REE-d nagu Pr, Gd, Sm, Y, Yb, Er ning lisaks U, Th, Pb. Ksenotiimi tüüpi fosfaadid esinesid harvem ja olid Y rikkad, kus Y sisaldused on tavaliselt üle 20%, kohati üle 30% ning teiste REE-de sisaldused jäid alla 5%, seejuures Ce, La ja Nd-d ei tuvastatud. Pürokseenkivimit esindavates proovides sügavusel 284.6 ja 287.7 m leidus erinevate fosfaatide kõrval ka REE karbonaate ja REE rikkaid fluoriide ja/või fosfaate (Joonis 18a).

Joonis 18. Monatsiidi, ksenotiimi, apatiidi ja REE-fluoriid-fosfaadi (REEFP) terade tagasihajunud elektronide kujutised. A. 287.7 m, B. 200.75 m, C. 200.75 m, D. 257.9 m.

Intervalli 200.75–200.85 m iseloomustas ümbritsevast kõrgem uraniniidi (UO_2) konsentratsioon. Antud intervallis loendati kokku üle 50 uraniniidi tera. Üksikuid uraniniidi teri leidus ka teistes grafiitgneissetes sügavustes nagu 201.2; 201.3;, 213.4 ning 331.3 m, aga ka pürokseenkivimis (sügavustel 284.6, 287.7, 292.9 m). Uraniniidid koosnesid enamasti U, O ja Pb-st. Terades, mida kasutati U/Pb põhjal keemiliseks dateerimiseks, varieerusid U/Pb suhted 2.22 ja 15.79 vahel olles keskmiselt 4.05. Lisaks nendele võis uraniniitides jälgelementidena leida Th, P, Y, Ca, Ti või Br-i. Osad uraniniidid Pb-d ei sisaldanud ning seega ei saanud neid U/Pb vanuse määranguteks kasutada. Leitud uraniniidi terade läbimõõdud jäid vahemikku 3–40 μ m, valdavalt 10–20 μ m. Enamus teradest olid piklikud ja ümarate äärtega,

leidus ka rohkem ümmargusemaid ning ebakorrapäraseid teri (Joonis 19a). Mõningatel juhtudel ümbritses uraniniidi terasid fosfaatsed äärised, mis sisaldasid lisaks fosforile ja hapnikule kohati U, Th, Pb, Y, Ca, Pb, Zr ja S (Joonised 19a, 19d). Uraniniidi terasid võis leida nii kvartsist, K-päevakivist, sulfiididest, grafiidist, titaanioksiidist ja ka mujalt (Joonis 19).

Joonis 19. Uraniniitide tagasihajunud elektronide kujutised. Terad kohati koos erinevat materjali ääristega ning erinevate lagunemisastetega. A–C: 200.75 m, D ja E: 200.85 m, F. 292.4 m.

4.4 Uraniniitide U/Pb dateering

Uljaste uraniniitide keemiliseks dateerimiseks kasutati 48 tera. Uraniniitide U ja Pb sisaldused ning arvutatud vanused on välja toodud lisas 2 ja joonisel 20. Arvutatud vanused jäävad vahemikku 433–2458 Ma, kuid valdavalt olid esindatud vanused vahemikus 1558–1858 \pm 40 Ma (28 uraniniidi tera), millest kõige sagedasem (kokku 10 tera) oli vanusevahemik 1708–1783 \pm 40 Ma (Joonis 20).

Joonis 20. Uraniniitide U/Pb suhete arvutamisel saadud vanuste grupid miljonites aastates.

5. Diskussioon

5.1 Uraniniitide vanuste interpretatsioon ning määrangute täpsus

Alutaguse vööndi kivimeid peetakse ühtedeks vanimateks Eestis (Kirst et al., 2009). Arvatakse, et nende vanus võib ulatuda 1.93 miljardi aastani (Kirst et al., 2009). Alutaguse piirkonna metasetete settimise ja moondumise vanus on tänaseni ebaselged ja põhinevad sarnase tekke ja geoloogiaga lähipiirkondade kivimmaterjalide dateerimistel (Kirs et al., 2009). Lähipiirkondade dateeringutele tuginedes on välja toodud kaks võimalikku moonde eelsete kivimite vanusevahemikku, milleks on 1.91–1.93 ja 1.88–1.90 Ga (Kirs et al., 2009). Esimese vanusegrupi puhul seostatakse Alutaguse vööndi kivimeid Lapi-Savo orogeneesi arenguga (Kirs et al., 2009). Bogdanova et al. 2015 kohaselt võis Alutaguse metasetete näol olla tegemist settebasseiniga, mis ulatus Peterburi lähistelt Laadoga järveni välja. Settimine bassenis on toimunud 1.90–1.96 (Lahtinen et al., 2010; Melezhik ja Hanski, 2012) Ga tagasi ning sealsed migmatiseerunud gneisid (Koistinen, 1996) on sarnased Alutaguse vööndi vilgugneissidega. Kuid kuna Alutaguse vööndist täpseid vanusemääranguid tehtud pole, siis ei saa Bogdanova et al. 2015 poolt välja pakutud ideed kinnitada. Sarnaseid setteid on leitud ka Novgorodi tsoonist Venemaalt (Bogdanova et al., 2015; Kirs et al., 2009). Teise vanusegrupi puhul arvatakse, et tegemist võib olla Fennia orogeneesi käigus riftistunud sellel hetkel veel Tallinna vööndisse kuulunud idaosaga (Kirs et al., 2009). Alutaguse vööndi gneisside vanuste määramiseks mõõtis Petersell et al. (1991) seitsme tsirkoonitera vanust kasutades U-Pb isotoopsuhet. Vanuste vahemikuks sai ta 1.847 kuni 2.175 Ga, millest vanemad vanused võivad olla seotud varasemate mikrokontinentide akretsiooniga või Svekofennia ookeani laienemisega (Gradstein et al., 2004).

Eesti Paleoproterosoikumi vanusega kristalne aluskord hakkab silma oma vööndilise tektoonilise ehitusega, muutudes lõuna suunas nooremaks (Bogdanova *et al.*, 2006). Nende vööndite teke on seotud Svekofenni orogeneesi lõpufaasiga (Bogdanova *et al.*, 2006). Kristalne aluskord koosneb peamiselt kivimitest, mis esindavad amfiboliitset või granuliitset faatsiest (Soesoo *et al.*, 2020). Kristalse aluskorra moondumise vanus on samuti ebaselge ja põhineb üksikutel tsirkooni, monatsiidi, U-Pb või granaatide Sm-Nd analüüsidel (Puura *et al.*, 2004; Soesoo *et al.*, 2006; Soesoo *et al.*, 2020). Olemasolevaid vanusemääranguid kokkuvõttes leidis Soesoo *et al.* (2020), et Lõuna-Eesti granuliitse faatsiese teke jääb vahemikku 1.788–1.778 Ga tagasi ja Põhja-Eesti amfiboliitse faatsiese kivimid moondusid 1.889–1.844 Ga tagasi. Svekofenni orogeneesile järgneb postorogeenne magmatism, mis on seotud litosfääri/vahevöö

ülaosast pärit aluselise (montsoniidi tüüpi) kuni happelise (šošoniidi tüüpi) magmatismiga, mille vanusteks on 1.830?–1.630 Ga (Soesoo ja Hade, 2012). Postorogeenne magmatism on seotud riftistumise ja orogeense kollapsiga (Rämö *et al.*, 1996). Fennoskandia anorogeenne anortosiit-rabakivi tüüpi magmatism on seotud ajavahemikuga 1.65–1.45 Ga, mis omakorda jaotatakse Viiburi provintsiks (1.67–1.62 Ga tagasi) ja Riia–Ölandi provintsiks (1.59–1.54 Ga tagasi) (Rämö *et al.*, 1996). Eesti asub Fennoskandia rabakivi provintsi keskel (Rämö *et al.*, 1996). Märjamaa plutoon omab vanuseid 1.65–1.63 Ga (Rämö *et al.*, 1996). Ereda kivimid on vanustega 1.642–1.627 Ga (Soesoo *et al.*, 2020). Riia batoliit on vanustega 1.584–1.575 (Rämö *et al.*, 1996). Ruhnus on saadud Riia batoliidi vanusteks 1.595 Ga (Soesoo ja Hade, 2012).

Uraniniidi terade põhjal saadud vanused esindavad valdavalt vanuseid, mis sobituvad kokku tektooniliste sündmustega Svekofennias. Uuritud uraniniidi terade arvutuslikud vanused esindavad valdavalt vanuseid vahemikus $1558-1858 \pm 40$ Ma. Statistiliselt on kõige esinduslikum vanusegrupp $1708-1783 \pm 40$ Ma (Joonis 21). Saadud vanused viitavad sellele, et analüüsitud uraniniidid on tekkinud Svekofenni orogeneesi lõppfaasi moondeprotsesside ja postorogeennsete sündmuste (blokiliste liikumiste) alguses/üleminekul. Siinkohal tuleb meeles pidada, et uraniniitide keemilisel dateerimisel võivad arvutatud vanused olla mõjutatud mitmest aspektist. Esiteks, tuleks olla kindel, et proovides mõõdetakse ainult radioaktiivse lagunemise käigus tekkinud Pb-d (Bowles, 2015). Mitteradioaktiivne Pb ei sobitu uraniniidi struktuuri ja seega saab selle võimaluse välistada (Bowles, 2015). Teiseks, uraniniitide vanusest tingituna, võivad vanemad uraniniidi terad oma radioaktiivse iseloomu tõttu muunduda osaliselt või mõningatel juhtudel täielikult amorfseteks (Pabst, 1955). Selle tagajärjel võib osa Pb-st muutuda liikuvaks ning eemalduda uraniniidi struktuurist (McFarlane ja Harrison, 2006). Üheks eelnevalt kirjeldatud olukorra tunnuseks on Pb-d sisaldavate mineraalide formeerumine ümber uraniniidi tera (Bowles, 2015). Analüüsitud uraniniitidel tuvastati mõningatel juhtudel fosfaatseid ääriseid, sisaldades tihti Pb-d ja U-ni (Joonis 19a), mis võib pärineda uraniniidi lagunemisest. Esinesid ka uraniniidi terad, mis olid lagunenud ebakorrapäraseks massiks (Joonis 19a). Kui vaadata tehtud vanusemääranguid, siis valdavalt, kuid mitte alati, olid anomaalsed vanused just seotud fosfaatsete, Pb-d ja/või U-d sisaldavate ääristega või tugevalt lagunenud teradega. Lisaks on varasemalt täheldatud, et meetod töötab paremini, kui analüüsitud uraniniidi terad asuvad silikaatses maatriksis. Silikaatne maatriks aitab kaitsta uraniniidi terasid hilisema oksüdeerumise eest (Timón-Sánchez et al., 2019). Hapnikulistes tingimustes muutub U liikuvaks, mõjutades U/Pb suhet uraniniidis, mis omakorda mõjutab keemilise dateerimise tulemusi (Timón-Sánchez et al., 2019). Bowles (2015) järgi annab SEM keemiline dateerimine täpsemaid tulemusi kui uuritud U ja Pb-d sisaldavate mineraalide vanused jäävad vanusevahemikku 2 kuni 1000 Ma, 200–600 Ma vanuste monatsiitide puhul soovitatakse kasutada mõõtmisviga \pm 10–40 Ma ja vanuste 2000–3000 Ma puhul mõõtmisviga \pm 40–80 Ma.

5.2 Sulfiidide ja kaasnevate mineraalide võrdlus Soomega

Eesti aluskorda peetakse jätkuks Lõuna-Soomes paljanduvatele kristalsetele kivimitele (Öpik, 1942; Luha, 1946 ja Petersell *et al.*, 1991) seega on sobilik võrrelda töö käigus Uljaste (F188) puuraugus analüüsitud mineraale ja väärismetallidega kaasnevaid assotsiatsioone Soome Svekofennia provintsi (Lõuna-Soome) maagistumise ilmingutega. Fesnnoskandia tervikuna on olnud üks tähtsamaid kaevanduspiirkondi Euroopas juba pikemat aega (Eilu, 2012). Lõuna-Soome Svekofennia provintsi metalliilmingud (Joonis 21) on enamjaolt Paleoproterosoikumi-vanuselised, tekkinud valdavalt mitmeetapilistes riftistumistes või muudes Svekofenni orogeneesi sündmustes (Eilu, 2012).

Joonis 21. Svekofennia provintsi (Lõuna-Soome) maagiilmingud ja metallogeneesi alad. Andmed: Soome Geoloogiateenistus (GTK).

Suurem osa Svekofennia provintsi kivimitest on tekkinud Svekofenni orogeneesi käigus, kus Lääne-Soome ja Lõuna-Soome saarkaarte süsteemid liitusid akretsiooni käigus varasema kontinendiga (Nironen, 1997). Lisaks mikrokontinentide ja saarkaarte akretsioonile (1.92–1.88 Ma tagasi) toimus Svekofennia orogeneesil ka akretsiooni käigus kogunenud maakoore laienemine (riftistumine) (1.87–1.84 Ma tagasi), kontinent-kontinent kokkupõrge (1.87–1.79) ja gravitatsiooniline varisemine (1.79–1.77 Ma tagasi) (Korja *et al.*, 2006). Kesk- ja Lõuna-Soomes toimus Svekofenni orogeneesi käigus erinevaid regionaalseid moondesündmusi vahemikus 1.91–1.80 Ma tagasi, millede tagajärjel läbisid kivimid kõrgema amfiboliitse faatsiese ja granuliitse faatsiese moondetingimusi (Nironen, 2017). Sarnaselt Alutaguse vööndile on suur osa Svekofenni vööndist moondunud kõrge amfiboliitse ja granuliitse faatsiese tingimustes, kus rõhud jäävad enamjaolt 4–6 kbar vahele (Hölttä ja Heilimo, 2017). Kivimiliselt on tegemist enamjaolt andalusiitkiltade, sillimaniitgneisside, kordieriit-biotiit-kaaliumpäevakivi gneisside ning granaat-kordieriit-biotiit-sillimaniit migmatiitidega (Hölttä ja Heilimo, 2017).

Enamus Soome Paleoproterosikumi-aegsetest väärismetallide (kulla, hõbeda) leiukohtadest on orogeenset päritolu ning seotud Svekofenni orogeneesiga (Eilu, 2015). Hüdrotermaalsed epigeneetilised kulla lasundid on tekkinud orogeeni akretsiooni ja kollisiooni vööndites, kus deformatsiooni tõttu esinevad kõrgemad temperatuurid ja fluidide segunemine (GTK, 2020). Väärismetallide (Au, Ag) leiukohtade puhul on tegemist teist või kolmandat järku murrangute või nihkevöönditega, mis esindavad tüüpiliselt hapra-plastilise ja hapra deformatsiooni piirkondi, kus rõhk on olnud muutlik (GTK, 2020). Kulla välja sadenemine toimus fluididest, mille temperatuurid jäidd vahemikku 250–700°C (GTK, 2020). Svekofennia provintsi orogeense kulla puhul on tegemist aluselise kuni happelise koostisega amfiboliitse faatsiese läbinud kivimitega (Eilu, 2015). Orogeense kullaga käivad tavaliselt kaasas erinevad raua- ja arsenosulfiidid, rohekiltades on nendeks püriit ja arsenopüriit, amfiboliitse moonde läbinud kivimite puhul on esindatud pürrotiin, löllingiit ja arsenopüriit (Eilu, 2015). Valdavalt esineb kuld ehedana, aga võib esineda ka suletistena püriidis või arsenopüriidis (Eilu, 2015).

Svekofennia provintsi orogeense kulla mineeralisatsiooni tekkeaeg pole hästi teada. Oletatakse, et tegemist võib olla 1840–1770 Ma vana mineralisatsiooni sündmusega, mis tekkis kontinent-kontinent kokkupõrkel Fennoskandia, Sarmaatia ja Amazonase kontinentide vahel (Eilu, 2015). Saalmann *et al.* (2010) on mõõtnud Lõuna-Soomes Jokisivu kulla lasundis olevate tsirkoonide ja titaniitide vanust, saades tulemuseks umbes 1802 ± 15 Ma, mis langeb kokku

hilis- ja postorogeense magmatismi käigus tekkinud pegmatiitdaikide vanustega. GTK (2020) on välja toonud 3 omadust, mis esinevad kõikidel Soome orogeense eheda kulla lasunditel, sõltumata tekkeajast, moondeastmest ja põhikivimist: kivimis leiduvaid muutuseid esindab CO_2 , K, Rb ja S rikastumine, mis tekib algsete mineraalide asendamisest kaaliumirikaste kiltade, karbonaatide ja rauasulfiididega; lasundid ise ja ümbriskivimid sisaldavad Ag, As, Bi, Sb, Te ja W-t; elementide Al, Ca, Fe, Mg, Mn, Ti, Zr mobiilsust ei ole täheldatud. Mõned omadused, mis kohati esinevad nii eheda kulla kui ka anomaalselt kõrgete metalli sisaldustega lasundites: lokaliseeritult Ag, Pb ja Zn rikastumine; Li, Na ja Sr ammendumine; mineraalid nagu turmaliin, grafiit ja magnetiit käivad kaasas muutumisintervallidega. Lisaks on toodud keskmise amfiboliitse faatsiese ja veel kõrgemate PT tingimuste mineraloogia: biotiit-kaltsiit-klinopürokseen-kaltsiitne amfibool-plagioklass-ilmeniit-pürrotiin \pm löllingiit, arsenopüriit. (GTK, 2020)

Svekofennia provintsi grafiidiilmingute ja -maardlate grafiiti sisaldavateks kivimiteks on kvarts-mikrokliingneisid, amfiboliidid, keskmised kuni happelised tardkivimid või vilgukildad ning mustad kildad. Sarnaselt Uljastele on maksimaalsed moondetemperatuurid olnud 600–735 °C vahel ning rõhud 5–8 kbar vahel. Kivimi vanusteks on saadud 1910–1930 Ma. Libleline grafiit on tavaliselt kuni ühe mm pikkune, harva üle selle. Sulfiididest esineb pürrotiini, püriiti, sfaleriiti ja kalkopüriiti. Püriidi sisaldused tõusevad lokaalselt 10–15%-ni ning grafiidi sisaldused on tavaliselt 5–10%, harva üle selle. (GTK, 2020)

6. Kokkuvõte

Käesolevas töös uuriti Uljaste jäänukstruktuuri sulfiidse maagistumisega seotud jälgelemente ning mineraalide assotsiatsioone ja geneesi. Mineralisatsiooni sündmuste vanuste määramisteks kasutati töö käigus leitud uraniniitide U/Pb keemilist dateerimist. Töö keskendus proovidele Uljaste puursüdamikust F188, kus peamiselt grafiitgneisside, aga ka pürokseenkivimite, kvartsiitide ja pegmatiitsete soonte keemiat ja mineraloogiat uuriti käsi-XRF, ICP, XRD ja SEM meetoditega.

Käesoleva töö tulemused kinnitavad ja täiendavad varasemaid Uljaste grafiitgneissides kirjeldatud maagistumisilminguid. Puursüadmiku F188 uuringutest võib järeldada, et Uljaste grafiitgneissides on valdavateks sulfiidseteks mineraalideks pürrotiin ja püriit. Nendega esinevad tihedamini sfaleriit ja kalkopüriit, harvem galeniit, molübdeniit ja arsenopüriit. Valdavalt on tegemist teradega, kuid sulfiide (peamiselt pürrotiini, püriiti, sfaleriiti ja kalkopüriiti) esineb ka hüdrotermaalsete soontena. Sulfiidsed sooned on tavalised kõigis grafiitgneissidega (aga ka väiksemal määral teistes uuritud kivimiüüpides) seotud proovides, kuid kõige suuremaid muutuseid (soontest tugevalt läbistatud) leidus intervallides sügavustelt 200.75–201.3; 213.4; 331.4 ja 344 m. Väärismetallid nagu kuld ja hõbe ning nendega kaasnevad jälgelemendid (peamiselt Te ja Bi) on seotud just eelpool mainitud intervallidega. Antud intervallides esines ümbritsevast rohkem sfaleriidi, kalkopüriidi ja püriidi sooni. Valdavalt esineb hõbe ühendina koos Te või väiksemal määral Bi-ga. Kuld esineb tüüpiliselt Ag-Au sulamina (elektrumina). Ehedalt leidub hõbedat harva ning veel vähem leidub ehedalt kulda. Uuritud väärismetallide terad on väikesed, jäädes alla 20 µm. Sarnaseid sulfiidseid ning väärismetallidega seonduvaid assotsiatsioone on täheldatud Lõuna-Soome Svekofennia provintsi kivimites. Lisaks väärismetallidele leiti hüdrotermaalselt rohkem muutunud intervallidest ka uraniniidi terasid, mis sisaldavad lisaks U-le ka Pb-d.

Uraniniitide U/Pb keemilise dateerimise käigus saadud vanusemäärangud jäävad valdavalt vahemikku 1558–1858 \pm 40 Ma ning statistiliselt kõige sagedasemalt oli esindatud vanusevahemik 1708–1783 \pm 40 Ma. Vanused korreleeruvad Svekofennia orogeneesi lõppfaasiga ja/või postorogeensete tektoonilise sündmustega, viidates blokilistele liikumistele ja moondeprotsessidele orogeense etapi üleminekul postorogeenseks.

Summary

This study focuses on the trace elements, mineral associations and genesis associated with the sulphidic mineralization of the Uljaste erosional relict structure. Chemical U/Pb dating of the mineralization events was conducted on the uraninites found throughout the study. Uljaste drillcore F188 was used to study the graphite gneisses, pyroxene rock, quartzites and pegmatite veins using the hand-XRF, ICP, XRD and SEM methods.

Results from this study confirm and add to the previous knowledge of sulphidic mineralization in the Uljaste area. Through the study of drillcore F188, it can be concluded that the main sulphidic minerals of Uljaste graphite gneisses are pyrrhotite and pyrite, which are often accompanied by sphalerite and chalcopyrite, less frequent are occurrences of galenite, molybdenite and arsenopyrite. The sulphides are usually granular but some sulphides (mainly pyrrhotite, pyrite, sfalerite and chalcopyrite) occur as hydrothermal veins. Sulphidic veins occur throughout the graphite gneiss (considerably less in other studied rock types) samples. The most intensly fractured and vein bearing interval were examined at the depths of 200.75– 201.3; 213.4; 331.4 and 344 m. Precious metals like gold and silver and the trace elements related to them (mainly Te and Bi) are associated with the previously mentioned intervals. Sphalerite, chalcopyrite and pyrite veins occur more commonly in those intervals. Silver mainly occurs as a compound with Te or less frequently with Bi. Gold typically occurs as an alloy of Ag-Au (electrum). Native silver and gold occur rarely. Grains of the precious metals that were found are less than 20 µm in size. Similar sulphidic and precious metal associations have been observed in the Svecofennian province in Southern Finland. In addition to the precious metals, the intervals with intense hydrothermal alteration contained U and Pb bearing uraninite grains.

Results of the chemical dating of U/Pb from uraninite grains mainly showed ages of $1558-1858 \pm 40$ Ma, statistically the most frequent age group was $1708-1783 \pm 40$ Ma. Ages correlate with the end phase of the Svecofennian orogeny and/or postorogenic tectonic events referring to block movements and metamorphism processes related to the transition from orogenic to postorogenic stage.

Tänuavaldused

Autor soovib tänada oma juhendajaid Peeter Somelari ja Siim Nirgit sõbraliku ja kannatliku koostöö eest.

Kasutatud allikad

Afanasjev, B.L., Volkolakov, F.K., (1981). Arusaamade muutustest Baltikumi lokaalsete struktuuride arengust. Rmt: Afanasjev, B. (toim.), Baltikumi settekivimitest katte ja struktuuride moodustumise tingimustest. Zinatne, Riia, 19–24. (vene keeles)

All, T., Puura, V., Vaher, R., (2004). Orogenic structures of the Precambrian basement of Estonia as revealed from the integrated modelling of the crust. Proceedings of the Estonian Academy of Sciences. Geology, 53, 165–189.

Bogdanova, S., Gorbatschev, R., Grad, M., Guterch, A., Janik, T., Kozlovskaya, E., Motuza, G., Skridlaite, G., Starostenko, V., Taran, L., (2006). EUROBRIDGE: new insight into the geodynamic evolution of the East European Craton. In: Gee, D.G., Stephenson, R.A. (Eds.). European Lithosphere Dynamics. Geol. Soc. Lond., 599–628, Memoir 32.

Bogdanova, S., Gorbachev, R., Skridlaite, G., Soesoo, A., Taran, L., Kurlovich, D., (2015). Trans-Baltic Palaeoproterozoic correlations towards the reconstruction of supercontinent Columbia/Nuna. Precambrian Res, 259, 5–33.

Bowles, J.F.W., (2015). Age Dating from Electron Microprobe Analyses of U, Th, and Pb: Geological advantages and Analytical Difficulties. Microscopy and Microanalysis, 21, 1114–1122.

Dmitrijeva, M., Plado, J., Oja, T., (2018). The Luusika potential field anomaly, eastern Estonia: modelling results. Estonian Journal of Earth Sciences, 4, 228–237.

Eilu, P. (Ed.), (2012). Mineral deposits and metallogeny of Fennoscandia. Geological Survey of Finland, Special Paper 53, 1–401.

Eilu, P., (2015). Introduction and overview on Finnish gold deposits. In: Maier, W. D., O'Brien, H., Lahtinen, R. (Eds.), Mineral Deposits of Finland. Elsevier, Amsterdam, 377–403.

Finger, F., Waitzinger, M., Förster, H.-J., Kozlik, M., Raith, J.G., (2017). Identification of discrete low-temperature thermal events in polymetamorphic basement rocks using high spatial

resolution FE-SEM-EDX U-Th-Pb dating of uraninite microcrystals. Geology, 45(11), 991–994.

Förster, H.-J., (1999). The chemical composition of uraninite in Variscan granites of the Erzgebirge, Germany. Mineralogical Magazine, 63(2), 239–252.

Gradstein, F.M., Ogg, J.G., Smith, A.G., Agterberg, F.P., Bleeker, W., Cooper, R.A., Davydov, V., Gibbard, P., Hinnov, L., House, M.R., Lourens, L., Luterbacher, H.-P., McArthur, J., Melchin, M.J., Robb, L.J., Shergold, J., Villeneuve, M., Wardlaw, B.R., Ali, J., Brinkhuis, H., Hilgen, F.J., Hooker, J., Howarth, R.J., Knoll, A.H., Laskar, J., Monechi, S., Powell, J., Plumb, K.A., Raffi, I., Röhl, U., Sanfilippo, A., Schmitz, B., Shackleton, N.J., Shields, G.A., Strauss, H., Van Dam, J., Veizer, J., van Kolfschoten, Th., Wilson, D. (2004). A Geologic Time Scale 2004. Cambridge University Press, 1–589.

Hölttä, P., Klein, V., (1991). PT-development of granulite facies rocks in southern Estonia. Geol. Survey of Finland. Current research 1989–1990, Special Paper, 12, 37–47.

Hölttä, P., Heilimo, E., (2017). Metamorphic map of Finland. Geological Survey of Finland, Special Paper 60, 75–126.

Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C., Essling, A.M., (1971). Precision measurement of half-lives and specific activities of 235U and 238U. Phys Rev C Nucl Phys, 4, 1889–1906.

Kattai, V., Saadre, T., Savitski, L., (2000). Eesti pölevkivi: geoloogia, ressurss, kaevandamistingimused. Tallinn, 93–112.

Kempe, U., (2003). Precise electron microprobe age determination in altered uraninite: consequences on the intrusion age and the metallogenic significance of the Kirchberg granite (Erzgebirge, Germany). Contributions to Mineralogy and Petrology, 145(1), 107–118.

Kirs, J., Puura, V., Soesoo, A., Klein, V., Konsa, M., Koppelmaa, H., Niin, M., Urtson, K., (2009). The crystalline basement of Estonia: rock complexes of the Palaeoproterozoic

Orosirian and Statherian and Mesoproterozoic Calymmian periods, and regional correlations. Estonian Journal of Earth Sciences, 58, 219–228.

Kivisilla, J., (1987). Geohimičeskaja specializacija kristalličeskogo fundamenta Estonii. Avtoreferat kand. geol.-min. nauk. Minsk, 1–21. (vene keeles)

Kivisilla, J., Niin, M., Koppelmaa, H., (1999). Catalogue of chemical analyses of major elements in the rocks of the crystalline basement of Estonia. Eesti Geoloogiakeskus, 1–94.

Klein, V.M., (1986). Metamorphic complex of the Svecofennian Belt in Northern Estonia: PhD (Cand. of Geol.-Min.) thesis. Tallinn: Acad. Sci., Estonian SSR. (vene keeles)

Koistinen, T., (Ed.), (1996). Explanation to the Map of Precambrian basement of the Gulf of Finland and surrounding area 1:1 000000. Geol. Survey of Finland. Special Paper, 21, 1–141.

Koppelmaa, H., (2002). Eesti kristalse alsukorra geoloogiline kaart mõõtkava 1:400 000 seletuskiri. Eesti Geoloogiakeskus, 1–32.

Korja, A., Lahtinen, R., Nironen, M., (2006). The Svecofennian orogen: a collage of microcontinents and island arcs. Geological Society London Memoirs 32(1), 561–578.

Krull, A., (2021) Sonda-Uljaste magnetanomaalia geofüüsikalised ja petrofüüsikalised uuringud. Tartu Ülikool, Bakalaureusetöö, 1–31.

Lahtinen, R., Huhma, H., Kontinen, A., Kohonen, J., Sorjonen-Ward, P., (2010). New constraints for the source characteristics, deposition and age of the 2.1–1.9 Ga metasedimentary cover at the western margin of the Karelian Province. Precambrian Res., 176, 77–93.

Loukola-Ruskeeniemi, K., Heino, T., (1996). Geochemistry and genesis of the black shalehosted Ni-Cu-Zn deposit at Talvivaara, Finland. *Economic Geology* 1996; 91(1): 80–110.

Luha, A., (1946). Earth resources in ESSR. Concluding overview of geological appliances. Tartu: Teaduslik Kirjandus, 1–176. (vene keeles) Melezhik, V.A., Hanski, E.J., (2012). Palaeotectonic and Palaeogeographic Evolution of Fennoscandia in the Early Palaeoproterozoic. (Eds.), Melezhik, V.A., Prave, A.R., Hanski, E.J., Fallick, A.E., Lepland, A., Kump, L.R., Strauss, H. Reading the Archive of Earth's Oxygenation. Berlin, Heidelberg: Springer-Verlag, 111–178.

McFarlane, C.R.M., Harrison, M.T., (2006). Pb-diffusion in monazite: Constraints from a high-T contact aureole setting. Earth Planet Sci Lett 250, 376–384.

Nironen, M., (1997). The Svecofennian orogen: a tectonic model. Precambrian Research 86(1-2), 21–44.

Nironen, M., (2017). Guide to the Geological Map of Finland – Bedrock 1:1 000 000. Geological Survey of Finland, Special Paper 60, 41–76.

Pabst, A., (1955). The metamict state. Amer Mineral 37, 137–157.

Pal, D.C., Rhede, D., (2013). Geochemistry and chemical dating of uraninite in the Jaduguda uranium deposit, Singhbhum shear zone India. Implications for uranium mineralization and geochemical evolution of uraninite. Economic Geology, 108(6), 1499–1515.

Palosaari, J., Latonen, R.M., Smått, J.H., Ranio, S., Eklund, O., (2020). The flake graphite prospect of Piippumäki—an example of a high-quality graphite occurrence in a retrograde metamorphic terrain in Finland. Miner Deposita 55, 1647–1660.

Petersell, V., (1976). Geological and metallogeny features of the crystalline basement of the southern slope of the Baltic Shield. Tallinn: ENSV TA GI, 1–28. (vene keeles)

Petersell, V., (1991). On the geological age of the crystalline basement of the southern slope of the Baltic Shield (SSBS). Eesti Geoloogiakeskuse Toimetised, 1, 25–26.

Petesell, V., Põldvere, A., Petersell, E., Klein, V., (1982). Põhja-Eesti mustade kiltade formatsiooni aineline koostis ja maagistumise potentsiaal. EGF 3950, 1–178. (vene keeles)

Petersell, V., Talpas, A., Põldvere, A., (1985). Report of the exploration of Precambrian iron ore formation. Tallinn: Geol. Survey of Estonia. EGF 4159, 1–129. (vene keeles)

Petersell, V., Kivisilla, J., Pukkonen, E., Põldvere, A., Täht, K., (1991). Maagistumise ja mineraalistumise ilmingud Eesti sette- ja kristalse aluskorra kivimites. EGF 4523. (vene keeles)

Pirrus, E., (1981). Settekivimid ja tektoonika, Tallinn, Estonia.

Puura, V., Vaher, R., Kuuspalu, T., Erisalu, E., (1963). Aruanne polümetalsete maakide otsingutööde tulemustest Uljaste ja Sinimäe alal (Kirde-Eesti) 1961.–1962. a. Tallinn. EGF 2078. (vene keeles)

Puura, V., Koppelmaa, H., (1967). Exploration results of crystalline basement. Tallinn: Geol. Survey of Estonia. EGF 2982. (vene keeles)

Puura, V., Klein, V., Koppelmaa, H., Gromov, O., Kala, E., Kivisilla, J., Keerup, O., Niin M., Niin, S., Petersell, V., (1977). Aruanne kristalse aluskorra süvakaardistamisest Kunda–Kiviõli piirkonnas (Põhja-Eesti) mõõtkavas 1:500 000 1974.–1977. a. EGF 3476. (vene keeles)

Puura, V., Kala, E., (1978). Kirde-Eesti plakantiklinaalid. Rmt: Laškov, E. (toim.), Baltikumi ja Valgevene lokaalsed struktuurid. Vilnius, 29–31. (vene keeles)

Puura, V., Vaher, R., Klein, V., Koppelmaa, H., Niin, M., Vanamb, V., Kirs, J., (1983). The Crystalline Basement of Estonian Territory. Nauka, Moscow. (vene keeles, ingliskeelse kokkuvõttega)

Puura, V., Vaher, R., (1997). Tectonics. Cover structure. In: Raukas, A., Teedumäe, A. (Eds.), Geology and mineral resources of Estonia. Estonian Academy Publishers, Tallinn, 167–177.

Puura, V., Hints, R., Huhma, H., Klein, V., Konsa, M., Kuldkepp, R., Mänttäri, I., Soesoo, A., (2004). Svecofennian metamorphic zones in the basement of Estonia. Proceedings of the Estonian Academy of Sciences. Geology, 53, 190–209.

Reinwald, J., (1935). Strörungen im Brennschiefergebiet Estlands. Tehnika Ajakiri, 9, 161– 165.

Rämo, T., Huhma, H., Kirs, J., (1996). Radiogenic isotopes of the Estonian and Latvian rapakivi granite suits: new data from the concealed Precambrian of the East European Craton. Precambrian Res., 79, 209–226.

Saadre, T., Mardim, T., Morgen, E., Põldvere, A., Vaher, R., Suuroja, K., Saaremets, V., (1984). Aruanne kompleksest geoloogilis-hüdrogeoloogilisest kaardistamisest mõõtkavas 1:50 000 ning järeluuringust varem uuritud aladel Rakvere fosforiidirajoonis. EGF 4068. (vene keeles)

Saalmann, K., Mänttäri, I., Peltonen, P., Whitehouse, M.J., (2010). Geochronology and structural relationships of mesothermal gold mineralization in the Palaeoproterozoic Jokisivu prospect, Southern Finland. Geological Magazine, 147, 551–569.

Soesoo, A., Kosler, J., Kuldkepp, R., (2006). Age and geochemical constraints for partial melting of granulites in Estonia. Mineral. Petrol., 86, 277–300.

Soesoo, A., Hade, S., (2012). Geochemistry and age of some A-type granitoid rocks of Estonia. LITHOSPHERE 2012 – Symposium. Espoo, Finland, 97–101.

Soesoo, A., Nirgi, S., Plado, J., (2020). The evolution of the Estonian Precambrian basement: geological, geophysical and geochemical constraints. Proceedings of The Karelian Research Centre of The Russian Academy of Sciences, 2, 18–33.

Suuroja, K., Mardim, T., Morgen, E., All, T., Kõiv, M., Otsmaa, M., Niin, M., (2007). Baaskaardi Kiviõli (6443) lehe geoloogilise kaardikomplekti koostamine ja digitaalse andmebaasi loomine. Tallinn, Estonia: Eesti Geoloogiakeskus.

Taylor, J., (1991). Computer Programs for Standardless Quantitative Analysis of Minerals Using the Full Powder Diffraction Profile. Powder Diffraction, 6(1), 2–9.

Timón-Sánchez, S., López Moro, F.J., Romer, R.L., Rhede, D., Fernández-Fernández, A., Moro Benito, M.C., (2019). Late-Variscan multistage hydrothermal processes unveiled by chemical ages coupled with compositional and textural uraninite variations in W-Au deposits in the western Spanish Central System Batholith. Geologica Acta, 17, 1–18.

Vaher, R., Puura, V., Erisalu, E., (1962). Tectonics of North-Eastern Estonia. Tallinn: ENSV TA GI, 319–336. (vene keeles)

Vaher, R., Kuuspalu, T., Puura, V., Erisalu, E., (1964). Setting of sulphide ore occurrences in the Uljaste area. (Ed.), Baukov, S.S. Lithology of Paleozoic Deposits in Estonia. Tallinn: ENSV TA GI, 33–53. (vene keeles)

Vinogradov, A.P., (1962). Average contents of chemical elements in the principal types of igneous rocks of the Earth's crust. Geochemistry, 7, 641–664.

Öpik, A., (1942). Über Magnetometrie und die Geologie des Urgebirges von Estland. Tartu: Tartu University. Manuscript. (saksa keeles)

Interneti allikad

Maa-ameti kaardirakendus X-GIS 2.0:

[https://xgis.maaamet.ee/xgis2/page/app/maainfo] (Vaadatud 26.05.2022)

Actlabsi kirjeldus happe lahustusmeetodi kirjeldus: [https://actlabs.com/geochemistry/exploration-geochemistry/4-acid-near-total-digestion] (Vaadatud 26.05.2022)

Soome Geoloogiateenistuse (GTK) metalliliste mineraalide, tööstulike mineraalide ja maagiuuringute kaardirakendus:

[https://gtkdata.gtk.fi/mdae/index.html] (Vaadatud 26.05.2022)

Soome Geoloogiateenistuse (GTK) sissejuhatus orogeense kulla mineralisatsiooni süsteemidest:

[https://minsysfin.gtk.fi/index.php/introduction-to-the-orogenic-gold-mineral-systems] (Vaadatud 26.05.2022)

Lisad

Lisa 1. Puursüdamiku F188 XRD mineraloogilise analüüsi tulemused %-des.

Litaloogia	Mates (m)	Kuni (m)	Kvarts	Kaoliniit	K- päevakivi	Biotiit	Kordieriit	Sillimaniit	Püriit	Pürotiin	Sfaleriit	Hematiit	Magnetiit	Grafiit	Kaltsiit	Dolomiit	lagioklass	Amfibool	ürokseen	Talk	Kips	Kloriit
Graniitgneiss	163	164	17.2	24.5	28.5	1.5	0	0	0	0	0	10.1	0	0	5.4	12.7	0	0	0	0	0	0
Grafiitgneiss	167	168	15.1	16.6	31.9	2.8	0	0	0	0	5.1	0	0	5.7	0	17.4	0	0	0	0	2.6	2.8
Grafiitgneiss	169	170	17.3	8.7	35	5.4	0	0	4	0	0	0	0	8.4	0	12.4	0	0	0	0	1.7	6.8
Grafiitgneiss	172	173	10.6	13.9	32.5	6.7	0	0	5.4	0	0	0	0	12	4.6	7.7	0	0	0	0	0.6	6
Grafiitgneiss	191	192	30.4	11.6	23.8	5.5	0	0	1.1	10.9	0	0	0	10	0	1.6	4.4	0	0	0	0	0.7
Grafiitgneiss	202.3	203.3	19.5	8.2	18.5	2.4	0	0	0.6	43.1	0	0	0	5.6	0	0	1.8	0	0	0	0	0
Grafiitgneiss	213	214	19.9	4.3	20.6	4.1	0	0	0	36.5	0	0	0	6.5	0	0	8.2	0	0	0	0	0
Pegmatiit	240.4	241.2	28.7	2.2	19.7	2.5	3.4	0	0	30.5	0	0	0	0	0	0	12.8	0	0	0	0	0
Grafiitgneiss	241.2	241.35	25	1.1	44.4	0.9	0.8	0	0	7.8	0	0	0	8.2	0	0	11.4	0	0	0	0	0
Grafiitgneiss	241.35	242.35	20.9	1.9	27.1	4.4	2.4	1	0	28.8	0	0	0	5.3	0	0	8.1	0	0	0	0	0
Kvartsiit	281	282	86.6	1.4	0	1.6	0	0	0	7.9	0	0	0	0	0.6	0.6	0	1.3	0	0	0	0
Pürokseenkivim	287.5	288.5	38.5	0	0	1.4	0	0	1	13.9	0	0	0	0	4.1	0	0	4.2	34.5	2.4	0	0
Kvartsiit	288.5	289.5	90.8	3.9	0	0	0	0	1.4	1	0	0	1	0	1.8	0	0	0	0	0	0	0
Pürokseenkivim	291.8	292.8	1.1	0	3.4	1.4	0	0	0	22.1	0	0	0	0	9.9	0	0	6.3	51.2	4.6	0	0
Pürokseenkivim	292.8	293.8	45.8	0	0	1.6	0	0	0	13	0	0	0	0	2.4	0	0	8	27.5	1.7	0	0
Pürokseenkivim	293.8	294.8	8.9	0	3.4	3.2	0	0	0	25.3	0	0	0	0	13.6	0	0	23.3	22.3	0	0	0
Pürokseenkivim	294.8	295.8	0.4	0	1.9	0	0	0	0	24.8	0	0	0	0	11.7	0	0	3.9	52.3	5	0	0
Pürokseenkivim	306.8	307.8	10.9	0	0	0.6	0	0	0.5	23.6	0	0	0	0	1.4	0	0	3.5	59.5	0	0	0
Kvartsiit	307.8	308.9	73	0	2.4	1	0	0	0	6.2	0	0	0	0	0.8	0	0	2.1	14.5	0	0	0
Grafiitgneiss	315	316	26.2	0	8.3	3.9	0	0	0	28.6	0	0	0	11.4	0	0	21.4	0	0	0	0	0
Grafiitgneiss	332	333	21.2	7.6	22.7	4.6	2.1	0	0	15.3	0	0	0	11.2	0	0	10.8	0	0	4.1	0	0

Klots	Sügavus	Nimi	U%	Pb%	Suurus µm (pikim telg)
F188-01	200.75	Tera 1.1	41.4	12.3	15
F188-01	200.75	Tera 1.2	40.6	11	20
F188-01	200.75	Tera 1.3	22.1	1.4	30
F188-01	200.75	Tera 1.4	42.7	6.4	10
F188-01	200.75	Tera 1.5	35.4	13.1	20
F188-01	200.75	Tera 1.6	50.1	15.5	30
F188-01	200.75	Tera 1.7	50.3	5.2	10
F188-01	200.75	Tera 1.8	42.9	13.7	20
F188-01	200.75	Tera 1.9	53.1	14.8	30
F188-01	200.75	Tera 1.10	49	13.2	15
F188-01	200.75	Tera 1.11	38.9	11.1	5
F188-01	200.75	Tera 1.12	51.3	15.1	10
F188-01	200.75	Tera 1.14	35.5	15.6	5
F188-01	200.75	Tera 1.15	48.9	5.5	10
F188-01	200.75	Tera 1.16	43.3	12.7	3
F188-01	200.75	Tera 1.17	39.9	11.8	5
F188-01	200.75	Tera 1.18	53.8	16.3	30
F188-01	200.75	Tera 1.19	53.4	15.2	15
F188-01	200.75	Tera 1.20	45.2	17.9	10
F188-01	200.75	Tera 1.21	51.1	15.9	5
F188-01	200.75	Tera 1.22	40.5	10.6	15
F188-01	200.75	Tera 1.23	47.6	14	5
F188-01	200.75	Tera 1.24	45.7	14.3	15
F188-01	200.75	Tera 1.25	42.6	10.1	20
F188-01	200.75	Tera 1.26	51.4	16.5	10
F188-03	200.85	Tera 2.2	43.7	11.4	20
F188-03	200.85	Tera 2.3	44.9	12.5	15
F188-03	200.85	Tera 2.4	49	14.1	20
F188-03	200.85	Tera 2.5	39.1	10.4	30
F188-03	200.85	Tera 2.6	39.3	11.8	10
F188-03	200.85	Tera 2.7	49.8	13.8	20
F188-03	200.85	Tera 2.8	44.2	13.6	5
F188-03	200.85	Tera 2.9	39.5	11.5	5
F188-03	200.85	Tera 2.10	51.3	15.2	10
F188-03	200.85	Tera 2.11	46.6	5.5	10
F188-03	200.85	Tera 2.12	50.5	19.3	10
F188-03	200.85	Tera 2.13	26.2	4.5	20
F188-03	200.85	Tera 2.14	35.6	6.1	5
F188-03	200.85	Tera 2.15	43.8	16.1	10
F188-03	200.85	Tera 2.17	47.3	16.2	10
F188-03	200.85	Tera 2.18	40.5	11.9	25

Lisa 2. Uraniniitide U ja Pb sisalduste tabel.

Klots	Sügavus	Nimi	U%	Pb%	Suurus μm (pikim telg)
F188-03	200.85	Tera 2.19	39	17.6	10
F188-03	200.85	Tera 2.20	44.7	15.8	25
F188-03	200.85	Tera 2.21	47.2	17.9	10
F188-03	200.85	Tera 2.22	41.4	14	20
F188-03	200.85	Tera 2.23	41.6	15.6	10
1882846	284.6	-	41.5	11.6	10
1882877	287.7	-	40.5	12.6	15

Lisa 3. Litotulp koos uuritud poleeride ja klotside sügavustega

Süg. (m)	SiO2	Al2O3	MgO	Са	К2О	S	Fe	Zn	Cu	Pb	Ni	Sn	Ва	Р
151.0	23.353	10.182	<lod< td=""><td>1.009</td><td>0.433</td><td>0.189</td><td>8.977</td><td>0.006</td><td>0.005</td><td><lod< td=""><td>0.007</td><td>0.011</td><td><lod< td=""><td>0.055</td></lod<></td></lod<></td></lod<>	1.009	0.433	0.189	8.977	0.006	0.005	<lod< td=""><td>0.007</td><td>0.011</td><td><lod< td=""><td>0.055</td></lod<></td></lod<>	0.007	0.011	<lod< td=""><td>0.055</td></lod<>	0.055
155.0	30.615	13.662	2.601	0.975	0.571	0.662	13.832	0.009	0.005	0.003	0.005	<lod< td=""><td><lod< td=""><td>0.117</td></lod<></td></lod<>	<lod< td=""><td>0.117</td></lod<>	0.117
160.0	17.946	3.743	1.787	2.918	0.571	0.159	8.582	0.005	0.003	0.002	0.009	<lod< td=""><td><lod< td=""><td>0.083</td></lod<></td></lod<>	<lod< td=""><td>0.083</td></lod<>	0.083
165.0	22.971	9.210	<lod< td=""><td>0.753</td><td>0.755</td><td>0.537</td><td>24.266</td><td>0.017</td><td>0.003</td><td>0.005</td><td>0.021</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	0.753	0.755	0.537	24.266	0.017	0.003	0.005	0.021	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
169.0	19.100	7.764	<lod< td=""><td>6.139</td><td>1.177</td><td>7.122</td><td>7.342</td><td>0.014</td><td>0.009</td><td>0.061</td><td>0.020</td><td><lod< td=""><td>0.065</td><td>0.043</td></lod<></td></lod<>	6.139	1.177	7.122	7.342	0.014	0.009	0.061	0.020	<lod< td=""><td>0.065</td><td>0.043</td></lod<>	0.065	0.043
170.0	27.547	10.196	1.747	0.576	4.816	0.442	2.786	0.006	0.003	0.008	0.002	<lod< td=""><td>0.191</td><td><lod< td=""></lod<></td></lod<>	0.191	<lod< td=""></lod<>
171.0	14.695	5.022	<lod< td=""><td>2.628</td><td>1.155</td><td>6.510</td><td>10.227</td><td>0.008</td><td>0.010</td><td>0.005</td><td>0.005</td><td><lod< td=""><td>0.031</td><td><lod< td=""></lod<></td></lod<></td></lod<>	2.628	1.155	6.510	10.227	0.008	0.010	0.005	0.005	<lod< td=""><td>0.031</td><td><lod< td=""></lod<></td></lod<>	0.031	<lod< td=""></lod<>
171.9	14.843	7.949	4.251	14.325	0.651	0.536	8.619	<lod< td=""><td>0.017</td><td>0.003</td><td>0.003</td><td><lod< td=""><td><lod< td=""><td>0.114</td></lod<></td></lod<></td></lod<>	0.017	0.003	0.003	<lod< td=""><td><lod< td=""><td>0.114</td></lod<></td></lod<>	<lod< td=""><td>0.114</td></lod<>	0.114
173.1	24.271	7.423	3.111	0.355	1.652	3.009	6.560	0.037	0.017	0.011	0.013	<lod< td=""><td>0.024</td><td><lod< td=""></lod<></td></lod<>	0.024	<lod< td=""></lod<>
173.9	29.513	9.306	<lod< td=""><td>2.017</td><td>2.693</td><td>4.296</td><td>5.851</td><td>0.011</td><td>0.011</td><td>0.006</td><td>0.007</td><td><lod< td=""><td>0.110</td><td><lod< td=""></lod<></td></lod<></td></lod<>	2.017	2.693	4.296	5.851	0.011	0.011	0.006	0.007	<lod< td=""><td>0.110</td><td><lod< td=""></lod<></td></lod<>	0.110	<lod< td=""></lod<>
175.0	22.371	10.484	3.094	0.657	2.123	1.523	7.644	0.007	0.009	0.006	<lod< td=""><td><lod< td=""><td>0.103</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.103</td><td><lod< td=""></lod<></td></lod<>	0.103	<lod< td=""></lod<>
176.2	16.687	6.727	<lod< td=""><td>5.467</td><td>1.231</td><td>8.455</td><td>6.421</td><td>0.094</td><td>0.018</td><td>0.002</td><td><lod< td=""><td>0.013</td><td>0.125</td><td>0.037</td></lod<></td></lod<>	5.467	1.231	8.455	6.421	0.094	0.018	0.002	<lod< td=""><td>0.013</td><td>0.125</td><td>0.037</td></lod<>	0.013	0.125	0.037
177.3	27.318	11.299	2.163	0.308	1.005	0.792	11.225	0.209	0.012	0.004	0.003	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
178.4	19.988	7.621	2.919	2.795	2.426	3.486	8.511	0.009	0.011	0.003	0.003	0.010	0.096	0.034
179.4	26.441	7.408	<lod< td=""><td>2.735</td><td>3.331</td><td>7.996</td><td>3.901</td><td>0.011</td><td>0.012</td><td>0.008</td><td>0.004</td><td>0.014</td><td>0.098</td><td><lod< td=""></lod<></td></lod<>	2.735	3.331	7.996	3.901	0.011	0.012	0.008	0.004	0.014	0.098	<lod< td=""></lod<>
180.4	12.712	6.427	<lod< td=""><td>4.878</td><td>1.049</td><td>12.322</td><td>10.744</td><td>0.133</td><td>0.009</td><td><lod< td=""><td>0.007</td><td>0.010</td><td>0.022</td><td>0.051</td></lod<></td></lod<>	4.878	1.049	12.322	10.744	0.133	0.009	<lod< td=""><td>0.007</td><td>0.010</td><td>0.022</td><td>0.051</td></lod<>	0.007	0.010	0.022	0.051
181.4	31.187	6.955	<lod< td=""><td>1.041</td><td>1.572</td><td>3.842</td><td>3.811</td><td>0.027</td><td>0.008</td><td><lod< td=""><td><lod< td=""><td>0.013</td><td>0.053</td><td>0.019</td></lod<></td></lod<></td></lod<>	1.041	1.572	3.842	3.811	0.027	0.008	<lod< td=""><td><lod< td=""><td>0.013</td><td>0.053</td><td>0.019</td></lod<></td></lod<>	<lod< td=""><td>0.013</td><td>0.053</td><td>0.019</td></lod<>	0.013	0.053	0.019
182.5	23.233	7.314	<lod< td=""><td>0.842</td><td>3.409</td><td>3.786</td><td>6.569</td><td>0.021</td><td>0.010</td><td>0.005</td><td>0.004</td><td>0.013</td><td>0.128</td><td><lod< td=""></lod<></td></lod<>	0.842	3.409	3.786	6.569	0.021	0.010	0.005	0.004	0.013	0.128	<lod< td=""></lod<>
183.4	12.909	5.399	1.558	0.201	1.869	0.974	6.849	0.054	0.013	0.004	0.004	<lod< td=""><td>0.109</td><td><lod< td=""></lod<></td></lod<>	0.109	<lod< td=""></lod<>
184.3	39.492	11.538	2.196	0.279	2.832	0.862	4.168	0.022	0.013	0.003	0.003	0.010	0.086	0.023
185.2	31.505	7.475	<lod< td=""><td>0.942</td><td>3.372</td><td>4.779</td><td>5.354</td><td>0.009</td><td>0.010</td><td>0.002</td><td>0.009</td><td><lod< td=""><td>0.080</td><td><lod< td=""></lod<></td></lod<></td></lod<>	0.942	3.372	4.779	5.354	0.009	0.010	0.002	0.009	<lod< td=""><td>0.080</td><td><lod< td=""></lod<></td></lod<>	0.080	<lod< td=""></lod<>
186.6	20.906	5.690	2.336	0.858	2.525	4.373	4.213	0.024	0.013	<lod< td=""><td><lod< td=""><td>0.021</td><td>0.038</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.021</td><td>0.038</td><td><lod< td=""></lod<></td></lod<>	0.021	0.038	<lod< td=""></lod<>
187.6	32.017	6.923	2.402	1.063	2.121	4.844	8.173	0.049	0.035	<lod< td=""><td>0.007</td><td>0.009</td><td>0.035</td><td>0.028</td></lod<>	0.007	0.009	0.035	0.028
188.6	27.671	9.019	2.458	0.448	3.728	3.822	9.796	0.016	0.052	0.002	0.008	<lod< td=""><td>0.108</td><td><lod< td=""></lod<></td></lod<>	0.108	<lod< td=""></lod<>
189.6	18.009	6.499	<lod< td=""><td>0.459</td><td>1.295</td><td>2.284</td><td>3.529</td><td>0.005</td><td>0.009</td><td><lod< td=""><td>0.002</td><td><lod< td=""><td>0.057</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	0.459	1.295	2.284	3.529	0.005	0.009	<lod< td=""><td>0.002</td><td><lod< td=""><td>0.057</td><td><lod< td=""></lod<></td></lod<></td></lod<>	0.002	<lod< td=""><td>0.057</td><td><lod< td=""></lod<></td></lod<>	0.057	<lod< td=""></lod<>

Lisa 4. Puursüdamiku F188 käsi-XRF sisaldused wt%-des. (<LOD – alla määramispiiri)

Süg. (m)	SiO2	Al2O3	MgO	Са	K2O	S	Fe	Zn	Cu	Pb	Ni	Sn	Ва	Р
190.6	28.760	4.452	1.989	0.592	1.959	5.004	7.061	0.089	0.017	0.003	0.010	0.017	0.026	<lod< td=""></lod<>
191.7	25.023	9.957	2.033	0.415	2.836	3.730	4.552	0.027	0.021	0.005	0.003	0.013	0.164	<lod< td=""></lod<>
192.7	31.766	11.721	2.373	0.570	3.334	3.727	7.210	0.009	0.019	<lod< td=""><td>0.005</td><td><lod< td=""><td>0.031</td><td><lod< td=""></lod<></td></lod<></td></lod<>	0.005	<lod< td=""><td>0.031</td><td><lod< td=""></lod<></td></lod<>	0.031	<lod< td=""></lod<>
193.8	39.096	10.682	2.978	1.511	1.962	2.454	3.072	0.017	0.012	<lod< td=""><td>0.003</td><td><lod< td=""><td>0.023</td><td>0.041</td></lod<></td></lod<>	0.003	<lod< td=""><td>0.023</td><td>0.041</td></lod<>	0.023	0.041
194.8	44.642	7.157	<lod< td=""><td>1.173</td><td>1.807</td><td>3.398</td><td>3.875</td><td>0.006</td><td>0.007</td><td><lod< td=""><td>0.003</td><td>0.011</td><td>0.039</td><td>0.021</td></lod<></td></lod<>	1.173	1.807	3.398	3.875	0.006	0.007	<lod< td=""><td>0.003</td><td>0.011</td><td>0.039</td><td>0.021</td></lod<>	0.003	0.011	0.039	0.021
195.6	15.703	2.773	<lod< td=""><td>0.528</td><td>0.116</td><td>1.935</td><td>1.958</td><td>0.009</td><td>0.010</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.033</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.528	0.116	1.935	1.958	0.009	0.010	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.033</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.033</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.033</td><td><lod< td=""></lod<></td></lod<>	0.033	<lod< td=""></lod<>
196.8	6.083	2.296	<lod< td=""><td>1.641</td><td>1.088</td><td>6.916</td><td>5.256</td><td>0.008</td><td>0.012</td><td>0.004</td><td>0.004</td><td><lod< td=""><td>0.103</td><td><lod< td=""></lod<></td></lod<></td></lod<>	1.641	1.088	6.916	5.256	0.008	0.012	0.004	0.004	<lod< td=""><td>0.103</td><td><lod< td=""></lod<></td></lod<>	0.103	<lod< td=""></lod<>
197.8	23.078	10.079	2.121	0.964	3.129	4.636	9.947	0.017	0.024	0.003	0.012	0.010	0.067	<lod< td=""></lod<>
198.8	41.902	7.878	<lod< td=""><td>0.877</td><td>0.551</td><td>5.784</td><td>7.149</td><td>0.015</td><td>0.009</td><td><lod< td=""><td>0.006</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.877	0.551	5.784	7.149	0.015	0.009	<lod< td=""><td>0.006</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	0.006	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
199.8	35.600	10.325	2.302	1.097	0.406	5.546	7.419	0.010	0.021	<lod< td=""><td>0.003</td><td>0.010</td><td>0.018</td><td><lod< td=""></lod<></td></lod<>	0.003	0.010	0.018	<lod< td=""></lod<>
201.1	12.373	3.402	<lod< td=""><td>2.333</td><td>1.947</td><td>15.551</td><td>26.475</td><td>0.009</td><td>0.250</td><td>0.006</td><td>0.030</td><td><lod< td=""><td>0.045</td><td><lod< td=""></lod<></td></lod<></td></lod<>	2.333	1.947	15.551	26.475	0.009	0.250	0.006	0.030	<lod< td=""><td>0.045</td><td><lod< td=""></lod<></td></lod<>	0.045	<lod< td=""></lod<>
202.1	13.716	4.379	<lod< td=""><td>2.134</td><td>2.123</td><td>14.024</td><td>19.557</td><td>0.024</td><td>0.051</td><td>0.003</td><td>0.025</td><td><lod< td=""><td>0.068</td><td><lod< td=""></lod<></td></lod<></td></lod<>	2.134	2.123	14.024	19.557	0.024	0.051	0.003	0.025	<lod< td=""><td>0.068</td><td><lod< td=""></lod<></td></lod<>	0.068	<lod< td=""></lod<>
203.1	25.414	6.614	2.808	1.354	2.612	7.506	14.053	0.045	0.131	0.003	0.016	<lod< td=""><td>0.036</td><td>0.064</td></lod<>	0.036	0.064
204.1	17.135	4.469	1.976	0.618	1.039	5.050	11.239	0.013	0.037	<lod< td=""><td>0.011</td><td><lod< td=""><td><lod< td=""><td>0.032</td></lod<></td></lod<></td></lod<>	0.011	<lod< td=""><td><lod< td=""><td>0.032</td></lod<></td></lod<>	<lod< td=""><td>0.032</td></lod<>	0.032
205.1	26.915	5.243	<lod< td=""><td>1.213</td><td>2.503</td><td>5.745</td><td>5.523</td><td>0.009</td><td>0.086</td><td>0.003</td><td>0.005</td><td><lod< td=""><td>0.054</td><td>0.020</td></lod<></td></lod<>	1.213	2.503	5.745	5.523	0.009	0.086	0.003	0.005	<lod< td=""><td>0.054</td><td>0.020</td></lod<>	0.054	0.020
206.1	17.993	6.574	<lod< td=""><td>2.024</td><td>2.063</td><td>11.830</td><td>18.445</td><td>0.007</td><td>0.009</td><td>0.003</td><td>0.017</td><td><lod< td=""><td>0.051</td><td><lod< td=""></lod<></td></lod<></td></lod<>	2.024	2.063	11.830	18.445	0.007	0.009	0.003	0.017	<lod< td=""><td>0.051</td><td><lod< td=""></lod<></td></lod<>	0.051	<lod< td=""></lod<>
207.1	25.674	7.679	<lod< td=""><td>1.923</td><td>2.436</td><td>9.389</td><td>11.039</td><td>0.018</td><td>0.012</td><td>0.003</td><td>0.010</td><td>0.010</td><td>0.048</td><td>0.070</td></lod<>	1.923	2.436	9.389	11.039	0.018	0.012	0.003	0.010	0.010	0.048	0.070
208.1	17.198	3.894	<lod< td=""><td>3.936</td><td>1.911</td><td>14.312</td><td>10.276</td><td>0.017</td><td>0.006</td><td><lod< td=""><td>0.008</td><td><lod< td=""><td>0.038</td><td>0.073</td></lod<></td></lod<></td></lod<>	3.936	1.911	14.312	10.276	0.017	0.006	<lod< td=""><td>0.008</td><td><lod< td=""><td>0.038</td><td>0.073</td></lod<></td></lod<>	0.008	<lod< td=""><td>0.038</td><td>0.073</td></lod<>	0.038	0.073
209.2	22.402	7.529	<lod< td=""><td>0.751</td><td>3.164</td><td>2.634</td><td>5.391</td><td>0.010</td><td>0.015</td><td>0.003</td><td><lod< td=""><td>0.010</td><td>0.110</td><td>0.055</td></lod<></td></lod<>	0.751	3.164	2.634	5.391	0.010	0.015	0.003	<lod< td=""><td>0.010</td><td>0.110</td><td>0.055</td></lod<>	0.010	0.110	0.055
210.1	36.858	6.207	1.712	1.693	1.788	2.424	4.416	0.014	0.014	<lod< td=""><td>0.003</td><td><lod< td=""><td>0.022</td><td>0.140</td></lod<></td></lod<>	0.003	<lod< td=""><td>0.022</td><td>0.140</td></lod<>	0.022	0.140
211.1	32.330	10.182	2.454	0.929	4.554	6.989	7.331	0.019	0.018	0.003	0.005	<lod< td=""><td>0.093</td><td><lod< td=""></lod<></td></lod<>	0.093	<lod< td=""></lod<>
212.1	24.020	6.736	1.666	1.668	3.083	4.938	4.229	0.015	0.043	0.003	0.003	0.011	0.115	0.080
213.1	21.218	6.532	<lod< td=""><td>1.773</td><td>2.929</td><td>7.891</td><td>12.431</td><td>0.044</td><td>0.070</td><td>0.005</td><td>0.010</td><td><lod< td=""><td>0.055</td><td>0.102</td></lod<></td></lod<>	1.773	2.929	7.891	12.431	0.044	0.070	0.005	0.010	<lod< td=""><td>0.055</td><td>0.102</td></lod<>	0.055	0.102
214.1	27.108	7.700	<lod< td=""><td>2.679</td><td>2.350</td><td>10.703</td><td>9.347</td><td>0.015</td><td>0.044</td><td>0.002</td><td>0.009</td><td><lod< td=""><td>0.030</td><td><lod< td=""></lod<></td></lod<></td></lod<>	2.679	2.350	10.703	9.347	0.015	0.044	0.002	0.009	<lod< td=""><td>0.030</td><td><lod< td=""></lod<></td></lod<>	0.030	<lod< td=""></lod<>
215.3	26.244	11.562	3.243	1.165	1.508	8.387	14.434	0.021	0.046	0.003	0.013	<lod< td=""><td>0.046</td><td>0.039</td></lod<>	0.046	0.039
216.4	35.084	5.832	<lod< td=""><td>1.319</td><td>1.642</td><td>8.027</td><td>7.864</td><td>0.009</td><td>0.027</td><td>0.002</td><td>0.006</td><td>0.009</td><td>0.019</td><td>0.048</td></lod<>	1.319	1.642	8.027	7.864	0.009	0.027	0.002	0.006	0.009	0.019	0.048
217.4	25.761	6.731	<lod< td=""><td>2.732</td><td>2.067</td><td>11.217</td><td>10.709</td><td>0.010</td><td>0.021</td><td><lod< td=""><td>0.009</td><td><lod< td=""><td>0.025</td><td>0.032</td></lod<></td></lod<></td></lod<>	2.732	2.067	11.217	10.709	0.010	0.021	<lod< td=""><td>0.009</td><td><lod< td=""><td>0.025</td><td>0.032</td></lod<></td></lod<>	0.009	<lod< td=""><td>0.025</td><td>0.032</td></lod<>	0.025	0.032
218.6	17.761	7.208	<lod< td=""><td>2.046</td><td>2.143</td><td>12.233</td><td>14.565</td><td>0.014</td><td>0.021</td><td>0.004</td><td>0.012</td><td>0.010</td><td>0.059</td><td>0.057</td></lod<>	2.046	2.143	12.233	14.565	0.014	0.021	0.004	0.012	0.010	0.059	0.057

Süg. (m)	SiO2	Al2O3	MgO	Са	K2O	S	Fe	Zn	Cu	Pb	Ni	Sn	Ва	Р
219.5	24.411	6.305	<lod< td=""><td>2.562</td><td>1.408</td><td>6.156</td><td>8.526</td><td>0.044</td><td>0.030</td><td><lod< td=""><td>0.009</td><td><lod< td=""><td><lod< td=""><td>0.145</td></lod<></td></lod<></td></lod<></td></lod<>	2.562	1.408	6.156	8.526	0.044	0.030	<lod< td=""><td>0.009</td><td><lod< td=""><td><lod< td=""><td>0.145</td></lod<></td></lod<></td></lod<>	0.009	<lod< td=""><td><lod< td=""><td>0.145</td></lod<></td></lod<>	<lod< td=""><td>0.145</td></lod<>	0.145
220.5	30.574	8.483	2.320	1.341	3.698	8.898	8.210	0.015	0.028	0.005	0.007	<lod< td=""><td>0.055</td><td>0.043</td></lod<>	0.055	0.043
221.5	10.103	4.516	2.669	2.750	1.060	12.030	9.837	0.012	0.048	<lod< td=""><td>0.008</td><td><lod< td=""><td>0.041</td><td>0.035</td></lod<></td></lod<>	0.008	<lod< td=""><td>0.041</td><td>0.035</td></lod<>	0.041	0.035
222.5	30.664	8.367	<lod< td=""><td>2.360</td><td>4.368</td><td>10.260</td><td>10.588</td><td>0.044</td><td>0.041</td><td>0.004</td><td>0.010</td><td>0.014</td><td>0.078</td><td>0.035</td></lod<>	2.360	4.368	10.260	10.588	0.044	0.041	0.004	0.010	0.014	0.078	0.035
223.5	20.205	6.502	1.922	1.158	2.251	6.990	10.090	0.012	0.021	0.004	0.008	<lod< td=""><td>0.035</td><td><lod< td=""></lod<></td></lod<>	0.035	<lod< td=""></lod<>
224.5	15.776	1.033	<lod< td=""><td>0.419</td><td>0.437</td><td>4.576</td><td>3.958</td><td>0.002</td><td>0.013</td><td><lod< td=""><td>0.004</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.419	0.437	4.576	3.958	0.002	0.013	<lod< td=""><td>0.004</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	0.004	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
225.7	28.734	9.563	2.228	0.940	3.722	8.202	9.799	0.006	0.032	0.005	0.010	<lod< td=""><td>0.074</td><td>0.049</td></lod<>	0.074	0.049
226.7	25.223	5.620	<lod< td=""><td>4.083</td><td>1.810</td><td>12.381</td><td>8.327</td><td>0.078</td><td>0.018</td><td>0.003</td><td>0.008</td><td><lod< td=""><td>0.047</td><td>0.047</td></lod<></td></lod<>	4.083	1.810	12.381	8.327	0.078	0.018	0.003	0.008	<lod< td=""><td>0.047</td><td>0.047</td></lod<>	0.047	0.047
227.7	29.961	7.459	<lod< td=""><td>2.975</td><td>2.818</td><td>9.069</td><td>8.123</td><td>0.007</td><td>0.033</td><td>0.003</td><td>0.007</td><td><lod< td=""><td>0.051</td><td>0.144</td></lod<></td></lod<>	2.975	2.818	9.069	8.123	0.007	0.033	0.003	0.007	<lod< td=""><td>0.051</td><td>0.144</td></lod<>	0.051	0.144
228.7	21.736	6.310	1.922	1.562	1.346	7.911	8.692	0.009	0.004	<lod< td=""><td>0.012</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	0.012	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
229.7	36.251	5.268	<lod< td=""><td>0.647</td><td>0.830</td><td>9.561</td><td>10.934</td><td>0.022</td><td>0.066</td><td>0.003</td><td>0.010</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	0.647	0.830	9.561	10.934	0.022	0.066	0.003	0.010	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
230.7	14.302	4.295	<lod< td=""><td>1.315</td><td>0.984</td><td>5.813</td><td>7.551</td><td>0.016</td><td>0.025</td><td><lod< td=""><td>0.005</td><td><lod< td=""><td>0.038</td><td>0.037</td></lod<></td></lod<></td></lod<>	1.315	0.984	5.813	7.551	0.016	0.025	<lod< td=""><td>0.005</td><td><lod< td=""><td>0.038</td><td>0.037</td></lod<></td></lod<>	0.005	<lod< td=""><td>0.038</td><td>0.037</td></lod<>	0.038	0.037
231.7	24.548	9.621	3.968	1.756	1.967	6.636	8.559	0.042	0.082	0.003	0.007	<lod< td=""><td>0.061</td><td>0.026</td></lod<>	0.061	0.026
232.7	5.378	1.478	<lod< td=""><td>0.563</td><td>0.724</td><td>3.168</td><td>2.851</td><td>0.005</td><td>0.029</td><td>0.004</td><td>0.003</td><td><lod< td=""><td>0.077</td><td><lod< td=""></lod<></td></lod<></td></lod<>	0.563	0.724	3.168	2.851	0.005	0.029	0.004	0.003	<lod< td=""><td>0.077</td><td><lod< td=""></lod<></td></lod<>	0.077	<lod< td=""></lod<>
233.8	37.965	7.879	<lod< td=""><td>0.451</td><td>3.501</td><td>2.389</td><td>1.802</td><td>0.013</td><td>0.006</td><td>0.005</td><td>0.002</td><td>0.011</td><td>0.067</td><td>0.024</td></lod<>	0.451	3.501	2.389	1.802	0.013	0.006	0.005	0.002	0.011	0.067	0.024
234.6	14.105	3.907	<lod< td=""><td>0.654</td><td>1.251</td><td>4.730</td><td>9.404</td><td>0.024</td><td>0.050</td><td>0.003</td><td>0.009</td><td><lod< td=""><td>0.064</td><td><lod< td=""></lod<></td></lod<></td></lod<>	0.654	1.251	4.730	9.404	0.024	0.050	0.003	0.009	<lod< td=""><td>0.064</td><td><lod< td=""></lod<></td></lod<>	0.064	<lod< td=""></lod<>
235.4	33.001	11.143	<lod< td=""><td>1.366</td><td>3.809</td><td>4.615</td><td>6.044</td><td>0.062</td><td>0.024</td><td>0.004</td><td>0.006</td><td><lod< td=""><td>0.063</td><td>0.024</td></lod<></td></lod<>	1.366	3.809	4.615	6.044	0.062	0.024	0.004	0.006	<lod< td=""><td>0.063</td><td>0.024</td></lod<>	0.063	0.024
236.4	38.636	8.479	<lod< td=""><td>1.086</td><td>3.421</td><td>6.283</td><td>4.599</td><td>0.010</td><td>0.006</td><td>0.003</td><td>0.003</td><td>0.011</td><td>0.042</td><td>0.038</td></lod<>	1.086	3.421	6.283	4.599	0.010	0.006	0.003	0.003	0.011	0.042	0.038
237.4	28.134	6.981	<lod< td=""><td>2.194</td><td>1.856</td><td>12.633</td><td>14.633</td><td>0.009</td><td>0.050</td><td>0.003</td><td>0.015</td><td><lod< td=""><td>0.031</td><td><lod< td=""></lod<></td></lod<></td></lod<>	2.194	1.856	12.633	14.633	0.009	0.050	0.003	0.015	<lod< td=""><td>0.031</td><td><lod< td=""></lod<></td></lod<>	0.031	<lod< td=""></lod<>
238.3	22.252	6.137	<lod< td=""><td>1.630</td><td>2.599</td><td>8.086</td><td>12.534</td><td>0.044</td><td>0.073</td><td>0.004</td><td>0.014</td><td><lod< td=""><td>0.059</td><td>0.027</td></lod<></td></lod<>	1.630	2.599	8.086	12.534	0.044	0.073	0.004	0.014	<lod< td=""><td>0.059</td><td>0.027</td></lod<>	0.059	0.027
239.2	31.294	10.202	<lod< td=""><td>1.554</td><td>4.914</td><td>6.551</td><td>10.578</td><td>0.028</td><td>0.020</td><td>0.005</td><td>0.011</td><td><lod< td=""><td>0.116</td><td><lod< td=""></lod<></td></lod<></td></lod<>	1.554	4.914	6.551	10.578	0.028	0.020	0.005	0.011	<lod< td=""><td>0.116</td><td><lod< td=""></lod<></td></lod<>	0.116	<lod< td=""></lod<>
240.2	49.166	12.201	<lod< td=""><td>0.494</td><td>7.606</td><td>1.406</td><td>0.288</td><td>0.003</td><td>0.002</td><td>0.006</td><td>0.002</td><td><lod< td=""><td>0.145</td><td>0.044</td></lod<></td></lod<>	0.494	7.606	1.406	0.288	0.003	0.002	0.006	0.002	<lod< td=""><td>0.145</td><td>0.044</td></lod<>	0.145	0.044
241.2	21.444	3.252	<lod< td=""><td>2.302</td><td>1.134</td><td>8.010</td><td>5.204</td><td>0.004</td><td>0.027</td><td>0.003</td><td>0.006</td><td>0.011</td><td>0.045</td><td>0.027</td></lod<>	2.302	1.134	8.010	5.204	0.004	0.027	0.003	0.006	0.011	0.045	0.027
242.2	43.489	9.855	<lod< td=""><td>0.654</td><td>6.158</td><td>4.069</td><td>3.227</td><td>0.009</td><td>0.013</td><td>0.004</td><td>0.003</td><td><lod< td=""><td>0.134</td><td>0.078</td></lod<></td></lod<>	0.654	6.158	4.069	3.227	0.009	0.013	0.004	0.003	<lod< td=""><td>0.134</td><td>0.078</td></lod<>	0.134	0.078
243.2	35.578	10.646	2.710	1.441	3.910	2.769	3.515	0.013	0.019	0.004	0.003	<lod< td=""><td>0.092</td><td>0.029</td></lod<>	0.092	0.029
244.2	50.226	10.344	<lod< td=""><td>0.486</td><td>4.846</td><td>2.013</td><td>3.851</td><td>0.013</td><td>0.018</td><td>0.003</td><td>0.002</td><td>0.013</td><td>0.076</td><td>0.112</td></lod<>	0.486	4.846	2.013	3.851	0.013	0.018	0.003	0.002	0.013	0.076	0.112
245.2	40.212	10.026	<lod< td=""><td>0.582</td><td>3.009</td><td>3.132</td><td>5.123</td><td>0.021</td><td>0.015</td><td>0.003</td><td>0.006</td><td><lod< td=""><td>0.066</td><td>0.047</td></lod<></td></lod<>	0.582	3.009	3.132	5.123	0.021	0.015	0.003	0.006	<lod< td=""><td>0.066</td><td>0.047</td></lod<>	0.066	0.047
246.2	19.515	5.183	<lod< td=""><td>2.193</td><td>1.129</td><td>5.978</td><td>3.429</td><td>0.011</td><td>0.018</td><td><lod< td=""><td>0.003</td><td><lod< td=""><td>0.045</td><td>0.021</td></lod<></td></lod<></td></lod<>	2.193	1.129	5.978	3.429	0.011	0.018	<lod< td=""><td>0.003</td><td><lod< td=""><td>0.045</td><td>0.021</td></lod<></td></lod<>	0.003	<lod< td=""><td>0.045</td><td>0.021</td></lod<>	0.045	0.021

Süg. (m)	SiO2	Al2O3	MgO	Са	K2O	S	Fe	Zn	Cu	Pb	Ni	Sn	Ва	Р
247.2	30.714	8.259	<lod< td=""><td>2.250</td><td>4.088</td><td>3.082</td><td>4.238</td><td>0.190</td><td>0.022</td><td>0.004</td><td>0.004</td><td>0.013</td><td>0.094</td><td>0.107</td></lod<>	2.250	4.088	3.082	4.238	0.190	0.022	0.004	0.004	0.013	0.094	0.107
248.2	33.640	5.631	3.296	1.401	2.234	1.952	4.493	0.027	0.016	<lod< td=""><td>0.003</td><td><lod< td=""><td><lod< td=""><td>0.055</td></lod<></td></lod<></td></lod<>	0.003	<lod< td=""><td><lod< td=""><td>0.055</td></lod<></td></lod<>	<lod< td=""><td>0.055</td></lod<>	0.055
249.2	42.455	8.281	<lod< td=""><td>1.287</td><td>5.445</td><td>1.282</td><td>2.785</td><td>0.006</td><td>0.019</td><td>0.004</td><td>0.003</td><td><lod< td=""><td>0.107</td><td>0.078</td></lod<></td></lod<>	1.287	5.445	1.282	2.785	0.006	0.019	0.004	0.003	<lod< td=""><td>0.107</td><td>0.078</td></lod<>	0.107	0.078
250.2	18.828	5.927	<lod< td=""><td>2.197</td><td>4.431</td><td>8.848</td><td>15.276</td><td>0.006</td><td>0.033</td><td>0.006</td><td>0.015</td><td><lod< td=""><td>0.111</td><td>0.108</td></lod<></td></lod<>	2.197	4.431	8.848	15.276	0.006	0.033	0.006	0.015	<lod< td=""><td>0.111</td><td>0.108</td></lod<>	0.111	0.108
251.2	11.144	4.097	<lod< td=""><td>9.143</td><td>1.428</td><td>15.161</td><td>7.679</td><td>0.009</td><td>0.020</td><td>0.002</td><td>0.006</td><td><lod< td=""><td>0.096</td><td>0.109</td></lod<></td></lod<>	9.143	1.428	15.161	7.679	0.009	0.020	0.002	0.006	<lod< td=""><td>0.096</td><td>0.109</td></lod<>	0.096	0.109
252.2	6.922	2.733	1.702	0.705	1.071	8.217	8.811	0.011	0.009	<lod< td=""><td>0.008</td><td><lod< td=""><td>0.126</td><td><lod< td=""></lod<></td></lod<></td></lod<>	0.008	<lod< td=""><td>0.126</td><td><lod< td=""></lod<></td></lod<>	0.126	<lod< td=""></lod<>
253.2	5.655	3.265	<lod< td=""><td>0.170</td><td>0.906</td><td>3.487</td><td>6.036</td><td>0.016</td><td>0.019</td><td>0.003</td><td>0.006</td><td><lod< td=""><td>0.189</td><td><lod< td=""></lod<></td></lod<></td></lod<>	0.170	0.906	3.487	6.036	0.016	0.019	0.003	0.006	<lod< td=""><td>0.189</td><td><lod< td=""></lod<></td></lod<>	0.189	<lod< td=""></lod<>
254.2	14.310	5.520	1.760	2.402	2.345	7.277	8.756	0.022	0.026	<lod< td=""><td>0.008</td><td><lod< td=""><td>0.105</td><td>0.031</td></lod<></td></lod<>	0.008	<lod< td=""><td>0.105</td><td>0.031</td></lod<>	0.105	0.031
255.2	19.071	4.887	2.541	3.482	2.056	4.755	7.439	0.011	0.021	0.002	0.007	0.012	0.072	0.048
256.2	29.070	4.689	<lod< td=""><td>1.559</td><td>1.929</td><td>4.079</td><td>1.177</td><td>0.006</td><td>0.005</td><td><lod< td=""><td>0.003</td><td><lod< td=""><td>0.046</td><td>0.079</td></lod<></td></lod<></td></lod<>	1.559	1.929	4.079	1.177	0.006	0.005	<lod< td=""><td>0.003</td><td><lod< td=""><td>0.046</td><td>0.079</td></lod<></td></lod<>	0.003	<lod< td=""><td>0.046</td><td>0.079</td></lod<>	0.046	0.079
257.2	6.368	1.886	<lod< td=""><td>10.062</td><td>0.822</td><td>13.383</td><td>4.977</td><td>0.036</td><td>0.034</td><td><lod< td=""><td>0.006</td><td><lod< td=""><td>0.068</td><td>0.091</td></lod<></td></lod<></td></lod<>	10.062	0.822	13.383	4.977	0.036	0.034	<lod< td=""><td>0.006</td><td><lod< td=""><td>0.068</td><td>0.091</td></lod<></td></lod<>	0.006	<lod< td=""><td>0.068</td><td>0.091</td></lod<>	0.068	0.091
258.4	29.218	3.587	<lod< td=""><td>2.515</td><td>0.618</td><td>6.465</td><td>1.473</td><td>0.012</td><td>0.006</td><td><lod< td=""><td>0.004</td><td>0.016</td><td><lod< td=""><td>0.055</td></lod<></td></lod<></td></lod<>	2.515	0.618	6.465	1.473	0.012	0.006	<lod< td=""><td>0.004</td><td>0.016</td><td><lod< td=""><td>0.055</td></lod<></td></lod<>	0.004	0.016	<lod< td=""><td>0.055</td></lod<>	0.055
259.2	15.947	5.096	<lod< td=""><td>6.964</td><td>1.697</td><td>13.404</td><td>7.587</td><td>0.020</td><td>0.019</td><td><lod< td=""><td>0.006</td><td>0.012</td><td>0.043</td><td>0.111</td></lod<></td></lod<>	6.964	1.697	13.404	7.587	0.020	0.019	<lod< td=""><td>0.006</td><td>0.012</td><td>0.043</td><td>0.111</td></lod<>	0.006	0.012	0.043	0.111
260.1	26.080	7.665	2.176	3.995	2.254	4.636	7.791	0.018	0.030	<lod< td=""><td>0.007</td><td>0.014</td><td>0.040</td><td>0.091</td></lod<>	0.007	0.014	0.040	0.091
261.1	36.727	6.430	2.203	2.271	1.628	4.800	4.528	0.025	0.011	<lod< td=""><td>0.005</td><td><lod< td=""><td>0.036</td><td><lod< td=""></lod<></td></lod<></td></lod<>	0.005	<lod< td=""><td>0.036</td><td><lod< td=""></lod<></td></lod<>	0.036	<lod< td=""></lod<>
262.3	11.436	2.708	1.309	1.309	0.471	1.334	2.019	0.038	0.011	<lod< td=""><td>0.003</td><td>0.008</td><td>0.029</td><td>0.021</td></lod<>	0.003	0.008	0.029	0.021
263.1	12.057	4.269	<lod< td=""><td>1.201</td><td>1.587</td><td>3.867</td><td>3.207</td><td>0.010</td><td>0.015</td><td>0.004</td><td>0.003</td><td><lod< td=""><td>0.128</td><td><lod< td=""></lod<></td></lod<></td></lod<>	1.201	1.587	3.867	3.207	0.010	0.015	0.004	0.003	<lod< td=""><td>0.128</td><td><lod< td=""></lod<></td></lod<>	0.128	<lod< td=""></lod<>
264.2	35.638	6.806	<lod< td=""><td>1.474</td><td>2.430</td><td>1.886</td><td>2.665</td><td>0.016</td><td>0.017</td><td>0.002</td><td>0.002</td><td><lod< td=""><td>0.056</td><td>0.029</td></lod<></td></lod<>	1.474	2.430	1.886	2.665	0.016	0.017	0.002	0.002	<lod< td=""><td>0.056</td><td>0.029</td></lod<>	0.056	0.029
265.1	37.462	3.955	<lod< td=""><td>1.317</td><td>0.370</td><td>1.174</td><td>2.229</td><td>0.005</td><td>0.007</td><td>0.002</td><td>0.002</td><td><lod< td=""><td><lod< td=""><td>0.037</td></lod<></td></lod<></td></lod<>	1.317	0.370	1.174	2.229	0.005	0.007	0.002	0.002	<lod< td=""><td><lod< td=""><td>0.037</td></lod<></td></lod<>	<lod< td=""><td>0.037</td></lod<>	0.037
266.3	18.183	5.621	<lod< td=""><td>0.963</td><td>3.065</td><td>3.498</td><td>5.942</td><td>0.012</td><td>0.026</td><td>0.008</td><td>0.007</td><td><lod< td=""><td>0.120</td><td><lod< td=""></lod<></td></lod<></td></lod<>	0.963	3.065	3.498	5.942	0.012	0.026	0.008	0.007	<lod< td=""><td>0.120</td><td><lod< td=""></lod<></td></lod<>	0.120	<lod< td=""></lod<>
267.3	19.864	6.922	1.603	2.228	2.740	3.630	2.924	0.013	0.012	0.003	0.004	0.012	0.231	0.050
268.3	63.245	1.605	<lod< td=""><td>0.487</td><td>0.288</td><td>0.296</td><td>0.287</td><td>0.002</td><td>0.002</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.072</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.487	0.288	0.296	0.287	0.002	0.002	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.072</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.072</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.072</td></lod<></td></lod<>	<lod< td=""><td>0.072</td></lod<>	0.072
269.3	34.560	0.980	<lod< td=""><td>1.380</td><td>0.155</td><td>1.124</td><td>2.688</td><td>0.040</td><td>0.009</td><td><lod< td=""><td>0.002</td><td>0.014</td><td><lod< td=""><td>0.039</td></lod<></td></lod<></td></lod<>	1.380	0.155	1.124	2.688	0.040	0.009	<lod< td=""><td>0.002</td><td>0.014</td><td><lod< td=""><td>0.039</td></lod<></td></lod<>	0.002	0.014	<lod< td=""><td>0.039</td></lod<>	0.039
270.3	73.285	1.456	<lod< td=""><td>0.183</td><td>0.282</td><td>0.463</td><td>0.649</td><td>0.002</td><td>0.001</td><td><lod< td=""><td>0.002</td><td><lod< td=""><td><lod< td=""><td>0.018</td></lod<></td></lod<></td></lod<></td></lod<>	0.183	0.282	0.463	0.649	0.002	0.001	<lod< td=""><td>0.002</td><td><lod< td=""><td><lod< td=""><td>0.018</td></lod<></td></lod<></td></lod<>	0.002	<lod< td=""><td><lod< td=""><td>0.018</td></lod<></td></lod<>	<lod< td=""><td>0.018</td></lod<>	0.018
271.3	37.051	0.725	<lod< td=""><td>0.492</td><td>0.136</td><td>0.368</td><td>0.703</td><td><lod< td=""><td>0.003</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.326</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.492	0.136	0.368	0.703	<lod< td=""><td>0.003</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.326</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.003	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.326</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.326</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.326</td></lod<></td></lod<>	<lod< td=""><td>0.326</td></lod<>	0.326
272.3	68.851	0.620	<lod< td=""><td>0.326</td><td>0.137</td><td>0.397</td><td>0.893</td><td>0.001</td><td>0.002</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.021</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.326	0.137	0.397	0.893	0.001	0.002	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.021</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.021</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.021</td></lod<></td></lod<>	<lod< td=""><td>0.021</td></lod<>	0.021
273.3	64.489	1.155	<lod< td=""><td>0.490</td><td>0.245</td><td>0.569</td><td>1.488</td><td>0.001</td><td>0.002</td><td><lod< td=""><td><lod< td=""><td>0.016</td><td><lod< td=""><td>0.052</td></lod<></td></lod<></td></lod<></td></lod<>	0.490	0.245	0.569	1.488	0.001	0.002	<lod< td=""><td><lod< td=""><td>0.016</td><td><lod< td=""><td>0.052</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.016</td><td><lod< td=""><td>0.052</td></lod<></td></lod<>	0.016	<lod< td=""><td>0.052</td></lod<>	0.052
274.3	59.382	1.340	<lod< td=""><td>0.980</td><td>0.248</td><td>1.657</td><td>1.498</td><td>0.001</td><td>0.003</td><td><lod< td=""><td><lod< td=""><td>0.015</td><td><lod< td=""><td>0.054</td></lod<></td></lod<></td></lod<></td></lod<>	0.980	0.248	1.657	1.498	0.001	0.003	<lod< td=""><td><lod< td=""><td>0.015</td><td><lod< td=""><td>0.054</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.015</td><td><lod< td=""><td>0.054</td></lod<></td></lod<>	0.015	<lod< td=""><td>0.054</td></lod<>	0.054

Süg. (m)	SiO2	Al2O3	MgO	Са	К2О	S	Fe	Zn	Cu	Pb	Ni	Sn	Ва	Р
275.3	71.466	<lod< td=""><td><lod< td=""><td>0.307</td><td>0.102</td><td>0.337</td><td>0.461</td><td><lod< td=""><td>0.001</td><td><lod< td=""><td><lod< td=""><td>0.014</td><td><lod< td=""><td>0.017</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.307</td><td>0.102</td><td>0.337</td><td>0.461</td><td><lod< td=""><td>0.001</td><td><lod< td=""><td><lod< td=""><td>0.014</td><td><lod< td=""><td>0.017</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.307	0.102	0.337	0.461	<lod< td=""><td>0.001</td><td><lod< td=""><td><lod< td=""><td>0.014</td><td><lod< td=""><td>0.017</td></lod<></td></lod<></td></lod<></td></lod<>	0.001	<lod< td=""><td><lod< td=""><td>0.014</td><td><lod< td=""><td>0.017</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.014</td><td><lod< td=""><td>0.017</td></lod<></td></lod<>	0.014	<lod< td=""><td>0.017</td></lod<>	0.017
276.2	62.354	2.879	<lod< td=""><td>0.704</td><td>0.456</td><td>0.358</td><td>0.822</td><td>0.001</td><td>0.001</td><td><lod< td=""><td><lod< td=""><td>0.011</td><td><lod< td=""><td>0.130</td></lod<></td></lod<></td></lod<></td></lod<>	0.704	0.456	0.358	0.822	0.001	0.001	<lod< td=""><td><lod< td=""><td>0.011</td><td><lod< td=""><td>0.130</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.011</td><td><lod< td=""><td>0.130</td></lod<></td></lod<>	0.011	<lod< td=""><td>0.130</td></lod<>	0.130
277.2	38.686	0.611	<lod< td=""><td>0.265</td><td>0.076</td><td>0.467</td><td>1.426</td><td>0.001</td><td>0.002</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.017</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.265	0.076	0.467	1.426	0.001	0.002	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.017</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.017</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.017</td></lod<></td></lod<>	<lod< td=""><td>0.017</td></lod<>	0.017
278.2	57.000	2.191	<lod< td=""><td>0.438</td><td>0.356</td><td>1.647</td><td>4.674</td><td>0.003</td><td>0.006</td><td><lod< td=""><td>0.004</td><td>0.011</td><td><lod< td=""><td>0.054</td></lod<></td></lod<></td></lod<>	0.438	0.356	1.647	4.674	0.003	0.006	<lod< td=""><td>0.004</td><td>0.011</td><td><lod< td=""><td>0.054</td></lod<></td></lod<>	0.004	0.011	<lod< td=""><td>0.054</td></lod<>	0.054
279.2	58.899	<lod< td=""><td><lod< td=""><td>0.210</td><td>0.069</td><td>0.196</td><td>0.620</td><td><lod< td=""><td>0.002</td><td><lod< td=""><td>0.001</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.210</td><td>0.069</td><td>0.196</td><td>0.620</td><td><lod< td=""><td>0.002</td><td><lod< td=""><td>0.001</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.210	0.069	0.196	0.620	<lod< td=""><td>0.002</td><td><lod< td=""><td>0.001</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.002	<lod< td=""><td>0.001</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	0.001	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
280.2	49.092	0.789	<lod< td=""><td>0.141</td><td>0.108</td><td>0.330</td><td>1.596</td><td>0.001</td><td>0.002</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.034</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.141	0.108	0.330	1.596	0.001	0.002	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.034</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.034</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.034</td></lod<></td></lod<>	<lod< td=""><td>0.034</td></lod<>	0.034
281.2	26.197	0.538	<lod< td=""><td>0.103</td><td>0.048</td><td>0.684</td><td>0.625</td><td>0.001</td><td>0.002</td><td><lod< td=""><td>0.002</td><td>0.011</td><td><lod< td=""><td>0.016</td></lod<></td></lod<></td></lod<>	0.103	0.048	0.684	0.625	0.001	0.002	<lod< td=""><td>0.002</td><td>0.011</td><td><lod< td=""><td>0.016</td></lod<></td></lod<>	0.002	0.011	<lod< td=""><td>0.016</td></lod<>	0.016
282.2	66.628	0.950	<lod< td=""><td>0.160</td><td>0.115</td><td>1.110</td><td>2.545</td><td>0.003</td><td>0.001</td><td>0.002</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.021</td></lod<></td></lod<></td></lod<></td></lod<>	0.160	0.115	1.110	2.545	0.003	0.001	0.002	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.021</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.021</td></lod<></td></lod<>	<lod< td=""><td>0.021</td></lod<>	0.021
283.2	65.820	0.511	<lod< td=""><td>0.177</td><td>0.220</td><td>0.583</td><td>0.925</td><td><lod< td=""><td>0.002</td><td><lod< td=""><td><lod< td=""><td>0.014</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.177	0.220	0.583	0.925	<lod< td=""><td>0.002</td><td><lod< td=""><td><lod< td=""><td>0.014</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.002	<lod< td=""><td><lod< td=""><td>0.014</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.014</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	0.014	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
284.2	80.786	<lod< td=""><td><lod< td=""><td>0.129</td><td>0.110</td><td>0.359</td><td>1.281</td><td><lod< td=""><td>0.009</td><td><lod< td=""><td>0.004</td><td>0.010</td><td><lod< td=""><td>0.018</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.129</td><td>0.110</td><td>0.359</td><td>1.281</td><td><lod< td=""><td>0.009</td><td><lod< td=""><td>0.004</td><td>0.010</td><td><lod< td=""><td>0.018</td></lod<></td></lod<></td></lod<></td></lod<>	0.129	0.110	0.359	1.281	<lod< td=""><td>0.009</td><td><lod< td=""><td>0.004</td><td>0.010</td><td><lod< td=""><td>0.018</td></lod<></td></lod<></td></lod<>	0.009	<lod< td=""><td>0.004</td><td>0.010</td><td><lod< td=""><td>0.018</td></lod<></td></lod<>	0.004	0.010	<lod< td=""><td>0.018</td></lod<>	0.018
285.2	63.400	0.763	<lod< td=""><td>0.128</td><td>0.103</td><td>0.167</td><td>0.366</td><td><lod< td=""><td>0.001</td><td><lod< td=""><td><lod< td=""><td>0.014</td><td><lod< td=""><td>0.017</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.128	0.103	0.167	0.366	<lod< td=""><td>0.001</td><td><lod< td=""><td><lod< td=""><td>0.014</td><td><lod< td=""><td>0.017</td></lod<></td></lod<></td></lod<></td></lod<>	0.001	<lod< td=""><td><lod< td=""><td>0.014</td><td><lod< td=""><td>0.017</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.014</td><td><lod< td=""><td>0.017</td></lod<></td></lod<>	0.014	<lod< td=""><td>0.017</td></lod<>	0.017
286.3	65.464	0.851	<lod< td=""><td>0.408</td><td>0.186</td><td>0.281</td><td>1.097</td><td>0.001</td><td>0.002</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.084</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.408	0.186	0.281	1.097	0.001	0.002	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.084</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.084</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.084</td></lod<></td></lod<>	<lod< td=""><td>0.084</td></lod<>	0.084
287.3	2.816	1.404	<lod< td=""><td>15.856</td><td>0.148</td><td>1.834</td><td>3.976</td><td>0.002</td><td>0.009</td><td><lod< td=""><td>0.002</td><td><lod< td=""><td>0.162</td><td>0.202</td></lod<></td></lod<></td></lod<>	15.856	0.148	1.834	3.976	0.002	0.009	<lod< td=""><td>0.002</td><td><lod< td=""><td>0.162</td><td>0.202</td></lod<></td></lod<>	0.002	<lod< td=""><td>0.162</td><td>0.202</td></lod<>	0.162	0.202
288.3	78.552	0.974	<lod< td=""><td>0.301</td><td>0.230</td><td>0.617</td><td>0.946</td><td>0.001</td><td>0.001</td><td><lod< td=""><td><lod< td=""><td>0.018</td><td><lod< td=""><td>0.040</td></lod<></td></lod<></td></lod<></td></lod<>	0.301	0.230	0.617	0.946	0.001	0.001	<lod< td=""><td><lod< td=""><td>0.018</td><td><lod< td=""><td>0.040</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.018</td><td><lod< td=""><td>0.040</td></lod<></td></lod<>	0.018	<lod< td=""><td>0.040</td></lod<>	0.040
289.3	72.122	2.564	<lod< td=""><td>0.546</td><td>0.265</td><td>0.377</td><td>0.803</td><td><lod< td=""><td>0.001</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.028</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.546	0.265	0.377	0.803	<lod< td=""><td>0.001</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.028</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.001	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.028</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.028</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.028</td></lod<></td></lod<>	<lod< td=""><td>0.028</td></lod<>	0.028
290.2	34.229	3.675	4.217	9.351	0.445	1.301	4.781	0.007	0.004	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.106</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.106</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.106</td></lod<></td></lod<>	<lod< td=""><td>0.106</td></lod<>	0.106
291.2	38.923	3.953	6.257	9.823	1.044	0.283	5.846	0.012	0.002	0.004	<lod< td=""><td>0.009</td><td>0.630</td><td>0.089</td></lod<>	0.009	0.630	0.089
292.5	16.455	1.991	<lod< td=""><td>22.046</td><td>0.287</td><td>2.075</td><td>8.169</td><td>0.002</td><td>0.038</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.155</td><td>0.217</td></lod<></td></lod<></td></lod<></td></lod<>	22.046	0.287	2.075	8.169	0.002	0.038	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.155</td><td>0.217</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.155</td><td>0.217</td></lod<></td></lod<>	<lod< td=""><td>0.155</td><td>0.217</td></lod<>	0.155	0.217
293.5	40.349	5.566	<lod< td=""><td>1.347</td><td>1.072</td><td>1.337</td><td>2.742</td><td>0.008</td><td>0.009</td><td><lod< td=""><td>0.003</td><td>0.013</td><td><lod< td=""><td>0.082</td></lod<></td></lod<></td></lod<>	1.347	1.072	1.337	2.742	0.008	0.009	<lod< td=""><td>0.003</td><td>0.013</td><td><lod< td=""><td>0.082</td></lod<></td></lod<>	0.003	0.013	<lod< td=""><td>0.082</td></lod<>	0.082
295.1	35.143	2.097	6.340	11.028	0.218	2.126	7.807	0.009	0.003	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.092</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.092</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.092</td></lod<></td></lod<>	<lod< td=""><td>0.092</td></lod<>	0.092
296.1	27.405	5.575	<lod< td=""><td>1.916</td><td>1.291</td><td>8.092</td><td>21.158</td><td>0.008</td><td>0.032</td><td>0.002</td><td>0.010</td><td><lod< td=""><td><lod< td=""><td>0.030</td></lod<></td></lod<></td></lod<>	1.916	1.291	8.092	21.158	0.008	0.032	0.002	0.010	<lod< td=""><td><lod< td=""><td>0.030</td></lod<></td></lod<>	<lod< td=""><td>0.030</td></lod<>	0.030
297.1	69.275	1.597	<lod< td=""><td>0.338</td><td>0.273</td><td>0.290</td><td>0.467</td><td><lod< td=""><td>0.002</td><td><lod< td=""><td><lod< td=""><td>0.014</td><td><lod< td=""><td>0.049</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.338	0.273	0.290	0.467	<lod< td=""><td>0.002</td><td><lod< td=""><td><lod< td=""><td>0.014</td><td><lod< td=""><td>0.049</td></lod<></td></lod<></td></lod<></td></lod<>	0.002	<lod< td=""><td><lod< td=""><td>0.014</td><td><lod< td=""><td>0.049</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.014</td><td><lod< td=""><td>0.049</td></lod<></td></lod<>	0.014	<lod< td=""><td>0.049</td></lod<>	0.049
298.8	62.852	1.665	<lod< td=""><td>0.540</td><td>0.286</td><td>0.401</td><td>1.467</td><td>0.001</td><td>0.002</td><td><lod< td=""><td><lod< td=""><td>0.013</td><td><lod< td=""><td>0.240</td></lod<></td></lod<></td></lod<></td></lod<>	0.540	0.286	0.401	1.467	0.001	0.002	<lod< td=""><td><lod< td=""><td>0.013</td><td><lod< td=""><td>0.240</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.013</td><td><lod< td=""><td>0.240</td></lod<></td></lod<>	0.013	<lod< td=""><td>0.240</td></lod<>	0.240
299.6	69.789	1.025	<lod< td=""><td>0.213</td><td>0.119</td><td>0.338</td><td>1.697</td><td><lod< td=""><td>0.002</td><td><lod< td=""><td><lod< td=""><td>0.012</td><td><lod< td=""><td>0.020</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.213	0.119	0.338	1.697	<lod< td=""><td>0.002</td><td><lod< td=""><td><lod< td=""><td>0.012</td><td><lod< td=""><td>0.020</td></lod<></td></lod<></td></lod<></td></lod<>	0.002	<lod< td=""><td><lod< td=""><td>0.012</td><td><lod< td=""><td>0.020</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.012</td><td><lod< td=""><td>0.020</td></lod<></td></lod<>	0.012	<lod< td=""><td>0.020</td></lod<>	0.020
300.6	48.154	0.670	<lod< td=""><td>0.899</td><td>0.103</td><td>0.159</td><td>1.910</td><td><lod< td=""><td>0.001</td><td><lod< td=""><td><lod< td=""><td>0.011</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.899	0.103	0.159	1.910	<lod< td=""><td>0.001</td><td><lod< td=""><td><lod< td=""><td>0.011</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.001	<lod< td=""><td><lod< td=""><td>0.011</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.011</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	0.011	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
301.6	74.545	1.954	<lod< td=""><td>0.497</td><td>0.216</td><td>0.276</td><td>0.672</td><td><lod< td=""><td>0.001</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.025</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.497	0.216	0.276	0.672	<lod< td=""><td>0.001</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.025</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.001	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.025</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.025</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.025</td></lod<></td></lod<>	<lod< td=""><td>0.025</td></lod<>	0.025
302.6	55.865	1.144	<lod< td=""><td>0.809</td><td>0.129</td><td>0.223</td><td>4.889</td><td>0.002</td><td>0.002</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.128</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.809	0.129	0.223	4.889	0.002	0.002	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.128</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.128</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.128</td></lod<></td></lod<>	<lod< td=""><td>0.128</td></lod<>	0.128
303.6	66.815	1.427	<lod< td=""><td>0.294</td><td>0.248</td><td>0.347</td><td>4.005</td><td>0.002</td><td>0.001</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.024</td><td>0.038</td></lod<></td></lod<></td></lod<></td></lod<>	0.294	0.248	0.347	4.005	0.002	0.001	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.024</td><td>0.038</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.024</td><td>0.038</td></lod<></td></lod<>	<lod< td=""><td>0.024</td><td>0.038</td></lod<>	0.024	0.038

Süg. (m)	SiO2	Al2O3	MgO	Са	К2О	S	Fe	Zn	Cu	Pb	Ni	Sn	Ва	Р
304.5	59.427	4.333	<lod< td=""><td>1.352</td><td>0.523</td><td>2.974</td><td>4.118</td><td>0.002</td><td>0.005</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.033</td><td>0.119</td></lod<></td></lod<></td></lod<></td></lod<>	1.352	0.523	2.974	4.118	0.002	0.005	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.033</td><td>0.119</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.033</td><td>0.119</td></lod<></td></lod<>	<lod< td=""><td>0.033</td><td>0.119</td></lod<>	0.033	0.119
305.5	68.426	2.231	<lod< td=""><td>0.794</td><td>0.322</td><td>0.869</td><td>1.156</td><td>0.001</td><td>0.002</td><td><lod< td=""><td><lod< td=""><td>0.012</td><td><lod< td=""><td>0.143</td></lod<></td></lod<></td></lod<></td></lod<>	0.794	0.322	0.869	1.156	0.001	0.002	<lod< td=""><td><lod< td=""><td>0.012</td><td><lod< td=""><td>0.143</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.012</td><td><lod< td=""><td>0.143</td></lod<></td></lod<>	0.012	<lod< td=""><td>0.143</td></lod<>	0.143
306.5	69.646	1.707	<lod< td=""><td>0.980</td><td>0.290</td><td>0.687</td><td>0.998</td><td>0.002</td><td>0.001</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.014</td><td>0.038</td></lod<></td></lod<></td></lod<></td></lod<>	0.980	0.290	0.687	0.998	0.002	0.001	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.014</td><td>0.038</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.014</td><td>0.038</td></lod<></td></lod<>	<lod< td=""><td>0.014</td><td>0.038</td></lod<>	0.014	0.038
307.5	29.236	2.048	3.860	10.158	0.232	3.950	11.604	0.016	0.011	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.422</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.422</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.422</td></lod<></td></lod<>	<lod< td=""><td>0.422</td></lod<>	0.422
308.5	55.311	2.552	<lod< td=""><td>0.603</td><td>0.353</td><td>0.458</td><td>1.255</td><td>0.002</td><td>0.002</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.075</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.603	0.353	0.458	1.255	0.002	0.002	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.075</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.075</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.075</td></lod<></td></lod<>	<lod< td=""><td>0.075</td></lod<>	0.075
309.5	61.468	6.056	<lod< td=""><td>0.899</td><td>0.739</td><td>1.255</td><td>1.467</td><td>0.002</td><td>0.003</td><td><lod< td=""><td>0.002</td><td><lod< td=""><td><lod< td=""><td>0.084</td></lod<></td></lod<></td></lod<></td></lod<>	0.899	0.739	1.255	1.467	0.002	0.003	<lod< td=""><td>0.002</td><td><lod< td=""><td><lod< td=""><td>0.084</td></lod<></td></lod<></td></lod<>	0.002	<lod< td=""><td><lod< td=""><td>0.084</td></lod<></td></lod<>	<lod< td=""><td>0.084</td></lod<>	0.084
310.5	72.861	1.379	<lod< td=""><td>0.381</td><td>0.196</td><td>0.230</td><td>2.799</td><td><lod< td=""><td>0.001</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.053</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.381	0.196	0.230	2.799	<lod< td=""><td>0.001</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.053</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.001	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.053</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.053</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.053</td></lod<></td></lod<>	<lod< td=""><td>0.053</td></lod<>	0.053
311.5	62.470	0.837	1.227	0.168	0.128	0.278	2.188	0.001	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.017</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.017</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.017</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.017</td></lod<></td></lod<>	<lod< td=""><td>0.017</td></lod<>	0.017
312.5	64.808	3.759	<lod< td=""><td>0.580</td><td>0.586</td><td>0.493</td><td>1.180</td><td>0.001</td><td>0.001</td><td><lod< td=""><td>0.002</td><td><lod< td=""><td><lod< td=""><td>0.064</td></lod<></td></lod<></td></lod<></td></lod<>	0.580	0.586	0.493	1.180	0.001	0.001	<lod< td=""><td>0.002</td><td><lod< td=""><td><lod< td=""><td>0.064</td></lod<></td></lod<></td></lod<>	0.002	<lod< td=""><td><lod< td=""><td>0.064</td></lod<></td></lod<>	<lod< td=""><td>0.064</td></lod<>	0.064
313.5	60.986	2.204	<lod< td=""><td>0.447</td><td>0.298</td><td>0.542</td><td>0.512</td><td>0.002</td><td>0.002</td><td><lod< td=""><td>0.002</td><td>0.013</td><td><lod< td=""><td>0.076</td></lod<></td></lod<></td></lod<>	0.447	0.298	0.542	0.512	0.002	0.002	<lod< td=""><td>0.002</td><td>0.013</td><td><lod< td=""><td>0.076</td></lod<></td></lod<>	0.002	0.013	<lod< td=""><td>0.076</td></lod<>	0.076
314.5	59.597	2.330	<lod< td=""><td>0.596</td><td>0.278</td><td>0.869</td><td>8.762</td><td>0.008</td><td>0.003</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.070</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.596	0.278	0.869	8.762	0.008	0.003	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.070</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.070</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.070</td></lod<></td></lod<>	<lod< td=""><td>0.070</td></lod<>	0.070
315.7	21.448	6.165	<lod< td=""><td>0.401</td><td>3.018</td><td>1.455</td><td>2.325</td><td>1.070</td><td>0.041</td><td>0.004</td><td>0.003</td><td>0.010</td><td>0.317</td><td>0.018</td></lod<>	0.401	3.018	1.455	2.325	1.070	0.041	0.004	0.003	0.010	0.317	0.018
316.8	33.324	4.844	<lod< td=""><td>0.443</td><td>2.897</td><td>2.525</td><td>11.599</td><td>0.008</td><td>0.038</td><td><lod< td=""><td>0.011</td><td><lod< td=""><td>0.046</td><td>0.032</td></lod<></td></lod<></td></lod<>	0.443	2.897	2.525	11.599	0.008	0.038	<lod< td=""><td>0.011</td><td><lod< td=""><td>0.046</td><td>0.032</td></lod<></td></lod<>	0.011	<lod< td=""><td>0.046</td><td>0.032</td></lod<>	0.046	0.032
317.9	36.370	15.657	3.509	0.913	2.434	3.807	4.191	0.021	0.008	0.002	0.004	0.011	0.123	0.053
319.0	30.802	11.125	<lod< td=""><td>2.179</td><td>4.391</td><td>6.021</td><td>4.040</td><td>0.022</td><td>0.019</td><td>0.004</td><td>0.004</td><td>0.011</td><td>0.185</td><td>0.035</td></lod<>	2.179	4.391	6.021	4.040	0.022	0.019	0.004	0.004	0.011	0.185	0.035
320.0	24.106	7.518	<lod< td=""><td>4.132</td><td>2.208</td><td>8.007</td><td>3.899</td><td>0.070</td><td>0.026</td><td>0.002</td><td>0.005</td><td><lod< td=""><td>0.066</td><td>0.037</td></lod<></td></lod<>	4.132	2.208	8.007	3.899	0.070	0.026	0.002	0.005	<lod< td=""><td>0.066</td><td>0.037</td></lod<>	0.066	0.037
321.0	40.643	4.396	2.306	2.168	1.492	3.866	6.141	0.015	0.026	<lod< td=""><td>0.007</td><td>0.009</td><td>0.028</td><td>0.028</td></lod<>	0.007	0.009	0.028	0.028
323.0	56.276	5.981	<lod< td=""><td>0.613</td><td>2.156</td><td>2.045</td><td>3.106</td><td>0.004</td><td>0.006</td><td>0.002</td><td>0.003</td><td>0.014</td><td>0.047</td><td>0.057</td></lod<>	0.613	2.156	2.045	3.106	0.004	0.006	0.002	0.003	0.014	0.047	0.057
324.0	11.373	4.172	<lod< td=""><td>2.971</td><td>2.326</td><td>8.023</td><td>4.603</td><td>0.010</td><td>0.013</td><td>0.007</td><td>0.004</td><td>0.010</td><td>0.141</td><td>0.027</td></lod<>	2.971	2.326	8.023	4.603	0.010	0.013	0.007	0.004	0.010	0.141	0.027
325.0	33.796	6.797	1.492	0.393	3.934	1.310	0.440	0.008	0.003	0.003	<lod< td=""><td><lod< td=""><td>0.136</td><td>0.018</td></lod<></td></lod<>	<lod< td=""><td>0.136</td><td>0.018</td></lod<>	0.136	0.018
326.0	33.466	10.329	2.613	1.067	6.400	2.074	4.323	0.050	0.032	0.006	0.004	<lod< td=""><td>0.185</td><td>0.046</td></lod<>	0.185	0.046
327.0	23.595	6.173	1.545	3.543	1.083	2.823	2.612	0.058	0.019	<lod< td=""><td>0.003</td><td><lod< td=""><td><lod< td=""><td>0.032</td></lod<></td></lod<></td></lod<>	0.003	<lod< td=""><td><lod< td=""><td>0.032</td></lod<></td></lod<>	<lod< td=""><td>0.032</td></lod<>	0.032
328.1	12.799	4.867	2.362	4.995	2.437	7.368	13.747	0.021	0.022	<lod< td=""><td>0.013</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	0.013	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
329.2	31.718	4.395	1.644	1.581	0.557	3.195	2.860	0.013	0.017	<lod< td=""><td>0.003</td><td>0.013</td><td>0.019</td><td>0.024</td></lod<>	0.003	0.013	0.019	0.024
330.0	23.770	8.947	<lod< td=""><td>2.478</td><td>1.130</td><td>5.899</td><td>3.106</td><td>0.146</td><td>0.014</td><td><lod< td=""><td>0.003</td><td><lod< td=""><td>0.117</td><td>0.048</td></lod<></td></lod<></td></lod<>	2.478	1.130	5.899	3.106	0.146	0.014	<lod< td=""><td>0.003</td><td><lod< td=""><td>0.117</td><td>0.048</td></lod<></td></lod<>	0.003	<lod< td=""><td>0.117</td><td>0.048</td></lod<>	0.117	0.048
331.0	66.018	4.462	<lod< td=""><td>0.423</td><td>1.361</td><td>0.621</td><td>0.260</td><td>0.006</td><td>0.002</td><td>0.002</td><td><lod< td=""><td>0.013</td><td>0.057</td><td>0.025</td></lod<></td></lod<>	0.423	1.361	0.621	0.260	0.006	0.002	0.002	<lod< td=""><td>0.013</td><td>0.057</td><td>0.025</td></lod<>	0.013	0.057	0.025
332.0	28.937	8.232	<lod< td=""><td>3.048</td><td>4.628</td><td>3.848</td><td>2.298</td><td>0.011</td><td>0.018</td><td>0.004</td><td>0.003</td><td>0.012</td><td>0.132</td><td>0.040</td></lod<>	3.048	4.628	3.848	2.298	0.011	0.018	0.004	0.003	0.012	0.132	0.040
333.0	48.627	8.447	<lod< td=""><td>1.086</td><td>4.325</td><td>2.757</td><td>2.531</td><td>0.009</td><td>0.013</td><td>0.004</td><td><lod< td=""><td>0.013</td><td>0.154</td><td>0.051</td></lod<></td></lod<>	1.086	4.325	2.757	2.531	0.009	0.013	0.004	<lod< td=""><td>0.013</td><td>0.154</td><td>0.051</td></lod<>	0.013	0.154	0.051

Süg. (m)	SiO2	Al2O3	MgO	Са	K2O	S	Fe	Zn	Cu	Pb	Ni	Sn	Ва	Р
334.0	42.988	9.225	<lod< td=""><td>1.048</td><td>4.764</td><td>1.986</td><td>1.228</td><td>0.012</td><td>0.007</td><td>0.005</td><td><lod< td=""><td>0.015</td><td>0.134</td><td>0.055</td></lod<></td></lod<>	1.048	4.764	1.986	1.228	0.012	0.007	0.005	<lod< td=""><td>0.015</td><td>0.134</td><td>0.055</td></lod<>	0.015	0.134	0.055
335.0	53.348	7.720	<lod< td=""><td>1.742</td><td>0.621</td><td>2.012</td><td>2.513</td><td>0.058</td><td>0.009</td><td><lod< td=""><td>0.003</td><td><lod< td=""><td><lod< td=""><td>0.053</td></lod<></td></lod<></td></lod<></td></lod<>	1.742	0.621	2.012	2.513	0.058	0.009	<lod< td=""><td>0.003</td><td><lod< td=""><td><lod< td=""><td>0.053</td></lod<></td></lod<></td></lod<>	0.003	<lod< td=""><td><lod< td=""><td>0.053</td></lod<></td></lod<>	<lod< td=""><td>0.053</td></lod<>	0.053
336.0	36.507	5.015	<lod< td=""><td>2.774</td><td>0.654</td><td>3.234</td><td>2.727</td><td>0.040</td><td>0.069</td><td><lod< td=""><td>0.003</td><td>0.016</td><td><lod< td=""><td>0.038</td></lod<></td></lod<></td></lod<>	2.774	0.654	3.234	2.727	0.040	0.069	<lod< td=""><td>0.003</td><td>0.016</td><td><lod< td=""><td>0.038</td></lod<></td></lod<>	0.003	0.016	<lod< td=""><td>0.038</td></lod<>	0.038
337.0	50.282	4.340	1.690	0.913	0.985	0.950	1.530	0.019	0.008	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.061</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.061</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.061</td></lod<></td></lod<>	<lod< td=""><td>0.061</td></lod<>	0.061
338.0	39.880	6.685	<lod< td=""><td>1.446</td><td>1.761</td><td>2.537</td><td>3.267</td><td>0.020</td><td>0.021</td><td>0.001</td><td>0.003</td><td>0.014</td><td>0.049</td><td>0.042</td></lod<>	1.446	1.761	2.537	3.267	0.020	0.021	0.001	0.003	0.014	0.049	0.042
339.0	50.830	7.256	<lod< td=""><td>1.210</td><td>2.659</td><td>1.668</td><td>2.146</td><td>0.082</td><td>0.008</td><td>0.002</td><td>0.002</td><td>0.011</td><td>0.036</td><td>0.074</td></lod<>	1.210	2.659	1.668	2.146	0.082	0.008	0.002	0.002	0.011	0.036	0.074
340.0	20.967	5.069	2.153	3.669	1.958	9.550	10.407	0.017	0.034	<lod< td=""><td>0.015</td><td><lod< td=""><td>0.057</td><td>0.131</td></lod<></td></lod<>	0.015	<lod< td=""><td>0.057</td><td>0.131</td></lod<>	0.057	0.131
341.0	19.789	6.980	<lod< td=""><td>3.593</td><td>2.033</td><td>6.502</td><td>3.931</td><td>0.038</td><td>0.019</td><td>0.002</td><td><lod< td=""><td><lod< td=""><td>0.048</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	3.593	2.033	6.502	3.931	0.038	0.019	0.002	<lod< td=""><td><lod< td=""><td>0.048</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.048</td><td><lod< td=""></lod<></td></lod<>	0.048	<lod< td=""></lod<>
342.0	18.224	7.625	3.004	3.547	2.522	6.309	7.908	0.014	0.013	<lod< td=""><td>0.004</td><td><lod< td=""><td>0.058</td><td>0.048</td></lod<></td></lod<>	0.004	<lod< td=""><td>0.058</td><td>0.048</td></lod<>	0.058	0.048
343.0	43.216	8.445	<lod< td=""><td>2.815</td><td>1.317</td><td>3.398</td><td>3.589</td><td>0.019</td><td>0.034</td><td><lod< td=""><td>0.005</td><td><lod< td=""><td><lod< td=""><td>0.093</td></lod<></td></lod<></td></lod<></td></lod<>	2.815	1.317	3.398	3.589	0.019	0.034	<lod< td=""><td>0.005</td><td><lod< td=""><td><lod< td=""><td>0.093</td></lod<></td></lod<></td></lod<>	0.005	<lod< td=""><td><lod< td=""><td>0.093</td></lod<></td></lod<>	<lod< td=""><td>0.093</td></lod<>	0.093
343.9	45.378	9.408	2.676	1.397	1.161	2.395	3.653	0.019	0.008	<lod< td=""><td>0.003</td><td><lod< td=""><td><lod< td=""><td>0.225</td></lod<></td></lod<></td></lod<>	0.003	<lod< td=""><td><lod< td=""><td>0.225</td></lod<></td></lod<>	<lod< td=""><td>0.225</td></lod<>	0.225
345.1	37.441	12.046	<lod< td=""><td>0.900</td><td>5.910</td><td>1.949</td><td>1.231</td><td>0.009</td><td>0.005</td><td>0.006</td><td><lod< td=""><td>0.010</td><td>0.206</td><td>0.075</td></lod<></td></lod<>	0.900	5.910	1.949	1.231	0.009	0.005	0.006	<lod< td=""><td>0.010</td><td>0.206</td><td>0.075</td></lod<>	0.010	0.206	0.075
346.0	63.203	7.147	<lod< td=""><td>0.347</td><td>4.072</td><td>1.972</td><td>4.166</td><td>0.009</td><td>0.008</td><td>0.005</td><td>0.005</td><td>0.010</td><td>0.072</td><td>0.076</td></lod<>	0.347	4.072	1.972	4.166	0.009	0.008	0.005	0.005	0.010	0.072	0.076
347.0	45.747	5.620	<lod< td=""><td>0.935</td><td>3.065</td><td>3.580</td><td>3.079</td><td>0.003</td><td>0.031</td><td>0.003</td><td>0.003</td><td>0.010</td><td>0.048</td><td>0.096</td></lod<>	0.935	3.065	3.580	3.079	0.003	0.031	0.003	0.003	0.010	0.048	0.096
348.0	55.220	5.071	<lod< td=""><td>0.731</td><td>1.092</td><td>0.392</td><td>0.479</td><td>0.009</td><td>0.033</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.024</td><td>0.061</td></lod<></td></lod<></td></lod<></td></lod<>	0.731	1.092	0.392	0.479	0.009	0.033	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.024</td><td>0.061</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.024</td><td>0.061</td></lod<></td></lod<>	<lod< td=""><td>0.024</td><td>0.061</td></lod<>	0.024	0.061
349.2	27.560	1.742	<lod< td=""><td>0.635</td><td>0.589</td><td>4.497</td><td>3.778</td><td>0.006</td><td>0.039</td><td>0.003</td><td>0.005</td><td>0.010</td><td>0.044</td><td>0.044</td></lod<>	0.635	0.589	4.497	3.778	0.006	0.039	0.003	0.005	0.010	0.044	0.044
350.1	30.508	6.840	1.632	2.484	2.629	2.489	1.221	0.006	0.014	0.002	0.002	<lod< td=""><td>0.388</td><td>0.115</td></lod<>	0.388	0.115
350.9	30.368	7.861	4.822	1.378	2.820	3.911	5.862	0.012	0.019	<lod< td=""><td>0.005</td><td>0.014</td><td>0.196</td><td>0.056</td></lod<>	0.005	0.014	0.196	0.056

wused es (m)	ii (m)	AI	Mg	Ca	к	Na	s	Fe	Zn	Cu	Pb	Ni	Sn	As	Co	Мо	Cr	Ва	Ag	Bi	Те	U	Th	Р
Süga Alat	Kur	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
163	164	7.59	1.74	2.25	3.58	0.14	0.28	9.73	67	44.6	114.5	124	1.1	7.6	17.1	4.07	100	590	0.59	0.31	0.16	3.5	13	530
164	165	7.83	2.06	2.58	3.69	0.16	0.07	10.55	75	97.7	560	87.9	1.2	1.3	7.6	3.67	145	580	0.22	0.43	0.15	3.4	16.45	500
165	166	6.52	2.6	1.76	1.4	0.08	1.05	13.45	4820	343	8220	122	0.6	8.5	31	6.01	163	240	1.6	0.32	0.15	2.5	11.25	330
166	167	6.64	1.89	3.04	2.93	0.12	2.9	6.94	>10000	151.5	>10000	70.9	1.1	8	21.8	16	111	420	1.3	0.44	0.19	3.1	14.6	280
167	168	7.42	1.72	3.51	4.12	0.15	2.92	4.14	>10000	127.5	5700	68.8	0.9	4.9	20.4	16.95	89	500	1.14	0.3	0.15	2.8	12.6	200
168	169	6.86	2.22	3.67	4.28	0.17	2.39	5.8	6250	131	9740	65.6	1.5	6.1	17.9	14.65	115	470	1.02	0.38	0.23	4	12.8	210
169	170	7.09	2.36	3.53	4.62	0.17	2.8	6.56	2530	148.5	3130	73.1	1.6	9.5	13	19.7	116	520	1.06	0.45	0.16	5.6	12.05	210
170	171	6.97	3.14	3.05	3.14	0.13	2.99	8.9	702	153	1560	101	1	3.3	15.4	24.5	122	400	0.92	0.51	0.22	7.2	13.15	180
171	172	6.79	2.75	3.47	3.22	0.13	4	8.89	384	156.5	884	106	1.1	4.5	15.5	18.5	128	370	0.91	0.37	0.17	7.4	11.1	200
172	173	7.31	2.51	2.38	5.17	0.22	4.28	8.76	128	146	182.5	113.5	1.4	3.9	18.2	28.5	128	570	0.78	0.38	0.21	8.5	12.95	380
173	174	7.36	4.31	1.65	1.93	0.08	5.13	13.8	4880	207	1420	172.5	2.2	37.8	28.5	9.33	87	150	2.34	0.48	0.37	6	8.57	700
189	190	8.06	1.81	0.16	4.83	0.23	3.68	7.69	619	162	25.3	105	1	5.2	17	20.7	97	670	0.86	0.39	0.19	7	13.65	400
190	191	7.49	2	0.26	3.96	0.25	3.85	7.09	593	139.5	25.4	94.5	1.1	3.3	17.2	20.9	116	500	0.99	0.37	0.16	5.9	12.4	360
191	192	7.78	1.69	0.4	3.8	0.36	4.02	8.59	350	180	22	115	1	6.2	18.4	14.05	94	510	0.9	0.38	0.19	6	14.85	490
192	193	7.41	1.86	0.47	3.96	0.38	5.45	10.2	420	211	25.7	155	1.2	16.5	26	24.7	123	460	1.31	0.51	0.22	9	12.95	340
198	199	7.89	1.5	0.75	3.59	0.62	4.12	8.06	1730	217	23.6	111	1.2	3	18.4	17.6	94	460	1.03	0.38	0.12	6.1	15.85	310
199	200	7.35	1.32	1.03	2.28	0.74	3.57	7.3	668	203	16.9	94.7	1	3.9	14.8	4.37	70	340	0.87	0.31	0.11	3.8	13.1	530
200	201	7.17	1.61	1.7	1.54	1	4.66	8.96	295	281	11.9	125.5	1.2	7.2	18.6	4.11	94	160	1.02	0.31	0.07	4.6	12.3	480
201.2	202.2	5.27	0.91	0.29	3.66	0.35	>10.0	20.9	1230	228	35.3	342	2	2.7	84.2	22.5	/2	230	3.28	1.28	0.24	10.1	7.26	290
212	213	6.42	1.55	0.97	3.07	0.59	5.99	12	279	225	19.3	1/3.5	1.5	3.3	27.2	14.55	75	330	1.11	0.43	0.08	4.9	13.7	/10
213	214	5.74	1.01	0.49	3.15	0.48	9.95	19.1	295	302	23.6	291	1./	51	50.1	14.25	/1	300	1./1	0.68	0.15	4.9	12.55	300
219.3	220.3	5.63	1.06	0.28	3.44 2.5	0.34	9.02	17.3	320	289	27.2	261	2.1	5.0	42.6	14.05	44	310	1.73	0.72	0.08	б.4 С.2	10.9	470
200.3	201.3	6.UI	1.1/	0.27	3.5	0.35	9.5	17.2	520 204	538	20.2	258	2	3.2 122 г	42 54 /	13.Z	65 E 0	300	2.27	0.69	0.07	6.Z	12.3	260
201.3	202.3	5.19	T	0.19	2.99	0.27	>10.0	20.9	304	441	Z3.Z	313	2.1	123.5	54.4	14.75	58	250	2.24	0.83	0.11	5.3	11.25	450

Lisa 5. Iirimaa ALS laboris saadud ICP tulemused puursüdamiku F188 kivimmaterjali põhjal.

vused is (m)	i (m)	ΔΙ	Μσ		к	Na	s	Fo	7n	CII	Ph	Ni	Sn	٨٩	6	Мо	Cr	Ba	Δσ	Bi	То		Th	D
Süga Alate	Kun	%	%	%	к %	%	%	%	ppm	ppm	maa	maa	maa	ppm	maa	mag	ppm	ppm	ο ppm	maa	maa	ppm	maa	ppm
202.3	203 3	5 16	1 02	0 14	2 91	0.25	>10.0	18 95	1990	644	22	280	21	22.6	47 5	14.05	57	180	27	0.72	0.09	5.2	10.25	270
202.3	203.3	5.31	0.96	0.2	3.53	0.3	>10.0	18.2	314	401	26.7	264	2.1	1.8	42.2	14.65	57	280	1.87	0.74	0.09	6.2	13.45	590
204.3	205.6	4.7	0.84	0.2	2.8	0.27	>10.0	19.7	182	281	21.4	288	1.9	1.2	47	17.05	51	240	1.76	0.68	0.07	6	12.9	300
205.6	206.6	5.82	0.95	0.4	3.52	0.43	9.52	15.85	144	397	30	233	1.8	17.4	37.6	14.65	55	320	1.93	0.57	0.09	5.7	13.85	640
229.9	230.7	6.79	0.77	1.3	5.9	0.76	3.18	5.02	981	161.5	47.8	74.9	2.5	12.2	11.8	4.06	29	630	1.1	0.18	0.06	3.6	4.89	1100
235	236	6.37	0.8	0.58	3.71	0.68	8.21	14.4	524	445	31.4	214	2.2	4.5	30.2	9.25	55	320	1.9	0.71	0.09	5.3	17.7	270
236	237	5.89	0.84	0.59	3.54	0.61	9.67	17.1	967	400	28.7	256	2.2	3.2	40.8	10.75	64	300	1.58	0.69	0.08	4.7	14.6	300
237	238	6.34	1	0.84	3.52	0.75	9.99	17.9	705	422	28.3	263	2.4	122.5	65.1	12.15	72	320	1.66	0.85	0.12	6.3	15.15	370
238	239.2	7.16	1.33	0.66	3.99	0.7	7.12	13.7	268	304	30.3	195.5	2.1	13.5	62.1	13.2	63	400	1.36	0.74	0.08	4.7	14.4	370
239.2	240.4	7.7	0.75	0.69	5.83	0.84	2.13	4.29	872	94.3	38.2	61.9	2.3	4.3	9	3.36	17	780	0.63	0.19	<0.05	1.6	4.06	710
240.4	241.2	6.24	0.82	0.87	2.93	0.77	7.69	13.7	145	219	22.6	201	2.3	2.1	32.7	12.1	54	360	1.19	0.47	0.11	3.4	12.35	540
241.2	241.35	6.96	0.29	0.53	6.4	0.84	2.35	4.95	2070	110	45.5	70.2	2.3	1.2	11	3.92	14	760	0.54	0.18	0.06	1.5	2.46	790
241.35	242.35	6.69	0.83	0.58	3.96	0.69	8.12	14.8	1060	295	28.7	215	2.3	6.3	44.4	13.6	59	340	1.72	0.76	0.18	4	12.05	440
257	258	7.29	1.35	0.65	4.75	0.72	2.75	5.21	176	115	28.2	73.8	1.5	3.3	12.3	16.25	113	770	0.69	0.31	0.05	4	13.95	270
258	259	7.37	1.51	0.55	4.6	0.61	4.69	8.83	379	175.5	32.1	126.5	1.5	5.7	22.1	25.1	87	590	0.91	0.53	0.08	6.7	12.65	500
259	260	7.39	1.72	0.63	3.81	0.56	4.61	9.14	505	205	24.8	125.5	1.3	4.7	21.3	18.95	94	590	0.87	0.46	0.07	6.4	14.2	540
267.9	268.9	2.11	2.14	4.77	0.52	0.35	3.19	5.85	378	157.5	9.9	72.1	3.2	26.4	11.4	6.85	154	440	0.95	0.37	0.2	7.7	3.18	3450
268.9	269.9	1.67	3.32	6.76	0.56	0.26	2.96	6.21	295	135	10.7	55.5	2.6	9.8	11.1	2.46	93	390	0.7	0.25	0.26	8.4	5.77	1330
281	282	0.05	0.09	0.33	0.01	0.01	1.25	3.4	10	24.3	4.4	14.1	0.2	6.5	6.6	2.25	36	70	0.15	0.07	0.2	0.3	0.1	60
282	283	0.23	0.18	0.44	0.17	0.05	0.79	2.89	18	12.9	4.5	5.5	0.2	12.2	2.9	1.78	35	100	0.06	0.04	0.12	0.4	0.43	120
286.5	287.5	0.29	5.53	12.55	0.34	0.05	3.74	8.41	39	97.6	10.5	32.6	0.2	12.2	34.7	5.79	26	470	0.47	0.15	0.8	11.7	0.54	340
287.5	288.5	0.14	4.53	8.21	0.13	0.05	3.12	6.86	45	68.8	14.9	20.2	0.3	6	22.6	3.66	21	210	0.19	0.13	0.59	9.6	0.72	260
288.5	289.5	0.34	0.21	1.07	0.04	0.01	0.69	2.21	2	4.6	1.7	1.4	0.2	42.8	1.5	1.88	37	20	0.14	0.02	0.05	0.5	0.56	70
291.8	292.8	0.6	6.23	13.1	0.51	0.13	5.81	13.55	71	140	12.3	39.1	0.5	17.4	40.9	4.71	15	300	0.13	0.22	1.1	1.1	0.09	60
292.8	293.8	0.15	3.28	6.8	0.11	0.06	3.4	8.41	53	56.2	14.5	23.5	0.4	7.7	25.1	5.28	25	190	0.07	0.11	0.48	16.8	3.23	450
293.8	294.8	0.25	4.89	10.15	0.24	0.15	6.5	18.8	100	164.5	6.2	52.3	0.5	7.1	52.2	5.56	19	390	0.57	0.22	1.53	0.2	0.04	<10
294.8	295.8	0.18	5.23	12.6	0.14	0.14	5.76	15.35	74	122	15.8	47	0.3	7.7	47.7	4.24	13	400	0.16	0.21	1.15	1.2	0.1	20

Sügavused Alates (m)	ni (m)	AI	Mg	Са	к	Na	S	Fe	Zn	Cu	Pb	Ni	Sn	As	Со	Мо	Cr	Ва	Ag	Bi	Те	U	Th	Р
	Ku	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
295.8	296.7	0.28	5.54	12.65	0.15	0.14	6.35	14.8	85	120.5	15.6	42.7	0.4	19.5	45.1	4.79	18	410	0.13	0.26	1.2	2.6	0.37	320
306.8	307.8	0.44	5.23	10.95	0.38	0.17	4.78	12.8	139	121.5	30.1	24.9	1.1	21.3	32.2	2.05	15	440	0.41	0.28	0.63	6.8	1.64	1520
307.8	308.9	0.07	1.16	2.86	0.06	0.04	1.19	4.04	32	27.7	13.8	7.1	0.3	25.1	8.7	2.42	34	150	0.11	0.1	0.19	2.1	0.34	530
315	316	4.76	0.99	1.09	1.88	1.29	7.11	14.9	267	231	12.8	218	0.8	3	18.3	12.85	49	350	1.39	0.59	0.13	3.1	12.75	470
328	329	6.98	1.59	1.72	2.55	0.62	3.95	7.43	400	203	14.9	103.5	1.1	4.3	17.1	13.65	120	360	0.84	0.44	0.19	3.3	14.4	370
329	330	6.9	2.34	2.15	1.92	0.57	4.68	8.92	392	191.5	9.6	127	1.1	8.7	19.2	10.4	153	220	0.87	0.49	0.26	3.6	13.7	480
330	331	6.67	1.73	1.26	2.29	0.53	3.45	6.5	293	123.5	12.9	91.9	1.2	1.6	15.4	18.85	134	330	0.71	0.5	0.22	3.3	14.15	410
331	332	8.52	2.3	1.21	3.05	0.57	4.86	9.3	457	196	19.8	129	1.6	1.5	20.4	28.7	149	460	1.11	0.75	0.34	4.4	20.2	320
332	333	7.9	1.81	1.21	3.67	0.62	4.35	8.27	674	228	22.2	110.5	1.4	3.6	20.6	17.4	134	560	1.12	0.56	0.41	3.3	15.8	380
339.9	340.9	6.55	1.53	1.17	2.88	0.58	5.69	10.75	476	213	18.6	149	1.3	1.8	20.4	16.45	94	400	1.45	0.64	0.49	3.3	14.55	420
340.9	342	8.37	1.8	1.33	3.31	0.84	4.86	9.78	562	276	24.4	132	1.6	1.6	18.9	20.3	93	510	1.39	0.64	0.52	6.9	17	330

Lihtlitsents lõputöö reprodutseerimiseks ja üldsusele kättesaadavaks tegemiseks

Mina, Rasmus Kont,

1. annan Tartu Ülikoolile tasuta loa (lihtlitsentsi) minu loodud teose

Jälgelemendid Uljaste sulfiidse mineralisatsiooni ilmingutes,

mille juhendajateks on Peeter Somelar ja Siim Nirgi

reprodutseerimiseks eesmärgiga seda säilitada, sealhulgas lisada digitaalarhiivi DSpace kuni autoriõiguse kehtivuse lõppemiseni.

- 2. Annan Tartu Ülikoolile loa teha punktis 1 nimetatud teos üldsusele kättesaadavaks Tartu Ülikooli veebikeskkonna, sealhulgas digitaalarhiivi DSpace kaudu Creative Commonsi litsentsiga CC BY NC ND 4.0, mis lubab autorile viidates teost reprodutseerida, levitada ja üldsusele suunata ning keelab luua tuletatud teost ja kasutada teost ärieesmärgil, kuni autoriõiguse kehtivuse lõppemiseni.
- 3. Olen teadlik, et punktides 1 ja 2 nimetatud õigused jäävad alles ka autorile.
- 4. Kinnitan, et lihtlitsentsi andmisega ei riku ma teiste isikute intellektuaalomandi ega isikuandmete kaitse õigusaktidest tulenevaid õigusi.

Rasmus Kont 27.05.2022