
UNIVERSITY OF TARTU 

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE 

Institute of Computer Science 

Information Technology Curriculum 

Taavi Kala 

Efficient discovery of Declare models from event logs 

Bachelor’s Thesis (6 ECTS) 

Supervisor: Fabrizio Maria Maggi 

  

Tartu 2015 



2 

 

Efficient discovery of Declare models from event logs 

 

Abstract: 

The purpose of the following thesis is to improve the performance of a process mining tool 

called DeclareMiner. The DeclareMiner represents process models in a declarative modelling 

language called Declare which is widely used in process mining due to its readability and 

understandability. The current version of the Declare Miner was underperforming in some 

cases. To improve the performance of the tool, an approach from [1] has been integrated into 

the original algorithm. The result is a new, standalone application whose performance is 

multiple times better than the existing one. In addition, the new implementation is able to 

provide different outputs among which a user-friendly and readable report, understandable to 

people not expert of process mining and Declare. 
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Tõhus Declare mudelite avastamine sündmuste logidest 

 

Lühikokkuvõte: 

Käesoleva lõputöö eesmärgiks on parandada protsesside kaevandamise tööriista DeclareMiner 

jõudlust. DeclareMiner väljendab protsesside mudeleid deklaratiivses modelleerimiskeeles 

nimega Declare, mis on protsessikaevadamise maailmas laialt levinud oma loetavuse ja 

arusaadavuse tõttu. Olemasoleva DeclareMiner versiooni jõudlus oli mõningatel juhtudel 

ebapiisav. Jõudluse parandamiseks kasutati artiklis [1] arendatud lähenemist, mis integreeriti 

tööriista originaal algoritmi. Tulemuseks on uus, eraldiseisev rakendus, mille jõudlus on 

olemasolevast lahendusest mitu korda parem. Samuti suudab uus rakendus koostada erinevaid 

väljundeid, millest üks on kasutajasõbralik ning loetav ka neile, kes pole protsesside 

kaevandamise ja Declare keele eksperdid. 

Võtmesõnad: 

Protsesside kaevandamine, Declare modelleerimiskeel, sündmuste logid, ProM, DeclareMiner, 

replayerid 
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1 Introduction 

 

Process mining is a family of techniques that allow for the analysis of business processes. Its 

main focus lies in the automatic retrieval and subsequent analysis of business process models 

from event logs. Process mining consists of discovery, enhancement and conformance checking 

[2]. Discovery is the extraction of process models from an event log. Enhancement is the 

extension or improvement of process models using information extracted from a log. 

Conformance checking consists of analyzing whether the reality, as recorded in a log, is 

compliant with a process model [3]. 

The majority of process discovery algorithms try to construct a procedural model. However, 

the resulting models are often spaghetti-like and difficult to interpret especially for processes 

working in unstable environments. Therefore, it is useful to discover declarative process models 

instead when dealing with processes with a lot of variability and where multiple paths are 

allowed. An approach is presented in [4] to discover Declare models from event logs. Declare 

is a declarative process modelling language first introduced in [5]. In [4], a plugin is presented 

called DeclareMiner, developed for the process mining tool ProM using automata and an apriori 

algorithm for model detection.  

The approach proposed in this thesis integrates the approach presented in [1] into the existing 

implementation developed in [4]. In addition the usability of the mining results has been 

improved as well. 

As a result of this thesis the DeclareMiner runs faster than the original version and provides 

richer results with respect to it. The code developed as a contribution of this thesis is provided 

as an open source application.  
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2 State of the art 

 

In this chapter related work will be discussed to give a better overview of the general idea of 

this thesis. 

Probabilistic declarative process is an approach based on Statistical Relational Learning for 

analyzing a log containing several traces of a process labeled as compliant or non-compliant. 

Based on that it is possible to learn a set of declarative constraints expressed as ICs (Integrity 

Constraints) which are represented in Markov Logic [6]. A logic-based approach for 

probabilistic process mining enhancing this approach is presented in [7]. 

An approach that makes use of logical programming for declarative process mining is presented 

in [8]. The proposed methodology is based on Inductive Logical Programming (ICL). The ICL 

algorithm, used in this approach, is adapted to the problem of learning integrity constraints in 

SCIFF and is able to learn a model by considering both compliant and non-compliant traces. 

A component to discover declarative processes was developed for ProM in [4]. The component 

is called DeclareMiner. It uses an apriori algorithm to build a list of candidate constraints to be 

discovered. This list is pruned by checking the constraints against the log. 

An algorithm to discover declarative workflows was developed in [9] using email messages as 

event log traces. The algorithm implemented is called MINERful++ which is described as a 

two-step algorithm. The first step is to build the knowledge base based on the given traces. The 

second step is to compute the statistical support of constraints by querying the knowledge base. 

An online process discovery technique which takes data from online streams is presented in [1]. 

The proposed framework is able to produce at runtime an updated picture of the process 

behavior in terms of Declare constraints. It also gives meaningful information about the concept 

drifts that occurred during the process execution to the user. 
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3 Background 

3.1 Process mining 

 

Process mining is still a rather young research discipline which lies between data mining and 

computational intelligence as well as process modelling and analysis. The general idea of 

process mining is to discover, monitor and improve real life processes by extracting knowledge 

from actual event logs used in different systems that gather event data. Over the last ten years, 

event data have become more widely available and process mining techniques have matured a 

lot. Different process mining algorithms have been implemented in academic and commercial 

systems as there is in increasing interest from industry in process mining. Thus, an increasing 

amount of software vendors are adding functionalities that provide process mining capabilities 

to their software and tools.  

The main branches of process mining are  

 process discovery which takes an event log and produces a model without using any 

apriori information 

 conformance checking which is used to compare the existing process model with an 

event log of the same process 

 model extension which is used to extend existing models with information coming from 

logs 

 model repair which is used to repair already existing models using event logs 

A list of guiding principles that aid in avoiding mistakes that can be made when applying 

process mining in actual, real-life settings is presented in [3]. The guide consists of the 

following six principles:  

 Event data should be treated as first-class citizens, which means that the event logs are 

classified under different maturity levels ranging from excellent to poor or 5 stars to 1 

start respectively. The higher the maturity level, the more reliable are the results when 

process mining is applied to the log 

 Log extraction should be driven by questions because without concrete questions it is 

very difficult to extract reasonable information from event logs 

 Concurrency, choice and other basic control-flow constructs should be supported to 

make sure the generated models are fitting and easy to understand 



8 

 

 Events should be related to model elements in order to support conformance checking 

and enhancement 

 Models should be treated as purposeful abstractions of reality due to the fact that the 

results may be used by various stakeholders in different situations. It also helps with 

producing understandable maps 

 Process mining should be a continuous process to cope with process changes 

Along-side key points and guide principles, there are challenges that need to be addressed due 

to the fact that process mining is, as mentioned before, a young discipline. These challenges are 

considered to be incomplete as, over time, new challenges may appear or existing challenges 

may disappear due to advances is process mining. Nevertheless, the challenges listed below are 

still relevant [3].  

 Finding, merging, and cleaning event data 

 Dealing with complex event logs having diverse characteristics 

 Creating representative benchmarks 

 Dealing with concept drift 

 Improving the representational bias used for process discovery 

 Balancing between quality criteria such as fitness, simplicity, precision and 

generalization 

 Cross-organizational mining 

 Providing operational support 

 Combining process mining with other types of analysis 

 Improving usability for non-experts 

An event log is the key element for any process mining technique – in an event log: 

 Each event refers to an activity (a well-defined step in the process) 

 Each event refers to a trace (a process instance) 

 Each event can have a performer also referred to as originator (the actor executing or 

initiating the activity) 

 Events have a timestamp and are totally ordered 

Since each information system has its own format for storing log files a generic XML format 

to store in a log information about process executions called MXML has been developed. The 

MXML format is presented in figure 1 (a). A log file typically contains information about events 

that took place in a system (AuditTrailEntry in XML). Such events typically refer to a trace 

(ProcessInstance in the XML) and a specific activity (WorkflowModelElement in XML) within 
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that trace. The originator and the timestamp are connected to the AuditTrailEntry so they are 

always related to the event itself. Figure 1 (b) shows the transactional model for activity 

lifecycles. The transactional model is adopted by several commercial systems [10]. 

 

Figure 1. Process log XML format (a) and transactional model (b) 

 

Even if MXML has been used as a standard for storing event logs for several years, based on 

practical experiences with applying MXML in about one hundred organizations, several 

problems and limitations related to MXML format have been discovered. One of the main 

problems is the semantics of additional attributes stored in the event log. In MXML, these are 

all treated as string values with a key and have no generally understood meaning. Another 

problem is the nomenclature used for different concepts. This is caused by the MXML’s 

assumption that strictly structured process would be stored in this format.  

To solve the problems encountered with MXML, and to create a standard that could also be 

used to store event logs from many different information systems directly, a new format has 

been developed called eXtensible Event Stream or XES. It enhances the MXML format in many 

ways as shown in [11]. The XES Log element replaces the MXML WorfklowLog element, the 

Trace element replaces the ProcessInstance element, and the Event element replaces the 

AuditTrailEntry element. However, there are a number of differences worth mentioning. First 

of all, in XES the Log, Trace and Event elements only define the structure of the document: 

they do not contain any information themselves. To store any data in the XES format, attributes 
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are used. Every attribute has a string based key, a known type, and a value of that type. Possible 

types are string, date, integer, float and boolean. Note that attributes can have attributes 

themselves which can be used to provide more specific information [11]. The meta-model of 

XES is shown in figure 2. The advantages of XES are simplicity, flexibility, extensibility and 

expressivity. From these points of view it improves MXML. 

 

Figure 2: XES meta-model 
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3.2 Declare modeling language 

 

Declare is a declarative process modelling language and a constraint based system that uses 

Linear Temporal Logic (LTL) for the development and execution of process models [5]. The 

three main components it consists of are 

1. Designer (modeling tool), that is used for system settings and process model design 

2. Framework (process enactment tool), which is also used for communication with other 

programs and changing models at run-time 

3. Worklist (process execution tool), which is meant for users to execute process instances 

and see recommendations 

Different application domains may require a different set of relation types (constraint 

templates). Therefore, Declare facilitates the definition of sets of constraint templates. 

Compared to the imperative models, a declarative model defines a set of constraints that should 

be followed during the execution. In that way, a declarative model implicitly defines the 

control-flow as all possibilities that do not violate any of the given constraints. In this way 

declarative models, differently from the imperative ones, enjoy flexibility. Each constraint 

template has three attributes: 

1. A unique name 

2. Semantics specified in LTL 

3. Graphical representation (for visual representation) 

There is a total of 19 different templates in the Declare modeling language. 5 of these are 

existence templates which involve only one event. 11 are relation templates which describe a 

dependency between two events and 3 are negative relation templates [12].  

The existence templates are the following: 

 existence(n, A) which specifies that A should occur at least n times in a process instance 

 absence(n +1, A) which specifies that A should occur at most n times 

 exactly(n, A) which specifies that A should occur exactly n times 

 init(A) which specifies that each process instance should start with event A 

The LTL semantics and graphical representations of the existence templates can be seen from 

table 2. The LTL operator semantics can be seen from table 1. 
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The relational templates are the following: 

 responded existence(A, B) which specifies that if event A occurs, event B should also 

occur 

 co-existence(A, B) which specifies that if one of the events A or B occurs, the other one 

should also occur 

 response(A, B) which specifies if event A occurs, event B should eventually occur after 

A 

 precedence(A, B) which specifies that event B should occur only if event A has occurred 

before 

 succession(A, B) which requires both precedence and response algorithms to hold 

between events A and B 

 alternate response(A, B) which is the same as response but allows no repetitions of these 

events in between 

 alternate precedence(A, B) which is the same as precedence but allows no repetitions 

of these events in between 

 alternate succession(A, B) which is the same as succession but allows no repetitions of 

these events in between 

 chain response(A, B) which is the same as response but the events must happen one 

after another 

 chain precedence(A, B) which is the same as precedence but the events must happen 

one after another 

 chain succession(A, B) which is the same as succession but the events must happen one 

after another 

The LTL semantics and graphical representations of the relational templates can be seen from 

table 3. 

The negative relation templates are the following: 

 not co-existence(A, B) which specifies that A and B cannot occur together in the same 

process 

 not succession(A, B) which specifies that that any occurrence of A cannot be eventually 

followed by B 

 not chain succession(A, B) which specifies that A cannot be directly followed by B 



13 

 

The LTL semantics and graphical representations of the negative relation templates can be seen 

from table 4. 

 

 

Table 1: LTL operators’ semantics 

 

 

Table 2: Existence templates 
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Table 3: Relation templates 
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Table 4: Negative relation templates 

 

A Declare model containing multiple constraints is defined as a conjunction of the constraints. 

This means that the actions of users during execution must fulfill all constraints. Declare 

constraints can be either mandatory or optional. 

The system forces its users to follow all mandatory constraints in the model. In case of optional 

constraints users have the ability to decide whether to follow the corresponding rule or to violate 

it. Optional constraints are not enforced by the Declare system during execution. When a user 

is about to perform an action that violates an optional constraint, a warning about the violation 

is presented and the user can decide whether to continue with the action and violate the 

constraint or to cancel the action and follow the constraint. The text of the warning can be 

specified in the definition of the constraint. 

A model in Declare is mapped onto a set of LTL formulas. Based on these LTL formulas, 

automata are automatically generated to support enactment. Declare uses an algorithm that 

creates finite-words automata from LTL formulas of the constraints that are used. These 

automata are used both to drive the execution and to monitor the state of each constraint. 

Some compositions of constraints in process models may cause errors that lead to problems at 

run-time. Thus, Declare verifies process models against different types of errors and finds a 

minimal set of constraints that causes a specific error. All models can be verified against dead 

activities and conflicting constraints. A dead activity is an activity that can never be executed 

in the model. A set of constraints is conflicting if there exists no execution that would fulfill all 

constraints [13].  
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3.3 DeclareMiner plugin in the ProM framework 

Prom framework 

 

ProM is a process mining framework that integrates the functionality of several existing process 

mining tools and provides many additional process mining plug-ins. It supports multiple 

formats and multiple languages such as Petri nets, EPCs, Social Networks and so on and so 

forth. The plug-ins can be used in several ways and combined to be applied in real-life situations 

[10]. 

 

DeclareMiner plugin 

 

The Declare Miner plug-in for ProM allows users to discover a Declare model from a log by 

specifying a number of settings. There are two versions of the plug-in. The first one, the Declare 

Miner, requires a user-specified Declare language as input. The second one, the Declare Miner 

Default, uses a predefined Declare language and does not require any language as input. More 

information on the usage and set-up can be found at http://www.win.tue.nl/declare/declare-

miner/ . 

 

http://www.win.tue.nl/declare/declare-miner/
http://www.win.tue.nl/declare/declare-miner/
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4 Proposed Contribution 

 

The algorithm proposed in this thesis combines the apriori algorithm from [4] and the replayers 

from [1] to detect the models of interest. The algorithm is composed of two phases. In phase 

one a list on candidate constraints is generated using an apriori algorithm. In the second phase 

the list of candidate constraints is pruned using the approach presented in [1]. The proposed 

algorithm provides very good efficiency. 

 

4.1 Apriori algorithm 

 

Firstly, the frequency of single activities is computed as the support value (frequency of activity 

sets of length 1) for a given activity. After that, the activities with a support value higher than 

the minimum support are considered. Then, the considered activities are combined into pairs 

where both of the activities have support higher than the minimum support. Next, the frequency 

corresponding to the percentage of traces in which both activities of a pair occur in the same 

trace are computed as the support value (frequency of activity sets of length 2) of the given pair 

of activities. After that, only the pairs with support value higher than the minimum support are 

considered. From those considered activities, a list of candidate constraints is instantiated by 

instantiating standard Declare templates using the identified pairs. 

An example sets of candidates and the frequent activity sets for log  

ℒ =  [(e, a, b, a, a, c, e, ), (e, a, a, b, c, e), (e, a, a, d, d, e), ( b, b, c, c), ( e, a, a, c, d, e)] 

based on minimum support 50% can be seen from figure 3. 

 

Figure 3: Discovering frequent activity sets using the apriori algorithm in the event log ℒ. 

The support values are expressed in %. 
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4.2 Replayers algorithm 

 

After the list of candidate Declare constraints has been detected in phase one, the list is pruned 

using template replayers. Each template replayer implements a different algorithm to compute 

the support of a candidate constraint corresponding to the given template. The support of a 

constraint is the percentage of traces in which the constraint is satisfied. For each desired 

template to be discovered a replayer instance is initialised with the list of candidate constraints 

corresponding to that template. Then, the log is iterated and each event in the log is processed 

by each replayer. After all the replayers have finished processing the events in the log, the 

candidate constraints with support lower than the minimum support are discarded. The 

remaining ones are added to the final Declare model to be presented to the user. The Response, 

Precedence and Existence constraint replayer algorithms are briefly explained in the following 

sections. 

 

Response replayer 

 

The semantics of a 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 constraint can be defined as follows - whenever activity 𝑎 is 

executed, activity 𝑏 is eventually executed afterwards. The pseudo code for the Response 

replayer can be seen from Algorithm 1. A brief explanation of the pseudo code is below: 

1. Define maps 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑𝐶𝑎𝑠𝑒𝑠 and 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠 unless they are already defined 

2. For each activity pair 𝑘1 and 𝑘2 in 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡, the incoming activity 𝑎 is compared to 

𝑘2 

2.1. If 𝑘2 is the same activity as 𝑎, the Response constraint (𝑘1, 𝑘2) has no pending 

activations because 𝑎 happened after 𝑘1 

2.2. If 𝑘1 is the same activity as 𝑎, the number of pending activations of the Response 

constraint (𝑘1,𝑘2) is incremented by 1 unit because 𝑎 is waiting for an occurrence of 

𝑘2 

2.3. In case of last event, get the pending activations for activity pair 𝑘1 and 𝑘2. 

2.3.1. If the number of pending activations is 0, the number of fulfilled cases for 

activity pair 𝑘1 and 𝑘2 is increased because no pending activations were detected 
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Input: candidateList the candidate list from phase one 

e =(c,a,t) the event to be processed (c is the case id of the event,      

a is the activity name, t is the timestamp) 

isLastEvent determines if the current events is the last event of 

the case 

 

if fulfilledCases is not defined then define map fullfilledCases 

if pendingActivations is not defined then define map pendingActivations 

foreach (k1,k2) in candidateList do 

    if k2 = a then 

      pendingActivations.put((k1,a),0) 

    else if k1 = a then 

      acts <- pendingActivations.get((a,k2)) 

      pendingActivations.put((a,k2), acts+1) 

    if isLastEvent do 

      acts <- pendingActivation.get((k1,k2)) 

 if acts = 0 do 

        cases <- fulfilledCases.get((k1,k2)) 

   fulfilledCases.put((k1,k2), cases+1) 

Algorithm 1: Response constraint pseudo code 

 

Precedence replayer 

 

The semantics of a 𝑃𝑟𝑒𝑐𝑒𝑑𝑒𝑛𝑐𝑒 constraint can be defined as follows – Activity 𝑎 is preceded 

by activity 𝑏. Activity 𝑏 happens only after activity 𝑎 had happened. The pseudo code for the 

Precedence replayer can be seen from Algorithm 2. A brief explanation of the pseudo code is 

the following: 

1. Define map 𝑓𝑢𝑙𝑙𝑓𝑖𝑙𝑙𝑒𝑑𝐶𝑎𝑠𝑒𝑠 and set 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠 and 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠 

unless they are already defined 

2. If 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠 contains activity 𝑎, increment its frequency 

3. Iterate over 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡 list pairs (𝑘1, 𝑘2). Compare 𝑎 to 𝑘1 

3.1. If 𝑘2 is the same activity as 𝑎 and 𝑘1 frequency in set 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠 is greater 

than 0, the number of fulfilled activations of the Precedence constraint (𝑘1, 𝑘2) is 

incremented by 1 unit in 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠 because 𝑎 happened before 𝑘2 

3.2. In case of last event, get the number of fulfilled activations for 𝑘1 and 𝑘2 from 

𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑚𝑎𝑝 

3.2.1. If the number of fulfilled activations is the same as the number of occurrences 

of 𝑘2 the number of fulfilled cases for activity pair 𝑘1 and 𝑘2 is incremented 

because all the activations are fulfilments 
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Input: candidateList the candidate list from phase one 

e =(c,a,t) the event to be processed (c is the case id of the event,      

a is the activity name, t is the timestamp) 

 

if fulfilledCases is not defined then define map fullfilledCases 

if activityFrequencies is not defined then define map activityFrequencies 

if fulfilledActivatons is not defined then define map fulfilledActivations 

if activityFrequencies.constaintsKey(a) 

  freq <- activityFrequencies.get(a) 

  activityFreqencies.put(a, freq+1) 

foreach (k1,k2) in candidateList do 

  if k2 = a && activityFrequencies.get(k1) > 0 then 

      acts <- fulfilledActivations.get((a,k2)) 

      fulfilledActivations.put((a,k2), acts+1) 

  if isLastEvent do 

    acts <- fulfilledActivations.get((k1,k2)) 

    if acts = activityFrequecies.get(k2) do 

      cases <- fulfilledCases.get((k1,k2)) 

      fulfilledCases.put((k1,k2), cases+1) 

       

Algorithm 2: Precedence constraint pseudo code 

 

Existence replayer 

 

The 𝐸𝑥𝑖𝑠𝑡𝑒𝑛𝑐𝑒(𝑛) constraint can be described as such – Activity 𝑎 is executed at least 𝑛 times. 

The 𝐴𝑏𝑠𝑒𝑛𝑐𝑒(𝑛) constraint description is as follows – Activity 𝑎 is executed at most 𝑛 − 1 

times. The 𝐸𝑥𝑎𝑐𝑡𝑙𝑦(𝑛) constraint can be described as follows – Activity 𝑎 is executed exactly 

𝑛 times. The pseudo code for the Existence, Exactly and Absence replayers can be seen from 

Algorithm 3. A brief explanation of the pseudo code can be explained as such: 

1. Define map 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑𝐶𝑎𝑠𝑒𝑠 and set 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠 

2. If 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠 contains activity 𝑎, increment its frequency 

3. Iterate over 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡 list items 𝐾 

3.1. In case of last event, get the number of activity frequencies for 𝑘 from  

3.1.1. If the existence condition for activity frequencies for k holds, the number of 

fulfilled cases for 𝑘 is incremented 

The list of different existence conditions are: 

 Existence(n) - the frequency must be greater than or equal to n 

o Possible constraints are Existence, Existence2 and Existence3 

 Absence(n) - the frequency must be at most n-1 

o Possible constraints are Absence, Absence2 and Absence3 

 Exactly(n) - the frequency must be exactly n 

o Possible constraints are Exactly1 and Exactly2 
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Input: candidateList the candidate list from phase one 

       e =(c,a,t) the event to be processed (c is the case id of the event, 

       a is the activity name, t is the timestamp) 

 

if fulfilledCases is not defined then define map fullfilledCases 

if activityFrequencies is not defined then define map activityFrequencies 

if activityFrequencies.constaintsKey(a) 

  freq <- activityFrequencies.get(a) 

  activityFreqencies.put(a, freq+1) 

foreach (k) in candidateList do 

  if isLastEvent do 

    acts <- activityFrequencies.get(k) 

    if existenceCondition(acts) do 

      cases <- fulfilledCases.get(k) 

      fulfilledCases.put(k, cases+1) 

Algorithm 3: Existence (and similar constraints) pseudo code 

 

4.3 The final result 

 

As mentioned in the introduction, the result of this thesis is an application that improves of the 

existing DeclareMiner plugin for ProM. The application that has been developed for this thesis 

is intended to be run for a command line interface such as Unix Terminal or Windows 

Command Line. The application is available open source as a JAR file which makes it easier to 

integrate into Java web applications for example. The application retains the initial functionality 

of the DeclareMiner plugin but with improved performance and richer outputs.  

The only input it gets is a configuration file as an absolute file path where one can specify the 

following arguments set in the format of variable=value. The arguments to be used are: 

1. log_file_path which is the path of the log file to be processed (using either XES or 

MXML as an extension, compressed log files with an extra GZ extension are also 

accepted ) 

2. templates as a comma separated string of desired template names (e.g. Succession, 

Response, Precedence etc.) 

3. min_support which is the minimum support used for constraint filtering (ranges between 

0 to 100) 
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4. alpha which is the alpha value also used for constraint filtering (either 0 or 100). Shortly 

put, it enables (0) or disables (100) the vacuity detection. If the vacuity detection is 

enabled only constraints that are activated and satisfied frequently will be discovered. 

If vacuity detection is disabled, also vacuously satisfied constraints will be discovered. 

For example, for a 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 constraint, requiring that every occurrence of a must be 

followed by an occurrence of b, all the traces that do not contain any occurrence of a 

trivially (or vacuously) satisfy the constraint. 

5. output_path to specify the absolute path of the output file 

6. output_file_type which is used to select the desired format of the output file. Possible 

values are XML, TEXT and REPORT which are explained below. 

To run the jar file it must be called using the following command: 

java –cp declare_miner.jar BetterMiner /path/to/configuration_file 
 

The declare_miner.jar is the file to be executed. BetterMiner is the class that is used to start the 

mining job and the /path/to/configuration_file is an example path where the configurations file 

is stored. 

The output it provides is one of three different type of files: 

1. XML which is an XML file formatted to be read by the Declare Designer 

2. TEXT that features a simple list of constraints discovered with the corresponding 

support 

3. REPORT which is a human readable output that can be understood by a person not 

expert of process mining and Declare. It uses simple and logical sentences to convey 

the constraint’s essence. For every constraint it also lists the witnesses (cases in which 

the constraint is satisfied), counter examples (cases in which the constraint is violated) 

and vacuous cases. 

An example of the text file are the following lines: 

Response(Receive Order-complete, Send Invoice-complete): 1.0 
Response(Receive Order-complete, Receive Payment-complete): 1.0 
Response(Receive Payment-complete, Send Invoice-complete): 1.0 
Response(Receive Payment-complete, Ship Products-complete): 1.0 
Response(Receive Order-complete, Ship Products-complete): 1.0 
Response(Ship Products-complete, Send Invoice-complete): 1.0 
 
 
 
 
 



23 

 

An example of the report are these sentences: 

Whenever activity 'Receive Order-complete' is executed, activity 

'Send Invoice-complete' is eventually executed afterwards. 

witnesses (100,00% of cases, 3 cases in total): 1, 2, 3 

counter examples (0,00% of cases, 0 cases in total):  

vacuous cases (0,00% of cases, 0 cases in total):  

Whenever activity 'Receive Order-complete' is executed, activity 

'Receive Payment-complete' is eventually executed afterwards. 

witnesses (100,00% of cases, 3 cases in total): 1, 2, 3 

counter examples (0,00% of cases, 0 cases in total):  

vacuous cases (0,00% of cases, 0 cases in total): 

The source code for the application can be accessed using the following hyperlink 

https://bitbucket.org/taavi_kala/declareminerwithaprioriandreplayers/src  

https://bitbucket.org/taavi_kala/declareminerwithaprioriandreplayers/src
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5 Benchmarks 

 

In our experiments, the old implementation of the DeclareMiner using apriori and automata was 

compared to approach with replayers presented in [1] and the new implementation proposed in 

this thesis using apriori and replayers. The time was recorded in milliseconds and it corresponds 

to the start and end time of pruning part of the whole algorithm. The old implementation is 

referred to as “automata + apriori”, the replayers implementation as “replayers” and the new 

version as “replayers + apriori” in the graphs. 

The benchmarking tests were carried out on multiple different synthetic logs and real-life logs 

that were provided for the BPI Challenges in years 2012, 2013 and 2014. 

The tests were run using configurations where different minimum support values (60, 70, 80, 

90 and 100) and alpha values (0 and 100 i.e. enabled and disabled vacuity detection) were used. 

This was done for each template separately and after that for all templates together as the 

templates argument in the configuration file can handle comma separated values. The overall 

results show that the new implementation outperforms the other two. 

The scripts for generating logs and running the tests can be found at the project source code 

(generate-logs.rb and tests-runner.rb).  

The machine where the tests were run on is a KVM (Kernel-based Virtual Machine) and has 

the following specifications: 

 CPU – 8 cores, 2.5 GHz each 

 RAM – 32 GB 
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5.1 Synthetic logs 

 

Synthetic logs were generated using the generator described in [14] that has the ability to 

generate logs for a combination of given command line arguments. The log contents were 

generated based on three different arguments: 

1. Log size which determines how many different traces will be generated into the log. 

The values used were 100, 200, 500, 700, 1000, 2000, 5000 and 7000. 

2. Trace length which determines the number of events inside a single trace. Values used 

were 5, 10, 20, 25 and 30. The minimum and maximum trace lengths was equally 

valued to keep the logs consistent so each trace had exactly n events. 

3. Alphabet size which determines the number of different activities to be generated into 

the log. The values used were 5, 10, 15, 20 and 25 where each of the numbers mean a 

number of colon-separated Latin alphabetical characters inside a string (A:B:C:D:E 

for 5, A:B:C:D:E:F:G:H:I:J for 10 etc.) 

Synthetic logs were generated in the following way - while changing one argument, other 

arguments were using fixed values i.e. while generating logs based on different log size the 

trace length was fixed to 15 and alphabet size to 20. The fixed value for log size while 

generating different trace lengths and alphabet sizes was 1000. 

 

Varying the log size 

 

For these logs the results are presented for different values of minimum support and alpha. 

Other values are fixed to alphabet size 20, trace length 15 and the results are taken from 

configuration where all templates are benchmarked together 

In general it can be seen that the performance of the replayers and apriori, in case of vacuity 

detection enabled, is much faster compared to the automata and apriori. After disabling the 

vacuity detection the difference is even more evident. 

Minimum support 80% and 90% results show little difference to previous minimum support 

values. The more noticeable observation is that the replayers only implementation becomes less 

efficient than automata and apriori for log sizes 5000 and 7000 (figures 6 and 7). 

In case of minimum support 100% the replayers and apriori does perform better than the 

automata and apriori but less significantly especially in case of enabled vacuity detection.  
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Figure 4: Log size results for minimum support 60% 

 

 

Figure 5: Log size results for minimum support 70% 
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Figure 6: Log size results for minimum support 80% 

 

 

Figure 7: Log size results for minimum support 90% 
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Figure 8: Log size results for minimum support 100% 
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Varying the trace length 

 

The results of the following logs, which were generated by changing the trace length and fixing 

log size to 1000 and alphabet to 20, are presented based on the minimum support and alpha 

values (vacuity detection) as well. 

Similarly to previous results, based on the log size, trace length benchmarks are much better for 

the replayers and apriori. Disabling the vacuity detection makes the automata and apriori very 

slow compared to the replayers and apriori. 

It can be seen from the 100% minimum support graphs that the results for the automata and 

apriori in case of 5, 10 and 15 events per trace are quite good, outperforming the replayers only 

implementation in case of enabled vacuity detection. This also applies to the disabled vacuity 

detection but only for 5 and 10 events per trace. The replayers and apriori shows steady results 

that are faster than both other implementations in any case. 

 

 

Figure 9: Trace length results for minimum support 60% 
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Figure 10: Trace length results for minimum support 70% 

Figure 11: Trace length results for minimum support 80% 
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Figure 12: Trace length results for minimum support 90% 

 

Figure 13: Trace length results for minimum support 100%  
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Varying the alphabet size 

 

The third set of synthetic logs that were tested are the ones where the alphabet size varied from 

5 to 25 with 5 point increments while trace length was fixed to 15 and log size to 1000. The 

results for this set are also presented for all the possible minimum support values and both 

enabled and disabled vacuity detection values. 

The results show that both the replayers and apriori and the replayers only implementation are 

faster than the automata and apriori in both vacuity detection cases. It can also be seen from 

figure 14 that the automata and apriori gains performance as the alphabet size increases in case 

of enabled vacuity detection. 

The automata and apriori for minimum support 100% performs rather well compared to the 

replayers only implementations in case of enabled vacuity detection. The automata and apriori 

is able to keep a steady 1 second execution time in nearly all cases while for the replayers only 

version the execution time increases linearly. For disabled vacuity detection the results are 

worse for the automata and apriori. Nevertheless, the replayers and apriori still outperforms the 

automata and apriori and the replayers only implementation in all cases as can be seen from 

figure 18. 

 

 

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Ti
m

e 
in

 m
ill

is
ec

o
n

d
s

Number of different possible activities in the log

Vacuity detection enabled

automata + apriori replayers replayers + apriori

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

Ti
m

e 
in

 m
ill

is
ec

o
n

d
s

Number of different possible activities in the log

Vacuity detection disabled

automata + apriori replayers replayers + apriori



33 

 

Figure 14: Alphabet size results for minimum support 60% 

 

 

Figure 15: Alphabet size results for minimum support 70% 
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Figure 16: Alphabet size results for minimum support 80% 

 

 

Figure 17: Alphabet size results for minimum support 90% 

 

Figure 18: Alphabet size results for minimum support 100% 
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Template variation 

 

Finally in the synthetic log results, the test results for single templates and with all templates 

together can be seen in figures 19 and 20 with vacuity detection enabled and disabled 

respectively. These graphs have been scaled logarithmically due to significant differences in 

the test result times especially for disabled vacuity detection. The execution time for each 

template varies but the most important observation is that the replayers and apriori is showing 

better results than its counterparts in most cases especially in case of all templates together. For 

cases where the automata and apriori was faster than the new implementation the actual 

difference in the execution time was a maximum of 100 milliseconds which can be considered 

not so relevant. These cases are Absence2 and Absence3 constraints in both vacuity detection 

cases. The fastest implementation for these two constraints as well as Absence turned out to be 

the replayers only implementation for enabled vacuity detection. For disabled vacuity detection, 

the replayers only implementation also showed better results than the new implementation for 

Alternate Precedence, Alternate Response, Chain Precedence, Chain Response, Exactly1, 

Exactly2 and Init constraints. The results for template variation are provided for alphabet size 

20, log size 100, trace length 15 and minimum support 80%.  

 

 

Figure 19: Template variation results for minimum support 80% and enabled vacuity 

detection 
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Figure 20: Template variation results for minimum support 80% and disabled vacuity 

detection 
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5.2 BPI Challenges 

 

BPI Challenges are a bit more hefty logs that contain a random number of traces, trace lengths 

and alphabets. They consist of real-life event logs recorded during the execution of business 

processes in different context. Due to the fact that the old DeclareMiner implementation would 

have ran for several days for some configurations, they are not always explicitly specified. 

 

2012 year challenge results 

 

The 2012 year BPIC Challenge log was taken from a Dutch Financial Institute and contains 

262200 events in 13087 traces. The graphs for this challenge feature results for different 

minimum support values and both vacuity detection cases as shown in figures 21 and 22. The 

automata and apriori would have taken several days to finish with the tests with disabled vacuity 

detection so only the replayers and apriori and replayers only implementation results are 

provided for this configuration. 

Figure 21 shows that even for real life logs the new replayers implementation with apriori 

results in significant improvement over the automata and apriori with enabled vacuity detection. 

The average value for the replayers and apriori stays around 11 seconds compared to the average 

result of 2 minutes recorded for the automata and apriori implementation and the average result 

of 5 minutes for the replayers only implementation.  

The graph for disabled vacuity detection only features the results for the replayers and apriori 

and the replayers only implementation. The automata and apriori would have taken several 

hours to complete the whole results, replayers version handled it in under 6 minutes but the 

replayers and apriori gave even better results, at a maximum of 1 and a half minute and a 

minimum of 30 seconds. 
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Figure 21: BPI Challenge 2012 minimum support result for enabled vacuity detection 

 

 

Figure 22: BPI Challenge 2012 minimum support results for disabled vacuity detection 
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2013 year challenge results 

 

The 2013 year BPI Challenge log was taken from Volvo IT Belgium branch and it contains 

events from an incident and problem management system called VINST. The number of events 

in this log is 65533 and the number of traces 7554. 

Figure 23 shows that the replayers and apriori has superior performance in both vacuity 

detection cases. Note that the automata and apriori took around two minutes to prune the 

candidates for 60% and 70% minimum support but only 26 seconds to do the same for minimum 

supports 80%, 90% and 100% for enabled vacuity detection. The average result for the replayers 

and apriori stays around 3 seconds for enabled vacuity detection. For disabled vacuity detection, 

the automata and apriori took 28 minutes to finish with minimum support 60% results and then 

dropped to 99 seconds for minimum support 100%. For disabled vacuity detection, the replayers 

and apriori took a maximum of 8 seconds to completely prune the candidate constraints. 

2014 year challenge results 

 

The 2014 year challenge log was taken from Rabobank Group ICT. The number of events in 

this log is 466737 and the number of traces 46616. 

The automata and apriori would have taken several days to complete all the possible 

combinations of results for disabled vacuity detection. The replayers and apriori and the 

replayers only implementation took reasonable amount of time to complete the tests and thus 

results for these two implementations are provided for both disabled and enabled vacuity 

detection. 

Even for enabled vacuity detection, the results for the automata and apriori are much slower 

compared to both replayers and apriori and the replayers only version. The 60% minimum 

support configuration took 2 and a half hours to prune the candidate constraints compared to 

the 31 seconds on the replayers and apriori. 

Figure 25 shows the results for the replayers only version compared to the replayers and apriori 

version of the algorithm for disabled vacuity detection. While the replayers only version took 

15 minutes to complete for the minimum support 60%, the new implementation did the same 

job in 18 seconds. 
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Figure 23: BPI Challenge 2013 minimum support value results 

 

 

Figure 24: BPI Challenge 2014 minimum support values for enabled vacuity detection 
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Figure 25: BPI Challenge 2014 minimum support values for disabled vacuity detection 
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6 Conclusion 

 

Process mining is becoming more and more relevant for companies for analyzing their business 

processes. The existing solutions for declarative process mining are actively used and widely 

recognized but there is still room for improvement. In this thesis an existing implementation of 

mining declarative process models from event logs, a plugin called DeclareMiner for the ProM 

framework, was taken as basis and an improved version of it was developed. The new 

implementation uses the approach based on replayers mentioned in [1]. The algorithms based 

on replayers were fit into the existing algorithm implemented in DeclareMiner. The new 

implementation is completely separated from the ProM framework. It is a standalone 

application that can easily be used as a JAR file in any situation needed. 

Based on the comparison results of the automata and apriori and replayers and apriori, in most 

of the cases tested, the new implementation outperformed the old one. There were few 

configurations where the old implementation was performing better but the difference was very 

minimal and can be considered irrelevant. Disabling vacuity detection showed the largest 

difference in results. 

On top of improved performance, the new implementation of DeclareMiner gives the user the 

ability to choose between three different output types. Instead of having only one option of 

output, the previous XML file that was only readable by specific Declare Designer software, 

the new implementation is also able to generate simple text files containing all discovered 

constraints or a fully human-readable office report where one can see the discovered constraints 

in a manner that is understandable to a person not familiar with Declare. 

For future work, multiple ideas are currently available. One of the ideas is to take the newly 

developed standalone application and fit it into a web application called RuM so it would be 

more widely accessible. Another idea is to extend the supported configurations such as the 

ability to repair existing models and adding support for additional declare perspectives such as 

time and data. 
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