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1 Introduction

1.1 Historical review of literature

In the linear elastic fracture mechanics it is a well-known matter that in the
case of repeated or cyclic loading, also under conditions of extreme loads,
temperature etc. micro and macro cracks can occur in the structural ma-
terial. The basics of the fracture mechanics are presented in the books by
Anderson [3], Broberg [14], Broek [15], Wen [90], Williams [91] and others.
The presence of a crack in a beam, plate or shell usually deteriorates its
response to external loads. This involves the need to account for cracks and
other defects in the analysis of thin-walled structures. As regards to thin-
walled columns, arches, plates and shells then probably the most dangerous
deformation mode is the loss of stability. Thus it is important to account
for the influence of cracks and other defects on the behavior of structures
subjected to axial compression.

The loss of stability of thin-walled structures is investigated by many
researchers. The basic studies in this area can be found in the books by
Alfutov [1], Atanackovic [7], Bazant [11], Bazant, Cedolin [12], Carrera et al
[22], Farshad [31], Iyengar [35], Jones [37], Reddy [67, 68], Simitses [72, 73,
74], Thomsen [77], Timoshenko, Gere [78], Vlasov [81], Volmir [82], Wang et
al [85, 86], Ziegler [97] and others. One of the first papers devoted to the
investigation of stability of cracked beams under compression is the paper
by Okamura et al [65]. Recognizing the matter that a crack or a defect
usually reduces the flexural rigidity of a beam and its load carrying capacity
and increases the lateral deflections of eccentrically compressed beams the
authors of [65] employed the results of experiments conducted by Gross and
Srawley [33] in order to calculate the value of the stress intensity factor at
the crack tip. The latter is coupled with the compliance due to the crack. It
was recognized that the bending of a cracked section causes a tensile mode
stress field at the crack tip which can be assessed by the stress intensity
factor. Here the idea of the concept of the rotational spring was suggested
and employed in the case of beams hinged at both edges. Later this concept
was extended by Anifantis, Dimarogonas [4, 5, 6], Dimarogonas [28, 29],
Chondros et al [25, 26] to the case of beam elements with cracks subjected
to various generalized stresses.

Nikpour [63] and Nikpour, Dimarogonas [64] developed similar approach
to composite bodies and applied it for the buckling analysis of composite
columns weakened by cracks.

Investigating the bending with stretching of an elastic plate containing
a part-through surface crack Rice and Levy [69] introduced the concept of
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a distributed line-spring. According to this method the crack is modeled
as a continuous line spring having both stretching and bending resistance;
its compliance coefficients are to be matched those of an edge cracked strip
in plane strain. Extending the ideas of the “distributed line spring method”
Anifantis and Dimarogonas [4] introduced a 5× 5 matrix in order to prescribe
the influence of generalized stresses on the local compliance of the structure.

In the one-dimensional case when the dominating stress component is
bending moment this approach is known as “massless rotational spring meth-
od”. According to the rotational spring method the influence of a crack on
the local flexibility can be modelled by a system consisting of two segments
of the beam connected with the massless rotational spring of given stiffness.
This concept was employed for investigation of stability of cracked columns
by Caddemi et al [16]–[21], Challamel and Xiang [23], Skrinar [75], Li [57, 58]
and Wang [87]. Lellep and Sakkov [56] studied the stability of elastic stepped
columns with stable cracks at the re-entrant corners of steps making use of the
shape function obtained by the interpolation of experimental data by Brown,
Gross and Srawley (see Tada et al [76], Murakami [62]) by the polynomials
of the fourth order. In [54] the method of the massless spring is used and
the stress intensity coefficent is constructed with the help of the bending
moment.

The dynamic behavior of beams with cracks was studied by Alsabbagh et
al [2], Yang and Chen [92], Chondros et al [25], Shen and Pierre [71], Kukla
[42], Viola and Marzani [80]. Recently Zheng and Fan [95] have developed
a procedure for determination of buckling loads for hollow columns injured
with cracks. Although the paper [95] deals with hollow-sectional beams of
rectangular cross-sections the attention is paid to tubular beams with circular
cross-sections also. The both, the stability and natural vibrations of tubular
beams are studied and the local flexibility is calculated with the aid of the
stress intensity coefficient. The shape function is taken in the form including
trigonometrical functions. Tubular hollow elements are considered also by
Lellep and Liyvapuu [50]. In [48, 49, 50] natural vibrations of curved beams
and arches with cracks are studied with the aid of the similar method. In [47]
this method is applied for determination of eigenfrequencies of free vibrations
of nano-beams.

Jiki [36] presented the stability analysis of the cracked beam in the case
of a following force based on the Liapunov’s method. Zhou and Huang [96]
investigated the case of eccentrically loaded columns, Cicirello and Palmere
[27] studied the case of multiple cracks. Fan and Zheng [30] used for the
stability analysis of Timoshenko beams the Fourier’ series. The vibration of
a beam with an internal hinge was studied by Wang and Wang [84], Wang
and Chase [88] as well as Wang and Quek [89] developed analytical models
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for the analysis of columns with piezoelectric layers and repair of a cracked
column under axially compressive load.

Euler-Bernoulli beams with jump discontinuities are studied with the help
of generalized functions by Yavari and Sarkani [93].

The post-buckling analysis is undertaken by Ke et al [38]. Chen and
Meguid [24] have concentrated at the buckling of initially curved microbeams;
Li et al [59] studied thermally and electrically actuated microbeams.

Barkanov et al [8, 9, 10] developed efficient algorithms for numerical op-
timization of laminated and composite structures. The general theory of
thin-walled composite beams was developed by Librescu and Song [60].

In previous papers it was assumed that the beams, plates and shells are
subjected to a fixed system of loading. The case of a stochastic loading
combined with the topology optimization is studied by Logo [61].

Yokoyama and Chen [94] used a 2 × 2 matrix for prescribing the local
compliance caused by the crack. Lellep et al [43]–[56] extended this concept
for determination of natural frequencies of axisymmetric vibrations of circular
cylindrical shells, circular arches and rectangular plates resting on an elastic
foundation.

Circular cylindrical shells made of homogeneous and composite material
have been investigated in [51]–[55] in the case of stepped thickness. The tubes
are weakened with circular cracks which are located at the cross-sections
associated with the abrupt change of the thickness. Lellep and Liyvapuu
[48, 49, 50] concentrated on the free vibrations of circular arches with stable
surface cracks. The paper [43] is devoted to the determination of eigenfre-
quencies for plates resting on an elastic foundation. In [47] an approximate
method is developed for the investigation of free vibrations of nano-beams.

In the current thesis an approximate method is developed for the assess-
ment of critical buckling loads of stepped beams and columns weakened with
cracks or crack-like defects.

1.2 Aim of the dissertation

The aim of the thesis is to determine critical buckling loads of stepped beams
and to study the sensitivity of the critical load on the parameters of stable
cracks, such as location and depth. Combining the methods of the elastic
beam theory and of the linear elastic fracture mechanics an approximate
method for the stability analysis of beams and columns subjected to the
axial pressure is developed. Introducing the additional compliance matrix
the flexibility of the beam in the vicinity of a crack is prescribed by means
of the compliance of the structure. This, in turn, is coupled with the stress
intensity factor which can be calculated by methods of the linear elastic
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fracture mechanics. Critical buckling loads of stepped columns subjected
to the axial pressure and weakened with cracks emanating from re-entrant
corners of steps are established. Numerical results are presented for uniform
and hollow beams with single step of the cross section, also for two-stepped
beams. The beams under consideration are cantilevers, elatically fixed or
resting on elastic foundation.

1.3 Structure of the dissertation

The dissertation is organized as follows. Section 1 contains historic back-
ground of the stability analysis, the aim and the structure of the dissertation.
In section 2 the concept of local flexibility is described in detail. In sections
3, 4, 5 and 6 the method is applied to partcular cases of beams.
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2 The main concepts

2.1 Governing equations

Long beams of rectangular cross section are usually considered as particular
cases of rectangular plates (see Vinson [79], Reddy [67, 68]). In the case of
relatively long beams it is reasonable to assume that the constitutive equation
can be presented as [56, 67, 85]

M = −EjIjv
′′
. (2.1)

In (2.1) M stands for the bending moment, v is the displacement in y-
direction. Prims denote the differentiation with respect to x, Ej is Young’s
modulus for the section Sj = (aj, aj+1) and Ij = BH3

j /12 being the moment
of inertia where B is the width and Hj the height of the beam. From the
equilibrium of a beam element it follows that (here N = −P )

M ′′ − Pv′′ = 0, (2.2)

provided the second order bending theory is employed. Here P is axial load-
ing. Combining the last equation with (2.1) yields

(EjIjv
′′
)
′′ − Pv′′ = 0. (2.3)

Note that in the case of inhomogeneous and composite material the modu-
lus Ej can be a function of the coordinate x. However, we can choose sections
(aj, aj+1) relatively small and use the averaged value of the modulus Ej for
the section Sj. Therefore, it is reasonable to assume that Ej = E = const
and Ij = const for x ∈ Sj. Thus the equation (2.3) can be converted into

v
′′′′

+
λ2
j

l2
v

′′
= 0 (2.4)

where

λ2
j =

Pl2

EIj
. (2.5)

General solution of (2.4) is

v = Aj cosλjξ +Bj sinλjξ + Cjξ +Dj (2.6)

for ξl ∈ Sj; j = 0, . . . , n. Here Aj, Bj, Cj, Dj, j = 0, . . . , n are arbitrary
constants to be defined later and ξ = x/l.
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2.2 The concept of local flexibility

As a rule, cracks and other defects deteriorate the mechanical behavior of
structural elements. The influence of the crack on the buckling and vibration
is modeled with the aid of a weightless rotating spring, as shown by Anifantis
and Dimarogonas [4]. The stiffness of the spring KT is reciprocal to the
additional compliance C owing to the crack.

It is known from the linear elastic fracture mechanics that the energy
release rate caused by the crack propagation

G =
1

2
M2dC

dA
(2.7)

where M is the bending moment applied to the beam and A is the area of
the surface of the crack. It is known also that G = K2(1 − ν2)/E where K
is the stress intensity factor and ν is Poisson’s modulus.

On the other hand, the energy release rate G is coupled with the stress
intensity factor Kj as [3]

Kj = σ
√
πcj · F (sj) (2.8)

where F is so-called shape function to be determined experimentally. A lot of
data can be found from literature about the shape functions for specimens of
various type. According to results of experiments presented in the handbook
by Tada et al [76] one can take

F (sj) = 1.93− 3.07sj + 14.53s2
j − 25.11s3

j + 25.8s4
j (2.9)

where
sj =

cj
Hj

. (2.10)

Another approximation of results of Brown and Srawley for larger cracks
can be presented as [34]

F (sj) =

{
1.99− 2.47sj + 12.97s2

j − 23.17s3
j + 24.8s4

j , 0 < sj < 0.5;

0.663(1− sj)−
3
2 , 0.5 ≤ sj < 1.

(2.11)

Tada et al [76] have also presented an approximation based on the use of
trigonometrical functions as

F (sj) =

√
tan π

2
sj

π
2
sj

·
0.923 + 0.199(1− sin π

2
sj)

4

cos π
2
sj

. (2.12)

Note that different forms of the stress correction function F (sj) are sug-
gested by Chondros et al [25], Freund and Hermann [32], Ostachowich and
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Krawczuk [66] and others. A comparison of these functions was undertaken
by Caddemi and Calio [16].

The approximation (2.9) was widely used for developing solution proce-
dures of particular problems. Dimarogonas [29] studied buckling of rings and
tubes whereas Alsabbagh et al [2], Binici [13], Rizos et al [70], Li [57, 58]
and others employed the flexibility of compressed beams.

c

6

?

H

�

�

�

�

-

-

-

-

σ σ

Figure 1: A specimen with an edge crack

In (2.8) σ is the normal stress at the edge of the specimen in the case of
a streched specimen [70]; see Fig. 1. Note that for a specimen subjected to
the bending moment M , one can take σ = 6M/BH2

j . Combining (2.7) and
(2.8) yields a differential equation

dC

dsj
=

72π(1− ν2)

EBH2
j

sjF
2(sj). (2.13)

Relations (2.7)–(2.13) hold good under the assumption that the only stress
resultant to be taken into account is P1 = M . Anifantis and Dimarogonas [6]
have deduced the energy release rate for general case of loading of a cracked
cross section with Pi (i = 1, . . . , 5).

In this case

G =
1

E

( 5∑
i=1

K1i

)2

+

(
5∑
i=1

K2i

)2

+ (1 + ν)

(
5∑
i=1

K3i

)2
 (2.14)

whereas

Cij =
∂2

∂Pi∂Pj

∫
A

GdA. (2.15)

Here Cij (i = 1, . . . , 5) stand for elements of the compliance matrix [C]. By
inversion of the compliance matrix one can obtain

[K] = [C]−1 (2.16)

where [K] is called local stiffness matrix. However in the present case, C is
a scalar function depending on crack parameters.
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Integrating (2.13) by the help of (2.9) with respect to sj under the con-
dition C(0) = 0 yields

C =
72π(1− ν2)

EBH2
j

f(sj) (2.17)

where

f(sj) = 1.86s2
j − 3.95s3

j + 16.37s4
j − 34.23s5

j + 76.81s6
j

− 126.93s7
j + 172s8

j − 143.97s9
j + 66.56s10

j . (2.18)

Taking KTj =
1

C(aj)
one can state that

KTj =
EIj

6πHjf(sj)(1− ν2)
. (2.19)

It was mentioned above that the model of a massless rotational spring is
used for modeling the local behavior of beam segments adjacent to a crack.
In case of a spring the applied moment M is proportional to the rotational
angle ϕ with coefficient of proportionality, called rigidity. On the other hand,
the rigidity is reciprocal to the compliance C when speaking about elastic
members, eg.

ϕ

C
= M. (2.20)

Evidently, in the latter relation ϕ and M can be replaced with appropriate
generalized displacement qij and generalized force Pij, respectively. In the
case when at cross section x = aj (j = 1, . . . , n) forces Pij (j = 1, . . . , k) are
applied the concept of massless springs yields

Pij =
qij
Cij

. (2.21)

Let us study the case when the moment M is dominating among other
stresses in greater detail. Let

ϕj = v
′
(aj + 0)− v′

(aj − 0) (2.22)

be the angle of rotation due to the crack located at x = aj. Thus, according
to current concept one has

ϕj ·KTj = −M(aj). (2.23)

Substituting the bending moment in (2.23) yields the condition of the slope
discontinuity

v
′
(aj + 0)− v′

(aj − 0) =
EIj
KTj

v
′′
(aj + 0) (2.24)

where KTj = KT (aj).
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3 Elastic beams and columns with cracks

3.1 Formulation of the problem

We are studying the behaviour of stepped beams and columns in the case
of axial compression and loss of stability. The effect of weakening cracks is
taken into account. The column is of rectangular cross-section with piece-
wise constant thickness, so that H = Hj; j = 0, . . . , n for x ∈ Sj where
Sj = (aj, aj+1). The width B of the column is assumed to be constant and
a0 = 0, an+1 = l. The column is clamped at x = 0 and free at x = l. At the
free edge the axial load P is applied.

x6

0


 

 

 

 

 

 

 

 

 



c1

c2

cn

?

P

6

?

a1

6

?

a2

- �H0
2

- �H1
2

- �Hn
2

Figure 2: A stepped beam

An essential feature of the posed problem is that the stiffness of the
column is weakened by flaws or cracks. Let crack of length cj be located
at the re-entrant corner of the step at x = aj (Fig. 2). Similarily to the
papers by Chondros et al [25], Dimarogonas [29] it is assumed herein that the
cracks are stable surface cracks during elastic buckling. On the other hand,
the formation of a crack in an structural element accompanies considerable
change of local flexibility due to the strain energy concentration in the vicinity
of the crack tip. This effect was recognized a long ago by Irwin [34] and other
investigators and many attempts were made to employ it in modeling of the
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influence of the crack on the behavior of beams and plates (see Dimarogonas
[29]).

We are looking for the critical buckling load for stepped beams and
columns subjected to the axial pressure. The aim of the study is to in-
vestigate the influence of crack parameters on the critical load.

3.2 Critical buckling load

The critical buckling load can be determined with the aid of (2.4) satisfy-
ing corresponding boundary and intermediate conditions at ξ = αj (j =
1, . . . , n). Variables v, M and M ′ must be continuous whereas the slope v′

has finite jumps as shown in (2.24). The boundary conditions at ξ = 0 and
at ξ = 1 are (here and henceforth prims denote derivatives with respect to
ξ)

v(0) = 0,

v
′
(0) = 0,

v
′′
(1) = 0,

v
′′′

(1) = λ2
nv

′
(1).

(3.1)

Note that at ξ = αj (j = 1, . . . , n) the displacement v(ξ) must be contin-
uous whereas the slope v′(ξ) satisfies the requirement (2.24). Also, moment
M(ξ) and the shear force M ′(ξ) can not be discontinuous. The latter with
(2.1) means that

EIj−1v
′′(αj − 0) = EIjv

′′(αj + 0),

EIj−1v
′′′(αj − 0) = EIjv

′′′(αj + 0).
(3.2)

On grounds of physical consideration it is evident that the displacement
v must be continuous at each point. Accounting for this matter and taking
(2.24), (3.2) into account one can present the intermediate conditions at
ξ = αj (j = 1, . . . , n) as

v(αj − 0) = v(αj + 0),

v′(αj − 0) = v′(αj + 0)− EIj
KTj l

v′′(αj + 0),

v′′(αj − 0)

λ2
j−1

=
v′′(αj + 0)

λ2
j

,

v′′′(αj − 0)

λ2
j−1

=
v′′′(αj + 0)

λ2
j

.

(3.3)
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Substituting the displacement v and its derivatives from (2.6) into (3.3)
one can present the system (3.3) as

Aj−1 cosλj−1αj +Bj−1 sinλj−1αj + Cj−1λj−1αj +Dj−1

= Aj cosλjαj +Bj sinλjαj + Cjλjαj +Dj,

λj−1(−Aj−1 sinλj−1αj +Bj−1 cosλj−1αj) + Cj−1λj−1

= λj(−Aj sinλjαj +Bj cosλjαj) + Cjλj
−λ2

jkj(Aj cosλjαj +Bj sinλjαj),

Aj−1 cosλj−1αj +Bj−1 sinλj−1αj = Aj cosλjαj +Bj sinλjαj,

λj−1(Aj−1 sinλj−1αj −Bj−1 cosλj−1αj)
= λj(Aj sinλjαj −Bj cosλjαj)

(3.4)

for each j = 1, . . . , n. Here αj = aj/l; kj = EIj/KTj l. Boundary conditions
(3.1) lead to the relations

A0 +D0 = 0,

B0 + C0 = 0,

An cosλn +Bn sinλn = 0,

Cn = 0.

(3.5)

Equations (3.4), (3.5) serve for determination of arbitrary constants Aj,
Bj, Cj, Dj (j = 1, . . . , n). It is a linear homogeneous system of equations
with respect to unknowns Aj, Bj, Cj, Dj where j = 1, . . . , n. This system
has a non-trivial solution only in the case when its determinant vanishes. Let
∆ be the determinant of this system. Then the equation ∆ = 0 admits to
define the critical buckling load.

3.3 Solutions for particular cases

Let us consider first the case when the non-dimensional thickness has the
form

H

H0

=

{
1, ξ ∈ (0, α);

γ, ξ ∈ (α, 1).
(3.6)

In this case according to (3.5)

D0 = −A0, C0 = −B0 (3.7)

and
B1 = −A1 cotλ1, C1 = 0. (3.8)
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Substituting (3.7), (3.8) into (3.4) where j = n = 1 leads to the characteristic
equation

sinλ0α sinλ1(1−α)

[
sinλ0α−

λ0

λ1

cosλ0α cotλ1(1− α) +
k1λ

2
j

λ0

]
= 0. (3.9)

In the case of a two-stepped column (now n = 2) one has

v = A0 cosλ0ξ +B0 sinλ0ξ + C0ξ +D0 (3.10)

for ξ ∈ [0, α],
v = A1 cosλ1ξ +B1 sinλ1ξ + C1ξ +D1 (3.11)

for ξ ∈ [α, β],
v = A2 cosλ2ξ +B2 sinλ2ξ + C2ξ +D2 (3.12)

for ξ ∈ [β, 1]. Here for the conciseness sake the notation α1 = α, α2 = β
is used. Applying the continuity and jump conditions (3.3) to (3.10)–(3.12)
at ξ = α, ξ = β and taking (3.7), (3.8) into account one obtains a linear
homogeneous algebraic system with vanishing determinant ∆. After some
algebraic transformations the equation ∆ = 0 may be expressed as

λ1R2

{
k2λ

2
2 + (k1λ

2
2 + λ0 sinλ0α) cos

[
λ1(α− β)

]
+ λ1 cosλ0α sin

[
λ1(α− β)

]}
+λ2S2

{
(k1λ

2
1 + λ0 sinλ0α) sin

[
λ1(α− β)

]
+ λ1 cosλ0α cos

[
λ1(α− β)

]}
= 0.

(3.13)

In (3.13) the following notation

R2 = − cosλ2β + cotλ2 sinλ2β,

S2 = sinλ2β + cotλ2 cosλ2β
(3.14)

is used.
Similarly in the case of a three-stepped column (now the steps are located

at ξ = α, ξ = β, ξ = δ) one has

λ0λ1λ2R3

{
k3λ

2
3 +

(
k2λ

3
2 + k1λ

2
1 cos

[
λ1(α− β)

])
cos
[
λ2(β − δ)

]
+ k1λ1λ2 sin

[
λ1(α− β)

]
sin
[
λ2(β − δ)

]}
+λ0λ1λ3S3

{(
k2λ

3
2 + k1λ

2
1 cos

[
λ1(α− β)

])
sin
[
λ2(β − δ)

]
+ k1λ1λ2 sin

[
λ1(α− β)

]
cos
[
λ2(β − δ)

]}
= 0.

(3.15)

19



For the conciseness sake in (3.15) the notation

R3 = − cosλ3δ + cotλ3 sinλ3δ,

S3 = sinλ3δ + cotλ3 cosλ3δ
(3.16)

is introduced.

3.4 Results and discussion

Results of calculations are presented in Fig. 3– 8. Calculations are carried
out for the column with dimensions H0 = 0.02 m, B = 0.02 m, l = 1 m. The
material of the column is mild steel with E = 2.01 GPa and ν = 0.3. In Fig.
3, 4 the critical buckling load λ0 for the beam with a single step is presented
for different values of the crack length. Non-dimensional variables

γ =
H1

H0

, α =
a1

l
, s =

c1

H1

(3.17)

are used whereas c1 stands for the crack length located at x = a1.

Figure 3: Critical buckling loads of a stepped beam (α = 0.8)

In Fig. 3 a1 = 0.8l and in Fig. 4 H1 = 0.8H0. It can be seen from
Fig. 4 that the buckling load increases when a1/l increases for fixed thick-
ness ratio γ = 0.8. Similarly, the critical buckling load increases with the
non-dimensional thickness γ when the step location α is fixed, as might be
expected. In the case α = 1 or γ = 1 one obtains a uniform cantilever col-
umn. Corresponding buckling loads coincide with the classical solution for a
cantilever column (see Wang et al [83, 84, 85]).
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Figure 4: Critical buckling loads of a stepped beam (γ = 0.8)

Figure 5: Critical buckling loads of a two-stepped beam (α2 = 0.3)

Taking α = 0 in Fig. 4 one obtains critical buckling loads for a beam of
constant thickness H1 = 0.8H0 with a crack located at the root section. For
instance, the lowest curve in Fig. 4 gives for α = 0 approximately λ0 = 0.48.
This is the buckling load for the beam with crack of length c1 = 0.9H1. The
results presented in Fig. 3, 4 correspond to the form of the function F given by
(2.12). This in turn is associated with the approximation of the experimental
results presented in [76]. For comparison, red lines in Fig. 3 correspond
to the form of the function F given by (2.9). Another approximations for
three-point bend, compact and other types of specimens are presented in the
handbook by Tada et al [76].
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Figure 6: Critical buckling loads of a two-stepped beam (α2 = 0.7)

Figure 7: Critical buckling loads of a two-stepped beam (γ1 = 0.5)

Critical buckling loads for two-stepped columns versus γ2 = H2/H0 are
depicted in Fig. 5–8. Here α1 = a1/l, α2 = a2/l, s2 = c2/H2. Fig. 5 and
6 correspond to the case α1 = 0.2 and γ1 = 0.9 whereas in Fig. 5 α2 = 0.3
and in Fig. 6 α2 = 0.7. It can be seen from Fig. 5, 6 that the results differ
essentially in the range of large cracks and large values of the quantity γ2.
If, however, γ2 is large and cracks are small then corresponding values of the
buckling load compare favourably with each other.

The results presented in Fig. 7, 8 are associated with fixed locations of
steps. Here α1 = 0.5 and α2 = 0.7. In Fig. 7 γ1 = 0.5 and in Fig. 8 γ1 = 0.9.
It reveals from Fig. 7, 8 that the critical buckling load is quite sensitive with

22



Figure 8: Critical buckling loads of a two-stepped beam (γ1 = 0.9)

respect to changes of the thickness in the first section of the column. This
regards especially the cases of large cracks.
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4 Elastically fixed beams and columns with

cracks

4.1 Formulation of the problem

In the present section the loss of stability of stepped beams with defects at
the re-entrant corners of steps is studied under the condition that the cracks
are stable surface cracks. The beams are clamped at an end and elastically
fixed at the other end. The section is based on the papers by Kraav and
Lellep [40, 46]. Let us consider a cantilever beam elastically fixed at the free
end (Fig. 9). It is assumed that the beam or column is subjected to the axial
pressure loading P . Let the origin of the coordinates be located at the center
of the bottom of the beam. The beam under consideration has stepped cross
section with piece wise constant dimensions.
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Figure 9: Elastically fixed stepped beam

In the following we shall concentrate on beams with rectangular cross
section with dimensions B (width) and H (height). However, the analysis
can be easily extended to other types of cross sections. In what follows we
assume that B = const and

H = Hj (4.1)
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for x ∈ (aj, aj+1) (j = 0, . . . , n) where aj and Hj (j = 0, . . . , n) are constant
values. It is reasonable to denote a0 = 0, an+1 = l, l being the length of the
beam.

It is assumed that at the re-entrant corners of steps at x = aj (j =
0, . . . , n) defects or flaws of depth cj are located. It is known that, as a rule,
defects will deteriorate the structural stiffness. That is why it is important
to account for the influence of cracks in the structural analysis.

The aim of the section is to determine critical buckling loads of stepped
beams and to study the sensitivity of the critical load on the location and
depth of stable cracks.

4.2 Critical buckling load

Similarily to the section 3 of the current work one can present the displace-
ments of the central line of the column as

v = Aj cosλjξ +Bj sinλjξ + Cjξ +Dj (4.2)

where ξ = x/l. Note that the solution (4.2) holds good for x ∈ (aj, aj+1),
j=0, . . . , n. In (4.2) Aj, Bj, Cj, Dj stand for arbitrary constants to be defined
from the boundary and intermediate conditions.

Boundary conditions depend on the type of support conditions. In the
case of a beam clamped at ξ = 0

v(0) = 0, v′(0) = 0. (4.3)

However, at the elastically fixed end the boundary conditions are

v′′(1) = 0 (4.4)

and
v′′′(1) + λ2

jv
′(1) = µv(1) (4.5)

where µ is the elastic modulus of the support. Note that (4.5) expresses the
equilibrium of external forces with the shear force whereas (4.4) means that
the bending moment must vanish at ξ = 1.

It was shown above that the displacement v(ξ) is defined by (4.2) in
each section of the column. Evidently, the displacement v(ξ) is continuous
everywhere, in particular at points ξ = αj (j = 1, . . . , n). However, the slope
of the deflection according to the present concept has finite jumps at x = aj,
as shown in (2.24), e.g.

v′(αj + 0)− v′(αj − 0) =
EIj
KTj l

v′′(αj + 0). (4.6)
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Due to their physical background the generalized stresses are continuous, as
well. Evidently, the bending moment M(ξ) and the shear force Q(ξ) are
continuous at ξ = αj, if

EIj−1v
′′(αj − 0) = EIjv

′′(αj + 0),

EIj−1v
′′′(αj − 0) = EIjv

′′′(αj + 0)
(4.7)

for j = 1, . . . , n. Summarizing the results obtained above one can write

v(αj − 0) = v(αj + 0),

v′(αj − 0) = v′(αj + 0)− EIj
KTj l

v′′(αj + 0),

v′′(αj − 0)

λ2
j−1

=
v′′(αj + 0)

λ2
j

,

v′′′(αj − 0)

λ2
j−1

=
v′′′(αj + 0)

λ2
j

.

(4.8)

The equalitics (4.8) hold good for each j=1, . . . , n. Making use of (4.2) one
can present the intermediate conditions (4.8) as

Aj−1 cosλj−1αj +Bj−1 sinλj−1αj + Cj−1λj−1αj +Dj−1

= Aj cosλjαj +Bj sinλjαj + Cjλjαj +Dj,

Aj−1λj−1 sinλj−1αj − λj−1(Bj−1 cosλj−1αj + Cj−1)
= λj(Aj sinλjαj −Bj cosλjαj − Cj)
+λ2

jkj(Aj cosλjαj +Bj sinλjαj),

Aj−1 cosλj−1αj +Bj−1 sinλj−1αj = Aj cosλjαj +Bj sinλjαj,

Aj−1λj−1 sinλj−1αj −Bj−1λj−1 cosλj−1αj
= λj(Aj sinλjαj −Bj cosλjαj).

(4.9)

Note that the system (4.9) is to be solved together with equations follow-
ing from boundary conditions (4.3)–(4.5).

This system consists of linear homogeneous algebraic equations. It is well
known that a linear homogeneous system has a non-trivial solution if and
only if its determinant ∆ equals to zero. The equation ∆ = 0 presents an
equation with respect to the critical load P.

Let us consider in the following the case of the beam with a single step
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in a greater detail. The system of intermediate conditions takes the form

A0(cosλ0α− 1) + A1 cosλ1α +B0(sinλ0α− λ0α)−B1 sinλ1α−
−C1α−D1 = 0,

A0λ0 sinλ0α−B0λ0(cosλ0α− 1) + A1λ1(k1λ1 cosλ1α− sinλ1α)+
+B1λ1(k1λ1 sinλ1α + cosλ1α) + C1 = 0,

A0 cosλ0α− A1 cosλ1α +B0 sinλ0α−B1 sinλ1α = 0,

A0λ0 sinλ0α− A1λ1 sinλ1α−B0λ0 cosλ0α +B1λ1 cosλ1α = 0.

(4.10)

Calculating the determinant of the amplified system and equalizing it to
zero results in

k1λ0λ
2
1 sin[λ1(α− β)](µ(1− α)− λ2

1) + µλ0 cosλ0α sin[λ1(α− β)]+
+µλ1 sinλ1α cos[λ1(α− β)] + λ2

0 sinλ0α sin[λ1(α− β)](µ− λ2
1)−

−λ0λ1 cosλ0α cos[λ1(α− β)](µ− λ2
1) = 0.

(4.11)

4.3 Results and discussion

The results of calculations are presented in Fig. 10–15. Calculations are
carried out for the column with dimensions H0 = 0.02 m, B = 0.02 m, l = 1
m. The material of the column is mild steel with E = 2.01 GPa and ν = 0.3.
Due to the matter that the results will be presented for beams and columns
with a single step it is reasonable to introduce the following notation:

α =
a1

l
, γ =

H1

H0

. (4.12)

Evidently, the eigenvalues λ0, λ1 are related to each other by the equality

λ2
0 = γ3λ3

1. (4.13)

Since the non-dimentional roots λ0, λ1 of the characteristic equation are
coupled by the relation (4.13) in the following we will confine our attention
to the root λ0 only.

In Fig. 10 the eigenvalue λ0 (or non-dimensional critical buckling load)
is presented versus the ratio of thicknesses for a = 0.8l and µ = 1. Red
lines in Fig. 10 correspond to the stress correction function (2.9) suggested
by Dimarogonas resorting to the results obtained by Gross and Srawley [33].

Black lines in Fig. 10–15 correspond to the function F suggested by Tada
et al [76]. It can be seen from Fig. 10 that in the case of small cracks when
c < 0.1H1 the results obtained by different methods are quite close to each
other. It reveals from Fig. 10 that the larger the thickness H1 (or the ratio
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Figure 10: Comparison of results for different correction functions

Figure 11: Eigenvalue λ0 versus ratio of thicknesses

γ) the higher is the critical buckling load as might be expected. Calculations
showed that this tendency remains valid for each value of the step location
a/l. Note that the case µ = 0 corresponds to the beam with absolutely free
edge.

Similar results corresponding to the rigidity of the support µ = 10 are
depicted in Fig. 11. The step location is a = 0.8l, as in the previous case.

It can be seen from Fig. 12 and 13 that the larger is the crack length the
lower is the critical buckling load for fixed value of the ratio of thicknesses.
It is somewhat unexpected that in the range of small values of the crack
length the buckling load is relatively weakly sensitive with respect to the

28



Figure 12: Eigenvalue λ0 versus step location

Figure 13: Eigenvalue λ0 versus step location

crack length (the upper curves in Fig. 12–13 are quite close each other).
Moreover, the elasticity of the support µ has weak influence on the buckling
load in the cases of small cracks as the upper curves in Fig. 10–12 do not differ
drastically for different values of µ. However, in the range of large cracks the
difference between these is more obvious. For instance, the maximal value
of λ0 in the case µ = 1, s = 0.9 is approximately 1.7. However, in the case
µ = 10 and s = 0.9 one has λ0 = 2.5.

Comparing Fig. 13 with Fig. 12 one can see that in the case when µ = 10
values of the critical buckling load are much higher than these corresponding
to lower values of µ.

In Fig. 13 all curves cross the common point at α = 0. This reflects the
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Figure 14: Eigenvalue λ0 versus ratio of thicknesses

Figure 15: Eigenvalue λ0 versus ratio of thicknesses

matter that any crack in the root section of the beam do not influence on
the critical buckling load.

The results of calculations implemented for two-stepped columns are pre-
sented in Fig. 14, 15. In Fig. 14 α1 = 0.2l, α2 = 0.3l and in Fig. 15 α1 = 0.2l,
α2 = 0.7l whereas in both cases H1 = 0.9H0 and µ = 10. It reveals from Fig.
14, 15 that large cracks diminish essentially the critical buckling load.
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5 Buckling of beams and columns on an elas-

tic foundation

Beams and columns subjected to the axial pressure are studied. The beams
under consideration have constant thickness and they are resting on an elastic
foundation. The beams are weakened by cracks. Critical buckling loads are
established for beams clamped at one end and free at the other end.

5.1 Problem formulation and governing equations

Let us consider a cantilever beam of piece wise constant thickness resting on
an elastic foundation. The beam is fixed at one end and it is free at other
end (Fig.16). It has rectangular cross section with dimensions B (width), H
(height) that are constant values. We assume the beams or columns to be
subjected to the axial pressure loading P . Let the origin of the coordinates
be located at the center of the bottom of the beam. Also, let us assume the
beams are weakened by cracks with the length cj as shown in Fig. 16.
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Figure 16: A beam on an elastic foundation

Let us assume that the material of the beam is purely elastic. It can be
shown that the equilibrium equation of a beam resting on an elastic founda-
tion can be presented as [31, 67, 68]

M ′′ − Pv′′ + β̃v = 0. (5.1)

Here prims denote the differentiation with respect to the coordinate x and
v stands for the displacement in the direction of the axis y and β̃ is the
modulus of the foundation. Since

M = EIjκ (5.2)

where
κ = −v′′ (5.3)

and

Ij =
H3
jB

12
(j = 0, . . . , n) (5.4)
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one can write (5.1) as

(EIjv
′′)′′ − Pv′′ + β̃v = 0. (5.5)

The formula (5.5) can be converted into the form

v′′′′ +
λ2
j

l2
v′′ +

(π
l

)4

βjv = 0 (5.6)

where

βj =
12β̃l4

π4EBH3
j

(5.7)

and

λ2
j =

12Pl2

EBH3
j

. (5.8)

Since the fourth order linear equation (5.6) has with constant coefficients one
has to solve the characteristic equation

r4 +
λ2
j

l2
r2 + βj = 0. (5.9)

It can be shown that the solution of (5.9) is given by

r2 = −
λ2
j

2l2
± 1

2

√
λ4
j

l4
− 4βj

=
√
βj

− λ2
j

2l2
√
βj
±

√√√√( λ2
j

2l2
√
βj

)2

− 1

. (5.10)

It follows from the equation (5.9) that the four roots of the characteristic
equations are

r1j = iβ
1
4
j

(
ϕj −

√
ϕ2
j − 1

) 1
2

, r2j = −iβ
1
4
j

(
ϕj −

√
ϕ2
j − 1

) 1
2

,

r3j = iβ
1
4
j

(
ϕj +

√
ϕ2
j − 1

) 1
2

, r4j = −iβ
1
4
j

(
ϕj +

√
ϕ2
j − 1

) 1
2

(5.11)

where

ϕj =
λ2
j

2l2
√
βj
. (5.12)

It can be easily seen from (5.11) that there are three cases that we should
consider: ϕj > 1, ϕj = 1, ϕj < 1.
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5.2 Solution for a cantilever beam

Firstly, let us consider the case of ϕj > 1. If we denote the real positive
parameters s1 and s2 as

s1j = β
1
4
j

(
ϕj −

√
ϕ2
j − 1

) 1
2

, s2j = β
1
4
j

(
ϕj +

√
ϕ2
j − 1

) 1
2 (5.13)

we can write the four roots of characteristic equation (5.9) as

r1j = is1j, r2j = −is1j, r3j = is2j, r4j = −is2j. (5.14)

Now the real part of the general solution of the equation (5.6) is

v1j = A1j cos s1jξ +B1j sin s1jξ + C1j cos s2jξ +D1j sin s2jξ (5.15)

where ξ = x/l. In (5.15) A1j, B1j, C1j, D1j, j= 0, . . . , n stand for arbitrary
constants to be defined from the boundary and intermediate conditions.

As boundary conditions depend on the type of support conditions, then
in the case of a beam clamped at the left end and free at the right end one
has at ξ = 0

v(0) = 0, v′(0) = 0 (5.16)

and at ξ = 1
v′′(1) = 0, v′′′(1) + λ2

jv
′(1) = 0. (5.17)

For the case of ϕj = 1 let us denote the real positive parameter s3j as

s3j = β
1
4
j

(5.18)

and write the four roots of characteristic equation (5.9) as follows:

r1j = is3j, r2j = −is3j, r3j = is3j, r4j = −is3j. (5.19)

Here the real part of the general solution of the equation (5.6) is

v2j = A2j cos s3jξ +B2j sin s3jξ + C2j cos s3jξ +D2j sin s3jξ. (5.20)

Finally, if we consider the case of ϕj < 1 we write the four roots of
characteristic equation (5.9) as

r1j = iβ
1
4
j

(
ϕj − i

√
ϕ2
j − 1

) 1
2

, r2j = −r1j,

r3j = iβ
1
4
j

(
ϕj + i

√
ϕ2
j − 1

) 1
2

, r4j = −r3j

(5.21)
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or

r1j = tj + iuj = ηj, r2j = −r1j,

r3j = −tj + iuj = ωj, , r4j = −r3j

(5.22)

where

tj = β
1
4
j

√
1− ϕj

2
, uj = β

1
4
j

√
1 + ϕj

2
. (5.23)

Here the real part of the general solution of the equation (5.6) is

v3j = A3j cosh ηjξ +B3j coshωjξ + C3j sinh ηjξ +D3j sinhωjξ. (5.24)

5.3 Results and discussion

The results of calculations in the case of a beam with no cracks are presented
in Fig. 17. Here the critical buckling load versus β is portrayed. Calculations
showed that the stability of the beam essentially depends of the parameters
of the foundation.

Figure 17: Critical buckling load versus the quantity β
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6 Buckling of beams and columns with hol-

low cross-sections

The stability of elastic beams and columns is investigated. The beams are
subjected to the axial pressure at the elastically supported end whereas the
other end of the beam is clamped. The attention is confined to the case
of the beam of rectangular cross-section of piece wise constant thickness.
The hollow-sectional beams are considered. It is assumed that the beams
are weakened by stable cracks. The influence of crack parameters on the
critical buckling load is assessed making use of the method of massless rota-
tional spring. The aim of this section is to reveal the influence of cracks on
the critical buckling load of the weakened beam. The knowledge about the
sensitivity of the buckling load on the crack parameters is essential in the
practice as in many cases the operation of structural members is admitted
in the stage of small cracks.

6.1 An hollow-sectional beam

Let us consider the elastic buckling of a stepped beam subjected to the axial
load P . It is assumed that the loaded end is elastically fixed and the other
end is fully fixed (Fig. 18).

It is assumed that the beam has hollow-sectional cross sections (Fig. 18).
Let the external dimensions of the cross section be B (width) and H (height).
The internal dimensions are b (width) and h (height). It is assumed that

H = Hj (6.1)

for x ∈ (aj, aj+1), j = 0, . . . , n. For the sake of simplicity it is assumed
that h = const, b = const , B = const . The stepped beams are weakened
by cracks or crack-like defects located at the re-entrant corners of steps at
x = aj (j = 0, . . . , n). Let the crack or flaw located at x = aj be with length
cj. The area of the crack is denoted by AC = A0j, j = 0, . . . , n. It is assumed
that

hj = h, (6.2)

also
Bj = B, (6.3)

and
bj = b (6.4)

for j = 0, . . . , n.
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Figure 18: Elastically fixed hollow beam

6.2 The deflected shape of the beam

The displacements of curved beams are presented by (2.6) where ξ = x/l;
Aj, Bj, Cj, Dj are arbitrary constants and

λ2
j =

Pl2

EIj
(6.5)

where j = 0, . . . , n whereas Ij is the moment of inertia of the current cross
section defined as

Ij =

∫∫
Ωj

y2dydz. (6.6)

In (6.6) Ωj (j=0, . . . , n) stands for the configuration of the cross section
of the beam occupied by the material. For the configuration presented in
Fig. 18 one easily obtains

Ij =
1

12

(
BH3

j − bh3
j

)
. (6.7)

Thus, in the cases where H and h are not constants (6.5) could be put onto
the form

λj =

√
12Pl2

E(BH3
j − bh3

j)
(6.8)
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for j = 0, . . . , n. For determinations of the deflected shape of the beam one
has to determine the arbitrary constants in (2.6). For this purpose one can
use the boundary requirements at ξ = 0

v(0) = 0, v′(0) = 0 (6.9)

and at the elastically fixed end at ξ = 1

v′′(1) = 0, v′′′(1) + λ2
jv
′(1) = µv(1). (6.10)

In (6.10) µ stands for the modulus of elasticity of the support. At the inter-
mediate cross sections one has to satisfy the continuity and jump conditions
(see Lellep and Liyvapuu [48])

[v(αj)] = 0,

[M(αj)] = 0,

[M ′(αj)] = 0

(6.11)

and

[v′(αj)] =
EIj
KTj l

v′′(αj + 0), (6.12)

where for arbitrary function g(x)

[g(aj)] = g(aj + 0)− g(aj − 0). (6.13)

The quantity kj in (6.12) can be presented in the form

kj = 6πHjf

(
cj
Hj

)(
1− ν2

)
(6.14)

in the case of homogeneous beams with rectangular cross section (see Lellep,
Kraav [46], Lellep, Liyvapuu [48]). However, in the case of rectangular tubes
with external dimensions of the cross section B, Hj and internal dimensions
b, h one has in the case of small cracks with cj < 0.5(Hj − h)

kj =
6πBH4

j

BH3
j − bh3

j

f(sj)
(
1− ν2

)
(6.15)

as shown by Lellep and Liyvapuu [48]. In (6.14) and (6.15) (here sj = cj/Hj)

f(sj) =

∫ sj

0

xF 2(x)dx (6.16)
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where according to Tada et al [76]

F (sj) =

√
tan π

2
sj

π
2
sj

·
0.923 + 0.199(1− sin π

2
sj)

4

cos π
2
sj

. (6.17)

It is worthwhile to mention that (6.17) presents the shape correction
function obtained by the approximation of appropriate experimental data.
It is shown that the correction function in the form (6.17) leads to results
which are quite close to exact ones, if the crack is not extended more than
60 % of the thickness.

6.3 Solutions for particular cases

Consider the case n = 1 in greater detail. Now the displacement can be
presented as

v = A0 cosλ0ξ +B0 sinλ0ξ + C0ξ +D0 (6.18)

for ξ ∈ (0, α) and

v = A1 cosλ1ξ +B1 sinλ1ξ + C1ξ +D1 (6.19)

for ξ ∈ (α, 1). Here α1 = α, α2 = l and ξ = x/l, α = a/l.
It immediately follows from (6.9) and (6.18) that

D0 = −A0, C0 = −B0. (6.20)

Thus, according to (6.18) and (6.20)

v = A0 (cosλ0ξ − 1) +B0 (sinλ0ξ − 1) (6.21)

for ξ ∈ (0, α). Taking (6.18)–(6.21) into account one can present intermediate
conditions (6.11)–(6.12) as

A1 cosλ1α +B1 sinλ1α + C1α +D1

= A0 (cosλ0α− 1) +B0 (sinλ0α− 1) ,

A1λ1 sinλ1α−B1λ1 cosλ1α− C1

= A0λ0 sinλ0α−B0λ0 cosλ0α + k1λ
2
1 (A1 cosλ1α +B1 sinλ1α) ,

I1λ
2
1 (A1 cosλ1α +B1 sinλ1α) = I0λ

2
0 (A0 cosλ0α +B0 sinλ0α) ,

I1λ
3
1 (−A1 sinλ1α +B1 cosλ1α) = I0λ

3
0 (−A0 sinλ0α +B0 cosλ0α) .

(6.22)

The system (6.22) with boundary conditions (6.10) presents a linear sys-
tem for determination of unknown constants A1, B1, C1, D1 and A0, B0.
Equalizing its determinant ∆ to zero leads to the equation for the determi-
nation of the eigenvalue λ0. It infers from (6.5) that

λ1 = λ0

√
I0

I1

. (6.23)
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6.4 Results and discussion

The obtained equation is solved numerically. The results of calculations are
presented in Fig. 19–22.

Figure 19: Critical buckling loads for µ = 0, α = 0.5

Figure 20: Critical buckling loads for µ = 10, α = 0.5

Calculations are carried out for the column with dimensions H0 = 0.02
m, B = 0.02 m, h = 0.01 m, b = 0.01 m, l = 1 m. The material of the
column is mild steel with E = 2.01 GPa and ν = 0.3. In Fig. 19–22 α = a1/l,
γ = H1/H0, s = 2c1/(H1 − h).

In Fig. 19, 20 the eigenvalue (critical buckling load) λ0 versus the ratio
of thicknesses is presented for different values of the crack length. The case
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Figure 21: Critical buckling loads for µ = 0 γ = 0.7

Figure 22: Critical buckling loads for µ = 10, γ = 0.7

µ = 0 corresponds to the column with free edge at x = l (in this case no
restriction is imposed at the free edge). The detailed analysis shows that the
results of the current study coincide with those obtained by Zheng, Fan [95]
in the case γ = 1.

The critical buckling load versus the step location α is depicted in Fig. 21,
22 for different crack extensions. Fig. 21 corresponds to the column with un-
constrained free edge and Fig. 22 to the elastic support with µ = 10. In both
cases H1 = 0.7H0. It can be seen from Fig. 21, 22 that the elastic support
makes the column stronger in comparison to the column with unconstrained
edge. It also reveals from Fig. 19–22 that the highest critical buckling load
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corresponds to the column without any injuries as might be expected. The
another observation to be mentioned is that the critical buckling load is not
sensitive with respect to small cracks as the curves in Fig. 19–22 practically
coincide if s < 0.5.

41



7 Conclusions

A method for determination of critical buckling loads for elastic non-uniform
columns has been developed. The columns are weakened with cracks located
at the internal corners of re-entrant steps. Combining the methods of the
elastic beam theory and of the linear elastic fracture mechanics the influence
of a crack on the stability of the beam is modelled as a change of the local
flexibility of the beam.

Numerical analysis implemented for beams clamped at one end and elas-
tically supported at the other end revealed the matter that the cracks have
essential influence on the critical buckling load in the case of large cracks.
However, calculations showed that small cracks which have penetrated less
than 10 % of the thickness do not aggravate essentially the stability of the
structure.
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Summary

In the present thesis critical buckling loads of stepped beams are studied
and the sensitivity of the critical load on the parameters of stable cracks
as location and depth is analysed. Combining the methods of the elastic
beam theory and of the linear elastic fracture mechanics an approximate
method for the stability analysis of beams and columns subjected to the
axial pressure is developed. Introducing the additional compliance matrix
the flexibility of the beam in the vicinity of a crack is prescribed by means
of the compliance of the structure. This, in turn, is coupled with the stress
intensity factor which can be calculated by methods of the linear elastic
fracture mechanics. Critical buckling loads of stepped columns subjected
to the axial pressure and weakened with cracks emanating from re-entrant
corners of steps are established. Numerical results are presented for uniform
and hollow beams with single step of the cross section, also for two-stepped
beams. The beams under consideration are simply supported or clamped
at the ends, also cantilevers, elastically fixed. The case of beams resting on
elastic foundation is studied separately. The dissertation is based on the six
papers of the author (two of these are published during the last two years).
The dissertation consists of the review of the obtained results, the copies of
the papers, the list of literature and CV of the author.

The dissertation is organized as follows. Section 1 contains historic back-
ground of the stability analysis, the aim and the structure of the dissertation.
In section 2 the concept of local flexibility is described in detail. In sections
3, 4, 5 and 6 the method is applied to partcular cases of beams. The first
case concerns elastic beams that are clamped at one end and free at another
end. Secondly elastically fixed beams are studied in greater detail. In section
5 beams resting on elastic foundation are considered. Finally, in section 6
beams with hollow cross sections are studied. The influence of crack length
and step location on the stability of the beams has been analyzed.
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Kokkuvõte

Pragudega elastsete astmeliste talade stabiilsus

Käesolevas väitekirjas vaadeldakse elastsete astmeliste talade stabiilsust. Töö
aluseks on autori kuus teaduslikku publikatsiooni, millest kolm on avaldatud
viimase kolme aasta jooksul.

Väitekiri koosneb neljast osast: kokkuvõtvast osast ehk kokkuvõtteartik-
list, publikatsioonide koopiatest, kirjanduse ülevaatest ja autori elulookirjel-
dusest.

Antud töös uuritakse elastseid talasid, millele mõjub teljesuunaline koor-
mus. Talad on astmelised ning astme kohtades asuvad defektid ehk praod,
mis antud uurimuses on stabiilsed. Pragude sügavus ja asukoht mõjutab
talade stabiilsust ning stabiilsuse tundlikkust antud parameetrite suhtes on
analüüsitud kombineerides elastsusteooria ja lineaarse purunemismehaanika
meetodeid. Esimeses peatükis tuuakse ajalooline ülevaade kirjandusest. Tei-
ses peatükis esitatakse uurimuse põhialused prao mõju analüüsiks. Praoga
tala uurimiseks kasutatakse nn. kaalutu väändevedru mudelit. Selle mudeli
kohaselt asendatakse praoga tala konstruktsiooniga, mis koosneb kahest tala
tükist (elemendist). Need elemendid on omavahel ühendatud kaalutu väände-
vedruga, mille jäikus on võrdeline pinge intensiivsuse koefitsendiga prao tipu
juures. Järgnevas neljas peatükis uuritakse kriitilise koormuse sõltuvust
prao parameetritest erinevate talade ja kinnitustingimuste korral. Esimesel
juhul on vaatluse all konsooltala, teisel juhul on vabale otsale lisatud elastne
kinnitus. Kolmandaks uuritakse konsooltala, mis asub elastsel alusel ning
lõpetuseks tala, mis on seest õõnes (nelinurkne toru).
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