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The Influence of Different Maternal 
Microbial Communities on the 
Development of Infant Gut and Oral 
Microbiota
Tiina Drell1,2,3, Jelena Štšepetova2, Jaak Simm3,10,11, Kristiina Rull6,7, Aira Aleksejeva6, 
Anne Antson4,5, Vallo Tillmann4,5, Madis Metsis12, Epp Sepp2, Andres Salumets1,7,8,9 & Reet 
Mändar1,2

Very few studies have analyzed how the composition of mother’s microbiota affects the development 
of infant’s gut and oral microbiota during the first months of life. Here, microbiota present in the 
mothers’ gut, vagina, breast milk, oral cavity, and mammary areola were compared with the gut and 
oral microbiota of their infants over the first six months following birth. Samples were collected from 
the aforementioned body sites from seven mothers and nine infants at three different time points over 
a 6-month period. Each sample was analyzed with 16S rRNA gene sequencing. The gut microbiota of 
the infants harbored distinct microbial communities that had low similarity with the various maternal 
microbiota communities. In contrast, the oral microbiota of the infants exhibited high similarity with 
the microbiota of the mothers’ breast milk, mammary areola and mouth. These results demonstrate 
that constant contact between microbial communities increases their similarity. A majority of the 
operational taxonomic units in infant gut and oral microbiota were also shared with the mothers’ gut 
and oral communities, respectively. The disparity between the similarity and the proportion of the OTUs 
shared between infants’ and mothers’ gut microbiota might be related to lower diversity and therefore 
competition in infants’ gut microbiota.

The composition of gut and oral microbiota develops during the first years of an infant’s life, with coloniza-
tion of the gastrointestinal tract and oral cavity beginning immediately after birth. The most abundant colo-
nizers in infant gut microbiota have been reported to include staphylococci, gammaproteobacteria (e.g., 
Enterobacteriaceae), and bifidobacteria1, 2. In contrast, Streptococcus is dominant in infant oral microbiota3. 
Accumulating evidence has shown that several maternal factors (e.g. type of delivery and feeding regimen) influ-
ence the development of the infants’ gut and oral microbiota4, 5. For example, immediately after birth, yet prior to 
removal of the vernix caseosa, vaginally born infants acquire bacterial communities both in their gut and oral cav-
ity that resemble their mothers’ vaginal microbiota6. Similarly, infants born via caesarean section harbor commu-
nities that are similar to those found on their mothers’ skin6. Thus, maternal microbial communities appear to be 
a key source of microbes during the initial colonization process of infant gut and oral microbiota6. However, it has 
not been sufficiently characterized how different types of maternal microbial communities affect the development 
of infant gut and oral microbiota during the first months of life after the initial colonization process has started.
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Therefore, the aim of this study was to compare the effect of different maternal microbial communities–intes-
tinal, vaginal, oral, breast milk, and mammary areola–on the development of the infants’ gut and oral microbiota 
during the first six months of an infant’s life.

Material and Methods
Study group and sampling.  Pregnant women were enrolled in this study during the first period of spon-
taneous onset of labor or up to 24 h before elective caesarean section with intact amniotic membranes. They 
were enrolled at the delivery ward of the Women’s Clinic of Tartu University Hospital between May 2012 and 
September 2013. All the recruited women had uncomplicated term pregnancies, they did not have any infectious 
diseases that required antibiotic treatment, and they had no history of diabetes or hypertensive disorders during 
the second half of pregnancy. A total of seven mothers (mean age: 33.1 ± 4.5 y) were recruited with their newborn 
babies (mother-infant pairs). Two pairs included twins, and all four infants were enrolled in this study. Only one 
woman was not multiparous (mean parity, 1.4 ± 0.8). Five women gave birth via caesarean section and received 
prophylactic cefuroxime treatment prior to the incision in the skin. All infants were term (mean gestational age, 
38.9 ± 1.6 weeks) and had normal birth weights (mean weight, 3,379.3 ± 564.1 g). Clinical factors describing the 
mother-infant pairs are provided in Supplementary Tables S1.

Six types of samples were collected from each mother-infant pair before birth or 48–72 h after birth, at 6–8 
weeks and 6 months after birth. In addition, a vaginal swab sample was collected from each mother before giving 
birth. Altogether 139 samples were collected (Fig. 1). Prior to sampling, vaginal or skin disinfectant had not been 
used and the mammary areola had not been cleaned. All the collected samples were stored at −20 °C immediately 
after sampling.

Bacterioscopic smears were made from a separate vaginal swab sample that was collected from each mother 
before giving birth. The samples were Gram stained and scored according to the Nugent method7: 0–3 (normal), 
4–6 (intermediate), and 7–10 (bacterial vaginosis (BV)).

Bacterial community profiling.  DNA was extracted using MoBio PowerFecal DNA Isolation Kit (Mo Bio, 
Carlsbad, California, USA) according to the manufacturer’s instructions. However, additional steps were included 
for the different types of samples. Briefly, all of the swab samples were initially vortexed for approximately 10 min 
in 750 μL sterile phosphate-buffered saline (PBS). 400 μL of the swab samples in PBS and 800 μL of mother’s 
mouthwash were added into individual dry bead tubes. 1 ml of mother’s breast milk was initially centrifuged at 
6,000 rpm for 20 min. The supernatants were removed and each pellet was resuspended in 400 μL of PBS before 
being transferred to individual dry bead tubes. Tubes were then centrifuged at 13,200 rpm for 30 min. The super-
natants were removed and the protocol for MoBio PowerFecal DNA Isolation Kit was followed from step 2. 
DNA from stool samples was extracted according to the manufacturer’s protocol. Samples representing the same 
microbial community type formed a single DNA extraction batch. Extracted DNA was stored at −20 °C prior to 
analysis.

Amplification of the V1–V2 hypervariable region of 16S rRNA was performed by using barcoded universal 
27F-YM and 357 R primers8. The primer sequences were as follows: 5′-CAA GCA GAA GAC GGC ATA CGA 
GAT NNNNNNNN AGA GTT TGA TYM TGG CTC AG-3′ (Illumina TruSeq adapter, sample-specific 8-bp 
index marked as Ns followed by 27F-YM at the 3′ end) and 5′-AAT GAT ACG GCG ACC ACC GAG ATC TAC 
ACC TGC TGC CTY CCG TA-3′ (TruSeq universal adapter sequence and 357 R at the 3′ end). The conditions 
for amplification included: 10 min at 98 °C, followed by 5 cycles of 30 s at 98 °C, 30 s at 55 °C, and 45 s at 72 °C, 30 
cycles of 30 s at 98 °C and 60 s at 72 °C, and a final extension step at 72 °C for 10 min.

PCR reactions had a total volume of 20 μL, with 10 μL of Phusion High-Fidelity PCR Master Mix (Thermo 
Scientific, Waltham, Massachusetts, USA), 5 μL of DNA template, and each primer at the concentration of 0.2 μM. 
PCR products were purified using Agencourt AMPure XP (Beckman Coulter, Brea, California, USA) and were 
sequenced with an Illumina MiSeq system at the Genome Centre in University of Tartu, Estonia (single end 
sequencing using MiSeq v2 kit and 300 cycles).

Figure 1.  The number and type of samples that were collected from the mother-infant pairs at each of the time 
points indicated.
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Analysis of bifidobacteria with DGGE and real-time PCR was performed by using the methodology described 
in Supplementary methods.

Data and statistical analysis.  MOTHUR software 1.27.0 was used to trim, denoise and align the sequences 
obtained to generate operational taxonomic units (OTUs) and to assign taxonomy. Sequences were trimmed and 
discarded based on a quality score <25 and length >225 bp, respectively. OTUs were generated by using an 
average neighbor hierarchical clustering algorithm with the identity threshold of 97%. Reference sequences for 
aligned 16S rRNA gene sequences were obtained from the SILVA ribosomal RNA database and comparisons with 
taxonomic assignments were performed with a Ńaive Bayesian classifier with a confidence cutoff of 90%. OTUs 
with less than two sequences and OTUs present in fewer than two samples were also discarded. To determine the 
most likely species name for pivotal OTUs mapped to genus Lactobacillus, an additional taxonomic assignment 
against the NCBI 16S ribosomal RNA sequences database was performed with BLASTN.

Statistical analyses were performed with R 3.4.0 software. The cut-off values of the minimal number of 
trimmed sequences assigned to the samples were set to individual community types after which the sequence 
counts were normalized for the whole dataset. To analyze general bacterial diversity and similarity between the 
samples, Shannon diversity index, Cosine similarity index (CSI) and Jaccard distance values were calculated, 
respectively. CSI measures the similarity between samples taking into account both the abundance and the prev-
alence of the OTUs (on the scale of 0 to 1 with 1 being the most similar) when Jaccard distance, which is a meas-
ure of dissimilarity, indicates to the differences between samples based only on the prevalence of the OTUs (on 
the scale of 0 to 1 with 1 being the most dissimilar). Continuous variables were compared with the Wilcoxon 
rank-sum test. The probability of an OTU present in infants’ gut or oral microbiota being shared with a specific 
maternal community type was analyzed using logistic regression analysis. A factor representing the presence 
(or absence) of an OTU in both infant’s and mother’s community type was a dependent variable whereas the 
identifier for the pairs of samples (infant’s stool or oral sample paired with mother’s rectum, vaginal, breast milk, 
mammary areola or mouthwash sample) was a predictor. Only the dominant OTUs colonizing infants’ gut and 
oral microbiota (relative abundance >0.005) were analyzed with separate logistic regression analyses.

All analyses were carried out with the Holm-Bonferroni correction. P-values less than 0.05 were considered 
to be statistically significant.

Ethical considerations.  This study received approval from the Research Ethics Committee of the University 
of Tartu (no. 210T-7) and written informed consent was obtained from each participant upon admission to the 
delivery ward. All methods were performed in accordance with the relevant guidelines and regulations.

Results
Bacterial community profiling using 16S rRNA sequencing.  A total of 1,106,448 high quality 
sequence reads were generated in this study. The cut-off set for the minimal number of trimmed sequences 
assigned to the samples varied from 200 to 1,400 depending on the community type (Supplementary Table S2). 
At these cut-off values the rarefaction curves for at least 90% of the samples reached a 5% plateau. In total, 135 
samples and 1,530 OTUs exceeded these cut-off values and were further analyzed (GenBank accession numbers 
for representative sequences of the OTUs: KP117311-KP118840). One breast milk, one mother’s oral and two 
infants’ oral samples did not cross these cut-off values. The retrieved OTUs were distributed among 12 phyla, 89 
families, and 170 genera.

The highest Shannon diversity index values were observed in the mothers’ gut and oral microbiota and these 
communities differed significantly from the infants’ gut and oral microbiota that harbored significantly lower 
microbial diversity (p < 0.001). The diversity of the microbial communities did not change significantly during 
the analyzed time period (Supplementary Figure S1).

Similarity between infants’ gut and oral microbiota versus mothers’ microbial communities 
from various sites.  Based on the Cosine similarity index and Jaccard distance values, distinct patterns of 
similarity and dissimilarity were observed among the samples examined (Figs 2 and 3). These patterns were also 
concordant with the observed distribution of dominant OTUs between the community types (Fig. 4).

The gut microbiota of the infants did not share similarities with any of the analyzed maternal community 
types throughout the study, yet high similarity was observed between the infants’ oral microbiota and the micro-
biota colonizing the mothers’ breast milk, the mammary areola, and the oral cavity (Fig. 2). These four commu-
nity types harbored a combination of dominant OTUs belonging mostly to genus Streptococcus that were present 
in each population with similarly high relative abundance (Fig. 4). Exceptions were the OTUs that mapped to 
the genera Staphylococcus and Propionibacterium. These OTUs had low relative abundance (<0.01) in both the 
infants’ and mothers’ oral microbiota.

Most of the OTUs observed in the infants’ gut and oral microbiota were simultaneously shared with several of 
the maternal community types and we did not observe significantly higher probability of the OTUs dominating 
infants’ gut and oral microbiota being shared with a specific maternal community type over other maternal com-
munity types. Only 20%, 26% and 28% of the OTUs colonizing the infants’ gut, and 22%, 19% and 27% colonizing 
infants’ oral microbiota at 48–72 h, 6–8 weeks and 6 months after birth, respectively, were observed exclusively 
in these community types. All of these OTUs had very low relative abundance (<0.01). Highest proportion of 
the OTUs observed in the pooled data of infants’ gut microbiota (55%, 60% and 63%, respectively at 48–72 h, 6–8 
weeks and 6 months after birth) were observed in the pooled data of mothers’ gut microbiota (mainly members 
of Clostridiales and Bacteroidales, which represented more than 68% of the OTUs observed in both communi-
ties) (Fig. 5), but when analyzing individual mother-infant pairs, the proportion of the OTUs shared between an 
infant’s and his or her own mother’s gut microbiota was not that high (mean [SD] proportion of the OTUs shared 
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between mother-infant pairs: 32% [13%], 34% [19%] and 29% [11%], respectively at 48–72 h, 6–8 weeks and 6 
months after birth). This proportion was similar to the proportion shared between infant’s gut microbiota and 
the communities colonizing his or her mother’s oral cavity (35% [12%], 28% [10%] and 39% [15%], respectively 
at 48–72 h, 6–8 weeks and 6 months after birth) and mammary areola (34% [18%], 19% [13%] and 35% [18%], 
respectively at 48–72 h, 6–8 weeks and 6 months after birth) (Fig. 6). In the infants’ oral microbiota, the highest 
proportion of OTUs was shared with the mothers’ oral microbiota (members of various taxa) when analyzed both 
between two community types (i.e. all samples pooled together) (51%, 61% and 48%, respectively at 48–72 h, 6–8 
weeks and 6 months after birth; Fig. 5) and between individual mother-infant pairs (mean [SD] proportion of the 
OTUs 50% [12%], 55% [9%] and 46% [10%], respectively at 48–72 h, 6–8 weeks and 6 months after birth; Fig. 6).

The infants’ gut and oral microbiota did not exhibit significantly greater similarity to their own mother’s 
microbial communities than to the other mothers’ microbial communities and the similarity did not change 
significantly during the study (Fig. 7 and Supplementary Figure S2).

The composition of the infants’ gut and oral microbiota.  Firmicutes and Proteobacteria were equally 
dominant in the infants’ gut microbiota throughout the study (mean relative abundance [SD] was 0.42 [0.27] vs. 
0.39 [0.3], respectively) (Supplementary Figure S3). On lower taxonomic levels, Enterobacteriaceae from phy-
lum Proteobacteria dominated (0.37 [0.31]), while Clostridiales (mostly Lachnospiraceae), Streptococcaceae, and 
Veillonellaceae from phylum Firmicutes were also abundant (0.13 [0.2], 0.12 [0.24], and 0.1 [0.15], respectively). 
In contrast, Bacteroidaceae and Bifidobacteriaceae were relatively scarce (0.06 [0.14] and 0.05 [0.08], respec-
tively). Real-time PCR detected high levels of bifidobacteria in the infants’ gut microbiota throughout the study 
(average [SD]: 5,974 [15,208] copies per mg of feces; Supplementary Figure S4), and no significant fluctuations 
were observed. There were six bifidobacterial taxa observed in the infants’ gut microbiota (B. longum, B. longum 
subsp. infantis, B. longum subsp. longum, B. breve, B. pseudocatenulatum and B. adolescentis), with an average of 
3.62 bifidobacterial taxa colonized per infant. The highest number of bifidobacterial taxa was observed in the 
twin pairs, with six taxa identified in ID-s 201I and 201II and five taxa identified in ID-s 202I and 202II. Gut 

Figure 2.  Correlation plot representing the Cosine similarity index values between the analyzed microbial 
community types. The time points represent the sampling times in relation to birth of the infants.

http://S2
http://S3
http://S4


www.nature.com/scientificreports/

5SCIENTIFIC Reports | 7: 9940  | DOI:10.1038/s41598-017-09278-y

Figure 3.  Non-metric multidimensional scaling (NMDS) plot visualizing the Jaccard distance between the 
samples of analyzed microbial community types.

Figure 4.  Relative abundance of the most dominant OTUs that colonized the analyzed community types.
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microbiota was dynamic in most of the infants over the time period studied (Supplementary Figure S5-A). The 
composition was moderately similar among infants and it did not change significantly during the study period 
when considering both the CSI and Jaccard distance.

Firmicutes was also prominent in the infants’ oral microbiota throughout the study (mean [SD] relative abun-
dance, 0.82 [0.16]) (Supplementary Figure S3). On lower taxonomic levels, Streptococcaceae dominated (0.7 
[0.18]), followed by Pasteurellaceae (0.08 [0.09]). The infants’ oral microbiota was relatively stable during the time 
period studied (Supplementary Figure S6-C) and was very similar among the infants.

The gut and oral microbiota of the twins in this study did not exhibit a greater similarity among these paired 
siblings than was observed among the other infants (mean [SD] CSI: 0.35 [0.38] vs. 0.32 [0.34] and 0.76 [0.24] vs. 
0.75 [0.22] for the gut and oral microbiota among twins vs. the rest of the infants, respectively). Also, gut and oral 
microbiota of infants born vaginally versus via caesarean section did not exhibit greater similarity (0.22 [0.16] 
vs. 0.35 [0.38] and 0.8 [0.12] vs. 0.73 [0.24] for the gut and oral microbiota among infants born vaginally vs. via 
caesarean section, respectively).

The composition of microbial communities colonizing the mothers.  Firmicutes dominated all 
the maternal community types analysed, but Bacteroidetes and Actinobacteria were also very abundant in the 
gut and vaginal microbiota, respectively (Supplementary Figure S3). On lower taxonomic levels, the commu-
nities differed substantially with gut microbiota being dominated by order Clostridiales (0.4 [0.14]) along with 
family Prevotellaceae (0.2 [0.14]); oral microbiota by Streptococcaceae (0.4 [0.18]), followed by Prevotellaceae, 
Micrococcaceae, Fusobacteriaceae, Pasteurellaceae, and Veillonellaceae (0.09 [0.05], 0.09 [0.07], 0.08 [0.12], 0.08 
[0.06], and 0.06 [0.03], respectively); breast milk microbiota and the microbiota colonizing mammary areola 
by Streptococcus, Staphylococcus, Propionibacterium, Gemella, Acinetobacter, and Enterococcus in both instances 
(0.32 [0.28], 0.12 [0.17], 0.09 [0.1], 0.05 [0.08], 0.03 [0.06] and 0.01 [0.04]; 0.48 [0.33], 0.13 [0.17], 0.05 [0.09], 0.05 
[0.08], 0.03 [0.09] and 0.02 [0.05], respectively in each case). Gut and oral microbiota was relatively stable and 
generally similar between different women over the time period studied (Supplementary Figures S5-B and S6-D). 
In most of the women, the composition of breast milk microbiota and the microbiota colonizing mammary areola 
was dynamic during the time period studied (Supplementary Figures S6-A and S6-B). All the women had nor-
mal to intermediate Nugent scores (Supplementary Table S3) and the composition of vaginal microbiota varied 
among women (Supplementary Figure S7).

Figure 5.  Proportion of OTUs observed in the pooled data of infants’ gut (A) and oral (B) microbiota that were 
shared with mothers’ community types. *Infants’ gut and oral microbiota at every analyzed time point were 
compared to vaginal microbiota observed in mothers before giving birth.
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Discussion
To our knowledge this is one of the first studies to analyze the effect of mothers’ microbiota of various body sites 
to infants’ gut and oral microbiota. Based on the mother-infant pairs that we examined, infant gut microbiota 
appears to harbor a distinctive microbial community that exhibits low similarity with the microbiota that colo-
nize the mother’s gut, vaginal, skin, breast milk, and oral cavity during the first six months of the infant’s life. In 
contrast, the infants’ oral microbiota, as well as the mothers’ breast milk microbiota, mammary areola microbiota, 
and oral microbiota exhibited high similarity to each other.

Although approximately 63% of the OTUs observed in an infant’s gut microbiota were also observed in the 
mother’s gut microbiota (Fig. 5), only on average 32% were shared between individual mother-infant pairs, which 
was not considerably higher than the proportion of OTUs shared with the mother’s oral and skin communities 
(Fig. 6). High numbers of OTUs observed in both infants’ and mothers’ gut microbiota that had considerably 
different relative abundances (Fig. 4) may be related to the lower species diversity (Supplementary Figure S1) 
and therefore competition in infants’ gut microbiota as hypothesized by Asnicar et al.9. Relatively low levels of 
OTUs shared between infant’s and one’s own mother’s gut microbiota and considerable numbers of OTUs shared 
between the infant’s gut microbiota and microbiota colonizing one’s own mother’s oral cavity and mammary 
areola may on the other hand be related to the delivery mode of the infants participating in this study as most of 
them were born via caesarean section (Supplementary Table S1-B). Bäckhed et al.10 have shown that 72% of the 
early colonizers of the vaginally delivered infants’ gut matches species found in the stool of their own mother, 
whereas only 41% of these species are detected in infants born via caesarean section. They also observed enriched 
presence of bacteria typically know to be of skin and mouth origin colonizing the gut microbiota of C-section 
infants10.

The infants’ oral microbiota shared a high similarity with communities colonizing oral cavity, breast milk and 
mammary areola of the mothers (Fig. 2). Although the same OTUs dominated in all four aforementioned com-
munity types (Fig. 4), dominance of the same OTUs mapped to genus Streptococcus in infants’ and mothers’ oral 
microbiota indicates that mother’s oral microbiota has the biggest influence on the development of infants’ oral 
microbiota during the first six months of life, because members of Streptococcus are the predominant habitants 
of oral microbiota in both infants and adults3. Additionally, the highest number of OTUs colonizing the infants’ 
oral microbiota was observed in the mothers’ oral microbiota and this was also the case when analyzing the pro-
portion of shared OTUs between individual mother-infant pairs (Figs 5 and 6). The similarity with oral microbi-
ota may be the result of maternal habits of infant care (e.g., frequent use of the same spoon, licking the pacifier, 
kissing on the mouth). While not all mother-to-infant contacts involve direct interactions of oral microbiota, a 

Figure 6.  Average proportion with 95% confidence interval of OTUs observed in infants’ gut (A) and oral (B) 
microbiota that were shared with his or her mother’s community types (the proportion shared between specific 
mother-infant pairs). *Infants’ gut and oral microbiota at every analyzed time point was compared to vaginal 
microbiota observed in mothers before giving birth.
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similar observation was made in a recent study where the salivary microbiota of romantically involved partners 
exhibited increasing similarity when partners kissed at relatively high frequencies11. Mother’s oral microbiota may 
also influence the development of an infant’s oral microbiota via the placenta. For example, in a recent study by 
Aagaard et al.12 mothers’ oral microbes appeared to be present in the placenta12.

High abundance of Streptococcus OTUs observed in communities colonizing breast milk and mammary are-
ola and the abundant presence of Staphylococcus and Propionibacterium, which are typical colonizers of human 
skin13, in breast milk microbiota (Supplementary Figure S6) indicates that there may be a retrograde reflux taking 
place during breastfeeding as have been hypothesized by Ansicar et al.9. Because mammary areolae were not 
cleaned before sampling the study may be overestimating the similarity between infants’ oral microbiota and 
microbiota colonizing mammary areola.

We did not observe higher similarity of microbial communities between infants and their own mothers when 
compared to the other mothers (Fig. 7). This may seem surprising considering that several previous studies have 
observed mother-to-infant transmission of bacterial strains9, 10, but most probably our results indicate to the 
shortcoming of 16S rRNA gene sequencing in identifying taxa on lower than genus level14. Thus, our results do 
not rule out significant similarities between individual mother-infant pairs (and distinctively different commu-
nity pattern from other mothers) when analysing the composition of the communities on strain level.

Another limitation of this study was the small sample size, which is most probably the reason why we did 
not observe the effect of type of delivery and feeding regimen to the community composition of infants’ gut and 
oral microbiota. These effects are well described by many of the previous studies [e.g. refs 6, 10]. Nevertheless, 
the highest number of bifidobacterial taxa was observed among twins’ gut microbiota who were breastfed for a 
shorter period of time and received prebiotic formula instead. This result is consistent with a study conducted by 
Barrett et al.15 where the greatest number of bifidobacterial strains and diversity were observed in the infants who 
received formula containing prebiotics (e.g. galacto-oligosaccharides and polyfructose)15.

In conclusion, the infants’ gut microbiota was found to be dissimilar from all of the maternal community types 
which were analyzed in this study while the infants’ oral microbiota exhibited a high similarity with the mothers’ 
oral, breast milk, and mammary areola microbiota. These results emphasize the significant effect of constant con-
tact between these microbial communities. However, both the infant gut and oral microbiota were found to share 
the highest proportion of the OTUs with the corresponding maternal community type. The disparity between 
the similarity and the proportion of the OTUs observed both in the infants’ and mothers’ gut microbiota might 
be related to lower species diversity and therefore lower competition in infants’ gut microbiota, which leads to 
difference in the abundance of the shared OTUs.

Figure 7.  Average Cosine similarity index between infant’s gut (A) and oral (B) microbiota and their own 
mother’s microbial community types (red dots), and the community types observed in the rest of the mothers 
(Tukey boxplot).
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