UNIVERSITY OF TARTU
FACULTY OF SCIENCE AND TECHNOLOGY
Institute Of Computer Science

Infotechnology curriculum

Mikk-Erik Bachmann

Filtering Real-Time Linked Data Streams

Bachelor’s thesis (6 ESTS)

Supervisor: Peep Kiingas, PhD

Tartu 2016

Filtering Real-Time Linked Data Streams

Abstract:

The amount of linked data in the Web has increased rapidly in recent years. Linked data, often
encoded in RDF, is considered as five-star data in the context of open data due to its usability
and potential. Although there has been progress in development of linked data technologies and
data processing models, still the full potential of linked data has not been realized. One of the
challenges is reasoning over linked data streams, which has just recently gained momentum in
research. As a result query languages, such as C-SPARQL, have been proposed and
corresponding stream reasoning engines have been implemented. However, such
implementations have been evaluated so far mostly in academic settings. This work describes a
fully functional proof of concept implementation of a stream reasoning system for
message-oriented systems, which is capable of exposing a message queue as a linked data
stream, which can be filtered by using C-SPARQL - one of the earliest linked data processing
engines. The performance of the C-SPARQL engine, which lies at the heart of the
implementation, is evaluated by using CityBench benchmark with settings of an enterprise-scale

real-time economy application Inforegister NOW!, which is currently under development.

Keywords: RDF, C-SPARQL, REST, Message-oriented Middleware, RabbitMQ, RabbitHub,
CityBench

CERCS: P170

Lingitud andmevoogude filtreerimine reaalajas

Lithikokkuvote:

Viimastel aastetel on Veebis kiiresti kasvanud lingitud andmete hulk. Lingitud andmeid, mis on
tihti kodeeritud RDF formaadis, peetakse “viie tirni” andmeteks avatud andmete kontekstis ténu
nende kasutatavusele ja potentsiaalile. Kuigi on mirgata progressi lingitud andmete
tehnoloogiate arengus ja nende todtlemises, pole veel suudetud nende tdit potentsiaali saavutada.
Uks viljakutsetest on lingitud andmevoogude peal jirelduste tegemine, mis on alles hiljuti
hakkanud uuringutes koguma hoogu. Nende tulemusena on pakutud vilja paringu keeled nagu
C-SPARQL ja loodud tuletusmootorite implementatsioonid. Aga neid mootoreid on senini
testitud ainult akadeemilistes keskkondades. Selle t66 eesmérk on luua tdielikult to6tav prototiiiip
lingitud andmevoogude tootlemiseks sOnumipohistes slisteemides, mis suudab lingitud
andmetest koosnevat sdnumite jirjekorda ndha kui andmevoogu ja filtreerida seda C-SPARQL-1
mootoriga, mis on iiks esimesi omalaadseid. Selle siisteemi siidames olevat C-SPARQL-i
mootorit testisime CityBench vordlusuuringu programmiga vottes arvesse drivaldkonda kuuluvat

reaalaja rakendust Inforegister NOW!, mis on veel arendusfaasis.

Votmesonad: RDF, C-SPARQL, REST, sonum-orienteeritud vahevara, RabbitM(Q, RabbitHub,
CityBench

CERCS: P170

Contents

1. Introduction

2. Background
2.1 RDF

2.2 SPARQL

2.3 RESTful web services

2.4 Message-oriented middleware
3. Related work
4. Implementation

4.1 C-SPARQL

4.2 C-SPARQL Engine
4.3 C-SPARQL REST{ul interface

4.4 RabbitM
4.4.1 RabbitHub

4.5 Helper applications

4.5.1 Web servlets for registering queries and receiving results

4.5.2 Stream data generator
4.6 Two Proof of concepts (PoC)

4.6.1 First PoC

4.6.2 Second PoC

4.6.3 Possible solution for the commercial RDF stream filtering like Register Stream API

5. Testing
5.1 Test case

5.1.1 Inforegister NOW! use cases

5.2 Test implementation
5.3 Results

5.3.1 Varying frequencies

5.3.2 Varying window sizes

5.3.3 Varying registered queries
5.3.4 Threats to validity

6. Conclusion

O© © 0 9 9 &N »n n b~

NS T NG T NG T NG T NG T NS R NG T N i Oy S S e L T T e T e S S e Sy S S SRS Y
>IN RN NNV, B S B S =R T N e) UV, TV, BV, S N 2 2 \S S e

1. Introduction

In 2001 Tim Berners-Lee proposed an idea for Semantic Web as the next logical evolutionary
step for the World Wide Web, where not only documents, but data as well are linked together.[1]
In Semantic Web not only documents but data itself is interconnected and in a format that is
machine-readable. This way applications can make inferences and choices themselves based on
data they receive.

Although slow at first, the adoption of Semantic Web technologies has accelerated in recent
years. According to Schema.org, whose mission is to create, maintain, and promote schemas for
structured data on the Internet, 10 million webpages use their markup on their websites and email
messages. Many big companies such as Wikipedia and Facebook expose their data in a
structured form.

But in real-world applications data can also take the form of a stream where data is infinitely
generated in big quantities and they lose their usefulness fast. Such is the case for soft real-time
systems where incoming info has to be processed swiftly for the system to run optimally. The
field of linked data streams is still evolving and its technologies have not been adopted yet in

commercial applications.

The aim of this thesis is to create a proof of concept implementation for filtering real-time linked
data in a real world application using C-SPARQL (continuous SPARQL), REST(representational
state transfer) and MOM (message-oriented middleware) technologies.

We also run different tests on the C-SPARQL engine to measure its performance under different
loads using a modified version of CityBench benchmark. Test parameters and queries were
chosen to match the characteristics of Inforegister NOW! mobile application. The application
uses a linked stream API (Application Programming Interface) to leverage data for real-time

decision-making.[2]

The rest of the paper is structured as follows: in Section 2 we give a brief overview of the related
technologies at the core of this solution whose knowledge is needed to understand the rest of this
document; in Section 3 a short list of related work is presented; Section 4 introduces the concrete

technologies used and in the second part detailed descriptions of proof of concepts is given; in

https://paperpile.com/c/nfuDlP/oJHX
https://paperpile.com/c/nfuDlP/U5qq

Section 5 load testing results of the C-SPARQL engine are shown and in the final Section 6

concludes the thesis and discusses possibilities of future work.

2. Background

2.1 RDF

This so called Linked Data is made possible by a common data presentation language RDF
(Resource Description Framework). In the World Wide Web documents of data (i.e. web pages)
are linked together and identified by URL-s (Uniform Resource Locator). In RDF this idea is
taken further by giving similar identifiers to data itself called URI-s (Uniform Resource
Identifier), which is a superset of URL. In RDF data is grouped together into
subject-predicate-object triples called statements, where subject is the described resource,
predicate is resource’s property being described and object is the property’s value. All three
parts of these triples are usually represented by URI-s (although object or the value can also be a
constant value called a literal). This way objects and predicates in one statement can be a subject
in another forming a directed graph where data is linked together and both data itself and

relationships between data are identified and described.[3]

RDF has several well known serialization formats like RDF-XML, JSON-LD, Turtle and
N-TRIPLE. Figure 1 shows a RDF graph example while Figure 2 shows the same graph
represented in N-TRIPLE format with fictional URIs.

https://paperpile.com/c/nfuDlP/ndTL

e

Capital

“Juku®

“Koalipingi®

Figure 1: Sample RDF graph.

<http://www.example.org/person#3980102xxxx> <http://www.example.org/person#homeAddress>
<http://www.example.org/address#12349> .

<http://www.example.org/person#3980102xxxx> <http://www.example.org/persont#age> "18" .
<http://www.example.org/person#3980102xxxx> <http://www.example.org/personf#name> "Juku" .
<http://www.example.org/address#12349> <http://www.example.org/address#city>
<http://www.ex.org/cities/Tallinn> .

<http://www.example.org/address#12349> <http://www.example.org/address#street> "Koolipingi" .
<http://www.example.org/address#12349> <http://www.example.org/address#country>
<http://www.ex.org/countries/Estonia> .

<http://www.ex.org/countries/Estonia> <http://www.ex.org/country/capital>
<http://www.ex.org/cities/Tallinn> .

Figure 2: Sample RDF graph in N-TRIPLE format.

2.2 SPARQL

SPARQL(SPARQL Protocol and RDF Query Language) is similar to other query languages like
SQL in way that it also has same operations like SELECT, UPDATE, DELETE, ORDER BY,
GROUP BY etc, but instead of querying over relational data in database tables, it works on RDF
data stores. It uses pattern matching to find triples. In the WHERE clause one or more parts of
the subject-predicate-object triples is replaced by a variable. All triples are found, that match to
the concrete triple parts, and the rest of the parts are bound to the corresponding variables as
values.[4] A sample query is given in Figure 3. In plain english this could mean “Find all the
streets in Tallinn, where a person named Juku lives”. In Figure 4 a sample result is shown, if this

query would be run on the sample graph in Figure 1 and 2.

https://paperpile.com/c/nfuDlP/2Y8e

SELECT ?street

WHERE {

?person <http://www.example.org/person#name> "Juku" .

?person <http://www.example.org/person#homeAddress> ?address .

?address <http://www.example.org/address#street> ?street .

?address <http://www.example.org/address#city> <http://www.ex.org/cities/Tallinn> .

}
Figure 3: sample SPARQL query and a sample result.

street

“Koolipingi”

Figure 4: result of a query in Figure 3, when run on graph in Figure 1.

2.3 RESTful web services

REST(representational state transfer) is a software architecture style that imposes certain
constraints on a system. When applied correctly, these constraints help achieve desired
non-functional requirements like scalability and modifiability, which help the software work
better. One of the more notable constraints is uniform interface, which simplifies and decouples
different system components, so that they can be developed separately. RESTful web services
accomplish this by having an API which exposes resources through URI-s. Standard HTTP
methods GET, PUT, POST and DELETE are called against this URI-s for retrieve, create,
change and delete operations. The client making the HTTP requests and the server never pass the
resource itself to each other, but its representational state, which is in a uniformly agreed upon
format like JSON or XML.[5]

2.4 Message-oriented middleware

Another trend in web applications is the adoption of message-oriented middlewares (MOM)
(a.k.a. message broker). MOM is a software or hardware used in modular and distributed
systems, that mediates communication between other components. This allows for loosely
coupled easily scalable systems. Sender (a.k.a. publisher or producer) does not need to know
about the location or nature of the receivers (a.k.a. consumers) and vica versa. Both new
receivers and senders can be added with little effort. Message-oriented middleware also provide

an interface for administration, which enables monitoring and tuning the messaging. Messages

https://paperpile.com/c/nfuDlP/uMFG

are usually sent asynchronously: after sending all the messages the sender can continue with
other activities while the messages wait in the middlewares queues for receivers to consume thus

removing the delay of waiting for the response for the sender.[6]

publisher Consumer
publisher —— | Broker Consumer
publisher Consumer

Figure 5: simplified architecture of a system with message-oriented middleware.

3. Related work

Although the field of RDF stream processing(RSP) is still relatively young, several other
solutions have been proposed. CQELS is another RSP engine, that uses a native approach instead
delegating the processing to other systems.[7] ETALIS is an event processing system that detects
complex events from a stream of atomic events combined with static background knowledge. It
uses another extension of SPARQL called EP-SPARQL(Event Processing SPARQL).[8] One
more SPARQL extension called SPARQLstream aims to provide ontology-based access to
relational data by transforming SPARQLstream’s SPARQL-like queries into continuous query
language SNEEqI and later transforming the results into RDF triples.[9] SparkWave is a solution
for doing continuous pattern matching over RDF streams using pattern matching algorithm
called Rete.[10] INSTANS is another event-processing platform also based on Rete
algorithm.[11]

For these RSP engines several benchmarks have also been developed. The first two benchmark
for linked data stream engines that emerged were SRBench and LSBench. SRBench tested the
functionality of the engines[12] while LSBench also tested correctness based on the number of
output elements, performance and scalability tests.[13] CSRBench was an upgrade to the

SRBench that concentrated on the correctness of the results of the queries.[14] Older benchmark

https://paperpile.com/c/nfuDlP/qpsC
https://paperpile.com/c/nfuDlP/bhI0
https://paperpile.com/c/nfuDlP/ADkW
https://paperpile.com/c/nfuDlP/LqEY
https://paperpile.com/c/nfuDlP/B3An
https://paperpile.com/c/nfuDlP/xAc3
https://paperpile.com/c/nfuDlP/FUni
https://paperpile.com/c/nfuDlP/CUVI
https://paperpile.com/c/nfuDlP/ufVy

results are less relevant as the engines, they tested, are being developed consistently. In that
regard CityBench and YABench are newer benchmarks that build upon the previous ones.
YABench aims to combine and extend previous SRBench, LSBench and CSRBench
benchmarks.[15] But at the time of writing this thesis, it is not suited to run tests with multiple

queries, which is one of our requirements.

Considering C-SPARQL is still in each earlier stages of development, it has not found much use
yet in nonacademic applications. One such is a part of a project called ModaClouds -
MOdel-Driven Approach of design and execution of applications on multiple Clouds. One of this
project’s deliverables is a run-time environment for multi-cloud applications. One of its
components is a monitoring platform. The data being monitored is in RDF format and
C-SPARQL engine is used to filter it for data visualization or detect on-the-fly patterns to make
changes to the system for better quality of service. The C-SPARQL engines RESTful interface is
also used.[16]

WAVES is a project whose objective is to deploy a real-time semantic stream management
platform for smart urban technologies. One of its main components is a reasoning system for
RDF streams. For that they have run some experiments on CQELS and C-SPARQL engines
measuring execution time and memory consumption with different RDF triple rates, window

sizes, number of streams and static data size.[17]

In this [18] paper a query engine is proposed for large throughput of sensor data and large
volumes of already stored data. This solution does not work with RDF streams, but instead large
quantities of static data. They ran experiments on their engine to measure query performance.

One of the experiments they ran multiple queries in parallel from 10 to 1000 at the same time.

4. Implementation

In the first part of this Section we explain each component separately and in the second part we

present two proof of concepts where they are combined into a cohesive system.

https://paperpile.com/c/nfuDlP/Q2yt
https://paperpile.com/c/nfuDlP/mDaL
https://paperpile.com/c/nfuDlP/S75S
https://paperpile.com/c/nfuDlP/M6eX

4.1 C-SPARQL

C-SPARQL(Continuous-SPARQL) is an extension of SPARQL. It enables running SPARQL
queries continuously on RDF streams. It achieves this by adding a timestamp to RDF triples,
when they are added to the stream creating a new data structure for RDF Streams: an ordered list
of triple-timestamp pairs. The window clause in this query language makes it possible to filter
and compute results on specific subset of the stream after regular time intervals. It has two parts:
a range and a step. The range is the size of the window and step is a frequency of execution for
the query. So for example a range of 10 seconds and a step of 5 seconds means that the query is
executed every 5 seconds on triples whose timestamp is not older than 10 seconds. C-SPARQL
also adds a FROM STREAM keyword for identifying the streams of RDF triples. An example of
C-SPARQL query is shown in Figure 6. This query finds every organization where a person

working for organisation 11215399 is a member of.

REGISTER QUERY exampleQuery AS
SELECT ?person ?lead
FROM STREAM <http://ex.org/test#memberships> [RANGE 10s STEP 5s]
WHERE {
<https://graph.ir.ee/organizations/ee-11215399> <http://www.w3.0rg/ns/org#hasMember> ?person .
?lead <http://www.w3.org/ns/org#hasMember> ?person .

}

Figure 6: C-SPARQL query example.

C-SPARQL also allows having multiple FROM STREAM clauses for querying over several
streams at once. Adding static RDF stores as a source is also possible with a FROM keyword
followed by URL to a RDF graph. A timestamp function can be used to get the timestamp of a
stream element e.g. to find out which triple arrived first. The results of a stream can be a set of
bindings in case of a REGISTER QUERY and SELECT keywords, but also a new stream, if
REGISTER STREAM and CONSTRUCT keywords are used instead. In this case the new
stream can also be an input to another C-SPARQL query.[19]

4.2 C-SPARQL Engine

C-SPARQL engine is a RDF stream processing tool written in Java. It lets users register streams,
queries and observers. Stream objects are logical representations of the linked data streams,

which can be feed with RDF triples. Queries are C-SPARQL queries, which are registered to run

https://paperpile.com/c/nfuDlP/tlUA

on one or more streams. Observers are registered on the queries to observe the results computed

by the queries.

The engine has two main components - a Data Stream Management System (DSMS) for the
stream related parts of the query and SPARQL reasoner for the static part. As new data comes
into the engine, the DSMS partitions it according to the window clause and gives the parts to the
SPARQL reasoner. The reasoner runs the static part of the C-SPARQL query on the data and
returns the results back to the DSMS which outputs a new stream of relational data or RDF data
depending on the keyword at the beginning of the query.[20] In our version of the engine, the
used DSMS implementation is Esper and the SPARQL reasoner is Jena.

4.3 C-SPARQL RESTful interface

C-SPARQL RESTful interface exposes C-SPARQL engines stream, query and observer
operations with a REST API. Figure 7 shows an illustration of the engine with a RESTful
interface. All the relevant REST calls are brought in Figure 8. [16]

New observer

‘ New query ‘

C-SPARQL engine with ~ PUT POST
RESTful interface

POST
Observer 1 f—7 |
POST Callback URL 1

Observer 2

7\\

Observer 3 | Callback URL 2
— | OW

Figure 7: illustration of C-SPARQL engine with a RESTful interface.

https://paperpile.com/c/nfuDlP/uccE
https://paperpile.com/c/nfuDlP/mDaL

Method | Address Body Description

RDF Streams

PUT /streams/<id> Register new stream
DELETE | /streams/<id> Delete specified stream
POST /streams/<id> RDF model Stream(feed) new information
GET /streams Get the list of streams

C-SPARQL queries

PUT /queries/<id> query Register new query

DELETE | /queries/<id> Delete specified query

POST /queries/<id> callback URL Add new observer

POST /queries/<id> action=<pause|restart> Change query status

GET /queries Get the list of queries
Observers

DELETE | /queries/<id>/observers/<obsId> Delete specified observer

GET /queries/<id>/observers Get the list of observers

Figure 8: C-SPARQL engines RESTful interfaces method descriptions

4.4 RabbitMQ

RabbitMQ is a versatile message-oriented middleware application written in Erlang. It was
written as an implementation of AMQP, but supports other messaging protocols as well via
plug-ins. It supports many different languages to publish and consume messages including Java.
Two key terms of RabbitMQ model, which is based on the AMQP, are exchanges and queues.
Queue is a buffer for messages. Consumers will listen on the queues. When a new message
arrives to the queue, it will be sent to a consumer or stay in the queue until a new consumer starts
listening on the queue. Publishers send messages to exchanges. Exchanges job is to forward
published messages to corresponding queues according to the type of the exchange and bindings
between queues and exchanges. Bindings are rules, that exchanges use to know which queues to
forward messages to. For example if a message with a routing key “warning” is sent to an

exchange with a direct type, the exchange will route the messages to all the queues, that are

bound with a “warning” binding. If a messages is sent to a fanout exchange, then it is forwarded
to all the bound queues regardless of the bindings and routing keys. Other exchange types
include fopic, which is a more complex version of the direct type, and header, which uses

messages headers instead of routing keys for routing.[21]

RabbitMC
Queue 1 - & w5 = » = -)- Consumer
. v " ?
Publisher | » = = * * + » »| Exchange
- "
Queue 2 = s 8l s 8 = ¢). Consumer

Figure 10: RabbitMQ publishing and consuming model example.

4.4.1 RabbitHub

RabbitHub is a RabbitMQ plugin, which was at first created as a PubSubHubBub protocol
implementation for RabbitMQ. PubSubHubBub is a simple publish-subscribe protocol over
HTTP. It defines a publisher, subscriber and a hub. A publisher creates a topic on the hub and
starts publishing information to it. Subscriber subscribes to a topic on the hub and whenever new
info is published on the topic, the hub sends it to all who are subscribed to it. This way users
don’t have to poll regularly for new information (pull) but instead hub sends it automatically
when it arrives (push) [22]. Because RabbitMQ also supports publish-subscribe pattern, this
plug-in has in effect become a RESTful interface for manipulating RabbitMQ exchanges and
queues. But unlike other PubSubHubBub implementations which rely on Atom format, this one

is content-agnostic meaning any sort of content can be send to and from the hub.

https://paperpile.com/c/nfuDlP/Bd18
https://paperpile.com/c/nfuDlP/hB7H

Method Address Body Description
PUT /endpoint/q/<id> Create a new queue
PUT /endpoint/x/<id>?amqp.exch Create a new exchange
ange type=<type>
DELETE | /endpoint/q/<id> Delete specified queue
DELETE | /endpoint/x/<id> Delete specified exchange
POST /subscribe/q/<id> hub.mode=subscribe Subscribe to specified queue
hub.callback=<callback url>
hub.topic=<topic>
hub.verify=<sync|async>
hub.lease seconds=<lease
seconds>
POST /subscribe/x/<id> Same as above Subscribe to specified exchange
POST /subscribe/q/<id> hub.mode=unsubscribe Unsubscribe from specified queue
hub.callback=<callback url>
hub.topic=<topic>
hub.verify=<sync|async>
<token>
POST /subscribe/x/<id> Same as above Unsubscribe from specified exchange
POST /endpoint/q/<id>?hub.topic= | message Send message to specified queue
<topic>
POST /endpoint/x/<id>?hub.topic= | message Send message to specified exchange

<topic>

Figure 11: RabbitHub RESTful interface. [23]

4.5 Helper applications

For our proof on concept a couple of helper applications are also needed: a simple servlet

application for registering streams and queries and to receive and show the results of the queries.

And secondly an application for generating a RDF stream to run our queries on. Both are

implemented in Java.

4.5.1 Web servlets for registering queries and receiving results

This is a lightweight Java servlet-based web application. Java servlets are small programs in a

web server whose purpose is to handle clients requests, most commonly HTTP requests. This

application has three forms each with its own servlet in the backend(i.e. server): one for

https://paperpile.com/c/nfuDlP/DmCU

registering a query, one for registering a stream and one for subscribing to a RabbitMQ exchange
via a RabbitHub plug-in. The stream servlet sends a HTTP PUT request to a C-SPARQL
RESTHful interface to create a stream. In the same way the query registering servlet sends HTTP
requests for registering the query and adding an observer to it (see Figure 6). The observer
callback URL points to this application’s results servlet This servlet writes the received RDF
triples to a file and also handles showing of the results. There is also a servlet for subscribing to a

RabbitMQ exchange via RabbitHub again with a callback URL pointing back to this application.

4.5.2 Stream data generator

The stream generator can generate dummy triples in-code, read them from a file or dictionary of
files or read them from a RabbitMQ queue. It feeds these triples to a C-SPARQL engine through
a Java API for C-SPARQL‘s RESTful services.

4.6 Two Proof of concepts (PoC)

The repository for the Proof of Concepts is in Appendix 1.

4.6.1 First PoC

This PoC’s aim is to show that a C-SPARQL’s REST API and RabbitMQ as a message-oriented
middleware can be combined to form a simple RDF stream filtering solution, which allows
processing RDF streams by HTTP calls. In Figure 9 we can see the architecture of PoC 1. It
works as follows:

e [t integrates C-SPARQL RESTful interface with RabbitMQ so when a new stream is
registered(1), a new RabbitMQ exchange is also created with the same name as the
stream(2). This is achieved by adding a code snippet to the REST API implementation,
which creates the exchange on stream registering via RabbitHub plug-in.

e User registers a query and an observer with the query servlet(3).

e Data generator sends triples to the engine(4).

e Observer registering code is also upgraded to not point directly back to the initial
callback (which pointed to the result servlet), but to RabbitHub instead. This way the
query results are sent to the RabbitMQ exchange with the query name as the routing
key(5).

e When a user subscribes to the exchange using the subscribing servlet of the helper

application, a queue is created with a hub.topic as the binding(6). If the hub.topic is the

same as the registered queries name and the subscription’s callback points to the results

servlet, we can still receive the results of the initial query(7).

This PoC was also used by a fellow researcher in his thesis project for web monitoring [24].

Helper servlet's container

J

C-SPARCGL RESTful AP Farm for
1 registering
4 i] gueries
St::g;ztf »| C-SPARQL engine | Stream serviet
]
1‘“*-__ Farm for
3 B - — registerin
serviet = 9
Cyey 3 streams
2]
Subscribe serviet | _ 6 F 2
& = orm for
= - / subscribing to
query results
RabbitHub
u —-_.__,T___ Results serviet
‘-q__‘*
7 [Y
Display results
RabbithMQ

Figure 12: PoC 1 architecture.

4.6.2 Second PoC

Now that we have proven the feasibility of a RESTful RDF stream processing solution, we make
another proof of concept for a concrete real world product - Stream API by Register OU. The
aim is to validate the proposed solution real-life settings. Register exposes data about
organizations and its people through its Stream API for businesses so that B2B sales
organizations can improve their lead and credit scoring, lead nurturing, advanced analytics etc

capabilities. It uses RabbitMQ as its message-oriented middleware.

This time instead of using only HTTP and TCP in a RESTful manner, we use AMQP messaging
protocol. For this we add Java code to the data generator, that makes it a consumer for
RabbitMQ RDF stream queue. This time we also omit the use of RabbitHub. The RabbitHub,

although a versatile add-on, adds an unnecessary layer to the system. Furthermore, as the

https://paperpile.com/c/nfuDlP/D35D

software is updated less frequently at the writing of this thesis, than the RabbitMQ itself, it might
become unreliable with newer RabbitMQ versions. This is an important aspect to consider in a
commercial application. The second PoC works like this:

e We register a new stream like before(1).

e We start the generator, which starts listening for triples from the RabbitMQ queue. When
new RDF triples are added to the queue, the generator receives them(2) and forwards
them to the C-SPARQL engines stream representation(3).

e We register a new query and an observer with a callback to the helper application(4).

e As query is run on the stream, results are sent to the result servlet for the user to see(5).

e As this version does not have RabbitHub, the subscribe servlet is also not used.

Running this solution we witnessed real results of Inforegister RDF data filtered by the
C-SPARQL query.

Helper serviet's container

Formfor] ™

1 registering

| queries

C-SPARQL RESTful API Stream serviet
1 |
2 3 Ff’ Formfor| ™

Stream data e
RabhbithMQ > »| C-SPARCL engine [« eryserdet (€| registering
generator g 4 Query 4 streams

™ Results serviet |
T

Display results

Figure 13: PoC 2 architecture.

4.6.3 Possible solution for the commercial RDF stream filtering like Register Stream API

While RESTful services are good on the edge of the system for interaction with the outside
world, it makes less sense to use it internally when a message-oriented middleware is also
included. Our Poc2 worked just as well without the RabbitMQ's RESTful interface supplied by
RabbitHub. Moreover, it has been found that RabbitMQ's AMQP implementation is better suited

for large quantities of data compared to traditional RESTful web services.[25] Having this in

https://paperpile.com/c/nfuDlP/oYvr

mind, one possible solution for a commercial RDF data streaming system like Register Stream
API is demonstrated in Figure 14. It provides subsequent possibilities:

e There are pre-made exchanges and queues and C-SPARQL streams already registered on
the system, perhaps by an administrator. When a new triple arrives, it is automatically
sent to the corresponding stream in the engine(1).

e Users can see the streams on the applications webpage and register queries on them(2).

e On another page they can also see another the list of registered queries and add observers
on them(3).

e The results can be sent back to the web applications results page by default(4) or to a
callback URL over HTTP(5) or to a RabbitMQ queue(6).

e Users can also register queries and observers via RESTful interface(7) and consume both

the streams and query results for the RabbitMQ via a another API created for this
purpose(8).

ROF stream filtering web application

C-SPARGL Display list of

RESTful API - : available streams;
»| C-SPAROQL engine M€ Query serviet [« Form for registering

queries

Y

Display list of
available queries;
Form for registering
observers

Observer serviet &

Y

Y

Results serviet Display results

v Lo
AP for streams and P 3

b

que 8 b
¥ results - . Callback for!
on RabbitMQ Rabtﬂth | |

| results

—

I": Stream of |
| RDF triples/

b >

Figure 14: possible RDF streaming solution architecture for commercial infosystem like

Inforegister.

This way the system is flexible by allowing multiple ways of registering queries and observers
and accessing query results. It has the capabilities of both the simpler widely used REST
technology and more complex AMQP, which is better suited for larger datasets. It also lacks
redundant components in internal communication - Registering queries and observers using the
RESTful interface or web servlets goes straight to the C-SPARQL engine and results go straight
to results page, RabbitMQ queue or callback URL depending on the user's preferences.

5. Testing

Since to the best of our knowledge C-SPARQL engine hasn’t found much use in commercial
systems, a thorough performance testing is required before it can be used in production

environment. In the current Section the results of performance tests are summarized.

5.1 Test case

The queries and dataset for the streams were designed with 2 real-world use cases, both related
to real-time lead generation, from Inforegister NOW!, a new product of Register OU, in mind.
These use cases were represented with 2 different queries, one with a single input stream and

another with two streams. The queries are represented in Figure 15 and Figure 16.

REGISTER QUERY Q1 AS
SELECT ?obId ?person ?lead
FROM STREAM <http://ex.org/test#memberships> [RANGE 5s STEP 5s]

?obId <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://purl.oclc.org/NET/ssnx/ssn#0bservation> .

<https://graph.ir.ee/organizations/ee-11215399> <http://www.w3.org/ns/orgi#hasMember> ?person .
?lead <http://www.w3.org/ns/org#hasMember> ?person .

Figure 15: Query 1: Return companies of board members of TENCM OU (with reg. no.
11215399) as new leads.

REGISTER QUERY Q2 AS
SELECT ?0obId ?person ?org ?category
FROM STREAM <http://ex.org/test#memberships> [RANGE 5s STEP 5s]
FROM STREAM <http://ex.org/test#organisations> [RANGE 5s STEP 5s]
WHERE {

?obId <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://purl.oclc.org/NET/ssnx/ssn#0bservation> .

{

org <http://www.w3.org/ns/org#hasMember> ?person .
?org <http://purl.org/goodrelations/vil#category> ?category .
FILTER regex(?category, '768"')

}

Figure 16: Query 2: Return all the persons that work for a company belonging to the real estate

category.

First of all, there is a special row at the beginning of the pattern matching WHERE clause in both
queries. This is necessary for the CityBench implementation. CityBench measures latency from
data's arrival to the engine to the reading of query results by the observer. While most of the
triples for the stream are read from a sample stream snapshot file, that is taken from a real
Register stream API, there is also a triple, that is added programmatically to every group of
triples fed to the stream. It has a unique identifier that is used to identify an observation. This
way every group of result triples has an observation id that can be used to determine the

observation's time of arrival to the system.

The first query(Q1) is the same as in Figure 6 except the range(window size), which for the base

query is same as the step: 5 seconds.

The second query(Q2) adds a stream of organisations to its data sources. It also has a FILTER
clause with a regular expression to further filter down the results. It finds all the persons, who
work in an organisation that belongs to a category whose code starts with 68. The category codes
used in the stream are EMTAK(Eesti Majanduse Tegevusalade Klassifikaator) codes. Codes that

start with 68, belong to the real estate related activities.

We measured latency and memory consumption of these queries while varying following
parameters:

e RDF triple frequency

e window size

e number of registered queries.

The triple frequency corresponds to how many triples are added to the stream in a second. In a
real-world situation the rate in which triples are coming in may change drastically, so a system
needs to be robust against higher loads as well. Other times streams don’t have enough triples in
a small timeframe to be able to make meaningful reasonings on the data, so it would make sense
to use a larger window size. Finally we do measurements with different number of registered
queries because in commercial systems there might be hundreds or thousands of users who use

an application to register similar queries.

5.1.1 Inforegister NOW! use cases

Register queries regularly a pool of remote datasets, including the national registries, Web sites
and third-party Web services, to produce streams of RDF data as output. There are two types of
output. One is a snapshot of the incoming new data. The other kind are changesets, that show
what changed compared to the last snapshot, when it changed and how it changed: whether it is a
removal, addition or of new triples. There are 13 different type of data being queried, that is a
total of 26 different RDF streams being produced.[2] We also make the following assumptions:

o There will be 200k legal persons (organizations) and 300k board members with a total of
500k subjects to query upon. That means there can be a maximum of 500k different
variations of a same kind of query. For example Q1 looks leads on persons, who are a
members of organisation (a.k.a. juridical person) with a registration number 11215399.
This query could be made for 200k different organisations.

e The system will have 50k users. A user will have an average of 50 queries per stream or
an average of 1300 queries total. That makes a total 50k x 1300 = 65 million queries.

e Different streams can have 0.5 - 2 million triples per day.

e A window size can be in the range of 1 month to 1 year.

5.2 Test implementation

Tests were implemented using the CityBench Java application modified to our needs. We chose
to use CityBench because it was best suited for our Inforegister NOW! use case. CityBench was
created to better simulate real-time applications. The datasets of older benchmarks where static
and limited while CityBench's is more dynamic and programmable. At the center of its
implementation is what the creators call a Configurable Testbed Infrastructure (CTI). Besides

the RSP engines, it contains a Dataset Configurable Module for configuring streams, Query

https://paperpile.com/c/nfuDlP/U5qq

Configurable Module for configuring queries and a Performance Evaluator for collecting and
storing the measurements. Of the several possible parameters, that can be passed to the
benchmark, relevant for us are the following: one for setting the stream feeding frequency; one
for setting the number of concurrent queries and one for setting the text file from where queries

are read.[26]

We ran tests with both queries in three sets, each varying one of the parameters mentioned
previously: triple frequency, window size and number of concurrent queries. Each test ran for 10
minutes with fixed configurations. At each minute mark Performance Evaluator saves the

arithmetic mean of last minutes latencies and memory usage.

The streams are fed once per second. 96 triples are added to the membership stream: 95 from the
snapshot file plus 1 observation triple in code. The same number for the organisations stream is
57.

Specifications of the computer used for testing are shown in Figure 17. Note that one of the
computer components mentioned is RAM, but CityBench is a Java application running on Java

Virtual Machine(JVM) that had its maximum memory allocation pool set to 2048 MB.

Component Specification

Operating system Microsoft Windows 10 Home, 10.0.10586 Build 10586, 64-bit

Processor Intel(R) Core(TM) 17-4500U CPU @ 1.80GHz, 2401 Mhz, 2 Core(s), 4 Logical
Processor(s), x64-based

RAM 8.00 GB

Disk drive Samsung ssd MZMTE256HMHP-000L1, 256 GB

Figure 17: computer specification used for testing

5.3 Results

For some measurements both graphs with and without high parameter values are included for

better clarity.

https://paperpile.com/c/nfuDlP/KCwk

5.3.1 Varying frequencies

In Figure 18 we can see Q1’s latency and memory usage in relation to different frequencies and
in Figure 19 we can see the same for Q2. All these tests had a window size of 5 seconds and 1

query running at a time.

Q1 latency with different frequencies Q1 memory with different frequencies
8k 600
g
c 6k 400
£ E
%’ 4k 200

2K 0
2 4 3 8 10 2 4 3 8 10
minute minute
latency-Q1-F10 -~ latency-Q1-F100 latency-Q1-F200 latency-Q1-F500 memory-Q1-F10 - memory-Q1-F100 memory-Q1-F200
-+ latency-Q1-F1000 memory-Q1-F500 =% memory-Q1-F1000
Highcharts.com Highcharts.com
Q1 latency with different frequencies (with high frequencies) Q1 memory with different frequencies (with high
frequencies)
40k
2000
2 sk @ 1500 = S 1
2 p——o .)
c) \/
g 1000 o
g
o
g 20k 2
% 500
g
$ 10k 0 v
500
ok 2 4 6 8 10
2 4 6 8 10 minute
minute
memory-Q1-F10 -~ memory-Q1-F100 memory-Q1-F200
latency-Q1-F10 -e- latency-Q1-F100 latency-Q1-F200 latency-Q1-F500 memory-Q1-F500 -% memory-Q1-F1000 -8 memory-Q1-F1250
¥ latency-Q1-F1000 -®- latency-Q1-F1250 latency-Q1-F1500 memory-Q1-F1500
Highcharts.com Highcharts.com

Figure 18: Query 1 latency and memory usage with varying frequencies

Q2 latency with different frequencies Q2 memory with different frequencies

25k 800
. 20k 600
£
=
> 15k
g 2 400
5
o 10k
3
o 200
&

sk ‘___‘____,_’_o—o——"‘_""_”__k,‘

P—
]
ok 2 4 6 8 10
2 4 6 8 10 minute
minute
memory-Q2-F10 - memory-Q2-F100 memory-Q2-F200
latency-Q2-F10 - latency-Q2-F100 latency-Q2-F200 latency-Q2-F300 memory-Q2-F300

Highcharts.com Highcharts.com

Q2 latency with different frequencies (high frequencies Q2 memory with different frequencies (high frequencies
included) included)

100k
75k /- 1500 o
4 1000
50k y y

) >
25k / 500

ok ¥

average latency in ms

-25k 2 4 6 8 10

minute
memory-Q2-F10 - memory-Q2-F100 memory-Q2-F200
latency-Q2-F10 == latency-Q2-F100 latency-Q2-F200 latency-Q2-F300 memory-Q2-F300 % memory-Q2-F400 -8 memory-Q2-F500
=¥ latency-Q2-F400 -®- latency-Q2-F500 latency-Q2-F1000 memory-Q2-F1000
Highcharts.com Highcharts.com

Figure 19: Query 2 latency and memory usage with varying frequencies

As the queries have a step of 5 seconds and new triples are added to the stream every second, the
optimal query running time would be 2.5 seconds. With frequency of 10 the latency stays the
same in the course of the test. Both queries overall average gets close to that: 2.595s for Q1 and
2.702s for Q2. As the frequency gets higher so does the latency. When frequency is set to 200
the averages for Q1 and Q2 are 3.673s and 5.585s accordingly. At frequency of 300 Q2 starts to
rise exceedingly at the 7 minute mark having latency of 7.510s on the first minute and 19.424s at
the end of the test. With frequencies of 400 and 500 Q2 stopped registering latency after 3.
Minute. Q1 Managed to stay stable at frequency of 1000 with an average latency of 6.943s, but
with a frequency of 1250 did not get past the first minute.

With higher frequencies we can see memory flatlining above 1500MB mark and out of memory
errors appeared on the application logs, which explains why latencies stopped being registered.
When we look at the memory graphs closer, we can see, that the higher the frequency, the more
rapidly the memory starts to fill. The main reason for this is that as the latency rises higher than
5s, which is the step length for our queries, more and more data has to be kept in memory. That
is because data is discarded only after all queries, in whose windows the data belongs to, have
run. But memory usage is rising even for slower frequencies. For example when frequency
equals 10, during the 10 minutes, used memory rises 49.55MB - 39.19MB = 10.36MB. With
frequency of 200 the rise is 153MB - 86.44MB = 66.56MB.

With regards to Register Stream API requirements: with frequency of 1, 96 triples are streamed
in a second - that is 8 294 400 triples a day, which covers our estimation of 2 million triples a

day.

5.3.2 Varying window sizes

Figures 20 and 21 show the queries latency and memory consumptions with different window

sizes. The frequency and number of registered queries for these tests were 1.

Q1 latency with different window sizes

Q1 memory with different window sizes

4000 &

3500

MB

average latency in ms

s vl o a 40
2500 __\/ \/ s
2000 30
2 4 6 8 10 2 4 6 8 10
minute minute
latency-Q1-W10 -#- latency-Q1-W25 latency-Q1-W50 latency-Q1-W100 memory-Q1-W10 -- memory-Q1-W25 memory-Q1-W50
=¥ latency-Q1-W200 -#- latency-Q1-W500 memory-Q1-W100 -* memory-Q1-W200 -® memory-Q1-W500

Highcharts.com Highcharts.com

Figure 20: Query 1 latency and memory usage with varying window sizes

Q2 latency with different window sizes Q2 memory with different window sizes
4500 80
4000 70
£
S
> 3500 60
3
S o
5 =
@ 3000 50 —
g
1 =
g —\. A
® 2500 \/ 40 —o-
2000 30
2 4 6 8 10 2 4 6 8 10
minute minute
latency-Q2-W10 -e- latency-Q2-W25 latency-Q2-W50 latency-Q2-W100 memory-Q2-W10 -~ memory-Q2-W25 memory-Q2-W50
-* latency-Q2-W200 -#- latency-Q2-W500 memory-Q2-W100 -¥ memory-Q2-W200 -® memory-Q2-W500
Highcharts.com Highcharts.com

Figure 21: Query 2 latency and memory usage with varying window sizes

The highest window size we measured was 500 seconds - that is 8 minutes and 20 seconds. As
the tests ran for 10 minutes, it would have been impractical to set it much higher because the test

will end sooner than the window becomes ‘full’.

A noticeable rise in latency can be seen with a window size of 500 seconds for Q1 and 200
seconds for Q2, but it is marginal compared to the frequency tests. This is understandable as with
window size 500 seconds and a stream rate of 96 triples per second, the number of triples in
memory after 500 seconds is 48 000. This is equivalent for window size of 5 seconds and a

frequency of 100. For Q1 the average latency in the first scenario was 2.954s and in the second

2.979s, which are both smaller than the query step of 5 seconds. To strain the system more with

larger window sizes in future tests, one could run the tests longer or setting the frequency higher.

In this benchmark triple timestamps are set, when they enter the application. This can also be
seen from the graphs, which keep ascending as long as the window size, and then slow down. To
imitate large window sizes like 1 year, as might be required for Inforegister NOW! application,

one could add a large number of triples to the stream with older timestamps.

5.3.3 Varying registered queries

Q1 latency with different number of registered queries Q1 memory with different number of registered queries

Sk 70

4k 60

2k
L — ==
1k

ok 2 4 6 8 10

average latency in ms
®
MB
@
S

minute

minute

memory-Q1-K10 - memory-Q1-K50 memory-Q1-K100
memory-Q1-K200 -* memory-Q1-K300 -® memory-Q1-K400
memory-Q1-K500

latency-Q1-K10 -~ latency-Q1-K50
=¥ |latency-Q1-K300 -@- latency-Q1-K400

latency-Q1-K100
latency-Q1-K500

latency-Q1-K200

Highcharts.com Highcharts.com

Q1 latency with different number of registered queries (with
high numbers included)

Q1 memory with different number of registered queries (with
high numbers included)

150k 750

a [

E 100k

= - 500

c L

S @

g sok - o

¢ ./. 250

@ Ok

g

s -__’_._’_,JW
-50k 0

2 4 6 8 10 2 4 6 8 10

minute minute

latency-Q1-K10 -e- latency-Q1-K50
=% latency-Q1-K300 -#- latency-Q1-K400

latency-Q1-K100
latency-Q1-K500

latency-Q1-K200 memory-Q1-K10 - memory-Q1-K50 memory-Q1-K100

memory-Q1-K200 -¥ memory-Q1-K300 -®- memory-Q1-K400

-# latency-Q1-K1000 -# latency-Q1-K10000
Highcharts.com

memory-Q1-K500 - memory-Q1-K1000 -+ memory-Q1-K10000
Highcharts.com

Figure 22: Query 1 latency and memory usage with different number of registered queries.

Q2 latency with different number of registered queries Q2 memory with different number of registered queries

3000 55

2500 ’-\\/\/\/‘_—'\
s0

2000
45

1500
40

1000

average latency in ms
MB

500 2 4 6 8 10
2 4 6 8 10 Hilhtite
minute
memory-Q2-K10 -#- memory-Q2-K50 memory-Q2-K100
latency-Q2-K10 -e- latency-Q2-K50 latency-Q2-K100 latency-Q2-K200 memory-Q2-K200
Highcharts.com Highcharts.com
Q2 latency with different number of registered queries (with Q2 memory with different number of registered queries (with
semi-high numbers included) semi-high numbers included)
150k 125
€ 100k . 100
s
S °
E 50k Py 2 75
3 -
o)/H_,’_k ‘/F_’J_/.__;———t———'——‘——'———'
<)
g — 30
g ok H————————————a—————— i
© — v
25
-50k 2 4 6 8 10
2 4 6 8 10 minute
minute
memory-Q2-K10 -~ memory-Q2-K50 memory-Q2-K100
latency-Q2-K10 - latency-Q2-K50 latency-Q2-K100 latency-Q2-K200 memory-Q2-K200 -*= memory-Q2-K300 -® memory-Q2-K400
=¥ latency-Q2-K300 -@- latency-Q2-K400 latency-Q2-K500 memory-Q2-K500
Highcharts.com Highcharts.com

Q2 latency with different number of registered queries (with

high riuenibers ingltided) Q2 memory with different number of registered queries (with

high numbers included)

200k 1000

g 150k ™~
c 750
g 100k]
]
2 ° 2 500
&
o 50k PY =
o
© A
g ok = A = 250
— ¥ ¥ ¥
-50k [r——— — . . .
2 4 6 8 10 2 4 6 8 10
minute minute
latency-Q2-K10 - latency-Q2-K50 latency-Q2-K100 latency-Q2-K200 memory-Q2-K10 -- memory-Q2-K50 memory-Q2-K100
-¥ latency-Q2-K300 -e- latency-Q2-K400 latency-Q2-K500 memory-Q2-K200 -% memory-Q2-K300 -® memory-Q2-K400
& latency-Q2-K1000 -4 latency-Q2-K10000 memory-Q2-K500 - memory-Q2-K1000 -« memory-Q2-K10000
Highcharts.com Highcharts.com

Figure 23: Query 2 latency and memory usage with different number of registered queries.

The latency started climbing more rapidly with 500 queries for Q1 and 300 queries for Q2. This
time it is not caused by large number of triples in memory, but because the queries had to wait on
each other. When the number of concurrent queries were 10 000 the application started throwing
ConcurrentModificationExceptions from the C-SPARQL engine implying that different queries

tried to modify the same object at the same time. 10 000 queries is still significantly lower than

are expected of Register Stream API. Test results suggest that a safe number of queries for a

single stream like Q1 is 400 and for a two stream query like Q2 200.

One way to alleviate this is by having multiple users observe the same query instead of
registering identical queries more than once. Another probably more effective way to improve
this is to have a clustered system with multiple engines that balance the load of a big number of
users. There could be a front application which chooses the engine to use based on the number of
queries already registered on them. On the other end RabbitMQ could duplicate the streams to

different engines.

5.3.4 Threats to validity

Test results of concurrent queries exhibit some unusual behaviour. There is a range for the
number of parallel queries where the average latency is lower than with smaller number. Both
queries have latency around 2.5 seconds, but with 100 and 200 queries it is below 2 seconds.
This is lower than the optimal 2.5 seconds mentioned earlier. After some inspection of the code,
it seems more likely that this anomaly is caused by the benchmark application, rather than the
fault of the C-SPARQL engine. Largest number of parallel queries for the tests run by CityBench

authors was 20 while on our tests this oddity started appearing after 100 concurrent queries.[26]

Some of this memory surge mentioned discussed in Subsection 5.3.1 with frequencies 10 and

200 could also be caused by the CityBench application itself and not the C-SPARQL engine.

6. Conclusion

In this paper we introduced RDF and SPARQL technologies for linked data and two widely used
architecture options for web applications in REST and message-oriented middleware. We gave a
brief overview of C-SPARQL - an extension of SPARQL for querying over RDF streams and
RabbitMQ - message-oriented middleware that uses primarily AMQP protocol for message
mediation. We created two proofs of concepts for RDF stream filtering solutions and proposed a
third one, suitable for an enterprise-level application like Inforegister NOW!. It takes advantage
of both REST and MOM capabilities and is flexible by offering several methods for registering
queries and accessing the results. We also run experiments on C-SPARQL to measure its

suitability for Inforegister NOW! Stream API. Even though frequency test results were adequate

https://paperpile.com/c/nfuDlP/KCwk

for the Stream API-s requirements, the tests were to light to strain the system for varying
window sizes and both the engine and the benchmark had their shortcomings with regards to

having multiple parallel queries run at the same time.

In the future a lot more experiments could be made. To stress the system properly with window
size, longer tests could be made with higher triple frequencies. Likewise tests with high
frequencies with several streams and queries running at the same time. For example, which
would have greater latency: one query and stream with frequency of 1000 or ten queries and
streams each with frequency of 100 (assuming here that each streams triple rate would be the
same). Tests with multiple observers could also be made although the efficiency of the observer
depends on its implementation. For example through the RESTful API of C-SPARQL one could
add several observers all pointing to different URL-s where the application would have to send
the results, but if there was an observer who would send all the query results to RabbitMQ, then
one observer would be enough and the load with different number of users would be the MOM's
responsibility.

Other RSP engines that were mentioned in Related Work Section, could also be tested. Both
YABench and CityBench have been used to test more than one engine and are made to be
modular enough to have engines plugged into them relatively easily. [15], [26]

If enough experiments have been made to meet the requirements of the application, then the

architecture design could be updated according to the test results and a prototype could be made.

https://paperpile.com/c/nfuDlP/Q2yt+KCwk

References

[1] T. Berners-Lee, J. Hendler, O. Lassila, and Others, “The semantic web,” Sci. Am., vol. 284, no. 5, pp.
28-37,2001.

[2] “Inforegister developers.” [Online]. Available: https://developers.ir.ee/stream-api/. [Accessed:
12-May-2016].

[3] F.Manola, E. Miller, B. McBride, and Others, “RDF primer,” W3C recommendation, vol. 10, no.
1-107, p. 6, 2004.

[4] “SPARQL 1.1 Query Language.” [Online]. Available:
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/. [Accessed: 12-May-2016].

[5] M. Masse, REST API design rulebook. “ O’Reilly Media, Inc.,” 2011.

[6] “Message-Oriented Middleware (MOM) (Sun Java System Message Queue 4.3 Technical
Overview).” [Online]. Available: http://docs.oracle.com/cd/E19340-01/820-6424/aeraq/index.html.
[Accessed: 12-May-2016].

[7] D.Le-Phuoc, M. Dao-Tran, J. X. Parreira, and M. Hauswirth, “A Native and Adaptive Approach for
Unified Processing of Linked Streams and Linked Data,” in The Semantic Web — ISWC 2011,
Springer Berlin Heidelberg, 2011, pp. 370-388.

[8] D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic, “Stream reasoning and complex event
processing in ETALIS,” Semantic Web, vol. 3, no. 4, pp. 397407, 2012.

[9] J.-P. Calbimonte, O. Corcho, and A. J. G. Gray, “Enabling Ontology-Based Access to Streaming
Data Sources,” in The Semantic Web — ISWC 2010, Springer Berlin Heidelberg, 2010, pp. 96-111.

[10] S. Komazec, D. Cerri, and D. Fensel, “Sparkwave: continuous schema-enhanced pattern matching
over RDF data streams,” of the 6th ACM International Conference ..., 2012,

[11] M. Rinne, E. Nuutila, and S. Térma4, “Instans: High-performance event processing with standard rdf
and sparql,” in [1th International Semantic Web Conference ISWC 2012, 2012, p. 101.

[12] Y. Zhang, P. M. Duc, O. Corcho, and J.-P. Calbimonte, “SRBench: A Streaming RDF/SPARQL
Benchmark,” in The Semantic Web — ISWC 2012, Springer Berlin Heidelberg, 2012, pp. 641-657.

[13] D. Le-Phuoc, M. Dao-Tran, M.-D. Pham, P. Boncz, T. Eiter, and M. Fink, “Linked Stream Data
Processing Engines: Facts and Figures,” in The Semantic Web — ISWC 2012, Springer Berlin
Heidelberg, 2012, pp. 300-312.

[14] D. Dell’ Aglio, J.-P. Calbimonte, M. Balduini, O. Corcho, and E. Della Valle, “On Correctness in
RDF Stream Processor Benchmarking,” in The Semantic Web — ISWC 2013, Springer Berlin
Heidelberg, 2013, pp. 326-342.

[15] M. Kolchin and P. Wetz, “Demo: YABench-Yet Another RDF Stream Processing Benchmark,” in
RSP Workshop, 2015.

[16] M. Balduini, E. di Nitto, M. Miglierina, V. Munteanu, G. Casale, J. F. Pérez, and W. Wang,
“MODAC]louds D6. 3.1-Monitoring platform-initial release.” 2013.

[17] H. Khrouf and X. Ren, “WAVES: Deliverable 2.3 v2 Experiment Infrastructure.” [Online].
Available: http://www.waves-rsp.org/deliverables/Waves-D2.3-explnfrastructure-v2.pdf.

[18] H. N. M. Quoc and D. Le Phuoc, “An Elastic and Scalable Spatiotemporal Query Processing for
Linked Sensor Data,” in Proceedings of the 11th International Conference on Semantic Systems,
2015, pp. 17-24.

[19] A. Gnoli, C - SPARQL: A Continuous Query Language for Resource Description Framework Data
Streams. LAP Lambert Academic Publishing, 2010.

[20] D. F. Barbieri, D. Braga, S. Ceri, and M. Grossniklaus, “An Execution Environment for C-SPARQL
Queries,” in Proceedings of the 13th International Conference on Extending Database Technology,

http://paperpile.com/b/nfuDlP/oJHX
http://paperpile.com/b/nfuDlP/oJHX
http://paperpile.com/b/nfuDlP/oJHX
http://paperpile.com/b/nfuDlP/oJHX
http://paperpile.com/b/nfuDlP/U5qq
https://developers.ir.ee/stream-api/
http://paperpile.com/b/nfuDlP/U5qq
http://paperpile.com/b/nfuDlP/U5qq
http://paperpile.com/b/nfuDlP/ndTL
http://paperpile.com/b/nfuDlP/ndTL
http://paperpile.com/b/nfuDlP/ndTL
http://paperpile.com/b/nfuDlP/ndTL
http://paperpile.com/b/nfuDlP/2Y8e
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://paperpile.com/b/nfuDlP/2Y8e
http://paperpile.com/b/nfuDlP/uMFG
http://paperpile.com/b/nfuDlP/uMFG
http://paperpile.com/b/nfuDlP/uMFG
http://paperpile.com/b/nfuDlP/qpsC
http://paperpile.com/b/nfuDlP/qpsC
http://docs.oracle.com/cd/E19340-01/820-6424/aeraq/index.html
http://paperpile.com/b/nfuDlP/qpsC
http://paperpile.com/b/nfuDlP/qpsC
http://paperpile.com/b/nfuDlP/bhI0
http://paperpile.com/b/nfuDlP/bhI0
http://paperpile.com/b/nfuDlP/bhI0
http://paperpile.com/b/nfuDlP/bhI0
http://paperpile.com/b/nfuDlP/bhI0
http://paperpile.com/b/nfuDlP/ADkW
http://paperpile.com/b/nfuDlP/ADkW
http://paperpile.com/b/nfuDlP/ADkW
http://paperpile.com/b/nfuDlP/ADkW
http://paperpile.com/b/nfuDlP/LqEY
http://paperpile.com/b/nfuDlP/LqEY
http://paperpile.com/b/nfuDlP/LqEY
http://paperpile.com/b/nfuDlP/LqEY
http://paperpile.com/b/nfuDlP/B3An
http://paperpile.com/b/nfuDlP/B3An
http://paperpile.com/b/nfuDlP/B3An
http://paperpile.com/b/nfuDlP/B3An
http://paperpile.com/b/nfuDlP/xAc3
http://paperpile.com/b/nfuDlP/xAc3
http://paperpile.com/b/nfuDlP/xAc3
http://paperpile.com/b/nfuDlP/xAc3
http://paperpile.com/b/nfuDlP/FUni
http://paperpile.com/b/nfuDlP/FUni
http://paperpile.com/b/nfuDlP/FUni
http://paperpile.com/b/nfuDlP/FUni
http://paperpile.com/b/nfuDlP/CUVI
http://paperpile.com/b/nfuDlP/CUVI
http://paperpile.com/b/nfuDlP/CUVI
http://paperpile.com/b/nfuDlP/CUVI
http://paperpile.com/b/nfuDlP/CUVI
http://paperpile.com/b/nfuDlP/ufVy
http://paperpile.com/b/nfuDlP/ufVy
http://paperpile.com/b/nfuDlP/ufVy
http://paperpile.com/b/nfuDlP/ufVy
http://paperpile.com/b/nfuDlP/ufVy
http://paperpile.com/b/nfuDlP/Q2yt
http://paperpile.com/b/nfuDlP/Q2yt
http://paperpile.com/b/nfuDlP/Q2yt
http://paperpile.com/b/nfuDlP/mDaL
http://paperpile.com/b/nfuDlP/mDaL
http://paperpile.com/b/nfuDlP/S75S
http://paperpile.com/b/nfuDlP/S75S
http://www.waves-rsp.org/deliverables/Waves-D2.3-expInfrastructure-v2.pdf
http://paperpile.com/b/nfuDlP/S75S
http://paperpile.com/b/nfuDlP/M6eX
http://paperpile.com/b/nfuDlP/M6eX
http://paperpile.com/b/nfuDlP/M6eX
http://paperpile.com/b/nfuDlP/M6eX
http://paperpile.com/b/nfuDlP/M6eX
http://paperpile.com/b/nfuDlP/tlUA
http://paperpile.com/b/nfuDlP/tlUA
http://paperpile.com/b/nfuDlP/tlUA
http://paperpile.com/b/nfuDlP/tlUA
http://paperpile.com/b/nfuDlP/uccE
http://paperpile.com/b/nfuDlP/uccE
http://paperpile.com/b/nfuDlP/uccE
http://paperpile.com/b/nfuDlP/uccE

2010, pp. 441-452.

[21] “RabbitMQ - AMQP 0-9-1 Model Explained.” [Online]. Available:
https://www.rabbitmq.com/tutorials/amqp-concepts.html. [Accessed: 12-May-2016].

[22] pubsubhubbub, “pubsubhubbub/PubSubHubbub.” [Online]. Available:
https://github.com/pubsubhubbub/PubSubHubbub/wiki. [Accessed: 12-May-2016].

[23] “RabbitHub.pdf.” [Online]. Available:
http://commondatastorage.googleapis.com/opensourceprojects/RabbitMQ/RabbitHub.pdf.

[24] T. Kalling and Others, “Jarjepideva veebimonitoorimise siisteemi arhitektuur Eesti domeenis,” Tartu
Ulikool, 2015.

[25] J. L. Fernandes, I. C. Lopes, J. J. P. C. Rodrigues, and S. Ullah, “Performance evaluation of RESTful
web services and AMQP protocol,” in 2013 Fifth International Conference on Ubiquitous and
Future Networks (ICUFN), 2013, pp. 810-815.

[26] M. L. Ali, F. Gao, and A. Mileo, “CityBench: A Configurable Benchmark to Evaluate RSP Engines
Using Smart City Datasets,” in The Semantic Web - ISWC 2015, Springer International Publishing,
2015, pp. 374-389.

http://paperpile.com/b/nfuDlP/uccE
http://paperpile.com/b/nfuDlP/Bd18
https://www.rabbitmq.com/tutorials/amqp-concepts.html
http://paperpile.com/b/nfuDlP/Bd18
http://paperpile.com/b/nfuDlP/hB7H
https://github.com/pubsubhubbub/PubSubHubbub/wiki
http://paperpile.com/b/nfuDlP/hB7H
http://paperpile.com/b/nfuDlP/DmCU
http://commondatastorage.googleapis.com/opensourceprojects/RabbitMQ/RabbitHub.pdf
http://paperpile.com/b/nfuDlP/DmCU
http://paperpile.com/b/nfuDlP/D35D
http://paperpile.com/b/nfuDlP/D35D
http://paperpile.com/b/nfuDlP/oYvr
http://paperpile.com/b/nfuDlP/oYvr
http://paperpile.com/b/nfuDlP/oYvr
http://paperpile.com/b/nfuDlP/oYvr
http://paperpile.com/b/nfuDlP/oYvr
http://paperpile.com/b/nfuDlP/KCwk
http://paperpile.com/b/nfuDlP/KCwk
http://paperpile.com/b/nfuDlP/KCwk
http://paperpile.com/b/nfuDlP/KCwk
http://paperpile.com/b/nfuDlP/KCwk

Appendix 1. Repository of Proof of Concepts.

The source code repository for Proof of Concepts is located at

https://github.com/a71993/csparqlpush.

Non-exclusive licence to reproduce thesis and make thesis public

I, Mikk-Erik Bachmann

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public, including for
addition to the DSpace digital archives until expiry of the term of validity of the copyright,

and

1.2. make available to the public via the web environment of the University of Tartu, including
via the DSpace digital archives until expiry of the term of validity of the copyright,

Filtering Real-Time Linked Data Streams
supervised by Peep Kiingas
2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual property
rights or rights arising from the Personal Data Protection Act.

Tartu, 12.05.2016

