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1. INTRODUCTION 
 
A recent technological revolution in human genomics has enabled a conceptual 
shift in approaches to study the genetic backround of diseases, leading from 
single gene specific to a genome-wide emphasis. The use of high-resolution 
genomic microarrays has revealed widespread presence of DNA copy number 
variations (CNVs) in the human genome. CNVs are defined as segments of 
DNA ranging in size from thousands to millions of base pairs and altered in 
dosage of genomic copies compared to the reference genome. Depending on the 
genomic context, these variants can be harmless polymorphisms, act as 
susceptibility factors for common traits and diseases or play an important role in 
the pathogenesis of developmental disorders and congenital anomalies. 
Chromosomal imbalances contribute as major players in neuropsychiatric dis-
orders and several distinctive microdeletion and microduplication syndromes 
have been defined during recent years. However, studies have revealed that 
numerous variants initially detected in patients with brain-related disorders also 
occur with lower frequency in apparently normal individuals. Assessing the 
clinical significance of these CNVs, and thus providing proper genetic co-
unselling, is further challenged by intra-individual diversity within patient 
cohorts. Although investigation of inheritance patterns may offer additional 
information, it is often difficult to attribute pathogenic significance based on 
whether the CNV was inherited from a parent or occurs as a de novo event only. 
Therefore, characterizing rare genomic variants using a family-based approach, 
as well as cohort-exceeding strategies is essential for reliable assessment of the 
phenotypic consequences.  

In this study, single nucleotide polymorphism (SNP) based whole-genome 
screening was used to investigate genomic variants in Estonian families with 
idiopathic intellectual disability. In addition, genotype and phenotype data from 
Estonian general population individuals was used for accurate interpretation of 
rare structural aberrations of uncertain relevance. This study is the first 
comprehensive effort to investigate genomic causes of cognitive impairment 
and offer state-of-the-art diagnostic possibilities in Estonian patients. It presents 
the benefits and opportunities provided by well-characterized comparative 
cohorts and SNP genotyping data in the diagnostics of developmental disorders 
and complex traits. 
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2. REVIEW OF THE LITERATURE 

2.1. Structural variants and  
their consequence on human health 

2.1.1. DNA copy-number variants as a cause  
of genetic variability and human disease 

The extensive use of genomic profiling by array-based platforms and next-
generation sequencing over the last years has extended our understanding of the 
genetic diversity of the human genome, and revealed DNA copy-number 
variation (CNV) as an essential contributor to inter-individual variability and a 
major driving force in human evolution [1–9]. Copy-number variants are a form 
of structural variation, defined as genomic segments >1 kb in size that vary in 
their number of genomic copies compared to the representative reference ge-
nome. These stretches of altered copy-number DNA sometimes encompass 
scores of protein coding genes or regulatory elements. Depending on the geno-
mic content, they can be harmless polymorphisms or have an impact on a 
carrier’s risk to develop a disease. CNV formation can rise meiotically as well 
as somatically, and accumulating data demonstrates that variations in different 
tissues contribute also to the individual’s somatic mosaicism [10–13]. This 
supports the hypothesis that age-accumulated CNVs might have a role also in 
diseases that develop symptoms later in life [14, 15]. Although precise esti-
mation of CNV mutation rates at the genome-wide level is still elusive and the 
rates have been expected to vary among loci by several orders of magnitude, 
different studies have found an average per-generation per-nucleotide rate of 
CNV formation in the range between 2 × 10–6 and 3 × 10–2 per-nucleotide per-
haploid genome, i.e. several orders of magnitude higher than the single base 
substitution rate [2, 16–19]. Altogether, CNVs have been shown to occur in a 
high portion (approximately 35%) of the human genome, and to be common in 
normal population without major phenotypic effect (http://projects.tcag.ca/ 
variation). However, about 14% of genes in the OMIM morbid map have been 
estimated to be subject to copy-number variation [5], and during the recent 
years CNVs have been identified as one of the common causes of human 
disease [20]. Pathologic conditions caused by these structural rearrangements 
are collectively termed as genomic disorders [21]. 
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2.1.2. Landscape and prevalence  
of human copy-number variation 

Structural variation in the human genome is not randomly distributed, but 
complex patterns of inverted and directly oriented low copy repeat sequences 
(LCRs; known also as segmental duplications) have made some chromosomal 
regions prone to the rearrangements. According to their occurrence, CNVs can 
be divided into two broad categories: (i) recurrent and non-recurrent; (ii) 
common and rare variants [22] (Figure 1).  
 
Recurrent, non-recurrent and atypical CNVs 
Recurrent CNVs are flanked by directly oriented blocks of highly homologous 
LCRs. Misalignment of these LCRs during meiosis acts as a substrate for a 
process called non-allelic homologous recombination (NAHR) and gives rise to 
CNVs with common size and nearly identical boundaries in carriers. Recurrent 
CNVs mediated by NAHR are usually larger in size and several of these have 
been linked to distinctive genomic syndromes [23, 24]. However, the majority 
of pathogenic microdeletions and microduplications (i.e. aberrations that are too 
small to be detected under the microscope) consists of rare non-recurrent CNVs 
scattered throughout the genome [25]. Non-recurrent CNVs can be generated by 
NAHR between repetitive SINE and LINE sequences, but occur more often via 
other molecular mechanisms such as non-homologous end joining (NHEJ) [22], 
or perturbations of DNA replication and repair (e.g. Fork Stalling and Template 
Switching (FoSTeS) [26] and microhomology-mediated break-induced repli-
cation (MMBIR) [27]). Although break-points of these CNVs do not cluster 
within segmental duplications, they still tend to occur in the vicinity of LCRs 
and to be stimulated by complex genome architecture [28, 29]. Non-recurrent 
CNVs are of variable size in patients, but carriers may share a critical region 
whose copy-number change results in common clinical features [25].  

CNVs that overlap with recurrent disease regions but appear with break-
points mediated either by different LCRs or a non-homologous mechanism are 
termed as atypical deletions and duplications. These imbalances (when shorter 
in size) might provide evidence for underlying monogenic factors or allow one 
to refine the critical interval of the recurrent syndrome [30–33]. 
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Figure 1. Schematic representation of copy-number variations in the human genome 
and mechanisms of their formation. CNV is defined as a segment of DNA that has 
decreased (deletion) or increased (duplication) number of genomic copies compared to 
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the reference genome (A). The recurrent deletions and duplications result mostly from 
NAHR, have common size and nearly identical breakpoints that cluster within the 
directly oriented LCRs. The CNVs with different break-points in the recurrent 
rearrangement region are called atypical. The majority of non-recurrent CNVs result 
from FoSTeS/MMBIR mechanisms of formation, they are variable in size and have 
scattered break-points (B). Non-allelic homologous recombination (NAHR) occurs 
when directly oriented highly identical LCRs  lead to misalignment of alleles and result 
in unequal crossing-over mediated production of deletions or reciprocal duplications 
(C). Non-homologous end-joining (NHEJ) is initiated by a double-stranded DNA break 
(1), followed by bridging, processing and ligation of broken DNA ends (2). The 
products of NHEJ repair include deletions and insertions that often contain some 
additional nucleotides at the DNA end junction, called a “molecular scar” (D). 
FoSTeS/MMBIR (fork stalling and template switching/microhomology mediated break-
induced replication) is a DNA repair mechanism that utilizes nucleotide microhomology 
(MH) at the rearrangement breakpoints. After stalling of the replication fork due to 
single strand break (1), the lagging strand disengages, anneals to another fork and 
replication starts at a different place by the 3’ end invasion of lagging strand via regions 
of microhomology (2). Since serial FoSTeS cycles may occur, the mechanism plays 
especially important role in the formation of disease-associated nonrecurrent 
rearrangements with a complex structure (E). Adapted from [43, 44]. 
 
 
Common and rare CNVs 
The overall population-specific allele frequency of CNVs has been shown to 
resemble that of the SNPs, with most variants having a low to rare frequency 
(minor allele frequency, MAF = 0.05–5% and MAF < 0.05%, respectively), 
while common CNVs (MAF ≥ 5%) account for the majority of the hetero-
zygosity [34–36]. Although associations with complex diseases have been es-
tablished for a few common CNVs [37–42], similar to SNP association studies, 
common variants collectively seem to make only a small contribution to the 
heritable disease risk [45]. This observation has challenged the popular „com-
mon disease – common variant“ hypothesis and risen interest in rare genetic 
variants with strong effect on complex disease and traits [45–47]. The latter is 
supported by the knowledge that variants with clinical consequences segregate 
in the population at lower frequencies and most of the deleterious variants in 
humans have been held at low frequency by purifying selection [46, 48, 49]. 
Rare CNVs have already been defined as risk factors for several common 
disorders, including obesity [50–53], Alzheimer’s disease [54], pancreatitis [55] 
and epilepsy [56–60]. However, the most remarkable finding has been the 
identification of rare CNVs with major clinical effect, which holds particularly 
true for developmental and neurobehavioural disorders [20, 30, 61–65]. 
Altogether, different studies have screened thousands of human genomes over 
the last years and conclude that a wide spectrum of disease-susceptibility 
variants exist, and that most of these are rare with a frequency below 0.1% and 
of variable and minuscule effect. Thus, due to the widespread presence of 
CNVs in the general population [1–5], the main challenge ahead is to assess 
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whether each particular CNV has any clinical significance. To date, only for a 
minor fraction of variants has their disease-causative role been determined. 
Furthermore, in the case of several novel genomic disorders, a broad spectrum 
of phenotypic consequences has been described and some CNVs initially con-
sidered pathogenic have also been observed in apparently normal individuals. 
To clarify the pathogenic importance of rare variants, large numbers of high-
resolution studies of different clinical cohorts, as well as comparative analyses 
of the general population are necessary. 

The review of the literature in the current thesis is focused only on rare un-
balanced structural variants in the human genome and their effect on the health. 
The potential phenotypic impact of common genomic variants was out of the 
scope of this study. 

 
 

2.2. Intellectual disability as a frontline phenotype  
for studying the clinical impact of genomic variants 

 

2.2.1. Definition of intellectual disability 

Intellectual disability (ID), previously referred to as mental retardation, is 
according to the Diagnostic and Statistical Manual of Mental Disorders (DSM – 
IV) defined as a condition of significantly subaverage intellectual function with 
limitations in adaptive behaviour such as conceptual, practical, and social 
adaptive skills that must be diagnosed before the age of 18 years. ID is a 
clinically diverse condition with variable degrees of cognitive impairment and 
may exist in isolation (nonsyndromic ID) or to be accompanied by additional 
congenital anomalies and other clinical features (syndromic ID). The World 
Health Organization International Statistical Classification of Diseases and 
Related Health Problems 10th Revision (WHO ICD – 10) divides ID into four 
categories – (i) mild (approximate IQ range of 50 to 69, which in adults 
corresponds to mental age 9–12 years); (ii) moderate (IQ of 35 to 49, mental 
age 6–9 years); (iii) severe (IQ of 20 to 34, mental age 3–6 years); (iv) profound 
(IQ below 20, mental age under 3 years). 

The prevalence of ID is estimated to be 1–3% of the general population in 
developed countries (The World Health Organization, 2002; [66]) which makes 
it a common cause of lifelong disability contributing to high socio-economic 
costs [67–69]. 

 

 
 

2.2.2. Cytogenetics, genomic rearrangements and  
intellectual disability 

Aetiology of intellectual disability is extremely heterogeneous and the impair-
ment in cognitive functioning can result from genetic, epigenetic as well as 
environmental causes, solely or in their interaction. In case of severe ID, which 
occurs in 0.3% of the world`s population, genetics is thought to play a role in 
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approximately half of cases [70]. Due to its burden on families and society, 
considerable effort has been invested in the identification of aetiological factors 
and understanding the molecular basis of human cognition. Amongst genetic 
causes, Down syndrome (Trisomy 21; OMIM #190685) has remained the most 
important single cause of ID despite widespread availability of prenatal 
diagnostics (reviewed in [71]). Other chromosomal aneuploidies and cyto-
genetically visible rearrangements together have been found to be causative in 
approximately 10–15% of ID patients [72–74], and hundreds of genes respon-
sible for monogenic forms of ID have been mapped to date 
(http://www.ncbi.nlm.nih.gov/omim; http://xlmr.interfree.it/home.htm; 
http://www.lovd.nl). However, challenged by the extreme genetic and pheno-
typic heterogeneity, the underlying factors in about half of the individuals with 
ID have still remained unknown. Hindering genetic counselling of the families 
and clinical management of the patients, this has sustained intellectual disability 
as one of the most important problems to solve in health care [75, 76]. 

Significant progress regarding the genetic causes of cognitive impairment 
has been made during the past decade when technological advances made it 
affordable to investigate entire human genomes. The evolution of molecular and 
cytogenetic methods commonly used for identifying chromosomal rearrange-
ments is summarized in Table 1.  

Since 2003, when Vissers et al. first introduced the array-based application 
for genome-wide identification of submicroscopic imbalances in patients with 
ID [78], a variety of genomic arrays with constantly improving probe design 
and density to capture CNVs have been available for diagnostics and research. 
To date, tens of novel distinctive microdeletion and microduplication syndro-
mes have been described, and numerous genomic regions have been linked with 
susceptibility to neuropsychiatric diseases. The small size of several CNVs has 
made systematic screening and molecular characterization of encompassed 
genes a successful approach also for the identification of disease genes. More-
over, the localization of several ID genes has been determined by the mutation 
analysis of potential candidates in cryptic aberrant intervals and the investi-
gation of their breakpoints [33, 79–81]. 
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2.2.3. Research and diagnostics  
of neurodevelopmental disorders in the era of genomics 

More than hundred studies that have applied genomic arrays in different genetic 
centres for CNV profiling of individuals with unexplained ID have been 
referred in the PubMed database. The average CNV burden based on experi-
mental and literature surveys has been estimated to be 10–15% of idiopathic ID 
patients [30, 74, 82–86]. Two comprehensive studies by Cooper and Kaminsky 
[20, 30] used high-resolution case-control data to investigate the role of rare 
CNVs in a large sample size of paediatric neurological diseases, and con-
sistently confirmed significant enrichment of large CNVs among patients. This 
excess was evident at the 250 kb level and became more pronounced with in-
creased size of the aberration. In addition, a strong correlation between de novo 
rate and increased CNV size was observed, with 50% of events at 1Mb reported 
as being inherited [20, 30]. The study also confirmed an elevated significance of 
CNVs in severe phenotypes associated with other congenital anomalies, 
especially craniofacial and cardiovascular defects [30]. Different phenotypic 
features, frequently accompanied by cognitive impairment, have required more 
widespread analytic approaches, and have made investigation of ID patients a 
nearly comprehensive showcase of strategies for genome-wide discovery of 
disease-related genetic factors. For now, genomic arrays are also successfully 
utilized for testing of patients with other brain related diseases (e.g. autism, 
epilepsy, schizophrenia) [62, 87, 88], congenital heart defects [89, 90] and other 
complex phenotypes. General analysis pipelines to shed light on the aetiology 
of neurodevelopmental phenotypes have also facilitated the genetic diagnosis of 
autism, epilepsy and behavioral problems, which frequently co-exist in 
intellectual disability patients and have now been shown to have alterations in 
the same genes or related pathways. 

The ability to detect genetic variants with high diagnostic yield, proved in 
scientific research, has made genomic microarrays attractive also for routine 
clinical diagnostics. After evaluating technical advantages and limitations,  
the International Standard Cytogenomic Array (ISCA) consortium 
(https://www.iscaconsortium.org), which unites clinical and molecular cyto-
genetic laboratories worldwide, has strongly suggested high-density array-based 
analysis as the first-tier diagnostic test for patients with intellectual disability, 
autism spectrum disorders and multiple congenital anomalies [86]. This is 
already a case in several countries, including the Netherlands, Belgium, and as 
of 2011, Estonia. Biotechnology companies have launched standardized cyto-
genetic array formats and complementary software packages designed to target 
diagnostic needs and facilitate data interpretation, e.g. CytoSureTM ISCA Arrays 
by Oxford Gene Technology (http://www.ogt.co.uk) or HumanCytoSNP 
BeadChip by Illumina Inc. (http://www.illumina.com). Thus in the so called 
(post-)genomics era, throughput and technical sensitivity of rare small variants 
determination is no longer a bottleneck. Instead, uniform validation require-
ments enabling low false positive and negative rates and guidelines for data 
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processing have been raised during the last years. Also several ethical questions 
have been raised related to consent when performing analyses that provide 
extensive genetic information unrelated to the disorder being tested, and which 
might reveal unforseen risk factors, medical and psychological consequences 
for patients and their families. Regarding clinical utility, consensus workflows 
have been suggested [85, 86, 91] which would help clinicians handle practical 
challenges in interpreting genomic reports containing many variants of un-
known diagnostic relevance [92]. General criteria for assessing the phenotypic 
relevance of individual CNVs, adapted from the consensus report by Miller et 
al. [86], are provided in Table 2. However, distinguishing variants of patho-
genic relevance from functionally neutral ones and understanding the true 
phenotypic effect requires large and diverse cohorts to be studied [93]. 

 
 

Table 2. Consensus criteria for assessing pathogenicity of a CNV in clinical testing of 
patients with unexplained ID by genomic arrays. Each criteria indicates respectively 
whether the impact of CNV is probably pathogenic or neutral. Adapted from [86]. 
 

Major criteria Pathogenic Neutral 
1. Identical CNV inherited from a healthy parenta  × 

Expanded or altered CNV inherited from a parent ×  
Identical CNV inherited from an affected parent ×  

2. CNV has been identified in one or more heaelthy 
members of the family 

 × 

CNV has been identified in affected member(s) of the 
family 

×  

3. CNV overlaps entirely with an imbalance detected by a 
high-resolution technology in reference populations or 
in a database of healthy individuals 

 × 

CNV overlaps with an imbalance detected by a high-
resolution technology in a CNV database for patients 
with ID or other congenital anomalies 

×  

4. CNV overlaps with a known deletion or duplication 
syndrome region 

×  

5. CNV encompasses morbid OMIM genesb ×  
6. CNV is gene rich ×  

CNV is gene poor  × 
Minor criteriac Pathogenic Neutral 
1. CNV is a homo- or heterozygous deletion ×  

CNV is a duplication (that does not encompass any 
known dosage-sensitive genes ) 

 × 

CNV is an amplification (gain of more than one 
genomic copy) 

×  

2. CNV is devoid of known regulatory elements  × 
 

aA deletion inherited from unaffected parent could unmask recessive pathogenic point mutation on the trans 
allele inherited from the other parent. bCNV should produce the same type of mutation that is causative for 
OMIM disease and the produced phenotype should be that expected for the OMIM disease. cExceptions to 
each criteria have been demonstrated. 
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More recent than the revolution of array-based technologies, large-scale 
sequencing of X-chromosome coding exons in mental retardation patients, used 
to discover rare disease-causing sequence variants by Tarpey and colleagues, 
exposed nine XLMR-associated genes and highlighted the analytical benefits 
and challenges of large-scale sequencing of rare variants [94]. This work was a 
pioneering effort prior to a wave of whole-exome deep-sequencing studies 
which have identified several novel genes harboring mutations responsible for 
ID syndromes [95–99], and have greatly impacted the speed of new disease 
gene mapping and revised the clinical diagnosis of rare diseases in general 
(reviewed in [92, 100, 101]).  
 
 

2.2.4. De novo mutations and the genetic heterogeneity  
of intellectual diability 

Nevertheless, the aetiology of cognitive impairment has remained unsolved in a 
significant fraction of patients and accumulative evidence favors very rare or 
even unique short-lived mutations to explain the aetiology of ID, instead of 
major „blockbuster“ factors. To explain this extreme genetic heterogeneity, 
Vissers et al. [97] tested in families of patients with sporadic unexplained ID 
the so-called „de novo mutation“ hypothesis, clarifying paradox of the wide-
spread presence of neurodevelopmental disorders despite the fact that severely 
reduced fitness and fertility of the patients should lead to the „genetic lethality“ 
of the mutations responsible for such condition. The authors found most likely 
pathogenic de novo variants (all in different genes) for as much as seven out of 
ten investigated patients in their study. This findings strongly support the 
hypothesis that high rate of novel spontaneous mutations might „compensate“ 
strong negative selection and keep the rare variants associated with neuro-
psychiatric diseases in the genetic pool. The result suggest that the majority of 
sporadic ID cases in the population could indeed be explained by de novo CNVs 
and single-nucleotide variants of strong effect [97]. As further elaborated by 
Prof. James Lupski, these new mutations which influence the development and 
function of the central nervous system could be the price we have to pay, as a 
species, for better adaption of our brain to the constantly changing environment 
[102]. 

General understanding of the molecular causes of cognitive impairment is 
however far from complete. New genetic factors are identified regularly, and 
whether there is a diversity of mechanisms behind these or they are converging 
into a limited number of common pathways, is not yet clear. 
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2.3. The effectiveness of the “genotyping first”  
approach in revealing novel genomic syndromes 

Traditionally the determination of cytogenetic bases of genomic disorders has 
been dependent on the obtention of patients with established clinical phenotype, 
and the characterization of new syndromes has required finding the key features 
consistently appearing in collections of individuals with similar abnormalities. 
Because of the relative rarity of genomic disorders it has been difficult to draw 
reliable conclusions about patterns of concurrent clinical traits, and the 
cytogenetic causes of these syndromes has often remained unknown [103]. The 
means by which novel syndromes are identified have been completely altered 
by the cost-effective analysis of entire genomes. The growing availability of 
large genotyping data-sets have made it possible to use an opposite approach 
called „reverse phenotyping“ or „genotyping first“. In this case, patients are first 
discriminated by identical (or overlapping) genomic imbalances, and as suffi-
cient numbers of patients are collected, characteristic features of a clinical entity 
can be delineated. While phenotypes of an individual are inherently dynamic, 
vulnerable to masking by other factors and difficult to evaluate objectively, 
genotypes are relatively straightforward to determine and stay stable over an 
individual’s lifetime. Even when phenotypic features are reliably established, 
the underlying genetic backround is often not homogeneous, since multiple 
genes and alterations may contribute to the same pathway and therby to a 
similar final phenotype [104]. „Reverse phenotyping“ has considerably accele-
rated the pace of identifying novel syndromic imbalances in patients with ID 
and accompanying (often apparently nonspecific) features. In the last five years, 
nearly 20 new recurrent CNV-causative clinical syndromes have been defined 
(for comprehensive review see for example [83, 105]). 
 
 
 

2.3.1. Monosomy 17q21.31 exemplifies how  
a distinctive intellectual disability syndrome can be identified by 

large-scale genome screening 

Monosomy 17q21.31 (OMIM #610443) is amongst examples of novel ID-
associated diseases where initial identification of the microdeletions has led to a 
consistent and well recognizable clinical entity. This recurrent microdeletion 
syndrome was one of the first genomic disorders identified by microarrays in 
2006 when initial patients with recurrent approximately 500 kb heterozygous 
deletions in 17q21.31 and distinctive clinical presentations were reported by 
three groups [106–108]. The subsequent characterization of the syndrome in 
larger cohorts has shown the early presence of hypotonia with poor feeding, 
epilepsy, global developmental delay of variable degree accompanied by an 
amiable and cooperative disposition, and a facial phenotype including as 
common features abnormal hair colour, a long face with a high broad forehead, 
upwards slanting palpebral fissures, ptosis, large ears and a tubular nose with 
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bulbous nasal tip [109–111]. The estimated population prevalence of around 
1/16,000 by Koolen et al. indicates that monosomy 17q21.31 has been highly 
underdiagnosed and is one of the most common new ID syndromes which could 
count for 0.64% of unexplained patients [110]. The canonical deletion is 
mediated by NAHR between directly oriented LCRs and encompasses at least 6 
genes. Typically to contiguous gene syndrome it is currently not known whether 
haploinsufficiency of one or several genes might underly clinical features. 
Amongst potential candidates, the regulator of chromatin modification KANSL1 
(OMIM #612452) has recently been identified as causative for the core pheno-
type [33, 81]. Also the microtubule-associated protein tau gene MAPT (OMIM 
#157140) has been of particular interest because of it’s high expression in the 
brain and involvement in the aetiology of several neurodegenerative diseases 
[112]. This locus in 17q21.31 chromosome region is one of the most complex 
and evolutionarily dynamic intervals in the genome. It harbors a common 900 
kb inversion polymorphism that can occur as two divergent haplotypes termed 
H1 and H2 in humans [113, 114]. Interestingly, both of these haplotypes have 
different functional impacts. While degenerative diseases of the nervous system 
have been linked with the H1 haplotype [115, 116], the H2, due to the 
inversion, results in a local architecture of directly oriented LCRs, that pre-
dispose the region to 17q21.31 microdeletion syndrome. The H2 lineage is 
nearly absent in Africans and Asians, but has been under positive selection in 
European populations, where it has been found with a frequency of 20% [113]. 
The latter could also explain why one of the common causes of ID has almost 
exclusive presence in subjects of European ancestry [117]. Almost all cases of 
17q21.31 syndrome have resulted from a de novo deletion, and although the 
inverted H2 has been found in at least one parental genome of 17q21.31 
patients, most affected individuals are single occurences in the family and the 
recurrence risk for future pregnancies is low [118]. In a recent study, carriers of 
an atypical smaller deletion embedded in the 17q21.31 monosomy region, and a 
strikingly similar phenotype, were identified. This discovery narrowed the 
critical dosage-sensitive interval down to only three genes, including MAPT 
[30]. 

Few ID patients carrying reciprocal duplications have been reported to date. 
The associated clinical presentations seem to be variable and somewhat milder 
than those linked with the monosomy but behavioural disorder and poor social 
interaction observed in all of these patients [119–121] might suggest a 
contrasting impact of this region on the clinical phenotype. 

In addition to defining novel recognizable syndromes, array-based screening 
has been a powerful strategy for finding the causative defects underlying pre-
viously known syndromic disorders, for example CHARGE syndrome (OMIM 
#214800; identified by microdeletions in 8q12 that encompass the CHD7; 
OMIM #608892) [31], Peters plus syndrome (OMIM #261540; caused by the 
B3GALTL; OMIM #610308 in chromosome locus 13q12.3) [122], or thrombo-
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cytopenia-absent radius (TAR) syndrome (OMIM #274000; associated with 
deletions on chromosome 1q21.1) [123]. 

 
 

2.3.2. The further definition of rare genomic disorders relies upon 
international sharing and coordinated collaborations 

As identification of patients sharing a genomic variant and having phenotypic 
features in common leads to greater certainty in the pathogenic impact of CNV 
and is the prerequisite for defining new syndromes, data sharing and collabo-
ration between clinical and research centres is crucial. For handling rapidly 
expanding data sets and providing reliable information to geneticists worldwide 
about extremely rare cases (of which a considerable percentage remains un-
published), open access databases for cytogenetic and clinical data of rare 
genomic aberrations have been established. The most comprehensive catalogue 
of novel potentially pathogenic copy number changes and patient reports is 
stored in the DECIPHER (Database of Chromosomal Imbalance and Phenotype 
in Humans Using Ensembl Resources) database hosted by the DECIPHER 
Consortium and the Wellcome Trust Sanger Institute. As of June 2012, the 
database includes 15,957 patient reports from 243 participating centres, as well 
as descriptions of 59 distinctive syndromes (http://decipher.sanger.ac.uk). With 
the purpose of further facilitating the interpretation of submicroscopic chromo-
somal rearrangements, DECIPHER utilises the human genome via the Ensembl 
Genome Browser (http://www.ensembl.org) and incorporates a suite of tools for 
annotation of aberrant regions [124] which has made it one of the most 
applicable resources for deciphering the phenotypic significance of rare CNVs. 
Another effort with a similar purpose to encourage information exchange and 
collaboration between genetic centres in the field of rare chromosomal disorders 
is the ECARUCA (European Cytogeneticists Association Register of Un-
balanced Chromosome Aberrations) database, coordinated by the European 
Cytogeneticists Association and Radboud Hospital at the University of Nijme-
gen, which contains over 4700 case reports with more than 6000 aberrations 
(http://www.ecaruca.net). 
 
 

2.4. Variable boundaries of “normality” and  
clinical phenotypes 

2.4.1. Phenotypic variability in genomic disorders 

While most syndromic CNVs have been shown to arise de novo and occur as 
sporadic events, a subset of clinically relevant rare variants are often inherited 
and has been identified showing variable expressivity and incomplete penetran-
ce. As proposed by Girirajan and colleagues, two general types of genomic 
disorders may be distinguished – (i) syndromic forms where the phenotypic 
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features are largely invariant (e.g. abovementioned 17q21.31 microdeletion 
syndrome); and those (ii) where the same genetic lesion is associated with a 
diverse set of morbidities and severities [105]. The accumulating number of 
newly described recurrent CNVs associated with extremely variable clinical 
features [105, 125] has posed significant demands for interpretation of their 
impact, especially for geneticists who have used to handle genetic disorders 
mainly as Mendelian traits. Also, the non-specific spectrum of pathogenity has 
revived the necessity to define clear boundaries of clinical entities and recruit 
large numbers of subjects who fit with the description of the category. The 
definition of phenotypes per se has been a challenging endeavour in genetic 
studies, that often includes problems in distinguishing norm from disease, 
establishing diagnostic criteria, and determining their reliability with no con-
sistent standards for reproducibility and validity [104]. For a diagnosis of ID, an 
IQ score that is two standard deviations below the general population mean has 
been widely used as a criterion to quantify “significant limitations in intellectual 
functioning“ [126]. However, standardized values of cognitive capacities are 
not always available, and establishment of a person`s membership within a 
certain diagnostic class can be further complicated by co-occurrence of other 
psychopathologies (e.g. behavioural problems, speech delay etc.). Relative to 
severe cognitive dysfunction, milder deficits in intellectual capacity and espe-
cially the borderline intellectual functioning has received much less attention. 
Defined by an IQ between 70 and 84 (i.e. between -2 and -1 SD), these 
individuals can be considered as being in the lower range of normal population 
variation (reviewed in [127]) that further blurrs the borders between „norma-
lity“ and clinical diagnosis. 

Some well-known examples of CNVs predisposing to neuropsychiatric 
phenotypes with variable phenotypic manifestations include chromosome 
regions 16p11.2 (OMIM #611913) [51, 128–130], 15q13.3 (OMIM #612001) 
[131, 132], 22q11.2 (OMIM #188400) [133, 134], 16p12.1 (OMIM #136570) 
[135]. All of these are associated with decreased cognitive functioning, with the 
formal diagnosis of ID or major neurodevelopmental disturbances in only a 
fraction of patients. 

 
 

2.4.2. Modifying factors to explain clinical heterogeneity and 
incomplete penetrance of genomic disorders 

The exact mechanisms underlying phenotypic heterogeneity and incomplete 
penetrance of seemingly identical aberrations are not known and most probably 
vary according to the characteristics of a particular genomic region. This could 
be explained by only emerging current knowledge about molecular pathways 
and compensatory mechanisms involved in the neurodevelopmental processes 
which might influence inter-individual susceptibility. Depending on the genetic 
and environmental context the interaction may result in diverse neurological 
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conditions. In other words, the same genetic payhways may, for example lead to 
autism, ID, or epilepsy [136]. 

Distinctive from other tissues, the transcription patterns in the central ner-
vous system seems to be particularly sensitive to the parental origin-dependent 
regulation of gene expression [137–139]. Up to hundreds of brain-specific tran-
scripts have been demonstrated to be imprinted [140–142], and as demonstrated 
in the cerebral cortex of mice carrying a heterozygous deletion of KIDINS220, a 
downstream signal transducer of neurotrophins and essential modulator of 
nervous system development, gender might indeed be an important determinant 
of central nervous system vulnerability [143]. Still, practically nothing is 
currently known about the gender-specific influence on CNVs. Most CNV 
studies have made no distinction whether the maternal or the paternal copy of a 
chromosome is altered in patients, and associations with the parent-of-origin 
effect on the neurodevelopmental phenotype have been established until now 
for a few CNVs overlapping known uniparental disomy regions [144–146]. 

Also the segmental duplication architecture itself in regions where recurrent 
aberrations tend to occur poses a challenge to characterize embedded genes and 
refine the mapping of breakpoint positions. Until recently these complex 
regions have remained difficult to study despite being known to be gene-rich 
and to act as a primary source of evolutionary innovation in the human lineage. 
Concordantly, recent efforts have revealed that several duplication genes of 
previously unknown function or completely missing from the current version of 
reference genome are human-specific and implicated in neurodevelopmental 
processes [147–149]. Thus, only subtle differences in LCR structure and aber-
ration breakpoints might determine the differences in clinical outcome between 
individuals.  

 
 

2.4.3. Multivariant contribution in neuropsychiatric and  
other complex phenotypes  

Described initially by Prof. James Lupski, the concept that some genomic 
disorders might result from a combination of two or more variations, where 
each of these alone do not provide a genetic burden that is great enough to cause 
disease [150] has gained support and popularity over the last few years. 
Emerging data on oligogenic diseases, especially human ciliopathies – a group 
of diseases with strikingly variable penetrance and expressivity, have shown 
that the manifestation of a causative mutation can depend upon other genetic 
variants in the human genome and that these epistatic interactions between 
causal and second-site modifying alleles are prevalent mechanisms underlying 
the variable clinical spectrum of the disease [151, 152]. In 2007, Klopocki et al. 
found that clinically well-described TAR syndrome is associated with a 
common 200-kb deletion, but for developing the phenotype, the existence of 
one or more yet unknown modifier alleles, called „mTAR“, is required [123]. It 
is believed that similar interactions between multiple rare structural variants 
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could contribute to the overall CNV burden that creates differently sensitized 
backgrounds during human development and eventually leads to different 
outcomes of phenotypic features [105]. 

Girirajan and colleagues used the chromosome locus 16p12.1 to test the so 
called „second hit“ model in genomic disorders [135]. Similarly to the well-
defined syndromic 17q21.31 region, the locus of 16p12.1 harbors two structu-
rally different haplotypes [153]. Of these, haploblock S2 is more common and 
predisposes the interval to 520 kb deletions, which in meta-analyses has found 
to be significantly more prevalent in patients with developmental delay, autism 
and schizophrenia when compared to controls [30, 154]. However, low pre-
valence (about 1/15,000) and inconsistent segregation with clinical features 
have reduced the power of genome-wide studies to definitely identify a disease 
association and to delineate the phenotypic consequences of the microdeletion. 
The targeted characterization of the 16p12.1 deletion by Girirajan et al. in large 
ID and control cohorts supported a two-hit model and suggested that although 
the deletion is necessary to reach a threshold to induce DD, more severe ID 
phenotype and comorbidities can be manifested only with the addition of 
another large genomic alteration. To test whether the model might serve more 
broadly among genomic disorders, the authors expanded the analysis to other 
recurrent microdeletions with both syndromic and variable phenotypes. The 
results indicated inverse correlation between the proportion of de novo cases 
reported for a given CNV and the prevalence of double hits in carriers. In com-
parision with canonical syndromes (e.g. microdeletions of 7q11.23, 17q21.31 
and 17p11.2), clear clustering of double-hit CNVs was observed in patients 
diagnosed with disorders that present variable expressivity and relatively low 
rates of de novo occurence (e.g. microdeletions of 16p11.2, 1q21.1, 15q13.3 and 
22q11.2). Thus, the model of a certain single event as a predisposing factor for 
neuropsychiatric phenotypes, and which may exacerbate the disorder only when 
co-occuring with other large deletions or duplications might be more generally 
applicable than previously thought to neuropsychiatric disease [135]. Although 
formal replication of the double-hit enrichment and epistatic impact of the 
second hits on the severity of phenotype have been hampered by the lack of 
large homogeneous sample cohorts [129], the tendency torward high prevalence 
of second genetic „hits“ in syndromes with variable expressivity that dis-
tinguishes the patients with more severe clinical manifestations is notable [155]. 

More globally, the „general genome ecology“ concept is supported by the 
genetic association studies of common diseases. Evidence from the investi-
gations of epilepsy, type 2 diabetes and obesity indicate that at least some of 
these phenotypes may be inherited in a complex manner cumulating the effect 
of numerous rare genetic variants that differ from person to person, modify 
genomic landscape, and when combined have a strong influence on which 
diseases an indvidual will get and when [156–158]. 

Thus, in the case of many individual alterations, the driving or modifying 
effect on the disease has remained vague due to their rarity, heterogeneous com-
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binations and thus the need for extraordinarily large sample size. Furthermore, it 
may be naïve to expect that individuals carrying causative CNVs display the 
uniform phenotype regardless of their ethnicity or environmental and geo-
graphical background. Since the majority of population groups within Europe 
and worldwide have not been assessed for population specific variants, there is 
so far no information on potential origin-specific modifiers. Therefore, the 
ability to reveal true disease associations for rare structural variants depends on 
obtaining data from cohorts of sufficient size, not biased by pre-determined 
ascertainment criteria, and including appropriate ethnicity-matched controls in 
CNV association studies. 

 
 

2.5. The functional effect of structural variations  
on gene expression and clinical phenotype 

2.5.1. Genes in CNV regions show more variability  
in their expression 

Although genotype-phenotype correlations have been established for hundreds 
of CNV loci, the exact impact through which CNVs lead to altered expression 
of genes and result in the ultimate clinical features have remained largely un-
known. 

It has been demonstrated that both balanced and unbalanced structural 
variants may have a profound and dramatic effect on the expression levels of 
genes located within the rearranged region, influence genes in their vicinity, and 
affect global „genome regulation“ [159–166]. On a whole-transcriptome level, 
about 5% of human genes are altered in dosage by CNVs [2], and copy-number 
variation has been estimated to explain almost 20% of the variation in gene 
expression [167]. The latter impact might be underestimated due to the bias 
towards large CNVs on current maps of genomic variation. Less is known about 
smaller CNVs which are more abundant, likely to affect individual functional 
units, and are expected to have more specific effect on transcription [168]. 

Assessment of the global impact caused by CNVs on tissue transcriptomes 
using model organisms has confirmed enrichment of altered transcripts among 
genes mapped within variable region, and positive correlation between relative 
expression levels and gene dosage. However, a subset of about 10% of genes 
within CNVs shows negative correlation between gene copies and expression 
levels [160, 169]. Although the exact underlying mechanism is not known, two 
models have been suggested that may explain this inverse effect of genomic 
gain. First, the higher concentration of a CNV-gene, termed as immediate early 
gene (IEG), and thus also proportionally higher amount of the gene product 
induces a repressor that subsequently downregulates the expression of the IEG. 
Secondly, tandemly located extra copies of a gene physically affect its 
transcription via impaired access to the transcription factory [159, 170]. It has 
also been demonstrated that CNV-genes have specific properties with respect to 



29 

their spatial expression. For example, they have a lower and restricted tissue-
specific transcription pattern, and show more inter-individual differences in 
temporal patterns of expression. This indicates that altered number of genomic 
copies may affect not only the expression level of the gene, but may also 
modify the timing of its expression [160, 162]. Interestingly, although genes 
with brain-specific expression are more tightly regulated, corroborating the 
general vulnerability of the nervous system [160, 163], transcriptional control 
over the CNV-genes is looser during the early period in development, when 
neurons are subject to pruning and competing for growth factors. This raises the 
question whether reduced control is due to the lack of regulatory proteins at this 
time-point or strict regulation is harmful in specific stages of neurodevelop-
ment. Thus, relaxing the expression control of genes within copy-number 
variable regions during a critical period may somehow favor neuronal out-
growth, differentiation and formation of synapses [162]. 
 
 

2.5.2. Local mechanisms by  
which CNVs may impact gene expression 

One of the key features of structural variants with regard to functional impact is 
their large size, allowing CNVs to encompass thousands of basepairs and affect 
large functional units. The diversity in physical extent in combination with the 
genomic architecture of rearranged region provides many ways for gene expression 
to be altered by CNVs. Comprehensive reviews by Zhang et al. [171] and 
Harewood et al. [159] have been used as a base for following classification.  

If the aberrant region contains dosage-sensitive genes (i.e. genes of which 
only two copies produce the normal phenotype), change in the number of 
functional copies can lead to disease. A classical example of copy number 
variant-driven dosage-sensitivity includes the peripherial myelin protein 22 
(PMP22; OMIM #601097) in the 17p12 region. While increased levels of the 
peripherial myelin protein contribute to the Charcot-Marie-Tooth disease 
Type1A (OMIM #118220), reduced production of the same protein results in 
hereditary neuropathy with liability to pressure palsies (OMIM #162500). Con-
cordant with the description of novel microdeletion and -duplication syndromes, 
dosage-sensitivity has been progressively linked with neurological disorders 
[172–175]. Intriguingly, so called „mirror-phenotypes“ have been observed for 
some recurrent CNV regions. Examples of these include opposite effects of 
reciprocal deletions and duplications on height, body weight and head circum-
ference in the 16p11.2 [51, 129, 176], the 5q35.2q35.3 [175, 177, 178] and the 
17p11.2 syndrome regions [179], as well as social and language aspects in 
patients with Williams-Beuren and 7q11.23 duplication syndrome [180, 181]. 
Since the presence of deletions is twice as common and shows greater 
penetrance compared to duplications in patients with severe paediatric diseases, 
it has been suggested that amongst alterations in gene dosage, haploinsuffi-
ciency is less tolerated and more common than triplosensitivity [30]. 
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Figure 2. Schematic presentation of local mechanisms by which CNVs may impact 
gene expression. The coding region in a locus is indicated by blue box, promoter by red 
arrow and enchancer by green box. Encoded transcript levels are indicated by blue wavy 
lines. Deleted are is marked by parentheses and deleterious mutation by asterix. 
Additional affected gene and it’s product are showed by yellow box and wavy lines, 
respectively. No CNV is present and gene expression is not affected (A). Gene-dosage 
is altered due to genomic gain or loss (B). Unmasking of recessive allele by loss of 
heterozygosity (C). Dysregulation of expression due to gene fusion and interuption (D). 
Modified from [170]. 
 
 
When breakpoints of the CNV map within a gene, the rearrangement can cause 
it`s inactivation by disrupting the transcript structure, or result in gain of 
function by fusing different genes or their regulatory elements. Loss of hetero-
zygosity by deletion may cause unmasking of a detrimental recessive point 
mutation or functional polymorphism that might contribute to particular features 
in the clinical phenotype. For instance, congenital malformations of the 
vertebral column, as well as epilepsy and paroxysmal dyskinesia have been seen 
recurrently, though only in subset of patients with the 16p11.2 deletions. 
Considering the T-box protein gene TBX6 (OMIM #602427) [182–184] and the 
proline-rich transmembrane protein 2 gene PRRT2 (OMIM # 614386) [185–
191] in the imbalanced interval, these features are likely determined by hemi-
zygous expression of the mutant allele. 

The functional mechanisms driven by structural rearrangements in a 
genomic locus are schematically presented on Figure 2.  
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2.5.3. Structural rearrangements may modulate  
genome-wide expression 

Current knowledge is rather hypothetical about the cis- and trans-position effect 
of CNVs on genes outside of the imbalanced region. Considering the dense 
presence of CNVs in the human genome, yet unknown compensatory mecha-
nisms might also exist which reduce the functional impact of genomic 
variations. For example, it has been proposed that in case of a dominant loss-of-
function mutation the phenotype could be rescued by the gain of gene copies 
resulting in a „balanced“ transcript [192, 193]. Consistent with this hypothesis, 
the rescue of the phenotype of the 22q11.2 deletion, usually leading to 
DiGeorge syndrome (OMIM #188400) and velocardiofacial syndrome (OMIM 
#192430) has been demonstrated to be due to balancing reciprocal duplication 
on the other copy of chromosome 22 [193]. Although this is a first known 
example of genetic compensation in a human genomic disorder, a similar com-
pensatory effect has been shown in the mouse model for human chromosomal 
region 22q11.2 [194]. Contrary to the latter, in compound heterozygous mice, 
investigations of the deletion and duplication in the Smith-Magenis/Potocki-
Lupski syndrome region at 17p11.2 have revealed that restoration of normal 
genomic copy number in cis-configuration does not restore some neuro-
behavioural traits. Thus, regardless of gene dosage, at certain positions in the 
human genome, rearrangements per se can perturb certain pathways and gene-
rate clinical phenotypes [163]. Examples of how structural change can disturb 
gene functionality include (i) physical dissociation of the transcription unit from 
its cis-acting regulators, (ii) placing a gene under the influence of a foreign 
promoter, (iii) modification of transcription control through altered chromatin 
structure, loops and position within the nucleus, (iv) disrupting a regulatory 
interactions between homologous chromosomes, or (v) altering normal spatial 
organization of the nucleus and thus placing genes into an anomalous chromatin 
context [159, 160, 164, 195]. 

Consequently, emerging data in this field suggest that different mechanisms 
of transcriptional variation might be driven by structural rearrangements. Given 
that gene expression is fundamental to cellular function and transcript diffe-
rences could serve as a proxy for other levels of phenotypic variability, CNVs 
play a crucial role with respect to risk and development of neurodevelopmental 
disorders, as well as other complex diseases [160, 167]. 
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3. AIMS OF THE STUDY 

The aims of the current study were as follows: 
1. To perform the first comprehensive investigation for identifying clinically 

relevant genomic rearrangements in Estonian families with unexplained 
intellectual disability and to establish the workflow for array-based genomic 
profiling for improving the diagnostic possibilities of patients with neuro-
developmental disorders. 

2. To perform the first investigation of rare structural variants and associated 
phenotypic traits in individuals from the Estonian general population. 

3. To investigate how rare potentially pathogenic CNVs impact phenotypes by 
using the data across two abovementioned cohorts, and to shed light on the 
phenotypic variability of these CNVs. 
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4. MATERIALS AND METHODS 

4.1. Clinical collection of Estonian ID patients (EID) 

DNA samples from 77 Estonian families with idiopathic ID, ranging from mild 
to severe, or developmental delay (DD) were analysed in the current study. In 
addition to index patients all family members available for investigation were 
analysed to determine accurately the segregation of variants with the disease 
phenotype. The number of individuals investigated per family ranged from 1 to 
10, making a total of 257 samples of which 165 were affected and 92 un-
affected. Throughout the study, every family was considered as a single sepa-
rate ID case.  

All patients were assessed by a clinical geneticist at the Department of 
Genetics, United Laboratories, Tartu University Hospital. Clinical evaluation of 
this study was leaded by Prof. Katrin Õunap. In most patients, ID was accom-
panied by dysmorphisms and/or other congenital anomalies (CA). No con-
sanguinity was reported before the study, but was later confirmed in one family 
according to the genotyping results. Standard G-banded karyotypes on a 550-
band level showed no obvious aberrations in all cases. Routine metabolic 
analysis and test for fragile X syndrome was carried out for all patients. Tests 
for Prader-Willi/Angelman syndrome or other specific ID disorders were 
carried out in case of clinical indications. 

Genomic DNA was extracted from peripheral blood leukocytes according to 
a standard protocol. DNA concentrations were measured and quality was 
assessed by agarose gel electrophoresis and a NanoDrop ND-1000 spectro-
photometer (Thermo Scientific, Wilmington, DE, USA). 

The study was approved by the Ethics Review Committee on Human 
Research of the University of Tartu, Tartu, Estonia. Informed consent was 
obtained from all families included in the study. 

 
 

4.1.1. Patient EID-6 

The proband of the family EID-6 was born as a second child to non-
consanguineous parents of Estonian-Russian origin. No data about the delivery 
and his birth antropomethry is available, but since he was allowed to leave the 
hospital on the third day after birth, it is assumed to be uneventful. 

At the age of 4 years and 10 months the patient was diagnosed with global 
DD accompanied by severe speech delay. Tests to assess his intellectual 
abilities were not administered due to the level of his cognitive disability, and 
the exact degree of ID was not possible to determine. However according to the 
psychiatrist’s opinion his cognitive functioning corresponded to moderate to 
severe ID. The patient showed attention-deficit hyperactivity disorder (ADHD) 
and exhibited severe aggression towards his mother and siblings. Autistic 
features and stereotypic movements were also noticed. The neurological 
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examination showed no pathological reactions, but the brain MRI revealed 
leukoencephalopathy. His growth parameters were in the normal range for his 
age, weight of 18.4 kg (50th percentile), height of 102 cm (10th percentile), and 
OFC of 51 cm (50th percentile). The patient’s dysmorphic facial features in-
clude a broad nose, protruding, dysmorpic ears, deep-set eyes, hypertelorism, 
strabismus on the right side, slight synophrysis, short philtrum and thin upper 
lip (Figure 3). Additional dysmorphisms are sandal gaps, a broad first toe, and 
hirsutism at the back and extremities. The spinal X-ray revealed a hypoplastic 
12th pair of ribs. Patent ductus arteriosus was diagnosed by the ultrasound 
investigation. It was also known that the patient has been hypotonic and had 
cryptorchidism which was resolved with no intervention before the age of 2 
years. 
 

 
 
Figure 3. Profile and frontal view of the index patient EID-6 at the age of 4 years and 
10 months. Note protruding ears (A), thin upper lip and a high broad nose (B). Written 
permission to publish the photos of this patient was obtained from the family. 
 
 
The father (I:2 at Figure 4) of the proband did not complete his special 
education program in his youth. Since he refused testing, there is no official 
data about his current intellectual status, but cognitive disability was obvious to 
the clinical geneticist at the time of evaluation. In addition, nervous, aggressive 
behavior and speech impairment was recorded. He has mildly dysmorphic facial 
features including hypertelorism, a broad nose, deep-set eyes, a low frontal 
hairline and a short philtrum. At the age of 7, the proband’s older brother (II:1) 
showed developmental and speech delay, stereotypic movements, hypotonia 
and mildly dysmorphic features. The younger brother (II:4) 6 months old at the 
time of evaluation, presents global DD, hypotonia and dysmoprhisms: a broad 
nose with a flat nasal bridge, deep-set eyes, hypertelorism, and epichanthal 
folds. His growth parameters were normal, weight of 9100 g (85th percentile), 
height of 69 cm (50th percentile), OFC of 44,5 cm (85th percentile). The 
daughter in this family (II:3) has normal cognitive development and is healthy. 
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Figure 4. Pedigree of the family EID-6. In the diagram, members of the family are 
represented by standard symbols – circles indicate females, squares males and the 
bottom line shows the children of couple above. Affected members are indicated by 
black and unaffected by white symbols. Proband (II:2), his two affected brothers (II:1, 
II:4) and father (I:2) as well as healthy mother (I:1) and sister (II:3) were analyzed in the 
current study. 

 
 

4.2. Estonian general population cohort (EGC) 
 

Genotype and phenotype information from Estonian general population 
individuals provided by the Estonian Genome Centre at the University of Tartu 
(EGC UT) was used as the comparative data-set for CNV analysis. The EGC 
UT maintains a general population-based biobank, described in greater detail in 
[196]. The EGC UT is run according to the Estonian Gene Research Act. 
Written informed consent was obtained from all voluntary participants, and the 
study was approved by the Ethics Review Committee on Human Research of 
the University of Tartu. 

First, 1058 randomly selected unrelated samples were genotyped. Based on 
the data from 998 samples that passed the quality control standards for CNV 
analysis, population specific list of common CNV regions (frequency ≥1%) was 
generated. Secondly, this information was used to identify the presence of rare 
genomic imbalances of potential clinical significance and to estimate their 
phenotypic consequence. 

For follow-up analysis of the phenotypic effect of the CNVs in genomic 
regions 7p21.2-p21.1, 7q11.23, 15q13.2-q13.3, 16p11.2, Xp22.31 and Xq28, an 
additional set of mixed GWAS cases and controls for common traits (n=6901) 
was used. 6628 of the samples passed the quality control standards for CNV 
analysis that was performed using the algorithms and workflow described 
below.  

 

II:2II:1 II:3 II:4

I:2I:1
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4.3. CNV analysis by whole-genome SNP genotyping 

Genomic rearrangements in the EID and initial EGC cohort were screened by 
the Infinium® II whole-genome genotyping assay with the HumanCNV370 
BeadChips (Illumina Inc.). The HumanCNV370 BeadChip covers the entire 
human genome with an average spacing of 5 kb, allowing an average effective 
resolution of 50 kb (i.e. 10 consecutive markers). The genotyping data in the 
follow-up EGC cohort was obtained from the Infinium® II whole-genome 
genotyping assay analyzed with different BeadChips (Illumina Inc., San Diego, 
CA, USA) was used. Samples were processed and the assay performed 
according to a routine protocol provided by the manufacturer. Cohorts and 
genotyping platforms analyzed in the current study are summarized in Table 3. 
 

 
Table 3. Estonian samples analyzed in the current study. 

Individuals 
Sample 

size 
QC  

passed
Recruitment Genotyping platform 

Estonian families with intellectual disability (EID) 
Probands 77 77 ID (and CA) Illumina HumanCNV370 BeadChips 
Affected 
members 

88 88 ID (and CA) Illumina HumanCNV370 BeadChips 

Unaffected 
members 

92 92 ID families Illumina HumanCNV370 BeadChips 

Estonian general population (EGC) 
Initial 
cohort 

1058 998 
General 

population 
Illumina HumanCNV370 BeadChips 

Follow-up 
cohort 

6901 6628 
Mixed 

common 
traits 

Illumina HumanCNV370, 
Human610, OmniExpress and custom 

BeadChips 
 
 
Genotypes were called by BeadStudio software GT module v3.1 (Illumina Inc.). 
Log R Ratio (LRR) and B Allele Frequency (BAF) values produced by the 
BeadStudio software were formatted for further CNV analysis and break-point 
mapping with Hidden Markov Model-based softwares QuantiSNP (ver. 1.1 and 
2.1) [197] and PennCNV (ver. 2009aug27) [198]. In addition to LRR and BAF 
values, SNP marker allele frequency data from the Estonian general population 
was used as the reference in the PennCNV software. Parameters suggested by 
the software authors were used in both QuantiSNP and PennCNV. Only 
samples with a call rate greater than 98% that passed QuantiSNP quality control 
parameters were analyzed. To minimize the number of false positive findings, 
CNVs >50 kb in size, detected by both algorithms and visually confirmed in 
BeadStudio GenomeViewer were selected for further interpretation. In families 
where both parents and offspring were available for investigation, the parental 
origin of variants and exact CNV haplotypes were determined in silico. Details 
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of the allelic composition determination algorithm will be described elsewhere 
(Palta et al., manuscript in preparation). 

To exclude neutral variations, inheritance of CNVs detected in ID patients 
was determined in the corresponding family. Only CNVs that arose de novo or 
segregated in the family with clinical phenotype were selected as potentially 
relevant. These CNVs were further compared with those recurrently present in 
the Database of Genomic Variants (DGV) and in the Estonian general po-
pulation. The potential clinical significance of CNVs not present in normal 
individuals was evaluated using OMIM and DECIPHER databases and peer-
reviewed literature searches in the PubMed database. The genomic context of 
aberrant regions was studied using the Ensembl database version 54 (based on 
NCBI build 36). 

The presence or absence of genomic aberrations of potential clinical rele-
vance was confirmed by quantitative PCR in all investigated family members. 
FISH analysis was performed according to standard cytogenetic protocol in 
most cases of individuals carrying duplications and in which unbalanced trans-
location was suspected. The workflow of CNV analysis and interpretation is 
provided in Figure 5. 
 

 
Figure 5. The flowchart of CNV analysis and interpretation used in the current study. 



38 

4.4. Gene expression analysis by RT-qPCR 

Real-time reverse transcription-qPCR (RT-qPCR) was applied to investigate the 
expression status of the candidate genes mapping to the deleted regions in 
patient EID-3. 

Total RNA was extracted from whole-blood using the Tempus™ Spin RNA 
Isolation Kit (Applied Biosystems, Carlsbad, CA, USA). For replication experi-
ments, a lymphoblastoid cell line (LCL) was established from the proband’s 
peripheral blood and total RNA was extracted using TRIzol Reagent (Invitro-
gen, Carlsbad, CA, USA). RNA samples were treated with the TURBO DNA-
freeTM  Kit (Applied Biosystems/Ambion) and used as templates for synthesis of 
complementary DNA (cDNA) with oligo(dT) primers and the First Strand 
cDNA Synthesis Kit (Thermo Scientific, Vilnius, Lithuania). 

Assays for target (MEOX2, SOSTDC1, POU1F1, CHMP2B, BZW2, 
CGGBP1, C3orf38, TWIST1), reference (HMGB2 OMIM #160938; PTPN1 
OMIM #176885, RGS9 OMIM #604067), and normalization (ACTB OMIM 
#102630) genes were designed using CloneManager software (Sci-Ed  
Software, Cary, NC, USA) and the web-based program GeTprime 
(http://updepla1srv1.epfl.ch/getprime) using default parameters. The list of 
transcripts and validated assays is given in Table 4. 

RT-qPCR experiments were performed on the 7900HT Real-Time PCR 
system (Applied Biosystems) using ready-to-use HOT FIREPol® EvaGreen® 
qPCR MixPlus (Solis BioDyne, Tartu, Estonia). The following amplification 
conditions were applied: denaturation at 95ºC for 15 min, quantitation step by 
40 cycles of denaturing at 95ºC for 15 s, and combined annealing and extension 
at 60ºC for 1 min. The threshold cycle values were obtained and processed 
using SDS v2.4 software (Applied Biosystems), and the absolute quantification 
values were further analyzed using qBasePLUS software (Biogazelle, Ghent, 
Belgium). 
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In addition to the patient, expression levels were measured in six unrelated 
control individuals. All samples were analyzed in triplicates, with mean values 
used for calculations. Throughout the workflow, quality of the samples was 
assessed and procedures were validated according to the requirements 
advocated by Nolan et al. [199]. 
 
 

4.5. Chromosome X inactivation analysis 

Individuals with rearrangements on the X chromosome and their female 
relatives, were subjected to X-inactivation assay based on the analysis of the 
polymorphic CAG repeat sequence in the human androgen receptor (AR; 
OMIM #313700 ) gene. 

To evaluate the pattern of X-inactivation, genomic DNA was digested 
overnight at 37ºC with methylation-sensitive restriction enzyme HpaII followed 
by 20 min of inactivation at 80ºC. The reference reaction with restriction 
enzyme RsaI (both from Thermo Scientific) was performed for each sample 
using the same conditions. Digested DNA was amplified by using the AR-
specific 6-FAM™ labelled foward primer 5’-GTCTACCCTCGGCCGCCGTC, 
reverse primer 5’-GTAGCCTGTGGGGCCTCTACG (Metabion AG, 
Martinsried, Germany), and applying the following PCR conditions: 
denaturation at 95ºC for 10 min; 33 cycles of denaturing at 95ºC for 30 s, 
annealing at 60ºC for 30 s, extension at 72ºC for 20 s; and final extension step at 
72ºC for 5 min. Amplicon size and inactivation ratios were determined by 
fragment analysis on the ABI 3130 Genetic Analyzer (Applied Biosystems) 
under standard conditions, and analyzed using GeneMapper® 4.0 software 
(Applied Biosystems). The peaks corresponding to the two chromosome X 
alleles in both HpaII and RsaI digested samples were identified. The area under 
the peak curve obtained by visualization of fluorescently labelled PCR products 
were used for X-inactivation calculations. The peak areas from the reference 
reactions were used for normalization, followed by the comparision of the peak 
areas for two alleles upon digestion for detecting the presence of a skewed or a 
random inactivation pattern. The formula 4.1, provided by Kiedrowski et al. 
[200] was used to simultaneously perform both normalization and calculation of 
the proportion of allele 1 on the active X chromosome. 
 

               1/A=D1Hpa/D2Hpa * D1Rsa/D2Rsa + 1   
 

A – proportion of allele 1 on the active X 
D1Hpa – HpaII digested peak area 1 
D2Hpa – HpaII digested peak area 2 
D1Rsa – RsaI digested peak area 1 
D2Rsa – RsaI digested peak area 2 
Skewed inactivation was flagged whenever the ratio between two alleles was 
over 75%:25%.  



41 

5. RESULTS AND DISCUSSION 
 

5.1. Structural rearrangements in Estonian patients with 
intellectual disability and general population indviduals 

(Publication I) 

In the current study, genotyping information provided by high-resolution SNP 
arrays was used to investigate Estonian families with unexplained ID. In 
parallel, genomic data, medical history, and information regarding educational 
level and daily life of Estonian general population individuals was analyzed in 
order to better determine the relationship between phenotype and genomic re-
arrangements. 
 
CNV detection in two Estonian cohorts 
During the first stage of the study, DNA samples from 77 probands with idio-
pathic ID, 88 other affected family members, 92 unaffected family members 
and 998 unrelated reference individuals were analyzed. An average of 5 CNVs 
were detected per investigated genome with a size range above the resolution 
limit of the platform, i.e. 0.05 Mb, up to 8.3 Mb. CNVs with the general 
population frequency ≥1% in Estonian reference samples and/or regions with 
more than a single record in the Database of Genomic Variants comprised the 
majority of aberrations and were excluded as likely benign polymorphic 
variants. Distinction of polymorphic CNVs by using the Database of Genomic 
Variants only was hampered by its (i) heterogeneous content of platform 
resolutions, some of which overestimate the size of CNVs; (ii) lack of infor-
mation about the population frequencies of the variants, and (iii) lack of pheno-
typic background of the sample cohorts. In addition to the uniform definition of 
population-specific common CNVs, the majority of the alterations detected in 
our clinical samples were completely encompassed by common CNVs in our 
general population. Since there are no generally accepted guidelines for re-
conciling overlap between CNVs in patients and in control cohorts [85], 
utilization of the same array platform in the current study proved to overcome 
this commonly encountered problem and facilitated the initial filtering of rare 
CNVs. 

As shown previously, SNP allele frequencies and linkage disequilibrium 
patterns of the Estonian population are similar to the other populations having 
European ancestry [196]. Concordantly, common CNV regions detected in the 
current reference group were at least partially covered by the Database of 
Genomic Variants. As of November 2010, only 20 variants with frequencies 
from 0.1 to 0.5% and a size range from 0.06 to 0.26 Mb not present in the 
Database of Genomic Variants were detected in the Estonian general population 
cohort [201]. 
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Figure 6. Overview of clinically significant aberrations in patients with idiopathic ID. 
In total, 18 aberrations of clinical relevance and 5 aberrations of uncertain significance 
were identified by SNP genotyping arrays. Copy-number losses are indicated by the red 
bars and copy-number gains by the blue bars [201]. 
 
 
Clinically relevant CNVs in the Estonian intellectual disability cohort. 
Clinically relevant rearrangements were identified in 18 out of the 77 investi-
gated ID families by determining their inheritance patterns, comparing them 
with reports in the DECIPHER database and peer-reviewed literature and 
annotating genomic intervals. The diagnostic yield of 23% in our clinical cohort 
is comparable to the results from other similar reports (reviewed in [82, 85, 125, 
202]). Determined pathogenic rearrangements included 13 deletions, 3 dupli-
cations and 3 apparently unbalanced translocations. One patient had 2 seeming-
ly independent deletions. Five additional rare genomic variants found in ID 
families were classified as of uncertain clinical significance. The genomic loca-
tions of these imbalances is given in Figure 6. Phenotype information and 
molecular data from all ID cohort probands carrying potentially relevant CNVs 
is summarized in Tables 5 and 7. 
 
Rare genomic imbalances of clinical significance in the Estonian general 
population 
In addition to filtering out population-specific common variants, the cohort of 
998 randomly selected unrelated EGC UT individuals was used to identify the 
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presence of rare genomic imbalances of clinical significance in the general 
population, and to further estimate their phenotypic consequence. The selection 
of genomic regions was based on the findings in the clinical cohort of the 
current study, DECIPHER syndromes, and those listed by Girirajan and Eichler 
[105]. This resulted in 19 general population carriers in total. As a follow-up 
analysis of the phenotypic effect, an additional sample set of 6628 individuals 
was screened for the CNVs of special interest in genomic regions 7p21.2-p21.1, 
7q11.23, 15q13.2-q13.3, 16p11.2, Xp22.31 and Xq28, which identified 10 more 
carriers of these imbalances. All CNVs of potential clinical relevance detected 
in the Estonian general population cohort and associated information about 
education and neuropsychiatric phenotype for these individuals is shown in 
Tables 5 and 6. Results from both investigated cohorts are organized and 
discussed according to the genomic regions in sections 5.1.1. to 5.1.2.  
 
 

5.1.1. Recurrent genomic rearrangements of clinical relevance 

Chromosome regions that have directly oriented LCR-rich architecture act as 
hot-spots for NAHR-mediated recurrent deletions and duplications [21, 157]. 
As suggested by Girirajan and Eichler [105], genomic syndromes associated 
with these loci may be divided into two types based on their clinical 
consistency: (i) specific syndromes with relatively straightforward clinical 
phenotypes (Grade 1 by the DECIPHER database), and (ii) genomic lesions 
with diverse phenotypic expressivity and incomplete penetrance (Grades 2 and 
3). Amongst Type I disorders, one proband (EID-14, Table 5) was diagnosed 
with 17q21.3 recurrent microdeletion syndrome and one family (EID-6, Table 
5) with 7q11.23 duplication syndrome in the current clinical cohort. Con-
cordantly, no carrierers of these CNVs were detected in the general population. 
The latter region is discussed in paragraph 5.1.1.1. as an example of a 
syndromic disorder. 

Findings from disorder regions with less clear phenotypic outcome and the 
usefulness of well-phenotyped reference data for interpretation of Type II rare 
variants that were associated, but not limited, to ID phenotype is covered in 
more detail in sections 5.1.1.2 to 5.1.1.5. 
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5.1.1.1. Duplications in 7q11.23 are causative for  
a novel distinctive syndrome  (Publication IV) 

State of the art. 
The 1.5 Mb microduplication of 7q11.23 encompasses 26 genes and is 
reciprocal to the recurrent deletions responsible for Williams-Beuren syndrome. 
Williams-Beuren syndrome (OMIM #194050; reviewed in [204]) is a multi-
system developmental disorder which is esitimated to occur with approximate 
population frequency of 1 in 10,000. The disease is a distinctive contiguous-
gene syndrome that was first described already in the nineteen sixties by J.C. 
Williams [205], A.J. Beuren [206] and is mainly characterized by congenital 
cardiovascular malformations (most frequently supra valvular aortic stenosis), 
hypercalcaemia and a characteristic „elfin-like“ profile of facial dysmorphisms 
in childhood. Although ID is common, verbal skills of Williams-Beuren 
patients are well-preserved. Accompanied by hypersocial behaviour, overfriend-
liness and easy interaction with other people, these traits display a very specific 
well-recognizable cognitive and behavioral profile. The Williams-Beuren 
syndrome deletion is flanked by highly similar sequences of duplicated DNA 
and arises through unequal meiotic recombination [207, 208]. Because of the 
genomic architecture, this interval on the long arm of chromosome 7 is prone to 
other rearrangements and reciprocal duplications mediated by the same blocks 
of LCRs have been anticipated to exist, but until recently had not emerged as a 
recognizable syndrome by phenotype-based diagnostics. Only in 2005, Somer-
ville and colleagues described the first patient with de novo duplication of the 
Williams-Beuren region [209], which was quickly followed by a few additional 
cases detected as a result of whole-genome CNV screening of cohorts with ID 
and other neuropsychiatric diseases [210–213]. Although speech and language 
impairment was a common manifestation in majority of these patients, the 
sparse data and incomplete penetrance on these initial case reports did not allow 
one to define the exact clinical consequences of this chromosomal imbalance. 
 
Findings in the current study 
In the intellectual disability cohort, a proband of the family EID-6 (Figure 3; 
Table 5) who exhibited global DD accompanied by severe speech delay, 
autistic features, ADHD and episodes of severe aggression was found to carry a 
1.4 Mb duplication in the chromosome region 7q11.23. The duplication was 
inherited from his father (I:2, Figure 4), who was recorded to have cognitive 
and language impairment, as well as problems with aggressive behaviour, and 
segregated also to the proband’s younger brother (II:4) with global DD at the 
age of 6 months. 

No carriers of the duplication were found amongst 7626 investigated general 
population individuals. 

To describe the novel duplication syndrome associated with the 7q11.23 
duplication, collaborative effort by different cytogenetic centres in Europe 
collected and evaluated in a standardized way 12 probands, two siblings and 
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seven parents carrying identical 1.5 Mb duplications, exactly reciprocal to the 
Williams-Beuren syndrome critical region. Patients were analyzed using various 
genome-wide screening platforms and the presence of other potentially 
pathogenic CNVs was excluded in all cases. The proband EID-6 and his 
younger brother are referred as patients 1 and 8, respectively, in this paper by 
Van der Aa et al. [181]. In total, thirteen unrelated carriers were found amongst 
5130 ID patients, suggesting that the 7q11.23 duplication can explain 0.25% 
cases of idiopathic ID. Due to the heterogeneous ethnic background of the 
samples, it is not possible to provide a reliable estimate of the general 
population frequency in the current study. However, assuming the prevalence of 
ID to be 2–3% of the general population in developed countries, a reasonable 
estimate of the frequency of the duplication is 1/13,000 – 20,000 [181]. The 
duplication was not detected in the Estonian general population cohort, which 
further confirms very low population prevalence and likely pathogenic effect. 

The evaluation of data in the current patient cohort suggested that the 
clinical phenotype of the 7q11.23 duplication syndrome (OMIM #609757) is 
milder, less distinct and more variable than that of the Williams-Beuren 
syndrome. In agreement with previous reports, severe language delay (either 
expressive, receptive or both) was seen in all patients and presented the most 
characteristic feature of the syndrome. Also, a deficit in cognitive and/or social 
abilities was a predominant trait – 11 out of 14 patients met the criteria for ID, 
and 6 out of 14 were diagnosed with autism or ASD. This indicates that 
contrary to Williams Beuren syndrome, language and social skills are the most 
severely affected aspects of cognitive functioning in reciprocal duplication 
patients. Additional recurrent findings associated with the duplication include 
neonatal period hypotonia (8/14), joint laxity (3/14), epilepsy (2/14), abnormal 
findings in the brain MRI (5/7) and increased incidence of other congenital 
malformations. For the first time, our study described a facial phenotype 
associated with this duplication, including a high broad nose, straight eyebrows, 
a thin upper lip, deep-set eyes, a short philtrum and a prominent forehead. 
Intriguingly, some of these dysmorphic features are in direct contrast to facial 
dysmorphisms seen in Williams-Beuren syndrome patients. Moreover, the 
dysmorphic profile was retrospectively recognizable in previously published 
7q11.23 duplication patients. Photographs of patients with 7q11.23 duplication 
presenting characteristic dysmorphisms is provided as Figure 2 in Publication 
IV [181].  

 
Discussion 
Amongst genes within an imbalanced locus, Elastin (OMIM #130160) has been 
considered to be responsible for supra valvular aortic stenosis in Williams-
Beuren patients [214], and might contribute to the joint hyperflexibility in 
duplication patients [181], despite that preliminary analyses in human skin 
fibroblasts have shown no direct haploinsufficiency-caused change in its 
expression levels [161]. The GTF2IRD1 (OMIM #604318) and GTF2I (OMIM 
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#601679), members from the general transcription factor family, near the distal 
breakpoint, have been shown to contribute most to the cognitive deficit and 
craniofacial features of Williams-Beuren patients [215–218]. The contrasting 
traits in language development, behavioural, and facial profile seen in patients 
with reciprocal imbalances indicate the presence of dosage-sensitive genes 
within the 7q11.23 chromosome interval. No definite candidates establishing 
these mirror effects have yet been found in humans, and in case of some genes 
in the region, dosage compensation mechanisms have been demonstrated [219]. 
However, social interactions are increased in mice hemizygous to the GTF2I 
[220], while the duplications of this gene have recently been associated with 
autism and anxiety disorder [221, 222]. 

In the EID-6 family, interestingly, the 7q11.23 duplication was not present in 
the oldest, similarly affected son. Determination of haplotypes in the aberrant 
region also excluded the possibility of copy-neutral structural rearrangement in 
this patient. To exclude the possibility of tissue mosaicism, the analysis was 
repeated with DNA extracted from a skin biopsy specimen, which gave the 
same outcome. Although all three duplication carriers presented the characte-
ristic phenotype of the syndrome, the cognitive impairment of the proband was 
more severe than commonly seen in patients with the single copy gain of 
7q11.23 [181, 223]. Thus, additional yet undetermined single-gene mutation or 
other factor might contribute to the ultimate clinical phenotype in this family. 

 
Conclusive statement. 
Although duplication syndromes in general have been considered milder, and 
more challenging to diagnose than the corresponding microdeletion syndromes 
due to more heterogeneous clinical outcome, our study by Van der Aa et al. 
demonstrates the power of the “genotype-first” approach to characterize of 
recurrent genomic disorders, allowing the authors to suggest a novel clinically 
recognizable duplication syndrome [181]. 
 
 

5.1.1.2. Gene dosage at the chromosome locus 16p11.2 is associated with 
neuropsychiatric disorders and mirror phenotypes on BMI  

(Publications II and III) 

State of the art 
The short arm of chromosome 16 has been one of the most actively duplicated 
regions in human autosomes. In the course of recent hominoid evolution, rapid 
integration of segmental duplications have generated complex genomic 
structure enriched in highly homologous and repetitive sequence blocks in 16p. 
These act as a substrate for intrachromosomal NAHR and predispose the region 
to recurrent structural rearrangements [224–226]. Five regions on the proximal 
short arm of chromosome 16 have been defined as „hotspots“ to genomic 
imbalances of clinical relevance and associated with neuropsychiatric 
phenotypes. All below-mentioned imbalances are mediated by different LCRs 
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and should be considered as different syndromic entities in the light of current 
knowledge. Distinctive breakpoints that mediate these recurrent rearrangments 
are indicated on Figure 7 and numbered from telomere to centromere as 
breakpoints BP1 to BP5. 
 
 

 
 
Figure 7. Genomic locus of the 16p11.2. The extent of neurodevelopment-associated 
genomic losses and gains in 16p11.2 are schematically pinpointed with bordeaux bars, 
while grey bars and striped blocks indicate intervals of recurrent polymorphisms 
reported in the Database of Genomic Variants and stretches of LCRs, respectively. 
Recombination hotspots that act as mediators of clinically relevant CNVs are termed 
from telomere to centromere as breakpoints BP1 to BP5. 

 
 

(i) The distalmost recurrent 1.5-Mb microdeletions and –duplications were first 
reported in 16p13.11 as predisposing factors to autism and ID [227]. Followed 
by the comprehensive evaluation of their contribution to cognitive impairment 
[228, 229] and idiopathic epilepsies [56], both genomic gain and loss of 
16p13.11 are currently considered as a susceptibility factor for neurocognitive 
disorder rather than sufficient in itself to cause clinical phenotype. (ii) A 500 kb 
recurrent microdeletion on 16p12.1 has been suggested to act as a risk factor for 
neurodevelopmental phenotypes, although the precise clinical impact of this 
deletion has remained vague [30, 230]. (iii) Large deletions that encompass the 
16p11.2 interval have been reported between telomeric LCR at the position  
21.4 Mb and variable proximal breakpoints (BP4 or BP5). Referred to as 
16p11.2-p12.1 microdeletion syndrome this distinctive disorder is characterized 
by subtle facial dysmorphisms accompanied by ID, delayed speech develop-
ment, feeding difficulties and recurrent ear infections [231–233]. (iv) Deletions 
of 220 or 550 kb containing the SH2B1 (OMIM #608937) gene in the distal part 
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of 16p11.2 are mediated by BP1 and, respectively, BP2 or BP3, and have been 
reported in a few individuals with severe early-onset obesity and variable 
degrees of developmental delay [50, 234]. (v) Proximal 600 kb recurrent 
microdeletions and -duplications that are defined by BP4 and BP5 and 
encompass 28 genes in the 16p11.2 were initially reported to be markedly 
frequent in cohorts of autism spectrum disorders and evaluated to explain as 
many as 1% of autism cases [128]. The extent in which deletions and 
duplications in 16p11.2 account for the total burden of idiopathic autism 
spectrum disorders has since been reduced to 0.5% and 0.3%, respectively 
[235]. However, with the population prevalence of about 1/2000 [129], the 
locus is one of the most frequent known causes of neurodevelopmental 
disorders, and the 16p11.2 phenotypic spectrum has been extended by several 
other clinical traits [51, 60, 129, 130, 236–247]. The majority of these 
publications are based on the clinical data of a limited number of patients and 
do not always provide formal associations with the rearrangement. The great 
diversity of the described features, together with consistent reports of 
asymptomatic transmitting parents and apparently „normal“ control individuals 
have led the clinical community to question the essential phenotypic impact and 
penetrance of the recurrent 600 kb deletion and duplication in 16p11.2. 
 
Findings in the current study 
In the Estonian clinical cohort, a 5-year old patient EID-13 (Table 5) was 
detected carrying a 0.6 Mb BP4-BP5 deletion in 16p11.2. One identical deletion 
and two reciprocal duplications (EGC-12,14,15, Table 6) were detected in the 
initial, and one deletion and one duplication (EGC-13, 16, Table 6) in a follow-
up cohort of the general population. Contrary to the paediatric patient EID-13, 
with mild ID, speech delay, behavioural problems and normal growth 
parameters, the adult deletion carriers presented BMI of 35.9 and 43.8 kg/m2, 
which according to the WHO are classified as class II and class III obesity 
(http://apps.who.int/bmi). Inversely, one duplication carrier was underweight 
(BMI 17.6), one on a lower normal weight level (BMI 19.1) and a third with a 
normal BMI (22.2). Three out of 5 individuals with reciprocal 16p11.2 
imbalances had only elementary education, 3 of the 5 reported problems with 
daily living and 3 had depression according to the EGC UT standard 
questionnaire. EGC-12 and EGC-15 were also diagnosed with epilepsy. 

During the last years, the clinical phenotype of heterozygous deletions and 
duplications in 16p11.2 has been further studied in large cohorts by ourselves 
and others. To obtain the initial association of 16p11.2 deletions, patients with 
ID/DD and congenital malformations from eight cytogenetic centres in France, 
Switzerland and Estonia (n=3947) were analyzed in parallel with small cohorts 
of obese patients with cognitive deficit and/or MCA from France and the United 
Kingdom (n=312). As a surprising result, the frequency of the deletion was 
found to be significantly higher in the obese cohort (9 carriers, 2.9%) than in ID 
cohort (22 unrelated carriers, 0.6%; p=2.2×10–4, Fisher`s exact test), while the 
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latter frequency was consistent with those previously published in similar 
cohorts [128, 130, 248, 249]. Moreover, regardless of initial ascertainment of 
carrier, the clinical data revealed in all instances an age-dependent penetrance of 
adiposity – the obesity phenotype was strongly expressed in adults, and showed 
more variable espressivity in childhood (Figure 8). 

All clinical cohorts taken together, the data revealed a possible direct 
association of 16p11.2 deletions with obesity, which is independent of 
individuals’ cognitive functioning. To further specify the relationship between 
obesity, neurodevelopmental phenotypes and 16p11.2 deletion with high 
confidence, data from Swiss [250], Finnish [251], Estonian [196] general 
populations (in total 11 856 individuals), and five different extreme obesity 
cohorts (n=3844) [252–254] were combined in an overall case-control 
association analysis. The 16p11.2 deletion was absent in healthy non-obese 
European individuals, but supplemented the analysis with 19 carriers which 
strongly associated this heterozygous deletion with obesity (p=5.8×10–7, 
Fisher’s exact test; OR=29.8, CI95%=[3.9,225]), as well as morbid obesity 
(p=6.4×10–8; OR=43.0, CI95%=[5.6,329]).  
 
 

 
 
Figure 8. Dependence of BMI on age in patients with reciprocal 16p11.2 imbalances 
and corresponding general population individuals. Broken bolder lines denote 3rd, 50th 
and 97th BMI percentiles, finer lines correspont to cut-off thresholds for underweight 
and obesity in adults (BMI 18.5 and 30, respectevely). Red squares represent 16p11.2 
duplication carriers and blue triangles deletion carriers. BMI data from three reference 
populations have marked with pink (Swiss), blue (French) and violet (Estonian) dots. 
Modified from [51]. 
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Investigation of the segregation in 16p11.2 families showed that de novo inci-
dence of the deletion is consistent with previous reports of cohorts with develop-
mental delay and congenital anomalies [130]. In case of parental transmission, 
both maternal (n=11) and paternal (n=4) inheritance of the deletion was observed 
and all first-degree relatives carrying a deletion were also obese [51]. 

In search of converse clinical manifestations, a similar strategy was used to 
detect reciprocal duplications in the chromosome region 16p11.2. As a result, a 
total of 138 duplication carriers were identified from different population-based 
(n=58,635), neurodevelopmental (n=31,424), psychiatric (n=1080) and 
obesity/underweight (n=3544) cohorts. Consistent with the previous association 
with psychiatric conditions [128, 246], comparing their frequency in European 
general populations [196, 250, 251] showed significantly higher prevalence in 
DD/ID (p=4.23×10–13; OR=4.4; CI95%=[2.9,6.9]), and in schizophrenia/bipolar 
disorder cohorts (p=3.6×10–3; OR=7.0; CI95%=[1.8,19.9]). To assess whether 
the gene dosage effects accountable for obesity in deletion carriers, may in an 
opposite manner influence the body weight of duplication carriers, we 
compared the BMI distribution in all carriers of the duplication for whom 
anthropometric measures were available (n=105). The testing also took into 
account gender, age and ethnic background, as influencing factors, and resulted 
in a strong association of the 16p11.2 duplication with lower postnatal weight 
(mean Z-score –0.56; p=4.4×10–4) and BMI (mean Z-score –0.47; p=2.0×10–3). 
Thus, the risk of being clinically underweight was 8.3-fold higher for adult 
carriers of the 16p11.2 duplication (BMI <18.5; p = 1.53x10–10) [129]. 

Separate analyses in neuropsychiatric and non-medical cohorts showed 
significantly lower weight with a similar effect size in both groups, although the 
proportion of individuals meeting criteria for being underweight (BMI ≤–2SD) 
was higher amongst neurocognitive patients (p=0.017). Interestingly, stratifi-
cation by age and gender showed that these factors play a role in the expres-
sivity of the phenotype. When all cohorts were combined, the relative risk of 
underweight was as high as 23.2 for adult males (p=4.6×10–11; 
CI95%=[9.1,59.3]), while only 4.7 for females (p=9.9×10–4; CI95%=[1.9,11.8]; 
gender difference p=0.0168). Moreover, the overrepresentation of males in 
clinical cohorts, as well as stronger impact on body weight in male patients with 
ID/DD suggests that men are more likely to present severe phenotype caused by 
the 16p11.2 duplication. By contrast, the higher representation of females com-
pared to males was noticed in the general population (p=0.035), and amongst 
transmitting parents (p=5.53×10–4), that further confirms the reduced number of 
male duplication carriers in non-medically ascertained cohorts [129]. 

In their study two years ago, Shinawi and colleagues observed the link 
between autism and macrocephaly in 16p11.2 deletion patients, whereas 
duplication carriers presented microcephaly and an elevated risk of psychotic 
conditions [236]. Notably, the association of opposite alterations in head size 
with genomic gain (mean Z-score –0.89; p=7.8×10–6) and loss (mean Z-score 
+0.57; p=1.79×10–5) was validated in our study (Figure 9). The positive 
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correlation between OFC and BMI in both duplication (ρ=0.37; p=2.65×10–3) 
and deletion (ρ=0.42; p=1.9×10–5) carriers indicates that a related underlying 
molecular mechanism may exist between these traits and allow one to 
hypothesize that these associated conditions may represent opposite states at 
different ends of the same neurobehavioural continuum [129]. 
 
 

 
 
Figure 9. Effect of the 16p11.2 deletion and duplication on head circumference. Z-score 
values of head circumference deletion (top panels) and duplication (bottom panels) 
carriers stratified by age group (in years). Boxplots represent the 5th, 25th, median, 75th 
and 95th percentile for each age group. The light and dark grey backgrounds represent 
the 2nd and 3rd standard deviation, respectively [129]. 
 
 
Discussion 
Pathological fluctuations in body weight are considered a major issue because 
of their severe consequences on the health. The epidemic increase of adiposity 
in the modern „obesogenic“ environment has made studying inherited variants 
and associated regulatory mechanisms of energy control a high priority. One 
factor that is likely to modulate susceptibility to the hedonic effect of food and 
thus contributes to weight variation has been suggested to be a genetically 
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determined difference in appetite and satiety [255]. As a confirmation of this 
hypothesis, family-based studies have shown that genetic factors account for 
40–70% of the variation in BMI (summarized in [256, 257]), and monogenic 
forms of obesity described so far disrupt satiety mechanisms and regulation of 
appetite in the brain [258, 259]. Also the correlation between obesity and im-
pairment in cognitive functioning is well known [260–263] and several obesity-
linked genomic loci have been first characterized in individuals with impaired 
cognitive functioning [50], suggesting that related molecular pathways might be 
involved in these conditions. Although these observations indicate that human 
adiposity might be an inherited neurobehavioural disorder, the molecular factors 
and central regulators of eating behaviour are poorly understood. Even less is 
known on the abnormalities underlying anorexia and the clinical manifestation 
of being underweight. During the last years, GWAS studies have revealed tens 
of common genetic variants as predisposition factors to obesity [264–268], yet 
all of these have a small effect size, poor predictive power and explain 
altogether less than 2% of BMI variation in humans [269]. This further challen-
ges the popular „common disease, common variant“ hypothesis. Although the 
exact extent to which CNVs might contribute to the etiology of obesity is not 
clear, recent population-studies have demonstrated that common CNVs are 
unlikely to contribute greatly to the genetic basis of common human diseases [2, 
270]. Alternatively, cohorts with extreme manifestations of common traits may 
have a higher frequency of rare variants with strong effect and provide valuable 
improvement in initial power for identifying loci responsible for missing 
heritability in obesity and other complex diseases [252, 271]. Our studies by 
Walters et al. and Jacquemont et al. of the 16p11.2 genomic interval examplify 
the power of a two-step strategy in the association of rare variants with complex 
traits, and show how the initial discovery stage in small well-phenotyped 
cohorts combined with a targeted follow-up association analysis in large case-
control and population cohorts may improve the likelihood of discovering new 
variants and identifying phenotypes that are not biased by pre-existing 
ascertainment criteria. These large-scale analysis results demonstrate the burden 
of rare variants that exert strong effects in complex diseases [51, 129]. 

The higher frequency of 16p11.2 deletions in the current cohort recruited for 
both obesity and ID (2.9%), compared with cohorts ascertained for either 
phenotype alone (0.4% and 0.6%, respectively), confirms its involvement in 
both etiologies, and adds further evidence to the strong correlation observed 
between these two phenotypes. Possible explanations for this relationship 
include the involvement of related neural circuits, or different outcomes of the 
same set of neurobehavioural disorders with complex pleiotropic effects [51]. 
Moreover, although the evidence was not sufficient for formal associations, low 
food intake or selective and restrictive eating was recurrently reported by 
clinicians in 16p11.2 duplication carriers, and the opposite behavior, hyper-
phagia, in deletion carriers. This further indicates that dysregulation of control 
mechanisms involved in eating behavior might be responsible for reciprocal 
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extreme BMI phenotypes [129]. Preliminary gene expression analyses using 
lymphoblastoid cell lines and adipocytes showed that transcript levels in 
16p11.2 deletion and duplication patients correlate positively with genomic 
dosage for genes mapping within the imbalanced interval, but not in flanking 
regions. This observation suggests that opposite phenotypes are likely caused by 
the genes within the 16p11.2 region that have an impact on pathways involved 
in dosage-sensitive regulation of energy balance. An altered copy number of 
these genes might result in the opposite effect on head size and through dys-
regulation of central satiety and food intake control give rise to obesity or 
underweight [129]. As functional evidence, the reciprocal effect of genomic 
loss and gain on OFC and brain architecture has recently been showed on mice 
harboring deletion or duplication of the chromosomal region corresponding to 
the human 16p11.2 [272]. Also recent study in zebrafish embryos have revealed 
that overexpression and supression of the human KCTD13 (OMIM #608947) 
within the 16p11.2 imbalanced interval cause micro- and macrocephaly [176]. 
In combination with gene-specific deletion of the KCTD13 detected in a single 
autistic patient, these findings allow the authors to suggest that this gene might 
be a major driver for the neurodevelopmental phenotypes associated with the 
CNVs at 16p11.2. Moreover, two other transcripts, MAPK3 (OMIM #601795) 
and the MVP (OMIM #605088) significantly increased the expressivity of the 
phenotype in both directions, thus pinpointing a likely epistatic contribution by 
different genes within the 16p11.2 locus [176]. 

In summary, the causal link of the 600 kb region at human 16p11.2 with a 
highly penetrant form of obesity and pathological leanness, as well as a variety 
of neuropsychiatric conditions, provides a unique opportunity to explore the 
molecular pathways underlying the central regulation of energy balance and its 
relationship with brain disturbances. Three different types of CNV-driven 
mechanisms might play a role in the etiology of 16p11.2 syndromes: (i) the 
region likely contains dosage-sensitive regulators of energy balance, for which 
the altered copy number results in opposite manifestations on body weight, 
eating behavior and head circumference; (ii) unmasking of recessive mutations 
or functional polymorphisms in certain genes by hemizygosity could explain the 
presence of some reproducible features, e.g. vertebral malformations, epilepsy 
or paroxysmal dyskinesia, only in a portion of 16p11.2 deletion carriers 
(discussed in paragraph 2.5.2); (iii) the presence of „double-hit“ CNVs or other 
modifying factors might be responsible for the eventual inter-individual 
phenotypic variability amongst 16p11.2 patients. 
 
Conclusive statement 
Our studies of the 16p11.2 genomic interval have demonstrated the potential 
importance of rare variants with strong effect in complex neurobehavioral 
disease, and highlighted successful strategies for discovering formal phenotypic 
associations of rare structural variants [51, 129]. 
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5.1.1.3. A variable spectrum of phenotypes is associated with   
deletions and duplications at the chromosome locus 15q13.3  

(Publication I and unpublished data) 

State of the art. 
Another highly unstable locus in the human genome maps to the centromeric 
long arm of chromosome 15, where complex sets of LCRs (known as BP1 to 
BP6) give rise to several types of recurrent rearrangements. An approximately 
1.6 Mb recurrent deletion mediated by breakpoints BP4 and BP5 has been 
considered as a susceptibility factor for different forms of epilepsy, ID and 
autism, but also linked to a wide range of other neurocognitive phenotypes [58, 
59, 131, 132, 273–277]. Analogous to the aforementioned interval 16p11.2, the 
15q13.3 microdeletion syndrome (OMIM #612001) is relatively frequent and 
characterized by incomplete penetrance and remarkable variability in pheno-
typic expression. The imbalanced interval encompass eight genes, amongst 
which the altered dosage of the CHRNA7 (OMIM #118511) has been con-
sidered as causative for the neurodevelopmental features in the 15q13.3 deletion 
syndrome [278–280]. Reciprocal duplications in 15q13.3 might pose a risk for 
autism and expressive language impairment, but have so far not been 
considered as clearly pathogenic variants [132, 280, 281]. 
 
Findings in the current study 
In the current cohort of ID patients, a deletion overlapping with the 15q13.3 
microdeletion syndrome region was detected in a sporadic male patient (EID-11, 
Table 5; described greater detail in [132]), and was also found to segregate with 
ID phenotype in another family (EID-12, Table 5). Except for the polymorphic 
duplications with approximate genomic coordinates of 29.8 and 30.4 Mb 
(recently termed also as „small microduplications of CHRNA7“ by Szafranski and 
colleagues) [280, 282], the rearrangements in chromosome band 15q13 were 
extremely rare in the Estonian general population. Only two individuals were 
found to carry syndromic BP4-BP5 microdeletion in the 15q13.3 (EGC-5, 6, 
Table 6) amongst 7626 analyzed samples, and one carrier was harboring a 
reciprocal duplication (EGC-4, Table 6). The sole duplication carrier found in the 
current study is insufficient for drawing any conclusions, but since neuro-
psychiatric problems were not reported, our finding further supports the idea that 
duplications in this region do not result in clinical consequences or are not fully 
penetrant. Surprisingly, the 15q13.3 deletion carriers both presented overweight 
or obesity phenotype and were exclusively identified from a sub-group initially 
recruited as cases for the GWAS study of metabolic traits (n=880).  
 
Discussion 
Although the sample size is small, potential prevalence of 0.2% in individuals 
with metabolic diseases in the current study would be comparable to that of ID 
(0.3%), autism (0.2%) or schizophrenia (0.2%), while an order of magnitude 
higher than the proposed population frequency of 15q13.3 deletions [131, 283]. 
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Whereas attention has mostly been paid to the role of the 15q13.3 interval in 
epilepsy and psychiatric diseases, alterations in growth parameters have so far not 
associated with this CNV. However, retrospective observation of clinical 
information in a few pre-reviewed articles where data about weight, height and 
head circumference was available showed repeating reports of weight gain and 
OFC above the 90th

 percentile in 15q13.3 deletion carriers [131, 273, 284]. 
Considering the close proximity of the Prader-Willi syndrome locus to 15q13.3, it 
is notable that both deletion carriers from Estonian ID cohort were decribed by 
clinicians prior to CNV analysis to have obese Prader-Willi syndrome like 
phenotype. Whereas most of the patients referred to the screening for genomic 
disorders are paediatric, three out of four deletion carriers in the current study 
were adolescents or adults. As examplified by the rearrangements in 16p11.2, the 
age-dependent differences in penetrance might be overlooked in case of some 
traits and the current knowledge is vague about the phenotypic dynamics of 
genomic disorders in adulthood. To the best of our knowledge, no phenotype data 
of the adult general population have yet been reported in association with the 
15q13.3 rearrangements.  
 
Conclusive statement 
Although additional information is necessary to understand whether the 
alterations in body composition are associated with the genomic variants in 
15q13.3, our data indicates that the recruitment of investigated individuals 
should not be biased by the phenotype of interest or age-restricted cohorts. 
Instead, large cross-population association studies with the recruitment on the 
basis of being a carrier of the variant under study should be pursued to correctly 
elucidate the clinical outcome of the CNVs. 
 
 

 5.1.1.4. A novel syndromic microduplication in Xq28 including  
the Rab39B (Publication I and unpublished data) 

Findings in the current study 
A novel likely pathogenic duplication in a complex gene rich region of Xq28 
was detected in a male patient EID-18 (Table 5) who has mild ID, dysarthria, 
difficulties with socializing and mildly dysmorphic facial features. From the 
family history it was known that his mother had an early menopause. Unfortu-
nately, she was not available for further investigation and it was not possible to 
determine whether the patient’s rearrangement was inherited or arose de novo. 

The fine-mapping of aberration boundaries by qPCR revealed a 500 kb 
duplicated region with breakpoints localized to the directly oriented highly-
homologous sequences in the coagulation factor VIII genes F8A1 (X:153, 
767,829–153,769,529) and F8A2 (X:154,264,943–154,266,643). The screening of 
6628 genomes in the general population detected a single female carrier (EGC-19, 
Table 6) of a shorter duplication in the chromosome region Xq28 that overlaps 
only the distalmost part of the aberration identified in the ID patient. 
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Discussion 
Although other recurrent duplications in Xq28 are known to be associated with 
ID phenotype [285–289], genomic imbalances in this particular interval locating 
distally from the recurrent  copy number gain that had been identified by 
Vandewalle et al. [286], is yet sparsely described. Among seven encompassed 
genes (Figure 10), the found duplication affects two newly identified X-linked 
ID (XLID) genes: (i) the CLIC2 (OMIM #300138), which missense mutation 
H101Q was recently predicted to be causative in a family with profound X-
linked ID [290]; (ii) the Rab39B (OMIM #300774) that encodes a neuronal-
specific small RabGTPase and has been identified as a novel XLID gene by 
mutation analysis [97, 291]. In addition to directly altering copies of genes 
affected by the aberration, the impact of CNVs on regulatory elements or 
position effect might also influence the gene expression. Therefore it is notable 
that in flanking region of less than 1 Mb, several known ID genes are present, 
including MECP2 (OMIM #300005) FLNA (OMIM #300017), RPL10 (OMIM 
#300847), GDI1 (OMIM #300104), IKBKG (OMIM #300248), and DKC1 
(OMIM #300126). At least for MECP2 and GDI1, dosage-sensitivity has been 
confirmed or considered [286, 292]. 
 
 

 
Figure 10. Schematic representation of the duplicated genomic region in Xq28 in 
patient EID-18. As of July 2010, reports in the Database of Genomic Variants (A) and 
DECIPHER database (B) overlapping with the current finding (C) are shown. 
Duplications are indicated by blue and deletions by red bars. Genes encompassed by the 
duplication (green), and known ID genes in the flanking region (brown) are given on the 
panel (D) [201]. 
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The LCR int22h-1 in intron 22 of the F8A1 (OMIM #300841) is known to be 
involved in homologous recombination with more telomeric int22h-2 [293], and 
most probably promoted NAHR-mediated genomic instability in our patient. 
The mechanism suggests that deletions and duplications in this region might be 
recurrent. However, at the time we initially suggested that this genomic gain is 
likely to be associated with ID [201], only a few cases with the current 
duplication were entered in the DECIPHER database. Although small non-
pathogenic indels are common in Xq28, only one overlapping duplication 
(indicated as variation 23331 in Figure 10) has been reported in the Database of 
Genomic Variants. While the information provided by the DGV lacks gender 
and phenotype specifications, we analyzed this region in the Estonian general 
population with the purpose of better understanding the pathogenic effect of this 
genomic gain. A single duplication that overlaps only the distalmost, CLIC2 
encompassing, part of the ID-associated duplication was identified in a female 
individual who had reported no learning difficulties, nor neuropsychiatric 
disturbances. Since her X-inactivation pattern was assessed as random (the ratio 
53%:47% between two alleles), spare evidence in favor of CLIC2 as a potential 
contributor to the cognitive phenotype was challenged by this finding. The 
absence of Rab39B involving aberrations in non-ID cohort individuals, on the 
other hand, gives a strong reason to hypothesize that the duplications causing an 
overdose of this gene may present a novel region of a syndrome associated with 
mental disorders. 
 
Conclusive statement 
Since our report in 2010, two additional unrelated patients with similar clinical 
features have been found to carry identical duplications (Dr. G. Froyen, 
personal communication). Furthermore, our observations were recently 
confirmed by El-Hattab et al., who identified int22h-1/int22h-2 mediated Xq28 
duplications in three unrelated families with cognitive impairment and proposed 
that this duplication in Xq28 might be responsible for a novel X-linked ID 
syndrome [294]. 
 
 

 5.1.1.5. A rare variant in Xp22.31 with uncertain clinical consequences 
(Publication I and unpublished data) 

State of the art 
Contrary to the above discussed genomic regions of 15q13.3 and 16p11.2, the 
comparative analysis of two Estonian cohorts indicated different pattern of 
clinical significance for recurrent duplications at Xp22.31. This PAR1 
pseudoautosomal region flanking part on the short arm of human chromosome 
X is featured as highly unstable and interesting for several reasons. A series of 
historical duplication and inversion events during primate evolution has given 
rise to the sulfatase, CD99 antigen, VCX/Y gene clusters, and interspersed LCRs 
that mediate rearrangements both within Xp22.31 and between homologous 
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regions on chromosomes X and Y. The interval is further predisposed to 
rearrangements by showing the highest genome-wide concentration of the 
homologous recombination stimulating motif – a cis-acting 13-mer sequence 
that has been associated with approximately half of the recombination hotspots 
[295–297]. 

Investigations of genomic disorders on Xp22.31 have mainly been focused 
on deletions that cause steroid sulfatase deficiency and X-linked ichtyosis 
(OMIM #308100) [298–300], accompanied by ID, attention deficit hyper-
activity disorder and social communication difficulties in some patients [301–
305]. Although the reciprocal genomic gain has also been associated with 
cognitive disability [306–308], the frequency with which these duplications 
have been identified in healthy parents and population studies, leaves its impact 
on neuropsychiatric development unclear. 
 
Findings in the current study 
In the current study, the Xp22.31 duplication of 1.5 Mb was first identified in a 
male patient (EID-23, Table 7) and his mother, both having mild non-specific ID. 
The imbalance was not present in patient`s two healthy siblings, nor in any other 
family members. The determination of the haplotype structure in the aberrant 
region showed co-segregation of ID with a specific haplotype in this multi-
member family. However, genomic gain of the Xp22.31 was detected also in four 
individuals in the initial general population cohort (EGC-26–29, Table 7) and in 
five additional carriers in the follow-up group (EGC-22–25, 30, Table 7).  
 
Discussion 
The detected population frequency of 0.13% is in concordance with the 
previously observed prevalence of the Xp22.31 duplication in healthy controls 
[308]. According to the EGC UT questionnaire, one male duplication carrier 
had completed basic education. All other individuals with Xp22.31 gain, one 
male and seven females, had finished at least high school. This did not lend 
support to the hypothesis that Xp22.31 duplication carriers in the general 
population might have borderline intellectual abilities. Similarly to our 
observations, it has recently been confirmed by two other large groups of 
Xp22.31 carriers [297, 309] that single-copy gain per se is insufficient for 
cognitive impairment. In the former comprehensive study, Liu et al. proposed 
that the Xp22.31 duplication may act as a predisposing factor to abnormal 
phenotypes, but according to the genome dosage model additional genomic 
alteration, either further gain of the same region or presence of another large 
CNV, is required for manifestating the disease [297]. Although two carriers of 
triplications in the Xp22.31 were identified in our study, they both were females 
and had no record of educational difficulties. Thus leaving open the correlation 
between further genomic gain and more penetrant or severe phenotype. 
Interestingly, both triplication and two of the duplication carriers had suffered 
from moderate to severe depression, more evidence that genomic gain of a 
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given interval may serve as a risk factor for neurobehavioral pathologies. 
Although no additional large CNVs were found in general population carriers of 
Xp22.31, nor in the family EID-23, the affected mother and her healthy 
daughter from the latter family demonstrated strongly skewed X-inactivation 
patterns (the ratios between two alleles 86%:14% and 80%:20%, respectively). 
Since the daughter did not carry the duplication and genes in the region of 
Xp22.31 escape X-inactivation due to sequence homology with the Y 
chromosome and the proximity of PAR1 [310, 311], this non-random in-
activation may indicate the presence of a point mutation or some other 
secondary alteration on chromosome X, and further confirm that the duplication 
segment might be necessary but not sufficient to cause the phenotype. Analyzed 
female duplication carriers from the general population cohort showed random 
X-chromosome inactivation (38%:62% and 63%:37%). 
 
Conclusive statement 
In the current study, the copy number gain at Xp22.31 was considered of un-
certain clinical significance due to small sample size and again clearly under-
lines the importance of large-scale association studies of well-characterized 
cases and controls to collect sufficient data for accurate phenotypic assessment 
of recurrent genomic gains at Xp22.31. 
 
 

5.1.2. Non-recurrent rearrangements  
of clinical relevance 

Ten ID families were found to have imbalances in genomic regions where 
pathogenic CNVs have been shown to be variable in size and to not share 
common breakpoints. Subsequent investigation of these genomic intervals in 
the general population revealed no overlapping CNVs that lending additional 
support to the univocal clinical relevance of these rearrangements. 

A male patient EID-1 (Table 5) was identified as a carrier of a de novo  
3.9 Mb deletion in the 2q37 monosomy region. In case EID-4 (Table 5), a 
deletion of 1.6 Mb in the 5q14.3 microdeletion syndrome region was identified. 
Two familial deletions involving the FOXP2 (OMIM #605317) gene were 
detected in association with speech disorder (EID-7, 8, Table 5; decribed in 
detail in [203]). Two unrelated patients (EID-15, 16, Table 5) were diagnosed 
with 22q13 deletion syndrome, the latter harboring a cryptic unbalanced 
translocation (46,XX.ish der(22)t(11;22)(q25;q13.3) mat(N85A3-,11qter+)). A 
duplication of 400 kb in the DMD (OMIM #300377) gene, encompassing exons 
45 to 51 and inherited from a healthy mother, was identified in a male patient 
with moderate ID (EID-17, Table 5). The muscular structure and function of 
this patient were completely normal as determined by electronmicroscopy. 
However, intellectual deficit of various degree is accepted as a common feature 
in a substantial proportion of patients with Duchenne muscular dystrophy 
(OMIM #310200). The cognitive impairment in these patients is likely caused 
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by disturbance of the expression of brain-specific products of the DMD [312–
314], thus supporting the idea that this intragenic rearrangement might also 
contribute to our patient’s phenotype. 

Three individuals with ID were identified as carriers of cryptic imbalances in 
subtelomeric regions, either deletion (EID-10), or unbalanced translocations – 
EID-9 (46,XX.ish der(12) t(11;12)(q25;p13.3) pat(12pter-,11qter+)) and EID-5 
(FISH analysis of this patient is pending). Phenotype data of all these patients is 
provided in Table 5. Since subtelomeric deletions in 12p and 16p and duplica-
tions in 5q were not listed as findings in phenotypically normal individuals 
(summarized in [315]), these imbalances were considered to be causative for 
phenotypic features in our patients. 

In two EID families, aberrations were identified which were exclusively pre-
sent in patients and encompass seemingly relevant, but yet sparsely described 
chromosomal regions.  
 
 

5.1.2.1. A complex rearrangement of 2p25.1–p24.3  
associated with severe ID (Publication I) 

A proband EID-2 (Table 5) with severe ID, hypotonia, focal epilepsy, and 
behavioral problems, was identified as a carrier of a complex chromosomal 
rearrangement composed of two small deletions and separated by 3 Mb of two-
copy genomic content in 2p25.1-p24.3. The aberration was inherited from his 
mother, who also has a moderate ID phenotype. Annotation of the aberrant 
region revealed among seven affected genes the ASAP2 (OMIM #603817), a 
gene encoding an activator of small Arf-GTPase and the neuronal protein gene 
KIDINS220 that controls neuronal development and memory formation [143, 
316, 317]. Intriguingly, the region between two deleted areas is especially gene-
dense and contains potential candidates, such as a neuron-specific Ca2+-binding 
protein gene HPCAL1 (OMIM #600207) and the neurotensin receptor 2 gene 
NTSR2 (OMIM #605538) that may have an impact on the patient’s clinical 
features. Further studies are, however, necessary to understand the exact 
genomic organization of this compex rearrangement and to discover whether 
this impacts the expression of those involved genes. 
 
 

5.1.2.2. Microdeletions 3p11.2–12.1 and 7p21.1–21.2  
associated with intellectual disability, short stature and  
clinical features suggesting Saethre-Chotzen syndrome 

(Publication I and unpublished data) 

Findings in the current study 
In the proband EID-3 (refer to Table 5 and Figure 11 for clinical description), 
two interstitial microdeletions of clinical relevance in 3p12.1-p11.2 and 7p21.2-
p21.1 were detected. Neither of the imbalances was identified in his maternal 
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relatives. Data from the father was not available for analysis, and as the 
patient’s existing genotypes in both deleted regions were consistent with the 
maternal ones, the origin of these aberrations remained unknown.  

Genomic annotation revealed that both regions encompass several genes 
involved in processes essential for normal physical and intellectual develop-
ment. A detailed overview of deleted genomic regions is given in Figure 12.  

 
 

 

 
 
Figure 11. The patient EID-3 at the age of 7 years. A facial view of the patient; note the 
high forehead, prominent glabella, flat facial profile, upwardly slanting palpebral 
fissures, prominent and high cheeks, small and upturned nose and pointed chin (A). X-
ray of the skull; note sclerotic sutures, flat facial skull, and asymmetric mandibula (B). 
Note wide and flat chest, pectus excavatum and protuberant abdomen (C). Note over-
riding toes, short and broad hallux, sandal gap of toes I–II and short V toes (D). Written 
permission to publish the photos of this patient was obtained from the family. 
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Figure 12. Schematic representation of hemizygous genomic regions detected in the 
patient EID-3. A 2.9 Mb deletion encompassing eight genes in chromosome region 
3p12.1-p11.2 (A). A 2.1 Mb deletion that harbors nine genes in 7p21.2-p21.1 (B). 
Hemizygous regions are indicated by red boxes. Genes encompassed by the deletions 
and flanking genomic regions of 1 Mb according are shown as purple arrows. 
 
 
The genomic loss in chromosome 7 has partial overlap with 7p21 microdeletion 
or Saethre-Chotzen syndrome (OMIM #123100) and could be considered to be 
an atypical short deletion of the syndrome. Amongst hemizygous genes in the 
patient, MEOX2 (OMIM #600535) and SOSTDC1 (OMIM #609675) have been 
linked with congenital anomalies using murine models and were considered to 
be the main contributors to our proband’s skeletal deformations, ossification 
and midline defects, as well as tooth development abnormalities. In a second 
hemizygous region on a short arm of chromosome 3, POU1F1 (OMIM 
#173110) has been shown to be associated in a dosage-dependent manner with 
combined pituitary hormone deficiency (OMIM #613038), growth failure, and 
intellectual disability [318–320]. 

The transcription levels of these three genes, as well as BZW2, CGGBP1 
(OMIM #603363), CHMP2B (OMIM #609512), and C3orf38 of were analyzed 
in the current patient. In addition to the candidate genes mapping to the deleted 
regions, the expression status of the TWIST1 (OMIM #601622) was investi-
gated. This dosage-sensitive developmental regulator has been commonly 
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known as the major candidate for explaining the clinical phenotype of Saethre-
Chotzen syndrome [321, 322]. Although the 7p21 microdeletion in our patient 
is located more distal to the critical region, leaving the TWIST1 2.4 Mb away 
from the proximal boundary of the aberration, his severe ID was accompanied 
by the clinical features coinciding with the Saethre-Chozen spectrum, including 
asymmetric, deformed skull with sclerotic sutures, dysmorphic facial pheno-
type, irregular crowded teeth, bifid uvula, skeletal deformations and hyperopia. 

Due to the restricted tissue- and development-specific expression patterns of 
these genes (http://biogps.gnf.org), the mRNA levels of MEOX2, POU1F1, and 
SOSTDC1 as well as TWIST1 remained undetectable in the peripheral blood 
derived samples. The relative expression of other hemizygous genes was con-
cordantly decreased in the proband’s peripheral blood and lymphoblastoid cell 
line, whereas the mean expression levels of reference genes unaffected by 
deletions were not altered compared to control individuals. The relative 
expression levels of the investigated genes and samples is given in Figure 13. 

 
Discussion 
Although ID and short stature have commonly been seen in 7p21 microdeletion 
patients [323–325], the data suggests that our patient’s severe impairment in 
cognitive functioning and growth failure has heterogeneous etiology and may be 
explained by the additive effect of two deletions. The genotype-phenotype 
correlation allows us to suggest two novel candidate genes, MEOX2 and SOSTDC1, 
in the 7p21 microdeletion syndrome region. The haploinsufficiency of these genes 
may contribute to the patient’s craniosynostosis, skeletal deformities, midline 
defects, and teeth abnormalities – features present in the clinical spectrum of the 
Saethre-Chotzen syndrome. Although the Saethre-Chotzen phenotype has been 
firmly associated with the haploinsufficiency of TWIST1 [321, 322, 326], only 
about two-thirds of patients have been identified as carriers of TWIST1 deletions or 
intragenic mutations. It has been conceived that the interruption of yet unidentified 
regulatory regions located 5’ or 3’ of the gene may lead to the syndrome by the 
position-effect in some patients. Also the strikingly variable expressivity of the 
phenotype in patients with TWIST1 haploinsufficiency suggests the existence of 
additional modifying genetic factors, whose identification could further explain the 
mechanism of this disorder [324, 325, 327]. Of interest, the 7p21 microdeletion 
syndrome region includes two other genes, MEOX2 and SOSTDC1, which encode 
proteins known as essential embryonal regulators in vertebrates, and are located in 
relative proximity to TWIST1. The dosage-dependent homeobox transcription factor 
encoded by MEOX2 has been shown to function as a regulator of early mesodermal 
specification in the regions crucial for vertebrate head and bone development, 
suggesting that the human homologue may be involved in the pathogenesis of 
craniofacial and skeletal abnormalities [328–331]. As further evidence, Kirilenko 
and colleagues recently confirmed the concerted role of Meox transcription factors 
by showing the abnormal morphogenesis of branchial arches and the hypoplastic 
occipital bone in combined murine mutants for Meox2 and its close homolog 
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Figure 13. Gene expression analysis of hemizygous genes in peripheral blood (A), and 
lymphoblastoid cell line (B). The y-axis of the histogram represents relative expression 
levels compared with ACTB; the x-axis investigated candidate genes mapping to 
deletion regions (BZW2, C3orf38, CHMP2, CGGBP1) and reference genes (HMGB, 
PTPN1, RGS9). The height of the columns corresponds to average relative expression 
level, and error bars indicate the CI 95%. Non-overlapping intervals were considered to 
be significantly different. 
 
 

 

A 
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Meox1 [332]. SOSTDC1 encodes a bone morphogenetic protein antagonist, widely 
expressed in the epithelium and mesenchyme of the developing tooth germ. Its 
critical contribution to the control of tooth number and patterning via modulation of 
the Wnt signaling pathway has been confirmed in mice [333–337]. Although there 
is solid evidence that favors considering MEOX2 and SOSTDC1 to be the main 
contributors of the phenotypic features present in our patient, to the best of our 
knowledge there are as of yet no reports of deleterious mutations or a distinctive 
clinical phenotype associated with the haploinsufficiency of either of these genes in 
humans. 

Although the transcriptional analysis of MEOX2 and SOSTDC1 was 
hampered by restricted tissue-specificity, the significantly reduced expression of 
other hemizygous genes in the proband uniformly indicates the down-regulating 
effect of imbalances on the transcriptional level. The latter is in concordance 
with the accepted knowledge that CNVs directly alter the mRNA levels of 
genes comprised by the aberration, and might also influence the expression 
levels of some non-hemizygous genes in the neighboring regions of about 1 Mb 
[160, 161, 165, 167, 169]. TWIST1 is located outside of the flanking area of this 
size in our patient, yet its expression status at the transcript-level remained 
unknown, not permitting us to rule out the potential long-range effect of the 
structural rearrangement.  
 
Conclusive statement. 
We have reason to suggest that not only yet-to-be identified alterations of 
TWIST1 but the haploinsufficiency of other genes in the 7p21 microdeletion 
syndrome region contribute to abnormalities in cranial, skeletal and dental 
development. Thus the targeted search for TWIST1 alterations only might be 
inefficient when it comes to performing an accurate genetic diagnosis in 
patients presenting features resembling Saethre-Chozen syndrome. 
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6. SUMMARY AND CONCLUSIONS 

The current study was the first comprehensive effort to investigate genomic 
causes of cognitive impairment and other complex phenotypes in Estonian 
individuals with the aim to: 
 

(i) identify genomic rearrangements of clinical relevance 
(ii) further investigate rare structural variants and associated phenotypic 

traits across two comparative cohorts 
(iii) establish an effective workflow for state-of-the-art genetic diagnosis for 

Estonian patients with neurodevelopmental disorders. 
 

The study presented benefits and opportunities provided by SNP genotyping 
analysis of well-characterized comparative cohorts in the diagnostics of 
complex disorders and reliable assessment of phenotypes associated with these 
rare variants. 

The most important result of the study was the establishment of genetic 
diagnosis in 18 investigated families with idiopathic ID. The diagnostic yield of 
23% in this first group of patients in Estonia is comparable with previous 
reports in other populations and further proves that whole-genome screening for 
genomic rearrangments is a reliable and effective tool in research and diag-
nostics. In addition to the clinical cohort, rare genetic variants with clinical im-
pact was found in 19 Estonian general population individuals. In clinical 
genetics the implementation of whole-genome CNV analysis facilitates 
counselling of families and as of 2011, is provided as a routine diagnostic test 
for patients with developmental disorders by Tartu University Hospital. Our 
findings in the general population underline the need for more extensive 
genotype-phenotype correlation studies in reference individuals to establish 
formal genomic associations of complex traits, and emphasize the importance of 
adequate feedback to participants in biobanks that collect biological samples 
with the purpose of personalizing medical care. 

In case of variants with very low population prevalence, large-scale multi-
center efforts are needed for formal definition of novel genomic disorders. By 
participating in collaborative investigations, the core clinical phenotypes were 
established for two genomic loci. First, a novel distinctive duplication syndrome 
in genomic region 7q11.23 was described in the project led by Prof. Frank R. 
Kooy, University of Antwerp, Belgium. The study demonstrated the power of 
the “genotype-first” approach in characterization of previously unrecognized 
recurrent genomic disorders. Secondly, the reciprocal imbalances in the 
chromosome region 16p11.2 were associated with dosage-dependent mirror 
phenotypes in neuroanatomical traits, and this genomic interval was established 
as a promising model to investigate the central control of energy balance in the 
human body and its releation with neurobehavioural disorders. The project led 
by Prof. Alexandre Reymond and Prof. Jacques S. Beckmann, University of 
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Lausanne, Switzerland demonstrated how the initial discovery stage in small 
clinical cohorts combined with a targeted follow-up association analysis in large 
case-control and population cohorts improves the likelihood of discovering rare 
variants and identifying phenotype associations that are not biased by pre-
existing ascertainment criteria. 

In addition to regions with previously established clinical significance, four 
novel genomic aberrations that are likely involved in the pathogenesis of 
neurodevelopmental disorders were identified in Estonian individuals. One of 
these is a novel recurrent duplication syndrome in chromosome region Xq28, 
for which a further description is currently in progress. Another, an atypical 
short deletion in the 7p21 microdeletion syndrome region allows to suggest two 
novel candidate genes that might be involved in the etiology of skeletal 
deformities and tooth development abnormalities and act as additional modifiers 
in patients with the 7p21 microdeletion syndrome. A case report describing the 
patient has been submitted. 

Arriving at reliable conclusions about the importance of rare variants with 
variable expressivity, incomplete penetrance and often controversial claims on 
their clinical significance (e.g. genomic regions 16p11.2, 15q13.3 or Xp22.31 in 
the current study) requires large amounts of data from cohorts with different 
ethnic background and phenotypic criteria. The current study included a family-
wise investigated clinical cohort and large sample set of ethnically matching 
adult general population individuals. Genotype and phenotype association data 
generated on these cohorts is a valuable resource for the scientific community 
and available for future collaborations with the purpose of deciphering the 
clinical impact of rare variants and molecular mechanisms underlying genomic 
disorders. 

In summary, the results of this study demonstrated the burden of rare 
variants with strong effect in cognitive disorders and other complex traits. Our 
experience gained by investigating different genomic loci underscores the 
importance of investigating large cohorts that are not age-restricted or biased by 
pre-existing ascertainment criteria to improve the detection of structural 
variation in whole-genome data and to arrive at reliable associations between 
rare genomic variants and clinical traits. 
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genome: http://projects.tcag.ca/variation/ 
DECIPHER – a database of chromosomal imbalance and phenotype in humans using 
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GeTprime – Gene and Transcript-specific primer generator for real-time PCR: 

http://updepla1srv1.epfl.ch/getprime 
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Leiden Open Variation Database – online gene-centered collection and display of DNA 
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cular diagnostic solutions: http://www.ogt.co.uk/  
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http://www.ncbi.nlm.nih.gov/pubmed 
WHO – World Health Organization: http://www.who.int  
WHO Global Database on Body Mass Index: http://apps.who.int/bmi/index.jsp 
WHO ICD-10 – WHO International Statistical Classification of Diseases and Related 

Health Problems, 10th Revision:  
 http://apps.who.int/classifications/icd10/browse/2010 
The XLMR Update site – a catalog of XLMR conditions and gene: 

http://xlmr.interfree.it/home.htm 
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SUMMARY IN ESTONIAN 
 

Intellektipuude genoomsed põhjused:  
kogu-genoomi SNP genotüpiseerimisanalüüs  

Eesti patsientidel ja üldpopulatsioonis 

Üheks kõige populaarsemaks uurimisvaldkonnaks käesoleva aja inimgeneetikas 
on indiviididevaheline geneetiline varieeruvus – “võti”, mis aitaks mõista, mil-
lest on tingitud iga inimese unikaalsus ja risk haiguste tekkele. Viimastel aasta-
tel teaduses laialdaselt kasutusse jõudnud kogu-genoomi analüüsimeetodid on 
võimaldanud uurida inimgenoomi väga väikeste muutuste suhtes. Genoomika-
ajastu tulemusena on saanud selgeks, et erinevus kahe inimese genoomide vahel 
võib ulatuda rohkem kui 20 miljoni aluspaarini ehk ligikaudu 0.8% kogu genoo-
mist ning revolutsiooniliselt on muutunud arusaamine geneetiliste variatsioo-
nide rollist arenguhäirete ja komplekshaiguste põhjustamisel. Genotüübi-põhine 
diagnostika on toonud meditsiinigeneetikute tööpõllule hulga uusi, kliinilist ja 
funktsionaalset iseloomustamist vajavaid mikrodeletsiooni- ja duplikatsiooni-
sündroome. Nende sündroomide, mida üheskoos nimetatakse genoomseteks 
haigusteks, aluseks on DNA koopiaarvu variatisoonid (ingl. k. DNA copy 
number variation; CNV). CNV-d on kromosoomsegmendid, mille koopiate arv 
on struktuurse ümberkorralduse tõttu tavapärasest suurem või väiksem ning 
vastavalt nimetatakse neid duplikatsioonideks või deletsioonideks. Selliste 
ümberkorralduste pikkus võib olla erinev ja sageli hõlmavad need geene või 
teisi funktsionaalseid elemente. Tänu ulatuslikele uuringutele on CNV-de 
kaardistamine olnud viimastel aastatel väga intensiivne ning tänaseks on 
tekkinud ettekujutus CNV-de ulatusest ja tähtsusest inimegenoomis. On leitud, 
et CNV-d on vastutavad ligikaudu 10–20% intellektipuude ja teiste kaasa-
sündinud arenguhäirete eest ning võivad olla riskifaktoriks erinevate kompleks-
haiguste kujunemisel. Ehkki praeguseks on jõutud veendumusele, et CNV-d 
mängivad domineerivat rolli inimestevahelises geneetilises varieeruvuses, ei ole 
hetkel veel ülevaatlikku arusaama, kuidas täpselt CNV-d geenide ekspres-
seerumist ning seeläbi fenotüübiliste tunnuste väljakujunemist mõjutavad. Esi-
mesed ulatuslikud tööd CNV-de ja geeniekspressiooni muutuste seostest kinni-
tavad, et CNV-de mõju on põhjuseks peaaegu viiendikule muutustest geenide 
aktiivsuses ning võib ulatuda nii geenidele muutunud koopiaarvuga regiooniga 
külgnevates alades, kui mõjutada regulatsiooni kogu transkriptoomi tasemel. 

Käesolev töö on esimene ulatuslik uurimus genoomsete ümberkorralduste 
haigusseoselisest rollist Eesti inimestel. Koostöös Tartu Ülikooli Kliinikumi 
Meditsiinigeneetikakeskusega analüüsiti töö käigus 77 teadmata põhjusega 
intellektipuudega perekonda, kokku 165 patsiendi ning 92 terve pereliikmega. 
Kuna rea CNV-de puhul võib nende mõju kliiniliste tunnuste avaldumisele olla 
varieeruv, teostati sama uuring paralleelselt ka 6901 Tartu Ülikooli Eesti 
Geenivaramu vabatahtlikule geenidoonorile. 
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Töö tulemusena leiti 18 peres intellektipuuet põhjustav genoomne aberrat-
sioon. Leitud ümberkorraldustest 15 paiknevad teadaolevates kliiniliselt olulis-
tes kromosoomregioonides ning kolmel patsiendil tuvastati uus tõenäoliselt 
patogeenne CNV. Seega määrati geneetiline diagnoos 23% uuritud patsientidest, 
kellel seni oli nende haiguse põhjus teadmata. Ehkki ravi genoomsete haiguste 
vastu ei ole käesoleval ajal veel leitud, võimaldab täpne diagnoos paremat 
patsientide nõustamist ja kordusriskide hindamist neis perekondades. Eesti 
Geenivaramu geenidoonorite hulgast leiti kliinilise tähtsusega CNV-d 19 indi-
viidil. Vastavalt Eesti Geenivaramu küsimustikule on enamus neist inimestest 
kannatanud aastaid erinevate tervisehäirete (näiteks tugev rasvumine, epilepsia, 
kõnearengu häired, depressioon, teised neuroloogilised ja psühhiaatrilised 
probleemid) teadmata, et nende genoomis esineb vastavate haiguste riski 
suurendavaid variatsioone. Teaduslikust seisukohast aitas paralleelne analüüs 
kohordis, mis iseloomustab Eesti üldpopulatsiooni oluliselt kaasa leitud CNV-de 
kliinilise tähtsuse hindamisele ning näitas kuivõrd oluline on hästikirjeldatud 
fenotüübiandmetega tavapopulatsiooni indiviide uurimine CNV-dega seotud 
haigustunnuste välja selgitamisel. Samas viitavad antud töö tulemused ka 
geneetilise konsultatsiooni võimaldamise vajalikkusele Eesti Geenivaramus ja 
teistes biopankades. 

Kuna genoomsete haiguste esinemissagedus on väga madal (enamasti olu-
liselt alla 1% populatsioonist), on tähenduslike tulemuste saamiseks vältimatu 
koostöö erinevate keskuste vahel ning mitmete erinevate populatsioonide ühine 
standardiseeritud analüüs. Käesoleva töö raames on Eesti uuringuandmed 
mänginud olulist rolli kahe genoomse regiooni genotüüp-fenotüüp korrelat-
sioonide kindlaks määramisel, mille tulemusena on jõutud genoomsete haiguste 
ja nendega kaasnevate kliiniliste tunnuste iseloomustamiseni vastavates piirkon-
dades. Neist esimese, Antverpen’i Ülikooli koordineeritud koostöö, käigus 
kirjeldati uut kromosoomregioonis 7q11.23 esinevat duplikatsioonisündroomi, 
millega kaasnevad kõnearengu hilinemine, intellektipuue, autistlikud tunnused, 
vastsündinuea hüpotoonia ja iseloomulik düsmorfne välimus. Teise, Lausanne`i 
Ülikooli juhitud projekti, tulemusena, näidati, kuidas genoomse ümberkorral-
dusega kaasnev vastandlik geenidoosi muutus kromosoompiirkonnas 16p11.2 
põhjustab patsientidel nö. peegel-efekti kehakaalule ja peaümbermõõdule ning 
loob suurepärased võimalused kasutada seda piirkonda inimgenoomis mudelina, 
mille alusel edasi uurida rasvumise ja alakaalu molekulaarseid aluseid ning 
nende seost toitumishäirete ja teiste psühhiaatriliste probleemidega.  



100 

ACKNOWLEDGEMENTS 
 
I would like to thank my supervisor Professor Ants Kurg and all the members of 
the work group, especially Olga Žilina, Margit Nõukas, Dr. Helen Puusepp-
Benazzouz, Kristina Lokotar and Merle Külaots who have played an important 
part in the project. I wish to thank Sven Parkel for "all the little things", and 
bigger ones, and most importantly for always being there to help when needed. 
I am sincerely thankful to Professor Katrin Õunap and all the people at the 
Tartu University Hospital Department of Genetics and Children’s Clinic, 
especially Dr. Tiia Reimand and Dr. Eve Õiglane-Šlik for sharing knowledge 
about the clinical aspects and never letting me forget that behind these 
scientifically exciting cases are real people with much less luck in their lives. 
Many thanks to Professor Andres Metspalu and all the people at the IMCB 
Department of Biotechnology and Estonian Genome Center for their help, 
especially Tõnu Esko, Kairit Mikkel, Eva Reinmaa, Kaarel Krjutškov, Tarmo 
Annilo, and Mari Nelis. I would like to thank Professor Maris Laan for critically 
reading the manuscript and for making useful suggestions. And, last but far 
from least, Viljo Soo for having the kindest heart and providing the most 
technical support for this study. 

For their help in the in silico world and for having an espresso machine 
accompanied by good (though sometimes fiery) discussions I would like to 
thank Professor Maido Remm, Priit Palta, Andres Veidenberg and Reedik Mägi 
at the IMCB Department of Bioinformatics. 

In addition to the people in Tartu, I have been very lucky to meet so many 
good people on my way. My warmest thanks to Prof. Frank Kooy from 
University of Antwerp, coordinator of the 7q11.23 duplication study, for 
inviting me for the first time to the international playground of genomic 
disorders, for our shared collaborations and discussions, and for encouraging 
me in January 2008 to contact Dr. Sébastien Jacquemont in Lausanne regarding 
16p11.2 patients. I am sincerely grateful to Sébastien, as well as Professor 
Jacqui Beckmann, the "good captain" of the 16p11.2 project, and especially 
Professor Alexandre Reymond for providing inspiring opportunities to pursue 
my scientific interests and for mentoring me in my "ongoing scientific 
maturation". I am thankful to the people involved in the 16p11.2 study in the 
CHUV University Hospital of Lausanne and the Center for Integrative 
Genomics, as well as all the other collaborators. My special thanks to Nele 
Gheldof, Robert Witwicki and Gérard Didelot for creating the atmosphere so 
that instead of struggling in a new place, I was surrounded by helpful friends. 

I am very thankful to my family and all the people who have been part of my 
personal life. Three of them were not only with me during the most difficult 
months of combining work with writing, but contributed directly to my thesis. 
Ott, who patiently helped and saved me time by preparing Figures 1, 2, 5 and 6, 
and has made me understand how lucky I am that this young man who 
constantly gives reasons to be proud has choosen me to be his mother. Dave, 



101 

who in a critical situation took my urgencies before his own. Moreover, instead 
of a quick native-speaker’s proofreading, he decided to learn until under-
standing, converted my Estonian nuances to English equivalents, and showed 
what they mean in [338] by comparing biologists’ and engineers’ ways of 
expression. Mikk, the sweetest little entertainer ever, who acted here as a 
gender- and age-matching control and spices up our otherwise science-centered 
days with Estonian and French songs, (cacophonic) performances on harmonica 
and other shiny-cheerful moments. 

My work in the University of Lausanne has been supported by the Scix-
NMSch Fellowship. 
  



  



 

 

 

 

 

 

PUBLICATIONS 
 

  



153 

CURRICULUM VITAE 
 
First and last name: Katrin Männik 
Date and place of birth: April 1st 1975; Kuressaare, Estonia 
 
 

Contact information 
 

Address:  Center for Integrative Genomics, Génopode Building 
  University of Lausanne, 1015 Lausanne, Switzerland 
Phone:        + 41(0) 21 692 3991 
Email:  Katrin.Mannik@unil.ch 
 
 

Education and degree information 
 

Since 2011  PhD studies, Center for Integrative Genomics, University of 
Lausanne, Switzerland 

Since 2009  PhD studies in gene technology, Faculty of Science and 
Technology, University of Tartu, Estonia 

2001–2004     MSc in molecular diagnostics, Faculty of Biology and 
Geography, University of Tartu, Estonia   

1996–2001     BSc in biomedicine and biotechnology, Faculty of Biology and 
  Geography, University of Tartu, Estonia   
1993– 1996 Faculty of Medicine, University of Tartu 
 
 

Professional experience 
 

Since 2008  Researcher, Institute of Molecular and Cell Biology, University 
of Tartu  

2006–2008  Extraordinary Researcher, Institute of Molecular and Cell Bio-
logy, University of Tartu 

2004–2006  Extraordinary Researcher, Estonian Biocentre    
2001–2004 Senior Lab Assistant, Estonian Biocentre 
 
 

Additional professional training 
 

June 2012 Swiss Institute of Bioinformatics, “Analysis of differential gene 
expression”, Lausanne, Switzerland 

Sept. 2011 CHUV University Hospital, Lausanne, cardiovascular and meta-
bolism PhD course “Brain nutrients and hormone sensing in 
feeding and glycemic control”, Lausanne, Switzerland 

July 2011 ICVS, University of Minho postgraduate course “Mental 
Retardation: from clinic to gene and back”, Braga, Portugal 



154 

2010  Faculty of Medicine, University of Tartu “Biomedical ethics”; 
Tartu, Estonia 

Jan. 2010 Wellcome Trust Conference Centre, Clinical Genetics Society, 
Specialist Advisory Committee of the Royal College Physicians 
“Fundamentals of Clinical Genetics”; Hinxton, United Kingtom 

Sept. 2008  EU FP6 “Marie Curie – Genome Architecture in Relation to 
Disease”, Workshop “Genome bioinformatic techniques”; Braga, 
Portugal 

Sept. 2007   EU FP6 “Marie Curie – Genome Architecture in Relation to 
Disease”, Workshop “Array techniques to identify copy number 
variations”; Helsinki, Finland 

Sept. 2003   European School of Genetic Medicine “5th Course in Molecular 
Cytogenetics and DNA Arrays”; Bertinoro, Italy 

 
 

Honours and Fellowships 
 

2011 Jérôme Lejeune Foundation; fellowship for participating in additional 
professional training  

2011   Sciex-NMSch research fellowship for working in Prof. Alexandre Rey-
mond’s group, Center for Integrative Genomics, University of Lau-
sanne, Switzerland  

2009 European Society of Human Genetics; national fellowship for young 
investigator  

2008 Scientific Committe of 10th Annual Conference of Estonian Society of 
Human Genetics; best poster presentation award 

2007  Scientific Commitee of 13th International Workshop on Fragile X and 
X-linked Mental Retardation; travel fellowship for young investigator 

2004 Estonian Academy of Sciences, MSc thesis awarded with first prize in 
student research 

 
 

Publications 
 

‒ Preiksaitiene E, Männik K, Dirse V, Utkus A, Ciuladaite Z, Kasnauskiene J, 
Kurg A, Kucinskas V „A novel de novo 1.8 Mb microdeletion of 17q21.33 
associated with intellectual disability and dysmorphic features“, Eur J Med 
Genet, 2012 Jul 26 

‒ Žilina O, Reimand T, Zjabolovskaja P, Männik K, Männamaa M, Traat A, 
Puusepp- Benazzouz H, Kurg A, Õunap K “Maternally and paternally 
inherited deletion of 7q31 involving the FOXP2 gene in two families”, Am J 
Med Genet, 2011 Nov 21 

‒ Jacquemont S, Reymond A, Zufferey F, Harewood L, Walters RG, Kutalik 
Z, Martinet D, Shen Y, Valsesia A, Beckmann ND, Thorleifsson G, Belfiore 
M, Bouquillon S, Campion D, de Leeuw N, de Vries BB, Esko T, Fernandez 



155 

BA, Fernández-Aranda F, Fernández-Real JM, Gratacòs M, Guilmatre A, 
Hoyer J, Jarvelin MR, Kooy RF, Kurg A, Le Caignec C, Männik K, Platt 
OS, Sanlaville D, Van Haelst MM, Villatoro Gomez S, Walha F, Wu BL, Yu 
Y, Aboura A, Addor MC, Alembik Y, Antonarakis SE, Arveiler B, Barth M, 
Bednarek N, Béna F, Bergmann S, Beri M, Bernardini L, Blaumeiser B, 
Bonneau D, Bottani A, Boute O, Brunner HG, Cailley D, Callier P, Chiesa J, 
Chrast J, Coin L, Coutton C, Cuisset JM, Cuvellier JC, David A, de 
Freminville B, Delobel B, Delrue MA, Demeer B, Descamps D, Didelot G, 
Dieterich K, Disciglio V, Doco-Fenzy M, Drunat S, Duban-Bedu B, 
Dubourg C, El-Sayed Moustafa JS, Elliott P, Faas BH, Faivre L, Faudet A, 
Fellmann F, Ferrarini A, Fisher R, Flori E, Forer L, Gaillard D, Gerard M, 
Gieger C, Gimelli S, Gimelli G, Grabe HJ, Guichet A, Guillin O, 
Hartikainen AL, Heron D, Hippolyte L, Holder M, Homuth G, Isidor B, 
Jaillard S, Jaros Z, Jiménez-Murcia S, Helas GJ, Jonveaux P, Kaksonen S, 
Keren B, Kloss-Brandstätter A, Knoers NV, Koolen DA, Kroisel PM, 
Kronenberg F, Labalme A, Landais E, Lapi E, Layet V, Legallic S, Leheup 
B, Leube B, Lewis S, Lucas J, MacDermot KD, Magnusson P, Marshall C, 
Mathieu-Dramard M, McCarthy MI, Meitinger T, Mencarelli MA, Merla G, 
Moerman A, Mooser V, Morice-Picard F, Mucciolo M, Nauck M, Ndiaye 
NC, Nordgren A, Pasquier L, Petit F, Pfundt R, Plessis G, Rajcan-Separovic 
E, Ramelli GP, Rauch A, Ravazzolo R, Reis A, Renieri A, Richart C, Ried 
JS, Rieubland C, Roberts W, Roetzer KM, Rooryck C, Rossi M, 
Saemundsen E, Satre V, Schurmann C, Sigurdsson E, Stavropoulos DJ, 
Stefansson H, Tengström C, Thorsteinsdóttir U, Tinahones FJ, Touraine R, 
Vallée L, van Binsbergen E, Van der Aa N, Vincent-Delorme C, Visvikis-
Siest S, Vollenweider P, Völzke H, Vulto-van Silfhout AT, Waeber G, 
Wallgren-Pettersson C, Witwicki RM, Zwolinksi S, Andrieux J, Estivill X, 
Gusella JF, Gustafsson O, Metspalu A, Scherer SW, Stefansson K, 
Blakemore AI, Beckmann JS, Froguel P “Mirror extreme BMI phenotypes 
associated with gene dosage at the chromosome 16p11.2 locus” Nature 
2011 Aug 31;478(7367):97–102 

‒ Männik K, Parkel S, Palta P, Žilina O, Puusepp H, Esko T, Mägi R, Nõukas 
M, Veidenberg A, Nelis M, Metspalu A, Remm M, Ounap K, Kurg A “A 
parallel SNP array study of genomic aberrations associated with mental 
retardation in patients and the general population in Estonia” Eur J Med 
Genet 2011 Mar-Apr;54(2):136–43 

‒ Walters RG, Jacquemont S, Valsesia A, de Smith AJ, Martinet D, Andersson 
J, Falchi M, Chen F, Andrieux J, Lobbens S, Delobel B, Stutzmann F, El-
Sayed Moustafa JS, Chèvre JC, Lecoeur C, Vatin V, Bouquillon S, Buxton 
JL, Boute O, Holder-Espinasse M, Cuisset JM, Lemaitre MP, Ambresin AE, 
Brioschi A, Gaillard M, Giusti V, Fellmann F, Ferrarini A, Hadjikhani N, 
Campion D, Guilmatre A, Goldenberg A, Calmels N, Mandel JL, Le 
Caignec C, David A, Isidor B, Cordier MP, Dupuis-Girod S, Labalme A, 
Sanlaville D, Béri-Dexheimer M, Jonveaux P, Leheup B, Ounap K, 



156 

Bochukova EG, Henning E, Keogh J, Ellis RJ, Macdermot KD, van Haelst 
MM, Vincent-Delorme C, Plessis G, Touraine R, Philippe A, Malan V, 
Mathieu-Dramard M, Chiesa J, Blaumeiser B, Kooy RF, Caiazzo R, Pigeyre 
M, Balkau B, Sladek R, Bergmann S, Mooser V, Waterworth D, Reymond 
A, Vollenweider P, Waeber G, Kurg A, Palta P, Esko T, Metspalu A, Nelis 
M, Elliott P, Hartikainen AL, McCarthy MI, Peltonen L, Carlsson L, 
Jacobson P, Sjöström L, Huang N, Hurles ME, O'Rahilly S, Farooqi IS, 
Männik K, Jarvelin MR, Pattou F, Meyre D, Walley AJ, Coin LJ, 
Blakemore AI, Froguel P, Beckmann JS. „A new highly penetrant form of 
obesity due to deletions on chromosome 16p11.2“ Nature 2010 Feb 
4;463(7281):671–5  

‒ Van der Aa N, Rooms L, Vandeweyer G, van den Ende J, Reyniers E, 
Fichera M, Romano C, Delle Chiaie B, Mortier G, Menten B, Destrée A, 
Maystadt I, Männik K, Kurg A, Reimand T, McMullan D, Oley C, Brueton 
L, Bongers EM, van Bon BW, Pfund R, Jacquemont S, Ferrarini A, Martinet 
D, Schrander-Stumpel C, Stegmann AP, Frints SG, de Vries BB, Ceulemans 
B, Kooy RF “Fourteen new cases contribute to the characterization of the 
7q11.23 microduplication syndrome” Eur J Med Genet 2009 Mar–Jun;52(2–
3):94–100 

‒ Puusepp H, Zilina O, Teek R, Männik K, Parkel S, Kruustük K, Kuuse K, 
Kurg A, Ounap K “5.9 Mb microdeletion in chromosome band 17q22-q23.2 
associated with tracheo-esophageal fistula and conductive hearing loss” Eur 
J Med Genet 2009 Jan–Feb;52(1):71–4 

‒ Kousoulidou L*, Männik K*, Sismani C, Žilina O, Parkel S, Puusepp H, 
Tõnisson N, Palta P, Remm M, Kurg A, Patsalis PC “Array-MAPH: a 
methodology for the detection of locus copy-number changes in complex 
genomes.” Nat Protoc 2008;3(5):849–65 
* These authors contributed equally to this work 

‒ Kousoulidou L, Männik K, Zilina O, Parkel S, Palta P, Remm M, Kurg A, 
and Patsalis PC “Application of two different microarray-based copy-number 
detection methodologies – array-comparative genomic hybridization and 
array-multiplex amplifiable probe hybridization – with identical amplifiable 
target sequences” Clin Chem Lab Med 2008 May; 46(5):722–4 

‒ Patsalis PC, Kousoulidou L, Mannik K, Sismani C, Zilina O, Parkel S, 
Puusepp H, Tonisson N, Palta P, Remm M, Kurg A. “Detection of small 
genomic imbalances using microarray-based multiplex amplifiable probe 
hybridisation” Eur J Hum Genet 2007 Feb;15(2):162–72 

‒ Puusepp H, Männik K, Zilina O, Parkel S, Kurg A, Õunap K “Vaimse 
arengu mahajäämuse geneetilised põhjused: X-liiteline vaimse arengu 
mahajäämus” Eesti Arst 2007 4:239–45 (in Estonian) 

‒ Patsalis PC, Kousoulidou L, Sismani C, Mannik K, Kurg A “MAPH: from 
gels to microarrays” Eur J Med Genet 2005 Jul–Sep;48(3):241–9 

  



157 

ELULOOKIRJELDUS 
 
Ees- ja perekonnanimi:  Katrin Männik 
Sünniaeg ja -koht: 1. aprill 1975; Kuressaare, Eesti 
 

 
Kontaktandmed 

 

Aadress:  Center for Integrative Genomics, Génopode Building 
  University of Lausanne, 1015 Lausanne, Switzerland 
Telefon:    + 41(0) 21 692 3991 
E-post:  Katrin.Mannik@unil.ch 
 
 

Haridus ja omandatud kraadid 
 

Alates 2011  doktorant, Integreeritud Genoomika Keskus, Lausanne’i 
Ülikool, Šveits  

Alates 2009  doktorant, geenitehnoloogia õppekava, loodus- ja tehnoloogia-
teaduskond,  

  Tartu Ülikool, Eesti 
2001–2004  MSc, molekulaardiagnostika õppekava, bioloogia-geograafia-

teaduskond, Tartu Ülikool, Eesti   
1996–2001     BSc, biomeditsiini ja biotehnoloogia õppekava, bioloogia 
  geograafiateaduskond, Tartu Ülikool, Eesti  
1993–1996 ravi eriala, arstiteaduskond, Tartu Ülikool, Eesti 
 
 

Teenistuskäik 
 

Alates 2008  teadur, Molekulaar- ja Rakubioloogia Instituut, Tartu Ülikool, 
Eesti  

2006–2008  erakorraline teadur, Molekulaar- ja Rakubioloogia Instituut, 
Tartu Ülikool, Eesti 

2004–2006  erakorraline teadur, Eesti Biokeskus, Eesti    
2001–2004 vanemlaborant, Eesti Biokeskus, Eesti 
 
 

Täiendkoolitus 
 

Juuni 2012 Šveitsi Bioinformaatika Instituut, “Analysis of differential gene 
expression”, Lausanne, Šveits 

Sept 2011 Lausanne’i Ülikool, Vaud’i Ülikooli Keskhaigla südame-vere-
soonkonna ja metabolismi doktorikursus “Brain nutrients and 
hormone sensing in feeding and glycemic control”, Lausanne, 
Šveits 



158 

Juuli 2011 ICVS, Minho Ülikool täienduskursus “Mental Retardation: from 
clinic to gene and back”, Braga, Portugal 

2010  Arstiteaduskond, Tartu Ülikool “Biomeditsiini eetika”; Tartu, 
Eesti 

Jan 2010 Wellcome Trust’i konverentsikeskus, Clinical Genetics Society, 
Specialist Advisory Committee of the Royal College Physicians 
“Fundamentals of Clinical Genetics”; Hinxton, Suurbritannia 

Sep 2008  EU FP6 Marie Curie – Genome Architecture in Relation to 
Disease 2nd Workshop “Genome bioinformatic techniques”; 
Braga, Portugal 

Sept 2007     EU FP6 Marie Curie – Genome Architecture in Relation to 
Disease 1st Workshop “Array techniques to identify copy number 
variations”; Helsinki, Soome 

Sep 2003     European School of Genetic Medicine “5th Course in Molecular 
Cytogenetics and DNA Arrays”; Bertinoro, Itaalia 

 
 

Tunnustused ja stipendiumid 
 

2011 Jérôme Lejeune Foundation; stipendium täiendkoolitusel osalemiseks 
2011     Sciex-NMSch teadusstipendium töötamiseks Prof. Alexandre Reymond’i 

töögrupis, Centre Intégratif de Génomique, Université de Lausanne  
2009 Euroopa Inimesegeneetika Ühing; rahvuslik stipendium noorteadlasele 
2008 Eesti Inimesegeneetika Ühingu 10. Aastakonverentsi teaduskomitee; 

parima posterettekande auhind 
2007  13th International Workshop on Fragile X and X-linked Mental Retar-

dation teaduskomitee; reisistipendium noorteadlasele 
2004 Eesti Teaduste Akadeemia, magistritöö autasustatud I preemiaga üli-

õpilastööde konkursil 
 
 

Avaldatud teadusartiklid 
 

‒ Preiksaitiene E, Männik K, Dirse V, Utkus A, Ciuladaite Z, Kasnauskiene J, 
Kurg A, Kucinskas V „A novel de novo 1.8 Mb microdeletion of 17q21.33 
associated with intellectual disability and dysmorphic features“, Eur J Med 
Genet, 2012 Jul 26 

‒ Žilina O, Reimand T, Zjabolovskaja P, Männik K, Männamaa M, Traat A, 
Puusepp-Benazzouz H, Kurg A, Õunap K “Maternally and paternally 
inherited deletion of 7q31 involving the FOXP2 gene in two families”, Am J 
Med Genet, 2011 Nov 21; 

‒ Jacquemont S, Reymond A, Zufferey F, Harewood L, Walters RG, Kutalik 
Z, Martinet D, Shen Y, Valsesia A, Beckmann ND, Thorleifsson G, Belfiore 
M, Bouquillon S, Campion D, de Leeuw N, de Vries BB, Esko T, Fernandez 
BA, Fernández-Aranda F, Fernández-Real JM, Gratacòs M, Guilmatre A, 



159 

Hoyer J, Jarvelin MR, Kooy RF, Kurg A, Le Caignec C, Männik K, Platt 
OS, Sanlaville D, Van Haelst MM, Villatoro Gomez S, Walha F, Wu BL, Yu 
Y, Aboura A, Addor MC, Alembik Y, Antonarakis SE, Arveiler B, Barth M, 
Bednarek N, Béna F, Bergmann S, Beri M, Bernardini L, Blaumeiser B, 
Bonneau D, Bottani A, Boute O, Brunner HG, Cailley D, Callier P, Chiesa J, 
Chrast J, Coin L, Coutton C, Cuisset JM, Cuvellier JC, David A, de 
Freminville B, Delobel B, Delrue MA, Demeer B, Descamps D, Didelot G, 
Dieterich K, Disciglio V, Doco-Fenzy M, Drunat S, Duban-Bedu B, 
Dubourg C, El-Sayed Moustafa JS, Elliott P, Faas BH, Faivre L, Faudet A, 
Fellmann F, Ferrarini A, Fisher R, Flori E, Forer L, Gaillard D, Gerard M, 
Gieger C, Gimelli S, Gimelli G, Grabe HJ, Guichet A, Guillin O, 
Hartikainen AL, Heron D, Hippolyte L, Holder M, Homuth G, Isidor B, 
Jaillard S, Jaros Z, Jiménez-Murcia S, Helas GJ, Jonveaux P, Kaksonen S, 
Keren B, Kloss-Brandstätter A, Knoers NV, Koolen DA, Kroisel PM, 
Kronenberg F, Labalme A, Landais E, Lapi E, Layet V, Legallic S, Leheup 
B, Leube B, Lewis S, Lucas J, MacDermot KD, Magnusson P, Marshall C, 
Mathieu-Dramard M, McCarthy MI, Meitinger T, Mencarelli MA, Merla G, 
Moerman A, Mooser V, Morice-Picard F, Mucciolo M, Nauck M, Ndiaye 
NC, Nordgren A, Pasquier L, Petit F, Pfundt R, Plessis G, Rajcan-Separovic 
E, Ramelli GP, Rauch A, Ravazzolo R, Reis A, Renieri A, Richart C, Ried 
JS, Rieubland C, Roberts W, Roetzer KM, Rooryck C, Rossi M, 
Saemundsen E, Satre V, Schurmann C, Sigurdsson E, Stavropoulos DJ, 
Stefansson H, Tengström C, Thorsteinsdóttir U, Tinahones FJ, Touraine R, 
Vallée L, van Binsbergen E, Van der Aa N, Vincent-Delorme C, Visvikis-
Siest S, Vollenweider P, Völzke H, Vulto-van Silfhout AT, Waeber G, 
Wallgren-Pettersson C, Witwicki RM, Zwolinksi S, Andrieux J, Estivill X, 
Gusella JF, Gustafsson O, Metspalu A, Scherer SW, Stefansson K, 
Blakemore AI, Beckmann JS, Froguel P “Mirror extreme BMI phenotypes 
associated with gene dosage at the chromosome 16p11.2 locus” Nature 
2011 Aug 31;478(7367):97–102 

‒ Männik K, Parkel S, Palta P, Žilina O, Puusepp H, Esko T, Mägi R, Nõukas 
M, Veidenberg A, Nelis M, Metspalu A, Remm M, Ounap K, Kurg A “A 
parallel SNP array study of genomic aberrations associated with mental 
retardation in patients and the general population in Estonia” Eur J Med 
Genet 2011 Mar-Apr;54(2):136–43 

‒ Walters RG, Jacquemont S, Valsesia A, de Smith AJ, Martinet D, Andersson 
J, Falchi M, Chen F, Andrieux J, Lobbens S, Delobel B, Stutzmann F, El-
Sayed Moustafa JS, Chèvre JC, Lecoeur C, Vatin V, Bouquillon S, Buxton 
JL, Boute O, Holder-Espinasse M, Cuisset JM, Lemaitre MP, Ambresin AE, 
Brioschi A, Gaillard M, Giusti V, Fellmann F, Ferrarini A, Hadjikhani N, 
Campion D, Guilmatre A, Goldenberg A, Calmels N, Mandel JL, Le 
Caignec C, David A, Isidor B, Cordier MP, Dupuis-Girod S, Labalme A, 
Sanlaville D, Béri-Dexheimer M, Jonveaux P, Leheup B, Ounap K, 
Bochukova EG, Henning E, Keogh J, Ellis RJ, Macdermot KD, van Haelst 



16  

MM, Vincent-Delorme C, Plessis G, Touraine R, Philippe A, Malan V, 
Mathieu-Dramard M, Chiesa J, Blaumeiser B, Kooy RF, Caiazzo R, Pigeyre 
M, Balkau B, Sladek R, Bergmann S, Mooser V, Waterworth D, Reymond 
A, Vollenweider P, Waeber G, Kurg A, Palta P, Esko T, Metspalu A, Nelis 
M, Elliott P, Hartikainen AL, McCarthy MI, Peltonen L, Carlsson L, 
Jacobson P, Sjöström L, Huang N, Hurles ME, O'Rahilly S, Farooqi IS, 
Männik K, Jarvelin MR, Pattou F, Meyre D, Walley AJ, Coin LJ, 
Blakemore AI, Froguel P, Beckmann JS. „A new highly penetrant form of 
obesity due to deletions on chromosome 16p11.2“ Nature 2010 Feb 4; 
463(7281):671–5  

‒ Van der Aa N, Rooms L, Vandeweyer G, van den Ende J, Reyniers E, 
Fichera M, Romano C, Delle Chiaie B, Mortier G, Menten B, Destrée A, 
Maystadt I, Männik K, Kurg A, Reimand T, McMullan D, Oley C, Brueton 
L, Bongers EM, van Bon BW, Pfund R, Jacquemont S, Ferrarini A, Martinet 
D, Schrander-Stumpel C, Stegmann AP, Frints SG, de Vries BB, Ceulemans 
B, Kooy RF “Fourteen new cases contribute to the characterization of the 
7q11.23 microduplication syndrome” Eur J Med Genet 2009 Mar–Jun;52(2–
3):94–100 

‒ Puusepp H, Zilina O, Teek R, Männik K, Parkel S, Kruustük K, Kuuse K, 
Kurg A, Ounap K “5.9 Mb microdeletion in chromosome band 17q22-q23.2 
associated with tracheo-esophageal fistula and conductive hearing loss” Eur 
J Med Genet 2009 Jan–Feb;52(1):71–4 

‒ Kousoulidou L*, Männik K*, Sismani C, Žilina O, Parkel S, Puusepp H, 
Tõnisson N, Palta P, Remm M, Kurg A, Patsalis PC "Array-MAPH: a 
methodology for the detection of locus copy-number changes in complex 
genomes." Nat Protoc 2008;3(5):849–65 
* These authors contributed equally to this work 

‒ Kousoulidou L, Männik K, Zilina O, Parkel S, Palta P, Remm M, Kurg A, 
and Patsalis PC “Application of two different microarray-based copy-number 
detection methodologies – array-comparative genomic hybridization and 
array-multiplex amplifiable probe hybridization – with identical amplifiable 
target sequences” Clin Chem Lab Med 2008 May; 46(5):722–4 

‒ Patsalis PC, Kousoulidou L, Mannik K, Sismani C, Zilina O, Parkel S, 
Puusepp H, Tonisson N, Palta P, Remm M, Kurg A. “Detection of small 
genomic imbalances using microarray-based multiplex amplifiable probe 
hybridisation” Eur J Hum Genet 2007 Feb;15(2):162–72 

‒ Puusepp H, Männik K, Zilina O, Parkel S, Kurg A, Õunap K “Vaimse 
arengu mahajäämuse geneetilised põhjused: X-liiteline vaimse arengu 
mahajäämus” Eesti Arst 2007 4:239–45 (in Estonian) 

‒ Patsalis PC, Kousoulidou L, Sismani C, Mannik K, Kurg A  “MAPH: from 
gels to microarrays” Eur J Med Genet 2005 Jul–Sep;48(3):241–9 

 

0



161 

DISSERTATIONES BIOLOGICAE 
UNIVERSITATIS TARTUENSIS 

 

  1. Toivo Maimets. Studies of human oncoprotein p53. Tartu, 1991, 96 p. 
  2. Enn K. Seppet. Thyroid state control over energy metabolism, ion transport 

and contractile functions in rat heart. Tartu, 1991, 135 p.  
  3. Kristjan Zobel. Epifüütsete makrosamblike väärtus õhu saastuse indikaa-

toritena Hamar-Dobani boreaalsetes mägimetsades. Tartu, 1992, 131 lk. 
  4. Andres Mäe. Conjugal mobilization of catabolic plasmids by transposable 

elements in helper plasmids. Tartu, 1992, 91 p. 
  5. Maia Kivisaar. Studies on phenol degradation genes of Pseudomonas sp. 

strain EST 1001. Tartu, 1992, 61 p. 
  6. Allan Nurk. Nucleotide sequences of phenol degradative genes from 

Pseudomonas sp. strain EST 1001 and their transcriptional activation in 
Pseudomonas putida. Tartu, 1992, 72 p. 

  7. Ülo Tamm. The genus Populus L. in Estonia: variation of the species bio-
logy and introduction. Tartu, 1993, 91 p. 

  8. Jaanus Remme. Studies on the peptidyltransferase centre of the E.coli ribo-
some. Tartu, 1993, 68 p. 

  9. Ülo Langel. Galanin and galanin antagonists. Tartu, 1993, 97 p. 
10. Arvo Käärd. The development of an automatic online dynamic fluo-

rescense-based pH-dependent fiber optic penicillin flowthrought biosensor 
for the control of the benzylpenicillin hydrolysis. Tartu, 1993, 117 p. 

11. Lilian Järvekülg. Antigenic analysis and development of sensitive immu-
noassay for potato viruses. Tartu, 1993, 147 p. 

12. Jaak Palumets. Analysis of phytomass partition in Norway spruce. Tartu, 
1993, 47 p. 

13. Arne Sellin. Variation in hydraulic architecture of Picea abies (L.) Karst. 
trees grown under different enviromental conditions. Tartu, 1994, 119 p.  

13. Mati Reeben. Regulation of light neurofilament gene expression. Tartu, 
1994, 108 p. 

14. Urmas Tartes. Respiration rhytms in insects. Tartu, 1995, 109 p. 
15. Ülo Puurand. The complete nucleotide sequence and infections in vitro 

transcripts from cloned cDNA of a potato A potyvirus. Tartu, 1995, 96 p. 
16. Peeter Hõrak. Pathways of selection in avian reproduction: a functional 

framework and its application in the population study of the great tit (Parus 
major). Tartu, 1995, 118 p. 

17. Erkki Truve. Studies on specific and broad spectrum virus resistance in 
transgenic plants. Tartu, 1996, 158 p. 

18. Illar Pata. Cloning and characterization of human and mouse ribosomal 
protein S6-encoding genes. Tartu, 1996, 60 p. 

19. Ülo Niinemets. Importance of structural features of leaves and canopy in 
determining species shade-tolerance in temperature deciduous woody taxa. 
Tartu, 1996, 150 p. 



162 

20. Ants Kurg. Bovine leukemia virus: molecular studies on the packaging 
region and DNA diagnostics in cattle. Tartu, 1996, 104 p. 

21. Ene Ustav. E2 as the modulator of the BPV1 DNA replication. Tartu, 1996, 
100 p. 

22. Aksel Soosaar. Role of helix-loop-helix and nuclear hormone receptor tran-
scription factors in neurogenesis. Tartu, 1996, 109 p. 

23. Maido Remm. Human papillomavirus type 18: replication, transformation 
and gene expression. Tartu, 1997, 117 p. 

24. Tiiu Kull. Population dynamics in Cypripedium calceolus L. Tartu, 1997,  
124 p. 

25. Kalle Olli. Evolutionary life-strategies of autotrophic planktonic micro-
organisms in the Baltic Sea. Tartu, 1997, 180 p. 

26. Meelis Pärtel. Species diversity and community dynamics in calcareous 
grassland communities in Western Estonia. Tartu, 1997, 124 p. 

27. Malle Leht. The Genus Potentilla L. in Estonia, Latvia and Lithuania: dis-
tribution, morphology and taxonomy. Tartu, 1997, 186 p. 

28. Tanel Tenson. Ribosomes, peptides and antibiotic resistance. Tartu, 1997,  
80 p. 

29. Arvo Tuvikene. Assessment of inland water pollution using biomarker 
responses in fish in vivo and in vitro. Tartu, 1997, 160 p. 

30. Urmas Saarma. Tuning ribosomal elongation cycle by mutagenesis of  
23S rRNA. Tartu, 1997, 134 p. 

31. Henn Ojaveer. Composition and dynamics of fish stocks in the gulf of Riga 
ecosystem. Tartu, 1997, 138 p. 

32. Lembi Lõugas. Post-glacial development of vertebrate fauna in Estonian 
water bodies. Tartu, 1997, 138 p. 

33. Margus Pooga. Cell penetrating peptide, transportan, and its predecessors, 
galanin-based chimeric peptides. Tartu, 1998, 110 p. 

34. Andres Saag. Evolutionary relationships in some cetrarioid genera (Liche-
nized Ascomycota). Tartu, 1998, 196 p. 

35. Aivar Liiv. Ribosomal large subunit assembly in vivo. Tartu, 1998, 158 p. 
36. Tatjana Oja. Isoenzyme diversity and phylogenetic affinities among the 

eurasian annual bromes (Bromus L., Poaceae). Tartu, 1998, 92 p. 
37. Mari Moora. The influence of arbuscular mycorrhizal (AM) symbiosis on 

the competition and coexistence of calcareous crassland plant species. 
Tartu, 1998, 78 p. 

38. Olavi Kurina. Fungus gnats in Estonia (Diptera: Bolitophilidae, Keroplati-
dae, Macroceridae, Ditomyiidae, Diadocidiidae, Mycetophilidae). Tartu, 
1998, 200 p.  

39. Andrus Tasa. Biological leaching of shales: black shale and oil shale. 
Tartu, 1998, 98 p. 

40. Arnold Kristjuhan. Studies on transcriptional activator properties of tumor 
suppressor protein p53. Tartu, 1998, 86 p. 



163 

41. Sulev Ingerpuu. Characterization of some human myeloid cell surface and 
nuclear differentiation antigens. Tartu, 1998, 163 p. 

42. Veljo Kisand. Responses of planktonic bacteria to the abiotic and biotic 
factors in the shallow lake Võrtsjärv. Tartu, 1998, 118 p. 

43. Kadri Põldmaa. Studies in the systematics of hypomyces and allied genera 
(Hypocreales, Ascomycota). Tartu, 1998, 178 p. 

44. Markus Vetemaa. Reproduction parameters of fish as indicators in 
environmental monitoring. Tartu, 1998, 117 p. 

45. Heli Talvik. Prepatent periods and species composition of different 
Oesophagostomum spp. populations in Estonia and Denmark. Tartu, 1998, 
104 p. 

46. Katrin Heinsoo. Cuticular and stomatal antechamber conductance to water 
vapour diffusion in Picea abies (L.) karst. Tartu, 1999, 133 p. 

47. Tarmo Annilo. Studies on mammalian ribosomal protein S7. Tartu, 1998, 
77 p. 

48. Indrek Ots. Health state indicies of reproducing great tits (Parus major): 
sources of variation and connections with life-history traits. Tartu, 1999, 
117 p. 

49. Juan Jose Cantero. Plant community diversity and habitat relationships in 
central Argentina grasslands. Tartu, 1999, 161 p. 

50. Rein Kalamees. Seed bank, seed rain and community regeneration in 
Estonian calcareous grasslands. Tartu, 1999, 107 p. 

51. Sulev Kõks. Cholecystokinin (CCK) — induced anxiety in rats: influence 
of environmental stimuli and involvement of endopioid mechanisms and 
erotonin. Tartu, 1999, 123 p. 

52. Ebe Sild. Impact of increasing concentrations of O3 and CO2 on wheat, 
clover and pasture. Tartu, 1999, 123 p. 

53. Ljudmilla Timofejeva. Electron microscopical analysis of the synaptone-
mal complex formation in cereals. Tartu, 1999, 99 p. 

54. Andres Valkna. Interactions of galanin receptor with ligands and  
G-proteins: studies with synthetic peptides. Tartu, 1999, 103 p. 

55. Taavi Virro. Life cycles of planktonic rotifers in lake Peipsi. Tartu, 1999, 
101 p. 

56. Ana Rebane. Mammalian ribosomal protein S3a genes and intron-encoded 
small nucleolar RNAs U73 and U82. Tartu, 1999, 85 p. 

57. Tiina Tamm. Cocksfoot mottle virus: the genome organisation and transla-
tional strategies. Tartu, 2000,  101 p. 

58. Reet Kurg. Structure-function relationship of the bovine papilloma virus E2 
protein. Tartu, 2000, 89 p. 

59. Toomas Kivisild. The origins of Southern and Western Eurasian popula-
tions: an mtDNA study. Tartu, 2000, 121 p. 

60. Niilo Kaldalu. Studies of the TOL plasmid transcription factor XylS. Tartu 
2000. 88 p. 



164 

61. Dina Lepik. Modulation of viral DNA replication by tumor suppressor 
protein p53. Tartu 2000. 106 p. 

62. Kai Vellak. Influence of different factors on the diversity of the bryophyte 
vegetation in forest and wooded meadow communities. Tartu 2000. 122 p. 

63. Jonne Kotta. Impact of eutrophication and biological invasionas on the 
structure and functions of benthic macrofauna. Tartu 2000. 160 p. 

64. Georg Martin. Phytobenthic communities of the Gulf of Riga and the inner 
sea the West-Estonian archipelago. Tartu, 2000. 139 p. 

65.  Silvia Sepp. Morphological and genetical variation of Alchemilla L. in 
Estonia. Tartu, 2000. 124 p. 

66. Jaan Liira. On the determinants of structure and diversity in herbaceous 
plant communities. Tartu, 2000. 96 p. 

67. Priit Zingel. The role of planktonic ciliates in lake ecosystems. Tartu 2001. 
111 p. 

68. Tiit Teder. Direct and indirect effects in Host-parasitoid interactions: 
ecological and evolutionary consequences. Tartu 2001. 122 p. 

69. Hannes Kollist. Leaf apoplastic ascorbate as ozone scavenger and its 
transport across the plasma membrane. Tartu 2001. 80 p. 

70. Reet Marits. Role of two-component regulator system PehR-PehS and 
extracellular protease PrtW in virulence of Erwinia Carotovora subsp. 
Carotovora. Tartu 2001. 112 p. 

71. Vallo Tilgar. Effect of calcium supplementation on reproductive perfor-
mance of the pied flycatcher Ficedula hypoleuca and the great tit Parus 
major, breeding in Nothern temperate forests. Tartu, 2002. 126 p. 

72. Rita Hõrak. Regulation of transposition of transposon Tn4652 in 
Pseudomonas putida. Tartu, 2002. 108 p. 

73. Liina Eek-Piirsoo. The effect of fertilization, mowing and additional 
illumination on the structure of a species-rich grassland community. Tartu, 
2002. 74 p. 

74. Krõõt Aasamaa. Shoot hydraulic conductance and stomatal conductance of 
six temperate deciduous tree species. Tartu, 2002. 110 p. 

75. Nele Ingerpuu. Bryophyte diversity and vascular plants. Tartu, 2002. 
112 p. 

76. Neeme Tõnisson. Mutation detection by primer extension on oligo-
nucleotide microarrays. Tartu, 2002. 124 p. 

77. Margus Pensa. Variation in needle retention of Scots pine in relation to 
leaf morphology, nitrogen conservation and tree age. Tartu, 2003. 110 p. 

78. Asko Lõhmus. Habitat preferences and quality for birds of prey: from 
principles to applications. Tartu, 2003. 168 p. 

79. Viljar Jaks. p53 — a switch in cellular circuit. Tartu, 2003. 160 p. 
80. Jaana Männik. Characterization and genetic studies of four ATP-binding 

cassette (ABC) transporters. Tartu, 2003. 140 p. 
81. Marek Sammul. Competition and coexistence of clonal plants in relation to 

productivity. Tartu, 2003. 159 p 



165 

82. Ivar Ilves. Virus-cell interactions in the replication cycle of bovine 
papillomavirus type 1. Tartu, 2003. 89 p.  

83. Andres Männik. Design and characterization of a novel vector system 
based on the stable replicator of bovine papillomavirus type 1. Tartu, 2003. 
109 p. 

84. Ivika Ostonen. Fine root structure, dynamics and proportion in net 
primary production of Norway spruce forest ecosystem in relation to site 
conditions. Tartu, 2003. 158 p. 

85. Gudrun Veldre. Somatic status of 12–15-year-old Tartu schoolchildren. 
Tartu, 2003. 199 p. 

86.  Ülo Väli. The greater spotted eagle Aquila clanga and the lesser spotted 
eagle A. pomarina: taxonomy, phylogeography and ecology. Tartu, 2004. 
159 p.  

87. Aare Abroi. The determinants for the native activities of the bovine 
papillomavirus type 1 E2 protein are separable. Tartu, 2004. 135 p. 

88. Tiina Kahre. Cystic fibrosis in Estonia. Tartu, 2004. 116 p. 
89. Helen Orav-Kotta. Habitat choice and feeding activity of benthic suspension 

feeders and mesograzers in the northern Baltic Sea. Tartu, 2004. 117 p. 
90. Maarja Öpik. Diversity of arbuscular mycorrhizal fungi in the roots of 

perennial plants and their effect on plant performance. Tartu, 2004. 175 p.  
91. Kadri Tali. Species structure of Neotinea ustulata. Tartu, 2004. 109 p. 
92. Kristiina Tambets. Towards the understanding of post-glacial spread of 

human mitochondrial DNA haplogroups in Europe and beyond: a phylo-
geographic approach. Tartu, 2004. 163 p. 

93. Arvi Jõers. Regulation of p53-dependent transcription. Tartu, 2004. 103 p. 
94. Lilian Kadaja. Studies on modulation of the activity of tumor suppressor 

protein p53. Tartu, 2004. 103 p. 
95. Jaak Truu. Oil shale industry wastewater: impact on river microbial  

community and possibilities for bioremediation. Tartu, 2004. 128 p. 
96. Maire Peters. Natural horizontal transfer of the pheBA operon. Tartu, 

2004. 105 p. 
97. Ülo Maiväli. Studies on the structure-function relationship of the bacterial 

ribosome. Tartu, 2004. 130 p.  
98. Merit Otsus. Plant community regeneration and species diversity in dry 

calcareous grasslands. Tartu, 2004. 103 p. 
99. Mikk Heidemaa. Systematic  studies  on  sawflies of  the  genera Dolerus,  

Empria,  and  Caliroa (Hymenoptera:  Tenthredinidae). Tartu, 2004. 167 p. 
100. Ilmar Tõnno. The impact of nitrogen and phosphorus concentration and 

N/P ratio on cyanobacterial dominance and N2 fixation in some Estonian 
lakes. Tartu, 2004. 111 p. 

101. Lauri Saks. Immune function, parasites, and carotenoid-based ornaments 
in greenfinches. Tartu, 2004. 144 p.  

102. Siiri Rootsi. Human Y-chromosomal variation in European populations. 
Tartu, 2004. 142 p. 



166 

103. Eve Vedler. Structure of the 2,4-dichloro-phenoxyacetic acid-degradative 
plasmid pEST4011. Tartu, 2005. 106 p.  

104.  Andres Tover. Regulation of transcription of the phenol degradation 
pheBA operon in Pseudomonas putida. Tartu, 2005. 126 p. 

105.  Helen Udras. Hexose  kinases  and  glucose transport  in  the  yeast Han-
senula  polymorpha. Tartu, 2005. 100 p. 

106. Ave Suija. Lichens and lichenicolous fungi in Estonia: diversity, distri-
bution patterns, taxonomy. Tartu, 2005. 162 p. 

107. Piret Lõhmus. Forest lichens and their substrata in Estonia. Tartu, 2005. 
162 p.  

108. Inga Lips. Abiotic factors controlling the cyanobacterial bloom occur-
rence in the Gulf of Finland. Tartu, 2005. 156 p. 

109.  Kaasik, Krista. Circadian clock genes in mammalian clockwork, meta-
bolism and behaviour. Tartu, 2005. 121 p. 

110.  Juhan Javoiš. The effects of experience on host acceptance in ovipositing 
moths. Tartu, 2005. 112 p.  

111.  Tiina Sedman. Characterization  of  the  yeast Saccharomyces  cerevisiae 
mitochondrial  DNA  helicase  Hmi1. Tartu, 2005. 103 p.  

112.  Ruth Aguraiuja. Hawaiian endemic fern lineage Diellia (Aspleniaceae): 
distribution, population structure and ecology. Tartu, 2005. 112 p.  

113.  Riho Teras. Regulation of transcription from the fusion promoters ge-
nerated by transposition of Tn4652 into the upstream region of pheBA 
operon in Pseudomonas putida. Tartu, 2005. 106 p.  

114.  Mait Metspalu. Through the course of prehistory in india: tracing the 
mtDNA trail. Tartu, 2005. 138 p.  

115. Elin Lõhmussaar. The comparative patterns of linkage disequilibrium in 
European populations and its implication for genetic association studies. 
Tartu, 2006. 124 p. 

116. Priit Kupper. Hydraulic and environmental limitations to leaf water rela-
tions in trees with respect to canopy position. Tartu, 2006. 126 p. 

117. Heili Ilves. Stress-induced transposition of Tn4652 in Pseudomonas 
Putida. Tartu, 2006. 120 p. 

118. Silja Kuusk. Biochemical properties of Hmi1p, a DNA helicase from 
Saccharomyces cerevisiae mitochondria. Tartu, 2006. 126 p. 

119. Kersti Püssa. Forest edges on medium resolution landsat thematic mapper 
satellite images. Tartu, 2006. 90 p. 

120. Lea Tummeleht. Physiological condition and immune function in great 
tits (Parus major l.): Sources of variation and trade-offs in relation to 
growth. Tartu, 2006. 94 p. 

121. Toomas Esperk. Larval instar as a key element of insect growth schedules. 
Tartu, 2006. 186 p.  

122. Harri Valdmann. Lynx (Lynx lynx) and wolf (Canis lupus)  in the Baltic 
region:  Diets,  helminth parasites and genetic variation. Tartu, 2006. 102 p. 



1  

123. Priit Jõers. Studies of the mitochondrial helicase Hmi1p in Candida 
albicans and Saccharomyces cerevisia. Tartu, 2006. 113 p. 

124. Kersti Lilleväli. Gata3 and Gata2 in inner ear development. Tartu, 2007. 
123 p.  

125. Kai Rünk. Comparative ecology of three fern species: Dryopteris carthu-
siana (Vill.) H.P. Fuchs, D. expansa (C. Presl) Fraser-Jenkins & Jermy and 
D. dilatata (Hoffm.) A. Gray (Dryopteridaceae). Tartu, 2007. 143 p.  

126. Aveliina Helm. Formation and persistence of dry grassland diversity: role 
of human history and landscape structure. Tartu, 2007. 89 p.  

127. Leho Tedersoo. Ectomycorrhizal fungi: diversity and community structure 
in Estonia, Seychelles and Australia. Tartu, 2007. 233 p.  

128. Marko Mägi. The habitat-related variation of reproductive performance of 
great tits in a deciduous-coniferous forest mosaic: looking for causes and 
consequences. Tartu, 2007. 135 p.  

129. Valeria Lulla. Replication strategies and applications of Semliki Forest 
virus. Tartu, 2007. 109 p.  

130. Ülle Reier. Estonian threatened vascular plant species: causes of rarity and 
conservation. Tartu, 2007. 79 p. 

131. Inga Jüriado. Diversity of lichen species in Estonia: influence of regional 
and local factors. Tartu, 2007. 171 p. 

132. Tatjana Krama. Mobbing behaviour in birds: costs and reciprocity based 
cooperation. Tartu, 2007. 112 p. 

133. Signe Saumaa. The role of DNA mismatch repair and oxidative DNA 
damage defense systems in avoidance of stationary phase mutations in 
Pseudomonas putida. Tartu, 2007. 172 p. 

134. Reedik Mägi. The linkage disequilibrium and the selection of genetic 
markers for association studies in european populations. Tartu, 2007. 96 p.  

135. Priit Kilgas. Blood parameters as indicators of physiological condition and 
skeletal development in great tits (Parus major): natural variation and 
application in the reproductive ecology of birds. Tartu, 2007. 129 p.  

136. Anu Albert. The role of water salinity in structuring eastern Baltic coastal 
fish communities. Tartu, 2007. 95 p.  

137. Kärt Padari. Protein transduction mechanisms of transportans. Tartu, 2008. 
128 p. 

138. Siiri-Lii Sandre. Selective forces on larval colouration in a moth. Tartu, 
2008. 125 p. 

139. Ülle Jõgar. Conservation and restoration of semi-natural floodplain mea-
dows and their rare plant species. Tartu, 2008. 99 p. 

140. Lauri Laanisto. Macroecological approach in vegetation science: gene-
rality of ecological relationships at the global scale. Tartu, 2008. 133 p. 

141. Reidar Andreson. Methods and software for predicting PCR failure rate in 
large genomes. Tartu, 2008. 105 p.  

142. Birgot Paavel. Bio-optical properties of turbid lakes. Tartu, 2008. 175 p. 

67



168 

143. Kaire Torn. Distribution and ecology of charophytes in the Baltic Sea. 
Tartu, 2008, 98 p.  

144. Vladimir Vimberg. Peptide mediated macrolide resistance. Tartu, 2008, 
190 p. 

145. Daima Örd. Studies on the stress-inducible pseudokinase TRB3, a novel 
inhibitor of transcription factor ATF4. Tartu, 2008, 108 p. 

146. Lauri Saag. Taxonomic and ecologic problems in the genus Lepraria 
(Stereocaulaceae, lichenised Ascomycota). Tartu, 2008, 175 p. 

147. Ulvi Karu. Antioxidant protection, carotenoids and coccidians in green-
finches – assessment of the costs of immune activation and mechanisms of 
parasite resistance in a passerine with carotenoid-based ornaments. Tartu, 
2008, 124 p. 

148. Jaanus Remm. Tree-cavities in forests: density, characteristics and occu-
pancy by animals. Tartu, 2008, 128 p. 

149. Epp Moks. Tapeworm parasites Echinococcus multilocularis and E. gra-
nulosus in Estonia: phylogenetic relationships and occurrence in wild 
carnivores and ungulates. Tartu, 2008, 82 p. 

150. Eve Eensalu. Acclimation of stomatal structure and function in tree ca-
nopy: effect of light and CO2 concentration. Tartu, 2008, 108 p. 

151. Janne Pullat. Design, functionlization and application of an in situ 
synthesized oligonucleotide microarray. Tartu, 2008, 108 p. 

152. Marta Putrinš. Responses of Pseudomonas putida to phenol-induced 
metabolic and stress signals. Tartu, 2008, 142 p.  

153.  Marina Semtšenko. Plant root behaviour: responses to neighbours and 
physical obstructions. Tartu, 2008, 106 p. 

154. Marge Starast. Influence of cultivation techniques on productivity and 
fruit quality of some Vaccinium and Rubus taxa. Tartu, 2008, 154 p.  

155. Age Tats. Sequence motifs influencing the efficiency of translation. Tartu, 
2009, 104 p. 

156. Radi Tegova. The role of specialized DNA polymerases in mutagenesis in 
Pseudomonas putida. Tartu, 2009, 124 p. 

157. Tsipe Aavik. Plant species richness, composition and functional trait 
pattern in agricultural landscapes – the role of land use intensity and land-
scape structure. Tartu, 2008, 112 p. 

158. Kaja Kiiver. Semliki forest virus based vectors and cell lines for studying 
the replication and interactions of alphaviruses and hepaciviruses. Tartu, 
2009, 104 p. 

159. Meelis Kadaja. Papillomavirus Replication Machinery Induces Genomic 
Instability in its Host Cell. Tartu, 2009, 126 p. 

160. Pille Hallast. Human and chimpanzee Luteinizing hormone/Chorionic 
Gonadotropin beta (LHB/CGB) gene clusters: diversity and divergence of 
young duplicated genes. Tartu, 2009, 168 p. 

161. Ain Vellak. Spatial and temporal aspects of plant species conservation. 
Tartu, 2009, 86 p. 



169 

162. Triinu Remmel. Body size evolution in insects with different colouration 
strategies: the role of predation risk. Tartu, 2009, 168 p. 

163. Jaana Salujõe. Zooplankton as the indicator of ecological quality and fish 
predation in lake ecosystems. Tartu, 2009, 129 p. 

164. Ele Vahtmäe. Mapping benthic habitat with remote sensing in optically 
complex coastal environments. Tartu, 2009, 109 p.  

165. Liisa Metsamaa. Model-based assessment to improve the use of remote 
sensing in recognition and quantitative mapping of cyanobacteria. Tartu, 
2009, 114 p. 

166. Pille Säälik. The role of endocytosis in the protein transduction by cell-
penetrating peptides. Tartu, 2009, 155 p. 

167. Lauri Peil. Ribosome assembly factors in Escherichia coli. Tartu, 2009,  
147 p. 

168. Lea Hallik. Generality and specificity in light harvesting, carbon gain 
capacity and shade tolerance among plant functional groups. Tartu, 2009, 
99 p. 

169. Mariliis Tark. Mutagenic potential of DNA damage repair and tolerance 
mechanisms under starvation stress. Tartu, 2009, 191 p. 

170. Riinu Rannap. Impacts of habitat loss and restoration on amphibian po-
pulations. Tartu, 2009, 117 p. 

171. Maarja Adojaan. Molecular variation of HIV-1 and the use of this know-
ledge in vaccine development. Tartu, 2009, 95 p. 

172. Signe Altmäe. Genomics and transcriptomics of human induced ovarian 
folliculogenesis. Tartu, 2010, 179 p. 

173. Triin Suvi. Mycorrhizal fungi of native and introduced trees in the 
Seychelles Islands. Tartu, 2010, 107 p. 

174. Velda Lauringson. Role of suspension feeding in a brackish-water coastal 
sea. Tartu, 2010, 123 p. 

175. Eero Talts. Photosynthetic cyclic electron transport – measurement and 
variably proton-coupled mechanism. Tartu, 2010, 121 p.  

176. Mari Nelis. Genetic structure of the Estonian population and genetic 
distance from other populations of European descent. Tartu, 2010, 97 p. 

177. Kaarel Krjutškov. Arrayed Primer Extension-2 as a multiplex PCR-based 
method for nucleic acid variation analysis: method and applications. Tartu, 
2010, 129 p. 

178. Egle Köster. Morphological and genetical variation within species complexes: 
Anthyllis vulneraria s. l. and Alchemilla vulgaris (coll.). Tartu, 2010, 101 p. 

179. Erki Õunap. Systematic studies on the subfamily Sterrhinae (Lepidoptera: 
Geometridae). Tartu, 2010, 111 p.  

180. Merike Jõesaar. Diversity of key catabolic genes at degradation of phenol 
and p-cresol in pseudomonads. Tartu, 2010, 125 p. 

181. Kristjan Herkül. Effects of physical disturbance and habitat-modifying 
species on sediment properties and benthic communities in the northern 
Baltic Sea. Tartu, 2010, 123 p. 



170 

182. Arto Pulk. Studies on bacterial ribosomes by chemical modification 
approaches. Tartu, 2010, 161 p. 

183. Maria Põllupüü. Ecological relations of cladocerans in a brackish-water 
ecosystem. Tartu, 2010, 126 p.  

184. Toomas Silla. Study of the segregation mechanism of the Bovine 
Papillomavirus Type 1. Tartu, 2010, 188 p. 

185. Gyaneshwer Chaubey. The demographic history of India: A perspective 
based on genetic evidence. Tartu, 2010, 184 p. 

186. Katrin Kepp. Genes involved in cardiovascular traits: detection of genetic 
variation in Estonian and Czech populations. Tartu, 2010, 164 p. 

187. Virve Sõber. The role of biotic interactions in plant reproductive 
performance. Tartu, 2010, 92 p. 

188. Kersti Kangro. The response of phytoplankton community to the changes 
in nutrient loading. Tartu, 2010, 144 p. 

189. Joachim M. Gerhold. Replication and Recombination of mitochondrial 
DNA in Yeast. Tartu, 2010, 120 p. 

190. Helen Tammert. Ecological role of physiological and phylogenetic 
diversity in aquatic bacterial communities. Tartu, 2010, 140 p. 

191. Elle Rajandu. Factors determining plant and lichen species diversity and 
composition in Estonian Calamagrostis and Hepatica site type forests. 
Tartu, 2010, 123 p. 

192. Paula Ann Kivistik. ColR-ColS signalling system and transposition of 
Tn4652 in the adaptation of Pseudomonas putida. Tartu, 2010, 118 p. 

193. Siim Sõber. Blood pressure genetics: from candidate genes to genome-
wide association studies. Tartu, 2011, 120 p. 

194. Kalle Kipper. Studies on the role of helix 69 of 23S rRNA in the factor-
dependent stages of translation initiation, elongation, and termination. 
Tartu, 2011, 178 p. 

195. Triinu Siibak. Effect of antibiotics on ribosome assembly is indirect. 
Tartu, 2011, 134 p. 

196. Tambet Tõnissoo. Identification and molecular analysis of the role of 
guanine nucleotide exchange factor RIC-8 in mouse development and 
neural function. Tartu, 2011, 110 p. 

197. Helin Räägel. Multiple faces of cell-penetrating peptides – their intra-
cellular trafficking, stability and endosomal escape during protein trans-
duction. Tartu, 2011, 161 p.  

198. Andres Jaanus. Phytoplankton in Estonian coastal waters – variability, 
trends and response to environmental pressures. Tartu, 2011, 157 p. 

199. Tiit Nikopensius. Genetic predisposition to nonsyndromic orofacial clefts. 
Tartu, 2011, 152 p. 

200. Signe Värv. Studies on the mechanisms of RNA polymerase II-dependent 
transcription elongation. Tartu, 2011, 108 p. 

201. Kristjan Välk. Gene expression profiling and genome-wide association 
studies of non-small cell lung cancer. Tartu, 2011, 98 p. 



171 

202. Arno Põllumäe. Spatio-temporal patterns of native and invasive zoo-
plankton species under changing climate and eutrophication conditions. 
Tartu, 2011, 153 p. 

203. Egle Tammeleht. Brown bear (Ursus arctos) population structure, demo-
graphic processes and variations in diet in northern Eurasia. Tartu, 2011, 
143 p.  

205. Teele Jairus. Species composition and host preference among ectomy-
corrhizal fungi in Australian and African ecosystems. Tartu, 2011, 106 p.   

206. Kessy Abarenkov. PlutoF – cloud database and computing services 
supporting biological research. Tartu, 2011, 125 p.  

207. Marina Grigorova. Fine-scale genetic variation of follicle-stimulating 
hormone beta-subunit coding gene (FSHB) and its association with repro-
ductive health. Tartu, 2011, 184 p. 

208. Anu Tiitsaar. The effects of predation risk and habitat history on butterfly 
communities. Tartu, 2011, 97 p. 

209. Elin Sild. Oxidative defences in immunoecological context: validation and 
application of assays for nitric oxide production and oxidative burst in a 
wild passerine. Tartu, 2011, 105 p. 

210. Irja Saar. The taxonomy and phylogeny of the genera Cystoderma and 
Cystodermella (Agaricales, Fungi). Tartu, 2012, 167 p. 

211. Pauli Saag. Natural variation in plumage bacterial assemblages in two 
wild breeding passerines. Tartu, 2012, 113 p. 

212. Aleksei Lulla. Alphaviral nonstructural protease and its polyprotein 
substrate: arrangements for the perfect marriage. Tartu, 2012, 143 p. 

213. Mari Järve. Different genetic perspectives on human history in Europe 
and the Caucasus: the stories told by uniparental and autosomal markers. 
Tartu, 2012, 119 p. 

214. Ott Scheler. The application of tmRNA as a marker molecule in bacterial 
diagnostics using microarray and biosensor technology. Tartu, 2012, 93 p. 

215. Anna Balikova. Studies on the functions of tumor-associated mucin-like 
leukosialin (CD43) in human cancer cells. Tartu, 2012, 129 p. 

216. Triinu Kõressaar. Improvement of PCR primer design for detection of 
prokaryotic species. Tartu, 2012, 83 p. 

217. Tuul Sepp. Hematological health state indices of greenfinches: sources of 
individual variation and responses to immune system manipulation. Tartu, 
2012, 117 p. 

218. Rya Ero. Modifier view of the bacterial ribosome. Tartu, 2012, 146 p. 
219. Mohammad Bahram. Biogeography of ectomycorrhizal fungi across dif-

ferent spatial scales. Tartu, 2012, 165 p. 
220. Annely Lorents. Overcoming the plasma membrane barrier: uptake of 

amphipathic cell-penetrating peptides induces influx of calcium ions and 
downstream responses. Tartu, 2012, 113 p. 


	Publication-1_Mannik-PhD.pdf
	A parallel SNP array study of genomic aberrations associated with mental retardation in patients and general population in  ...
	Introduction
	Materials and methods
	Patients
	General population samples
	SNP array analysis
	Data analysis
	Interpretation of CNV results
	Detection of inconsistencies of Mendelian inheritance
	Confirmation of the results

	Results
	Unbalanced genomic aberrations
	Imbalances in known pathogenic regions
	Novel, likely relevant CNVs
	CNVs with unknown clinical significance
	General population CNVs in clinically relevant regions

	Inconsistencies in Mendelian inheritance

	Discussion
	Conflict of interest
	Acknowledgements
	Supplementary material
	References
	Web resources


	Publication-2_Mannik-PhD.pdf
	Title
	Authors
	Abstract
	Methods Summary
	Statistics
	Discovery of CNVs
	Expression analyses

	References
	METHODS
	Study cohorts
	CNV detection
	Patients referred for intellectual disabilities and developmental delay
	Northern Finland 1966 birth cohort (NFBC)
	deCODE genetics
	Cohorte Lausannoise (CoLaus)
	Estonian genome center of the University of Tartu (EGCUT)
	Study of health in Pomerania (SHIP)
	Kooperative Gesundheitsforschung in der Region Augsburg (KORA) F3 and F4
	MLPA analysis
	Custom array-CGH for the short arm of chromosome 16
	Defining underweight
	Weight, height, BMI and head circumference Z-scores as a function of age
	Gene expression
	Cases with major neurological signs
	Statistics

	Methods References
	Figure 1 Effect of the chromosome 16p11.2 duplication on BMI and head circumference.
	Figure 2 Transcript levels for genes within and near to the 16p11.2 rearrangements.
	Table 1 16p11.2 rearrangements in cases and controls
	Table 2 Comparisons of the height, weight and BMI distributions in duplication carriers and controls.

	Publication-4_Mannik-PhD.pdf
	Fourteen new cases contribute to the characterization of the 7q11.23 microduplication syndrome
	Introduction
	Methods
	Patient collection and platforms used for the identification of the patients
	Array-based MLPA
	Microsatellite marker analysis
	Real-time quantitative PCR (RT-qPCR)

	Results
	Molecular characterization and population frequency of the 7q11.23 duplication
	Clinical phenotype of the patients
	Parental phenotype

	Discussion
	Acknowledgements
	References


	pub4.pdf
	Publication-4_Mannik-PhD.pdf
	Fourteen new cases contribute to the characterization of the 7q11.23 microduplication syndrome
	Introduction
	Methods
	Patient collection and platforms used for the identification of the patients
	Array-based MLPA
	Microsatellite marker analysis
	Real-time quantitative PCR (RT-qPCR)

	Results
	Molecular characterization and population frequency of the 7q11.23 duplication
	Clinical phenotype of the patients
	Parental phenotype

	Discussion
	Acknowledgements
	References






