## TARTU STATE UNIVERSITY

## ORGANIC REACTIVITY

Vol. XXI<br>ISSUE 4 (76)<br>December 1984

## TARTU STATE UNIVERSITY

## ORGANIC REACTIVITY

Vol. XXI<br>ISSUE 4 (76)

December 1984

The Editorial Board:
V. Palm, Bditor-in-Chief
A. Talvik
I. Koppel

THtle of original:
РЕАКIЩОННАЯ СІОСОБНОСТЬ ОРГАНИЧЕСКИХ СОЕЛИНЕНИИ.
Tom XXI. В七п. A(76). Декабрь I984.
Тартуский государственный университет.

(C) Translation into English. Tartu State University, 1985

# UNSATURATED CYCLIC KETONES. IV. THE RELATIVE <br> BASICITIES OF ARYLIDENE DERIVATIVES OF BENZOCYCLOALKANONES AND THEIR HETEROANALOGUES 

V.D. Orlov, Yu.N. Surov, E.I. Mikhedkina, O.A. Nodelman, A.D. Bazavluk, and V.F. Lavrushin Department of Organic Chemiatry, Kharkov State Univeraity, Kharikov, 310077, USSR

Received September 11, 1984


#### Abstract

The relative basicities of l-indanone, benz [b]suran $-3(2 \mathrm{H})$-one, benz $[\mathrm{b}]$ thiophen- $3(2 \mathrm{H})$-one, l-tetralone, 4-phenyl-l-tetralone, l-chrowanone-4, l-thiochromanone-4, l-selenochromanone-4, l-benzosuberone, 1-homochromanone-5, and 1-thiohomo-chromanone-5 as well as their arylidene derivatives have been evaluated by IR spectroscopy from the shifts of the stretching frequency of the hydroxy group of phenol participating in hydrogen--bonding with these ketones. All compounds have generally been considered with the common position as analogues to $\pi$-systems perturbed by different bridge groups. Such an approach showed that one of the main factors, determining the proton-acceptability of the compounds, is the degree of acoplanarity of their molecules. It was established that the basicities of these ketones decrease if the size of the rings increases. The analogous effect is caused by the introduction of bridge groups, containing heteraatoms, which brings about the reduction of the total polarity of the


*     - The preliminary commulcation is given in 1 .
molecules. The conductivity of the electronic influence of the studied $\pi$-systems was evaluated and compared.
During recent years a great deal of experimental material on the inveatigation of the basicities of different cyclic unsaturated ketones has been gathered using IR spectroscopy ${ }^{2-7}$ (from the shifts of stretching frequency band of phenol, hydrogen-bonded with carbonyl compounds $-\Delta \nu_{\mathrm{OH}}$ ). Present paper is the continuation of these researches in which the $\Delta \nu_{\text {OH }}$ values of 8 series of compounds with the general formula

(M and $R$ are given in Table 1)
were systematized and studied.
The common feature of the ketones of all these series is the presence of the same $\pi$-systema which are identical to chalcones ( $M$ is absent). At the same time, unlike the latter existing as a mixture of s-conformers whose proportions depend on the phase conditions of the ketones, temperature and solvents and which are seldom identified, the compounds given in Table 1 are characterized by the fixed s-cis-conformations. This type of object selection permits to remove the factors of indefiniteness of $s-c o n f o r m a t i o n s ~ a n d ~$ simply solve the problems concerning the effects of substituent $R$ and bridge group $M$ on the properties of the ketones studied.

It is $\mathrm{known}^{8}$ that the croton condensation like any other method of synthesis of aromatic $\alpha$, $B$-unsaturated ketones. with the participation of acid or alkaline catalyst ia a stereospecific reaction and leads to the formation of exclusively trans-conjugated systems. In reactions of cycloalkanones and their heteroanalogues with aromatic aldehydes,
$\overline{\text { W }}$ - In the recently published paper ${ }^{9}$ it was reported about trans-cis-isomerization of chalcone in the presence of polyphosphoric acid. The abnormality of this fact is obvious. Therefore, in our laboratory the conditions of experiment which is described in 9 were repeated. In every case unchangeable trans-chalcone was restored.
this stereospecificity should stipulate the formation of E-isomers ${ }^{\text {元 }}$.

In the works ${ }^{2,10}$ attention has been paid to the fact that the E-isomers of the compounds belonging to the I, III, $V$, and VIII sets have sufficiently intensive and characteristic bands of out-of-plane deformational frequencies of $B-C H$ bonds in the IR spectra. Analogous bands appear in the spectra of ketones of other series (IV - 964-972, VI - 965-970, VII - 957-966, IX - 975-984, X - 945-952 $\mathrm{cm}^{-1}$ ), which correspond to the trans-configuration of their cinnamal fragment (Independently, this fact is confirmed by the measured values of dipole moments).

In the present paper the selection of $\Delta \nu_{\text {OH }}$ values as the wain characteristic of H-complexes which are formed by the studied ketones with phenol, was caused as it was shown in the recent review ${ }^{11}$, that especially the $\Delta \nu_{\mathrm{OH}}$ values that characterize the strength of separate hydrogenbridge, are slightly dependent on the proportion of the components and, on the contrary, are highly sensitive to the structural changes in these components. That is why its use as the measure of proton-acceptance of ketones is more justified than the use of the association constant values, as in our experiment condition the latter characteristics would show "grosseffect" including the strength of H-complex as well as its interaction energy with the molecules of bases, taken in excess. In our opinion, the indefiniteness of the latter effect makes the values of association constants, determined in excess beses, less effective general characteristics in comparison with those of $\Delta \nu_{\mathrm{OH}}$.

The analysis of obtained $\Delta \nu_{\mathrm{OH}}$ values (Table 1) allows to note two common tendencies. First of all, in every group of ketones (i.e. different bridges $M$ ) the changing of the basicity of compounds is complicated and not similar in differe. * - In the case of 2-arylidenederivatives benz [b] furan-3(2H)--one ( $\mathrm{M}=0$ ), benz[b]thiophene-3(2H)-one ( $\mathrm{M}=\mathrm{S}$ ) and l-seleno-chromanone-4 $\left(\mathrm{H}_{\mathrm{Se}} \mathrm{SeCH}_{2}\right)$ the same trans-configuration of cinnamal fragment should be designated as Z-isomer.

The $\Delta \nu_{\mathrm{OH}}$ Values of Phenol Associated With Ketones Heving General to mula:


|  | IV set | $I$ | II | III | IV | $\nabla$ | VI | VII | VIII | II | I |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N <br> group | $\mathbf{y}$ | $\mathrm{CH}_{2}$ | S | $\left(\mathrm{CH}_{2}\right)_{2}$ | $\mathrm{CHRh}-\mathrm{CH}_{2}$ | $\mathrm{OCH}_{2}$ | $\mathrm{SCH}_{2}$ | $\mathrm{SeCH}_{2}$ | $\left(\mathrm{CH}_{2}\right)_{3}$ | $\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}$ | $\mathrm{S}\left(\mathrm{CH}_{2}\right)_{2}$ |
| a | -* | 224 | 170 | 210 | - | 192 | $181{ }^{\text {t }}$ | 164 | 205 | 199 | 199 |
| $b$ | $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ | 308 | 227 | 251 | 233 | 252 | 210 | 201 | 232 | 204 | 199 |
| c | $\mathrm{OCH}_{3}$ | 268 | 188 | 228 | 208 | 222 | 188 | 181 | 208 | 193 | 187 |
| d | $\mathrm{CH}_{3}$ | 258 | 185 | 210 | 192 | 208 | 184 | 176 | 204 | 187 | 184 |
| e** | H | 256 | 180 | 210 | 192 | 198 | $182^{\text {S }}$ | 174 | 202 | 185 | $178{ }^{1}$ |
| 1 | CI | 239 | 182 | 205 | 190 | 188 | 166 | 172 | 190 | 180 | 175 |
| g | meta-CI | 240 | - | 197 | - | - | - | - | - | - | - |
| h | Br | 240 | 163 | 198 | - | 181 | 169 | 177 | - | 183 | 178 |
| 1 | $\mathrm{NO}_{2}$ | 130 | 139 | 141 | 159 | 129 | 146 | 161 | 160 | 151 | 154 |

*     - Bicycles in which $m \mathrm{CH}-\mathrm{R}$ group is absent have been investigated.
** - The value $\Delta V_{\text {OH }}$ for 2-benzylidenebenz [b] - furan $-3(2 H)$ - one with $M=0$ is $253 \mathrm{~cm}^{-1}$.
$t$, s, 1 - S-Dioxides of these compounds have the following $\Delta \nu_{\mathrm{OH}}$ values: 119, 128 and $122 \mathrm{~cm}^{-1}$, respectivly.
ent groups. Secondly, to every series of compounds (different R) corresponds the linear dependence between the values of $\Delta \nu_{\mathrm{OH}}$ and electronic properties of $R$.

The first particularity will be pointed out and its discussion will be started with the "a" group. Por benzocycloalkanone (Ia, IIIa, VIIIa) the $\Delta \nu_{O H}$ values decresse iffthe size of hydrocycles is extended. This regularity shows, in our opinion, that with the increase of the cycle size its acoplanarity is intensified. It is accompanied by the withdrawal of $\mathrm{C}=0$ group from the plane of conjugated benzene nucleous and as a result of weakening of interaction with it. Really, by the opinion ${ }^{1 / 2}$ it follows from UV spectral charac? teristics of l-indanone (Ia), l-tetralone (IIIa) and l-benzosuberone (VIIIa) that the C=0 group forms a two-dimensional angle $Q$ (with benzene ring) which equals 17,22 and $39^{\circ}$, respectively. The evaluation of the conformation, taken in paper ${ }^{12}$, is rather approximate, which is proved by the elternad tive angle $\mathrm{Q}=34^{\circ}$ for l-tetralone,but it seems to indicate the changes in this group of ketones correctly.

The intensification of molecular acoplanarity should have been observed in transition from Va to IXa and from Ha to VIa and Xa. At the same time the minimum values of $\Delta \nu_{O H}$ are observed in the derivatives of six-membered hydrogenated cycles (Table 1). Moreover, the basicity of the bicycles with the heteroatoms of 0 and $S$ is lower than their hydrocarbon analogues, though the heteroatoms that are in orthoposition to the $C=0$ group must exert electrondonating influence on it. As the analogous phenomens are observed in other groups of compounds., their probable causes will be discussed below.

The introduction of benzylidene radical(compounds of "en group) remarkably changes the conformation of bicycles in connection with the appearance of a new sperenter in it.According to the data of X-ray atructural analysis ${ }^{13}$ this bicycle is practically flattened in the Ie molecule (it has conversional conformation in the molecule of Ia). The increase of cyclic tension in such flatenning is accompanied by a remarkable deviation of valent angle from normal ones. Thus, the internal angle, attached to $C=0$ group, is $107.2^{\circ}$. This value
determines essential rehybridization of its ( $\mathrm{C}=0$ ) carbon atom, the intensification of its polarity (which shows the increasing values of dipole moments of Ie , Table 2). These effects are supplemented by the electron-donating influence of benzylidene radical which determines the considerable increase of $\Delta \nu_{\text {OH }}$ values by transition from Ia to Ie.

The analogous derivation in the series of benz [b] thio-phene-3(2H)-one (II), is accompanied by the smallest increase of the $\Delta \nu_{\text {OH }}$ values, which, probably, reflects conformational (as a result of greater atomic radius of sulphur) rearrangements of bicycle.

In molecules with a bicycle which contains a six-member hydrogenated ring, appearance of benzilidene radical should ever favour the flattening of benzoyl fragment. Thus, according to the available data presented in ${ }^{14}$ the acoplanarity of bicycle in 2-benzilidene-l-tetralone (IIIe) is caused by the withdrawal of $\mathrm{CH}_{2}$ group out of the plane of the aromatic ring (dihedral angle between $\mathrm{C}_{6} \mathrm{H}_{4}$ and $\mathrm{C}-\mathrm{CH}_{2}{ }^{-C}$ iragments is $136.2^{\circ}$ ). As regards the $\mathrm{C}=0$ group, it is $w$ thdrawn out of the plane of the annulated benzene ring at an angle of $11.8^{\circ}$, i.e. considerably less than that of the l-tetralone itself ( $22^{\circ}$ ). The angles under comparison are determined for different aggregative states of molecules , but sufficiently rigid structure of bicycle allows to assume that the variation of these parameters will not be great during dissolving of these substances. The bicyeling flattening was noted when UV spectra of Va-VIIa and Ve-VIIe were considered ${ }^{15}$.

It was to be expected that the effect of benzoyl fragment,flattening which was mentioned above, would have promoted the increment of basicity. Such a tendency is weakly displayed in compounds Ve-vile. But, probably, it reflects the fact that the endo-heteroatom which conjugated with $\mathrm{C}=0 \mathrm{group}$, in consequence of its influence on basicity increases when bicyclic system is flattened. At the same time benizilidene radical creates some kind of a screen to the carbonyl group, that should adversely affect its H-complex--formation with bulky molecule of phenol. The complex of

The Values of $\mathcal{V}_{\mathrm{C}=0}\left(\mathrm{~cm}^{-1}, \mathrm{CCl}_{4}\right)$, Dipole Moments ( $\mu$ in $D$, benzene, $25^{\circ} \mathrm{C}$ ), Integral Intensities $\left(I_{\mathrm{C}=0} \cdot 10^{4}\right.$ mole $\left.\cdot 1 \cdot \mathrm{~cm}^{-1}, \mathrm{CCl}_{4}\right)$ and $\Delta D_{\mathrm{OH}}\left(\mathrm{cm}^{-1}\right)$

these factors determines the character of changing of $\Delta \gamma_{\mathrm{OH}}$ values.

Analyzing $\Delta \nu_{\mathrm{OH}}$ values of seven-membered ring ketones, we can come to the conclusion that the steric hindrances created by benzilidene radical act as the dominating factor in reduction of the basicity of these compounds.

Introduction of heteroatom to the bicycle of the compounds of "e" group as well as "a" group, independent of the sizes of heterocycles, decreases the basicity. As the heteroatom is conjugated with the $\mathrm{C}=0$ group the reciprocal effect would have been expected. Any specific interaction of phenol with heteroatoms was not observed. The spectral curves of benzocycloalkanone derivatives and their heteroanalogues are similar. Besides, in the compounds of "b" and "c" groups whose substituent $R$ contains the same number of basic heteroatoms, their interaction with phenol was not observed. In the compounds of "a" and "e" groups the direct dependence between the values of $\Delta \nu_{\mathrm{OH}}, \nu_{\mathrm{C}=0}, I_{\mathrm{C}=0}$ and $\mu$ is abeent
( Pable 2 ). Here it reflects complicated relations between electronic and conformational effecta, acting in the investigated molecules and displaying their properties in different ways. Supposedly the polarization of the $C=0$ group and the total polarity of the ketone molecules playing a significant role in their H-association with phenol are overlapped by such factors, as steric hindrance of complex formation, or conformational rearrangement of bicyclic system caused by the $\mathbf{M}$ bridge groups of different aize and electronic nature.

In the note to Table $I$ the $\Delta \nu_{\mathrm{OH}}$ values of dioxides of sulphur-containing compounds are given. It is clear that a sudden intensification of electrondonating properties of bridge group $M$ observed at oxidation of $S$ to $\mathrm{SO}_{2}$ is accompanied by a quick decrease of basicity. In this case the electronic effects of bridge M clearly dominate over the conformational ones.

In order to determine the conductivity of electronic effect in molecules I- $X$, the correlation analysis of $\Delta \nu_{\mathrm{OH}}$ values was carried out by means of one-parameter equations ; 1 and 2 with $\sigma$-(Brown's constants ${ }^{16}$ ) and $\sigma^{\circ}$-parameters as well as the Yukawa-Tsuno's two-parameter equation $3\left(6^{\circ}\right.$ and $\sigma_{R}^{+}$-parameters were taken from ${ }^{17}$ ).

The obtained results, first of all, prove that the best description of electron properties of $\alpha$. B-unsaturated ketones investigated is achieved by using equations 1 and 3, which take into consideration not only the inductive effect, but also the resonance effect of substituent $R$. It should be noted that the sensitivity of the $\Delta \mathcal{V}_{\mathrm{OH}}$ values of the effect of substituent $R$, which was observed in compounds of differ ent series, is reflected by equations 1 and 3.practically the same way. According to the character of changes of parameters $m, m_{0}, A$, and $B$ the investigated series of compound may be represented by the following sequence: V $>\mathrm{I}>I I>I I I \approx$ $I V>V I \approx V I I I>V I I \approx I X \approx X$. The main factor determining this sequence, in our opinion, is the degree of acoplanarity of cinnamoyl fragment in the molecules of different sets. The

Table3
The Parameters of Correlations 1-3
Equation 1: $\quad \Delta \nu_{\mathrm{OH}}=m \sigma+0$

| I | M | - | c | c.c. ${ }^{\text { }}$ | $5_{0}^{5}$ | [ ${ }^{\text {t }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I | $\mathrm{CH}_{2}$ | -59 | 254 | 0.98 | 5 | 7 |
| II | s | -50 | 181 | 0.94 | 5 | 6 |
| III | $\mathrm{CH}_{2} \mathrm{CH}_{2}$ | -46.5 | 210 | 0.99 | 3 | 7 |
| IY | $\mathrm{CHPhCH}_{2}$ | -45 | 195 | 0.99 | 3 | 6 |
| I | $\mathrm{O}-\mathrm{CH}_{2}$ | -65 | 199 | 0.99 | 4 | 6 |
| YI | $\mathrm{S}-\mathrm{CH}_{2}$ | -39 | 180 | 0.99 | 3 | 6 |
| YII | $\mathrm{Se}-\mathrm{CH}_{2}$ | -25 | 177 | 0.92 | 3 | 6 |
| YIII | $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ | -44 | 197 | 0.99 | 3 | 6 |
| IX | $0-\mathrm{CH}_{2} \mathrm{CH}_{2}$ | -20 | 186 | 0.98 | 3 | 6 |
| X | $\mathrm{S}-\mathrm{CH}_{2} \mathrm{CH}_{2}$ | -22 | 177 | 0.98 | 3 | 6 |

Bquation 2: $\Delta \nabla_{\mathrm{OH}}=\mathrm{m}^{0} 0^{\circ}+C$

| $\underset{\text { set }}{\text { I }}$ | $\underline{1}$ | - | C | C.c. | So | n |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I | $\mathrm{CH}_{2}$ | -51 | 256 | 0.97 | 7 | 7 |
| II | 5 | -61 | 187 | 0.93 | 6 | 7 |
| III | $\mathrm{CH}_{2} \mathrm{CH}_{2}$ | -89 | 211 | 0.95 | 6 | 7 |
| IY | $\mathrm{CHPhCH}_{2}$ | -54 | 200 | 0.89 | 8 | 6 |
| I | $\mathrm{O}-\mathrm{CH}_{2}$ | -93 | 206 | 0.96 | 7 | 7 |
| YI | $\mathrm{S}-\mathrm{CH}_{2}$ | -43 | 180 | 0.98 | 2 | 7 |
| YII | $\mathrm{Se}-\mathrm{CH}_{2}$ | -26 | 180 | 0.87 | 6 | 7 |
| YIII | $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ | -54 | 203 | 0.93 | 4 | 6 |
| IX | $\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{2}$ | -39 | 187 | 0.95 | 5 | 7 |
| I | $\mathrm{S}-\mathrm{CH}_{2} \mathrm{CH}_{2}$ | -33 | 182 | 0.96 | 4 | 7 |

z - Correlation coefficient.
§ - Total dispertion.
$t$ - Tumber of points for correlation.

The compounds with the marimum electronic conductivity the derivatives of l-chromanone-4 (V), l-indanone (I) and

$$
\text { Equation 3: } \Delta \gamma_{\mathrm{OH}}=A \sigma^{\circ}+B \sigma_{R}^{+}+C
$$

| I |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: |
| set |$\quad \mathbf{M}$

benz [b] furan-3(2H)-one (III) - have practically flattened structure. Later on, acoplanarity of the cinnamoyl fragment is intensified periodically, first of all, by the increase of the acoplanarity of the hydrogenated cycle, which is connected with the cinnamoyl fragment.

The authors of the communication ${ }^{18}$ for 2 -aryliden-4-phe-nyl-l-tetralones (IV) have succeeded in proving that the increase of electrondonating properties of $R$ substituent does not bring about only the increase of its conjugation with carbonyl group, but at the same time cinnamoyl frag:ment and the bicycle conjugated with it flatten out. This peculiarity of conjugated aystems can be controlled by the change of the vicinal constants of spin-spin interaction (J) of the $\mathrm{CUPhCH}_{2}$ bridge-group protons. It turned out that in this set of compounds, $R=\mathrm{NO}_{2}$ substitution for $\mathrm{R}=\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ is accompanied by the change of dihedral angle in the $\mathrm{CHPhCH}_{2}$ group to $10-20^{\circ}$. Unfortunately, this approach of conjugated molecules conformational behavior analysis can have limited use only. Thus, the bridge groups of the compounds of I, II,

V-VII sets have no vicinal protons, and in the moleculee of the compounds belonging to the other sete a rapid (in MiNR time scale) invertability of partly hydrogenated cycle is observed. that results in the averaging of the constante.At the same time it is obvious that the phenomenon itself the changing of conformation of cinnamoyl fragment (or more exactly, the changing of its aooplanarity degree), if there are variations of $R$, is of general character. This mang that the $m, m_{0}, A$, and $B$ partly include this lability faotor of the conjugated sybtem of bonds.
Experimental

The data on the $\Delta \nu_{\mathrm{OH}}$ values of the majority of the compounds belonging to I, III, V and VIII sets are represented in ${ }^{2,4}$; the measuring of these values for the rest of ketones was carried out similarly: in the system $\mathrm{CCl}_{4}$ ketone ( 0.06 - 0.1 mole/1) - phenol ( 0.02 mole/l). i spectrometer UR-20 (prism - LiF, cell thickess 1 mmm The confidencial range of the $\Delta \nu_{\text {OH }}$ values is $\pm 2-3 \mathrm{~cm}^{-1}$ (confidence level 0.95). The correlation parameters were calculated using the least squares method at a computer ECM. The calculations. for equations 2 and 3 have been done by prof. V.A. Palm according to his programs, and the authors are grateful to prof. V.A. Palm for his assistance.

Referencea

1. V.D. Orlov and V.N. Tischenko, Vestnik Kharkovek.Unive, N 202 (11), 30 (1980).
2. V.D. Orlov, I.A. Borovoi, R.I. Zalevaki, Z. Geltz, Yu.N. Surov, and V.F. Lavrushin, Zh. Obsch. Chim., 49, 1613 (1979).
3. S.V. Zukerman, L.A. Kutulya, Yu.N. Surov, and V.F. Lavrushin, Khim. Geteroteikl. Soedin., 204, (1968).
4. V.D. Orlov, I.A. Borovoi, Yu.N. Surov, and V.F. Lavrushin, 2h. Org. Khim., 46, 2138 (1976).
5. V.D. Orlov, Yu.N. Surov, V.N. Tischenko, and V.F. Lavrushin, J. Chem. Soc., Perk. 2, 1983, 1977.
6. V.D. Orlov, I.A. Borovoi, and V.F. Lavrushin, Zh. Org. Khim., 14, 2587, (1978).
7. F.G. Yaremenko, V.D. Orlov, O.M. Tayguleva, T.V. Handrimailova, and V.F. Lavrushin, Zh. Obsch. Khim., 42,434, (1979).
8. H. Bekker, The Introduction tol Electronic Theory of Organic Reactions (in Russ.) "Mir", Moscow. 1977, p. 351.
9. Y.Sh. Rao and R. Filler, J. Chem. Soc.. Chem. Comm., 471 (1976).
10. V.D. Orlov, I.A. Borovoi, and V.F. Lavrushin, Zh.Struct. Khim., 17, 691 (1976).
11. V.M. Bilobrov, V.I. Shurpach, and E.V. Titov, The Mechaniam of Organic Reaction and Intramolecular Interaction, (in Ruse.) "Naukova Dumka", Kiev, 1979, p. 33.
12. E.A. Braude and F. Sondheimer, J. Chem. Soc., 3754 (1955).
13. A. Hoser, Z. Kaluski, H. Maluszynske, and V.D. Orlov, Acta Crystallogr., B36, 1256 (1980).
14. Z. Kaluaki, E. Skrzypezak-Jankin, V.D. Orlov, and I.A. Borovai, Ball. Acad. Polonaise Sci., ser. chim., 26, 869 (1978).
15. V. I. Orlov, O.A. Nodelman, and E.I. Mikhedkina, Zh. Obwh. Khim., 51, 1153 (1981).
16. H.E. Brown and Y. Okamoto, J. Am. Chem. Soc., 1958, 89. p. 4979.
17. V.aly Palm, The Fundamentals of the Quantitative Theory of 10rganic Reactions, (in Russ.) "Khimiya", Leningrad, 1977, pp.204,322.
18. V.D. Orlov, I.A. Borovoi, and V.F. Lavruahin, Zh.Obsch. Khim., 45, 126 (1975).

## Organic Reactivity

Vol.21. 4(76) 1984

PROGRAM PACKAGE FOR COMPUPER STORAGE AID AUTOMATIC SEARCH OF CORRELATION BQUATIOES ARD POR CALCULATION OF RATE AND EQUILIBRIUI COISTANTS. 2. ALGORITHM FOR SEARCH OF INDEX OF CORRELATIOX EQUATION PROM IDENTIPICATTON ARRAYS ON THE BASIS OF RRACTION AND SUBSTITUETY CODES.

> T. J. Juriado

Tartu State Univereity, Department of Organic Chonietry, 202400 Tartu, Eatonian S.S.R.

Received December 7, 1984

The algorithm for the search of reaction sete on the basis of digital reaction and subatituent codes has been presented. The search includes the comparison of ordered reaction and substituent codes with those inserted into the information arrave of the progren.

In the previoue paper of thie series the digital coding eyaten of the equations of chemical reaction accepted in our program package has been described. The montwchenical" part of the program of the search of correlation equations, the search of the correlation equation index on the basis of reaction and substituent codes reete on this syetem.

The search begins with the deterination of the reaction type index /RTI/ by means of a direct comparison of the or dered reaction code /ORC/ (for the mode of coding see paragraph 3 in Ref. 1) with items of the two-dimensional array of reaction codes /ARC/. If the ordered code does not colncide with the items of the ARC, the "inversion" of the ox dered code is carried out, i.e. the codes of the ilyst nucleophile and electrophile are replaced by the eecond ones and vice veraa, and the comparison is repeated. If the coincidence takes place, the comparison of ordered codes of van
iable substituents /CVS/ (for the mode of coding see paragraph 5 in Ref. 1) with the corresponding elemerts of identification arrays /IA/ follows after dividing up the ordered reaction code to the codes of structural units ( electrophiles and nucleophiles) and determining of the number and the equivalence indexes of the variable substituents in structural units.

The identification arrays are organized as one-dimensional arrays with complementary arrays of base addresses. Such a system quarantees, on the one hand, the compactness of arrays, on the other hand - the possibility of the compilation of an uncomplicated aystem for adding new codes to them. The mode of the substituent coding in identification arrays has been described in paragraph 4 in Ref. l. Making use of base addresses as well as of the substituent's code structure, the identification arrays could conventionally be divided into the arrangements of items corresponding to the bridge and secondary substituent codes of one substituent.Ordered codes of variable substituents are put into a two-dimensional array ACVS, every line of which corresponds to one substituent. Thus, the comparison of one code of a variable substituent and the corresponding elements of identification array means the comparian of a line of the ACVS array with a "line" of identification array, if the code of a variable substituent corresponds to the aubstituent in an inequivalent (if compared with other substituents) position. If the code of a variable substituent corresponds to the substituent in one of the $N$ equivalent positions, the line of the ACVS array is to be compared, depending on the result of every separate act of comparison, with one to $N$ "lines" of the identification array.

Every separate comparison as well as the total comparison cycle has three possible results:

- total coincidence of codes, i.e. the ordered substituent was the same that was coded in the identification array;
- "connectivity" of the ordered code to that of the identification array. The latter result is possible in case there is the code of variable secondary substituent /VSS/ among
the codes of secondary substituents /CSS/ of the identification array (see paragraph 4 in Ref. 1.). It is checked up in such a case if the ordered code of variable substituent satisfies the requirements which allow the calculation of numerical characteriatics (aubstituent constants - SC) for the ordered substituent according to the type of variable substituent in the identification array;
- the lack of the coincidence or the "connectivity". In the case of the pairwise coincidence of all the lines of the ACVS array with the "lines" of the identification array (i.e. the pairwise coincidence of all substituent codes of the order and the identification array) or the pairwise coincidence of all "lines" of the identification array without variable secondary substituents with the same number of the order lines and the pairwise connectivity of all other ordered substituents to the substituents of the identification array with the variable secondary substituent, the index of reaction set is equal to the index of the item of the corresponding reaction set in the array of base addresses. By a positive result, this index as well as the content of the array with the connectivity information is the main result of the functioning of the segments of the program package which calls for the reaction set search. If there were connected substituents, these activities would be followed by the check-up of the possibilities for the calculation of substituent constants and finding the rule code for these calculations. After that, the further subroutines will bring the search of correlation equations (the search of correlation equations with regard to solvent and temperature ) to the end.

A more detailed algorithm of the search of reaction set ia given in Principled Flow Chart of Program and in commenta and notes to the chart.

Comments and notes to the flow chart (the number of a comment is indicated in the square in the right upper corner of the corresponding flow chart block):

1. Block with comments.
2. Metasymbols for each case are given in brackete. Ac-

## PRINCIPLED FLOW CHAR'T OP REACTION SEARCH PROGRAM







tual messages are always printed in Russian, the translations are presented in the flow chart.
3. Codes of variable substituents are moved in from punch cards in one bridge code, the code of secondary substituent or a closing aymbol. For details see Appendix to the fourth paper of this series.
4. The arrays of base addresses in reaction set index search program are two-stepped: the firet one includes base addresses for reaction types in the second array of base addresses, the second step contains base addresses of actual reaction sets of these types in the identification array.Due to auch a syatem, the reaction types in the second array of the base addreases and the reaction sets of the identification array may have optional arrangement what substantially simplifies the addition of the new codes to the arrays.
5. Possible versions of the alkyl substituent connectivity to the substituent of the identification array with a variable substituent:
a) in the identification array, there is a variable secondary substituent of -2 or -5 type (see paragraph 4 in Ref. 1), i.e. saturated alkyl or the substituent or a "mixed" type (combined data processing for the alkyls and methyl derivatives), an alkyl secondary substituent isolated by one or more methylene bridge is ordered;
b) there is a variable secondary substituent of -3 or -4 type (functional group or methyl derivativea) in the identification array, any alkyl substituent may be ordered;
c) in the identification array, there is a methylene or ethylene bridge with a variable aecondary substituent of any type (with the exception, of the VSS in the aromatic ring), there are no bridges, in the order, and methyl or ethyl group, respectively, act as the secondary substituent;
d) there is a methylene or ethylene bridge with the varm iable secondary substituent of type -3 or -4 (functional group or methyl derivatives) in the identification array, the order includes no bridge code but ethyl or propyl (or some other alkyl substituent with a greater number of
chains), respectively, are the secondary substituente.
6. The proof of the feasibility of the ordered number and positions of secondary substituents comprises the following processes:
a) if the terminal bridge is methylene, ethylene or some other aliphatic fragment (a bridge of the OB group, see paragraph 5.1. in Ref. 1), the order may contain one secondary substituent, only;
b) if the terainal bridge is a cycle with one position of secondary substitution (a bridge of the COPS group ${ }^{1}$ ) the same. Moreover, if the code of the secondary substituent is ordered, indicating the position, its correctness is checked;
c) if the terminal bridge is a cycle with more than one acceptable position of secondary substitution (a bridge of the GMP group ${ }^{1}$ ), there are two possibilities:

- if the identification array contains a variable secondary substituent, only, the acceptability of the positions of the ordered substituents is checked;
- if the identification array contains, besides the variable substituent, also some other secondary substituents, their coincidence with the order is checked. In the case of their coincidence, the codes of non-identical secondary substituexts of the order are given via the common field to the program for writing of connectivity information.

7. See 6a).
8. The connectivity of the ordered substituent to a substituent of the identification array with variable secondary substituent of the -4 or -5 type (methyl derivative or "mixed" type substituent) can be observed with the following versions of the order (only the part following the codes which fully coincide with the codes of the corresponding line of the identification array has been presented):
a) the terminal bridge is methylene, the secondary substituents are alkyls and/or functional groups (and substituents equated with them);
b) the terminal bridge is ethylene, the secondary
groups are alkgls and/or Punctional groups (and substituents equated with them), substitution positions are indicated;
c) two methylene bridges, the secondary substituents are presented in 8a).
9. The connectivity information includes the following constants: the code of the terminal bridge, the type index of the variable secondary substituent, the codes of the ordered secondary substituents (with/without indication of the position of the secondery substitution) connected to the variable secondary substituents of the identification array, as well as the array with the arrangement of the coincidence and comnectivity of substituente /AAS/. If line $K$ of the order coincides with "line" $M$ of the identification array then the item of the AMS array with index $K$ is equalled to $M$, if there is no coincidence, but the connectivity can be observed, this item is equated to -M.

Thus, the positive result of the action of the described segments of the program package lies in the establishing of the coincidence (connectivity) of the ordered reaction codes and the codes of variable substituents with the corresponding items of the identification array as well as in the existing of rules for the further activities according to the search data. Output data given to the other segments of the program package include the index of the reaction set, the connectivity information and the rule code for calculation of substituent constants.

The negative result is obtained if either the ordered reaction code does not coincide with any of those belonging toi the reaction codes' array; at least one ordered code of the variable substituent does not coincide with the codes of the identification array; it is not possible to calculate the substituent constants for the connected structural fragments; or if there are some errors in the user's order. In evory definite case, the corresponding message about the character of the error, the failure or the imposeibility to eolve the order is printed. After that the program guarantees the no-operation input of the other data of the
unsolved order and the passing over to a new order if there is any.

## References.

1. T.J. Jüriado and V.A. Palw, Organic Reactivity 2l. 255(1984).

Organic Reactivity
Vol.21. 4(76) 1984

# PROGRAM PACKAGE FOR COMPUTER STORAGE AND AUTOMATIC SEARCH OF CORRELATION EQUATIONS AND FOR CALCULATION OF RATE AND EQUILIBRIUM CONSTANTS. <br> 3. ALGORITHM FOR SEARCH OF SOLVENT AND TEMPERATURE. 

T.J. Jüriado

Tartu State University, Department of Organic Chemistry, 202400 Tartu, Estonian S.S.R.

Received December 7, 1984

The algorithm of program segments for search of the ordered solvent and temperature has been presented. The solvent search includes the comparison of the indexes of the ordered solvents or the summary codes formed from the indexes and the concentration indicators of the solvent compounds with the corresponding items of the program information arrays. The search of the temperature is carried out if the search of the solvent ends with a positive result. This search includes a direct comparison of the ordered values with those inserted into the information arrays of the program.

In the previous paper of this series, the algorithm for the search of the reaction set index from the identification arrays on the basis of reaction and substituent codes has been described. The result of this search is the asaignment of the known values to the index of the reaction set/IRS/, to the rule code for calculation of substituent constante /RCCC/ and to the constants indicating the type of connectivity of the orderac substituents to the substituents with
a variable secondary substituent /VSS/ of the identification array /IA/.

Below, the algorithm of the using of the IRS value in the other segments of the program up to the completion of the reaction set search is described.

1. The Search of the Solvente.

The initial data of the program segments which guarantee the search of the reaction set in the ordered solvent are the index of the reaction set and the user's solvent order /so/ (moved in from punch cards). The So consists of the indexes of the compounds /IC, from one to three/, the concentrations of the second and third compounde /CC/, if there are any, and the indexes of their concentration dimension /ICD/. Por the ICD, the following values are accepted:

0 - mole per cent,
1 - volume per cent,
2 - weight per cent,
3 - concentration in moles.
In the array of the solvent codes, there could be the additional value $I C D=4$ denoting the unknown (volume or weight) percentage.

The program segment executes the search of the solvent and ending their activities with the positive result (i.e. in the arrays, there are the data for calculation of the ordered constant in the ordered solvent) assigns the values to the constants and array items named together the informa$t i o n ~ a b o u t ~ t h e ~ f o u n d ~ s o l v e n t(s) ~ / I A F S / . ~ I n ~ c a s e ~ o f ~ a ~ n e g a-~$ tive result, the program puts out the information concerning these solvents the data about which is contained in the prom gram arrays. The IAFS consiats of three constants - the index of the reaction set in the ordered solvent, the indicas tor of the coincidence type of the solvent and the index of the found solvent - and three arrays including the values of the compound concentrations and the indexes of the corresponding reaction aets for mixed solvents.

The search of the solvent includes the comparison of the solvent ueer's order (for pure (unicomponent) solvents) or
the summary code formed from the user's order of the binary or ternary solvente with the items of the arrays of solvent codes /ASC/.

The ASC are divided into the array of base addresses, the code array of binary solvents with two auxiliary arrays, the code array of ternary solvents with two auxiliary arrays and the array of solvent indexes.

The item indexes of the array of base addresses are, in the substance, the indexes of reaction set/IRS/, any item of the array indicatea the base address of the reaction set with the IRS index in the array of the solvent indexes /ASI/. The items of the ASI array /IASI/, in their turn, could be:

- the direct codes (indexes) of the pure solvents ( $0<I A S I<1000$ )
which are taken from the "Tablean ${ }^{2}$ and presented in Table 1;
- the indicators of correlation equations with pure solvents as a variable factor (IASI < 0),
- the indicators of the binary ( 1000 > IASI > 3000) or ternary solvents (IASI < 3000), /IBS and ITS, respectively/.

The difference [IBS - 1000] corresponds to the item index of the code array of binary solvente, [ITS - 3000]- that of the ternary solvents. The summary codes of such mixed solvents, only, in which the parameters of correlation equations are known, are inserted into the arrays of the codes of binary and ternary solvente.

The summary code of a binary solvent in the code array of binary solvents /SCBSA/ is expressed as

$$
S C B S A=I S P+\operatorname{CS} 2 \cdot 10^{5}+\operatorname{ICD} \cdot 10^{7}
$$

where ISP, CS2 and ICD are the indexes of the solvent pair in the binary solvent, the concentration of the second compound and the index of the concentration dimension. There are two auxiliary arrays for decoding of the IPS whose items with indexes $K$ are respectively the summary code of the solvent pair /SCSP/ and ISP. The SCSP code is formed as

$$
\operatorname{SCSP}=\operatorname{IS} 1 \cdot 10^{3}+1 S 2
$$

where IS1 and IS2 are the indexes (from Table 1) of the firat
and second compound of the binary solvent.
The arrays of the ternary solvents /ATS/ are formed analogically. The summary oode of the termary solvent /SCTSA/ is presented as two items of ATS array following one after another

$$
\begin{aligned}
& \operatorname{ATS}(K)=\operatorname{ICD} 3 \cdot 10^{4}+\operatorname{ICD2\cdot 10^{3}+\operatorname {IST}} \\
& \operatorname{ATS}(K+1)=\operatorname{CS} 2 \cdot 10^{6}+\operatorname{CS} 3 \cdot 10^{2}
\end{aligned}
$$

where $K$ is the odd index of the ATS array; IST, CS2, CS3, ICD2 and ICD3 are the index of the solvent triplet in the ternary solvent, the concentrations of the second and third compound, and their dimension indexes, respectively. The items of the auxiliary arrays form the compound code of the solvent triplet /CCST/ and IST, respectively. The CCST code is formed es CCST $=\operatorname{ISI} \cdot 10^{6}+\operatorname{IS2} \cdot 10^{3}+1 S 3$,
where ISl, IS2 and IS3 are the indexes of the three compounds.
All subarrays of solvent codes could be supplemented with new data without any remarkable difficulties.

The solvent order is put in (from punch cards, in our version) as follows:
a) for pure solvents - one description (punch card) with the solvent index;
b) for binary solvents - one description (card) with the index of the first compound, the second one with the index, concentration and the concentration dimension index of the second compound;
c) for ternary solvents - the same and the third description (card) with the index, concentration and the concentration dimension index of the third compound.

The compounds of binary and ternary solvents are to be ordered in the order of the increase of the solvent indexes. For further details, see Appendix to the next paper of this series.

Below, the activities of the program when ordering the solvents of various types are presented.
1.1. The Pure Solvent is Ordered.

The base address for the array of solvent indexes /ASI/ of the reaction set with the IRS index is found from the ar-
ray of the base addresses. At the first stage of the comparison, the items of the ASI array IASI < 1000 (i.e. pure solvents and the correlation equations with pure solvent as a variable factor), only, are considered. The coincidence of the ordered solvent index with IASI is found. Simultaneously, the indexes of the other pure solvents are written in the auxiliary arrays. If there are any correlation equations with pure solvents as a variable factor, their codes and reaction set indexes are written, too. If the coincidence of the ordered index with the IASI is found, the index of the reaction set in the ordered solvent /IRSS/ (equated to the IRS index) and the indicator of the solvent's coincidence type (equated to zero) are given via the common field to the other program segments.

If no coincidence but the correlation equation with the pure solvent (or some type of the pure solvent) as a variable factor is found, the IRSS is equated to the index of that reaction, set and the indicator of the coincidence type of the solvent - to the code of the correlation equation. The index of the found solvent is equated to the index of the ordered solvent. In both cases, the operation of the program continues with the search of temperature.

In case of negative result (i.e. if there is no possibility of calculating the ordered constants neither according to the equation for the pure solvent nor by means of the correlation equation with the pure solvent as a variable factor), then is printed the message indsating all the pure solvents in which the data for the ordered reaction can be calculated. During the following cycle of comparison are found the binary solvents containing the orderej solvent.The double indexes of those binary solvents are printed as [ISI] / [IS2]. For such and similar cases, the control blocks of the program are meant: if the constanta for the same reaction in various solvents are ordered, it is checked up, whether the list of solvents, mentioned above, has already been printed or not. In the last-mentioned case, the message: "See message to the previous job" (in Russian) is printed, only.

### 1.2. The Binary Solvent is Ordered.

The search begins with the formation of the ordered solvents pair index (analogically with the formation of the SCSP codes in the information array) and of the binary solvent summary code /SCBS/ whose structure is identical with that of the summary code in the codes' array of binary solvents /SCBSA/. When the base address has been obtained, follows the first cycle of comparison, in the course of which the binary systems of the array of solvent codes ( 1000 < IASI < 3000) are taken into consideration. Firet of all, the coincidence of the SCBS with the SCBSA is searched. At the same time, the following actions are accomplished :
a) the correlation equation with the mole percentage of the ordered solvents pair as a variable factor is searched. If there is any, its index is written;
b) the concentration of the second compound and the indexes of the corresponding reaction sets for the binary system of the array of the solvent codes /ASC/ which coincide with the order in the solvent pair but differ in the compounde' concentration are written into the auxiliary arrays;
c) the summary codes of the solvent pair /SCSP/ for the solvents having a common compound with the ordered solvents are written into another auxiliary array.

If the coincidence of the SCBS with the SCBSA is found, the actions mentioned in statements a) - c) are discontinued, the index of the reaction set in the ordered solvent /IRSS/ is equated to the value of the index of the corresponding reaction set/IRS/, the indicator of the coincidence type to zero and the index of found solvent - to the concentration value of the second compound multiplied by a handred.

If there is no coincidence, the presence of the correlation equation with the mole percentage as a variable factor is checked up. If there is such an equation, the IRSS is equated to the index of the corresponding set and the indicator of the coincidence type to a unity.

The third version of the positive result presumes the presence of binary systems coinciding with the order in the solvents' pair and the dimension indicator of the concentration but differing in the concentration. The versions with their corresponding indexes of reaction sets included into the code arrays of the solvents are written into the information arrays of the found solvents /IAFS/ while the reaction set index's value in the ordered solvent/IRSS/ equals 0 (in case of various concentrations) or -1 (in case of only one concentration level, differing from the concentration order). The indicator of the coincidence type is equated to the number of the found version and to zero, respectively. If the dimension indicator of the concentration in the solvent array differs from that of the order, too, enabling to obtain the positive results if the order is repeated, the corresponding messages are printed.

In all the above-mentioned cases follows the return to the main routine in order to find the temperature.

If the positive result cannot be achieved and the lists of the systems present in the array of solvent codes /ACS/ were not printed in previous jobs, there are two possible continuations:
a) there are data for calculation of the constanta for binary systems having a common compound with the ordered one. Then the existence of the data for the compounds of the ordered solvents as pure solvents as well as the presence of the correlation equations with the pure solvents as a variable factor are found. All mentioned data are printed.
b) if there was no coincidence concerning the solvent, the lists of those golvents for which there are data of the or dered reaction in the information arrays are printed.

### 1.3. A Ternary Solvent is Ordered.

Generally, the operations of the program are similar with those described in paragraph l.2. keeping, of course, in mind, that in the firat cycle of the comparison the ternary syotems of the array of solvents codes (IASI > 3000) are considered. At first, the coincidence of the solvent triplet index
and of the corresponding part of the ternary solvent code formed from the solvent order is searched. Simultaneously the concentrations, non-identical with the order, of the aame aolvent triplet as well as the data about correlation equations with the mole percentage as a variable factor, are written into the auxiliary arrays. The data on the binary and ternary systems which have two common compounds with the ordered solvents are fixed into the auxiliary arrays. too.

Positive results are similar with those described for binary solvents. In the case of negative results the list of binary and ternary syatems which have two common compounds with the ordered solvent is printed, if it has not been done in the previous jobs.

All cases with negative results both for pure and binary or ternary solventa are followed by the no-operation move-in of the temperature order and operational move-in of the continuation constants /KCC, see in Ref. 1/.

When carring out the program of the solvent search various messages about failures and errors, may occur, after which depending on the character of the disorder the job is either stopped or continued, passing on to the next activities as in case of negative results.
2. The Search of the Temperature.

Every order may contain up to three temperatures for one reaction. The temperatures are moved in one by one (from punch cards), for details see the Appendix to the next paper of this series.

Temperature data are inserted into the following arrays:

- the array of base addresses. The elements of its items are, in their content, the indexes of the reaction sets in the ordered solvents /IRSS/, the items themselves indicate the base addresses of the reaction sets with the IRSS indexes in the temperature array /TA/;
- the temperature array /TA/, whose may have the following values:
a) $T=-500$. - the correlation of data, for which the
temperature is not indicated;
b) $T>1000$. - the variable temperature code, i.e. for this reaction set the temperature is one of the variable factore in the correlation equation.Difference $K=T-1000$. equals the index of the array of temperature intervals /ATI/;
c) $T=-1000$. - vacant code (the closing aymbol of the temperature list for a current reaction);
d) all other T-values are equal to actual temperatures. The indexes of the items of the MT array are, in their content, the indexes (sequence numbers) of correlation equam tions.

The temperature search is carried out after positive result of the solvent search, only. There are three different versions of the temperature search depending on the results of the solvent search:
a) a full coincidence of the ordered solvent is established or the correlation equation with the solvent as the variable factor is found. If the exact temperature value is not obtained, the indexes of correlation equations for the ordered reaction are defined (the rate or equilibrium constants are calculated) at all possible temperatures. If the ordered temperature coincides with that of the temperature array or the program uses the correlation equation with a variable temperature, the calculation of constants at the ordered temperature is realized;
b) one (for binary solvents) or more sygtems (for ter nary solvents) with non-identical concentration are found. At firgt, the coincidence of the temperature is checked. If there is no coincidence, the data at the nearest temperature when equated with the ondered temperature are taken for calculations;
c) some binary systems with non-identical concentrations are found. The temperatures are taken into account, only. If they are absent, the message "There are no data to carry out correlation at $T^{0}=[T] "$ (in Russian) is printed.

When the search of the temperature value is ended, the following data are given over for further operations of the program: the ordered temperature value, the index of the cor-

Vode Solvent Formula

1. $\mathrm{H}_{2} \mathrm{O}$
2. $\mathrm{D}_{2} \mathrm{O}$
3. $\mathrm{CH}_{3} \mathrm{OH}$
4. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
5. $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$
6. $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$
7. $\mathrm{C}_{5} \mathrm{H}_{21} \mathrm{OH}$
8. $\mathrm{C}_{6} \mathrm{H}_{23} \mathrm{OH}$
9. $\mathrm{S}_{7} \mathrm{H}_{15} \mathrm{OH}$
10. $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{OH}$
11. $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
12. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$
13. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{OH}$
14. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
15. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$
16. $\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{COH}$
17. $\mathrm{CH}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{CHOH}$
18. $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{CHOH}$
19. $\mathrm{C}-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{OH}$
20. $\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{OH}$
21. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}$
22. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{OH}$
23. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$

Code Solvent Pormula

$$
\text { 23. } \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}
$$

24. $\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}$
25. $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{OH}$
26. $\mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{OH}$
27. $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
28. $\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
29. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
30. $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
31. $\left(\mathrm{HOCH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}$
32. $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{OH}$
33. $\mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{OH}$
34. $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$
35. $\left(\mathrm{CP}_{3}\right)_{2} \mathrm{CHOH}$
36. $\mathrm{H}_{2} \mathrm{O}_{2}$
37. $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{OH}$
38. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{OH}$
39. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$
40. $\mathrm{HO}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
41. $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{OH}$
42. $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{OH}$
43. $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
44. $\mathrm{C}_{2} \mathrm{H}_{5}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{OH}$
45. $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$

Code Solvent Formula Code Solvent Pormula

72. $\mathrm{HCOOC}_{2} \mathrm{H}_{5}$

Gode Solvent Formule
Code Solvent Formula
73. $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$
74. $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$
75. $\mathrm{CH}_{3} \mathrm{COOC}_{4} \mathrm{H}_{9}$
76. $\mathrm{CCI}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$
77. $\mathrm{CH}_{2} \mathrm{ClCOOC}_{2} \mathrm{H}_{5}$
78. $\mathrm{CNCH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5}$
79. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOC}_{2} \mathrm{H}_{5}$
80. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOCH}_{3}$
81. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOC}_{2} \mathrm{H}_{5}$
82. $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{CO}_{3}$
83. $\left(\mathrm{COOC}_{2} \mathrm{H}_{5}\right)_{2}$
84. $\mathrm{CH}_{2}\left(\mathrm{COOC}_{2} \mathrm{H}_{5}\right)_{2}$
85. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OOCCH}=\mathrm{CHCOOC}_{2} \mathrm{H}_{5}$
86. $\quad\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{PO}_{4}$
87. $1,2-\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{COO}\right)_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$
88. $\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{3} \mathrm{PO}_{4}$
89. $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PO}_{4}$
90. $\left(3-\mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{PO}_{4}$
91. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}_{4}$
103. $\mathrm{CH}_{3} \mathrm{CON}\left(\mathrm{CH}_{3}\right)_{2}$
104. $\mathrm{CH}_{3} \mathrm{CONHC}_{4} \mathrm{H}_{9}$
105. $\mathrm{CH}_{3} \mathrm{CONH}_{2}$
106. $\mathrm{PO}\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]_{3}$
107. HCN
108. $\mathrm{NH}_{3} \mathrm{CN}$
95. $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
96. $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CCOC}_{2} \mathrm{H}_{5}$
275. $\mathrm{EtOOCOH}_{2} \mathrm{COOH}$
276. $\operatorname{trans}-\mathrm{Et} 00 \mathrm{CCH}=$
$=\mathrm{CHCOOBt}$
277. $\mathrm{MeOOCCH} \mathrm{CH}_{2} \mathrm{COOMe}$
278. $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}$
279. $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OOC}$
280. $\mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{OOC}$
281. $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OOC}$
307. 1,2-( COORt ) $2-\mathrm{C}_{6} \mathrm{H}_{4}$
332. 1,4-[000(4-OHex-。
$\left.\left.-\mathrm{C}_{6} \mathrm{H}_{4}\right)\right]_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$
97. $\mathrm{HCONH}_{2}$
98. $\mathrm{HCONHCH}_{3}$
99. $\mathrm{CH}_{3} \mathrm{CONHCH}_{3}$
100. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CONHCH}_{3}$
101. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CONHC}_{2} \mathrm{H}_{5}$
102. $\mathrm{HCON}\left(\mathrm{CH}_{3}\right)_{2}$
119. $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$
120. $\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)_{2} \mathrm{O}$
121. $\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2} \mathrm{O}$
122. $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right]_{2} \mathrm{O}$
123. $\left(\mathrm{C}_{5} \mathrm{H}_{11}\right)_{2} \mathrm{O}$
124. $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right]_{2} \mathrm{O}$

Table 1 continued

Gode Solvent Pormula
Code Solvent Pormula
109. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$
110. $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CN}$
111. $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{CN}$
112. $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{CN}$
113. $\mathrm{NCCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$
114. $\mathrm{NC}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CN}$
115. $\mathrm{NC}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CN}$
116. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CN}$
117. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CN}$
118. $\mathrm{CH}_{2}=\mathrm{CHCN}$
282. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCN}$
283. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CN}$
284. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCN}$
285. $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{CN}$
286. $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{CN}$
287. $\mathrm{PhCH}_{2} \mathrm{CN}$
288. trans $-\mathrm{NCCH}=\mathrm{CHCN}$
333. $\mathrm{NC}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CN}$
291. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
292. 2-ONe-C $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$
293. $3-\mathrm{CMe}_{6} \mathrm{C}_{4} \mathrm{CH}_{3}$
294. $4-\mathrm{CMe}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$
295. $\mathrm{CH}_{3}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{OCH}_{3}$
296. $\mathrm{CH}_{3}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)_{4} \mathrm{OCH}_{3}$
308. $\mathrm{CH}_{2}=\mathrm{CHOBu}$
125. $\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right)_{2} \mathrm{O}$
126. $\mathrm{OCH}_{2} \mathrm{CHCH}_{2} \mathrm{Cl}$
127. $\left(\mathrm{ClCH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}$
128. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{3}$
129. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}$
130. $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{O}$
131. $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)_{2} \mathrm{O}$
132. $\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2} \mathrm{CH}_{2}$
133. $\left(\mathrm{CH}_{3} \mathrm{OCH}_{2}\right)_{2}$
134. $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCH}_{2}\right)_{2}$
135. $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}$
136. $\mathrm{HC}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-\mathrm{C}$
137. $\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{O}$
138. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}$
139. $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}_{\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}}$
140. $\left(\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}$
289. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{3} \mathrm{H}_{7}$
290. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
157. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$
158. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$
259. $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$
160. $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}$
161. $2-\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$
162. $2,6-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}$
163. $\mathrm{CH}_{3} \mathrm{NO}_{2}$

TOt

|  | －202 |
| :---: | :---: |
|  | － 10 z |
| $9_{0} 9$（ $\left.\varepsilon_{\text {H0 }}\right)$ | －002 |
|  | －66T |
|  | －86โ |
|  | －L6T |
|  | －96 |
|  | －56T |
|  | －$\downarrow 6$ T |
| $\mathrm{HS}^{5} \mathrm{H}^{2}{ }_{0}$ | －$\downarrow$ L $\tau$ |
| $\mathrm{S}-\mathrm{HO}=\mathrm{HD}-\mathrm{HO}=\mathrm{HO}$ | －عL $\tau$ |
| ${ }^{\text {SO }}$ | －2LT |
| $s^{2}\left(S_{H}{ }^{2}{ }_{0}\right)$ | －TL $\tau$ |
|  | －OLT |
| $\mathrm{Z}_{0}{ }^{2} \mathrm{LHO}^{2}\left({ }_{\text {HD }}\right)^{2} \mathrm{HD}$ | －69 |
| $0 \mathrm{~S}^{2}\left(\varepsilon_{\text {HD }}\right)$ | －89 |
| $z_{0 S}$ | － $29 \tau$ |
| $\mathrm{Z}_{\text {ONHO }}{ }^{2}$（ $\varepsilon_{\text {HD }}$ ） | $\bullet$－tદ |
|  | － 0 ¢ |
| $\varepsilon_{\mathrm{HD}}{ }^{\dagger} \mathrm{H}^{9} \mathrm{D}_{\mathrm{O}} \mathrm{z}^{\text {ON－}}$ | －008 |
| $\varepsilon_{\text {HO }}{ }^{\dagger} \mathrm{H}^{9} \mathrm{D}^{-} \mathrm{Z}_{\mathrm{ON}}-\varepsilon$ | －662 |
| $\varepsilon_{\mathrm{HO}}{ }^{\dagger} \mathrm{H}^{9} \mathrm{D}^{-} 乙_{\mathrm{ON}-2}$ | －862 |
| $\tau_{0 N} \varepsilon \tau_{\mathrm{H}} 9_{0}$ | －L62 |
|  | －991 |
| $\tau_{0 N} L_{H} \varepsilon_{0}$ | －991 |
| $Z_{O N} S_{H} Z_{0}$ | －ャ9 |


| $2^{2} \varepsilon_{\text {HD }}$ HD $\chi_{\text {HDD }}{ }^{\varepsilon}\left(\varepsilon_{\text {HD }}\right)$ | －08T |
| :---: | :---: |
| $\varepsilon_{\mathrm{HO}}{ }^{¢}\left(\mathrm{~L}_{\mathrm{HO}}\right)^{\varepsilon_{\text {HO }}}$ | －6LI |
| ${ }^{2}\left(\mathcal{S}_{H} \Sigma_{0}\right)\left(\varepsilon_{\text {H0 }}\right)$ но | －8LT |
| $\varepsilon_{\text {HD }}{ }^{\dagger}\left(\tau_{\text {HD }} \varepsilon^{\text {H }}\right.$（ | －Ll |
| $\varepsilon_{\text {HD }} \varepsilon^{( } \tau_{\text {HD }} \varepsilon^{\varepsilon_{\text {Hо }}}$ | －9LI |
| $S_{\text {H }} \Sigma_{\text {O }} \varepsilon_{\text {HD }}$ HD $^{\varepsilon_{\text {H }}}$ | －SLT |
| $\tau_{0} \mathcal{O}_{O S} S^{5} 9_{0}$ | －9tを |
| $\mathrm{z}_{\mathrm{OS}} \quad \varepsilon_{0 \mathrm{~S}}$ | －STE |
|  | －80¢ |
| $\mathrm{N}^{\varepsilon}\left({ }^{6}{ }^{\dagger}{ }^{\text {b }}\right.$ ） | －95I |
| $N^{\varepsilon}\left(L^{L} \varepsilon_{0}\right)$ | －SST |
| $N^{\varepsilon}\left(S_{H} L_{0}\right)$ | $\bullet$－${ }^{\text {－}}$ |
|  | －$¢ ¢ I$ |
| $\varepsilon_{\text {HOHN }}{ }^{\text {G }}{ }^{9}{ }_{0}$ | －2¢T |
| ${ }^{2}\left[{ }^{2}\left(\varepsilon_{\text {HD }}\right) \mathrm{N}\right] \mathrm{D}=\mathrm{NH}$ | －TST |
| HIT－HD $=$ HD -HD ＝$=\mathrm{H}$ | －0¢T |
| $\mathrm{N}^{\text {T }} \mathrm{H}^{\text {S }} 0$ | －6tr |
| $2_{\text {HN }}{ }^{\text {L2 }} \mathrm{L}_{\mathrm{H}} \mathrm{O} \tau_{0}$ | －†をદ |
| $\tau_{\text {HNL }} L_{H} \varepsilon_{0}$ | －8ヤT |
| $z_{\text {HND }} \varepsilon^{\text {（ }}$（ $\varepsilon_{\text {HD }}$ ） | $\cdot 2 巾 \tau$ |
| $\chi_{\text {HAN }}{ }^{2}$ | ${ }^{-9 \downarrow \tau}$ |
|  | － 5 ¢t |
| $\varepsilon_{\mathrm{HN}}$ | －カ力t |
| $2_{\text {HN }}{ }^{5}{ }^{\text {9 }}$ 9 | －をゅt |
|  | －てヵし |
| $\tau_{\mathrm{HN}} \mathrm{H}^{6} \dagger_{0}$ | －「力I |

binmion quantos epoo

Table 1 continued

| Code | Solvent Pormula | Code | Solvent Formula |
| :---: | :---: | :---: | :---: |
| 181. | $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}$ | 203. | $\mathrm{C}_{20} \mathrm{H}_{8}$ |
| 182. | $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}_{3}$ | 204. | $1-\mathrm{CH}_{3}-\mathrm{C}_{10} \mathrm{O}_{7}$ |
| 183. | $\mathrm{C}-\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{O}$ | 205. | $\mathrm{C}_{10} \mathrm{H}_{12}$ |
| 184. | $c-\mathrm{C}_{6} \mathrm{H}_{12}$ | 309. | 1,2,4-( $\left.\mathrm{CH}_{3}\right)_{3}-\mathrm{C}_{6} \mathrm{H}_{3}$ |
| 185. | $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{11}$ | 337. | $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{CH}=\mathrm{CH}_{2}$ |
| 186. | $\mathrm{C}_{10} \mathrm{H}_{18}$ | 206. | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ |
| 335. | $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CH}_{3}$ | 207. | $\mathrm{CHCl}_{3}$ |
| 336. | $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{14} \mathrm{CH}_{3}$ | 208. | $\mathrm{CCl}_{4}$ |
| 187. | $\mathrm{CH}_{2}=\mathrm{CHC}\left(\mathrm{CH}_{3}\right)=\mathrm{CH}_{2}$ | 209. | $\mathrm{CHCl}_{2} \mathrm{CH}_{3}$ |
| 188. | $\mathrm{C}_{6} \mathrm{H}_{10}$ | 210. | $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ |
| 189. | $\mathrm{C}_{6} \mathrm{H}_{6}$ | 211. | $\mathrm{CH}_{3} \mathrm{CCl}_{3}$ |
| 190. | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$ | 212. | $\mathrm{CHCl}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ |
| 191. | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{2} \mathrm{H}_{5}$ | 213. | $\mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$ |
| 192. | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ | 214. | $\mathrm{CCl}_{3} \mathrm{CHCl}_{2}$ |
| 193. | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}_{2}$ | 215. | cis-CHCl=CHCl |
| 216. | trane-CHCl=CHCl | 319. | $\mathrm{CPCl}_{3}$ |
| 217. | $\mathrm{CHCl}=\mathrm{CCl}_{2}$ | 320. | $\mathrm{CPCl}_{2} \mathrm{CF}_{2} \mathrm{Cl}$ |
| 218. | $\mathrm{CCl}_{2} \mathrm{CCO}_{2}$ | 321. | $1,2,4-\mathrm{Cl}_{3}-\mathrm{C}_{6} \mathrm{H}_{3}$ |
| 219. | $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl}$ | 338. | $\mathrm{OCH}_{2} \mathrm{CHCH}_{2} \mathrm{Cl}$ |
| 220. | $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Cl}$ | 238. | $\mathrm{Br}_{2}$ |
| 221. | $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$ | 239. | $\mathrm{CH}_{2} \mathrm{Br}_{2}$ |
| 222. | $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{Cl}$ | 240. | $\mathrm{CHBr}_{3}$ |
| 223. | $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$ | 241. | $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$ |
| 224. | $\mathrm{Cl}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Cl}$ | 242. | $\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ |
| 225. | $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{Cl}$ | 243. | $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}$ |
| 226. | $\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Cl}$ | 244. | $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHBr}$ |

Code Solvent Formula
227. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$, 228. $_{1-\mathrm{CH}_{3}-2-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}}$
229. $1-\mathrm{CH}_{3}-3-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$
230. $1-\mathrm{CH}_{3}-4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$
231. $1,2-\mathrm{Cl}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$
232. $1,3-\mathrm{Cl}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$
233. $1,4-\mathrm{Cl}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$
234. $1-\mathrm{Cl}-2-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$
235. $1-\mathrm{Cl}-4-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$
236. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Cl}$
237. $1-\mathrm{Cl}-\mathrm{C}_{10} \mathrm{H}_{7}$
310. $\quad \mathrm{CPCl}_{2} \mathrm{CPCl}_{2}$
317. $\mathrm{CH}_{3} \mathrm{Cl}$
257. $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~J}$
258. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~J}$
259. $\mathrm{C}_{5} \mathrm{~F}_{12}$
260. $\quad \mathrm{C}_{7} \mathrm{~F}_{16}$
261. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$
262. $\mathrm{SiCl}_{4}$

Code Solvent Pormula
245. $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}$
246. $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$
247. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$
248. $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{Br}$
249. $\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Br}$
250. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$
251. $1-\mathrm{Br}-\mathrm{C}_{10} \mathrm{H}_{7}$
318. $\mathrm{CH}_{3} \mathrm{Br}$
252. $\mathrm{CH}_{3} \mathrm{~J}$
253. $\mathrm{CH}_{2} \mathrm{~J}_{2}$
254. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~J}$
255. $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~J}$
256. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHJ}$
263. $\mathrm{GeCl}_{4}$
264. $\mathrm{SbCl}_{5}$
311. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCOCl}$
312. $\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{COCl}$
322. $\mathrm{CH}_{3} \mathrm{COCl}$
323. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$
324. $\mathrm{CH}_{3} \mathrm{COBr}$
relation equation (i.e. the index of the found temperature in the temperature array) and the value of the found temperature or the arrays with the indexes of the correlation equations and corresponding temperatures, if there was more than one of them.

Due to the structure of the program, the calculation of the ordered rate or equilibrium constant (constants) according to found correlation equation (equations) and the print of the corresponding part of the final results are accomplished immediately after the search of each temperature. Then the next ordered value of the temperature is searched etc. If the same calculations are to be executed for various temperature values (e.g. there are the data at one single temperature for the ordered reaction, only), these calculations as well as the print of the results is not repeated.

After the calculations and the print of results for all temperature values, follows the move-in of the KCC. The further operations depend on its value.
References

1. T.J. Juriado, Organic Reactivity, 21, 375 (1984). 2. Tables of Rate and Equilibrium Constants of Heterolytic Organic Reactions. Vol. 5(II), VINITI, Moscow, 1979.

Organic Reactivity
Vol.21. 4(76) 1984
program package for computer storagr and automatic sEARCH OF CORRELATION EQUATIONS AND FOR CALCULATIOA of rate and equiluibrium constants.
4. ALGORITHM FOR CAICULATION OF RATE AND EQUILIBRIUM constants on the basis of resuias of reaction set search. Short manual of progran usk.

$$
\begin{gathered}
\text { T.J. Júriado } \\
\text { Tartu State University, Department of Organic Chemistry, } \\
202400 \text { Tartu, Estonian S.S.R. }
\end{gathered}
$$

Received December 13, 1984
The algorithm of the final segments executing the ayalysis of note codes, the search and calculation of substituent constants, the calculation of rate or equilibriun constants and some other actions are presented. In the Appendix, a Short Manual for move-in of the input data illustrated with an actual example and an example of the print of resulte is given.

The segments of the reaction set search described in two previous papers ${ }^{1,2}$ gave as a final result the values for constants and array items which are used in the final parts of the program - in the segment of the analysis of note codes, of the search and calculation of substituent constants /SC/ and of the calculation of rate or equilibrium constants according to correlation equations as well as in the segment of the print of final results.

Prow the results of the segments of the reaction set index search on the basis of reaction and substituent codes, those are the rule code for calculating the substituent constants /RCCC/ and constants which determine the type of the connectivity of the ordered substituents to those from the
identification array with a variable secondary substituent /VSS/. The latter constants called below the connectivity information include the code of the terminal bridge,the index of VSS according to the system given in paragraph 4 of Ref. 3, the ordered codes of secondary substituents /CSS; connected to the VSS of the array of the arrangement of coincidence and connectivity /AAS/. The solvent search program transfers the information to the final segments by the value of parameter called the indicator of the coincidence type of the ordered solvent /ICTS/. If the ICTS is less than zero, the solvent is one of the variable factors in the equation used for final calculations and the index of the found solvent /IPS/ is needed to complete these calculations. From the results of temperature search, the index (call number) of the correlation equation /ICE/ is the most essential one. If the temperature acts as a variable factor in the final equation, the ordered value of temperature /T/ is used, too.

The main routine controles the segment work with the value of the parameter of the repeated call/PRC/. In many cases the calculations of ordered constants are performed according to some alternative equations. In case of the repeated call of the calculation segments, the PRC is equated to a certain value and a part of the segment is omitted.

Besides the calculated values of the ordered constants, the segment actions also provide information for printing block, including the type indexes of the equation coefficients, the note codes etc.

Below, the main actions of the program segment are presented.

1. The Determination of Codes and Indexes from the Array of Combined Codes.

The segment work begins with the unpacking of the combined codes of the correlation equation /CCCE/. The CCCE are inserted into the one-dimensional array, the item indexes of which correspond to the indexes of the correlation equations (i.e. the indexes of temperature array/TA/, see Ref. 2) and is generally decoded as

$$
\operatorname{CCCE}=\mathrm{NC} \cdot 10^{7}+\operatorname{ICT} \cdot 10^{5}+\text { CICB },
$$

where NC, ICT and CICB denote the combined index (or code) of the note, the type index of rate or equilibrium constant and the combined index of the correlation equation, respectively. The NC structure is presented in paragraph 4. For the ICT, the following values are accepted (for details see "Tables" ${ }^{4}$ ):
$1 \mathrm{pK}_{\mathrm{A}}$
$2 \mathrm{pK}_{\mathrm{B}}$
$3 \quad 1 \mathrm{gk} \mathrm{A}_{\mathrm{A}}$
$4 \quad \operatorname{lgk}_{A B}$
$5 \quad \operatorname{lgk}_{\text {AC }}$
$6 \quad \operatorname{lgk}_{\mathrm{BC}}$
$7 \lg _{A B C}$
$8 \quad \operatorname{lgk}_{\mathrm{A}} / \mathrm{lgk}_{\mathrm{H}}$
$9 \quad \operatorname{lgk}_{B}$
The ICT value is used to control the printing. The CICB is formed as

$$
\text { CICB }=\text { NPCE } \cdot 10^{4}+\text { ICE }
$$

where NPCE and ICE are the parameter number of the correlation equation in the array of equations with NPGB parameters.
2. The Check and Rearrangement of the Substituent Codes in the Connectivity Information Array.

The number of variable substituents as the factors of the correlation equation (the number of ordered substituente connected to the substituents of the identification array) is determined by the items of the connectivity information array. If the number is greater than unity, the accordance of the arrungement of the connected substituents in the array of the coincidence arrangement AAS to the arrangement of the correlation equation terms corresponded to variable substituents is checked. The rearrangement of the AAS items and the calculation of the rule code corrected value for calcu-
lating the substituent canstants /RCCC/ is carried out, if required.
3. The Correction of the Position Indexes of the Secondary Substituents Connected to the Variable Secondary Substituents of the Identification Array According to the RCCC.

The correction is needed for the unified use of the constants for meta- and para-substituents in all aromatic cycles in the cases when an aromatic cycle functions as the terminal bridge, provided that the position numbers of the cycle do not begin with the free valency ( heterocycles, 2-naphthyl). In such cases, the RCCC has value $2,3,4$, or 5.
4. The Analysis of Notes and the Determination of the Value of the Control Constent for Note Printing.

The combined index of the note /NC/ determined from the combined codes of the correlation equation can have the following values:
a) NC $=0$ - there are no notes to given equations;
b) $0<\mathbb{N C}<100$ - the direct digital code of the note. The notes are used to specify the compound structure (cis-trans--isomers, threo- and erythro-compounds), reaction conditions or experimental methods etc. The bulk of the information needed by a user is printed in the final results according to the value of the control constant for note printing;
c) NC > 100 - the address of the combined code of the note /CCN/ in the array of the CGN $C C N=N N \cdot 10^{3}+$ BAN,
where NN is the number of notes to the given equation and the BAN is the base address of them in the note array $/ \mathrm{NA} /$.

The NA is used for information storage in two cases:

- there is more than one note, connected with the correlation equation;
- the correlation equation has one or more alternatives, i.e. the data are correlated according to two or more different but indistinguishable in the sense of the adequacy equations. In this case, there are the combined codes of alternative equations /CCAE/ in the note array

$$
\text { CGAE }=N C \cdot 10^{5}+\text { CICE }
$$

The NC and CICE for the alternative equations are given via the common field to the main routine and are used after the calculation of the ordered constant according to the main equation.
5. The Unpacking of the Type Indexes of the Equation Coefficients, the Assignment of Coefficients.

The type indexes of the equation coefficients /TIEC/ are given in Table 2. The Table includes the codes for those coefficients, only, which are actually presented in the arrays. The index indicates the sequence number of the variable substituent. Letter $\alpha$ presents the coefficient of the temperature parameter $\left(10^{3} / \mathrm{T}\right)$, the symbola like $\mathrm{c}\left(10^{3} / \mathrm{T}\right) \cdot 6^{\text {要 }}$ indicate the coefficients of cross terms $\left(\left(10^{3} / T\right) \cdot \delta^{\frac{1 \pi}{m}}\right.$ etc.).

Table 1.

| 1. | 91 | 28. | $\omega$ |
| :---: | :---: | :---: | :---: |
| 2. | 92 | 29. | $\delta$ |
| 3. | $\rho_{R(1)}^{+}$ | 30. | $\delta^{\circ}$ |
| 4. | $\rho_{R(2)}^{+}$ | 36. | ${ }^{c}\left(10^{3} / \mathrm{T}\right) \cdot 6^{\text {a }}$ |
| 5. | $\rho \bar{R}(1)$ | 41. | b |
| 6. | $\rho \bar{R}(2)$ | 42. | e |
| 7. | ${ }^{\mathrm{c}} \mathrm{Cl}_{1}^{\circ} \cdot 8_{2}^{\circ}$ | 43. | p |
| 15. | $\alpha$ | 44. | J |
| 16. | ${ }^{c}\left(10^{3} / \mathrm{T}\right) \cdot 6_{1}^{\circ}$ | 45. | $\mathrm{c}_{\mathrm{B}} \cdot 8^{\circ}$ |
| 17. | ${ }^{\mathrm{c}}\left(10^{3} / T\right) \cdot 6_{R(1)}^{+}$ | 46. | ${ }^{\mathbf{c}} \mathrm{E} \cdot 6^{0}$ |
| 18. | ${ }^{c}\left(10^{3} / T\right) \cdot 6_{R(1)}^{-}$ | 47. | ${ }^{C} P \cdot 6^{0}$ |
| 26. | $\rho^{*}$ | 50. | ${ }^{C} E \cdot 6^{+}$ |
| 27. | h | 51. | $c_{P} \cdot 6^{+}$ |

The TIEC are packed into arrays separately for single-, two-, three and other multiparameter equations. Brery item of the array for single-parameter equations includes the coefficient codes of four equations and the items of two--parameter equations - the codes of two equations. In every 1tel of the arrays for three- and four-parameter equations, there are the coefficient codes for one equation. In the arrays for equations with more parameters, the coefficient codes for one equation occupy two items of the array following one after another.

The coefficients of correlation equation /CGE/ are also inserted into separate arrays according to the number of parameters. For the coefficients of uni-parameter equations, there are two array iteme for every equation (the odd items corresponding to the absolute term, the even items to the coefficients). For every two parameter equations, there are three items in the array, etc.

After the unpacking of TIEC, the values of TIBC and CCE are assigned to the items of two auxiliary arrays.
6. The Search and Calculation of Substituent Constants, the Search of Solvent Constants.

The substituent /SC/ and solvent constants/SoC/ are inserted into following arrays:
a) the array of the constants for functional groups and substituents equated with them. This array includes the $b^{*}$ and $\varphi$-constants for the substituents mentioned as well as for those of the $G X_{1}(1 m, n)^{H_{3-n}}$ type which have direct digital codes in Table 4, Ref. 3. The line index is found by means of the auxiliary array whose items are the digital codes of the substituents and the items indexes correspond to the indexes of the array of substituent constants:
b) the erray of the constants for alkyl substituents includes $\sigma^{\bar{X}}, E_{g}, \mathrm{E}_{\mathrm{g}}^{0}$ and $\varphi$-parameters. The indexes of the first fifty lines are equal to the substituent codes in table 4 of Ref. 3. For the rest of the substituents, the indexes are determined by a special segment;
c) the array of the constants for the $C X_{i(i=1, n)} H_{3-n}$
type substituents includes $6^{\pi}, E_{g}, E_{B}^{0}$ and $\varphi$-parameters. The line index is determined by means of two auxiliary ar rays;
d) two arrays of the constants for meta- and para-substituted phenyla. The arrays include $6^{\circ}$ for meta- and $3^{\circ}$, $\zeta_{R}^{+}$and $\zeta_{R}^{-}$for para-substituted phenyls, respectively. Both arrays are supplemented with an auxiliary array to determine the line index;
e) the array of solvent constanta. It includes the polarity / $Y /$ and polarizability / $P /$ constants and the parameters of general acidity /E/ and general basicity /B/ and has also one auxiliary array.

The input data for the SOC search are the type indexes of the equation coefficients /TIEC/, for the search of the SC besides the TIEC the rule code for calculating the subatituent constants /RCCC/ as well as the connectivity information.

Besides the values given in paragraph 3 (2,3,4 or 5), the RCCC can have the following values:

- $\mathrm{RCCC}=0$ - the hydrogen is connected to the variable secondary substituent /VSS/ of the identification array;
- RCCC = l-a direct search of the SC from the arrays or the direct adding up of constants for secondary substituonte;
- RCCC $=10$ - the calculation of the SC for an alkyl substituent connected to the VSS of the type of sunctional groups;
- $\mathrm{RCCC}=11$ or 12 - the calculation of the SC for an alkyl substituent consisting of one or more methylone bridge(s) and l-3 (alkyl) secondary substituents;
- RCCC $=21-$ the calculation of the SC of the
$\mathrm{CX}_{i(i=1, n)^{H}(3-n)}$ type using the $S C$ for substituents $X_{\text {; }}$
 substituents.

In principle, the calculation (or at least an approximate estimation) of the $S C$ is at present possible for the $\delta^{\boldsymbol{\pi}}$ and $\varphi$, only. Therefore, the limitation mentioned in 2,4.,Ref. 3 according to which the secondary substitution is acceptable
at the terminal bridge，only，ie not essential in the case of correlation approach．

The calculating formula for 5 ：
－for RCCC＝11－12
－for RCCC $=21$

$$
\delta_{\text {Bumm. }}^{\text {mit }}=-0.49+0.4 \cdot \sum_{i} b_{i}^{\text {童 }}
$$

－for RCCC $=22$

$$
b_{\text {summ }}^{\text {zin }}=-0.49+0.4 \cdot \sum_{i} b_{i}^{\text {而 }}+0.4^{2} \cdot \sum_{j} b_{j}^{\text {邫 }}
$$

The formula for ${ }^{6}$ ：
$\varphi_{C x_{1} x_{2} x_{3}}=3.94-0.200\left(\varphi{x_{1}}+\varphi_{x_{2}}+\varphi_{x_{3}}\right)+0.020\left(\varphi_{x_{1}} \varphi_{x_{2}}+\right.$ $\left.+\varphi_{\mathbf{x}_{1}} \varphi_{\mathbf{x}_{3}}+\varphi_{\mathbf{x}_{2}} \varphi_{\mathbf{z}_{3}}\right)-0.002 \varphi_{\mathrm{x}_{1}} \varphi_{\mathrm{z}_{2}} \varphi_{\mathbf{x}_{3}}$

The values of the SC and SOC obtained are assigned to the items of the corresponding auxiliary array．

7．The Calculation of the Ordered Rate（Equilibrium）Con－ stant．

The calculation of the ordered constants is carried out using the coefficients of correlation equations／CCE／found from the corresponding arrays and the found or calculated SC and SoC．The present veraion of the program is parameterized on the basis of＂Tables of Correlation Parameters＂published in $^{5}$ ．Our system guarantees the replacement of those equations with more general correlation equations or with equations based on other principles（e．g．on some physical models）with－ out changes in the segments of the reaction set search，if the mentioned equations are formed on the same grounda as corre－ lation equations（i．e．the reaction sets with one or more variable secondary substituents are regarded）．In such cases， a number of reaction sets can be included in one equation．

8．The Calculation of the Ordered Rate（Equilibrium） Constant According to an Alternative Equation．

The calculation of the constant according to an alternam tive equation differs from those according to the main equa－
tion. Namely, the procedures described in paragraphs 1,2,3 and 4 are omitted, but the type indexes of the equation coefficients /TIEC/ and SC (SOC) found in the first stage of the calculations are added to the items of the auxiliary array. If the new value of the TIEC coincides with the previous one, the search (calculation) of the SC (SOC) is omitted and the values obtained earlier are used.

As in other segments, various messages about failures and errors may occur in the course of actions of the described segment.

## Appendix

Short Program User's Manual

1. Move-in of Input Data.

The input data are moved in from the punch carder the pack of which has the following structure:

- the initial card of the next move-in (ICNM);
- the card with the general form of the reaction code (see paragraph 3 Ref. 3) in the I8, I4 format;
- the card with the ordered number of variable substituente (see the Flow Chart in Ref. 1) in the I4 format;
- the cards with the substituent codes in the IS format; on every card, there is one bridge code, one code of secondary substituent or a closing symbol ;
- the ICNM;
- the carde (from one to three) with the solvent codes (see in Ref. 2) in the 14 (the firgt card with the index of the first compound) or in the I4, P6.3, I3 format (the second and third one, with the index, concentration and its dimension index of the second and third compound).

Note:
It is recommended to order binary and ternary solvents always in mole per cents (i.e. ICD $=0$, see Ref. 2); except for the cases, when the messages to the earlier executed orders indicate the presence of data for somewhat different concentration dimension;
When using the computer with other types of terminals (interactive ones), the dialog move-in can be used. Thus, in general, the entry is kept in view when speaking about punch card.

- the ICRM;
- the cards (from one to three) with the temperature valLe (values) in the 15.3 format;
- the ICNM;
- the card with the continuation constant /KCC/ (see the Flow Chart in Ref. 1) in the $I 2$ format.

The moverin of some further data depends on the KCC valuse as cited on the Plow Chart in Ref. 1.
2. Example of Move-in of Input Data.

The rate constant for the following reaction in water, at $25^{\circ} \mathrm{C}$ is ordered:


The general form of the reaction is presented as


| $x_{1}\left(\mathrm{CH}_{3}\right)$ | -1 | 2 | -1 |  |  |
| :--- | ---: | ---: | :--- | :--- | :--- |
| $x_{2}\left(-0^{2}\right)$ | -1 | 58 | -1 |  |  |
| $x_{1}^{\prime}(-O$ | $\left.-\mathrm{NO}_{2}\right)$ | 3 | -1 | 4105 | -1 |
| $x_{2}^{n}(-\triangle O$ | $-\mathrm{Cl})$ | 6 | -1 | 4054 | -1 |

The punch card pack of the input data:
//GO.FF05FOO1 DD
272500220
4
-1
2
-1
-1
58
//G0.FT05003 DD
25.0
//GO. FT05004 DD

## 0

3. Print of Results.

Results are printed in two parts. The coded user's order and the search results (either positive or negative) are printed after the conclusion of the reaction set search on the basis of both reaction and substituent codes. When conpleting the.calculation of the value of the ordered con-stante, the solvent order, the ordered value of temperature and the search results are printed. The search results consiat of the code of the aolvent found, the temperature value (including the temperature interval when using the equation with the temperature as a variable factor), the type and value of the constant, the type of the correlation equation used for the calculation of the constant (the codes presented in Table 1 are used) and messages (notes), as a rule, in decoded form (exceptions are e.g. the codes of solvents whose data were used to compose the correlation equation with the solvent as a variable faotor).
4. Example of Results Record.

The results record for the order given in paragraph 2 is presented in Table 2.

For technical reasons, the record is given in some disfigured (compressed) form.

The versions of negative results are described in the

Table 2

Kxample of Reaults Print

correaponding parta of the previous papera ${ }^{1,2}$.
References

1. T.J. Juriado, Organic Reactivity, 21, 375 (1984).
2. T.J. Jumiado, Organic Reactivity, 21, 388 (1984).
3. T.J. Juriado, V.A. Palm, Organic Reactivity, 2l. 255(1984).
4. Tables of Rate and Equilibrium Constants of Heterolytic Organic Reactions, Vol.l-5(I), VINITI, Morcow, 1975-1978.
5. Tables of Rate and Equilibrium Constants of Heterolytio Organic Reactions, Vol. 5(II), VINITI, Mobcow, 1979.
6. V. Palm and H. Hiob, Organic Reactivity, 18, 460(1981).

KINETICS OF INTERACTION OF $\propto$-HAIOGENDDESOXYBENZOINES WITH ALIPHATIC AMINES.

1. STRUCTURE EFFECT OF AMINE.

Zh.P. Piskunova, N.N. Matvienko, and A.F. Popor
Institute of Physical-Organic and Coal Chemistry,Academy of Sciences of the Ukranian S.S.R., Donetak, 340114

Received December 24, 1984
Reaction kinetics of $\alpha$-bromodesoxybenzoine with aliphatic amines has been studied at $25^{\circ} \mathrm{C}$. It has been found that the interaction mechanisms of primary and secondary amines differ from those of tertiary ones. It was established that aterically windered amines ( $\mathrm{E}_{\mathrm{N}} \leqslant-3$ ) do not form any pratucts of nucleophilic substitution reactions ith $\alpha$-bromodesoxybenzoine.

The reactions of $\alpha$-hal oketones, those of $\alpha$ - bromodesoxybenzoines (desylhalogenides) in particular, with various nucleophiles have been studied widely enough ${ }^{1}$, ${ }^{2}$. Nevertheless, the kinetic side of aliphatic amines constituting a good model for establishing the effect of nucleophile reagents structure on the rate and formation mechanism of aminoketones, has not been thoroughly examined yet. The present paper deals with the problems of the interaction of aliphatic amines belonging to different classes ( primary, secondary and tertiary) with $\alpha$-bromodesoxybenzoine in benzene. Analysis of kinetic regularities and specification of the formed products show that the $\alpha$-bromodesoxybenzoine reactions with primary and secondary aliphatic amines (as it was in case of aromatic amines ${ }^{3}$ ) proceed quantitatively and irreversibly according to the following scheme:
$\mathrm{ArCOCHBrAr}+2 \mathrm{NHR}_{1} \mathrm{R}_{2} \rightarrow \mathrm{ArCOCH}\left(\mathrm{NR}_{1} \mathrm{R}_{2}\right) \mathrm{Ar}+\mathrm{R}_{1} \mathrm{R}_{2} \stackrel{\oplus}{\mathrm{NH}}_{2} \cdot \stackrel{\Theta}{\mathrm{Br}}$, (1)
With such tertiary amines as trimethyl- and dimethylbutylamines the reaction proceeds as follows:

With diisopropyl, diethylmethyl- and triethylamines in which the nitrogen atom is heavily screened with hydrocarbon radicals, the process proceeds in a more complicated way. Thus, e.g. in case of reactions of triethylamine with deaylbromide instead of the expected triethylammonium desylbromide were obtained diphenyldiketone (ArCOCOAr), and salt of the hydrobromic acid of the initial triethylamine. The residue was a mixture consisting of different compounds,difficult to identify (for details, see Experimental). Diiso-propyl- and diethylmethylamine act analogously. We did not undertake a detailed study of the reaction mechanism in case of the abovementioned amines, although this interaction seems to have certain specific features arising from the amine structure. Evidently, here the proton detachment from the $\alpha$-carbon atom of the substance takes place which is followed by various changes leading to the formation of the carbanion ${ }^{4}$.

For the majority of amines atudied (Table l) $\alpha$ amino ketones and their salts (Eqs.(1) and (2)) are formed during the reactions. Their rates are described by second order reactions (the first for each separate reagent).

Sometimes (see $1,4,6,10$ ) together with the mentioned bimolecular process the other reaction channel catalyzed by the second molecule of the initial amine can be observed ${ }^{\text {. }}$. In such a case rate constants of noncatalytic (k) and catalytic ( $k_{b}$ ) reactions were found according to linear dependence of $k_{o b s}$ on $b$ ( $b$ - amine concentration).

Comparison of the $k$ values (Table l) shows that reactions of $\alpha$-bromodesoxybenzoine with aliphatic amines are The mentioned catalysis is not observed with all amines and its effect is quite insignificant (ratio $k_{b} / k$ varies from 2.3(10) to 6.5(1)), for that reason it is difficult to draw any definite consequences concerming the dependence of values $k_{b}$ on the structure of amines.
rather sensitive towards the structures of the latter. Thus, the drop of the rate ca 200 and 40 times, respectively, in case of passing transition from n-butyl to tertiary - butylamine (Cf. 3 and 5) and from piperidine to diethylamine (Cf. 10 and 7) are caused by the increase of apatial screening of the reaction center. Steric effects of amine structure in the present reaction, eimilarly with other aminolysis 5,6 processes lead to the situation where no actual relationship

Table 1
Rate Constants of $\alpha$-brome Desoxybenzoine Reaction with Amines in Benzene at $25^{\circ} \mathrm{C}$

| No Amine | $\begin{gathered} k \cdot 10^{4} \\ 1 \cdot \operatorname{mol}^{-1} \cdot c^{-1} \end{gathered}$ | $\begin{gathered} k_{b} \cdot 10^{2} \\ 1^{2} \cdot \operatorname{mol}^{-3} c^{-1} \end{gathered}$ |
| :---: | :---: | :---: |
| 1. methylamine | $5.51 \pm 0.27$ | $0.357 \pm 0.003$ |
| 2. ethylamine | $5.22 \pm 0.05$ |  |
| 3. n-butylamine | $5.20 \pm 0.07$ |  |
| 4. iso-propylamine | $0.683 \pm 0.008$ | $0.0374 \pm 0.0002$ |
| 5. tert-butylamine | $0.0272 \pm 0.0008$ |  |
| 6. dimethylamine | $45.8 \pm 1.4$ | $3.04 \pm 0.13$ |
| 7. diethylamine | $1.14 \pm 0.02$ |  |
| 8. di-n.-butylamine | $1.39 \pm 0.02$ |  |
| 9. diisobutylamine | $0.673 \pm 0.07$ |  |
| 10.piperidine | $42.5 \pm 0.4$ | $0.987 \pm 0.04$ |
| 11.trimethylamine | $1.85 \pm 0.11$ |  |
| 12.dimethylbutylamine | $0.243 \pm 0.004$ |  |

between the nucleophilicity and basicity of the studied compounds was not detected.

Attention should also be called to the change of the reactivity of amines belonging to different classes. Thus, the transition from methylamine to dimethylamine (cf. 1 and 6) is accompanied by cal B-fold increase of the process rate, while during the tranaition from dimethylamine to trimethylamine ( 6 and 11) the rate markedly drops (ca 25 times). For phenacylbromide ${ }^{5}$ and trans-panitrophenyl-B-chlorovinylsulphone ${ }^{6}$ reactions the acceleration of the process during
the transition from methylamine to dimethylamine is greater (ca 13 and $=380$ times, respectively), but the rate decrease in case of trimethylamine is negligible ( 1.6 and 1.3 times, respectively).

One can suppose that $\alpha$-bromodesozybenzoine interaction with the primary and secondary aminea on the one hand and with the tertiary amines on the other hand is carried out differently from the analogous reactions of phenacylbromide and trans-p-nitrophenyl-B-chlorovinylsulphone. For the latter a common mechanism with amines of various classes ${ }^{5,6}$ has been eatablished earlier.

In order to quantitatively evaluate the effect of amine"s structure on the reaction rate studied the following equation was used ${ }^{7}$ :

$$
\begin{equation*}
\log k=\log k_{0}+\rho^{\pi} \Sigma \sigma^{3}+\delta E_{N} \tag{3}
\end{equation*}
$$

where $\Sigma \sigma^{n}$ denotes the inductive substituent effect at the nitrogen atom, $E_{N}$ is the steric effect of amine molecule, $\rho^{\text {in }}$ and denote the reaction series sensitivity to the corresponding effect.

For the primary and secondary amines the equation is $\log k=\left(0.28^{ \pm} 0.49\right)-(3.62 \pm 0.53) \Sigma \sigma^{2}+\left(1.62^{ \pm} 0.18\right) E_{N}$ (4)

$$
(B=0.31 ; \quad R=0.958 ; N=10)
$$

If the rate constant for tert. -butylamine ${ }^{\sqrt[3]{4}}$ is not talen into consideration, the correlation becomes remarkably better:

$$
\begin{aligned}
\log k & =(-0.34 \pm 0.29)-(2.91 \pm 0.32) \Sigma \sigma^{m}+(1.35 \pm 0.11) E_{N}(5) \\
& (s=0.16 ; \quad R=0.980 ; N=9)
\end{aligned}
$$

The inclusion also of the results for the tertiary amines (11, 12 Table 1) evidences about the lack of correlation:

$$
\begin{align*}
\log k= & (-1.14 \pm 0.69)-(1.92 \pm 0.71) \Sigma \sigma^{-(1)}+(1.34 \pm 0.31) \mathrm{E}_{\mathrm{N}} \\
& (\mathrm{~B}=0.56 ; \quad \mathrm{R}=0.828 ; \quad \mathrm{N}=12) \tag{6}
\end{align*}
$$

Erclusion of tert. -butylamine results in better correlation parameters of eq. (3) for relations of aliphatic amines with 2.4-dinitrochlorobenzene and nethyl bromide?.

Such a significant worsening of correlation parameters in case of introducing tertiary amines may be caused by varif ous reaction mechanisms for these amines on the one hand, and for the secondary ones on the other hand.

If the reaction mechanism for amines belonging to difm ferent classes ${ }^{6,8}$ is supposed to be the same, their reactivity obeys equation $(3)^{5,6}$.

As it has already been mentioned, the behavior of sterically hindered amines (diethylmethylamine $\mathrm{E}_{\mathrm{N}}=-3,0^{7}$; triethylamine, $\mathrm{E}_{\mathrm{N}}=-3.8^{5}$; diisopropylamine, $\mathrm{E}_{\mathrm{N}}=-3.90^{7}$ ), in the reactions mentioned, is anomalous. Consequently, the aliphatic amines interact with $\propto$-bromodesoxybenzoine according to eqs. (1) and (2) only if the reaction center in amine has a certain level of steric accessibility, when $E_{N}>-3$. A different way of conversion of tertiary amines can be explained with the existence of the hydrogen atom at the primary and secondary amines and its participation in the transition stage. Interaction kinetics of piperidine and $N$-deuteropiperidine with $\alpha$-bromodesoxybenzoine and phenacylbromide in acetonitrile at $25^{\circ} \mathrm{C}$ (Table 2) was studied in order to check the above suggestion. Relation $k_{H} / k_{D}$,

$$
\text { Table } 2
$$

Rate Constants of $\alpha$-Bromodesoxybenzoine and Phenylbromide Reactions with Piperidine ( $\mathrm{k}_{\mathrm{H}}$ ) and N-Deutero piperidine $\left(\mathrm{k}_{\mathrm{D}}\right)$ in Acetonitrile at $25^{\circ} \mathrm{C}$.

| Compound | $\begin{gathered} \mathrm{k}_{\mathrm{H}}, \\ 1 \operatorname{mol}^{-1} \cdot c^{-1} \end{gathered}$ | $\begin{gathered} k_{D} \\ 1 \operatorname{mol}^{-1} \cdot c^{-1} \end{gathered}$ | $\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}$ |
| :---: | :---: | :---: | :---: |
| $\alpha$-bromodesoxybenzoine | $0.93 \pm 0.01$ | $0.737 \pm 0.009$ | $1.27 \pm 0.02$ |
| phenacylbromide | $5.31 \pm 0.06$ | $5.90 \pm 0.05$ | $0.90 \pm 0.01$ |

[^0]being the qualitative measure of hydrogen isotope effect, is smaller than unity in case of phenacylbromide.

Approximate value of kinetic isotope effect $(0.86)$ has been observed for reactions of this compound with aniline and $N, N-d i d e u t e r o a n i l i n e$ in nitrobenzene ${ }^{9}$. In our case, the $\alpha$-bromodesoxybenzoine reaction rate is greater on the contrary with piperidine that with its deuterated analogues. The existence of this, though insignificant, primary isotope effect shows that the proton transfer proceeds at the rate of the determining step. With tertiary amines containing no hydrogen such a phenomenon is impossible.

Thus, the obtained data allow to come to the conclusion that reaction mechanisma for primary and secondary amines on the one hand and those for tertiary ones on the other hand are different.

## Experimental

The amines and the solvents were purified according to the known methods. $\alpha$-bromodesoxybenzoine was synthesized and purified as described in ${ }^{10}$. N-deuteropiperidine was isolated from piperidine by the method of change for $D_{2} 0^{11}$. The hydrogen change level for deuterium was checked by the IR-spectrum ${ }^{9}$. It was established that the deuterification of piperidine could be observed within the range of ca 90 per cent. The solutions were prepared and the experiments with $N$-deuteropiperidine were conducted under dry box conditions.

Kinetic measurements were carried out under pseudomonomolecular conditions at a remarkable excess of amine (up to $70-90 \%$ of substance transformation. The process was controlled by the formation of halogenide ions which were determined by argentometric titration.

While applying acetonitrile as a solvent, the process was controlled either spectrophotometrically (according to
$\alpha$-bromodesoxybenzoine consumption, $\lambda=266 \mathrm{~nm}$ ) or conductometrically (in accordance with the accumulation quantity of the hydrogen bromide of amine salt obtained in the
courae of the process). All these methods lead to practicalig identical reaults.

The second order rate constants were calculated aecording to the ordinary formula, while $b=c o n s t$, taking into consideration the mean value of 2-3 parallel runs.The accuracy of the obtained date was evaluated and the correlation parameters were calculated by means of mathematical statistics.

Separation of Reaction Products. In most cases with the quantitative jields (95-98\%) were obtained aminoketones or their chlorohydrates (Table 3, 1-6) as described below.

After the reaction between the primary or secondary amines and $\alpha$-bromodesoxybenzoine in benzene, the reaction mixture was washed in $2 \%$ hydrochloric acid, water, in $2 \%$ solution of caustic soda and again in water. Benzene solution was carefully treated with steam after drying with anhydrous sodium sulphate. The residue was aminoketone. As forming of aminoketones tended to be rather unstable, in some cases their chlorohydrates were obtained by means of coaducting dry hydrogen chloride into benzene solution of aminoketone and by the further cristallization of salt from alcohol. For trimethylamine and dimethylbutylamine the reaction residue was filtrated, washed in anhydrous ether and then dried in vacuo (Table 3; 7,8). By the elemental analysis and the NMR spectra it was established that similarly with piridine ${ }^{13}$, these salta cristallize in the form of benzene complexes. While treating the benzene complex of trimethylammoniumdesylbromide with the picric acid residue in ethanole stable picrate was isolated with a melting point being $218-219^{\circ} \mathrm{C}$. \% found: C 57.61; H 4.79; N 11.88. $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{8} \mathrm{~N}_{4}$. \% calculated: C 57.22; H 4.60; N 11.61.

## Products of $\alpha$-Bromodesoxybenzoine Reaction with Triethylamine.

The mixture consisting of 1.5 g of $\alpha$-bromodesoxybenzoine and 2 ml triethylamine in 50 ml of dry benzene was kept for 20 days. The eediment obtained ( 0.6 g ) was crystallized and identified as hydrobromic salt of triethylamine.

Character of ( $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}(\mathrm{R}) \mathrm{C}_{6} \mathrm{H}_{5}$ ) Products of $\alpha$-Bromodesoxybenzoine Reaction with Aliphatic Amines

a) Melting point of chlorine hydrate.

Benzene was distilled off the filtrate without heating under vacuo. After that, the extraction (three times, 10 ml each) by cyclobexane was carried out; the solvent was diatilled while the product consisting of yellow crystals $(0.7 \mathrm{~g})$ was actually diphenyldiketone. ${ }^{14}$

Product: of $\alpha=$ bromodesorgbenzoina Reaction with D11:0propylamine.

The mixture consisting of 2 g of $\alpha$-bromodesoxybenzoine and 2.88 g of dilaopropylamine in 40 ml of acetonitrile was kept at room tempersture for 18 days. Then acetonitrile and the excess of diisopropylamine were distilled under vacuum without heating. The residue was treated with cyclohexane ( 30 ml ) and identified as hydrobromic salt of diisopropylamine. The attempts to determine the composition and structure of the products failed.

## References

1. V.S. Karavan, in: "Mechanisma of Heterolytic Reactions" (in Ruse.), Moscow, "Naukan, 38, 1976.
2. D.A. Simonov, E.A. Drygailova, and V.S. Karavan, Zh.Or. Kh, 14, 2102 (1978).
3. V.S. Karavan, T.E. Zheeko, and T.I. Temnikova. Reakte. aposobn, organ.soedin., 5, 60 (1968).
4. L.A. Perelman, A.P. Popov, and L.I. Kostenko, in VINITI, No 3664-75 (1975).
5. L.M. Litvinenko, A.F. Popor, and Zh.P. Gelbina, DAN SSSR, 203. 343 (1972).
6. A.F. Popov, V.V. Kravchenko, Zh.P. Piskunova, and L.I. Kostenko, Organic Reactivity, 16, 325(1979).
7. S.V. Bogatkov, A.P. Popov, and L.M. Litvinenko, Reakts. sposobn. organ. soedin., 6, 1011(1969).
8. L.M. Litvinenko, A.F. Popov, and Zh. P. Gelbina, DAN SSSR, 182, 546¹969).
9. L.M. Litvinenko, L.A. Perelman, and A.F. Popov, Zhorkh, 8.572(1972).

Resinous mixture of indistinguishable compounds was obtained after the extraction.
10. T.I. Temnikova and V.S. Karavan, Zhorkh, 34, 3157(1964). 11. A. Murray and D.L. Williams, Synthesis of Organic Compounds Containing Hydrogen Isotopes. (In Rue日.), Moscow, IL, 1961.
12. Z.H. Goodson and R.B. Moffett, J. Am. Chem. Soc..71, 3219 (1949).
13. D.J. Cooper and L.N. Owen, J. Chem. Soc., 538 (1966). 14. Chemist's Manual. (in Ruse.), Ed. B.P. Nikolskaya ot al. Leningrad-Moecow, Khimiya, vol.2, 1964, 478.

KINETICS OF INTERACTION OF $\alpha$-HALOGENDESOXYBENZOINES WITH ALIPHATIC AMINES. 2.EFFECTS OF MEDIUM, TEAPERATURE AND NATURE OF SUBSTRATE LEAVING GROUP

Zh.P. Piskunova, A.F. Popov, and N.N. Matvienko
Institute of Physical and Organic Chemistry and Coal Chemistry, Academy of Sciences of the Ukrainian S.S.R., Donetsk, 340114

Received December 24, 1984

The effect of medium, amine structure, the nature of the substrate leaving group and temperature on the rate of $\alpha$-halogendesoxybenzoine reactions with aliphatic amines has been studied.

It was concluded frow the analysis of the obtained data that the process mechanism in case of primary and secondary amines differ somewhat from that for the reactions of tertiary amines. At the same time the breaking of the carbon-halogen bond turned up to be the rate determining atage for all reactions studied. In transition stage the extent of the bond rupture is practically identical.

In the previous paper ${ }^{1}$ it was shown that $\alpha$-bromodesoxybenzoine reactions with primary and secondary amines in benzene on the one hand and with tertiary amines, on the other hand, have different reaction mechanisme. In order to clarify the other general regularities and pecularities of these processes, the present study is aimed at establishing the influence of the medium, the nature of the leaving group and temperature on the reaction rate.

The experimental results showed that both in acetonitrile and in benzene ${ }^{1}$ the reaction rate can be described by the second order equation (the first order for each reagent).

The somparison of obtained values of $k$ (Table l) indicates that the amines' reactivity is highly dependent on their structure. As in benzene ${ }^{1}$, the structure effect of primary and secondary amines on their activity can well be described with eq. (i), suggested earlier ${ }^{2}$, which takes into consideration the induction effect of the radicals at nitrogen atom ( $\sum \sigma^{\bar{x}}$ ) and the steric effect of the amine molecule $\left(\mathrm{F}_{\mathrm{N}}\right)$ :

$$
\begin{equation*}
\log k=\log k_{0}+\rho^{x} \Sigma \sigma^{x /}+\delta_{N} \tag{1}
\end{equation*}
$$

The data from Table 1 was treated according to the equation (without tert.-butylamine); resulting in the following relationship:

$$
\begin{gather*}
\log k=2.03 \pm 0.26)-(2.89 \pm 0.28) \sum \sigma^{m}+(1.48 \pm 0.11) K_{N} \\
(s=0.17 ; R=0.980 ; N=11) \tag{2}
\end{gather*}
$$

The comparison of the corresponding coefficients for reactions in ecetonitrile and benzene ${ }^{1}$, where $\rho^{x}=$ $=2.91 \pm 0.32$ and $\delta=1.35 \pm 0.11$ refers to the fact that the solvent polarity has practically no effect on the susceptibility of the series under discussion to either the inductive ( $\rho^{\bar{Z}}$ ) or the steric ( $\delta$ ) effects of the amine.

Inclusion of tertiary amines (trimethylamine and dimethylbutylamine ) into the general comparison leada to (eq. (3)) the significant worsening of the correlation (cf. values $s$ and $R$ in eqs. (2) and (3)). It agrees with the earlier ${ }^{4}$ made conclusion about the reaction mechanism differences between $\alpha$-bromodesoxybenzoine:

$$
\begin{gather*}
\log k=(0.74 \pm 0.66)-(1.31 \pm 0.67) \sum \sigma^{X}+(1.22 \pm 0.31) \mathrm{E}_{\mathrm{N}} \\
(\mathrm{~s}=0.51 ; \mathrm{R}=0.82) ; \mathrm{N}=13) \tag{3}
\end{gather*}
$$

Rate Constants of $\alpha$-Bromodesozybenzoine Reactions with Amines in Acetonitrile at $25^{\circ} \mathrm{C}$

| No | Amine | 2, $1 \cdot \mathrm{~mol}^{-1} \cdot c^{-1}$ |
| :---: | :---: | :---: |
| 1 | methylamine | $19.6 \pm 0.1$ |
| 2 | ethylamine | $7.68 \pm 0.02$ |
| 3 | isopropylamine | $1.18 \pm 0.01$ |
| 4 | butylamine | $8.36 \pm 0.03$ |
| 5 | tert.-tributylamine | $0.0683 \pm 0.0007$ |
| 6 | cyclahexylamine | $2.18 \pm 0.01$ |
| 7 | dimethylamine | $108 \pm 1$ |
| 8 | diethylamine | $1.67 \pm 0.02$ |
| 9 | methylpropylamine | 19.1さ 0.01 |
| 10 | di-n-butylamine | $2.00 \pm 0.01$ |
| 11 | diisobutylamine | $0.731 \pm 0.002$ |
| 12 | piperidine | $93 \pm 1$ |
| 13 | trimethylamine | $2.06 \pm 0.04$ |
| 14 | dimethylbutylamine | $0.219 \pm 0.002$ |

and the amines of various classes.
The direct comparison of reaction rate constants including all amines in acetonitrile (Table 1) and benzene ${ }^{1}$ has demonstrated the existence of a good correlation between them ( $\mathrm{s}=0.17, r=0.985$ ).

The situation reminds that of $\alpha$-bromoketone phenacylbromide ${ }^{3}$ reactions, where the similar mechanism for reaction with primary, secondary and tertiary amines ${ }^{3,4}$ holds. In a number of papers (see e.g. ${ }^{5}$ ) the supposition has been made that the linearity of log $k$ values of the given and standard reaction series refer to the same type of the reactions. According to this, the dependence found refers to the identica interaction types of $\alpha$-bromodesoxybenzoine with amines of different classes. But our data prove that such a conclusio: can be drawn only after a great number of thorough studies
and data comparison.
Thus, the effects of various solvents on the ratio of the reactivity of nitrogen with an hydrogen atom (dimethylamine) and those without (trimethyl) amines in reactions with phenecylbromide and $\alpha$-bromodesoxybenzoine (Table 2) have different expression. In the first case where the reaction mechanism for any amine is presumed to be the same, the transformation from dimethylamine to trimethylamine is in all solvents accompanied by an insignificant and almost equal rate decrease ( $2.6-2.9$ times). But as to $\alpha=$ bromodesnxybenzoine reactiors, the changes in absolute value are more substantial ( $9-60$ times) depending on the medium characteristics.

Reaction Constants $\mathrm{k} \cdot 10^{2}\left(1 \cdot m o l^{-1} \cdot \mathrm{c}^{-1}\right)$ of Phena-
cylbromide and $\alpha-$ bromodesozybenzoine Reactions with
Dimethyl and Trimethylamines in Various Solvents
at $25^{\circ} \mathrm{C}$

| Solvent | Amine | Phenacylbromide | $\alpha$-Bromo- <br> desozybenzoine |
| :--- | :--- | :---: | :---: |
| benzene 1,4 | dimethylamine | $5.02 \pm 0.04$ | $0.458 \pm 0.014$ |
|  | trimethylamine | $3.15 \pm 0.06$ | $0.0185 \pm 0.0011$ |
| acetonitrile | dimethylamine | $333 \pm 5$ | $108 \pm 1$ |
|  | trimethylamine | $160 \pm 1$ | $2.06 \pm 0.04$ |
| dioxane | dimethylamine | $20.7 \pm 0.3$ | $1.97 \pm 0.04$ |
|  | trimethylamine | $7.18 \pm 0.09$ | $0.0331 \pm 0.0005$ |
| methenol | dimethylamine | $6.61 \pm 0.08$ | $1.60 \pm 0.02$ |
|  | trimethylamine | $3.57 \pm 0.03$ | $0.174 \pm 0.002$ |
|  |  |  |  |

Consequently, the relations of reaction mechanisms of obromodesoxybenzoine with the named amines are more complicated than those of phenacylbromide. At the aame time the leaving group effect on the reaction rate studied (Table 3) does not actually depend on the amine structure. Values $\gamma$ denoting the susceptibility to the leaving group effect were greater than those of some other $\alpha$-halogenketone reactions with amines ${ }^{7}$. The latter refers to the high level of looseness

Table 3
Rate Constants $\mathrm{k} \cdot 10^{2}\left(1 \cdot \mathrm{~mol}^{-1} \cdot \mathrm{c}^{-1}\right)$ and Parameters of Equation $\log \mathrm{k}=\log \mathrm{k}_{\mathrm{o}}+\gamma \tau[6]$ for Reactions of $\quad \alpha$-Halogendesoxybenzoines ( $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCHC}_{6} \mathrm{H}_{5}$ ) with Amines in Acetonitrile at $25^{\circ} \mathrm{C}$

| X | Methylamine | Dimethylamine | Piperidine | Trimethylamine |
| :---: | :---: | :---: | :---: | :---: |
| C1 | $0.136 \pm 0.003$ | $0.512 \pm 0.005$ | $0.671 \pm 0.008$ | $0.0131 \pm 0.0002$ |
| Br | $19.6 \pm 0.1$ | $108 \pm 1$ | $93 \pm 1$ | $2.06 \pm 0.04$ |
| I | $54.6 \pm 0.2$ | $308 \pm 1$ | $284 \pm 3$ | $6.48 \pm 0.07$ |
| $\log k_{0}$ | $-7.50 \pm 0.78$ | $-7.23 \pm 0.88$ | $-6.82 \pm 0.69$ | $-8.65 \pm 0.70$ |
| $\gamma$ | $1.38 \pm 0.17$ | $1.47 \pm 0.19$ | $1.38 \pm 0.15$ | $1.42 \pm 0.15$ |
| - | 0.24 | 0.27 | 0.21 | 0.22 |
| $r$ | 0.993 | 0.992 | 0.994 | 0.994 |

Table 4
Rate Constants $\mathrm{k} \cdot 10^{-2}\left(1 \cdot \mathrm{~mol}^{-1} \cdot \mathrm{c}^{-1}\right)$ of $\alpha$ - Bromodesoxybenzoine Reactions with Amines in Acetonitrile at Various Temperatures and Their Activation Parameters b, c

a Values of $\mathrm{k}_{25}$ o are presented in Table 1.
b Mean square deviations of $\log \mathrm{A}, \mathrm{E}_{\mathrm{A}}$ and $\Delta \mathrm{S}^{\neq}$calculation did not exceed $0.2 ; 2.9 \mathrm{~kJ} / \mathrm{mol}$ and $12 \mathrm{~J} / \mathrm{mol}$ - degree, respectively.
c For dimethylbutylamine reactions calculated at temperatures $7^{\circ}$ $\left((7.26 \pm 0.11) \cdot 10^{-4} 1 \cdot \mathrm{~mol}^{-1} \cdot \mathrm{c}^{-1}\right), 25^{\circ}, 35^{\circ}$ and $45^{\circ} \mathrm{C}$.
of the carbonhalogen bond in the transformation state, regardiess of the formation of the carbon-nitrogen bond, which should differ in the processes including the primary and the secondary amines as well as in those having the tertiary ones ${ }^{1}$. It was interesting to study the effect of temperature variation on the interaction rate of $\alpha$-bromodesoxybenzoine with amines belonging to different classes. The corresponding rate constants and activation parameters are given in Table 4. The analysis of the latter indicates that the primary and secondary amines are characterized by the constant variation of reaction entropy (1.e. the series is an isoentropic one), which does not concern the tertiary ones. This also confirms the conjecture ${ }^{1}$ that the tertiary amines react with $\alpha$-halogendesoxybenzoines differently from the primary and secondary ones.

## Experimental

The amines and solvents were purified according to the known methods. $\alpha$-Chloro- ${ }^{8}$ and $\alpha$-bromodesoxybenzoines ${ }^{9}$ were obtained and purified as described earlier, $\alpha$-iodinedesoxybenzoine was synthesized via the exchange reaction from the bromoderivative. Solutions containing 5 g of bromodesoxybenzoine in 50 ml of acetone and 3.3 g of sodium iodide in 50 ml of acetone were mixed while stirring steadily. The mixture was kept at room temperature during an hour. After the filtration the solvent was removed by the vacuum distillation. The $\alpha$-iododesoxybenzoine residue was repeatedly washed with water and crystallized from methanol. Melting point $=90.5-91.5^{\circ} \mathrm{C}$. \% found: C 52.15: H 3.50; I 39.62; $\mathrm{C}_{14} \mathrm{H}_{11}$ OI , \% calculated: C 52.20: H 3.44; I 39.39.

Reacticn rete was measured mainly spectrophotometrically ( $\lambda=266$ and 310 nm ) or conductometrically under the significant amine excess. Sometimes, in order to check the abovementioned methode and also while using dioxane the potentiometric method of argentometric titration of the forming halide ion was applied.

In case of the reactions of desylhalogenides with steri-
cally hindered aliphatic amines (e.g. triethylamine and diisopropylamine) in acetonitrile various methods of the monitoring the reaction rate (either by formation of halide ion or by the consumption of the substrate) lead to the different and badly reproducible resulte. A mixture of several substances whose identification turned out to be impossible was obtained (see also ${ }^{1}$ ).

## References.

1. Zh.P. Piskunova, V.N. Matvienko, and A. F. Popov, Organic Reactivity 2I, 418 (1984).
2. S.V. Bogatkov, A.F. Popov and L.M. Litvinenko, Reakts. sposobn. organ.soed., 6,1011(1969).
3. L.M. Litvinenko, A.F. Popov, and Zh.P. Gelbine, Reakte. sposobn. orgen. soed., 6, 1111 (1969).
4. L.M. Litvinenko, A.F. Popov and Zh. P. Gelbina, DMN SSSR, 203, 343 (1972).
5. B.J. Istomin, V.A. Baranskij, Uspekhi Khimij, 5l, 394 (1982).
6. I.M. LItvinenko and A.F. Popov, Reakts. sposobn. organ. soedin., 2 ,44(1965).
7. L.A. Perelman, A.F. Popov, L.M. Litvinenko, and I.I. 2aslavskaya, Reakts. sposobn. organ. soed., 2, 929 (1972).
8. Syntheses of Organic Substances (in Russ) Ed. Blett et al., IL, vol.2, 559, 1949.
9. T.I. Temnikova and V.S. Karavan, ZhOKh, 34, 3157(1964).

Organic Reactivity
Vol.21. 4(76) 1984

KINETIC STUDY OF IONIZATION OF NITROALKANES IN MIXED SOLVENTS.IX. PHENYLNITROMETHANE AND PHENYLNITROMETHANE -d 2 IN AQUEOUS DIMETHYL SULFOXIDE AND AQUEOUS DIMETHYL PORMAMIDE
> A. Pibl, T. Kanger and A. Talvik Organic Chemistry Dept., Tartu State University, 202400 Tartu, Estonian SSR

## Received November 15, 1984

The rate of ionization of phenylnitromethane and phenylnitromethane $-d_{2}$ has been messured in solutions of hydroxide in aqueous solvents containing 50 and 66.67 vol \% dimethyl sulfoxide and 50 vol \% dimethyl formamide. The activation parameters for the deprotonations and primary hydrogen isotope effects have been calculated.
In the previous papers ${ }^{1,2}$ of this series the rates of ionization and isotope effects of nitroethane and nitroeth-ane-d 2 in aqueous dimethyl sulfoxide and aqueous dimethyl formamide ( 50 vol \% ) were examined. It wes concluded, that the accelerating effect of aprotic component is conditioned by the stabilization of the activated state. But the point for nitroethanem ${ }_{2}$ in aqueous dimethyl formamide deviates from the general isokinetio relationship established for the alkaline ionization of nitroethane in water and aqueous aprotic solvents. Moreover, for this medium $k^{H} / k^{D} \approx 1$. This result stimulated us to look for another analogical drastic medium effects on the kinetic isotope effects in case of phenylnitromethane.

This compound is characterized by high rates of deprom tonation due to the resonance stabilization of activated state.

Phenylnitromethene was prepared by the procedure of Kornblum ${ }^{3}$. The redistilled fraction bp. $53^{\circ}(0.025 \mathrm{~mm}) n_{D}^{20}$ 1.5310 was additionally purified by columen chromatography (solid support-acidic silica gel ( 100 mesh), solvent - hexane: methylene chloride ( $1: 1$ ). Praction containing no more than $5 \%$ of impurities according to the check by gas ohromatography, was collected.

$$
n_{D}^{20} \quad 1.5329 ; d_{20}^{20} 1.1585
$$

Phenylnitromethane $-d_{2}$ was prepared by the combined procedure of Bell, Goodall and Leitch ${ }^{4,5}$. Rectified product had bp $91.5-92^{\circ}(2 \mathrm{rm}) ; \mathrm{n}_{\mathrm{D}}^{20} 1.5315 ; \mathrm{d}_{20}^{20} 1.1749$. Deuterium content was 97.48 (by density).
Dimethyl sulfoxide redistilled, bp 93-93.5 ( 20 ama ) $n_{D}^{20}$ 1.4772; $d_{4}^{20} 1.1016$.

Dimethyl formamide was kept under molecular sieves 41 , the rectified product had bp $68-69^{\circ}(30 \mathrm{~mm}), n_{D}^{20} 1.4305 ; d_{4}^{25}$ 0.9454.

Deprotonation kinetics has been studied spectrophotometrically using the stopped flow installation described earlier ${ }^{2}$. The kinetical measurements were carried out under the pseudofirst order conditions at various base concentrations ( $0.01-0.07 \mathrm{~K}$ ) and temperatures. After mixing in reaction coil the concentration was about $5.10^{-4} \mathrm{M}$ of nitro compound. In all experiments constant electrolyte concentration ( 0.1 M ) was maintained by adding NaCl. The wave-length used for the phenylnitromethane ionization was 305 nm . The second order rate constants were calculated by the means regression in co-ordinates $k_{I}-\left[\mathrm{OH}^{-}\right]^{\boldsymbol{n}}$ or directly from equation $k_{I I}=k_{I} /\left[\mathrm{OH}^{-}\right]$.

The second-order rate constants obtained in this study and extracted from papers ${ }^{6,7}$, are collected in Teble 1.

[^1]Table 1.
Rate Constants for Phenylnitromethane Reaction with Hydroxide Ion and the Values of Primary Hydrogen Isotope Effect $\left(k^{H} / k^{D}\right)$. Standard errors are given, $n$ - number of different hydroxide ion concentrations used, $\mathbb{M}$ - the number of tests.

| Solvent ${ }^{\text {a }}$ | $t^{\circ} \mathrm{C}$ | $k_{I I}^{H} \cdot 10^{3}$ $M^{-1} \mathrm{~s}^{-1}$ | n m | $\begin{aligned} & k_{I I}^{D} \cdot 10^{-3} \\ & u^{-1} s^{-1} \end{aligned}$ | n | m | $\mathrm{r}^{\mathrm{H}} / \mathrm{k}^{\text {D }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{H}_{2} \mathrm{O}$ | $\begin{aligned} & 25 \\ & 25 \end{aligned}$ | $\begin{aligned} & 0.151 \pm 0.003^{b} \\ & 0.151 \pm 0.004 \end{aligned}$ | 446 | $\begin{aligned} & 0.0204^{b} \\ & 0.0193^{+}-0.004 \end{aligned}$ | 4 | 56 | $\begin{aligned} & 7.4 \\ & 7.8 \end{aligned}$ |
| 50\% DMSO | $\begin{aligned} & 15 \\ & 20 \\ & 25 \\ & 30 \\ & 40 \\ & 45 \end{aligned}$ | $\begin{aligned} & 1.047^{d} \\ & 1.38^{ \pm} 0.21^{c} \\ & 1.73^{\mathrm{c}} \\ & 2.08^{ \pm} 0.22^{\mathrm{c}} \\ & 3.69^{ \pm} 0.18^{\mathrm{c}} \\ & 4.47^{\mathrm{d}} \end{aligned}$ | 5 4 | $\begin{aligned} & 0.349 \pm 0.08 \\ & 0.467^{\mathrm{d}} \\ & 0.631 \pm 0.02 \\ & 0.871^{\mathrm{d}} \\ & 1.584^{\mathrm{d}} \\ & 2.140^{ \pm} \pm 0.08 \end{aligned}$ | 5 4 4 | 56 62 | $\begin{array}{\|l} 3.0 \\ 2.95 \\ 2.74 \\ 2.38 \\ 2.32 \\ 2.08 \end{array}$ |
| $\begin{aligned} & 66.67 \% \\ & \text { DuSO } \end{aligned}$ | $\begin{aligned} & 15 \\ & 20 \\ & 25 \\ & 30 \\ & 40 \\ & 45 \end{aligned}$ | $\begin{aligned} & 8.51^{\mathrm{d}} \\ & 10.47^{\mathrm{t}} 1.79^{\mathrm{c}} \\ & 13.28^{\mathrm{c}} \\ & 17.03^{ \pm}-2.36^{\mathrm{c}} \\ & 24.60 \pm 0.89^{\mathrm{c}} \\ & 31.62^{\mathrm{d}} \end{aligned}$ | $\begin{gathered} 5 \\ 5 \\ 5 \end{gathered}$ | $\begin{aligned} & 2.651^{ \pm}-0.3 \\ & 3.02^{\mathrm{d}} \\ & 3.50^{ \pm 0.4} \\ & 4.37^{\mathrm{d}} \\ & 5.89^{\mathrm{d}} \\ & 7.04^{ \pm}-0.5 \end{aligned}$ | 7 8 | 68 89 | $\begin{aligned} & 3.21 \\ & 3.47 \\ & 3.85 \\ & 3.90 \\ & 4.18 \\ & 4.49 \end{aligned}$ |
| 50\% DMF | $\begin{array}{\|c\|} \hline 25 \\ 30.3 \\ 35.3 \\ 45.3 \\ 65.5 \end{array}$ | $\begin{aligned} & 1.00 \pm 0.02^{d} \\ & 1.02 \pm 0.02 \\ & 1.22 \pm 0.05 \\ & 1.70 \pm 0.05 \\ & 2.95^{ \pm} 0.17 \end{aligned}$ | $\begin{array}{ll} 3 & 30 \\ 3 & 30 \\ 3 & 30 \\ 3 & 20 \end{array}$ | $\begin{aligned} & 0.99 \pm 0.02 \\ & 1.02 \pm 0.03 \\ & 1.65 \pm 0.05 \\ & 3.03 \pm 0.05 \end{aligned}$ | 6 3 3 | 57 30 20 | $\begin{aligned} & 1.03 \\ & 1.0 \\ & 1.03 \\ & 0.98 \end{aligned}$ |

a - Volume per cent
b - From ref. ${ }^{6}$
d - Interpolated from the Arrhenius equation
c - Prom ref. ${ }^{7}$

From Table $l$ one can see that the rate constants values for phenylnitromethane with hydroxide ion in water measured by us, are in good agreement with those obtained by Munder1oh ${ }^{6}$.

The acceleration of proton transfer, observed due to the organic solvent component, is somewhat lower for phenylnitromethane than in case of nitroethane. (11 and 13 fold in 50 vol \% DMSO). However, the accelerating effect for deutero--phenjl-nitromethane is always higher than for proto-compound ( 11 and 33 fold in 50 vol DMSO, 88 and 181 fold in 66.67 vol \% DuSO), causing the decrease of the value of primary isotope effect observed. For the dissociation of phenylnitromethane in presence of NaOH in aqueous dimethyl formamide the value of isotope effect is practically equal to that of similar process for nitroethane $\left(k^{H} / k^{D} \approx 1\right)$.

The activation parameters obtained in this study calculated according to the Arrhenius equation and activation parameters according to Firing's equation and some data extracted from ref. 6 and 7, are collected in tables 2 and 3.

Table 2.
Parameters of Arrhenius Equation for the Reaction of Phenyinitrome thane and Phenylnitromethane $\mathrm{d}_{2}$ with Hydroxide Ion in Aqueous DMSO and Aqueous DMF at $25^{\circ} \mathrm{C}$. The standard deviations are listed.


[^2]Table 3.
Parameters of Biring's Equation for the Reaction of Phenylnitromethane and Phenylnitromethane- $d_{2}$ by Hydroxide Ion in Aqueous DMSO and Aqueous DMF

| Solvent ${ }^{\text {a }}$ DMSO or \% of ${ }^{\text {Mol }}$ |  | $\triangle \mathrm{H}_{\mathrm{H}}^{4}$ | $\Delta \mathrm{H}_{\mathrm{D}}^{+}$ | $\Delta \mathrm{S}_{\mathrm{H}}^{\prime \prime}$ | $\Delta \mathrm{S}_{\mathrm{D}}^{\prime \prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{H}_{2} \mathrm{O}^{\text {b }}$ | 0 | 11.6 | 23.3 | -9.4 | -7.9 |
| 33.33\% DMSO | 11.24 | $9.2{ }^{\text {c }}$ | - | $-15.5^{\text {c }}$ | - |
| 50\% DMS 0 | 20.21 | $8.3^{\text {c }}$ | 10.4 | $-15.8^{\text {c }}$ | -11.2 |
| 66.67\% DMSO | 33.63 | $7.2{ }^{\text {c }}$ | 6.5 | $-15.6{ }^{\text {c }}$ | -20.6 |
| 50\% DuF | 18.9 | 5.5 | 5.5 | -26.9 | -26.9 |

a - Volume per cent
b - From ref. ${ }^{6}$
c - Prom ref. ${ }^{7}$

References

1. A. Talvik, A. Pihl, and V. Pihl, Organic Reactivity, 16, 3(59) 335-343 (1979).
2. A. Talvik and A. Pihl, Organic Reactivity, 16, 3(59) 351-360 (1979).
3. N. Kornblum, H.O. Larson, R.K. Blackwood, and D.D. Moobery, J. Amer. Chem. Soc.. 78, 1497(1956).
4. R.P. Bell and D.M. Goodall, Proc. Roy. Soc., A294, 273 (1966).
5. L.C. Leitch, Canad. J. Chem. 33, 400(1955).
6. J.R. Keefe and N.H. Munderloh, Chem. Commun. 17(1974).
7. C.D. Slater and Yau Wai (David) Chan, J. Org. Chem., 43, 2423(1978).

Organic Reactivity
Vol.21. 4(76) 1984

ELECTRON EFFECTS IN THE CHLORINE-CONTAINING HETEROCYCLIC COMPOUNDS. L.AMINO-DERIVATIVES

OF THE 2,4,6-IRICHLORO-1,3,5-TRTAZINE
Yu.E.Sapozhnikov, Ya.B.Yasman,T.G.Sukhanova, and V.A.Danilov
All Union Research Technological Institute of Herbicides and Plapt Growth Regulators, 450029, Ufa, Ulyanov, 65, USER.

Received December 27, 1984
On the basis of the comparison of the obtained data on $N Q R{ }^{35} \mathrm{Cl}$ frequencies, asymmetry parameters of the electric field gradient, the electron effects in aminoderivatives of the 2,4,6-trichloro-1,3,5-triazine have been investigated. Some regularities of the change in the C-Cl bond ionicity under the action of the inductive influence of the substituents have been established. Electronic conductivity of the triasine and benzene rings has been compared.

The reactivity of the $2,4,6$-trichloro-1,3,5-triazine and its derivatives is determined both by the specificity of cyclic structure which formally resembles benzene, and by the nature of the fanctional groups. The presence of the three lone electron pairs at the nitrogen atoms and donor or acceptor substituents causes a significant rearrangement of the electronic system in these compounds and results, correspondingly, in a different chemical activity. In considered case, the transmission of the electronic influence of the aminogroups in the triazine ring, according to the NQR data at the ${ }^{35} \mathrm{Cl}$ nucleuses was investigated.

Up to now, the $N Q R$ frequency change regularities of the aromatic compounds have been investigated in detail. So, in in Refs. 1,2 the relationship between NQR frequencies and the constants, characterizing the nature of the substituents has been found, the quantitative evaluation of the aromatic ring transmission conductivity has been carried out.

The authors of the works ${ }^{3,4}$ tried to extend these correlative relationships to the heterocyclic systems by introducing the corrections, considering the change of the doublebond character of the carbon-halogen bond and the influence of the heteroatoms. In the triazine series we investigated the NQR ${ }^{35}$ Cl frequencies and the asymmetry parameters of the electric field gradient which allowed to make (according to Townes-Dayly theory) the estimation of the ionicity of C-Cl bonds as well as the degree of its double bonds character (5). In the considered structures it was possible that the ring geometry in varying amino-groups is maintained constant and the system of the main axises of the electric field gradient tensor for the halogen is maintained tightly fixed and the intramolecular interactions, affecting the parameter of the asymmetry, do not change the direction of the maximum electric field gradient. Only in this case we could expect, that the constants of the quadrupole interactions would be proportional to the values of the reaction subatituent constants.

## Experimental.

Amino-derivatives of 2,4,6-trichloro-1,3,5-triazine were aynthesized according to the procedures ${ }^{6-9}$. The values of the electric field gradient asymmetry parameters were determined from the Fourier-image of the spin echo envelope in magnetic field on the ${ }^{35} \mathrm{Cl}$ nuciei ${ }^{10,11}$. Experimental values of the NQR frequencies $\left(\nu^{77}\right)$ and $\eta$ were obtained at a modified spectrometer $N Q R$ IS 3 in the polycrystalline samples at temperature 77K.

Estimates were carried out according to the develpped programs ${ }^{10}$ at a "Nicolet" computer BNC-12. The measurement results of the defined values, the quadrupole interaction constants ( $\theta Q q$ ) and its ionicity (I) are summarized in the table.

For the structures $1-7,14$ the spectrum multiplicity exceeded the number of the chemically inequivalent chlorine atoms in the molecule, indicating on the presence of two crystallographically independent molecules in the unit cell.


[^3]The wide range of the frequency change (~3 MHz) while transforming from the original 2,4,6-trichloro-1,3,5--triazine (compound 1) disubstituted products, substantially exceeding the frequency interval for the benzene derivatives with similar substituents should be noted. The values of the asymmetry parameter on the nuclei ${ }^{35} \mathrm{Cl}$ indicate the greater (in comparison with aromatic systems) degree of the double-bonding carbon-halogen that was related, apparently, to the greater $\pi$-acceptor ability of the triazine ring. Introducing one or, especially, two electron-donating aminogroups results in the reduction of the $\pi$-acceptor cycle capacity and in the reduction of the degree of chlorine atom double-bond character. However, in some cases (see structures 9, 15 ), the observed great values of the parameter $\eta$, can be related to steric perturbation of the interaction of the lone pairs of the nitrogencontaining functional groups with triazine-ring, bound with them. The principle possibility of the use of Hammet meta $\sigma$ constants in studying the influence of substituents structure on the rate of sym.- triazines hydrolyses has been established in a number of works ${ }^{12}, 13$.

We also made an attempt to correlate the NQR frequencies with Hammet constants. The regression treatment of the average values $\mathcal{V}$ and $\sigma_{m}$ indicated, that only the rough linear relation for the considered series of the derivatives is observed:

$$
\begin{equation*}
\dot{i}(M H z)=34.799+2.358 \sigma_{m}(r=0.923) \tag{I}
\end{equation*}
$$

permitting, however, a decision to be made concerning the greater (then in aromatic systems) electron effects of the substituents on the chlorine atom frequency.

It is in accordance with the results of the works ${ }^{12,13}$ in which higher heterocyclic transmission was observed. While analyzing $N Q R$ frequencies for the polysubstituted azines in the work ${ }^{3}$ it was indicated, that the electron interactions in heterocycles could be quantitatively characterized by a two-parameter correlation ${ }^{14}$ in the single reaction series with the benzene derivatives. 'The deviations from such relation observed for the compounds with hetero-
atom in $\alpha$-position to the bond $C-C l$, were eliminated by introducing the effective inductive parameters $\sigma_{I \text { eff. of }}$ the heteroatomic grouping $-N=$ which, furthermore, became dependent on the number of adjacent nitrogen atoms. The application of $\sigma_{I}$ eff. for the series of sym.-triazines showed ${ }^{3}$ great differences between calculated and experimental values of the $N Q R$ frequencies, exceeding -0.65 MHz in the case of compound I and +I MHz for compounds $8,9,10,14,15$.

An alternative approach to the heterocyclic systems based on the use of the modified equation has been show (4):

$$
\begin{equation*}
\nu(M H z)=34.826+1.024 \sum \sigma-\Delta \nu \tag{2}
\end{equation*}
$$

where $\Delta \nu$ accounts for the change of the $C-C l$ double-bond character due to the heteroatom influense. The comparison of the equations (1) and (2) indicates that in this case $A \mathcal{V}$ must increase in transferring from the trichlorotriazine to the disubstituted derivatives, which does not correspand to the observed character of the asjmmetry paraneter change. This fact indicates the inapplicability of auch an approach to the given compounds. A more established fact, according to the Townes-Dayly theory, is the account of the anynetry parameters in the calculation of the bond ionicity (I) which can be compared with the substituent inductive constants aince the latter are in the m-position to the reactive center.

The comparison of values $I$, represented in the table, with $\sigma^{W}$ gives the following relation:

$$
\begin{equation*}
I(\%)=25.51-2.66 \sum \sigma^{2} \quad(r=0.977) \tag{3}
\end{equation*}
$$

The correlation equation has been derived from the data for 12 compounds. The following substituent constants were useds $\sigma_{C l}=2.89 ; \sigma_{N(M e)_{2}}=1.1$ (16); $\sigma_{\text {NHM }}=1.018$ (17);
 the C-Cl bond ionicity change dependence under the effect of the inductive influence in the aromatic compounds and in the triazine series the similar equation for the monochlorobenzene derivatives having the substituents in 3- and 5-positions has been found: $I(\%) \sim 23-0.65 \sum \sigma^{\text {F }}$

In deriving this equation the experimental FQR frequency data were used, and the values of the asymmetry parameters were calculated according to the correlation equation, obtained as the result of the absence of values for the required number of the substituted aromatic compounds in the literature available.

Although eq. (4) has only the estimation character, the comparison of the induction members in (3) and (4) indicates that the substituents in the triazene ring have greater influence on the C-Cl bond ionicity than in the benzene ring.


Correlation between $C-C l$ bond ionicity and the reaction $\theta^{\operatorname{AF}}-$ Taft constants of substituents for the number of 2,4,6-tri-chloro-sym.triazine derivatives (equation 3); for comparison, dependence 4 is shown by the dotted line.

Consenquently, the research of the aminoderivatives of 2,4,6-trichloro-1,3,5-triazine by the NQR method made it possible to establish the regularities of the CHCl bond ionicity change in the considered series under the action of the inductive substituents influence. The higher electron transmission and $\pi$-acceptor ability of heterocycie in comparison with the benzene ring have been observed.

## References

1. P.J. Bray and R.G. Barnes, J. Chem. Phys., 27, 551(1957).
2. E.N. Tsvetkov, G.K. Semin, D.I. Lobanoz, and M.I. Kabatchnik, Tetrah. Lett., 2521(1967).
3. I.F. Tupitsyn, N.N. Zatsepina, N.S. Kolodina, and A.Y. Kirova, This journal, 2, 1075(1972). (in Russ.).
4. P.J. Bray et al., J. Chen. Phys., 28, 99(1958).
5. G.K. Semin, T.A. Babushkina, and G. G. Yakobson.
"Application of Nuclear Quadruple Resonance in Cheuistry," "Khimiya," Leningrad, 1972, p. 68. (in Russ.)
6. Switzerland, patent No 457469, RZhKh, 1975, ref. 23044 P (in Ruse.)
7. Great Britain, patent No 1253970, RZhKh, 1972, ref. 7N760p. (in Russ.)
8. USA, patent No $3573302 \mathrm{RZhKh}, 1972$, ref. 14415 N . (in Russ.)
9. B.N. Chelov and T.A. Sukhanova, Technology of the Synthesis of New Types of Pesticides, D.I. Mendeleev BRP VKh0, Ufa, 1980, p. 15, (in Russ.)
10. Yu.E. Sapozhnikov and Ya. B. Yasman, Transactions of the Ac. of Sciences of the USSR, ser. physics (in Russ), v. 42, No 10, 2148(1978).
11. Yu.E. Sapozhnikov, "Study of Electric Field Gradient Tensor Asymmetry in Case of Nuclei with Spin $1=3 / 2$ by Means of the Pulsed NQR Method". (in Russ.) Thesis, Krasnoyarsk, 1983.
12. T.N. Bykhovskaya and O.N. Vlasov, This journal , 4, 510(1967). (in Russ.).
13. T.N. Bykhovskaya, O.N. Vlasov, I.A. Melnikova, and N.N. Melnikov, This journal, 2, 1149 (1972). (in Ruse.)
14. D. Biedenkapp, and A. Weiss, J. Chem. Phys., 49, 3933(1968).
15. C.H. Townes et al., J. Chem. Phys., 23, 118 (1955).
16. V.A. Palm, FPoundations of Quantitative Theory of Organic Reactions" (in Russ.), "Khimiya", Leningrad, 1977, p. 322.
17. Manual of Chemistry (in Russ.) "Khimiya", Moscow-Leningrad, 1964, v. 3, p. 960.
18. I. Oatrogovich, E. Fliegel, and R. Bacalogly, Bulletin Stilntific fi tehnie al J.P.T. Serie chimie, 18, 105 (1973).
19. V.S. Grechishkin, "Wuclear Quadruple Interactions in Solid Structures" (in Russ.), "Nauka", Moscow, 1973, p. 178.

STUDY OF REACTIVITY OF SUBSTITUTED BICYCLO [2.2.2]
OCTANES. 4. SELECTIVE DEOXYGENATION OF DIETHYL-2,5--DIOXOBICYCLO [2.2.2.] OCTANE-1,4-DICARBOXYLATE.
A. Körgesaar, U. Vares, and A. Müraue Laboratory of Chemical Kinetice and Catalyais, Tartu State Univeraity, 202400, Tartu, USSR.

Received December 28, 1984.
Literature methods for selective deoxygenation of diethyl-2,5-dioxobicyclo [2.2.2] octane-1,4- dicarboxylate (I) are verified and specified.

The degree of purity of product obtained by various methods of deoxygenation was checked by gasliquid (GLC) chromatography.

Conversion of tosylhydrazone (I) into the corresponding saturated diester II by sodium borohydride in dimethylformamide (DMF) was also attempted.

The reductive deoxygenation of carbonyl functions of diethyl-2,5-dioxobicyclo [2.2.2] octane - 1,4 - dicarboxylate (I) (see the scheme) is of considerable importance in the area of synthesis of bicyclo[2.2.2] octane derivatives.


The classical procedures which are employed for converting ketones into the corresponding hydrocarbons often suffer from experimental difficulties and lack of selectivity. Likewise they work poorly and unpredictably when applied to sterically hindered carbonyl compounds.

Various Wolff-Kishner modifications have found considerable utility for deoxygenations but the high concentration of base and relatively vigorous conditions caused the failure in this case ${ }^{1,2}$.

Traditional Clemmensen procedure is applied for deoxygenation of $I$ in some different solvents. In toluene- water mixture the 2,5-dioxobicyclo [2.2.2] octane - 1,4 - dicarboxylic acid was gotten at 30 per cent yield ${ }^{3}$. Using dry ethanol and more diluted reagents the yield of diester II in 40 per cent was obtained. ${ }^{4} 67$ per cent yield of diester was realized by Wilcox ${ }^{5}$ but he did not give full details of the synthesis and no analysis of the reduction product.

To carry out Clemmensen reaction, the prolonged refluxing under highly acidic reaction conditions is required and several side reactions can be assumed.

A rout is available for the synthesis of the desired bicyclooctane diester II through the thioketal formation from $I$ and subsequent desulfurization with Raney nickel to the II, but it requires the use of large quantities of ethanedithiol and of Raney nickel 6,7 .

Thus, investigation of the alternate procedures not requiring the use of these reagenta is deairable.

The use of various metal hydrides as selective reducing agents has attracted a conaiderable amount of interest in recent years. The corresponding reaction with metal hydrides is often rapid and quantitative ( see e.g. ref. 8 etc.).

Caglioti and coworkers ${ }^{9,10}$ have established that reduction of p-toluene sulfonylhydrazones with sodium borohydride in refluxing methanol or dioxane effects the conversion of carbonyl compound to the corresponding hydrocarbon in reasonable yields (i.e., 30-80\%) in many cases.However, the selectivity of sodium borokydride is not high at the required re-
duction temperatures (refluxing methanol or dioxane).
Sodium borohydride in polar aprotic solvente has proven to serve as a selective but somewhat milder reducing agent. ${ }^{9,11}$

It is of interest to obtain II by several routes of synthesis.

Special attention was paid to the conversion of tosylhydrazon of I to the corresponding saturated diester II by sodium borohydride in polar aprotic solvents.

Experimental.
All of the materials were either commercial products (purified) or synthesized by standard procedures. In all cases the physical constants agreed satisfactorily with the constants available in the literature.
GLC analyses were performed on a "Vbruchrom"-A-1 instrument using $3 \mathrm{mx} 2 \mathrm{~mm} \mathrm{XE}-60(5 \%)$ column at $200^{\circ} \mathrm{C}$. The retention times were compared with authentic samples. The yields were meas. ured by comparing the peak area of the reaction product with the peak area of a standard solution of the same material.

1. Clemmensen Reduction of Diethyl-2,5-Dioxobicyclo[2.2.2] octane-1,4-dicarboxylate (I).

Reduction of I by Clemmensen was carried out as described by Humber et al. (see ref. 4). The viecous liquid was obtained in overall yield $59-65 \%$, b.p. $143-146^{\circ} \mathrm{C}$ ( 3 torr) and $n_{D}{ }^{26}=1.4725$ (lit.b.p. $118-126^{\circ}$ ( 0.3 torr), $n_{D}{ }^{26}=$ $=1.4628^{4}$; b.p. $140-145^{\circ}(3$ torr $), n_{D}{ }^{30}=1.4723^{3}$; b.p. 113-$-115^{\circ}$ (0.3 torr); $n_{D}{ }^{26}=1.4660^{6}$.

GLC detected 5-6 peaks. The second peak had retention time of II and was estimated in $30 \%$ yield.

On the bases of Wilcox's work ${ }^{5}$ the mole ratio of zinc and I were varied from $20: 1$ to $7: 1$, but no essential differences were detected in the yields and product compositions.
2. Reduction by Raney Nickel Desulphurization of the Bisethylenethioketal Derivative of the Diketo-
-Diester of I
Ethanedithiol was prepared by the standard procedure. ${ }^{12}$ Bisethylenethioketal of $I$ was prepared by the procedure of Roberts ${ }^{6}$ and had mp. $88-89^{\circ} \mathrm{C}$ (lit. ${ }^{7}$ mp. $92^{\circ} \mathrm{C}$ ).

Alloy of Raney Nickel (Nickel containing 44\%) was worked up until neutral to litmus in accordance with instruction ${ }^{13}$. After treating the catalyat with 2-3 portion of dry ethanol, it was immediately utilized in reduction procedure. Replacing 95 per cent with dry ethanol reduction was realized according to Roberts ${ }^{6}$. The yield 85-95 per cent was obtained, b.p. $144-146^{\circ} \mathrm{C}$ ( 3 torr), $\mathrm{n}_{\mathrm{D}}{ }^{25}=1.4663$. GLC showed only one component. Lit. ${ }^{6}$ yield 52-70 per cent, b.p. 113-115 ( 0.3 torr), $n_{D}^{26}=1.4660$.
3. Attempt to Convert Tosylhydrazone of I to the Corresponding Saturated Diester II by Sodium Borohydride
in DMP
p-Tolueneaulfonylhydrazine was prepared by the standard procedure ${ }^{14}$, m.p. 107-109, lit. ${ }^{14} \mathrm{~m} . \mathrm{p} .106-109^{\circ} \mathrm{C}$.

Tosylhydrazone of $I$ (TH) was prepared by analogical method. 11
1.7 g diketone $I$ and 2.9 g p-toluenesulfonylhydrazine in 5 ml of absolute ethanol were refluxed for 8 h .Cooling of the solutions afforded crystalline product in excellent yields ( $94-96$ per cent),m.p. $225-227^{\circ} \mathrm{C}$. The product was usually pure enough and further recrystallization was not necessary for the reduction atep. An analytical sample of $T H$ crystallized from ethanol, m.p. $228-229^{\circ} \mathrm{C}$.

Anal. calcd. for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{8} \mathrm{~N}_{4} \mathrm{~S}_{2}: \mathrm{C}, 54.35 ; \mathrm{H}, 5.54$; N , 9.06. Found: C, 53.91; H, 5.35; N, 9.11.

Reduction of Tosylhydrazone of $I$ (TH) with Sodium borohydrine in DMF.

To a stirred solution of 0.9 g TH ( entry 4) in 50 ml dry DMF was added $\mathrm{NaBH}_{4} 2 \mathrm{~g}$ during an hour. Stirring was continued for 48 h at room temperature and 10 h at $60^{\circ}$. The
mixture was cooled and neutralized with 10 per cent HCl and extracted with ether. The extracts were washed with water and dried over anhydrous magnesium sulfate. Analysis indicated 10-12 per cent saturated ester II, free of side producte.

Acidification (entry 5) was carried out by adding concentrated HCl dropwise through the top of the condenser to keep pH below 3.8 (the pH value was controlled by univeral indicator paper). Work-up was identical with that given above.

In order to establish optimum reaction conditions for reduction in DMP, the concentration of $\mathrm{NaBH}_{4}$ and TH and teriperature were varied. The most successful mole ratio of $\mathrm{NaBH}_{4}$ to TH was found to be $30: 1$. The data are presented in Table 1.

Some other solvent syotems including dimethyl sulfoxide, diglyme and $80 \%$ diglyme $-\mathrm{H}_{2} \mathrm{O}$ were also tested without sucсевв.

The use of $\mathrm{NaBH}_{4}$ in carboxylic acid solvente $\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$ suggested by ref. 15,16 in this case failed.

Table 1
Reduction of Tosylhydrazone of I (TH) with Sodium Borohydride in Dimethylformamide (DMP)

| $\begin{aligned} & \mathrm{En-} \\ & \mathrm{tryy}^{2} \end{aligned}$ | TH: $\mathrm{NaBH}_{4}$ | pH | Reaction Conditions Temp. ${ }^{\circ} \mathrm{C} / \mathrm{time}(\mathrm{h})$ | $\underset{\%}{Y i e l d}$ | Hotes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | 1:8 | 8 | $50 / 30$ | - |  |
| 2. | 1:20 | 8 | $\begin{aligned} & 20 / 12 \\ & 60 / 6 \end{aligned}$ | - |  |
| 3. | 1:20 | 8 | 100 / 5 | - | form thick gel |
| 4. | 1:30 | 8 | $\begin{aligned} & 20 / 48 \\ & 60 / 10 \\ & 20 / 2 \end{aligned}$ | 10-12 |  |
| 5. | 1:30 | 3.8 | 60 / 3 | 3-4 |  |
| 6. | 1:30 | 8 | 60 / 24 | 10 | form gel |

## Summary.

The experimental data available indicates that the high--yield (85-95 per cent) method for deoxygenation of diketodieater $I$ is desulfurization its thioketal with Raney nickel. The product obtained was clean, no side products were detected by CLC.

Clemmensen reduction procedure gave low jields of im pure material.

Reduction of tosylhydrazone of diketodiester I with sodium borohydride in polar aprotic solvents to the corresponding saturated diester II is not recommended as a method for synthetic applications. Although the tosylhydrazone of $I$ is produced in excellent yield ( $94-96$ per cent ), the subsequent reduction of tosylhydrazone with sodium borohydride is slow (yield 10-12 per cent).

## References.

1. H.D. Holtz and L.M. Stock, J. Am. Chem. Soc., 86, 5188 (1964)
2. G.I. Buchanan and N.B. Kean et al., Tetrahedron, 3l, 1583 (1975)
3. P.C. Guba, Ber., 72, 1395 (1939).
4. L.G. Humber and G. Myers et al., Can.J. Chem., 42, 2 (1964)
5. C.F. Wilcex and J.S. McIntyre, J. Org. Chem., 30, 777 (1965)
6. J.T. Roberta and W.T. Moreland, J. Amer. Chem. Soc., 75, 2167 (1953)
7. R. Lukes and J. Langthaler, Coll. Czech. Chem. Comm., 24, 2109 (1959)
8. R.O. Hutchins and B.E. Maryanoff et al., J. Amer. Chem. Soc., 23,1793 (1971).
9. L. Caglioti, Tetrahedron, 22, 487 (1966)
10. L. Caglioti and P. Crasselli, Chem. Ind. (London), 153 (1964)
11. R.O. Hutchins and C.A. Milewski et al., J. Amer. Chem. Soc., 95, 3662 (1973)
12. A.J. Speziale "Organic Syntheses", isaue 4, p. 569, Moscow, 1953 (in Ruseian)
13. G. Billica and G. Adkins "Organic Syntheses", issue 4, p. 569, Moscow, 1953 (in Russian).
14. L. Fritzman and R.L. Michel et al., "Organic Syntheses", issue 12, p. 143, Mir, Moscow, 1966 (in Russian).
15. R.O. Hutchins and N.R. Natale, J. Org. Cheme, 43, 2299 (1978).
16. G.W. Gribble and W.J. Lellej et al., Synthesia, 10, 763 (1978).

Organic Reactivity Vol.21. 4(76) 1984

> STUDY OF REACTIVITY OF SUBSTITUTED BICYCLO [2.2.2] OCTANES. 5. CYCLOADDITION REACTION BETWEEN ETHYL-1,3-CYCLOHEXADIENE-1-CARBOXYLATE AND NITROETHYLENE .
A. Körgesaar, N. Johanson, and I. Annus

Laboratory of Chemical Kinetica and Catalyaia, Tartu State University, 202400 Tartu, USSR

Received December 28, 1984

The cycloaddition reaction between ethyl-1,3-cyclohexadiene-l-carbozylate (I) and nitroetbylene (II) in dry benzene (and without solvent) was studied. The fadduct (III) was formed in 66--92 per cent jield, b.p. $122^{\circ} \mathrm{C} / 1-2 \mathrm{~mm}$. The product was characterized by IR apectra.

Most probably the cycloaddition reaction of ethyl-l,3--cyclohexadiene-l-carboxylate with nitroethylene would be characterized by the echeme ${ }^{l}$ :

sctivated by conjugation, nitroethylene should be the most active of the monofunctionalized acrylic dienophiles in Diels-Alder reaction (see Ref. 2-3, etc.).

The yield of expected Diels-Alder adduct is decreased by easy polymer formation of nitroethylene. ${ }^{4}$ It polymerizes readily with water and violently in the presence of a trace
of alkali.
To avoid polymerization, generation of nitroethylene in situ for use of DielsmAlder reaction is described ${ }^{5}$.

Since nitroethylene holds promise as a useful and reactive synthon in organic syntheses, the question of its stabilization was examined several times (see Ref. 6, 7, etc.).

Recently it has been pointed out 3,7 that with reactive substrates nitroethylene reacts most easily at low temperature and when stored as a $10 \%$ solution in benzene in refrigerator $\left(+10^{\circ} \mathrm{C}\right)$, it is stable for at least 6 months. Whereas there are no literature reports on the above-mentioned cycloaddition reaction, the purpose of this work is to study and specify the optimum conditions of diene condensation of ethyl 1,3-cyclohexadienecarboxylate with nitroethylene.

Experimental
Infrared spectra were performed on a "IKS-29" spectrometer Ethyl-1,3-cyclohexadiene-l-carboxylate (I) was synthesized by the procedure of Grob and Ohta (see also Ref.9). 2-nitroethanol was prepared from formaldehyde and nitro methane ${ }^{10}$. The constants were in good accordance with the literature values.
Nitroethylene (II) was synthesized by the procedure of phthalic anhydride mediated dehydration of 2-nitroethanol ${ }^{4}$, it was several times dried over anhydrous $\mathrm{MgSO}_{4}$, diatilled in vacuum, b.p. $38-39^{\circ} \mathrm{C} / 80 \mathrm{~mm} \mathrm{Hg}$ and stored as a 10 per cent solution in dry benzene at $+10^{\circ} \mathrm{C}$.
Generation of Nitroethylene (II) in situ for use in Diels-Alder Reaction with Ethyl 1,3-cyclohexadiene-l-carboxylate (I) was carried out by analogy ${ }^{5}$.

Ethyl-1,3-cyclohexadiene-1-carboxylate ( 2 g 0.013 mol ) , 2-nitroethanol $(2.28 \mathrm{~g}, 0.025 \mathrm{~mol})$, phthalic anhydride $(3.70 \mathrm{~g}$, $0.025 \mathrm{~mol})$, and hydroquinone $(2.75 \mathrm{~g}, 0.025 \mathrm{~mol})$ were placed in tube. The tube was flushed with argon, sealed, and heated for 30 minute at $100-120^{\circ} \mathrm{C}$. Then the temperature was increased to $140-150^{\circ} \mathrm{C}$ and heated at this temperature for 24 h . After cooling down the mixture was extracted with benzene. The benzene extracts were dried over $\mathrm{MgSO}_{4}$, and the removal of
the solvent in vacuo gave crude product as yellow-white crystals, 0.33 g ( $11.2 \%$ ), m.p. $160^{\circ}-170^{\circ} \mathrm{C}$ (decomposition).

The synthesis was repeated by the above deacribed procedure using benzene ( 4 mL ) as solvent. For once 0.40 g ( $16 \%$ ) of crystallic product was obtained, m.p. $160-170^{\circ} \mathrm{C}$. By storing these yellowish-white crystals became dark.

A small sample was recrystallized from benzene and analyzed.

Anal. calcd for expected compound
$\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~N}: \mathrm{C}, 58.39 ; \mathrm{H}, 7.13 ; \mathrm{N}, 6.19$
Found : C, 35.38; H, 4.39; N,18.20
Calcd for
$\left(-\mathrm{CH}=\mathrm{CNO}_{2} \mathrm{C}_{2} \mathrm{C}, 32.43 ; \mathrm{H}, 5.44 ; \mathrm{N}, 18.90\right.$
The infrared spectrum (oil) has band at $1555 \mathrm{~cm}^{-1}$ ( $\mathrm{NO}_{2}$ ).
Cycloaddition Reaction of Ethyl-1,3-cyclohexadiene-1-carboxylate (I) with nitroethylene (II).

Nitroethylene was synthesized, carefully dried and distilled in vacuo. Immediately after distillation II was diluted with dry benzene and stored as 10 per cent solution at $+10^{\circ} \mathrm{C}$.

In the runs 1 and 2 there was the fresh-made nitroethylene used.

Representative Examples(see run 7, Table 1)
Under argon atmosphere a solution of nitroethylene (2.17g, 0.029 mol ) in dry benzene ( 24 mL ) was added dropwise during 6 h at $80^{\circ} \mathrm{C}$ to ethyl-1,3-cyclohexadiene-l-carboxylate ( 3.7 g , 0.024 mol ) and refluxed for 18 h at this temperature. The solvent was evaporated in vacuo and the residue vacuum distilled. A pale yellow oil was gotten, b.p. $122^{\circ} \mathrm{C} / 1-2 \mathrm{~mm}$. Yield $\geqslant 62 \%$. In distillation and at storing the product fast became dark.

In connection with the decomposition of III, the yield was calculated a) by the unreacted and distilled diene $I$ (b.p. $\leqslant 75^{\circ} \mathrm{C} / 1-2 \mathrm{~mm}$ ) b) by distilled product III (b.p. $122^{\circ} \mathrm{C} /$ $11-2 \mathrm{~mm}$ ). Run 8 (see Table 1). This synthesis was carried out by analogy to Run 7.The mixture was refluxed at $80^{\circ} \mathrm{C}$. After that benzene was evaporated in vacuo and product III was hydrogenated on $\mathrm{PtO}_{2}$ in the atmosphere of hydrogen (at atmos-

Table 1
Data on the Cycloaddition Reaction of Ethyl-1,3-Cyclo-hexadiene-l-carboxylate (I) with Nitroethylene (II).

a) The yield was calculated by nonreacted diene
b) The yield was calculated by distilled product III.
pheric pressure). After the filtration of the catalyst,the saturated product was vacuum distilled, b.p. $125-127^{\circ} \mathrm{C} / 1-2 \mathrm{~mm}$, in yield $66 \%$. The product has typical smell of bicyclo [2.2.2] octane carboxylic acid esters.

The infrared spectrum ( KBr ) has bands at $853\left(\mathrm{NO}_{2}\right)$; 1070 $=$ -1250 ( $\mathrm{C}-0$ ); 1340, 1555 ( $\mathrm{NO}_{2}$ ), 1730 ( $\mathrm{C}=0$ ); 2880, 2940, 2985 $\left(\mathrm{CH}_{2}\right) \mathrm{CM}^{-1}$.

Table 1 summarizes the data on synthesis.
Discussion.
From the data obtained one can see that the yield of Diels~Alder adduct is decreased by polymerization of nitroethylene (see Table 1, entry 1-3). Most suitable is to carry out the cycloaddition reaction of nitroethylene with $I$ in dry benzene using 10 per cent nitroethylene solution. The optimum temperature for the synthesis is $80^{\circ} \mathrm{C}$. The heating for 24 h in anhydrous argon atmosphere results in the adduct, pale yellow oil, b.p. $122^{\circ} / 1-2 \mathrm{~mm} \mathrm{Hg}$. Its partial decomposition takes place in distillation. When preserved the pale yellow oil fast becomes dark.

The yield calculated by unreacted diene $I$ is 90 per cent, by the distilled adduct III -- 62 per cent, only.

Products III hydrogenation was undertaken without intermediate distillation to avoid its decomposition (see entry 8, Tablie 1)

IR spectrum of hydrogenated product showed the bands attributed to the nitro and ester groupa.

This saturated nitrobicyclo [2.2.2] octane carboxylic acid ester is more stable than III.

In cycloaddition reaction with generation of nitroethylene in situ the polynitroethylene was obtained only.

## References

1. A. Onishchenko, Diene Synthesis, M.AN. SSSR, $1963,650 \mathrm{p}$ (in Russ.)
2. A. Etienne and A. Spire et al., Bull, Soc. Chim. France, 1952. 750
3. R.H. Geivandov and E.I. Kovǧev, Zh. Organ. Khim. 12, 543 (1981)
4. V.V. Perekalin, Unsaturated Nitrocompounds, Goskhimizdat., Leningrad, 1961, p. 22. (in Russ.)
5. R.B. Kaplan.and H. Shechter, J. Org. Cheme, 26, 982 (1961)
6. J. Grodzinsky, A. Katchalsky et al., In coll. "Interna--tional Symposium of Macromolecular Chemistry", Moscow, 1960, p. 221 (in Russ.).
7. D. Ranganathan and C.B. Rao et al., J. Org. Chem., 45, 1185 (1980)
8. C.A. Grob and M. Ohta et al., Helv. Chim. Acta, 4l, 1191 (1958).
9. A. Körgesaar and V. Siliats et al., Reakts. sposobn. orge soed., 16, 534 (1979).
10. W.E. Noland, Organic Syntheses, issue 12, Moscow, Izd.~vo "Mir", 1964, p. 105 (in Russ.).

# STUDY OF REACTIVITY OF SUBSTITUTED BICYCLO [2.2.2] OCTANES. 6. ABOUT CYCLOADDITION REACTION BETWEEN SOME 1,3-CYCLOHEXADIENS AND MONOFUNCTIONAL ETHYLENES 

A. Körgesaar, T. Tensing, and M. Nechaeva

Laboratory of Chemical Kinetice and Catalysis, Tartu State Univeraity, Tartu, 202400 Est. SSR

Received December 28, 1984
The literature reports and the data about cycloaddition reaction between some 1,3-cyclohexadiens and various monofunctional $\mathrm{XCH}=\mathrm{CH}_{2} \quad\left(\mathrm{X}=\mathrm{NO}_{2}, \mathrm{CN}\right.$, $\mathrm{CHO}, \mathrm{COCH}_{3}, \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$ and $\mathrm{CO}_{2} \mathrm{H}$ ) ethylenes (i.e.acrylic dienophiles) gathered in our laboratory are discussed. The reaction conditions and total yield dependence on the nature of dienophiles are discussed.
To obtain 1-Y-2-X and 1-Y-3-X bicyclo [2.2.2] octane derivatives, where $Y=\mathrm{CO}_{2} \mathrm{HCO}_{2} \mathrm{R}$ and $\mathrm{X}=\mathrm{NO}_{2}$, $\mathrm{CN}, \mathrm{CHO}, \mathrm{COCH}_{3}$, $\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$ and $\mathrm{CO}_{2} \mathrm{H}$ the cycloaddition reaction with subsequent hydrogenation of adduct is most often used.

In cycloaddition reaction of $1,3-c y c l o h e x a d i e n e$ or ethyl-$-1,3$-cyclohexadiene with acrylic dienophiles the bicyclo [2.2.2] octane akeleton will be formed. Usually, the adduct represents a mixture of four isomers (see the scheme).


Determination of relative yields of these isomers was the aim of some investigations (see Ref. l-2, etc.).

At room temperature 1,3-cyclohexadiene reacted with several dienophiles rapidly and quantitatively, but with acrylic dienophiles heating is usually necessary. (See Table l).

By heating the thermally stable dimers of l,3-cyclohexadien are formed and simultaneous polymerization of acrylic dienophiles takes place lowering the yield of Diels-Alder adduct. ${ }^{3}$

The rate cycloaddition reaction of cyclohexadiene with acrylic dienophiles depends on the nature of diene and dienophile. Thus, ethylene reacts with l,3-cyclohexadiene only at vigorous conditions (see Table l). Strongly activated dienophiles such as nitroethylene, acrylonitrile, etc. react more easily.

Diels-Alder reactivity of 1,3 -cyclohexadiene and substituted cyclohexadienes with acrylic dienophiles are not examined in detail. Literature data about the series are scanty.

To carry out cycloaddition reaction of 1,3-cyclohexadiene and substituted cyclohexadienes with acrylic dienophiles heating, either in flask with reflux condenser or in sealed ampules at various temperatures, is used (see Table 1 and 2).

In utilization of cycloaddition reaction for preparation of $1-Y-2-X$ and $1-Y-3-X$ derivatives of bicyclo [2.2.2] octane the total yield of this stage has essential practical importance.

In the present paper based on the literature reports and our experimental data an attempt is made to draw a connection between Diels-Alder reaction conditions and total yield dependences on the nature of acrylic dienophiles.

## Experimental

Ethyl-1,3-cyclohexadiene carboxylate was synthesized by the procedure of Grob and Onta ${ }^{14}$ (see also Ref. 10 ).

Dienophiles I - III and VI ("Pure for analysis" grade ) were dried carefully by standard procedures and used freshly distilled only.

Nitroethylene (V) was synthesized by the procedure of

Table 1
Data on the Cycloaddition Reaction of 1,3-cyclohexadiene with Monofunctional Ethylenes $\mathbf{X C H}=\mathrm{CH}_{2}$; Procedure A , Heating in the Sealed Ampule. Procedure B, Heating with Reflux Condenser

| No | $\begin{aligned} & \mathbf{X} \text { in } \\ & \text { dienophile } \end{aligned}$ | Reaction conditions | Yield, \% |
| :---: | :---: | :---: | :---: |
|  |  | Procedure, temp., time | Ref. |
|  | H | pressure, $250^{\circ} \mathrm{C}, 24 \mathrm{~h}, 50 \mathrm{~atm}$ | 564 |
| I | $\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$ | Proc. A, 160-170 ${ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$ | 885 |
| II | $\mathrm{CN}^{\text {- }}$ | Proc. B, $120^{\circ} \mathrm{C}$ | 80.6 |
| III | CHO | Proc. A, $100^{\circ} \mathrm{C}, \quad 8 \mathrm{~h}$ | 807 |
| IV | $\mathrm{COCH}_{3}$ | Proc. A, $140^{\circ} \mathrm{C}, 8-10 \mathrm{~h}$ | 508 |
| V | $\mathrm{NO}_{2}$ | Proc. B,heating, 1 h | 339 |

phtalic anhydride mediated dehydration of 2-nitroethanol ${ }^{15}$ (see Ref. 16).
Procedure A for cycloaddition reaction
0.023 mol diene, 0.092 mol dienophile and 0.04 hydroquinone were placed in a glass ampule, flushed with dry argon and sealed. The sealed ampule was heated at $140^{\circ} \mathrm{C}$ for 24 h . The reaction mixture occupied $1 / 3$ to $1 / 2$ of the tube volume.

Adducts I-III were distilled in vacuum and analyzed. In all cases the physical constants agreed satisfactorily with the constants available in the literature.

GLC analysis were performed at a "Vöruchrom"-A-1 instrument, using $3 \times 2 \mathrm{~mm}$ XE-60 (5\%) column at $200^{\circ} \mathrm{C}$.

According to the GLC procedure adducts I-III contain four isomers whose total yield was calculated.

In cycloaddition reaction with dienophile VI l,2-dicarboxylic acid of bicyclo [2.2.2] octane was obtained. After recrystallizing the product from benzene the white crystallic product (m.p. 202-203 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{\text {l }} 202-204$ ) was obtained. Procedure $C$ for cycloaddition reaction, heating with reflux condenser in the atmosphere of anhydrous argon and in dry benzene as solvent was used in the case of

Table 2
Data on the Cycloaddition Reaction of Bthyl-1,3-Cyclohexadienecarboxylate with Monofunctional Bthylenes $\mathrm{XCH}=\mathrm{CH}_{2}$. For Dienophiles I-III Ratio of Dienophile--diene 4:1 for V and VI -- 1,2:1, Respectively

| No | $x$ in | This work ${ }^{\text {E }}$ |  | Literature data |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | dienophil | Reaction conditions | Yield,\% | $\begin{aligned} & \text { ioaction } \\ & \text { conditions } \end{aligned}$ | Yield, | \% Rep. |
| I | $\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$ | Proc.A $\begin{array}{r}140^{\circ} \mathrm{C} \\ 24 \mathrm{~h}\end{array}$ | $77 \pm 3$ | $\begin{array}{r} \text { Proc. } B \quad 120^{\circ} \mathrm{C} \\ 24 \mathrm{~h} \end{array}$ | 50 | 1;10 |
| II | CNI | $\begin{array}{r} \text { Proc. } 140^{\circ} \mathrm{C} \\ 24 \mathrm{~h} \end{array}$ | $79 \pm 2$ | $\begin{array}{r} \text { Proc. A } 170^{\circ} \mathrm{C} \\ 9 \mathrm{~h} \end{array}$ | 73 | 11 |
| III | CH | $\begin{array}{r} \text { Proc.A } 140^{\circ} \mathrm{C} \\ 24 \mathrm{~h} \end{array}$ | $72 \pm 2$ | $\begin{array}{r} \text { Proc. } \quad 150^{\circ} \mathrm{C} \\ 90 \mathrm{~h} \end{array}$ | 47 | 12 |
| IV | $\mathrm{COCH}_{3}$ |  |  | Proc. $1140^{\circ} \mathrm{C}$ | 89 | 2 |
| v | $\mathrm{NO}_{2}$ | $\begin{array}{ll} \text { Proc. } C \quad 80^{\circ} \mathrm{C} \\ 24 \mathrm{~h} \end{array}$ | $76 \pm 14$ |  |  |  |
| VI | $\mathrm{CO}_{2} \mathrm{H}$ | $\begin{array}{r} \text { Proc.A } 140^{\circ} \mathrm{C} \\ 24 \mathrm{~h} \end{array}$ | $27 \pm 2$ | Proc.B 150-160 78 |  | 813 |

F The Jields are calculated as arithmetic mean of 2 to 4 synthesis
Procedure A, heating in the sealed ampule in the atmosphere of anhydrous argon
Procedure $B$, heating with reflux condenser
Procedure C, heating with reflux condenser in the atmosphere of anhydrous argon and in dry benzene as solvent.
dienophile V. After heating at $80^{\circ} \mathrm{C}$ for 24 h a pale jellow oil was achieved, b.p. $122^{\circ} \mathrm{C} / 1-2$ ma. (For details of this synthesis see Ref. 16).

## Discussion

In order to establish qualitative dependence of dienophile reactivity, the cycloaddition reaction of ethyl-1,3--cyclohexadienecarboxylate with monosubstituted ethylenes
in similar experimental conditions were studied in the present paper.

Heating in sealed ampule for 24 h at $140^{\circ} \mathrm{C}$ was used with the only exception of nitroethyleze which decomposes at these conditions.

Prom data represented in Table 2 one can see that adm ducte of cycloaddition of substituted 1,3-cyclohexadiene with monofunctiolized ethylene, $\mathrm{XCH}=\mathrm{CH}_{2}$ at $\mathrm{X}=\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$, CN , CHO in the aimilar experimental conditions were formed at a 70-80 per cent yield, Strongly activated dienophile such as nitroethylene ( $\mathrm{X}=\mathrm{NO}_{2}$ ) reacts readily with diene. Unfortu nately, nitroethylene's tendency to polymerize is high and cycloaddition reaction in this case was realized in the dry benzene at $80^{\circ} \mathrm{C}$. During 24 h heating the yield from 62 to 90 per cent was got. The partial decomposition of adduct in distillation and storing did not allow to eatablish the yield more precisely. (See Ref. 16).

Less reactive was acrylic acid $\left(\mathrm{X}_{\mathrm{CO}}^{2} 2 \mathrm{H}\right)$. At the same time only a 25 per cent yield was achieved.

By litereture reports there are some othor cases when the sane ranging of Diels-Alder activity of acrylic dienophiles was found. Thus, with bensofuran ${ }^{17}$ the rate decreasing line was the following: nitroethylene $>$ acrylonitrile > $>$ acrolein $>$ methylvinylketone $>$ acrylic acid.

Recently ${ }^{18}$, the cycloaddition reaction of 1,4 -diethoxy--1,3-cyclohezadiene with some monosubstituted ethylenes was studied and found that dienophilic reactivity deoreases as follows:
nitroethylene > acrylonitrile > acrolein.
These resulta are in accordance with electronic oharacteristics of dienophiles - electron with drawing substituents facilitate the reaction. As compared with dienophiles the reversed substituent effect is present. in the case of dienes. In its turn, 1,3-cyclohexadiene is somewhat more reactive than ethyl-l,3-cyclohezadiene carboxylate.

Consequently, the represented results about the reactivity of monofunctional ethylenes with some 1,3-hexadienes follow the regularities which generally apply to diene syn-
thesis.

## References

1. J. Kazan and F.D. Greene, J. Org. Chem., 28, 2965(1963)
2. G.L. Buchanan and N.B. Kean et al., Tetrahedron, 31, 1583 (1975).
3. A. Onishchenko, Diene Synthesis, M., AN SSSR, 1963, p. 343 (in Rus.)
4. H.M. Walboraky and D.F. Loncrini, J. Am. Cbem. Soc., 76, 5396 (1954)
5. R. Seka and O. Tramposch, Ber., 75, 1379 (1942)
6. K. Alder and G. Heimbach et al., Ber., 21, 1516 (1958)
7. B.A. Kamanski and P.I. Zabezhenskaya, Doklady Akademi1 Nauk SSSR, 72, 57 (1950)
8. A.A. Petrov, Z. obshch. Khim., 11, 309 (1941)
9. W.C. Wildman and D.R. Saundere, J. Org. Chem., 12, 381 (1954)
10. A. Körgesaar, V. Siilats and J. Reiljan, Reakts, sposobn. organ. soedin., 16, 534 (1979).
11. Z. Friedl, J. Hapala, and O. Exner, Collect. Czechoslov. Chem. Commun., 44, 2928 (1979)
12. I. Tabushi and Z. Yoshida et al., Bull.Chem. Soc.Japan, 47, 3079 (1974)
13. P. Scheiner and K.K. Schmiegel et al., J. Org. Chem., 28, 2960 (1963).
14. C.A. Grob and M. Ohta et al., Helv.Chim.Acta, 41,1191 (1958)
15. V.V. Perekalin "Unsaturated Nitrocompounds", Goskhimizdat, Leningrad, 1961 p. 22 (in Rus.)
16. A. Körgesaar and N. Johanson et al., This J., p. 456
17. A. Etienne and A. Spire et al., Bull. Soc. Chim.France, 1952. 750
18. R.H. Geivandov and E.I. Kovahev, Z. Org. Khim. SSSR, XVII, issue 3, 543 (1981)

## CONTENTS

V.D. $O$ r 1 ov, Yu. H. S $u$ rov, R.I. Mikhed-and V.P. L av rushin, Unsaturated Cyclic Ke-tones. IV . The Rolative Basicities of ArylideneDerivatives of Benzocycloalkanones and Their Hetero-analogues363
T.J. J i r 1 a d o, Program Package for ComputerStorage and Automatic Search of Correlation Rqua-tions and for Calculation of Rate and EquilibriunConstants. 2. Algorithm for Search of Index ofCorrelation Rquation from Identification Arrays onthe Basis of Reaction and Substituent Codes.375
T.J. J H 1 a do, Program Package for Computer Storage and Automatic Search of Correlation Equa- tions and for Calculation of Rate and Equilibrium Constants. 3. Algorithm for Search of Solvent and Temperature. ..... 388
T.J. J U riad o, Progran Package for Computer Storage and Automatic Search of Correlation Equa.. tions and for Calculation of Rate and Equilibrium Constants. 4. Algorithm for Calculation of Rate and Equilibrium Constants on the Basis of Results of Reaction Set Search. Short Manual of Program Use. ..... 405
Zh.P. Piskunova, NoN. Matvienko, and A.P. $P \circ p \circ \nabla$, Kinetics of Interaction of o-Halogendesoxybenzoines with Aliphatic Amines. ..... 418
2. Structure Bffect of Amine.
Matvienko, Kinetics of Interaction of$\propto$-Halogendesoxybenzoines with Aliphatic Amines.
2. Effects of Medium, Temperature and Nature ofSubstrate Leaving Group428
A. Pihl, T. $\mathbb{K}$ anger and A. Talvik,Kinetic Study of Ionization of Nitroalkanes inMixed Solvents: IX. Phenylnitromethane and Phenyl-nitromethane $\mathrm{d}_{2}$ in Aqueous Dimethyl Sulfoxide andAqueous Dimethyl Formaimide . . . . . . . . . . . .436
Yu. B. S a pozhnikov, Ya.B. Y a в man,T.G. Sukhanova, and V.A. Danilov,具ectron Refects in the Chlorine-Containing Hetero-cyclic Compounds. 1. Amino-Derivatives of the2,4,6-Trichloro-1,3,5-Triazine441
A. к в rge a a r, U. Varea, and A. M и $r$ a и в, Study of Reactivity of Substituted Bicyclo[2.2.2] Octanes. 4. Selective Deoxygenation of Diethyl-2,5- -Dioxobicyclo [2.2.2] Octane-1,4-Dicarboxylate ..... 449
A. K \& rgesa ar, H. Joh ana on, andI. Annus, Study of Reactivity of SubstitutedBicyclo [2.2.2] Octanes. 5. Cycloaddition ReactionBetween Bthyl-1,3-Cyclohexadiene-l-Carboxylate andMitroethylene456
A. K 8 rge a a ar, T. Ten ing, and M, re-chaeva, Study of Reactivity of Substituted Bi-cyclo [2.2.2] Octanes. 6. About Cycloaddition Re-action Between Sowe 1,3-Cycloheradiens and Monofunc-tional Bthylenes462




SCCP, 202400, F.D pry, FI. Mितtcoori, I8.


sopies $60.84 / 16$.
byinara mпoram.
Man mom mos. Porampris.


TEpar 350.
$3 a \operatorname{cas}$ 342.



[^0]:    The absence of catalytic flow conditioned the use of acetonitrile as the solvent.

[^1]:    * As a consequence of the relatively large ecattering experimental points, the systematic errors expressed by the nonzero value for intercept could not be unambiguously discussed.

[^2]:    a - Volume per cent

[^3]:    *The frequencies are given according to (5).

