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DEFINITION OP MIXTURES WITH GIVEN MOMENTS 

E.Tiit 

1. Set-up of the problem. 

The definition of distributions with given moments is 

important in several situations, for instance, 

1° in data analysis, when it is necessary to identify 

given empirical distributions, 

2° in statistical modelling, when the generation of 

distribution with given moments is required. 

There exist several classical methods for solving the 

problem, for instance, using Pearson's distributions family, 

some other families such as Johnson family, some expansions 

by given distributions (Grain-Charlier*, Edgeworth expansi­

ons) , and mixtures of given distributions. Most studies,dea­

ling with the mixtures, use the mixtures of normal distribu-

tions[3 - Ц• In recent time the mixtures of several other pa-

rametric&l families are considered as well ,2,7,8j. 

Especially for the second purpose mentioned it is con­

venient to use mixtures , because of the efficiency of gene­

ration of mixtures is considerable. 

The aim of the paper is; 

1° To demonstrate that arbitrary distribution, having 
moments of order к may be used as the basis for defining the 

mixture with given moments 

2° To analyse the number of parameters, needed by the 

definition of mixtures and to demonstrate the possibility of 

definition of optimal mixtures (in the sense of number of 
defining parameters). 

3 To give the analytic resolution of the problem for 

the case of four given moments and the arbitrary given dist­
ribution (of 4-th order). 

2. The concept of optimal distribution for given moments. 

Let к be natural, к ̂  2, and y«k be real num­

bers, satisfying the condition 
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where V = 

1) h1 ••• A 
А Рг ••• Av + 1 

yAv ••• / 2V/ 

Denote A = (>i 

А о ( 1 )  

the set оf all distributions, having their first к moments 

equal to the corresponding components of vector /с. 

Let SP be any set of distributions, depending on pa­

rameters I ̂,.i| ̂ r. If the parameter-vector = (/Aj,... 

identifies the distribution fy- in the family P , 

but none of the subvectors of Я" does it, then is the 

defining parameter of distribution . It is evident that 

in general the number of defining parameters of distribu­

tions from the set is at least k, if The 

distributions from the set Я1Г/0, having exactly к defining 

parametere,are said to be optimal and having not more than 

k+1 defining parameters - almost optimal. 

Let P be arbitrary distribution of order к, X P. Then 

we denote = mll(X) = EX11 the h-th moment of P, h=1,... 

3. The discrete mixtures of random variables and distribu­

tions. 

Let (52,8, j" ) be discrete (finite) probability space, 

$ - the set of random variables, having the distributions 

from the set f . Then the mixture Z of random variables 

X^ is the transformation 

iß -> 36, 

given by £he formula 

Z =ŽXXi » 
i=14 

where и ̂  are the events, U^|=ß, ь) i  Л = 0, ^(^ ̂) = 
= and X^€ X. If Xi ~ P^, then the distribution Q of mix­

ture Z is the mixture of distributions P^, Q = ̂  y-j, Pj, 
where у t = YX ^ ^- s  said to be the mixing distribution. 

ti. ̂  °' Уi =  1' 
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It is well known fact that if distributions Pj are of 

order k, then the mixture Q has the same property and the 

moments of Q can be expressed through the moments of mixed 

distributions P± in the following way: 

mjjCQ) Y i™h^. h = 1 k. (2) 

4. The class of mixtures of linear parametrizatlon. 

Let PQ be the given distribution. Let us regard the set 

ф (PQ) of distributions P(a,b) , (a,b eR 1), defined as the 

distributions of linear transformations of variable X0 with 

distribution P0: 

P(P0) = { P(a,b) : aX0 + b~P(a,b), if X~PQ, a.btgj. 

Denote C^(PQ) the set of all discrete mixture! of distribu­

tions from J7 (PQ) : n 

^(P0) ={Q : Q =1^(^.4); ai(bie R,s f eD }, 

where D is the set of distributions with finite support» Say 

^PQ) is the class of mixtures of linear parametrization of 

distribution P0. Let 8(Xq) be the set of random variables Z, 

defined as 

2 - "aXo + Ub- О) 

where Ua, are following random variables: 

Ua Xu^i* Ub = ÖC,bi • 
i=1 1 i-1 1 

In the special case of degenerate distribution i~ we have in 

(3) ' 

Z = aX + b, 
о 

Prom here it follows that the set 8(XQ) is closed in 

linear transformations and finite mixtures. 

Lemma 1. In every aet 8(Xq) there exists a random vari­

able X*, having the following properties: 

J1° X# is standardized, EX# = 0, DX^ = "i, 

is symmetric: if then P*. 

Proof. Let PQ have the following moments: 

M1(P0) = C1, Ш2(Р0) = + CG; then DXQ = CG о 
Let us define • lies X1 and X2, 
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Z1 и °21xo~c1c21; Z2" ~X1> 

Щ ( Х ± )  •  0 ,  - 1 , 1 »  1 , 2 ,  a n d  t h e  m i x t u r e  Z  o f  v a r i ­
ables I1 , X2; 

Z " XjX, +^3^2» f (iJ> = 0.5, is the opposite 
event of <0. 

It is oleer that Z has the properties 1°,2° and Zs 

* Й (IQ). Let Z ~ Q, then 

Q = O^PUgJ-c-ie"1) + 0.5P(-O21'C1C21)* 

The leona ie proved. In future let us assume that the 

initial variable IQ with distribution PQ fulfills the con­
ditions 1° and 2°. 

Some subsets of 6|-(P0) have been of special interest 

and have been studied in statistical literature steadily, 

for instance: a 

1°ta<V -f£iriP(el'0)« ai^lt 

the set of scale ( contamination, variance) mixtures; 

2° CfcP0) -{5Т1Р(а,Ъ1)' a,bi6Rli' 

the set of shift (mewa) mixtures} 

3° ^C(P0) e[|:
if'iP(0,Ci)iOie' = D' 

the set of discrete distributions (with finite support). 

5. The defining parameters of mixtures. 

Let Q be the n-coaponent mixture of r-parameter distri­

butions; then the number q of defining parameters of Q is,in 

general, 

q = (r + 1)n - 1, (5) 

so as besides the defining parameters of initial distribu­

tions P^ the coefficients V" ̂  are included into the set of 

defining parameters of Q. 

In the class of linear parametrization ^(PQ) all de­

fining parameters of PQ are fixed, and every initial distri­

bution P(a,b) is characterized with two parameters a and b 

only and so the n-component mixture has 

q = 3n -1 (6) 
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defining parameters. In subclasses ^a(?0)» ф0(?0) and 

Цъ(P0) this number is correspondingly 

qft " <JC = 2n - 1; (6') 

qb - 2n. (6») 

Prom the inequality 

к ž. q 
the necessary number n of components of mixture Q, having 

the property Q e Яд,follows. 

6. Definition nf ajjiost optimal mixtures with given moment a. 

Assume к, Д from 04-^ and k-order distribution P0, sa­

tisfying conditions (4), are given. The problem is to define 

the optimal or almost optimal mixture Q from the set ^-(PQ) 

/1 Яд. The questions we must solve are the existence, unique­

ness and construction of the distribution Q. 

Let us write down some well-known equalities for the mo­

ments of several variables (we propose all variables to be 

of the order к and independent): 

n^taX + bY) )aim1(Z)bh"i «^(Y); (7) 

denoting m^(X) = m^( > we have 

=£ = Cm^m?)- 2̂|:(i9n4.(-1)MJ î. (T!) 
1=0 

%= X ({) (ш2 ~ »i)1'2®! "H • (7") 
i=0 

We shall use the connections (7) - (7") id following ceJr 

culations, particularly in proving the following theorem. 

Theorem 1. For eveiy к (к ? 2), natural, given vector^ 

from satisfying ( 4), and given distribution PQ of order 

к it is possible to construct almost optimal mixture Q from 

the set ^"(P0) (1 Jfy. The distribution Q is not unique in 

general, the set of distributions ^-(PQ)/1 ICy is convex. 

Proof. We will define the mixture of shift-type, or 

what is equivalent, the variable 

Z = aXQ + Y, where XQ~' PQ, Y ~ Q#, Q* e D, Z ы Q. 

7 
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Let us denote mi(X£)) = M^(i = 1 k). From the equation (7) 

it follows that the moments of Z have the following form: 

m^Z) » a1Mimh_i(Y). (8) 

From the condition Q we get the system of к linear equ­

ations with к unknowns m.,(Y) m^Y): 

Ah )a\mh_i(Y) (n - 1 k). (9) 

' i=o 

The variable Y exists if and only if the vector m(a) = 

= (m1(Y),...,mh(Y)) belongs to OR^ (see^ö J and [9 J). Let 

us regard the behaviour of the vector m(a), depending on 

a, ae[o,l], It is evident that in the case a = 0 the solu­

tion of the system (9) satisfies the condition m(a)^ Ф1^.Ъе% 

m(a.,) and m(a2) belong to the TPlk' а1<а2* the convexi­

ty of set of mixtures it follows that every m(a), a1 ̂  a& 

belongs to the set From here it follows that the set 

A of values a, for which m(a) £ has the form C°»a*],a*^ 1 

(equality holds only when PQ£ Жд). 

For constructing the variable Z any a, belonging to A 

must be found,then the system (9) solved and the moments of 

discrete distribution Q* found-. Then solution of the system 

of к nonlinear equations defines the optimal discrete dist­

ribution with к parameters. As always the optimal solution 

in class D exists (see [6 J, [9]), so the number of defining 
parameters of Q is, In general, k+1, q.e.d. 

If PQ and Q satisfy the condition ( 4 ), then the value 

of the parameter a in some sense measures the similarity of 

the mixture tõ the initial distribution PQ: we have the de­

composition of the variance of Z: 

DZ = a^DXQ + DY, DY = 1 - a^, where Y is discrete ran­

dom variable. Using a = a*, we get the mixture, that is the 

"most similar" to the initial distribution P. 
о 

7. Definition of optimal mixture with four given moments. 

Let к = 4. Then from equations (6), (6') and (6") it fol­

lows that the optimal mixture must be of the shift type with 

two components, defining parameters being a, b1, b2 and j1. 

The mixture Q is the following: 

Q=yP(a,b1)+(1-|)P(a,b2), 2=/^aX^ ) + aXQ+b2) (w)^, 
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Let us write down the equations for calculating the parame­

ters, using the general expression for moments (2), the con­

nection (7) and the assumption, that X0 satisfies the con­

ditions (4) and ft* - the conditions (7*). Denote m^(XQ) = 

( m.(Q) = f-b.+d- Г)Ъ2, j m^Q) = }(я2+Ъ2) + (1- p(a2+b2), 

\ m3(Q) = f)h3+3(y-a
2b1+(1-f )a2b2), 

[m4(Q) = /b4+(1-/-)b4+6a2(^b2+(1-pb2) 

or after simplifications, 

(10) 

(rbi:(i:f)b2 - °. 

f(a2rt2)+(1- f)(a2+b2) = 1, 
( 1 0 ' )  

Ы+(1-рь I =/<3. 

(^|b4+(1-pb4+6a2(1-a2)+M4a4 = Д. 

From the first and second equations we can express b1 and bp 

through a' and ^ . 

4- (1- 2), 
(in 

Denoting (1-a2)^ = T, from the third equation we can get the 

expression of ^ through T: we receive the quadratic equation 

M3(1"f )f = T(1-2 ̂ )2, 

the two solutions of which are 

JM 

aü 
^ - O.St _ г;_" ? . (12) 

Let us take the smaller solution for , then the larger 

one gives 1 - y4 and we can add the following condition (11yJ 

to the expression (TT);, 

sign b1 = sign 3 • (11') 

For finding a we express b1 from the third and fourth 

equations. If we denote 

A(a) = /Д-4 - a4!^ - 6(a2 - a4) (13) 

and 

B(a) = T(1- vl-ЗУ -3, 
' - V I  



we get the equation 

A(a) = ^(В(а))1/3. 

öaing the connections /(1- V ) = — к , 1 - 2 f I 6 
» « 4T » 4Т+Лз 

and the denotation a2=> y, we get the equation of the third 

degree 

G(y)= (5-M4)y3+(M4-9)y2+( Д+3)у-С/^4-1-^) = 0. (14) 

If ^ 0, we have G( 1) > 0, G(0) £ 0, that means, the so­

lution a *[o,l] always exists. If G(0) = 0, we get the 

* unique solution a = 0, that means , Q € D. 

Let us regard the case = 0. Then we may choose the 

symmetric distribution Q. The shift-type mixture has then 

two defining parameters a and b, so as b1 = -b2 = b and у = 

= 1 - Y = 0.5. Instead of the system (10') we get the system 

{: b4 + 6а2Ъ" + a^M4 = 41 

a2 
+ b2 = 1. " (15) 

о 2 
If we denote x = a , 1 - x = b , then we get the solution 

from the quadratic equation 

-2 t V4-(M4-5)(1-/<4) 

« 4 - 5  

the solution in [0,1 jexists if and only if tha conditio;: 

1^4& »4 

is fulfilled. That means, the shift-type mixture decreases 

the fourth moment of initial distribution. 

If fi 4 > M4, we must use the contamination-type mix­

ture. Then the number of defining parameters is 3, and for 

getting the optimal distribution we must fix one parameter, 

for instance, let us take a2 = 0.5, a,, = ca1. Then we have 

instead of the system (10') the following system: 

V r +C1-p*4) = У4* (16) 

( J< +(1- J )c2) = 2/ 

If we use the notation Jk 4/M4 = S, then we have 

_ 4(S-1)—^ c2 = (2 - у )/(1 - у ). The solution у 
4S - 3 10 1 

exists, if S у 1, that means, the contamination-type mixture 

increases the fourth moment of the initial distribution P0. 

t 
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Example. 
Let the vector /<- of given momenta be (1, 2, 3.5, 7) 

and the given family P be the family AL of uniform diatri-

butiona U(c1tc2). It ia evident that the standard distribu­

tion P , fulfilling the conditions (4) in family ? is 

и(-Уз °/з), m4(P0) = 1.8. 
2? The first step of the solution is the calculation 

of correaponding standardized vector /t= ( ,... , /c^) , 

using the formula (7'): We get = 0, =1» =-0.5, 

/ 4 = 2 .  
2? Now it is poaaible to write the equation (14). put­

ting the values of and JLi 4 into the expression G(a): 

3.2y3 - 7.2y2 + 5y - 0.75 = 0. 

The solution of the equation gives у = 0.20500471, that 

means 

a = 0.45277446. 

Prom (12) we get 

f = 0.33369525, 1 - f = 0.66630475,. 

and from (11) and (1V) 

b1 = -1.2599222, b2 = 0.63098761. 

The mixture Z g  of variables from IL has the following form: 

Z0 = X/0*4527"7446^ -1 *2599222)+>5(0.45277446Z0 + 

+ 0.63098761), у (u>) = О.3ЗЗ69525 (17) 

and its distribution QQ i s  

Q0 = 0.33Э69525Р (0.45277446,-1.2599222)+ 

+ 0.66630475P(0.45277446, 0.63098761). 

Using the formula (10), it is simple to calculate the mo­

ments of Q: 

m^Qy) = 0, m^C^) = 1, nL)(Q0) = -0.5, m4(Q0) = 2 

(with 6 decimal places). 

2° Now we must find the distribution Q (random variable 

Z) with momente . For the purpose we use the linear trans-

format ion 

Z = (/«2 -/)1/2Z0 + /V 

where jJ. 1 and Ц. 2 are given in yti . We get 

Z= XLXO.45277 446Xo-0.2599222)+ fy. 0.45277446XQ+ 

+ 1.63098761), 

K" is defined by (17). By formula (.10 ) we find 
ml(Q) =1, m^Q) = 2, (Q) = 3.5, m4(Q) = 7 (with 6 

11 

3* 



decimal digits). 

J- . For using the standard generators of random num­

bers it is convenient to express the variable Z through 

Y,Y ~ U(0;1) = P* . So as Xo = 2 (уГ- fT , we get fi­

nally 

Z =X)(1 .5684567Y - 1.0441506)+^1.5684567Y -

- 0.84675923), 

^ is defined by (7), and 

Q = 0.3336952 P4 1.5684567,-1.0441506) + 

+ 0.66630475P*(1.5684567,0.84675923). 

5°« For checking the correctness of results we may use 

the formula (7) for calculating the moments of linear com­

bination of variables Z = a* Y + W,W having the following 

discrete distribution 

]f(-1.0441506) = 0.33369525, 

^(0.84675923) = 0.66630475. 

The moments of variables Y and W are the following 

m^W) = 1/2, m^Y) = 1/3; m3(Y) = 1/4, m4(Y) = 1/5. 

m.,(W) = 0.2157716, m2(W) = 0.84155271, m3(W)=0.02465796, 

m4(W) = 0.73918664, 

and we get 

m.,(Z)=1; m2(Z) = 2, m3(Z) = 3.5 and m4(Z)=7 with 6 decimals, 

q. e.d. 
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ОПРЕДЕЛЕНИЕ СМЕСЕЙ РАСПРЕДЕЛЕНИЙ С ЗАДАННЫМ! МОМЕНТАМ 

Э. Тийт 

Р е з ю м е  

В разных ситуациях возникает задача - определить рас­

пределение, имеющее заданные моменты /*!>••*>/лк (удовлет­

воряющие, естествённо, условию (I)). Оптимальным (почти оп­

тимальным ) считается •распределение, имеющее несоответственно 

к*1) определяющих параметров. 

Одной возможностью для решения этой задачи является 

пользование дискретными смесями распределений. На основании 

любого распределения к-го порядка PQ определяется т.н.класс 

смеоей линейной параметризации ЯИPQ), состоящий из диск­

ретных смесей распределений { Р fa;., ̂ ), ai ̂  е ^ i, где 

Р (a, 4-) есть распределение случайно! величина aX+ fr при 

.Частными случаями смесей из класса cHPQ) являются хоро­

шо известные смеси типа смещения и смеси типа засорения. 

Доказывается теорема, что для любого комплекта задан­

ных моментов /ч».«.»уик (удовлетворяющих (I)) и дая любого 

заданного распределения (к-го порядка) PQ возможно опреде­

лить почти оптимальную смесь из класса (PQ). 

Для случая к = 4 выведены явные формулы для нахождения 

определяющих параметров смеси. Если моменты исходного рас­

пределения обозначаются через { I = 1,...,к), и рассмат­

риваются стандартизированные распределения (у^= N| j = 0; 

/^2 = Н 2 = I)t то выяснилось, что в случае /<4 ^>1 не­

обходимо пользоваться смесью типа засорения, а в «лучае 

/<4/И4 < I - смесью типа смещения. 

Received September 85 
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RAHDOM VECTORS WITH GIVEN ARBITRARY MARGINALS 

AND GIVEN CORRELATION MATRIX 

E.Ti.it 

The problem of existence and definition of multivaria­

te distribution with given marginals and some given charac­

teristics of dependence is important in using the Monte-

Carlo method in multivariate analysis, especially when the 

robustness of statistical methods is the subject of inves­

tigation. 

The partial solutions of the problem raised have al­

ready been obtained more than forty years ago: in 1940 W. 

Hoeffding [ 5 j described the set of all bivariate distribu­

tions with given marginals and gave the formula for the 

"minimal" and "maximal" ones, that have correspondingly the 

minimal and maximal correlations. In early fifties the pro-, 

pertiea of the minimal and maximal bivariate distribution« 

were studied by Frechet ptj. In 1964 Kellerer demonstrated 

that the set of k-dimensional distributions with fixed mar­

ginals forms a convex polyhedra in the space of all k-di-

mensional distributions [ ГJ. For 2 marginals in the comp­

lete separable metric space Strassen derived the necessary 

and sufficient conditions for existence of common distri-

but ion [12J. 

For the case when some dependence characteristics are 

fixed,too, there are rather few results. In 1976 Whitt sur-

veyd all the known facts for the bivariate case [l5^|. For 

the к > 2 there exist some results when it is assumed that 

the distribution describes the subvector of stationary ran­

dom process pi* In the case all marginals are equal and 

correlation matrix consists of values of correlation func­

tion, r^ = R( i-j) ; i, j = 1,... ,k, see f 1 In [13^j the 

author gave an algorithm for finding the k-dimensional 

distribution by given (equal) marginals and given correla­

tion matrix with some generalizations in 114,16). Some al­

ternative resolutions are given in C3,8l and И01. 
The aim of the paper is .to generalize these results 

for the case of unequal marginals and arbitrary correlation 
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matrices. 

1. Set-цр of the problem. 

Assume к is fixed natural, к > 2; P.,,...»?k are given 

one-dimeneional distributions with distribution functions 

Pi(Xi) correspondingly. Let R=(be к x к correlation 

matrix, given. 

Our aim is to define a k-variate distribution 

P = P(Pv...,Pk;R) 

with given marginals P^ and given correlation matrix R. By 

the way we must solve the prohleme of existence and unique­

ness of distribution P, as well as the problem of efficient 

construction of vectors having the distribution P and the 

simulation of values of vectors with distribution P. 

In paragraphs 4-6 we consider the special case of 

equal marginals (in 4 we add the restriction of symmetricity 

of distribution, too; in 5 we regard the case of positive 

correlations only). In paragraphs 8-9 we generalize the re­

sults of paragraphs 4-6 for the arbitrary marginals (of se­

cond order). Some illustrative examples are given in para­

graphs 7 and 9. 

2. Some auxiliary concepts, 

Def. 1. Let к € Я. The natural-valued vector 

I=(i1,...,ig) is k-index. if it fulfills the following con­

ditions ( see [ 10 J)  :  

1 „ ij ̂  ^ к, j = 1,..«,s—1; s < k. 

If к is fixed, we say index instead of k-index. We use the 

symbol I in the sense of {i1,.. • »ij » as well, for instance, 

j € I means Jij igj. 
Def. 2. Let к 6 N. The natural-valued vector 

L=(11,...,lk) is (s,k)-indicator, if it fulfills the fol­

lowing conditions: 

1° 1 Ž 1. is: i= 1,..., к, s 4 к; 

2° if 1. = h, h > 1, then there exists j с i with 1.= 

= h-1; 3 

From Def. 2 it follows, that the (s,k)-indicator defines 

the partition of set {l,...,kj into s distinct subsets; 

let us denote the indgx of the h-th subset by 1^=(1^,... 

•..,iy ), h=1 TZ Vj^ = k, and we have the connection: 
h h=1 
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I f  h  **> j e  I h .  

Eveiy Index I (If I) defines a (2,k)-indioator, where I1 = 

- I, I2  - IC. 
Example 1. Let к = 9, a = 4 and L = (1,2,1,1,3,2,4,3,2). 

Then the indioee of subsets are: I1 = (1,3,4); I2 
= (2,6,9), 

I3 = (5,8), I4 = (7). 

Def. 3. Let к fc Я. The integer-valued vector T = 

= (t^,....t^) ia (s,k)-pseudoindicator, if it fulfills the 

following conditions: 

1° T' = ((t^ ,...,ltk|) is ( s,k)-indicator; Ih, Ы^в; 

2 °  F o r  e v e i y  h  t h e r e  e x i s t s  i n d e x  J h  =  ( ,  

JjjC Ijj, ilj1; if Gjj» = (g-|»• • • >gp)j then the 
following connections hold, h = 1,... ,s: 

С h, if i*uh, 

ti= |-h, if ieGh, 1=1 h=1,,,"s' 

From Def. 3 it follows that the (s,k)-pseudo-indicator de­

fines the partition of the aet { 1,... ,k j into a subsets, 

while every subset could be partitioned into two subsets: 

one, corresponding to the positive and the other, correspon­

ding to the negative termes of pseudoindicator T. The first 

element of every subset corresponds to the positive t. 

Example 2. Let к = 9, a = 4 and T=(1,2,-1,1,3,-2,4,3,-2) 

Then T* = L, and the indices and G^ are following: J., = 

= (1,4); G^ » (3); J2 s (2)|' G 2 = (6,9), J3 - (.5,8); G^ = 0; 

J4 =(7); 04 = t>. 

Lemma 1. 

Let K(s,k) be the number of different (a,k)-indicators 

(that is, the number of different partitions of set 

{l,...,kj into subsets) Then 

I(s,k) =T~ JC( s-1,p-1)sk"p. (1) 
p=s 

Proof, Let us regard the set of all such (s,k)-indicators 

that have the first value 11 s" on the p-th position (p=s, • 

*«•fк» 

(1ц.. • ,lp_1» s ;lp+1, • •• ,1^)* 

Denote the set of these indicators and its power эе(Ар) = 

= Bp. The first p-1 components of the indicator have values 

from the aet [l,...,a-1j and they fulfill the conditions 
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1'°,2°. That means, they are (e-1 .p-1 )-indicators and their 

number equals to K(s-1,p-1). The values of lj (p+1 äj ̂  k) 

belong to set {l,...,sj and have no restrictions, the num­

ber of their different combinations is s^~p. So we have Bp= 

= I(s-1,p-1)sk~p, and eo ae K(s,k) = ap, the lemma is 

proved. p-s 

Corollary 1. The number X(k) of all possible partitions of set 

{l,...,kj ig the following 

K(k) -"5"t(s,k). (2) 

For practical calculations it is convenient to use an­

other form of the formula (1), namely the following formula 

< f >  

Lemma 2. Let Q(s,k) be the number of different (s,^-pseudo-

indicators. Then 

Q(s,k) = K(s,k)2k~e. 

Indeed, from every (s,k)-indicator L it is possible to form 

2k-s (s,k)-pseudoindicators, substituting the values of 1^ 

(j >1) by their opposite values. 

Corollary 2. The number Q(k) of all pseudoindicators for 

fixed к is fgllowing: ^ 

Q(k) =2T Q(s,k) = 53l(s,k)2k"8. (3 ) 
s=1 ^1 

3« Linear decomposition of correlation matrix. The mixture 
of random vectors. 

Let R = (r^j) be given к x k-correlation matrix (that 

means, R is symmetric and non-negatively defined, (r^jiD. 

Let A be an arbitrary set of k*k correlation matrices, 

Def. 4. If there exists such a set of coefficients у , ful­

filling the conditions * 

•КЛ*0' <«> 
I2 Ifi- '• 

that the equation 

R = iRi f Rie ̂  ( 5 )  
holde, then the linear decomposition of R by the class R 
exists. 

Denote f (it) the convex hull of set &. It is evident 

that the linear decomposition (5) of R exists if and only if 

17 
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R e ̂ (Д). 

Then a linear decomposition, containing not more than 

M non-zero terms, exist«, where 

M =(k-(k-1))/2 + 1 (6) 

end 
H 

Rd1- (51) 

The existence of linear decomposition of several corre­

lation matrices is considered in [2,1l]; the problem is of 

some interest from the point of view of data analysis. 

Def. 5. Let be the set of all k-dimensional random 

vectors Y , (Qy,Су,Р)-*Rk and (Q,C,^) - discrete 

probability space. Then the transformation aß-* 9 is the 

(discrete) mixture of vectors Y: 

z 

where is the indicator-function of event (J  = ß, 

<^i Л = <6, YiC^Csee [13]). If Y± ~ Qj, 

and Jf* ( k^) = jf^, then the distribution Q of mixture Z 

equals to the mixture of distributions 

«= H^i-
Some properties of mixtures are regarded in [t3'J. 

4. The case of equal symmetric distributions. 

Assume к is fixed and given one-dimensional distribu­

tions P} (see paragraph 1) fulfill the conditions 

1° P1=P2=...=Pk, (7') 

denote Pi=PQ; 

2° X ~ Pq4* -X~PQ. (7") 

For simplicity sake let us denote the k-variate dist­

ribution P(P.,,..,PV;R) with fixed marginals P„ and fixed 
ZA 4 

correlation matrix R, now P(Po;R). 

Def. 6. Let I be an arbitrary k-index, 

A1 e I, (8) 

and P0 an one-dimensional distribution. Then the random vec­

tor V=(Y1,...,Vv), 

V.=> '"•» A 6 X» 

•V W J f • • • , ly./ 

r  J x ,  if i 
H-X, if i X ~ P О 

is the simple vector with marginals 

18 



Def. 7. Let T be a simple vector, defined with the 

help of variable *0>*0 ~ $0 and by k-index I. Then the k-

variate dietribution of vector V is simple with marginal« 

V 
Let us denote it Pj(PQ) and the set of all k-varlate 

simple distributions with fixed PQ by £0(Pq); when the mar­

ginal distribution is fixed, we omit it and write simply #0. 

Corollary 3. From Lemma 1 it follows that the number H(k) 

of different simple vectors for fixed (and,consequently, 

the number of different simple distributions *-(^0) for 

fixed PQ as well) is the following: 

H(k) = 2k~1. (9> 

Def.8. The correlation matrix R° = (r^) is simple, if 

|r^jI = 1,1,j = 1»...,k. 

Let us denote the set of all simple correlation matri­

ces 

Lemma 3. The correlation matrix of a simple vector (simple 

distribution) is simple. Indeed, from the definition 6 it 

follows that if V is a simple vector then 

f 1, if iftl.jel or i 6 Iе,j 6 Iе, 

r11= г(74,Т ,)= j 
1 3  1  3  V 1. К or 161°, j*I. 

Lemma 4. Let к be fixed. Then eveiy simple matrix R° and one-

dimensional symmetric distribution PQ define uniquely a 

k-variate simple distribution Pj(P0). 

Indeed, let us define k-index I, I - (i1,...,is) by R° 

in the following way: 

fl <= I, 

jj в 1, if rtj . 1, (10) 

У 6 lC. if r1 -1. 

By definitions 7 and 8 P0 and I define simple vector V and 

simple distribution P^(PQ). So as I, calculated by (101, is 

the only k-index, satisfying (8) and having the property 

R(V) = R° by lemma 3, then the definition is unique. 

Corollagy 4. There exists one-to-one correspondence between 

the sets and P0 (in the case of fixed к and PQ). 

Prom Lemma 4 it may be concluded that every simple mat­

rix R° defines uniquely a k-index I, satisfying (&); let us 

denote then R° = R(I) and write 

5* 
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fCR(D) = Pj, = R(I). (tt) 

for all different k-indicee I, satisfying (8). 

Let us order the aet of all different indices, satisfy­

ing (в), in arbitraiy wise. Then the ordering Induces the 

ordering in sets &0 » { R° R° } and f0 ={ P^ P^ ] , 
P3 being the simple distribution P-j- (PQ); the ordering saves 

the correspondence (11) . 3 

Let f (6/Q) be the convex hull of set AQ. The corres­

ponding convex hull of the set #Q, f(if0) is the set of the 

finite mixtures of simple distributions, see Def. 5. 

Let us extend the correspondence ^ to the sets $ (A-0> 

and f (#>0) with the help of the connection 

R = I y-iRi *=* PL d2) 

where у i satisfy the conditions (4 )• 

Theorem 1. Let к > 2, PQ - arbitrai-y symmetrical one-dimen­

sional distribution and к X k-correlation matrix R G ̂(3t ). 
А О 

Then there exists k-variate distribution P(PQ;R) that is de­

fined as a mixture of M simple distributions from the set 

#0(P0), M = k(k-1 )/2+1. 

Proof. From the assumption R £ (&0) it follows that there 

exists a linear decomposition (51) of R with coefficients 

jf 1,..., f M. Let us define the distribution Q with the help 

of correspondence (12), that is 

Q = f (R) =^Г1Ро ' 

As the mixture of distributions, having equal corresponding 

marginal distributions, has the same marginal distributions, 

see 30 the distribution Q has marginale PQ, and we 

have P(PQ;R) = Q, q. e. d. 

As there exist, in general, several decompositions of 

R by different sets of simple matrices R°,...,R^, И И i H, 

so the distribution P(PQ;R) is not unique in general. From 

the definition of decomposition it can be concluded that 

the set of decompositions of a given matrix by simple mat­

rices and hence the set of distributions, defined in Theo­

rem 1, is convex. 

л For the efficient construction of the distribution 

P(PQ) the first problem that raises is that of finding the 

decomposition (5") of given matrix R, that means, the solu­

tion of the system of M equations with H unknowns: 
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A-g = В, 

where M X H matrix A consists of columns 

h =1 H, 

(vecl denotes the column-vector, constructed of columns of 

lower triangle of the symmetrical matrix without diagonal), 

В = 

and g = (g1,... ,gjj)' is the vector of unknown coefficients, 

that must satisfy the condition 

gj? 0. (13) 

For the solution of the problem some methods of linear 

programming are usable. A very simple method, based on the 

idea of (random) choice of M columns from matrix A, is rea­

lized by the student of mathematical faculty K.Saarestik 

for the personal computer APPLE II and computer ES 1060, 

see £ 17]. 
Let us notice that the method described is most effi­

cient for generating the large samples of values of random 

vector with distribution P(PQ;R), so as for generating each 

value of vector Z only two random numbers must be generated: 

one with mixing distribution j4 and the other with distri­

bution P . 
о 

5. The case of equal marginals and positive correlations. 

Assume к 6 N is fixed, к » 2, the given distributions 

P± fulfill the condition (7') (denote Pj. = PQ) and, besides, 

the given correlation matrix R has only nonnegative corre­

lations: 

т15 * 0 . (14) 

Our aim is to define the distribution P = P(Po;R+). Partly 

the problem is solved in [13], where one possible construc­

tion is described. Here the result will be generalised. 

Def. 9. Let L be arbitrary (s,k)-indicator (1 ž s Ä k) and 

P_ an one-dimensional distribution. Then the random vector 
о 

W = (W-,...,Wk), satisfying the conditions 

1 ^i ~ ̂ h, if 1^ 3 h, x н 1,...,k; h — 1,...,s, 
2° Xh~ Po, h = 1 

3° Xjj and are independent, if hj£g, h,g = 1,... ,e. 

is quasi-simple with marginals PQ. 



Def. 10. Let W be a quasi-simple vector with marginals 

PQ, defined by (s,k)-indicator L. Then the k-variate dist­

ribution of vector W ia quasi-simple. 

Let us denote the quasi-simple distribution, defined 

by PQ and L, and the set of all quasi-simple dist­

ributions, defined by PQ and different (s,k)-indicators L 

(s = 1,...,^ ^(PQ) or$"t, when PQ is fixed. 

Def. 11. The correlation matrix consisting of all cor­

relations equal to 1 or 0 is a quasi-simple matrix. 

Corollary 5. The correlation matrix of quasi-simple vector 

is quasi-simple. Indeed, let V/ be a quasi-simple vector. 

Then its correlation matrix R(W) has the following elements: 

,  ,  ( 1 .  » H - v  
3 1 0. lf 4 * V 

Similarly to the case of simple matrices and simple 

distributions (see Lemma 4 and Corollary 4) the one-to-one 

correspondence ^ between the quasi-simple matrices Rt 

(i = 1,...,K), see (2) and quasi-simple distributions (with 

fixed PQ) pt can be defined, 

^(Rp = P* = PL.(P0), i = 1 K. 

Denote У (&^J and f (i*+) the convex hulls of seta R+ 

and P+. The correspondence tp can be extended for the ele­

ments of convex hulls f (A+) and :P(iP+) as well. From here 
immediately follows the proof of the following 

Theorem 2. Let к ̂  2, PQ - arbitrary one-dimensional dist­

ribution and к X k-correlation matrix R+£ £(&+). Then 

there exists k-variate distribution P(PQ;R+) that is de­

fined as a mixture of Ы quasi-simple distributions from the 

set #>+(P0). 

Proof is similar to that of theorem 1: we find the linear 

decomposition of R+ by quasi-simple matrices, 

h ' -EJX. <15> 
and define the mixture as the corresponding element in set 

^ (FJ: 
v +' n 

Q = ^>(R+) =11 ̂ Pt = P(P0;R+). 

The solution is not unique, and the set of all distributions 

P(P0;R+), defined as mixtures of quasi-simple distributions, 

form a convex set. 



By the construction of the distribution P(PQ;R+) key 

problem is the linear decomposition of R+. The algorithm, 

described in paragraph 4 is usable for the case, too, but 

as the system of linear equations contains К unknowe now 

К (see table 1), the method of random search is not ef­

ficient for the case. Another method for finding linear de­

composition of matrix R+, using the idea, described infl3], 

was realized for computers APPLE II and ES 10 60 by the 

student of mathematical faculty K.Floren, see [1?J. 
Algorithm 1. Let RH = RH_1 - be the h-th residual mat­

rix, where is the h-th coefficient and - the h-th 

quasi-simple matrix in the linear decomposition (15); R° = R 

the given correlation matrix. 

Let lA||2=^a2.d„ 

I'd 
i.J-1 

On eveiy step h,h=1 M-1 the coefficient W and the 

matrix R^ are defined from the conditions 

K"1-^ II- p+ll. (16) 

76{rjh-lj 
R+«3a+ 

where ̂ r;h-lj = { r^,... »rk-1 ̂  is the set of out-of-diago­

nal elements of R11"* . 

After K—1 steps always 0 and there are two pos­

sible outcomes: 

1° > 0; then take R^ = I (unity matrix) and yM = 

= ; the desired decomposition (15) is found. 

2° 4. 0; the algorithm did not give the decomposi­

tion (15). Unfortunately that does not mean in general that 

the linear decomposition does not exist at all. K.Floren 

constructed the modification of the algorithm that allows 

besides the values and R^, minimizing the (16), consider 

the other ones, too. In such a way•it is possible to get the 

solution in practically all the cases, but sometimes the 

time of solution may be rather long. 

When the decomposition (15) is found, the algorithm of 

generation of values of the random vector Z is very effi­

cient (but less than in case of symmetrical P , described in 

paragraph 4), so as for getting every realization of vector 

Z it is necessary to generate s+1 random numbers, in general 

6* 
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6. Another method о f dpf-in-iTig P(P^;R) in the сазе of symrnp-h-

rlcal equal marginals Pfl. 

The algorithm, described in paragraph 5 is usable for 

solving the problem in the case of nonreetricted correla­

tions but symmetrical marginals, as well. But for dealing 

with this case we have to define some new, more general con­

cepts. 

Assume ks Sis fixed, к ̂  2 and the given distribu­

tions fulfill the conditions (7») and (7"). 

Def. 12. Let T be arbitrary (s,k)-pseudo-indicator 

(1 4 s k) and P0 an one-dimensional symmetrical distri­

bution. Then the random vector U = (U1,...,Uk), satisfying 

the conditions 

1° = Xh, if i 6 Jh, 

2° W± = -Ih, if ie Gh, i=1,...,k; h=1,...,a, 

3 Xjj ~ PQ, h =1,..«,s# 
4° 2^ and Xf are independent, if h t f, h,f=1,...,s, 

is pseudosimple veotor with marginals PQ. 

Def. 13. Let U be a pseudo-simple vector with margi­

nals PQ, defined by (s,k)-pseudoindicator T. Then the k-

variate distribution of vector U is pseudo-simple. 

Let us denote the pseudo-simple distribution P^(Po). 

and the set of all pseudo-simple distributions (for s= 1,... 

. ..,k) by *(PQ) = . 

Def. 14. The correlation matrix, consisting of ele­

ments equal to 0, 1 and -1 is pseudo-simple. 

Corollary 6. The correlation matrix of pseudo-simple vector 

is pseudo-simple: R(U) is defined by the following formulae: 

( 1, if ti = t.,,. 

tl"1' " *1 "V 
о, if !tt! i^ltjl 

Corollary 7. For every pseudo-simple matrix and symmetrical 

onedimensional distribution there exists one uniquely de­

fined pseudo»»simple distribution with given equal marginals. 

Denote the aet of all pseudo-simple matrices (к fixed) 

by ft_and let its convex hull be Of (&}, the set of all 

pseudo-simple distributions (k and PQ fixed) by and its 

convex hull by f ( fj. Then similarly to theorems 1 and 2 it 

is possible to prove the following 
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Theorem 3. Let к be natural, к ̂  2; PQ arbitrary one-dimen­

sional distribution and к X к matrix R~< :P( £_). Then there 
, A 

exists k-variate distribution P(PQ;R ) that is defined as 

the mixture of M pseudo-simple distributions from the set 

3L(P0). 

Corollary 7*. The sets ) and f(£_) coincide for 

every fixed к, к e It and symmetrical FQ. 

From the definitions of £0 and £_ follows the rela­

tion S0cl2_,consequently !P(ße)cjY£_)holds, too. It is easy to 
demonstrate, that every pseudo-simple matrix belongs to 

f (£0), consequently f (ß_)C f(J20 ), q.e.d. 

The algorithm, presented in paragraph 5, can be used 

for the given case after a rather slight modification, pro­

posed by K.Floren: instead of r^ its absolute value de­

fines the coefficients 

The answer to the problem - if there exists a linear 

decomposition (either (5), (5') or (15)) for every correla­

tion matrix R - is negative. Indeed, the set /(ß°) is con­

vex polyhedra in the space R^~1, and by the definition & 

where & is the set of all correlation matrices (of 

order k). So as set £ is surrounded (because of the condi­

tion of nonnegative definitedness) with surface öf the k-th 

degree, the sets 32 and f (&") cannot coincide. In gene­

ral the only common points of the sets of boundary points J2-

and f ) öf set.s £ and f ( 32° ) are the simple matri­
ces R°,...,R^. 

The illustration of the sets f (•£"), f (J£~) 
for the case к = 3 are given in figures 1-3. 

7. Example 3. 

Let к = 3. Then K=4- H=4, K=5 and Q=11. Let us writ 

down the sets it , tikand . 

1°. Simple vectors and simple matrices. 

V1= (X,X,X); V2= (X.X.-X); Vy (X,-X,X); V4= (X,-X,-X) 

R?= ; RÖ= I 1 1-1 1 

1  1 - 1  

-1 -1  1  

D°. 
3~ 

p-11 
1 1-1 

1-1  1  

1 - 1 - 1  

R4= I"1  1  1  

1 - 1 1 1  
Quasi-simple vectors and quasi-simple matrices. 

W1=(X1,X1 .X.,); W2~(X^ ,X^ ,Xg) ; W^=(X^ jX^JX^ ) ; W^a(X^ jXgjXg); 
w

5=(x i,x2,x3) 

25 
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R2~ 

r1 1 o' ri 0 V 

О
 

О
 

1 1 0 ; 0 1 0 ; HJ- 0 1 1 

l°01J J 0 ij .0 1 1 j 

Pseudo-simple vectors and pseudo-simple matrices. 

Ui=vi» i=1»• • • »4 ^ ^ ^ ^ ^ 
Rg=R^t R^=R^ and Ug=(X^ f-X^ .Xg) • Ug=(X^ .Xj.-X^ ) . 

U5=W2' 
r;=R£, u7=W3, '^7 = R"5 > Ug-W^ , 

J10" •CX1 fXg.-Xg) > 

Rr 

1-1 o1 

-1 1 0 

l o c i ;  

f 1 0-1 ) 

r: a 

Let correlation, matrices 

fl 0.7 0.3) 

0.7 1 -0.1 j R2-

0.3-0.1 1 ; 

R1= 

be given, 

0.5 0.3 

0.5 1 

0.3 0.5 

0.7 0.3) 

0. 1  

1 

The system of linear equations for finding the linear 

decomposition by simple matrices is the following (with 

three columns of absolute terms correspondingly): 

n1 
0.7 

0.3 

-0.1 

1 

R2 
0.5 

0.3 

-0.1 
1 

ix3 
0.7 

0.3 

0.1 

1 

Ti +^a ~1з "U -

Tl -Г2 +Гз -U = 

Я -r2 -Гз +r4 = 

Г1 +Г2 
+Уз +П m 

So as for the case k=3 we have H = li = 4, the solution of 

the system gives the answer about the existence of linear 

decomposition at once. Let us write down the solutions: for 

R1 we have = (0.475»0.375,0.175,-0.025), that means, the 

correlation matrix R^ (being positively determined) has no 

linear decomposition. For Rg we have 

jf=(0.425,0.325,0.225,0.025) and for R3 

^=(0.525,0.325,0.125,0.025). For R3 it is possible to find 

the linear decomposition by quasi-simple matrices, too.Using 

the algorithm, described in paragraph 5, we get the fol­

lowing coefficients: y+=(0.1,0.6,0.2,0,0.1). Analogically, 

the decomposition by pseudo-simple matrices for Rg is fol­

lowing: 

=(0,0,0,0,0.5,0,0.3*0,0,0.1,0.1). 
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Numbers of different simple (H), quasi-simple (K) and pseudo-simple 

matrices, depending on the dimensionality k. 

... 

к М И 

1 1 1 
2 2 2 
3 4 4 
4 7 8 
5 11 16 
6 16 32 
7 22 64 
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8. The cas> of unequal marginals. 

Let P-j,... ,Pk be arbitrary one-dimensional distribu­

tions, Pi being the distribution function of P^, i=1,...,k. 

For a pair of one-dimensional distributions P^ and Pg 

Hoeffding [5J defined the maximal and minimal common distri­

butions P* and P* by their distribution functions F*(x,y) 

and F* (x,y) in the following way: 

F*(x,y) = min(F1(x),F2(y)), 

F*(x,y) = maxCO.F^xJ+PgCyJ-l) 

and showed that if the distributions are of second order, 

then P* and P* have correspondingly the maximal and minimal 

correlations r* and r# in the class of all bivariate distri­

butions P with marginals P1 and P^. Frechet [ 4] showed that 

these concepts may be generalized for the case к > 2. 

We shall define some sets of k-variate distributions 

with marginals P1,... ,Pk, that generalize the simple, quasi-

simple and pseudo-simple distributions, defined in para­

graphs 4-6. 

Let us denote min(F. (x4 ),...,F. (x. )) = min FT(xT), 
11 г1 s s 1 1 

if I=(i1 ig), and let the i-th marginal of F be (F)i 

and the ij-th bivariate marginal of F be (F)^. 

Def • 15. Let к ̂  2, I - k-index, 16 1 and Р^,...,Р^ 

arbitrary one-dimensional distributions of second order. The 

k-variate distribution P* = Pj(P^,... ,P^), defined with the 

help of its distribution function F*(x1,... ,xk), 

FI(x1,... »Xj.) = max(0,min Fj(x-j-) + min F-^cCx-j-c) - 1) 

is simple distribution with marginals P.,,... ,Pk. 

Lemma5. Simple distribution has the following properties: 

1° The marginals of simple distribution equal to given 

one-dimensional distributions P1,...,Pk. 

2° The correlation coefficients of Pj have the follo­

wing values: 

r _ { r* , if i с I, j 6 I or i e Iе, j £ Iе, 

13 [ r*-d, if i« I, j с Iе or i с Iе, j € I . 

Proof. Let us calculate the marginals of т1п$т(хт): 
f1, if i e Iе1 1 

(minFI(xI))j_ = lim F^Xj) =(p (x ), if ie j. 

How we are able to calculate the marginals of simple distri­

bution Pj: 

(p*) _ j rnax(0,Fi(xi)+1 - 1, if ie I, 
1 1 1 max(0,1+Fl(x^)-1, if i б Iе, 

28 



that means, always (Fj)^ = ̂ (x^). 

Q«6«d« 

Corollary 8. 

From the definition 15 and lemma 5 it follows that the 

simple distribution with equal symmetrical marginals, defi­

ned in Def. 6, is the special case of simple distribution, 

defined in 15. 

Indeed, in the case (F)ij(x,y) = F(z), (F#)1;j(x,y) = 

= 2F(z) - 1, where z = min(x,y) and using the definition of 

simple' vector and non-restricting assumption X = О, ПХ = 1, 

we have: -o 

where I is any k-indicator, 1  I, is said to be _simj>le_cor-

relatlon matrix for marginals P1 P^. 

It is evident that the number of all simple correlation 

matrices for every fixed set of marginals P.,,...,P. is H.De­

note the set of all simple correlation matrices {R^, ...,R^)= 

= fc*(P.,,...,Fk) = Яф. and the convex hull of the set ^СЯ») 

Denote ЗЗДР-j,... tPjj.) = 3* = {р^,...,Рц] the set of all k-
variate simple distributions with marginals P^,...,Pj£, and 

let $ ( J* ) be the convex hull of the set 3^.. 

Def. 17. Let к be natural, к ̂  2, L arbitrary (s,k)-in­

die at or, defining the indeces 1^ Igl and P1,...,Pk - gi­

ven one-dimensional distributions of second order. The k-va­

riate distribution P* » P^(P1 Pk) is quasi-simple with 

marginals P1 if its distribution function is defi­
ned in the following way 

F^(x1 xk) = (minP^Cx^))* ... xCminFj (xj. )). 

defined in the fol­

lowing way, 

f r*3, if 16 I, j с I or i с I
е, j & Iе 

r*ij,if ie I» d6I° or 1 в Iе, j<s I, 
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Def. 18. Let the assumptions of Def. 17 be fulfilled. 

The correlation matrix R^, defined in the following way 

f r^ j, if i»j £ 1^, h = 1,... ,s, 
rij = 1 0, if i e Ih, J e If, h t f, h,f = 1 s. 

is said to be quasi-simple correlation matrix for marginals 

^1»• • • 
The number of all quasi-simple distributions and quasi-

simple matrices is I, (see [ 2, J ). Let us denote the sets $,*-

-1 • • • ) and 5+ -{ ̂ *+
; • • • • ijv*} correspondingly 

and their convex hulls - f(ß.?) and f(?£) . 

Def. 19. Let к be natural, к > 2, T arbitrary (s,k)-

pseudo-indicator defining the indices J^,Gh, h = 1,...,s and 

P1,...,Pk - given one-dimensional distributions of second 

order. The k-variate distribution P^ = P^(P1,....P^) is 

pseudo-simple with marginals P1,... .P^, if its distribution 

function P^,(x1,... .x^) is defined in the following way: 

Py(x1,...,xk) = (max(0,min(Fj (xj ))+min(Pg ))-1)*... 

.. .x(max(0,min(Pj (Xj1) )+iln( Pq (x^1))-^. 
ss s s 

Def. 20. Let the assumptions of Def. 19 be fulfilled. 

The correlation matrix R~, defined in the following way, 

f rfj, if i,j 6 Jh or i,j <s Gh, h = 1 s, 

r_-_ J r#i;j, if i e. Jh, 3 & Gh or i & Gh, j 6 Jh, 

J j h= 1,..., s, 

^ 0, if i « Ih, j «Е- Ij, h ̂  f, h,f = 1,..., s, 

is said to be psfeudo-simple correlation matrix for given 

marginals P1,....P^. 

The number of all different pseudo-simple distributions 

and pseudo-simple matrices (by fixed distributions P^,...,Pk) 

is Q (see (3)). Let us denote the sets of pseudo-simple mat­

rices and distributions and their convex hulls У + )?tQ) 

and f(J^) correspondingly. 

Let if be one-to one correspondence between sets R+ and 

and , £* and extendeable to their convex 

hulls as well. 

Similarly to theorems 1-3 it is possible to prove the 

following 

Theorem 4. Let к be natural, к £ 2, P1,...,Pk given one-di­

mensional distributions of second order, R - given correla­

tion matrix, fulfilling at least one of the following con­

ditions: 
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R e f (€*) (17) 

R«f(£j) (17') 

R* *(«;>, ('T1) 

then there exists a k-variate distribution P(P1,...,Pk;R), 

defined as the mixture of M distributions from the set 3^ 

PZorPjT correspondingly. 
The conditions (17). (17') and (17») are not indepen­

dent. So ae by the definitions 16, 18 and 20 ̂ eß*änd 

cE^from the condition (17) or (17') follows (17n). In ge­

neral, the sets /(j2#)and fC&£) are not equivalent (as : it 

was in the case of equal and symmetrical marginals, see co­

rollary 7'). The fact will be proved in the example b, see 

paragraph 9. 

The main problem in the case of unequal marginals is, 

as in the case of equal marginals, too, the finding of linear 

decomposition of matrix R either in form (18), (18') or (18*1 

R* (18) 

R-2IY4R?? de') 

M 

fnK 
< 1 B " >  

where R*, R** and R^* are simple, quasi-simple and pseudo-

simple correlation matrices, defined by marginals 

For finding these linear decompositions the methods, 

described in paragraphs 4-6 are of use. The calculation of 

correlations r*j and j_-j is only a technical problem, and 

in constructing general simple, quasi-simple and pseudo-

simple matrices all rules, useful for a special case, are 

usable, only instead of 1 and -1 the corresponding values of 

r*^ and r0ij must be placed. 

The following is a necessary, but evidently not a suf­

ficient, condition for the existence of linear decomposition 

of R: 

r*ij ̂  rij ̂  Т±У 

where r^ are the coefficients of given correlation matrix, 

r^ and r^j - the minimal and maximal correlations for gi­

ven marginals P^P... 

The linear decompositions (18) and (18') are useful be­

cause of the fact that the sets &,ц and have much leas 

power than •£# and so the finding of (18) and (18') is more 
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efficient than the finding of (18"). Let us notice that the 

necessary condition for the existence of decomposition (18') 

is 

rij £ °* 

Prom the theorem 4 it is easy to conclude the corolla­

ry, dealing with the definition of distribution P(PQ;R) in 

the case of equal, but asymmetrical marginals and correla­

tion matrix R, not fulfilling the conditions ( 14): 

Corollary 9» Let к be natural, the distributions P^,...,Pk 

fulfill the conditions (7'), PQ being in general asymetri-

cal. 

Let r^ be the minimal correlation coefficient for 

equal marginals PQ, defined by its bivariate distribution 

function : 

Py(x,y) = max(0,P(x)+F(^-1). 

Then evezy correlation matrix, defined with the help of 

pseudo-indicator T in the following way: 

rid= 

1, if tj-tj, 

r,,if V-tj, 

.0, if 
(19) 

is pseudo-simple for equal, asymmetrical marginals P , and 

the distribution P(PQ;R) exists, when R e ;f being the 

set of pseudo-simple correlation matrices, defined by ( 1 9 ) .  

9. Example 4. 

Let given distributions be the following: EX., = 0, DX, = 1. 

Pr, 
1 • X -6 

p 0.75 0.25 

r2. X P3: X -1 1 ! 
j 

P 0.25 0.75 

P3: 

P 0.5 0.5] 

The maximal distributions and their correlation coefficients: 

^12 -fi/T f:Г 
-'3 0.55 0 

VT7T 0.5 0.25 

P13 -fiTT VT 
-1 0.5 0 

1 О.25 0.25 

P2j3 -Iff ftžJ 
-1 0.25 0.25 
1 0 0.5 

r^2= 0.33333 r13= 0.57735 

The minimal distributions and their correlation coefficients: 

r23= 0.57735 

P*12 -\'V3 (T 

-VT 0 0.25 

f73 0.7s 0 

^13 
-VV3™ {? 

-1 0.25 0.25 

1 0.5 0 

£23 -/Г ft/T 

-1 0 0.5 

1 0.25 0.25 
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X*L12 1 

Istrit 

i1= (1,1,1); г? 

r,13=-0.57735 

Simple diatributione and simple matrices: 
r.0 

r#23=-0.57735 

X x, - 1 x„ = 1 

X1 -7Ш V3 -л/з P 
x2 

, - fT  0.25 0 0 0 
x2 {U1 0.25 0 0.25 0.25 

iP= (1,1,2); P° 

X x, - 1 x? = 1 

x2i -V3 
0 0 0.25 0 x2i 

^1/3 0.25 0.25 0.25 0 

R°* 

1 0.3333 0.5744 

0.3333 1 0.5744 
0.5774 0.5774 1 

Rg* 

Г1 0.3333 -0.57741 

0.3333 1 -0.5774 

0.5774 -0.5774 1 

I3= (1,2,1);P° 

X x, = -1 x, = 1 

** 
-уз 0 0 0 0.25 

** VT73 0.5 0 0.25 0 
0.5774 Л -1 

1 1 -0.5774 

0.5774 -0.5774 1 

V (1,2,2); ?4 

X x3 - 1 
хз = 1 1 -1 -0.5774 

-V3 0 0.2; 0 0 И 1 0.5774 tr
v 

C
M
 

!
 

•
 s 

0
 j 1 1 0 0.5 0 Co. 0.5774 1 

Quasi-simple distributions and quasi-simple matrices 

L1 = h* = ?1» = R? 
L2 = (i,i,2);Pg 

x3= -1 X3 - 1 

z2 
V3 0.125 0 0.125 0 

z2 Vv3 0.25 0.125 0.25 0.125 

Rg* 

/1 0.3333 04 

0.3333 1 ol 

L3 
(1,2,1); P+ 

K3* 

x3 = -1 x3 = 1 /1 0 

H 0.125 0 0.0625 0.0625 lo , 
x2 

/775 0.375 0 0.1875 0.1875 \0.5774 0 

0.5774^ 

0 

L4 = (1,2,2); P+ 

хз = -1 i •i. 
-V3 0.1875 О .О625) 0 

</l/3 0.1875 0.062^ 0.375 0.125 

0 

1 

0.5774 1 

° \ 

0.5774 
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L5 - (1,2,3); 

x, = -1 Xx=1 
Л/3 <173 VT 

& 0.09375 0.09125 0.09375 0.09125 
V1/3 0.28125 0.09375 0.28125 0.09375 

0 

1 

0 

Pseudo-simple distributions and pseudo-simple matrices: 

p; Ti = h 
li 

T 

T- = I 

lb1 r: 

2 = ^"2* ^2 = P2* ̂ 2 = ^2 ^7 = L3 

P°, R~ -

R1 ^5 ~ ^2' P5 3 P2* R5 = R2 

:  v p ? ;  V r !  
R" T„ = L, Ft = PT; Rq = R* 3 3' 3 " 3' 3 3 9 " 4 9 = 4' л9 =  "4 

T4 = I4i P4 = P4» R4 = R4 T11= L5 P11 = P5+:R11= R5 

T6, tg, T10 are new and the corresponding distributions 

matrices: 

4* 

and 

x4 = -1 Кч~ 4 fi 
VT7T VT~ fTS (T -1 

VJ 
0 0.125 0 0.125 0 

4 
0.375 0.375 

= (1, 2 -1) • p™ * '> r8 
x, - -1 4 л 

\^1\рГ7Т fTTI ГГ 0 

r 0.0625 0.0625 0.125 0 [-0. 

V1/3 ,0.1875 0.1875 0.125 0 

= (1 2 ,-2), P-,Q 
= -1 

*3 = 1 

71: 

I 0 
\*1 

ft/3 V3~ -VT73 VT 71: 

I 0 

-fo" 0 0 0.1875 0.0625 \° 
VT7T 0.375 0.125 0.1875 0.062; 

-1 

1 

0 

Ri* 
0 

1 

i 0 

R7o* 
0_ 

1 

-0.5774 

0 

1 

0 X 
-0.5774!' 

-0.5774 1 

Let the given correlation matrix be the following. 

Г 1 0.2 0.4 ̂ 

0.2 1 

40.4 0.3 

0.3 

I.For finding the linear decomposition by simple matrices we 

have the system of equations: 

r0.33333jf1 + 0.3333 f2 - T3 ~jf4 =0.2 (A) 

0.57735^ - 0.57735^2 + 0-57735- 0.57735^=0.4 (B) 

I 0.57735^ - 0.57735y2 ~ °-57735y>3 + 0.57735^=0.3 (C) 

Ь + Г 2 + /3 +U =1 (D) 
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The solution of the system is: ^ = 0.7531; J2= 0.1469, 

J2 = 0.0933; = О.ОО67. That means, one of the desired 

distributions P is the following; 

О.7531 P° + 0.1469 P| + 0.0933 P3 + 0.0067 P4 = P 

P: 

X, = -1 x, = 1 

>*4 - VT7T {Г -VV3 V3~ 
2 „ 
-fT 
УТТЗ 

0.1883 
0.2733 

0.0017 
0.0367 

0.0367 
O.2517 

0.0233 
0.1883 

For checking,if P has the correlation matrix R, let us 

compute the bivariate marginals of R and their correlation 

coefficients; 

P12 -VT/T {T 
-V3 0.225 0.025 

\fT/3 0.525 0.225 

P1 -m VT 
P23 -vr Vvi 

-1 0.4616 0.0384 -1 0.19 0-31 

1 0.2884 0.2116 1 0.06 0.44 

' 1 2  
= 0 . 2  r13 = °'4 = 0.3 

II,So as all correlations of the given matrix R are positive, 

it is possible to find the linear decomposition by quasi-

simple matrices, too. Using the algorithm, described in pa­

ragraph ̂ we have; 

f1" = 0.3 : 0.57735 = 0.5196. 
' 1 

The first residual matrix: 

0.0268 0.1 ^ 

0.4804 0 

f 0.4804 

R.V1 0.0268 

I0.I 0 0.4804 . 

^2 = 0.0268 : 0.3333 « 0.0804. 

The second residual matrix 
r0.4 0 0.1 
.0 0.4 0 
„0.1 0 0.4 i 

0.1 : 0.57735 

ff 

Г 
О.1732 . 

The third residual matrix 

(0.2268 0 0 

0.2268 0 
0 0.2268 

r i - o ;  

and we have: 

5 = 0.2268, 

P = O.5196 - Pj + 0.0804-P2 + 0.173ZP* +0.2268Г+, 

9* 
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Pig. 4 
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= -1 z 1 = 1 
^Ч"-Л7Т 1rr -VT73 - 3 ir 

d. 
-vr 0,1829 0.0071 0.0421 0.0179 
/1/3 0.2787 0.0313 0.2463 0.1937 

.Che solutions I and II do not coincide, it follows from here 

that every convex combination <x P(I) + (1 - x)P(II) being 

the mixture of solutions, is the solution again, «cfo,1 J. 
Example 5. Let us take к = 3, the distributions P1.F2'P3 

equal to these of example 4, f1 0.57735 cf 

R = R~= 0.57735 1 0 

1° 0 1. 

and let us write down the system for finding the linear de­
composition of R by simple matrices 

ъ.ззэз r ,  + 0.3333 r 2  - f j  - f 4  = о 
Jo.57735^ - 0.57735+ 0.57735ft - 0.57735л = 0.57735 

.57735^ - 0.57735jr2 ~ 0.57735^ + 0.57735 ft = 0 

T1 +  T2 +  Гз +  r 4  
=  1  • 

The solution у1 = 0.125, = 0.625, f3 = -0.125, f4 =0.375 

does not satisfy the condition ( 13 ) and hence Rg 4- f(ß0). 
From here it can be concluded that in the case of un­

equal marginals the sets f( £*) and do not coincide 
in general. 

The sets f ), УЧ and :P( J2*) for distributions, 

fixed in example 4, are given in figures 4-6, 
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СЛУЧАЙНЫЕ ВЕКТОРЫ С ЗАДАННЫМ! ПРОИЗВОЯЫВДИ МАРГИНАЛЬНЫМИ 
РАСПРЕДЕЛЕНИЯМ! И ЗАДАННОЙ КОРРЕЛЯЦИОННОЙ МАТРИЦЕЙ 

Э. Тийт 
Р е з ю м е  

Проблема существования и определения многомерного рас­

пределения с заданными маргинальными распределениями и за­

данной корреляционной матрицей является существенной при 

применений метода Монте-Карло в статистике. Частичные реше­

ния данной проблеме предложены в [1,3-10,12,13]. 
В настоящей статье решается следующая проблема: заданы 

одномерные распределения 2-го порядка Pj Рк и к х к кор­

реляционная матрица R. Требуется определить к-мерное рас­

пределение Р = P(Pj,...,РК; R ), обладающее заданными марги­

нальными распределениями и заданной корреляционной матрицей. 

В пункте 4 задача решается для случая, когда все марги­

нальные распределения равны друг другу и симметричны: %Р0. 

I =5,...,к. Находится линейное разложение (5) матрицы R (см. 

[2,III) по т.н. простым корреляционным матрицам R* (это та­

кие матрицы, элементами которых являются только 1и~л ). При 

фиксированном PQ каждой простой корреляционной матрице соот­

ветствует простое к-мерное распределение (т.е. распределение, 

при котором все компоненты случайного вектора равны друг дру­

гу по абсолютной величине). Искомым распределением Р являет­

ся конечная смесь простых распределений, причем смешивающее 

распределение определяется коэффициентами линейного разложе­

ния. В теореме I доказывается, что распределение Р сущест­

вует, если R € ̂  (R°), где f - выпуклая оболочка множества 

R» простых корреляционных матриц. Решение не единственное. 

В пунктах 5 и 6 предлагаются альтернативные решения 

поставленной задачи, основывающие на разложении матрицы Р 

по корреляционным матрицам, содержащим элементы {-1,0,1}. Из­
лагается алгоритм нахождения линейного разложения матрицы R. 

В пункте 8 результаты обобщаются для случая неравных и 

неисмметричных маргинальных распределений, пользуясь притом 

минимальными и максимальными совместными распределениями Хол­

динга (см. [63). Полученные результаты иллюстрируются при 

помощи 3 пример и 6 рисунков. 

Received August 1985 
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EXACT SAMPLES OF MULTIVARIATE DISTRIBUTION AHB THEIR 

EXPL0IIATI05 И STATISTICAL ALGORITHM'S TEST DIG 

E. Tiit 

§1. The set-up of the problem 

1. The possible way» of teat lag of algorithms in multivaria­

te statistics. 

In the situation, when many different statistical pack­

ages and special programs are available for numerous types 

of computers, exploited by great number of users (most of 

them non-mathematicians), the problem of testing, comparing 

and estimation of algorithms and programs ie of increasing 

interest, see f1,6,7J. 

Usually for testing of algorithms of multivariate sta­

tistical analysis the following two methods are used: 

1° The algorithms are tested with the old "classical" 

examples, used by many authors and described in published 

papers. 

2° The algorithms are tested with the help of Monte-

Carlo method. 

Both methods have their shortages. The "old" examples 

are in some sense random, they are not suitable for the sys­

tematic study of the algorithms. Besides, in general, the 

accuracy of the results of old examples is sometimes ques­

tionable. For using Monte-Carlo method several random samp­

les must be generated, but it is also connected with some 

problems. At first, there are no generators for arbitrary 

multivariate distributions. The second problem is that the 

Monte-Carlo results consist random errors, and for attaining 

the significant estimations the large series of repeated 

trials are needed. From here it follows that the Monte-Carlo 

study needs many resources of computer (time, memory,comple­

ting software) and therefore cannot be used in the case of 

micro or personal computer for the Systematical analysis of 

multivariate methods of mathematical statistics. 
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In the paper the alternative approach that ie grounded 

on the concept of exact sample ie suggested. The method is 

useable for testing the procedures of classical multivariate 

statistics, sufficient statistics for them being the first 

and second moments of the parent distribution. The construc­

tion of some samples tor random vectors with dimensionality 

20 - 30 and the calculation of the exact values of the para­

meters of multivariate models tor them is possible with help 

of arbitrary computers (includfl*g the most modest personal 

ones). 

The methodology of the constructions is based on the 

definition of multivariate distributions with given correla­

tion matrices and given marginals, described in [4-]. 

2. The concent of exact sample. 

Let к be fixed к ̂  2, and ф ̂ the set of all k-v&riate 

distributions. Let if = be any parameter-vec­

tor of k-variate distribution, e ©. For every fixed va­

lue ̂  ot we have the set Tj- of all distributions with 

parameter ^ = ̂ ) С IjD , 

Say 

M(X,j5.) = 0, (1) 

where X is k-variate random vector, is the statistical model, 

identified by the parameter-vector J> , Ji= (^»....J^g), 

ße В. The aim of the statistical procedure is to estimate 

the model parameter JS on the basis of some sample X, X be­

ing representative for population X with any distribution P= 

= Pj- from Let us assume that the model parameter jb is 

a function of distribution parameter^ , 

/ -/<*>. 
In the case we have the theoretical (true) value of model 

parameter, 

>./(*).  
equal for all distributions from the set 'for every fi­

xed 6 &. 

Let X be к x n matrix, X = (x^), i = 1,...,k; j = 1,... 

...,n. We say X is sample end regard every row x^j as samp­

le of the i-th component of the random vector X and every 

column i^3) as one object (the realization or complex of 

measurements of the object). The sample X defines uniquely 

the empirical distribution P(X). where every object of the 
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sample has the probability 1/a. 

If the empirical distribution P(X) belongs to the class 

of distributions then X is said to be the exact sample 

for all distributions from . The exact sample with mini­

mal size is said to be the nptimni nmnt sample for the 

class (or for P,P « ). 

It is evident that if X is the exact sample for a class 

%?, then for every natural m the sample X:m,defined as 

block-matrix 

X!m = (XiX:...;I), 
nT'times 

is also the exact sample for with sample size mn, when X 

has size n. 

3. The existence of the exact sample. 

For us it is of interest to find such a subset of 

set ® , that for each set Jt*^ of distributions there exists 

an exact sample, if . 

It is evident that in the case in a set of distribu­

tions any distribution PQ, fulfilling following condi­

tions, must exist: 

ft0 PQ has finite support. ^ 2) 

(_2° All probabilities of PQ are rational. 

Of course, that does not mean that all distributions in 

ЗГУ fulfil the conditions 1° - 2°; on the contrary,in Tfy-' 

continuous distributions P may exist,as well. Then every 

distribution PQ is one of discrete analogues of continuous 

distribution P (see^for instance,[to]). 

So as our aim is the study of classical multivariate 

procedures, and for most parameters of these models are the 

first and second empirical moments sufficient statistics, 

then in the future we are concerned with the case when 

is the vector of first and second moments. Then its dimen­

sion r depends on the dimension of parent distribution к in 

the following way: 

r = 0.5 (k2 + 3k). (3) 

4. The error of algorithm and the admissibility region of 

algorithm. 

Let A be any algorithm for estimation ß> by sample 

(empirical distribution). Let X be an exact sample (of size 
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n) for the set 3Q-, fixed. Let n, A) be the value 

of p found by X with help of the algorithm A. Let us ex­

press the, difference between the calculated and theoretical 

values of parameter ß of the model as the sum of two terms: 
/ (-vK n, A) - b(n) + A), (4) 

where the first term b(n) depends on sample size and ex­

presses the expected bias in the estimation of ß due to 
finiteness of sample (assuming that the population is infi­

nite). Then for consistent estimations we have 

lim b(n) = 0. 
n— 

Another term of the left side of the expression (4) is the 

error of the algorithm A. The source of the error may be 

insufficient precision of calculation, some peculiar value 

of Л" or any mistake in algorithm or program. In algorithm-

testing problems we assume that there is given some posi­

tive constant ^ in such a way that if 

,  А)  ( 5 )  

then the algorithm A is admissible in the case of the given 

value of -9" , and if the condition (5) is not fulfilled, the 

algorithm is not admissible. For every A it is of interest 

to find the set ® (A) of parameters -6" fulfilling the con­

dition (5) - it is tha ы^ region of algorithm A. In 

the admissible region it ie possible to neglect the error 

of algorithm i-( ̂ , A). 

5. The study of algorithm errors with the help of experi­

mental design. 

It is natural to find for any algorithm A its admis­

sible region ® (A). As a rule, a great amount of trials is 

needed and it seems that the results of experimental design 

theory must be used for increasing the efficiency of study. 

The general scheme of research is standard for statis­

tical investigation: Let us choose a sample of points 

/t#-U (the plan), in the space©?construct any 

exact sample for eveiy point ff3 , j = 1,... ,N and calcu­

late the parameter л)" ^ of model (1) by every 

exact sample. Then calculate by formula (4) the error 

t( A ̂  , A), dependent on ^ . Now the problem of fin­
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ding the model G(iJ-), describing the dependence of error on 

Л 

ИлГ, A) - G(#), (6) 

is solvable with the help of regression or variance analysis. 

On the basis of model (6) the admissible region ©(A), see 

(5), can be described as well. 

By realizing the described idea in practice there arise 

several problems: 

1° The number r of different parameters ̂  (components 

of distribution parameter ) is too large even In the case, 

when we restrict us with the first and second moments only 

(see (3)). The parameters are not independent (for instance, 

the correlation coefficients are connected with the condi­

tion of pon-negative definlteness of correlation matrix). 

2° There do not exist many standard methods of 

- defining the multivariate distributions with given 

parameters, 

- construction of exact samples for them. 

Let us notice that when using the random samples instead of 

exact samples the trials must be repeated multiple times to 

estimate the error. 

3° For calculating the value of algorithm error we must 

know the exact value of model parameter } = ( f> ^ ), calcu­

lated independently from the algorithm A, and the bias b(n) 

as well. 

In the paper some possible ways of solving the problems 

mentioned are given. 

6. Decreasing of the лишЬяг r of distribution's parameters $7 

One possible solution of the problems 1°and 3° is the 

suitable parametrization of the parameter-vector <0" 

Let = ( v|/1,...,vj't), t rf does not depend 

functionally on i(/ j ( j = 1,.. •, t, j 4 81311 there 

exist analytical expressions 

(>i = ^(xf), i = 1 (7) 

Vd = /j( t } = ( d = 

Then we have the parametrization rules for distribution pa­

rameter vector and its function - model parametervector 

Ji, If for every where &c is some subset of & , and 
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ŽT> 0, there exists such \fe ^ that the inequality 

а(^Л(^ )) ̂  S (8) 

is fulfilled, where d is some metrics in space ® , then the 

reparametrizaticn (7) is exact for For our aim <S>0 is de­

fined as some "critical" region of © , where the algorithm 

error is of special interest. 

In §2 of the paper some practical examples of optimal 

parametrization are given. With the help of the described 

methods some packages of programs of applied multivariate 

statistics are tested. 

In the following part of §1 we will deal with possible 

solution of the problem 2°. 

7. Construction of exadt samples for given first and second 

moments of k-dimensional distribution. 

Let us prove some lemmas. 

Lemma 1. The optimal exact sample for the set #(0,1) 

of 1-variate distributions, fulfilling the conditions 
EX = 0, Ш =. 1 (9) 

is following matrix SQ (with sample size 2): 

*0 - <1,-1). 

The proof is evident. Hotice that the sample SQ has all even 

moments equal to 1, all odd moments - 0. 

Lemma 2. Let к be fixed, к » 2. There exists an exact 

sample for the set 7T$- of k-variate distributions, marginale 

fulfilling conditions (9) and 

r(X^pXj) " 0, 1, j • 1,. ..,k, i i j • (10) 

The exact sample has the size 

n - 2*4 h - [loggk] +1. (11) 

Proof gives the construction of the exaot sample by its 

rowe Xqj - (x^,...,!^), 1 • 1, ..., k. The construction 
Is similar to some construction of ortogonal contrasts In 

experimental design theory. 

At first we shall define an auxiliary h X n matrix Y 

by its rowe y(1) - (yt1 y^), 1-1 h In the fol­
lowing way: 
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( 1, if j = 21'2h_1 + 1, (21 + 1 )2b_i; 

7i3 )-1, if j = (21 + 1)2h-i + 1 (21 + 2)2h-i; 

1 s 0|•••|2 "11 i в 1 j•••,b| j s 1,•**,Ha 

The rows of matrix X will be defined with the help of 

the elementwise (star) product of vectors: 

if a i = 1,2,3, then U1 = Ug* ie 

defined with equations uij " u2ju3j* ^ = 1,...,n. 
For defining matrix X we use the following iterative 

algorithm: 

x ( 1 )  =  y ( 1 ) :  

When X( ) are already defined, then the following 

rows will be defined with help of following connectione: 

х(2г) " y( 1+1) * 

x(2X+i) " y(l+lfx(i)' 1 " 1,""e' 

.„fe1-1!, if l<h-1, 

(k- 2h~1, if 1 - h - 1. 

From the definition it follows that X is IX в matrix, 

v, 1  > . 1  (n,if i=g 
I = 2 - + к - 2 - - к, and 2-1 Xij = o, p^i3Xef[0tit u&i 

eo as the rows x^j of matrix X are defined ae orthogonal 

contrasts, q. e. d. (See,for instance,the example 1, where X2 

is defined by the rule, given here). 

Lftmmft 4- Let P be simple k-variate distribution (see [4) 

defined with the help of index-vector I = (i^...,! ) , 

(1 < e 4 k), i1 = 1. Let the marginals of P fulfill the condi­

tion (4). Then there exists an exact sample X = (x^) for 

distribution P, with sample size 2, defined with help of fol­

lowing equations: 

Vi, if J « I, f-1, if je I, 
x1j>1, i3t i * i0/ *23" ( 1, if Зв 1° 

The proof of the lemma 3 is evident. 

Lemma 4. Let P be quasi-simple k-variate distribution, 

see [4], defined with help of (s,k)-indicator L and let the 

marginals of P fulfill the conditions (9),Then there exists 

the exact sample X = (x,..) for distribution P with sample 

size n, 
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n = 2h, where h = [logjs} + 1. (11') 

Proof follows from the construction. Let us define the 

exact sample XQ for a-variat-e distribution with independent 

marginals with the help of lemma 3, XQ = (x°^), i = 

j = 1,...,n. Now let us define X = (x^), i = 1,...,k, j = 

= 1,...,n in the following way: 

x^j = x^j, if 1^ • h, i = 11 •.#«к» h = 1,...,s, j = 

= 1,...,n. n 

Prom the construction it follows that ~ 0» 

n. (n.ifli- lg, ^ 

>1XljXgj = \o, if 1± t lg, 

q • e d. 

Corollary 1. Let P be pseudo-simple k-variate distribu­

tion defined with the help of ( б,к)-pseudo -indicator H. Let 

the marginals of P fulfill the condition (9). Then there 

exists an exact sample X with sample size (11). 

Lemma_2. If there exists an exact sanple XQ of size n 

for some k-variate distribution with marginals, fulfilling 

the conditions (9) and having correlation matrix R, then 

there exists an exact sample of the same size for the dist­

ribution P with the same correlation matrix and arbitraiy 

marginal means and variances. 

Proof. If EX = а, ЛХ = b2, then evidently for the one-

dimensional distribution from 1Г(а the optimal exact 

sample X is following: 

X • (a-b, a+b). 

Let the correlation matrix R and the constants a^, b^ 

of the distribution P be given, 
2 EX^ m  a4, ПХ^ я b^, 

and X° be the exact sample for the distribution with corre­

lation matrix R and marginals, fulfilling the conditions (9). 

Then the exact sample X = (x^) for the distribution P may 

be constructed in the following way: 

x^j a x^jb^ + ^1* i 3 1»•••,k, j • 1,...,n. 

Lemma 6. £et the distribution Q have the form of finite 

mixture, Q = iPi' a11 f i bein£ rational, ^ - Vj/u. 

Let Х^^ be the exact sample for the distribution P^ with the 

12* 
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sample size ni, i я Then there exists an exact samp­

le X for the distribution <3 with sample size n, constructed 

as the SUB of exact samples s,X,, 
:s, $e m 

<X1 I — ««, >• a"51
eiV 

Proof consiets of the calculation of the terms s± and n: 
ni8i = nvj/u» w^ere n is any such natural that all s^ 

are natural. One possibility is to choose n • n, n = u ft n4, 
i»1 1 

but the size n of the optimal exact sample fa, as a rule, much 

less than n. 

From all the lemmas proved, immediately follows 

Theorem 1. Let be the vector of the first and second 

moments of a k-dimensional distribution, satisfying the fol­

lowing condtions: 

1° all parameters fr ^ are rational; 

2° correlation matrix H has a linear decomposition by 

simple, quasi-simple or pseudo-simple matrices, see [4]. 

Then there exists an exact sample X for the set of distribu­

tions Jfy-. 

Proof. From the assumption 2° it follows that the dist­

ributions from TTj- can be expressed through the finite mix­

ture of simple, quasi-simple or pseudo-simple distributions. 

As the weights of mixture are rational functions of correla­

tion coefficients, so from the assumption 1° follows that 

the mixing distribution has rational probabilities. From 

lemmas 3-6 follows the possibility of construction of ecaxt 

sample. 

8. The almost exact samples with fixed higher marginal mo­

ments. 

At first let us consider the one-dimensional case, k=1, 

when all the fixed parameters are the moments, ^ =/'i» 1 = 

я 1,... ,r r > 2. From the paper £ з] it follows that if the 

values of fr^ fulfill the condition of moments (see ( 4 ) in 

[3]), then there exists a discrete distribution with support 

having not more than ^fj+ 1 points. But, so as the probabili­

ties are the solutions of the system of equations of the r-

th order, the probabilities are not rational, in general. 

That means, the conditions of existence of exact ssimple (2) 

are not fulfilled. 
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Say, sample 5 is <*. -almost exact for the a et of k-di-

mensional distributions Щ- (or for any distribution P 

from Jij- ), к natural, if the empirical values of parame­

ters ^e, calculated by X, fulfill the condition 

d(J-e,» )<:<* . (12) 

It is evident that replacing the exact values of para­

meter 8- of the discrete distribution P0,PQ & Щ (calcula­

ted by given parameters &) with its rational approximation 

fr, it is possible to generate the exact sample X for & if 

7 fulfils the condition (12); then sample X is by the de­

finition cx -almost exact for ft . 

The calculation of k-variate exact samples with fixed 

correlation matrix and fixed (equal or unequal) marginals 

can be perfonned (in the case when R has linear decomposi­

tion by simple, quasi-simple or pseudo-simple matrices for 

given marginals) with the help of the method, described in 

t h e o r e m  1  a n d  t h e  l e m m a s  1 - 6 .  

§2. Some concrete families of exact samples 

for multivariate distributions with given parameters 

9. The family of constant correlation. In the part of the 

paper we shall be concerned about the finding of convenient 

parametrization of the first and second moments of k-variate 

distributions. For simplicity sake we assume that all margi­

nals are standardized,fulfilling the condition (9). When de­

fining the correlation matrix R^(p ) » B(£ ) with the help 

of equations 

r^j я ^ , i,j s 1#2,...,k, i 4 J; (13) 

we get an one-parameter family of distributions (the new pa­

rameter у = , t = 1) for evezy fixed k, named the famijj 

of constant correlation. Let us denote the family of k-vari­

ate distributions with standardized marginals and constant 

correlation by it(^ k) • 

10. The construction of the exact sample for the set - ky 

Every constant correlation matrix R( f ) with ^>fcCo»l3 

has the following linear decomposition by quasi-simple mat­

rices 

13 
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R( f ) ш у H1 + (1 _ q )R2, 

where R1 - - 1, i,j - and R2 » 1^ (unit 
matrix). 

Then by theorem 2 of [4J there exists a mixture Q of 

quasi-simple distributions P., and P2, 

<3 = F + (1 - f  )P 2  

with marginals, fulfilling the condition (9), and the corre­

lation matrix of Q equals to given R( q ). The к-vari at e 

distribution P1 has always all components equal, and P£ — 

all components independent. 

Now we can use the lemmas 1 and 2; from them it follows 

that there exist exact samples and $2 of the distribu­

tions P1 and P2 with sample sizes n1 = 2 and n2 = 2h corres­

pondingly, h = [loggk^ + 1 (see (11)). By lemma 6 for all 

rational values of q there exists the exact sample S for 

TV о ъл» defined with the help of the equation 
M ,k) :s1 ss, 

X - (I 1  ; X 2  
2), 

where s1 and s2 are naturals, fulfilling the condition 

s.,/s2 = (2h~1 p )/(1 - f ). (14) 

Then the sample size n of the exact sample X can be calcu­

lated in the following way: 

n = 2s1 + 2hs2, 

and the exact sample is optimal in the case when s1 and a2 

are the minimal naturale, satisfying the condition (14). 

Our next task is the calculation of expressions (7) of 

the parameters of model ß by the new parameters j? and 5c. 

Here we can use the fact that in most classical models the 

parameters depend on the inverses and eigenvectors and ei­

genvalues of correlation matrix R( ) and its submatrices. 

In our case all diagonal submatrices (blocks) of matrix R(^) 

have the same structure as R(ф ), out-of diagonal blocks be­

ing constant. We have the following simple connections: 

1 The inverse matrix of 1 X 1 diagonal block of R(^) 

is R~ = (r13), 

( (1 + (1 - 2) 5? )/((1 + (1 - 1)f )(1 -y )), i = i, 
rlM -jV((1 + (1 - Df ) (1 - ?), 1 4 0. 

v. 1 3 2|«*«fk« 
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2° The eigenvalues of the same lxl diagonal block are: 

A.| * 1 + (1 - 1) j? , А у = ... • • 1 . 

The determinant D of the block equals 

D = (1 + (1 - 1)£)-(1 - j3)1"1-

Prom here it is evident that for j>6 [o,1) the constant cor­

relation matrix is always positively defined, but it is pos­

sible to find the distributions satisfying the condition 

D 

for every given positive \ , that means, the family is use­

able for the investigation of the influence of non-definite-

ness of parent distribution for the error of algorithm. 

11. Example 1. Let us take к = 8, 0.5. Prom (IT*) we find 

that h = 4 and the samples S1 and are following: 

V 

Using the value p 

8, s. 1 and n 

0.5 we get from the equation 

8+16- 32. 

(14) 

12. The expressions of parameters of classical multivariate 

procedures in the case of constant correlation matrix 
W' 

1 Correlation analysis. The partial correlations of 

the 1-th order (that is, the correlations between X^ and X^ 

when the linear influence of X ,...,X is eliminated) de-
61 Si 

pends only on the order 1, but does not depend on concrete 

indices i,j,g1>...>g1, and is expressed in the following 

way: 

v * f / ( 1  +  1? }-
Example 2. The partial correlations, calculated on the 

basis of the exact sample, generated in Example 1, are given 

in Table 1: 
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ТаЪ1е 1 

Order of partial 
correlation 

Number of diffe­
rent coefficients 

The value of corre­
lation coefficient 

0 28 0.5 

1 168 0.333333 

2 420 0.25 

3 560 0.2 

4 420 0.166667 

5 168 0.142857 

6 28 0.125 

2° Regression analysis. The linear model of the 1-th 

order for prognosing the regressand X^ by the regressors1 

Ig1 
Xg^ 

Xt = b]x + b\ (15) 
1 3=1 3 gj 0 

depends only on the number of regressors, but does not de­

pend on concrete indices i,g1,...,g-^. All regression coeffi­

cients in the model (15) are equal: 

Ъ) =  f / ( 1  +  ( 1  -
= 01 3. ™ 1 * • • • t k-1 • 

In this case the coefficients of standardized regression (the 

socalled betha-regression) are equal to b^1s. The multiple 

correlation coefficient of the 1-term model (15) (see £5,9 j)is 

R = f  fl/(1 + (1 - D f  ) .  
The estimated variance s2 of regressand: 

a2„ (1 -f)(1 • If ) n 

(1 + (1 - 1)f)(n - 1 - 1) 

and the value of P in the ANOTA table for testing the signi­

ficance of the whole 1-term model (15): 

F = U - 1 - D, . 
( 1  - f  ) ( 1  +  i f )  

The variance s^ of every regression coefficient b^ in model 

(15): 

a 2 „  ( 1  ± ( 1  - iLLKl ± i p ) 
b (1 + (1 - Of )2(n -1-1) 
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and the value of F for testing the significance of every 

single regression coefficient b^: 

F(b) = f 2(Д - 1 . 

(1 + (1 - 2)jt)(1 + If) 

Residuals of the linear prognosis 

ъ* x8jf )1^П n 1 f n. 

Example 3. The parameters of all possible linear models, 

calculated by the exact sample, generated in example 1, are 

given in Table 2, 

Table 2 

1 R s2 P 4 P(b> 
R 
tl 
n 

esiduala ol 
He first 
hi«nt 

1 0. 5 0.5 0.8 10 0.025 10 О.49213 

2 0. 33333 0.57735 0.73563 7. 25 0.03065 3.625 0.328083 

3 0. 25 0.61237 0.71428 5. 6 0.03348 1.867 0.246062 

4 0. 2 0.63246 0.71111 4. 5 0.03555 1.125 0.1968502 

5 0. 16667 0.64550 О.71795 3. 71429 0.03739 0.743 0.16404183 

6 0. 14286 0.65465 O.73143 3. 125 0.03918 0.521 0.14060728 

7 0. 125 0.66144 0.75 2. 66667 0.04Ю1' 0.381 О.123031 

3 °  The factor analysis. Principal components without 

iterations. All loadings of the first factor are equal, 

fn = /(1 + (k - 1)j? )/k, i = 1 k. 

If the stopping rule Л ̂  <= 1 is used, then only one factoi 

is computed. All other factors are not defined uniquely, but 

they have all equal "length": 

žZ* ji = 1 — ß » 3 " 2,... ,k. 

The individual factor scores 

l1t = 1/ V(1 + (k - Df)V, i = 1 k. 

The estimated values of the individual factor scores of the 

first factor k 

V4-7T1 + (k ~ 1)f )l)C ,^Xi3» j = 1' — H-
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The claaaical factor analysis (principal components with ite­

rations) . 

The eigenvalues of the reduced correlation matrix are: 

Xa к О t = 01 i — 2, • •»,Jc. 

The diagonal matrix of the variances of the so-called 

uniquenesses: 

diag(1- f 1-f ). 

Consequently, only one factor exists, having equal loa­

dings: 

^1i = ^ = 1,...,k 

and, hence the coefficients of individual factor scores of 

the first factor: 

1И = /0/(1 + (к - 1)j?), i = 1,...,k. 

Rrampi с ^. The parameters of factor analysis calculated 

on the basis of the exact sample, created in the example 1, 

are given in Table 3-

Table 3 

Model Eigenvalues 
f1i ' I p2 

unique­
nesses X1i 

Estima­
ted fac­
tor of 
the lob.i 

Prin­
cipal 
fac­
tors 

4.5,05,...,0.5 0.75 0.5 0 0.1666667 1.31233 

Clas­
sical 
fac­
tor 
ana­
lysis 

0.707107 0 0.5 3.157135 1.23728 

4° Canonical analysis. Assume the number of variables 

in the first grou^ is q^and in the second group p, p-t cj £ k. 

Then matrix R.,2R22R21R~1 is constant with all elements equal 

if 
11 +(p-1) ̂  Д1+Гq-l) у ) 

and has only one non-aero eigenvalue: 

1 вах! , д ..... a . o, 
1 (1+(p-1)f )(1+(q-1)f) 2 ^ 

s = min(q,p). 
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Consequently, the canonical correlations are: 

fl°rf(U(p-1)f ??U(q-Uj>J ' f a  =  0  

and the coefficients of the canonical variables of the first 

and second group are 

1 1 

q(H< q-1)f ) * pd+Cp-Df) 

Example 5. The parameters of canonical analysis 

computed on the basis of the exact sample, created in 

example 1. The results are given in Table 4. 

are 

the 

Table 4 

Slumber of variables Canonical Coefficients of the 1.слаа 

1-st group 2-nd group correlations 1-st group 2-nd group 

4 4 0.8, 0, 0, 0 0.31623 
1=1....,4 

0.31623 
i=5,...,8 

5 3 0.79057,0, 0 0.25820 
i=1,..., 5 

0.40825 
i-6,7,8 

6 2 0.75593,0 0.21822 ̂  0.57735 
i=7,8 

5 Discriminant analysis. Let us assume the first vari­

able X1 to be the grouping one. Then we have the following 

parameters of groups 

Number of group 1 2 

Mean of x, -1 1 
Ч 

Means of i = 1,., 

Estimated standard 

deviations of x. 

,,k 
-f 

i®ij..., к 

The correlation coefficients rCx^.x^) (i Ф j, j=2 k) in 

pooled within group correlation matrix are 

i,j - Z k.i^j. r, , = r-f-
13 1 + f 

In the step-wise procedure the values of statistics "F to 

enter" on the s'th step (when already s arguments are inclu­

ded) depend only tin the number of step, 

= Пп лЛ 
(i+(s>i)^)(s+i) 

with 1 and n-2-s degrees of freedom, s = 0,1,, ,,k-2. 
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The two different values of F, characterising the dif­

ference between the groups (F-matrix and the "approximate F') 

on the (a+1)'st step are in the case equal) 

F = «f (a-2-s) with n - 2 - s and s+1 degrees of 
1 + ( 8-1 ) 5» 2 

freedom, s = 0,1,...,k-2. 

On the first step we have the precent of correctly classi­

fied objects (in both groups) equal 

0.5(1 + J ), 

and the coefficients of the discriminant functions (for the 

first and the second group) are 

. f(n-2) ,f(n-2) 

(1- j?2)n (1 - j>2)n 

Example 6. The parameters of discriminant analysis cal­

culated on the basis of the exact sample, created in the 

example 1, are given in the table 5 

Table 5 

The characteristics of groups The characteristics of 
I'st 
group 

2'nd 
group 

tiqual 
for both 
groups 

step-wise procedures 

St.Dev. 
šžep 

F to 
enter 

F degrees 
of freed 

Means x. -1 1 0.89443 0 10 - -

xj,j-2 x 

Coeff. of 
dlaor. fn. 

-0,5 

-0.62; 

0.5 

0.625 

Within 
group 
correl. 
0.33333 

1 

2 

3 

4 

3.625 

1.8666 

1.125 

0.748 

10.00 

7.25 

5.6 

4.5 

1 

2 

3 

4 

30 

29 

28 

27 
t of correct­
ly classific 

7556 75% 5 

6 

7 

Э.5208 

Э.3809 

3.7143 

3.125 

2.666 

5 

6 

7 

26 

25 

24 

On the basis of the given methods and three testing 

examples ( f = 0.2, f = 0.5 (as in examples 1-5) and f =0.6) 
the programs of four packages of multivariate statistics 

were tested. These programs were two original packages,crea­

ted in Tartu State University,BHD?179, and SAISI (construc­

ted from some models of SPSS). Practically all the results 

of programs coincided with the theoretical values, calcula­
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ted analytically with the help of personal computer. The 

testing was carried with the help of workers of the Labora­

tory of applied mathematics of Tartu State University S.Kos­

kel, К.Tähi and E.Ehasalu. The testing programs made М.Зо-

melar. The author is veiy thankful to them. 

13. The family with fixed eigenvalues of correlation matrix. 

Assuming that all marginals of the parent distribution 

fulfill the condition (9) (that is not restrictive for the 

case, when only the 1-st and 2-nd moments are fixed, as it 

was demonstrated in Lemma 5^ then the task of convenient pa-

rametrization of the parameter-vector -J" can be reduced to 

the task of parametrization of the correlation matrix R only. 

One possibility is to use the eigenvalues of the correlation 

matrix as the new parameters vf (then the number of new pa­

rameters is žk), see [2,5,8]. As in general the matrix R, 

R = H Л H\ (16) 

where H is the matrix of eigenvectors, H = (h^ 1 ̂  . ;h^kJ, 

h( i) = (Ьц, •. .»h^), and 

Л= diag( A1,..., Лк), (17) 

in the case of given eigenvalues depends on the matrix H, so 

we have to fix the matrix H in any suitable foi®. The simp­

lest structure for H is possible in the special case, when 

к = 2m. (18) 

Then it is evident that there exists biorthogonal к x к mat­

rix H, fulfilling the following conditions: 

H' = H, HH = Ik, fhid| = 1/Г"кТ i,j - 1,...,k. (19) 

In future we assume that the conditions (18) and (19) 

are fulfilled. 

Lemma 7. Let H be matrix, fulfilling the conditions 

(19) by k, expressed in (18), and Л the diagonal matrix 

(17), fulfilling the conditions 

Л ̂  ̂  *^1+1 * ^ = 1»• ,k-1, = к, Я^ 

Then the correlation matrix R, calculated by (16), has the 

structure of Latin square, that means, there exist not more 

than k-1 different correlation coefficients , eveiy one 

of them lies (at least) once in eveiy row and eveiy column. 
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Proof. Prom the conditions (19) it follows that every 

row (column) of the matrix H haa the properties of normal 

contrast. From here it can be concluded that the following 

equation holds for any pair of indices i and j: 

h(i)*h(j) =(Vrkhl)) where h^ is a row of H. 

That means, we receive only k-1 different expressions of r. 
^ 

r^j = hif Я £hjj = (1/V к ' i^j, i»J=1,.«»ik 

f=1 f=1 

and for different values of i, when j is fixed, the expres­

sions of r^ ^ and r± j through h^j are different, although 

in some case some concrete values of r, . and r. . may coin-
1.j I5J 

cide. 1 * 

The proof of the lemma is completed. 

The definition of the random vector, having given mar­

ginals and correlation matrix R, may always be performed 

with the help of the construction given in and when on­

ly the first and second moments of marginals are fixed, the 

exact sample may be constructed with the help of the method 

given in Theorem 1. It is evident, that the condition 1° 

must be replaced with the condition that all eigenvalues are 

rational. Otherwise only the almost exact sample may be 

constructed. So as the correlation matrix in the case consi­

dered includes only k-1 different correlations, the linear 

decomposition of it has not more than к terms, and,consequ­

ently, the exact sample will be the sum of not more than к 

exact samples of simple distributions. 

The number t of parameters f , defining the parameter-

vector and parameter of model J> , may be decreased with 

the help of the special construction of matrix Л . For in­

stance, the eigenvalues may form arithmetical or geometrical 

progression (then t = 1 or 2) 

Let us notice that for the construction of the matrix H 

the algorithm of construction X, given in Lemma 2, may be 

used with slight modification: 

h/A * 1/fk*-(1,...,1), (20) 

b( i) = 1/fk"» )» i= 2,... ,2 —1. 

The distributions with given eigenvalues form a special 

tool for testing several properties of factor analysis,since 

{ 
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the given parameters Л ̂  are in fact the parameters of fac­

tor analysis and the expressions of model parameters ß 
through new parameters f (formulae (7)) are very simple: 

fij = ^i hij* i,j = 

Example 7. 

Let us have к = 8 (m = 3) and the matrix A is the fol­

lowing: 

A = diag(4,2,1,0.5,0.25,0,0). The matrix H, construc­

ted by (19), is the following: 

«-1/2 

- I  У  V 

The correlation coefficients, calculated by the formulae 

(16), are the following: 

r12=r34=r56=r78=( 4+2+1+0.5-0.25-0.25)/8=0.875 

r13=r24=r57=r6g=( 4+2-1-0.5+0.25+0.25)78=0.625 

r14=r2 3s* r5 a= r67«(4+2-1-0.5-0.25-0.25)/8=0.5 

Г15= Г26= r37=г48= ^ 4"2+1 ~°- 5+0'25-0 *2 5' / 8=5 0 •3125 

r16= r25=r38=r47a0•3125 

r17=r28=r35=r46==(4-2-1 +0.5-0. 25+0.25)/8=0.1875 

r18= r27= r36=r45=0-1875-

With the help of the algorithm, described in [4.J, the 

decomposition by the quasi-simple matrices of the correlation 

matrix defined is found. In the case in the decomposition 

only 5 quasi-simple matrices were: 
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ft 1 1 1 1 1 1 л (л 1 1 1 0 0 0 о) h 1 0 0 1 1 0 d 
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 1 1 
1 1 1 1 1 1 1 1 R я 

1 1 1 1 0 0 0 0 0 0 1 1 0 0 1 1 
1 1 1 1 1 1 1 1 2 0 0 0 0 1 1 1 1 3= 1 1 0 0 1 1 0 0 
1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 0 
1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 
1 1 1 1 1 1 1 

/ 
1° 0 0 0 1 1 1 V 3 0 1 1 0 0 1 V 

гл 1 0 0 0 0 0 о) л 0 1 0 0 0 0 о] 
1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 
0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 
0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 
0 0 0 0 1 1 0 0 5= 0 0 0 0 1 0 1 0 • 

0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 
0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 

<0 0 0 0 0 0 1 У .0 0 0 0 0 1 0 V 

The linear decomposition is 

H»0.1875B1 + 0.3125R2 + 0.125R3 + 0.25R4 + 0.125R5-

Corresponding quasi-simple vectors are 

IV (Ж^ ,X^ ,X. j  ,X^ ) , 

*2= '̂ 1 '̂ 1 '̂ 1 >̂ 2'̂ 2, 2̂, 2̂̂  ' 

Wj* (If |Ij »Ig) I 

"5" (X-, »^2,I1,12,X3,X4'I3,X4^' 

The following step of oar construction is the 

of the exact samples for all quasi-simple vectors. 

finding 

fi-11 
Ы 

*1-

-1-1 
-1И 
-1-1 
-1-1 
1-1 
1-1 
1-1 
1-1 

1-1 
1-1 
1-1 
1-1 
1-1 
1 1 
1-1 
1 V 

1 1-
1 1-
1-1 
1-1 
1 1-
1 1-
1-1 
1-1 

The coefficients can be calculated with the help of Lemma 

6 from the equations 

2a1 
4a, 

0.1875n, 

О.Э125П, 
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2s1 = 0.1875a, 

4e2 - 0.3125a, 

4= O.125 a, 

Ss^ = 0.25a, 

8s^ = 0.125a. 

Taking n = 64, we have s1 = 6, Sg «5, a^= 2, e^»2, a^»1, and 

X = ( jr'i X*: X*: xj:x5), (21) 

and the size of the exact sample ie indeed 6*2 + 5-4 + 2«4 + 

+ 2-8 + 8 = 64. The parameters of factor analysis, computed 

by the exact sample (2<1), are the following: 

(only four first factors (principal components) are defined^ 

F1 P2 F3 P4 
0.70711 0.5 0.35356 0.25 

0.70711 0.5 0.35356 0.25 

0.70711 0.5 -0.35356 -0.25 

0.70711 0.5 -0.35356 -0.25 

0.70711 -0.5 0.35356 -0.25 

0.70711 -0.5 0.35356 -0.25 

0.70711 -0.5 -0.35356 0.25 

0.70711 -0.5 -0.35356 0.25 

Communalities of 1-, 2-, 3- and 4-factor system are corres­

pondingly 0.5, 0.75, 0.875 and 0.9375; the "length" of the 

5-th and 6-th factors are equally 0.25, the 7-th and 8-th 

factors have zero length. 

For the nonrotated factor-structure the factor score 

coefficients are (for the two first factors): 

lu = 0.17678, i = 1 8; 

l2i = О.25, i ~ 1,...,4, lgi a —О.25, i = 5,...,8. 

The values of the individual factor scores for the first ob­

ject of the exact sample X are 

1.403125, 0.00000. 

Evexy method of orthogonal rotation (varimax, quartimax 

e.c.) gives for the first pair of the factors the optimal 
angle 45°. 

After the rotation we have the following factor-matrix: 
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0.85355 0. 14645 

0.85355 0. 14645 

0.85355 0. 14645 

0.85355 0. 14645 

0.14645 0. 85355 

0.14645 0. 85355 

0.14645 0. 85355 

0.14645 0. 85355 

With the help of the method of testing, described in 1, 

we found that some algorithms (for instance, in package SA.ISI) 

did not rotate the factors in the model, given in Example 7. 

It seems that the point of rotation for angle 45° is a pecu­

liar one and does not include in the admissible region of 

some algorithms of factor rotation. 
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"ТОЧНЫЕ ШВОРКИ" ИЗ МНОГОМЕРНЫХ РАСПРЩШМЙ И ИХ 

ПРИМЕНЕНИЕ ПШ ТЕСТИРОВАНИИ СТАТИСТИЧЕСКИХ АЛГОРИТМОВ 

Э. Тийт 

Р е з ю м е  

Проблема тестирования матобеспечения (алгоритмов и их 

реализаций) математической статистики является в настоящее 

время весьма актуальной. Стандартными методами дая этого яв­

ляются: 
1° Использование "традиционных" примеров, опубликован­

ных многократно. 

2° Применение метода Монте-Карло. 
В настоящей статье предлагается альтернативный подход, 

основанный на т.н. "точных выборках". Это специальным обра­

зом построенные конечные совокупности точек - реализаций 

случайного вектора, имеющие наперед заданные параметры эм­

пирического распределения. Для таких "выборок" возможно.ана­

литически (без применения исследуемых алгоритмов) вычислить 

точные значения р* параметров статистических моделей. Затем, 

путем сравнения ß* с результатами применения исследуемого 
алгоритма AR "точной выборке" fi (v~ ,kv, А) по формуле (4) воз­

можно оценить ошибку алгоритма А и выяснить его допустимую 

область, где имеет место неравенство (5). В пункте 7 излага­

ются теоретические основы для построения "точных выборок" по 

заданным первым и вторым моментам (притом используется мето­

дика построения многомерных распределений с заданной корре­

ляционной матрицей, изложенная в [4j). 

Во втором параграфе вводится семейство (^е СолJ, 

рациональное, ttfi ) к-мерннх распределений с стандартизиро­

ванными маргинальными распределениями и постоянными корреля­

циями *v^ = I» , ufj). Алгоритмы для построения точ­

ных выборок из семейства ^изложен в п. 10, а в п.12 из­

лагаются точные формулы параметров многомерного статистиче­

ского анализа для распределений из семейства тс(|,|1ч). 

Для конкретного семейства к. при q = 0.5 и к = 8 в таб­

лицах 1-5 приведены значения основных статистически корреля­

ционного регрессионного, компонентного, факторного, канони­

ческого и дискриминантного анализа. 

Received September 1985 
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MATRIX CALCULUS FOR MULTIVARIATE DISTRIBUTIONS 

I. Traat 

1» Introduction 

In the last few years the matrix calculus, especially 

such operations like the Ironecker product and the matrix 

derivative have been applied to many statistical problems 

(see e.g. [2-8, 12, 15]). The matrix technique seems to be 

very convenient in the multivariate case. We try extend the 

usage of matrix operations to one more field of mathemati­

cal statistics, namely to that which is connected with the 
representation of multivariate distributions. Prom this 

point of view the moments, cumulants and asymptotic expan­
sions are considered. The observed material needs the app­

lication of higher-order matrix derivative which is defined 
here on the basis of MacRae's first-order matrix derivative 

га. 
The definitions which generalize the notions of mo­

ments and cumulants of a random vector are given. It is 

shown that the expressions for generalized moments and cu­

mulants of any distribution can be obtained by matrix 

differentiation of its characteristic function. This result 

is applied to the multivariate normal distribution to de­

rive the matrix expressions of its central moments up to 

the sixth order. 

Quite often the moments of some random function are 

calculated from its Taylor expansion. Our definition for 

moment needs the matrix form of Taylor expansion. It is gi­

ven here for the vector, the components of which are the 

functions of another vector. In mathematical statistics va­

rious functions of symmetric matrices (like covariance and 

correlation matrices) are of interest. As there exist some 

additional requirements when dealing with the derivative 

with respect to symmetric matrix [53, then the Taylor ex­

pansion for the symmetric argument is separately considered. 

We also describe the matrix technique when deriving 

the multivariate Edgeworth expansion. For that some auxilia­

ry matrix results concerning the Fourier transform and the 
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multivariate Hermite polynomials are given. Finally, the 

formal Edgeworth expansion with the accuracy о(п**Ъ for the 

class of multivariate statistics is derived. 

One can see that the matrix operations make the mul­

tivariate formulae simple and compact. They are expressible 

without multiple indices and tn many cases the outside look 

of the multivariate formula coincides with that of the cor­

responding univariate formula. In addition, the mattix form 

of the formulae is convenient for computer calculations. 

2. Preliminaries 

Here we list the operations and their properties given 

in [2-8], which will be used to obtain the results of this 

paper. An additional notion - the power of a vector is for­

mulated. 

DEPINITIOH 1. The Kronecker product of m* n matrix X =[x^l 

and s * t matrix Y is the ms x nt block matrix 

X • Y = [ x ± .  Y]. 

This product has the following properties, assuming 

the matrices er» comfortable to the indicated operations: 

(cX) ® Y = X ® (cY) = c(X®Y), с - scalar, 

(X• Y)(2 ®W) = XZ ® YW, (2.1) 

(X « Y)1 = X* ® Y1, 

(X +Y)®(Z +w) = x®z + xew + Y ® Z + Y®W, 
X ® (Y ®Z) = (X ® Y) ® Z. 

DEFINITION 2. The star product [3] of m *n matrix X and 

ms x nt block matrix Z is the s a  t matrix 

x " 2" & *« 
where is the ij-th s к t block of Z. 

In the case of scalar с and vector t, the star product 

is equal to the usual product: 

с * t = t • с (2.2) 

DEFINITIOM 3. The permutation matrix 1щ (also commutation 

matrix and permuted identity matrix) is*the mn x mn block 

matrix consisting of mn blocks of size m x n such that 

the ij—th block has a 1 In the ji—th position and zeros el­
sewhere. 

An important property of Im Q is, that it reverses the 

order of a Kronecker product: 
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( 2 - 3 )  

In addition, the following is valid! 

Zm,1 = ,m a Im» 

I ж I ' 
m,n n,m* 

Im,nIn,m 3 1вш* 

DEFUflTIOH 4. The operator veo forms the vector from the co­

lumns of a matrix stacking them one under another: 

veo X = (хп Хщ! х1п* ••*,хшп^ '* 

Clearly 

vee (cX) = о vee X, 

vee (X + Y) = vee X + vee Y. 

The operator veo is connected with the Kronecker pro­

duct and permutation matrix by the equations: 

vee XZY = (Y1 ® X) vee Z, (2.4) 

Im,n veo X * vec X>' (2.5) 

In the case ef symmetric p*p matrix Z it is useful to 

form the vector from the unequal elements of Z. 

DEFITtlTIOIT 5. The operator vech forms the vector from the 

above diagonal elements of a square matrix: 

vech Z = ( z.j .j, z.|g,Zggi • •»>z-jp> r • •»zpp) ' • 

There exist the following connections between operators 

vec and veoh when working with symmetric matrix Z: 

vec Z = G vech Z, (2.6) 

where G is unique p^x p(p + 1)/2 matrix consisting of ones 

and zeros only; 

vech Z = H veo Z, (2.7) 

where H is nonunique (e.g. H = (G'G)~1G'); 

veoh Z = HG veoh Z, 

vec Z = GH vee Z. (2.8) 

On the basis of the Kronecker product we give the defi­

nition which appears to be useful in considering the multi­

variate distributions. 

DEFUJITIOH 6. The te-th power of a vector x is 

r^sxex*... ® x, 

where x is multiplied к times. 
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If x = [ Xj] is the vector of order p, then xk ie the 

vector of order pk, the components of which are all possible 

products x^ x^ • • eXi * ^k ̂  С *e * * rP^e * con— 

sists of all mixed products of order к of the components of 

vector x. In particular, if the order p = 1, then definition 

6 gives the usual power of a scalar. Obviously it holds 

xk e x^ = xk4 

This part of preliminaries we finish with listing some 

properties about vectors x, y: 

x * y' = xy', (2.9) 

X <8 у' = У 1  ®  X, 

vec(x ® у') = у » X. (2.10) 

Next we consider the matrix derivative which is an Im­

portant notion in our further results. A good review on mat­

rix differentation is given by Hel [61. 

The notion of matrix derivative corresponds to the no­

tion of Frlchet derivative in the finite Euclidean spaces 

C11J. Probably the main reason for taking into use the mat­

rix derivative in statistics was, that it is the convenient 

tool for practical finding of the derivatives of one matrix 

with respect to another matrix (both may also be vectors or 

scalers). 

Here we represent the KacRae's [31 definition of mat­

rix derivative 

DEFINITION 7. Let the elements of s * t matrix Y be func­

tions of the elements of m * n matrix X and let the elements 

of X be functionally independent. Let d/dx = ['B/ % iy ] be 

a matrix of derivative operators. Then the derivative of 

matrix Y with respect to X is defined to be am ms x nt mat­

rix, given by 

dX _ Y„ d 

where multiplication of a matrix element by a derivative 

operator corresponds to the operation of differentiation. 

By the definition, the result of matrix differentiation 

is a matrix, consisting of partial derivatives of all ele­

ments of Y with respect to all elements of X. 

Let matrix W be a function of Y, but Y, Z and p *. q 

matrix U be functions of X. Then following differentiation 

rules are valid: 
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dX/dX = vee Im veo'In, 

dX'/dX = I , 
' ш,п* 

d(Y+Z)/dX = dY/dX + dZ/dX, 

d(YZ)/dX = (dY/dX)(Z ® IQ) + (Y® Im)(dZ/dX) (2.11) 

d(Y*U)/dX = (Y • dü/dX) + 

* (Ip,=® VdJ-dY/aOd* ®In), (2.12) 
dW/dX = W ® (d/dY * dY/dX). 

Prom these equalities the special cases tor the p-vec-

tor t and scalar composite function w(Y) follow: 

dt/dt - vec Ip, (2.13) 

dt'/dt = I , (2.14) 

dw/dX - dw/dY * dY/dX. (2.15) 

The definition of matrix derivative and some of the gi­

ven differentiation rules do not hold when X is symmetric, 

as in this case the elements of X are functionally dependent. 

In the case of symmetric X, the derivative has to he found 

with respect to independent elements of X, i.e. with res­

pect to vech X. But that is not easy to do analytically. In 

[5], there are given useful formulae which connect the deri­

vatives with respect to vech X and with respect to the whole 

matrix X, In the latter case the ji-th element of symmetrio 

X is considered to differ from its ij-th element even though 

their scalar values are equal (i.e. "ÖXjj/ = 0, i £ j). 

With the help of these results the above differentiation 

technique is applicable also to the functions of symmetric 

matrices 

Let the scalar у and s * t matrix Y be the functions of 

symmetric matrix Z. Then due to C5] 

dy/dvech Z = G'vec(dy/dZ), 

dy/dvech Z = G'(dy/dvec Z), (2.16) 

dY/dveoh Z - (Xg • G')(dY/dvec Z), (2.17) 

where matrix G is defined by the equality (2.6) and the de­

rivatives at the right sides of these formulae are found 

without considering Z to be symmetric (i.e. the elements of 

Z are observed as functionally independent). 

3. The ыp;hp-i--order matrix derivative 

In the literature on matrix differentiation the first-

order (sometimes also the second order) matrix derivative ie 

mainly observed. We need to use the higher-order matrix de-
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rivative. 

DEFINITION 8. The matrix derivative of order к ie inducti­

vely defined as the matrix derivative of the matrix deriva­

tive of order k-1: 

аку л r ,k-1. 

(dX)k dX L(dZ)z 

5o at each step of differentiation we may use the ru­

les of finding the first-order matrix derivative given by 

MacRae. Prom the definition it follows 

^ Ц -  =  ( . . . ( ( Y » - A - ,  
(dx)K dX dX dZ 

where the matrix of derivative operators is applied к times. 

The important special case for our results is the de­

rivative of scalar function y(t) with respect to p-vector t. 

Prom the definition it follows, that dy(t)/dt ia the p-veo-

tor consisting of the first order partial derivatives of 

y(t), but dky(t) / (dt)k is the pk-veotor consisting of all 

k-order partial derivatives of y(t). 

The next result is the generalization of MacCulloch'e 

result (2.16). 

Theorem 1. Let Z be a p x p symmetric matrix. Then for 

the k-order matrix derivative of a scalar function y(Z), 

the following is valid: 

pän 0.fria_-, О.,.) 
(dvech Z)K K (dvec Z)K 

where G^ = G ® G ®...®G ia k-times Kronecker product of mat­

rix G, defined by (2.6), and the derivative at the right 

aide of () is found without considering Z to be symmet­

ric. 

Proof. If к = 1, then by virtue of (2.16) the equali­

ty (3.1 ) holds. Assume that it holds in the case of some 

k-1 - 4-1 (3-2) 
(dvech Z)K K 1 (dvec Z)K 1 

The^ differentiation of both sides of ( 3.2 ) with respect 

to vech Z and application of the rule (2.11) lead to 

dky( Z) d Г-. dk-1y(Z) rG,. __ 

(dvech Z)^ dvech Z L k~1 (dvec Z)k_1 

-гч-1-,<p*„/2] ±гг [fsfger] 
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Ae the vector dk~"1y(Z)/(dvec Z)k~1 of dimension p2^k~1\ ia 

the function of symmetric matrix Z, then according to the 

property (2.17) we get 

Finally 

u • [4-. * 
which hy virtue of (2.1) proves the theorem, q.e.d. 

4. The matrix form of the Taylor expansion 

Let the q-vector g(x) be a function of some p-vector x 

(g : R*1 -*• R1^). Using the notions of higher-order matrix de­

rivative and the power of vector, we give the following form 

for the Taylor expansion of g(x) (the earlier matrix repre­

sentations of Taylor expansion see e.g. in [9, 10]). 

Theorem 2. If all the partial derivatives of g(x) of 

orders n + 1 and less are continuous in a neighbourhood D 

of point a, then 

*k + 

•sfcrHI 
where 

Proof. Hots, that the expansion (4.1) includes the ex­

pansion for each component g^(x) of vector g(x). As accor­

ding to the definition dkg"(x)/(dx)k is the matrix, the i-th 

column of which is dkg^(x)/(dx)k, then from (4.1) follows 

for g.(x): _ v , 
. гШх)1 k 

g,(x) = — - 4 (x - a) 
" v-n vi L гл-И* J®*® k-0 k! Hdx) 

лП+lg^xb' 

+ 

+ —J—[-—кг—Ut(x - a)n+1- U*2) 

(n+1)! l(dx) ' 5 

It is enough to show that this expansion is identical to the 

usual representation of it (given for instance in [131). For 

that we only need to rewrite the k-th tenn of this expansion 

with the help of definitions of k-order derivative and the 

' Note, that the power (x - a) is meant in the sense 

of definition 6. 
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k-th power» According to these, the vector dkg^(x)/(dx)k 

consists of all k-order partial derivatives "bkg^(x)/dx^ ... 

... "öx. , end the vector (x-»)^ consists of all prolucte 
к 

(x4 - а, )...(x4 - a. ), where i.,...,!- e ^1, . . . , p \ .  Thus, 
11 11 xk \ iK 

their scalar product gives the following multiple sum for 

the k-th term of (4.2). 

1 fd Si(x)l. 
x-e)k 

L(dx) 

J_ к 
1 ^ ' D Sit*) 

= CT 2 X — (x± -a, )...(X1 -a, ). 
i.,. tiv=1 Эх. ...Эх, X1 X1 xk \ 

1 к 

q • e* d. 

5. The Taylor expansion for the function of symmetric matrix 

If the q-vector g(Z) ia a function of some symmetric 

p x p matrix Z, then it may be considered to he the function 

of vech Z. As vech Z is the vector with functionally in£e-

pendent elements, then theorem 2 may be used for expanding 

g(Z) in the following way: 

дк„ 
SU) =  H f r f *  ' J  [vech(Z - A)] 

k=0 K -L(dvech Z) KJ Z = A
L  J  

k + 

+ ^TT [ Uvech z!^]^A[Ye0h(2WL)]n+1 (5-1) 

A,A1« D. 

For the practical expanding of g(Z) the following fonn 

of Taylor expansion is useful, in which the derivatives are 

found with respect to all elements of Z. 

Theorem 3. If the function of symmetric matrix - g(Z) 

has all continuous partial derivatives of orders n+1 and 

less in a neighbourhood D of matrix A, then the vector g(Z) 

may be expanded in the following way: 

« (и .ёубщцг  [™лы)]»  
k=0 k,L(dveo zyEJ7_t

l 

1 

(n+1) 

where the derivatives are found without considering z to be 

+ 

ZaA 

+  _L_rd£^m V [ v e c (z^)] n+1 (5.2) 
*1)1 1(dvec Z)n+1JZ=A

L J 

A 11 D 
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symmetric. 

Proof. We need to prove that the expressions (5.1) and 

(5.2) are identical. 

Let as observe the expansion of the component g^(Z), 

obtained from (5»1)• The k-th term of this expansion has 

the form 

** ' l t™"" ' "1 "• 

Application of theorem 1 and equality (2.7) leads to 

Further transformations with repeated application of the 

property (2.8) give 

Gk[ Hvec(Z - A)]k= (G® ... ®G) [ H vec(Z-A)®... 

.... ®Hvec(Z-A)l = GH vec(Z-A) ® ... ®GH vec(Z-A) = 

= [GH vec(Z-A)]k = [veo(Z-A)] k. 

Finally 

^ = ^[и™Г!)к^тес(2^ 
which is the desired k-th term of the expansion of g^(Z) 

given by (5.2). Q.B.D. 

6. The moment of a random vector 

The purpose is to define the к-moment of some random 

vector x in the form of another vector, which includes all 

the k-order mixed moments of vector x. First this idea in a 

little different form was used in [121. 

DEFINITION 7. The k-moment jjl^ of some random vector x is 

the expectation of its k-th power: 

= E Xk. (6.1) 

If x is the p-vector, then due to the definition of 

the power of vector, f-y. is the pk-vector consisting of all 

k-order mixed moments of x. In particular, if p = 1, then 

(6.1) defines the usual moment of a random variable. 

We say that the moment exists, if all its elements 

exist« 

DEFINITION 8. The central k-moment of vector x is the 
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expectation of the k-th power of vector x - JJL^: 

/?k = E(x - ̂ 1 ) k .  ( 6 . 2 )  

For example, application of ( 2 . 1 0 ) ,  ( 2 . 9 )  g i v e s  for the 
second central moment 

Д 2= E(x -/U 2  = B[(x -  /0®(x -/O] -

. B v e c [(V- / t 1 ) ( , - / ( 1 ) 1 ,  

from which follows 

= vec £ , (6.3) 

where £ is the covariance matrix of x. 

The expressions of some first moments for the vector of 

sample covariance matrix veo S and for its vector-function 

g(S) are given by the author in [161. The technique of de­

riving the momenta of vec S is described in [151. 

Hext we show that the matrix differentation is a power­

ful tool in finding the momenta [A. k, JL ̂  of random vector x, 

if characteristic function 

y(t) = E e"'* 

is known. 

Theorem 4. If the moment of random vector x exists, 

then 

I = 1 к 
(dt)* lt=0 

/A k .  ( 6 . 4 )  

Proof. If к = 1, then we have to find the first order 
4 t у 

matrix derivative of composite function e with respect 

to the vector t. Application of the properties (2.15),(2.2) 

(2.11), (2.14) gives 

• E [ «"''J • B [1 IF * •"'*] • E11»"'*] 

and consequently 

Ч ^ и = 0 =  i E x  =  1  f l -
Let ua assume that in the case of some k-1 the follo­

wing 

dk~V(t) „ dk-1elt,x „ / ,k-1 __k-1 .it'Xx 
Л-Ii{ = 5 " = E Ci x e ) 

ut)*-1 (dt)^-1 

is valid. 

Differentiating this with the application of rule 

(2.11), we find 

73 



= ik E [(i1"1«^) x е"'х]. 

As according to (2,1) 

(xk-1® Ip)x = (xk-1elp)(1®x) = Xk"1® x = xk, 

then 

£Ш1| . i« i[»'.lvr] - А*" - 1>к. 

t=0 t=0 
(dt)1 

Q.E.D. 

An obvious conclusion of theorem 4 is following. 

Corollary 4. If "4r
y(t) is the characteristic function 

of vector у = x - fi^ (y«1 = Ex), then the matrix differen­

tiation of Y y(t) gives the central moments of x: 

Sote, that the expressions (6.4), (6.5)'define the usu­

al moments of random variable, if x,t e R1. 

7. The cumulant of a random vector 

Let f(t) = ln"y(t) be the logarithmic characteristic 

function of a random vector x (x,t e rP). 

DKFWITIOH 9. The к-cumulant of a random p-vector x is the 

pk-vector bt^ defined by the equality 

toli . 1* Kt. (7.1) 
(dt) t=0 K 

As the k-order matrix derivative of the scalar function 

ln-y('t) ie the vector consisting of all k-order partial de­

rivatives of lntjf(t), then 3t^ consists of all k-order mixed 

cumulants of x. In particular, if the dimension p = 1, then 

(7.1) gives the usual cumulant of a random variable. 

The connections between cumulants and moments can be 

obtained when finding the matrix derivatives of both sides 

of the equality 

f(t) - lny(t). 

For three first cumulants the following is valid: 

at -j a 1» 2^2 " /^2 " veo » ^3 = /^3* 
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8. The Taylor expansion for characteristic functions 

Theorem 5. The characteristic function ijf (t) and the 

logarithmic characteristic function In (t) of a random vec­

tor x can he formally expanded as follows: 

(tu) 

In Y (t) = У xl •Цт^- . (8.2) 

k=1 

Proof. Applying theorem 2 for the functions "y (t) and 

In Y (t) in the point t = 0 and using the expressions (6.4), 

(7.1) of their matrix derivatives, the expansions (8,1) and 

(8.2) follow easily. Q.E.D. 

We note that using the new notions ( k, the power 

of a vector t^), the expansion of multivariate characteristic 

function can Ъе put down in the same simple form as in the 

univariate case. 

9. Central moments and cumulants of the normal random vector 

The usual form of the characteristic function of the 

distribution Np(Ot 51 ) is 

• » f i t  
if (t) = e . (9.1) 

Applying the operator vec to the scalar t'Z t and us­

ing the connections (2.4), (6.3) we get 

t'  Z t = vec t'Z t = (t ® t)' veo Z = (t ® t) ' /tg, 

from which follows the other form of (9.1): 

-  i  (tot)1 й2 

Y (t) = e 2 rZ (9.2) 

Further, in this paper, we also use the notation 

N( jx ^, /ig) for the distribution R( yU1, Z ). 

Theorem 6. The central moments of the multi­

variate normal distribution are expressed as 

the functions of moment jZ 2 in the form: 

/*4 = 31 Лг»_ „ (9.3) 

/*-6 = ^2 *3 3 /*2 7 (9. 4 )  
where 

^1 = Ip4 + •"p.P1 ® Jp + Jp,p3, 

J2 = V + Vp^V + W®V + W в1р + ^.p" 
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з з  -  v  +  v® w 8 i p +  v ' w  •  

Pnoof. We shall derive the expressions for and ^ 

with the. help of matrix differentiation of characteristic 

function (9.2). Step by step we shall find the derivatives 

of higher ordere and find their values in the point t = 0. 

The following auxiliary equalities are needed: 

d(t' ® Ik) 
SH2" = W (9.5) 

[Ip,p^(^2elp-'l)]®1p« = (1р,рКвМ(/Че1р^н).(9.6) 

The equality (9.5) follows straightforwardly when applying 

the differentiation rule (2.12). The equality (9'.6) is ob­

tained Ъу substituting Ipt = Ip£ • Ip( and applying the pro­
perty (2.1). 

1) Using the rules (2.15), (2.2), (2.11) we get for 

the derivative of first order 

4 F  -  - 1  ' « ' У -  -  i  и  ' • > •  
The differentiation of the Kronecker product according to 

(2.12) yields 

^Ш-.i [t.«i p*i p(t.«i p )  g^tt) = 

- - \ Cf®lp)(lpx + Xpfp)^(t). 

As *hy virtue of (6.3). (2.5) 

h.vh - /*2' О-?) 

then 

a " (t' * V Л2^(t) > (9.8) 

from which 

4F|«,o- °- ('-s) 

2) The differentiation of (9.8) according to rules 

(2.11), (9.5) gives 

л 21йГ + > d(t'®I ) _ d(S?tf(t)) 
^5^ = ar^- -(*,*1р*1р~%—= 

= -  - ( f®v ) ( / r 2®V 
?inally, Ъу means of (9.7) 

= -ji2lf(t) - (t«»Ipx )(/t2®Ip) dffi?.(9.10) 
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from which for t = 0 follows 

= -  M 2 .  (9.11) 
(dt) 4=0 

3) Applying the properties (2.11), (9.5), we find the 

derivative of (9.Ю) : 

•  -  ( ž 2 " v  ̂  t f 2  -
- (t'.ipS)(52«ipl) . (9.12) 

According to (9.9) 

d34 (t) 
^ I 
(dt) L , 

= 0. 
11=0 

4) The differentiation of (9.12) in an analogical way 

yields: 

= .  (L«i г ) д 2 ^ш - [i (уч ®i)©I 
(dt)4- Г2 p (dt)2 L P'P Г2 p pJ(dt)2 

- IB ръ( Kg* V)d ^ - (t'ei .)(/(2el p.p Г 2 p (dt)2 P1 Г2 p (dt)l 

The application of (9.9), (9.Ю) gives 

7^lt_0 
= (ä2®v^2 + [w/^vvlä + 

T Ip,p3,( ^2®Ip1-) /*2* 

For simplification we use (9.6) and the equality 

</ч® WFi =  /*  i  ®/V 
which is easy to show Ъу substituting уй^ = 1 © уч^ and app­

lying the property (2.1). It leads to 

,4 
<П£Щ| 
(«) 4  l t =  

=^2 + (i p-^v^2 + 

— 2 — — where by our definition yit 2 = /< 2® 2* Так1п8 the vector 

2 behind the brackets yields the expression (9.3) of theo­

rem 6. The expression (9.4) is obtained by continuing the 

process of differentiation in an analogical way. Q.E.D. 

In particular, if p = 1, then 

x1,1 = X1 = 1 

and from theorem 6 follow the expressions of moments for 

univariate normal distribution 

Л 4 = 3 Z42 * У"б = 15 ft Z г 

where yit 2 is the variance. 
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Theorem 7. The oumulaate of multivariate normal distri­

bution Hp( jH.|, yU2) are 

X. ] — yt-| t 2C2 = 2» 3C. = 0, i > 2. 

Proof. The logarithmic characteristic function of 

V/<1'7*2)1s 

f(t) = it' fJi 1 - ̂  (t ® t) • д2. 

Differentiating this we get 

from which Ъу virtue of (2.14) follows 

Щг1- i/Ч - (f ®У/*2- (9.13) 

As from this 

^L- '"v 
then .ae.., » ytt1. 

The differentiation of (9.13) yields 

d
( 

= ™IP.P/'2 = "^2 = 1-2 /*2» (9*14) 

from which 

3f2 
= /*2* 

As the second derivative (9.14) is constant then higher 

order derivatives are serös. Q.B.D. 

10. Multivariate Hermlte polynomials 

Let us see the density^function 

f>(i) - (2<i) ̂  lEl ^ e 7 * X (10.1) 

of hp(0,z). It is known that the multivariate k-order Her­

mit e polynomial is obtained by finding the k-order paxtial 

derivative of £(x). With the help of matrix differentia­

tion, it is possible to find all k-order Hermite polynomials 

at the same time, as the components of a vector h^. 

Theorem 8. The vector h^. of multivariate Hermite poly­

nomials, defined by the equation 

= (-1)к к Ф (x), (10.2) 
(dx) ^ 

has for к = 1,2,3 the following Sorms: 
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h 1  =Z" f  x,  (10 .3)  

h 2  = (  Z" 1  ®Г - 1 )  x 2  - vec Z" 4  ,  (10.4) 

h 3  = (Z^eZ""еГ 1 )  X 3  - (vecZ - "  ® Z" 4 )*  -

-  (ZT~ 1  ® vec ZI" 1  )x - vec( Z.-z|x ® Z - ^) .  (10 .5 )  

Proof. According to the definition (10.2), we have to 

find matrix derivatives of <% (x) up to the third order .  

1) For the first derivative, the application of proper­

ties (2.15), (2.2), (2.11), yields 

д л,с_л dX - i x' Z ~1 x) 

чзе $t*j * 

A3 

d( % z ~ • у vec Ip, 

from which by virtue of (2.4) follows 

d( fx" X) = vec Z , 

then application of this and (2.14) gives 

-1 -1, 
X L И 

dx 

(10.6) 

= -4[Z™1x + (x* © I ) vec ZI ~1]ф(х). 

Finally, using of (2.4) yields 

*•%>> a - Z x%(x), (10.7) 

from which follows the expression (10.3) of h.. 

2) The differentiation of (10.7) according to (2.11) 

leads to 

= - < ž l ^ ( x )  + ( z ™ 1 x  » I  ) Z " 1 x $ ( x ) .  
(dx)^ p 

As Z -1x is a vector, then according to (2.4) and (2.10) 
-1 -1 -1 -1 

(  Z  x  ® I ) Z x = vec  (Z  I  i ' £  )  =  
-1 _P. -1 -1 

= (Z ® Z )vec x i' = (Z ® Z )x2„ 

The application of this and of (10.6) yields 

A Žižl = [ -vec Z + (Z ®Z )х2]ф(х), (10.8) 
(dx) 

from which follows the expression (10.4) of hg. 

3) The differentiation of (10,8) gives the expression 

(10.5) of h3. Q.E.D. 
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11. The Fourier transform connected with the multivariate 

normal distribution 

The characteristic function of H (0,Z ) is defined by 

the following Fourier transform of 4 (x): 

f(t) = J e1*'*-# (x)dx, (11.1) 

R p  

where dx = dx.,...dXp and Ф (x) is the density function of 

Hp(0, Z. ). It is also possible to find the Fourier trans­

forms of several partial derivatives of Ф (x). We give the 

appropriate result in the matrix form. 

Theorem 9. For the functions Ф (x) and vf(t) defined 

by (10.1) and (11.1), the following result is valid: 

(it)k4>(t) = (-1)k j e"'x ** ̂    dx, (11.2) 
RP (dx) 

where the integral is taken separately from each component 

of vector e l t , xd k§(x)/(dx) k, (x,t E RP) .  
Proof. To prove the equality of vectors, we have to 

prove the equality for the corresponding components of these 

vectors. Using the definitions of the power of vector and 

higher-order matrix derivative of a scalar function, the 

following equality for corresponding components is obtained 

from (11.2): 

ikt4 ... t4 if(t) = (-Dk ( eif x -ak ilx) cbc,(n.3) 
il ik RP 

i1 f. • • t ijj ̂  ̂  • iP } * 

This equality can be proved easily with the help of mathema­

tical induction by k,  using integration by parts. Q.E .D.  

The Important conclusion of this theorem for deriving 

the multivariate Edgeworth expansion is following. 

Corollary 9. If с is a constant pk-vector, then the 

following expression is valid: 

(—1)kc' = (2f )"P J c'(it)kt? (t)e-it'xdt, 
(dx) RP 

i.e. left side of this equality is the inverse Fourier trans­

form of the scalar product c'(it)k<f(t). 

Proof. Theorem 9 says that the vector (it)ktf (t) is the 

Fourier transform of the vector (-1)kdk<$ (x)/(dx)k, which 

therefare must be expressed with the help of inverse Fourier 

transform: 
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( _ 1 )k d_Üx) = (2<г) p f (it) ü>(t)e dt. 
(dx)k J

n 
T 

Rp 

Multiplying the both sides of this equality on the left Ъу 

the vector с transposed and applying the additivity of in­

tegral, the corollary is proved. Q.E.D. 

12. The matrix form of the multivariate Edgeworth expansion 

The Edgeworth expansion is an expansion of the density 

function of a statistic (sample function), basing on the 

density function of a normal distribution and its deriva­

tives. The expansion is ordered corresponding to the powers 

of sample size n. 

bet z be a p dimensional statistic with 

cumulants - äe^, 

density function - f(x), 

characteristic function - ̂  (t). 

Deriving the Edgeworth expansion of f (x) we need to 

know, how the cumulants of statistic z depend on the 

sample size n. Let us assume 
1 

96.1 = n ^ + o(n~1), (12.1) 

de2  = k 2  + n_1  t2  
+ ° ( n - 1 ) ,  ( 12 .2 )  

_ 2 
>e3 = n 2 <f3 + о (n-1), (12.3) 

зе4 = n~1 Я"4 + о (n~1), (12.4) 

•X-j = ° (n-1), j » 5, (12.5) 

where kg, , ..., are the matrix expressions, depen­

ding on the population cumulants, but not on п.. Рог example, 

the cumulants of statistics *Гп vec(S - 21), fn jg(S) -

- g( 21 )] , where S and Z- are the sample and population 

oovariance matrices, g is some function of them, aie repre­

sented in the forms (12.1) - (12.5). 

Theorem 10. The formal Edgeworth expansion for the p 

dimensional statistic z with cumulants (12.1)^(12.5), is 

given up to the order n~^ in the following way: 

_ j 

f(x) = Ф (x) - n 2[)fi'd1 + ̂  jf'3d3] + 

+ n"1[^( t2+ фч2+ ̂ (t4 +2£,®f3+ 2У3*^)«а4+ 75(*3)'<t6] + 
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+ о (n-1), 

where 

\  ,  ( 1 2 . 6 )  
k (dx)k 

•5 (x) is the density function of Hp(0,k2), k2 is the limi­

ting (n-*o=) second cumulant1' of statistic z, ^ 

/4 are the terms from the expressions of cumulants deter­

mined by (12.1) - (12.5). 

Proof. Inserting the expansion of lnty(t) given by (8.2) 

into identity 

-y(t) = exp(lnxy(t)), 

we get 

^(t) = ехр[13гс^ (12.7) 

The substitution of cumulants (12.1)-(12.5) into (12.7) 

yields 

Y(t) = exp[ n ^ (it) + k'Ü|L + n~1£' + 

+ n + n-1^ i|^2l + о (n~1)] . 

Separating here the multiplier 

ip(t) = exp (k£ 

which is the characteristic function of H (0,k„), we obtain 
1 P 2 

Y(t) = exp [n" SfVit + *з + п-\Г2'Щ1\ 

+ ^ +° (n~1) 1 

Expanding of the exponental function above to the power se­

ries, gives 

iy(t) ={1 + n ^(f,'" + <"3 "Цт^ * n~1(jr2'i^2+ 

+ + \ n™4(^,it)2 + + 

+ (^•l|^2)(jri'it) - ( + о (n~1)}4'(t) 

(12.8) 

The sunnnande in the square brackets are transformed with the 

help of (2.1). For example 

Mote, that according to ( 6 . 3 ) ,  k„ is the limiting co-
variance matrix of z in the vextor form. 
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(jyit)2 = (X'1
,it)«(!ri

,lt)=(jri*/1)4it®it)=(^)4it)2, 

f $!'")( $3'4F"3) = 

Thus, (12.8) will take the form 

ту (t) = {l + n~ 4<$yit + ̂ 3*(it)3]+ n"1[i 2f2
,(it)2+ 

4с^2)Ы)2 
+1J/4'(it)4 + ̂ ^e^J'dt)4 + 

+ y3r (f3
2)'(it)6] + о (n~1)} f(t). (12.9) 

Carring out the inverse Fourier transform of (12.9), \y (t) 

will Ъе replaced Ъу the density function f(x), first Sum­

mand (t) will Ъе replaced by the density function (x) 

of the distribution Ж 0,k2) and the vectors (it)k if (t) will 

be replaced according to corollary 9 by the vectors (-1)^5^, 

where is the matrix derivative (12.6). Q.B.D. 

The Edgeworth expansion for a concrete statistic fol­

lows from theorem 10 if we only know the expressions kg 

of that statistic. In [161 the author has given the Edge-

worth expansion up to the order n"1/'2 for the multivariate 

statistic fn tg(S) - g( 2.) 1 without assuming the normali­

ty of population. Here S, 2. are the sample and population 

covariance matrices, g is some vectorfunction of them. 

Theorem 10 gives the formal Edgeworth expansion for the 

class of statistics. This expansion will approximate the 

real distribution of the statistic with given accuracy, if 

some assumptions about' the population distribution and about 

that statistic are made.These assumptions are given in [ 1] 

for the class of statistics which involves all appropriately 

smooth functions of sample moments. 
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МАТРИЧНОЕ ИСЧИСЛЕНИЕ ДЛЯ МНОГОМЕРНЫХ РАСПРЕДЕЛЕНИЙ 

И. Траат 

Р е з ю м е  

Операции кронекеровского произведения и матричной про-

13водной позволяют удобным образом представить (а также вы­

вести) многие результаты для многомерных распределений.Мат­

ричный вид получаемых результатов является легко реализуе­

мым на ЭЕМ. 

В настоящей статье на основе указанных операций дано 

новое определение моментов и кумулянтов случайного вектора. 

Сказывается, что выражения таким образом определенных мо­

ментов и кумулянтов получаются путем матричного дифференци­

рования характеристической и логарифмической характеристи­

ческой функций. Приводится матричный вид разложения Тэйлора, 

который может быть использован при выведении выражений мо­

ментов вектор-функции. Разложение Тэйлора приводится и в 

случае, когда аргументом рассматриваемой функции является 

симметричная матрица. 

При помощи матричного дифференцирован»» выводятся вы­

ражения центральных моментов до шестого порядка многомерно­

го нормального распределения, а также матричные выражения 

многомерных полиномов Эрмита до третьего порядка. 

Приводится матричная техника выведения разложения Эдж-

ворта для многомерной статистики. Для класса многомерных 

зтатистик представляется явная формула разложения до поряд­

ка пГ* (включительно), 

.ieceived August 1985 
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STROSG C0JTSI3TEMCY OP k-MEAKS CLUSTERING 

CRITERIOIt Ш SEPARABLE METRIC SPACES 

К. Pärna 

1. Summary 

A random sample from the population in the separable 

metric spaee is partitioned into the к clusters that mini­

mise the given clustering criterion. Conditions are found 

that ensure the almost sure convergence of the sample mi­

nimum of the criterion to that of the population. Analogous 

result for Euclidean spaces has been proved by Pollard 

(1981). 

2. PreljnHiftrifis and notations 

At first we describe, in a simple manner, the к-means 

procedure. 

Let x-pjCg»***»1!! Ъе n points in the metric apace T.The 

к-means clustering procedure prescribes the following cri­

terion for partition n points into к groups: first choose 

cluster centres a^,a2,...»a^ in T to minimise 

Wn = J- XZ mlnd2(x1 ,aj, 
n 1-1 j 13 

where d( • , • ) is the metrics in T, then assign each x^ to 

its nearest cluster. In this way, each centre a.. acquires 

a subset of the x's as its cluster. In the case when T is 

Euclidean space R4 and d is common Euclidean distance it 

is not difficult to see that optimal a^ equal to the means 

of their own clusters - hence the term "k-means" • 

It is important to say that in metric spaces the mini­

mum of the criterion is possibly not attainable on any set 

of centres. Thereby, throughout this paper we are working 

with the inflmum value of the criterion and with *£-optimal" 

sets of centres, but not with optimal sets. 

In what follows T is a separable metric space and 

x1,x2,...,xn is assumed to be a random sample of n indepen­

dent observations on some probability distribution P on T. 
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Conditions are given that ensure the almost eure conver­

gence of the sample minimum of Wn to the population minimum. 

Our result remaine valid for more general clustering crite­

ria. To be precise, for each probability measure Q on T and 

each finite subset A of T define the sum of dispersions 

within the clusters 

W(A,Q) = /min U>(d(x,a))Q(dx).1 ̂  
ae A' 

Here if is nonnegative and nondecreasing function with real 

values (other requirements on у will be given in Section 3). 

Further, let 

Wj(Q) = inf [W(A,Q): A contains j points), (1) 

from which the simple inequalities 

W,(Q) > W2(Q) > ... > Wk(Q) 

follow (addition of a point to the given set A never In­

creases the criterion value). 

In these notations we are minimizing W(A,P ), where Pn 

is the empirical measure obtained from the sample by pla­

cing mass 1/n at each of ••.»Хц; the sample minimum 

of Wn is Wk(Pn) now. By the strong law of large numbers 

(SLUf) for each fixed A W(A,Pn) converges to W(A,P) almost 

surely (a.s.). It may be expected therefore that under some 

conditions the convergence 

Wk(Fn) —> Wk(F) a.s. 

holds too. This is the result to be proved. The correspon­

ding theorem will be formulated in Section 3 and proved in 

Sections 4 and 5. 

Our result generalizes one of the assertions of Pol­

lard (1981), who proved the convergence of the sample mini­

mum (and convergence of the optimal sample centres them­

selves) in the case of the Euclidean spaces R3. Some «la-

ted pioneering works have been written by MacQueen (1967) 

and Hartigan (1978). In Thygeson-Sverdrup (1981) the case 

к = 1 for the compact metric spaces is considered. 

Our method of proof uses some ideas from Pollard (1981). 

Say a set A, containing к points, is £ -optimal with res­

pect to the measure Q, if 

1' The domain of integration is T everywhere if not 
specified. 
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W(A,Q) < Wk(Q) + £ , £ j. 0. 

Let A Ъе £ - optimal with respect to P . First it is 
u 

shown that for appropriate sequence j , which converges 

to zero, A , eventually lie in some ball В с Т. The proof 
'n 

of this takes an inductive form, starting from the simple 

1-means свае. The second stage of the proof involves show­

ing that, almost surely, W(A,Pa) - W(A,P) converges to zero 

uniformly over those subsets of В containing к points. The 

proof of this uniform SLI3J is based on a uniform conver­

gence theorem given by Ranga Rao (1962) and is deferred to 

Section 5. At the 3-rd step the asymptotical equivalence of 

minimizing W(- ,PQ) and W(* ,P) - the desired result-is shown. 

3. The convergence theorem 

Introduce some regularity conditions on the function if. 

We shall need if defined on the interval Co, °° ), being 

continuous, convex and nondecreasing, with if (0) = 0 and 

tp (r)—* c*> as г—. In order to control the growth of 

у in the tails, assume that there exists a constant Л such 

that if (2r) 4 А- У (r) for every r > 0. For example, any 

function of the form if (r) = rs with positive s will go. 

As long as J If (d(x,z))P(dx) is finite for some z 6 T, 
these conditions ensure that W(A,P) is finite for each A: 

for each a e T 

Jtf (d(x,a))P(dx) < Jtf>(d(x,z) + d(z,a))P(dx) 

4 \ / [if (2d(x,z)) + If (2d(z,a)^P(dx) ̂  

4 "4"/f (d(x,z))P(dx) + -^-lf(d(z,a)) <oo . 

How we are ready to formulate our main result. 

Theorem. Suppose that J"lj>(d(x,z))P(dx) <®= for some z e T 

and inequalities 

*,(Р) > W2(P)> ... > Wk(P) (2) 

hold. Then *k(Pn) —* Wk(P) almost surely. 

It will be shown in Appendix (Lemma 2) that relations 

(2) are satisfied whenever there exist subsets A(j) of T, 

containing exactly j distinct points (j = 1,2,...,k-1), 

which minimize clustering criterion, i.e. W(A(J),P)=W^(P). 
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A. Proof of the theorem 

The proof consists of three stages. 

1) Let A £ he an £n-optimal set of к centres for the 

sample »x2* * * * e* — P^) <T £a, with 

(_ > 0. We show that there exist a sequence f n-»0 (as 

n —>•<") and a closed ball B( 5M,x0) with the centre xQ and 

radius 5M so that А с will be contained in B(5M,x ), for 
n 

n large enough. 

The proof of that assertion has an inductive form.Firet 

we take an arbitrary xQ € T and find an M so large that at 

least one point of A . , for n large enough, will be in-
n 

eluded in the closed ball 1 = B(M,x0). To do this, find r> 0 

so that closed ball B( r,xQ) has positive P-measure, P(K)> 0. 

Mow take an M (li > r) large enough to satisfy the inequality 

f ( K ~  r ) P ( K )  >  W ( x 0 , P ) ,  ( 3 )  

where W(xQ,P) = /у(d(x,xQ))P(dx)<<= .1^The existence o x  
such H lo ensured by lim i|>(r) = oo , as r—>»«, 

Further, let 

A n  =  w ( V p n >  - W > 0 »  ( 4 )  

j l . i f  Д = ° o r  Д  n  >  n  •  

n  [ A n -  if °<Ans< H • 
So we have the sequence nJ, satisfying о < £Q^ j . For 

£n<-optimality of A ; and for (1),(2) and (5) it is easy to 

check that the relations 

WCA fn,Pn) < wk(Pn) * £n<W + *n^W4'V+i-

hold» 

Sequenttally, 

limgup W(A £ ,Pn) < limgup ̂ (xQ,Pn) = W(xQ,P) a.s., (6) 

where the equality holds for the ordinary SLJH (remember 
that W(x0,P)<6= ). 

Now suppose (controversially) that for infinitely many 

values of n the ball B(K,xQ) does not contain any point of 

A , . Then we have along some subsequence In'} that d(x,a)> 
£n 

yy-i— . 
For the sake of simplicity we use notation W(x ,p) 

rather than W({xQj ,P) . 
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> М-г for each x € К and a «= A , which implies 
n' 

min if(d(x,a))> If (li - r), x 6 К (since if is monotone). To 
a 6 A ; п' 1 

attain a contradiction let us write 

ligsup W(Afn,Pn) > limsup W(Afn,,Pn,)= 

3 limsup / min U>(d(x,a))P ,(dx) > limsup / (M-r)P„,(dx)= 
n* a6A/n. n' li 

= f (M-r)P(I) a.s. 

Ъу the ЗЫИ. Together with (3) this would make 

ligsup ff(A^ ,Pn) > W(x0,P) a.s.,which contradicts (6). 

Without loss of generality we therefore may assume that al­

most surely each A contains at least one point (say a1) 
' n n 

of B(M,x0). 

If к = 1 the remaining part of 1) may Ъе skipped,steps 

(2) and (3) will complete the proof of the theorem in this 

case. Thus we have the induction basis: theorem is valid in 

the case к = 1. 

If к > 1, then we have to show that, for n large 

enough, the closed ball B(5M,xo), of radius 5M and centred 

at xp, contains all the points of A. To do thia, assume 

that the theorem is valid for each number of centres from 1 

to k-1 (inductive hypothesis). Mow we need li large enough 

to' ensure 

A/lf(d(x,x0))P(dx) < (7) 

(xsd(x,x0) > 2М} 

where £ is chosen to satisfy 

0 < £ <  W k - 1 ( P )  -  W k ( P ) .  ( 8 )  

According to (2) the latter discrepancy is positive as it 

is necessary for the choice of positive i . Condition (7) 

is the second requirement placed on M. 

Suppose that for some value of n the set A ^ contains 

at least one point outside B(5M,xQ). Then it can be shown 

that after deleting all such points the value of clustering 

criteria does not increase significantly (less than I /2). 

Indeed, the worst case is when the centre a^ that is known 

lie in B(M,xQ) accepts to its own cluster all the sample 

points presently assigned to cluster outside B(5M,xQ).These 

sample points must have been a distance at least 211 from xQ, 

otherwise they would have been closer to the cluster centre 
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than to any centre outside B(5M,x0). The increment of 

W(-,Pn) due to such deleting would therefore at most 

/f(d(x,ah)P (dx) ̂  /у (d(x,x )+d(x ,»"*))? (dx)4 
(x:d(x1,x0)>/ 2Й} n fx:d(x,x0)S 2Ы) 0 n  n  

4 / t|l(2d(x,x0))Pn(dx) <Л^(d(x,xQ) )Pn(dx) , 

[x:d(x,xQ) 214) {x:d(x,xQ) > 2М} 

which is less than i / Z  Ъу the inequality (7). Thus we have 

•V(^n,Fn) < W(Afn,Pn) +-^t (9) 

where consists of points of A(n inside B(5M,xQ). The set 

Tf has at most k-1 points and is a candidate for minimi-
'n 
^ing V I ( •  ,PQ) over all sets of k-1 (or fewer) points, hence 

the inequality 

Wk-1(V 4 W(I*n'Pn} <10> 

holds. Further, Ъу our inductive hypothesis 

lim Wk-1(Pn) = Wk-1(P) a.s. (11) 
П 

If a £ ф B(5M,xq) along some subsequence {n'} of va­

lues of n, the relations (9)-( 11) give us 

Wk-1(P) 4 limsup W(Afn,,Pn,) + a.s. (12) 

Now we need, in addition to (5), £n, small enough to 

satisfy 

fn' < W(Af/2.Pn'> -W (13) 

where A ^ is <V2-optimal set of к centres with respect to 

P, i.e. 

W(A г/2,Р) < Wk(P) + (14) 

For the <?n,-optimality of A £qI and for (13) we have 

«Afn"pn'} < VPn'> + *n' <W(A f/2'Pn-}' (15) 

Relating this to (12) we get 

wk-l(p) ̂  limsup W(A £/2,Pn'^ + = W^A f/2,P^+ § a*0* 

Ъу the SLIK. Together with (14) this makes Wk_^(P) < Wk(P) + 

+ £ : we reached contradiction with (8). 

We know now that there exists a sequence ; n—> 0 such 

that A the { n-optimal sets of к centres, will be con­

tained in the closed ball B(5M,xQ), sequentially. 

2) The second step of the proof of the theorem veri­

fies the following uniform SLM. 
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Lemma 1. Рог arbitrary closed ball B(R,o) с I of radius R 

and centred at о the uniform convergence 

limsup I W(A,P ) - W(A,P) | = 0 a.s., (16) 
n Ae5(lt,R,o) 

where <5 (k,R,c) = ̂  А: А С B(R,o), A contains к points), 

takes place. 

The proof of this lemma is deferred to Section 5. 

3) The third step completes the proof of the theorem. 

Partition all the values of n into the two following dis­

joint and exhaustive classes: 

{n'| ={n: Wk(P) - Wk(Pn) } o}, (17) 

{n"j = {n: Wk(P) - Wk(Pn) < 0}. (18) 

If one of the classes is finite, then it suffices to look at 

another only. 

Let (fntj be the zero-sequence, defined by (5) and let 

A £a, be an i Q,-opt imal set of к points with respect to 

the empirical measure PQ,. By the definition of the f-opti-

mality and *k(p) the inequality 

Wk(P) - Wk(Pn.) < W(A £a,,P) - ®(A £n,,Pn,) + £n, (19) 

holds. Since А €• § (k,R,c), for n large enough, the 

right side of (19) converges to zero almost surely by the 

Lemma 1. Together with (17) it implies that 

limW (P ,) = W. (?) a.s. (20) 
n* 

To obtain a similar result for the class {n"} , we need 

to show that there exists a zero-sequence of positive num­

bers { <Tn„ } and a closed ball B(M1 ,x1), which sequentially 

contains all the sets A , defined as fn„-optimal with 

respect to P and consisting of к points. It may be done by 

repeating, with some simplifications, the first step of the 

theorem; we will omit this part of the proof. Further, take 

11 so large that B(M.,,x.,) с B(5M,x0). This is the final re­

quirement on M. Now, from the inequality 

W(A in„ ,P) < Wk(P) + cfn„ (21) 

and by the definition of Wk(P) we get, for n large enough, 

that 

Wk(Pn„) - Wk(P) < W(A «ГП„,РП„) - W(A ̂ „.P) + <fn„ < 

< sup I W(A,Pn„) — W(A,P)j + <Tn„, 

Ae|(k,5M,x0) (22) 
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which converges to zero almost surely, as n" —> о». Together 

with (18) it yields in 

lim Wk(Pn„) = Wk(P) a.s. (23) 

So, both subsequences of have the same limit Wk(P) 

a.s. This completes the proof of the theoree. 

5. Proof of the Lemma 1 

For the convenience denote 

f, (x) = min W d(x,a) 
a« A 1 

and 

a=  { fA(x): A 6 g  (k,R,o) j. 
Clearly, ä is a family of continuous functions on T. Now 

Lemma 1 can be reformulated as 

lim sup J f  fA(x)PQ(dx) - J" fA(x)P(dx) [ = 0 a.s.(24) 
П flta T T 

The proof of this assertion is based on the following uni­

form convergence theorem, given in Ranga Rao (1962) (Theo­

rem 3.2): 

Let OL be a family of continuous functions on separable 

metric space T satisfying the following conditions: (i) 

there exists a continuous function g(x) on T such that 

|f(x)| 4 g(x) for all te& and x e T; (ii) (X is equiconti-

nuous. Suppose that p Q, p is a sequence of measures on T 

such that (а) ц n=y>p (weakly) and (b) J" g(x)y4n(dx) —> 

—^Jg(x)p. ( dx) ( <ec). Then we have 
lim supj j~f(x)^tn(dx) - f  f(x)^t(dx) | = 0. 
In our case it suffices to take p n = Pn, Jl= P. The 

Assumption (a) i.e. Pn =£>P is fulfilled with probability 

one, as shown in Varadarajan (1958). Suitable g(x) is g(x) = 

= (d(x,c) + R), which is continuous on T and 

fA(x) = min If (d(x,a)) < min V>(d(x,c)+d(c,a)) ̂  
ct € A e t A 

< ftd(x,c) + R) = g(x) 

for each A6 <£(k,R,c) ead x e T. 

To establish the equicontinuity of Q- fix an arbitrary 

xQ 6 T and f>0. We need to show that there exists a сГ = 

= 5 (xQ, £ ) > 0 such that j fA(xQ) - fA(y)| < Z for each 

A 6 § (k,R,c) and у e В(<Г,х0). To get a suitable сГ, note 
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that (j! is uniformly continuous on the closed interval 

f [d(x0,c)-R; d(*0,o)+R], it x0^ B(R,o) 
j [0; d(xQ,c)+R3, if xQe B(R,c). 

Thereby, for the given £ > 0 there exists а <T= d~ ( £ ,xQ)> 
> 0 (not depending on A), such that 

[<f(r) - tf(t)| < £ (25) 

for each r e I and t ̂  0 satisfying |r-tl<<f. Prove now this 

(Г is juet needed. 

For given x0 and у let a(x0) and a(y) be their nearest 

points in A. In these notations 

min d(x ,a) - min d(y,a) = d(x ,a(x ))- d(y,a(y))^ 
a 6 A a 6 A " u 

4 d(xQ,a(y)) - d(y,a(y)) ̂  d(xo,y) 

by the triangular inequality. By the same way we also get 

min d(y,a) - min d(x„,a) 4 d(x„,y). 
a e A  a e A  0  0  

Hence, from у e B( сГ ,xQ) the Inequality 

I mind(x ,a) - mind(y,a)l < cT (26) 
a  6  A  0  a e A  

follows. 

Now write 

lfA^xo^ " fA^I = l"1* f(d(x0,a)) - min ^(d(y,a))| = 
a £ A ft € A 

= |У(т1п d(x ,a)) - f(min d(y,a))|, 
ft€ A ft6 A 

which is less than £ , for each A 6 <g (k,R,c) and yfB( d ,x0), 

by taking r = min d(x„,a) and t = min d(y,a) in (25). (Note 
a e A  0  a » A  

that r e I and I r-t 15 <T for each у e B( <T,x0), as follows from 

(26)). Hence, the family (X is equicontinuous. 
At last, it follows from the ordinary ЗЫИ that the as­

sumption (b) of the theorem of Range Rao is fulfilled with 

probability one. Indeed, the random variable g(x) has finite 

expectation: 

Jg(x)P(dx) = / lf( d(x,c) t R)P(dx) = 

= /<f(d(x,o)+R)P(dx) + /(f(d(x,c)*R)P(dx)£ 

|x:d(x,o)iR} {x:d(x,o) > R} 

< /f(2R)P(dx) + /if(2d(x,c))P(dx) ^ 

fx:d(x,c)< R) {x:d(x,c) > R] 

4 f(2R)-P(B(R,c)) + f (d(x,c))P(dx) < 

This comp]-etes the proof of the Lemma 1. 

94 



6. Appendix 

In this section we give a sufficient condition to en­

sure the inequalities (2) be satisfied. 

Lemma_2. Let T be a separable metric space and P a probabi­

lity measure on T, not concentrated at any к points. In ad­

dition to other conditions, formulated In Section 3, let 

be strictly increasing. Suppose that for each j = 1,2,... 

...,k-1 there exists an P-optimal set A(j), containing 

exactly j points flL.e. W(A(j),P) = W_.(P). Then inequalities 

(2) hold. 

Proof. Consider the case k=2. (The proof of the gene­

ral case is analogous.) We have a probability measure P,not 

concentrated at any single point; and a point a = A(1),sa­

tisfying W(a,P) = W,(P). It is not difficult to see that 

there exist another point b ^ a and а <f > 0 such that open 

ball B( <T,b) has positive P-measure and does not intersect 

with B( cf ,a). We now show that the pair {a,b} is strictly 

better in the sense of W(•,P) than the single point a. In­

deed, write first that 

W({a,b}, P) = /tf(d(a,x))P(dx) + / f (d( b,x) )P( dx). 

(x:d(a,x) ̂ d(b,x)j (x:d(a,x) > d(b,x)J 

Since the domain of integration of the last integral con­

tains P-positive ball B(cT,b), this integral is strictly 

less than 

/if (d(a,x))P(dx) 

{x: d(a,x) > d(b,x) } 

and we get 

W((a,b),P) < /f(d(a,x))P(dx) = W(a,P) = W^P). 

Hence Wg(P) < W^(P) - the needed result. 

Acknowledgement. I am indebted to professor T.Arak for 

stimulating discussions and helpful comments. 
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КЛАСТЕРИЗАЦИЯ МЕТОДОМ К-СРЕЩНИХ В СШАРАЕЕЛЬНОМ 

МЕТРИЧНЖОМ ПРОСТРАНСТВЕ: СИЛЬНАЯ СОСТОЯТЕЛЬНОСТЬ 

К. Пярна 

Р е з ю м е  

Пусть - случайная выборка из распреде­
ления Р на сепарабельном метрическом пространстве Т, и пусть 
Р„,- соответствующее эмпирическое распределение. Метод к-

средних, примененный к выборке, состоит в нахождении к-эле-

ментного множества А л с Т, при котором функционал 

WfA, Pk)= -fc °-ß) достигает минимальное 

(по А) значение. (функция if удовлетворяет некоторым усло­

виям регулярности). Пусть к*с. т к-элементное множество, ко­
торое минимизирует функционал vyfA,P)-^f <f(d Ret»), 

Теорема: Пусть у ̂  Ы)<оо при некотором 

геТ. Тогда с вероятностью единица Я,) —» w(а* Р) 
при п. Результат обобщает одно утверждение из [3]. 
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PROOF OF A THEOREM OH J-REGRESSION 

T.MSls 

This report contains the proof of e theorem stated in 

/1/. We denote Ъу X the (ex*)-matrix of в i.i.d. values of 

a vector x = (x1 ,.«,1^). The rows of I will be called the 
1 data points'. Let consider the model 

i У IA , (1) 

where 1 = A is a column of constant coefficients 

ind ' 9d ' means the approximation in some sense. If A is some­

how estimated from (1) we get the equation of a plane 

1 = xA , (2) 

which approximates the functional relationship between argu­

ments (x is the row-vector of arguments). In special case, 

where plane (2) minimizes the sum of squared deviations of 

data points from it assumed the deviations are meas­

ured in the direction of some vector J = (4^., dffl), the 

plane (2) is called the A-regression plane. 

The Theorem 1 facilitates the calculation of A given 

the direction A. According to the Theorem, at first all data 

points are shifted in the direction of A, producing the new 
lata matrix Хл = X + 14 . After that A is calculated in 

standard way as 

Ad = (Х^ХД)-1Ц1 . (3) 

Clearly i « (X + id)A4 or 

1 « ХАД(1 -4А„Г1 . (4) 

It follows from the Theorem 1, that for large Л the vector 

АдС1 - JАд)-^ is close to the vector A of Л-regression coef­

ficients in (2). 

In the proof we shall use the following notations: 

X = (Y:Z) (Y is nxf) « = (Т4'ТД )~1 

/ = 4Z X = 
/*= *4'i y=z'i 

(5) 
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Theorem 1. If J = o<f, <f € В®, c<B and с -*oo , then con­

ditionally (X held fixed) for some A<f 

A^l -АА^Г1 -А/ , (6) 

where the limiting rector A<f determines through (2) the 

A-regression plane. 

Proof. Consider first the case of <f = (1,0W0). In thia 

оме the equation 1 = хАд( 1 - ̂A^)-1 can be written as 

x1 - a0(ü) + agU)^ + - + , (7) 

where 

= (1 ~ °*-A. 1)/ЖА.1 1 
(8) 

alW) - "АА,1/АА,1 (i = 2—B)-J 

But If .A -+ oo, the uncertainty 0/0 occurs. To see what 

are the limiting valuee in (8), we shall write 

,9, 

\%'Гл:г'ъ) \l*y \ -(y~ll'«y)-1(/S«^-V) у 

(see /2/ page 46). ?or large с 

el я» (1 - 2[i 0/wc}/nc 2, p = p o  + ey*. ц= + no , (10) 

where and correspond to A = 0 in (5). Using (10) in 

(9), after tedious calculations we get the asymptotic expan­

sions 

АА,1е?^пс + «•(r-lwry ~ /jo) 

aA,I" "i(y" 5w,)"1y' "   (i = 2~m)-

(11)  

Substituting these expansions into (8) and making some fur­

ther asymptotic simplifications we obtain the limits for 

•i(A) (i = 0,8wm): 

a0(A)-*a0= у - (llX)(X'(1-V)Z)"1Z'(1-ö)T 

Г (12) 
|B2(A),^am(A))'-*(a2Wam)' = (Z< (1-D)Z)-1Z' (1-U)YJ 

where J is the arithmetical mean of Xj-variable and 0=11'/n. 

98 



It follows now that convergence In (6) Is true because the 

expression 

АдО - ДАд) * - -g    ^'*^, 2^^,~,elll^®, 

converges according to (12) if в -»ее. On the other hand, 

and <^,...,am in C12) aare the ordinary least squares esti­

mates tor the model (7) and conseqaeetiy the plane C2) with 

A = A j minimizes data deviations in direction of 6 .This ooa-
pletea the proof for S= (1,0^-,0). 

The general case where S = (tf^ ,~,£m) can easily be re­
duced to the studied one by using the orthogonal transforaa-

tion x in i-space. If the orthogonal matrix 0 is 

chosen from the condition <f9'= (c,0^—,0), then the data 

translation in direction of <!&' (in the new coordinate sys­

tem) leads to the plane, which minimizes the residual devi­

ations in that direction. But this is just the direction of 

$ in initial coordinate system. The proof is thus conqteted. 
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ДОКАЗАТЕЛЬСТВО ОДНОЙ ТЕОРЕМЫ 0 Л-РЕГРЕССИИ 

Т. Меле 

Р е з ю м е  

Понятие Л-регрессии дано в Д/. Здесь приводится с до­

казательстве»« следующая Теорема. Пусть строки (пхв)-матряцы 

X представляют наблюдения над «-мерным случайным вектором и 

.f'eR111, сен , Л= с<Г. Обозначим 1̂ =1+41 , где 1 = (1,.-,1)' и 

АА = . 

Тогда вектор АА(1 - ЛАа)~1 сходится при с -*<» к вектору А/ 
коэффициентов Л-регрессии. . Это значит, что суша квадратов 

отклонений наблюдаемых значений случайного вектора от плос­

кости xA(f = I минимальна, если отклонения измеряются в на­

правлении вектора Л . 
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INVALIDITY OF BOOTSTRAP IN PIHITE POPULATIONS? 

M. Unt 

Bootstrap-method /1/ has become very popular and many 

practising statisticians have mastered it. In theoretical 

works the bootstrap has been considered for the case of in­

finite populations. But in practice we often have to deal 

with finite populations. 

Hence, applying the bootstrap in this case the problem 

of accuracy arises. In this note we tiy to investigate how 

the bootstrap works if all we know about the population of 

interest is the size в of the population G(s) with unknown 

probability distribution Fq, and a small sample X(n) ~ 

A natural idea how to apply the bootstrap in such situ­

ation is following. Prom the sample X(n) we generate a boot­

strap population BG(s) with size s. When generating boot­

strap sample BZ(n) from BG(s) we remind that because of f i-

niteness of G( s) the random selection must be subsamplirc, 

not resampling. 

Let us denote by T^ the parameter of the population 

G( s) and Tg is its sample estimate. The corresponding vari­

ables T^q and tjjg denote the statistics of the jth bootstrap 

population and bootstrap sample respectively (j= 1,...,m as­

sumed bootstrap populations are generated m times). 

The most interesting object of investigation is the 

difference D2 = Tj - T^. The bootstrap approximation to D2 

is D4 = Tjjj -

To get idea about the quality of this approximation, a 

simulation experiment was run. The populations G(s) were ge­

nerated of exponential distribution Exp(1) for s= 7,10,15, 

18,20,25,30, the sample size remaining n = 5. Vfe investiga­

ted the behaviour of coefficient of variation defined by 
.formula 

Tx = "\A Z x| - ( 2xi)2/n)/(n - 1)' /( Xх±/n) . 
The number of independent populations G(s) for every s was 

40, from each G(s) was drawn a sample X and on its basis m = 

= 100 bootstrap populations BG( s) were generated. From each 

BG(s) a bootstrap sample BX was drawn, and so we obtained 
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40x100 pairs of differences D4 and D3 = TBX - T$. Differen­

ces D2 and D1 = Tx "" TF* "here TF=1 is the coefficient of 

variation of Exp(1), were evaluated in another simulation 

experiment (number of simulations was about 4000). 

The results of the experiments are presented In Table 1. 

For each difference 90%-confidence interval is given. 

Table 1 

s D2 D3 D4 

7 -.0407, -.0201 -.1082, -.0925 -.0239, -.0138 
10 -.0672, -.0487 -.1334, -.1180 -.0372, -.0289 
15 -.0891, -.0689 -.1269, -.1157 -.0413, -.0306 
18 -.0951, -.0747 -.1352, -.1200 -.0498, -.0353 
20 -.0904, -.0699 -.1350. -.1238 -.0532, -.0425 
25 -.1096, -.0884 -.1336, -.1182 -.0504, -.0431 
зо -.1189, -.0886 -.1404, -.1231 -.0518, -.0351 

D1 does not depend on the value of s, its estimated confi­

dence interval is (-.1436, -.1291). 

From the table we may do two inferences. The first: the 

standard bootstrap performs well (compare D3 with D1!). The 

second is that D4 does not mimic D2. The reason ia that if 

a -»• oo , TBG does not converge to Tj. Bote, that if we 

should define T^. differently, exchanging n-1 in the denomi­

nator by n, the convergence would take place, and D2 were in 

good agreement with D4. But the conditions for good agree­

ment between D2 and D4 may be more complicated in other si­

tuations. 
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НЕПРИМЕНИМОСТЬ МЕТОДА "БУТСТРЭ0" ПРИ КОНЕЧНЫХ 

ГЕНЕРАЛЬНЫХ СОВОКУПНОСТЯХ? 

М. Унт 

Р е з ю м е  

3 статье изучается возможность применения метода "бут­

страп" в практически важном случае, когда генеральная сово­

купность конечная. Экспериментальное исследование метода 

"бутстрэп" при определении смещения оценки коэффициента ва­

риации экспоненциального распределения показало его неприме­

нимость в данном случае. В тех же экспериментах классический 

вариант "бутстрапа" работал хорошо. 
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