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ABSTRACT

Statistical enrichment analysis is a family of data analysis methods studying
whether the data are enriched in some quantity, and by how much. The analysis
can be applied when we have some expectation about the numeric value of the
quantity. Then enrichment refers to a situation where the actual value turns out
to be significantly higher than expected. Enrichment analysis has been used ex-
tensively in bioinformatics for studying associations between biological entities
(such as genes, biological processes, cellular components, molecular functions,
signalling pathways, regulatory mechanisms) by combining the data from experi-
ments and biological databases.

The goal of this dissertation is to enhance and apply algorithms involving or
related to statistical enrichment analysis for studying gene regulation. The major
contributions of the dissertation are the following.

e First, a formal statistical definition of enrichment is proposed, comple-
mented by the presentation of several known enrichment analysis methods
with respect to the new definition.

e Second, a fast approximate algorithm is developed for performing hierarchi-
cal clustering. This is applied in a software tool for performing hierarchical
functional enrichment analysis of gene expression data, suitable as one of
the first steps in studying gene regulation.

e Third, a novel measure of enrichment strength is developed in the context
of regulatory enrichment analysis, which is a proposed extension of motif
enrichment analysis. The new measure is applied in two biological studies
of gene regulation in mouse embryonic stem cells.

e Finally, an evolutionary DNA substring distribution model is proposed with
potential applications in background modelling for motif discovery and mo-
tif enrichment analysis.



INTRODUCTION

As more and more genomes of different organisms are sequenced, we are starting
to have a pretty good overview of the variety of genes, the main building instruc-
tions of life on Earth. While the genes encoded in DNA specify how to build RNA
and proteins, they do not provide the information about when and how much to
build. Gene regulation is a term referring to a long list of mechanisms that affect
the timing and production rate of gene products. Disruption in regulation of a
single gene is a cause for multiple syndromes and diseases in human [28]].

The major sources of information about gene regulation are biological high-
throughput experiments. The task of bioinformaticians is to analyze such large
data sets, draw conclusions and propose hypotheses, which can later be verified or
disproved in further experiments. In addition to developing new methods, bioin-
formatics applies and combines methods originating from statistics, algorithmics,
machine learning, data mining.

The biological focus of this dissertation is on transcriptional gene regulation.
We propose several algorithms for analyzing data about gene expression, regu-
latory sequences and functional annotations of genes. More specifically, the pro-
posed methods are related to studying the associations between these types of data
by means of statistical enrichment analysis.

Enrichment, or higher value of a quantity than expected according to some
reference, is a notion that has been used broadly in science. The analyses search-
ing for regulatory signals or motifs in the genome were among the first applica-
tions in bioinformatics [13}149]]. The emerging technologies for high-throughput
gene expression measurements provided new data which was incorporated in the
enrichment-based motif discovery methods [11, 29]. Since then, statistical en-
richment or over-representation of motifs has become a wide-spread method for
studying transcriptional gene regulation [[17, 45)]. The increasing knowledge and
data about the transcription regulatory mechanisms [23, 25]] help to focus the
search for regulatory motifs on appropriate genomic regions and open up further
perspectives in integrating multiple types of data about gene regulation [63]].

Another important application of enrichment in bioinformatics is functional
enrichment analysis. With systematic collection of knowledge about the function



of genes into databases [3| 47] it became possible to study if an experimentally
derived gene set is enriched in genes with the same functional annotation [21}[61].
Functional enrichment analysis has become a standard technique in interpreting
gene expression data [37]] and gene sets obtained from any experimental and com-
putational protocols [32].

This dissertation proposes a general theoretical framework for statistical en-
richment analysis. The main contributions of the dissertation are the proposed
algorithms and analysis methods for studying gene regulation, all related to en-
richment to some extent. These algorithms and methods have been published in
the following five papers, with the contribution of the author of the dissertation
highlighted.

Paper I Kull, M., Vilo, J.: Fast approximate hierarchical clustering using sim-
ilarity heuristics. BioData Mining 1(1), 9 (Sep 2008).
The problem statement and background information for this publica-
tion were provided by the supervisor J. Vilo, everything else is by M.
Kull, the author of this dissertation.

Paper II Krushevskaya, D., Peterson, H., Reimand, J., Kull, M., Vilo, J.: VisHiC
— hierarchical functional enrichment analysis of microarray data. Nucl.
Acids Res. 37(Web Server issue), W587-92 (Jul 2009).

The problem statement is by J. Vilo and the final web server was de-
veloped by D. Krushevskaya. M. Kull built the first prototype of the
software tool and took part in the discussions.

Paper III Doss, M.X., Wagh, V., Schulz, H., Kull, M., Kolde, R., Pfannkuche,
K., Nolden, T., Himmelbauer, H., Vilo, J., Hescheler, J., Sachinidis, A.:
Global transcriptomic analysis of murine embryonic stem cell-derived
brachyury™ (T) cells. Genes to Cells 15(3), 209-228 (Feb 2010).

M. Kull developed a method for and carried out the promoter analysis,
and wrote the description of the analysis for the paper.

Paper IV Billon, N., Kolde, R., Reimand, J., Monteiro, M.C., Kull, M., Peterson,

H., Tretyakov, K., Adler, P., Wdziekonski, B., Vilo, J., Dani, C.: Com-
prehensive transcriptome analysis of mouse embryonic stem cell adi-
pogenesis unravels new processes of adipocyte development. Genome
Biol 11(8), R80 (Aug 2010).
H. Peterson complemented the promoter analysis method from Paper
111 with the criteria for evolutionary conservation and the analysis was
performed jointly by H. Peterson, M. Kull and K. Tretyakov. M. Kull
wrote the description of the analysis for the paper.
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Paper V Kull, M., Tretyakov, K., Vilo, J.: An evolutionary model of DNA sub-
string distribution. In: Elomaa, T., Mannila, H., Orponen, P. (eds.) Al-
gorithms and Applications, Essays Dedicated to Esko Ukkonen on the
Occasion of His 60th Birthday, Lecture Notes in Computer Science,
vol. 6060, pp. 147-157. Springer (2010).

M. Kull proposed the problem statement and wrote the first draft of the
paper. The experiments were performed and final paper was written
jointly by M. Kull and K. Tretyakov.

The copies of papers I-V are included at the end of the dissertation on pp.67-145.

The outline of the dissertation is the following. Chapter [1| provides the bio-
logical and statistical preliminaries and introduces the notations. Chapter [2] gives
a formal definition of statistical enrichment analysis and describes two of its well-
known applications in bioinformatics — functional enrichment analysis and reg-
ulatory enrichment analysis. The rest of the chapters introduce the work done
for Papers I-V. Chapter [3| proposes an algorithm for fast approximate hierarchical
clustering which is used in a web server developed for visualizing gene expres-
sion data together with the results of hierarchical functional enrichment analysis.
Chapter 4] proposes a novel measure of enrichment strength in the context of gene
promoter analysis and describes the results of its application in two biological
studies. Chapter [5] proposes an evolutionary DNA substring distribution model
with potential applications in background modelling for motif discovery and mo-
tif enrichment analysis. Finally, Appendix [A] contains the proofs of Theorems [4.1]
and .2 which are stated in Chapter 4]
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CHAPTER 1

PRELIMINARIES AND NOTATIONS

In this chapter we provide the biological preliminaries of the dissertation as well
as the statistical preliminaries and notations used in Chapters [2)and {] and in Ap-

pendix [A]

1.1 Biological preliminaries

Genetic and epigenetic information

All living organisms on earth contain genetic information encoded in long mole-
cules called nucleic acids — ribonucleic acid (RNA) and deoxyribonucleic acid
(DNA). DNA stands as a long-term memory with instructions for producing RNA
and proteins, which in turn catalyze most of the chemical reactions and serve
several other functions in the living cells. The nucleic acids consist of a sugar-
phosphate backbone with a sequence of nucleotides attached to it. Three nu-
cleotides — adenine (A), cytosine (C), guanine (G) — are in common for DNA and
RNA, whereas the fourth is different: thymine (T) for DNA and uracil (U) for
RNA. The sequence of nucleotides is the best known mechanism for information
coding in the living organisms and is called the genetic information. However,
several other mechanisms for storing long-term information have been discovered
recently, called together as epigenetic information [10]. Epigenetic information
provides landmarks to guide the molecules that interact with DNA and modifies
how the genetic information is interpreted [23]. The major forms of epigenetic
information include the methylation of nucleotides in the DNA, the location of
nucleosomes, which are the packaging units of DNA, and chemical modification
in histones, which are the proteins involved in the formation of nucleosomes.
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Transcription

Transcription is the synthesis of RNA molecules using DNA as a template. It
is catalyzed by the protein RNA polymerase which moves along the DNA and
attaches the nucleotide which is complementary to the current DNA nucleotide to
the end of the RNA molecule. The complementary nucleotides for A, C, G, T in
DNA are U, G, C, A in RNA, respectively.

Genetic and epigenetic information becomes useful for the cell through tran-
scription. The RNA molecules resulting from transcription become mature by
going through post-transcriptional modification and after this have a multitude
of functions. The most widely known function is performed by the messenger
RNA (mRNA) which is transported out of the nucleus and is used as a template
for translation — the synthesis of poly-peptides which are folded into proteins.
Translation is supported by another type of RNA molecules called transfer RNAs
(tRNA). MicroRNAs (miRNA) selectively lead other RNA molecules to degrada-
tion.

Genes and gene regulation

Gene is a genomic sequence directly encoding functional product molecules [58]].
The process by which the information encoded in the gene is used to produce the
gene product is called gene expression. Gene regulation or regulation of gene
expression is the process which determines the timing and quantity of gene ex-
pression.

In principle, gene regulation can act at any of the multiple steps of gene
expression. For example, the regulated steps include transcription, post-tran-
scriptional modification and translation. Probably the best known regulators are
transcription factors — proteins which bind DNA and by this affect the rate of
transcription.

Transcription regulation

The crucial genomic feature in the regulation of transcription is the promoter. This
is the region where the RNA polymerase attaches and starts transcription. Tran-
scription factors can affect the rate of RNA polymerase binding to the promoter
and transcribing the gene. Most transcription factors bind in a sequence-specific
manner to transcription factor binding sites in the genome, whereas the binding
is guided by epigenetic information [23]]. These binding sites can be located in
the promoter but also further away in the regions called enhancers, which get into
contact with the promoter region by DNA looping. A transcription factor is said to
regulate a gene, if its binding modulates the transcription rate in some biological
condition.

13



1.2 Statistical preliminaries

Here we give a simplified view of the main concepts in probability theory, enough
to understand the dissertation. For an axiomatic probability theory refer to Billings-
ley [8]].

Random variable, probability and distribution

A random variable is any function with the sample space as its domain. The sam-
ple space includes all possible outcomes of the stochastic experiments we reason
about, whereas the random variables highlight the features we are interested in. In
the dissertation we use only real-valued random variables, and sometimes restrict
to binary or discrete values ({0,1}, N). In particular, X and Y denote binary
random variables throughout the dissertation.

Probability measure P is a function assigning probabilities (values in the
range [0, 1]) to subsets of the sample space which are called events. Events are
commonly represented as predicates including random variables. For example,
P(X=1, Y=0) denotes the probability of the event of X=1 and Y'=0 occurring
simultaneously. We say that an event occurs almost surely (a.s.), if its probability
is 1.

A function D is the distribution of a random variable W, if it specifies the
probabilities of W taking on values from various sets S, thatis D(S) =P(We S).
In such case we say that W is distributed as D, and denote it by W ~ D. Sev-
eral random variables can have the same distribution and a distribution can even
be defined without specifying any random variable. For any real-valued random
variable W its distribution is uniquely determined by the cumulative distribution
function F"V defined as

FY (w) = P(W<w)

The distribution of a binary random variable X is uniquely determined by the
probability P(X=1). In order to achieve the coherence of notations with the
empirical probabilities defined below, we denote

P*(z) = P(X=x)

The joint distribution of a set of random variables specifies the probabilities of
all combinations of outputs of these variables. In particular, the joint distribution
of binary random variables X and Y specifies for any z, y € {0, 1} the probability

P (z, y) = P(X=z, Y=y)

14



Probability distributions used in the dissertation

A binary random variable X has Bernoulli distribution with parameter p, denoted
as X ~ B(1,p) if

1—-p ifz=0.

Every binary random variable has Bernoulli distribution with some parameter p.

A random variable Z has hypergeometric distribution which we denote as
Z ~ H(n,k,m), if k,m,n € Nand 0 < k,m < n and for any z € N the
following holds:

n—m
(%)
The hypergeometric distribution models a situation where we are counting the
number of marked balls obtained while randomly drawing & balls without re-

placement from a box with m marked balls and n balls in total.
A random variable W has normal distribution, denoted as W ~ N (u1, 0%) if

w

1 _wp?
P(W<w) = We 202 dw

—0o0

Normal distribution is important in many contexts in statistics, for example the
sum of many independent and identically distributed random variables approaches
normal distribution.

Conditional probability and independence

Conditional probability P(A|B) is the probability of the event A given that the
event B has occurred, and can be calculated as

P(A, B)

P(AIB) =~

Conditional probability is defined only if P(B) > 0. A function D is the con-
ditional distribution of a random variable W given an event A, if it specifies the
probabilities of W taking on values from various sets S given that the event A
has occurred, that is D(S) = P(W € S|A). In such case we say that WA is
distributed as D and denote it by W|A ~ D.

15



For binary random variables X and Y the conditional distribution of Y| X =z
specifies the probabilities

P (yle) = P(Y=y| X =2)

for y = 0, 1. For a binary random variable X and a real-valued random variable
W the conditional distribution of W |X=x specifies the conditional cumulative
distribution function of W given X =x as a function of w € R:

FY (w]z) = P(W<w|X=x)

Conditional probabilities and distributions provide intuition to understand the
notion of independence. Events A and B are called independent, if

P(A, B) = P(A)P(B)

The independence of A and B is equivalent to P(A|B) = P(A) assuming P(B) >
0. Random variables W and W' are called independent, if the events {IWV € S}
and {W’ € &'} are independent for any sets S and S’. For a real-valued W it
is enough to consider the events {W < w} for all w € R instead of all events
{W € S}. For a binary random variable X it is enough to consider the event
{X =1} instead of all events {X € S}.

In particular, the binary random variables X and Y are independent if the
events { X=1} and {Y'=1} are independent, that is

PX(1,1) = P*(1) P¥ (1)
If 0 < P*(1) < 1, then this is equivalent to
PYX(1]1) = P"*(1]0) = PY (1)

A binary random variable X and a real-valued random variable W are indepen-
dent, if the events {X=1} and {W<w} are independent for any w € R. If
0 < P*(1) < 1, then this is equivalent to

FYX (1) = FY (w|0) = FY (w) Yw e R

Non-independent random variables are said to be dependent or associated.
Events A and B are called conditionally independent given an event C' if

P(A, B|C) = P(A|C) P(B|C)

A binary random variable X and a real-valued random variable W are condition-
ally independent given a binary random variable Y, if for any x,y € {0,1} and
w € R the events { X =z} and {IW<w} are conditionally independent given the
event {Y=y}.

16



Measures of association

In this dissertation we use three different measures for quantifying the associa-
tion between dependent binary random variables. There exist many other similar
measures, for a review refer to Tan et al. [60] or Huynh et al. [33]].

Pearson correlation, also known as the Pearson product-moment correlation
coefficient, between binary random variables X and Y is defined as follows:

E(XY)-E(X)-E(Y) _ P¥(1,1) - P*(1) P*(1)
D(X)-D(Y) VP (1) P*(0) PY (1) P (0)

corr(X,Y) =

where E(-) and D(-) denote the mean and variance, respectively (for definitions
of these notions refer to Casella and Berger [[15]]). Correlation of binary variables
is undefined, if one or both of the variables are almost surely equal to O or almost
surely equal to 1. Otherwise its value ranges from —1 (perfect anticorrelation) to
+1 (perfect correlation). These extremes occur in a situation where almost surely
X = =Y or X =Y, respectively. Binary random variables are independent if
and only if their correlation is 0.

The other two measures originate from epidemiological studies comparing the
risk of some event happening in one or another group of individuals [41]]:

Absolute risk change ARC(Y|X) = [P (1]1) — PYX(1]0)

_ P

Relative risk RR(Y|X) = W

Absolute risk change is also known as absolute risk increase or reduction de-
pending on the direction of change. Absolute risk change and relative risk are
non-symmetric measures, i.e. swapping the two binary random variables changes
the value. Each of the equalities ARC(Y| X )=0 and RR(Y|X')=1 is equivalent to
the independence of X and Y, assuming 0 < P*(1) < 1and 0 < P¥ (1) < 1.

Sample and empirical probability

Many properties of random variables can be learned from observations of a sam-
ple. An i.i.d. sample of size n from the distribution of a random variable W is a
list of n independent random variables Wy, W, ..., W,,, which are all distributed
identically to . For any set S we define N, (S) as the random variable repre-
senting the number of elements in the sample which take on the value from set
S. If the set S has a single element, S = {s}, then we omit the curly braces,
NY (s) = N¥ ({s})-

The empirical probability of X=x for a binary random variable X and the
empirical cumulative distribution function of a real-valued random variable W

17



are defined as

P () = 2o ) Ry w) = 2 (E000)

for any x € {0,1} and w € R. According to the strong law of large numbers
the empirical probability converges to the probability almost surely, that is with
probability 1:

lim P (z) = P*(xz) as.
n—oo

An i.i.d. sample of size n from the joint distribution of random variables W
and W is a list of n independent random vectors (W;, W/)_,, where each vector
is distributed identically to (W, W’). For any sets S, S’ we define N (S, S')
as the random variable representing the number of pairs in the sample for which
W, € S and W] € §'. Again, the curly braces are omitted if a set has only a
single element.

For binary random variables X and Y the empirical probability of the event
{X=x,Y=y} and the empirical conditional probability of Y given X=x are
defined as
Ny (, ) Ny (, y)

N (x)
For a binary random variable X and a real-valued random variable W the em-
pirical conditional cumulative distribution function of W given X =ux is defined
as

P (z,y) = P (y|z) = v,y € {0,1}

N (z, (—oo,
N (@)

EVX (wl|z) = w) Vo e {0,1} Vw e R

Empirical measures of association

Empirical measures of association measure the association between two random
variables using an i.i.d. sample from the joint distribution of these variables. Most
measures of association can be converted to the corresponding empirical measure
by replacing probabilities with empirical probabilities in the defining formula.
However, some empirical measures cannot be obtained this way and are defined
directly based on the sample [60].

In the dissertation we use an empirical measure of association between a bi-
nary random variable X and a real-valued random variable W defined as follows:

KS(W]X) = sup|Fy™ (w]1) — F™ (w]0)
weR

This measure uses the well-known Kolmogorov-Smirnov distance to quantify the
difference of empirical distributions of W in the two subsamples corresponding
to X=1and X=0.

18



Hypothesis testing

Hypothesis testing is a statistical technique for deciding between two rivalling
user-defined hypotheses — the null hypothesis and the alternative hypothesis —
based on observed data. The decision depends on the test statistic, which is a
user-defined function measuring the extremality of data with respect to the null
hypothesis. The test statistic is used to calculate the p-value, defined as the prob-
ability of obtaining the value of the test statistic at least as extreme as the one that
was actually observed, assuming that the null hypothesis is true. If the p-value is
below the threshold called the significance level and denoted as «, then the null
hypothesis is rejected and the alternative hypothesis is announced. Otherwise, the
null hypothesis is accepted, meaning that there is not enough evidence to reject it.

Multiple testing correction

Hypothesis testing can result in two types of errors. False positive is the case
where the null hypothesis is rejected, while it is actually true. False negative is
the case where the null hypothesis is accepted, while it is actually false. The
probability of rejecting a true null hypothesis in a single hypothesis test is less
than or equal to the significance level.

When a large number of tests has to be performed then even if the probability
of erroneously rejecting a null hypothesis (the significance level) in each test is
small, the probability of making at least one such error out of many can still be
very high. Consequently, special procedures (multiple testing correction) must be
used in order to control the amount of false positives in this setting.

Bonferroni correction is the simplest method, which suggests to reduce the p-
value threshold from the single test significance level o down to the multiple tests
significance level o/t where ¢ is the number of tests. It can be proved that the
probability of rejecting at least one true null hypothesis out of ¢ after Bonferroni
correction does not exceed the original significance level a.

19



1.3 Notations

In the dissertation we use the following notations and conventions.

X, Y, W;
N (S)
N (z, 8)
corr(X,Y)
P* ()
P (z, y)
P (y|z)
FY (w)
FY™ (wlz)
ARC(Y|X)
RR(Y|X)
Py (x)
P (2, y)
PY™ (y|z)
Y (w)

F'™ (wlz)

KS,.(W|X)

the probability of event A

the probability of events A and B occurring simultaneously
the probability of event A conditional to the event B

almost surely, means that the event occurs with probability 1
independent and identically distributed

significance level

Bernoulli distribution with mean p

hypergeometric distribution with n balls total, & drawn and m marked
normal distribution with mean p and variance o’

binary random variables

a real-valued random variable

size of a random sample

random variables representing the ¢-th element in the sample
the number of elements in the sample with W; € S

the number of elements in the sample with X;=x and W; € §

Pearson product-moment correlation coefficient

probability of X=x =P(X=zx)

joint probability of X=x and Y=y =P(X=z, Y=y)
conditional probability of Y=y given X=x =P(Y=y|X=x)
cumulative distribution function =P(W<w)

conditional cumulative distribution function =P(W<w|X=x)
absolute risk change = ‘PY‘X (1]1) — PYX (1|0)‘
relative risk =P )1 /P (1)0)
empirical probability of X=x = N} (z) /n

empirical joint probability of X=x and Y=y =N (z, y) /n

empirical conditional probability =N (z, y) / NX (z)
empirical cumulative distribution function = NY ((—o0,w)) /n
empirical conditional cumulative distribution function = N (]?X( (;)OO’ w)
two-sample Kolmogorov-Smirnov distance = sup |Fyr' * (w|1) — Fy'* (w|0)‘

weR
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CHAPTER 2

STATISTICAL ENRICHMENT ANALYSIS

Statistical enrichment has been used in various different contexts in bioinformat-
ics, e.g. functional enrichment [32], motif enrichment [45], and positional enrich-
ment [S1]. However, no unifying definition of enrichment has been given to our
knowledge. In this chapter we give intuitive and formal definitions of enrichment,
and see how these definitions work in functional enrichment analysis and regula-
tory enrichment analysis. It appears that in both of these cases enrichment mea-
sures the association between two properties of genes. Finally, we describe the
Fisher’s exact test and the Kolmogorov-Smirnov test, that are used for studying
association in several enrichment analysis methods.

2.1 Definition of enrichment

Enrichment analysis applies to the situation where we have some prior expectation
about a quantity that can be calculated from data. The calculated quantity can
then be either larger than expected (enrichment or over-representation), smaller
than expected (depletion or under-representation) or the same (no enrichment,
no depletion). The expectation, which we also call reference, is based on our
assumptions and prior knowledge about how the data were obtained and how the
quantity was calculated.

We illustrate the concept of enrichment and the related issues with an example
of a vehicle being tested for emission of pollutants at technical inspection. The
data about the vehicle and its emissions are gathered through some experimental
protocol. These data might include the vehicle’s manufacturer, the model, pro-
duction year, type of engine, and the measured emission of different pollutants.
The exhaust of the vehicle is said to be enriched in pollutants, if the emissions
are higher than expected. Depending on the reference the interpretation of enrich-
ment can be different. If the expectation is based on the norm as stated in the law,
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then the vehicle with emission enriched in pollutants is violating the regulations.
Alternatively, if the expectation is based on the specification by the vehicle’s man-
ufacturer, then the vehicle with emission enriched in pollutants is out of order, but
not necessarily violating the regulations.

As experimental data almost surely involve random fluctuations, then they
rarely show exactly the expected value for the quantity. This must be taken into
account by the reference. Hence, we present the reference as a probability distri-
bution over possible values of the quantity — the subjective probabilities of having
one or another value of the quantity in the data. Now we say that the quantity
is enriched (or depleted) only if it is unprobable to obtain a value as high (or as
low) according to the reference distribution. This is in agreement with the techni-
cal inspection example, where the emissions test is passed unless the quantity of
pollutants is too high to be explained by the measurement error.

To formalize the notion of enrichment we first denote the data by d, the quan-
tity calculated from the data by ¢(d), and the random variable specifying the ref-
erence distribution by R,.

Definition 2.1. The data d are enriched in quantity q(-) with respect to the refer-
ence Ry and significance level «, if the following holds:

P< Ry>q(d) ) <«

where P(-) denotes probability, R, is a real-valued random variable and q(d) €
R.

According to this definition, testing enrichment is essentially performing a sta-
tistical hypothesis test where the quantity ¢(-) is the test statistic and Ry specifies
the distribution of the quantity under the null hypothesis of no enrichment. The
probability P(R;>q(d)) is the p-value, that is the probability of obtaining a result
at least as extreme as the observed value ¢(d), assuming that the null hypothesis
is true.

As generally in statistical hypothesis testing, we are often not only interested
in whether or not there is any effect (enrichment), but also in how strong the
effect (enrichment) is. Statistical enrichment analysis addresses one or both of
the following questions:

o [s there any enrichment?
e How strong is the enrichment?

Sometimes the strength of enrichment is measured by the same p-value which
is used to check if there is any enrichment, i.e. smaller p-value corresponds to
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Figure 2.1: Enrichment of quantity ¢(-) in data d and d’ with values ¢(d) = 8 and ¢(d') =
6 and references Rq ~ N (3,1) and R}, ~ N(3,0.5). The enrichment p-values are
P(R;>q(d)) ~ 3-1077 and P(R!,>q(d’)) ~ 10~°. Different measures of enrichment
strength can indicate stronger enrichment for one or the other case.

stronger enrichment. In the example presented in Figure[2.1] such criterion shows
stronger enrichment for data d’.

However, suppose that the values ¢(d) and ¢(d') of this example are the results
of measuring emission of the same pollutant in the exhaust of two different vehi-
cles. In addition, suppose that the reference distributions represent the expected
measurement results in the case where the true amount of the pollutant is 3, a
hypothetical upper limit fixed by the law. The variance of the two reference dis-
tributions is smaller for d’, suggesting usage of a more exact measurement device.
With this interpretation of the example data in Figure 2.1} the vehicle correspond-
ing to d seems to have stronger enrichment of the pollutant in the exhaust with
respect to the allowed limit of 3, both visually and intuitively.

The example shows that the p-value from the definition of enrichment is not
always appropriate for measuring the strength of enrichment. The choice of a
suitable measure of enrichment strength depends very much on the context.

Statistical enrichment analysis can be viewed as a method of learning about
any system, be it biological, ecological, physical or artificial. If the reference is
chosen to correspond to our current understanding of the data, then the discovery
or confirmation of enrichment can lead us to hypotheses about how to modify and
improve our understanding.
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2.2 Functional enrichment analysis

There are many software tools in bioinformatics using some kind of enrichment
analysis. Huang et al. have published a systematic overview of 68 tools that per-
form functional enrichment analysis of gene lists [32]. Functional enrichment
analysis is a family of methods which scan through many pre-compiled subsets
of co-functioning genes and study how strongly these subsets are enriched in the
genes input by the user. The reference for enrichment is usually determined by
the situation where the user provides a random list of genes.

The pre-compiled subsets originate from databases covering many functional
aspects of genes, like Gene Ontology [3] for biological processes, molecular func-
tions or cellular components and KEGG [35] for pathways. The genes provided
by the user are commonly determined by the results of high-throughput experi-
ments. Functional enrichment indicates association between the experiments and
function, guiding the biologists in further studies. For instance, if the user-given
list is defined as the genes upregulated in some tumor compared to normal tissue,
then the analysis might reveal association with the set of genes annotated to cell
growth in the Gene Ontology database.

The simplest functional enrichment analysis tools (Class I according to Huang
et al. [32]) input a subset of genes, compare it one by one to all pre-compiled
subsets, and report those with unexpectedly high overlap with the input subset.
Some of the tools (Class II) let the user add some real-valued score to each gene
and find those pre-compiled subsets of genes which are enriched in the highest-
or lowest-scoring genes.

A subset of genes can be treated as a binary property saying for each gene if
it belongs to the subset or not. Therefore, the objective of these tools is to detect
relations between a user-given binary (Class I) or real-valued (Class II) property
and a set of pre-compiled binary properties. Most of the tools (all except Class
III, for details see Huang et al. [32]]) study the relation between two properties
at a time, and decide whether the properties are independent (no enrichment) or
associated (enrichment). Sometimes, the strength of association is also studied
with various measures. The statistical methods for performing such analysis are
discussed in Section

2.3 Regulatory enrichment analysis

Another common application of enrichment analysis is in studying gene regula-
tion. One of the major goals in this is to determine which DNA-binding tran-
scription factors regulate the transcription of which genes. For many transcription
factors the binding motifs are approximately known and gathered into databases
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like Jaspar and Transfac [12], 44]. However, the motifs by themselves do not
determine the regulation because binding can be affected by DNA methylation,
nucleosomes and histone modifications [23]].

Therefore, it is hard to decide based on the sequence alone whether a partic-
ular gene is regulated by a certain transcription factor. Motif enrichment analy-
sis studies if the regulatory sequences of a given group of genes are enriched in
known binding motifs of transcription factors. This way the sequence data from
many genes are aggregated and enrichment indicates that the group of genes is
regulated by the studied factor, without specifying which genes are and which
not.

McLeay and Bailey [45] have presented a unifying framework of motif en-
richment analysis highlighting two important decisions in the analysis. First, the
framework requires the motif affinity function to be fixed. This function deter-
mines how each gene is scored for the presence of binding sites of the transcription
factor. Second, the choice of the association function defines how to measure the
association between the affinity scores and the given gene set. This is essentially
measuring association between a real-valued and a binary property — a familiar
task from functional enrichment analysis. The statistical methods for solving this
task are discussed in the next Section

All the motif affinity functions covered by McLeay and Bailey use only the
genomic sequence information to score promoters for the presence of binding
sites [43)]. However, it has been shown that epigenetic information is essential for
improving the binding site predictions [S0]. Therefore, we propose an extension
of this framework which can incorporate extra regulatory information.

The extension is straightforward — all regulatory information should be en-
coded as a single regulatory scoring function, which replaces the motif affinity
function in the above framework. Consequently, the same association functions
can be used to study the association between regulatory information and the given
gene set. Thus, the new framework which we refer to as the regulatory enrichment
analysis, is determined by the following two functions:

e Regulatory scoring function scores each gene for the potential to be regu-
lated by the specified regulators;

e Association function detects association or measures the strength of the
association between the regulatory score property and a given property of
genes.

Note that this framework of regulatory enrichment analysis can in principle be
applied to study any regulatory mechanisms of genes and is not restricted to study
transcription factor binding. For example, one could test if the set of genes with
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differential expression in some experiment is enriched in target genes of a micro-
RNA [4].

2.4 Association between properties

In the previous two sections we have seen that functional and regulatory enrich-
ment analyses require detecting and measuring the strength of the association be-
tween two properties of genes. The software tools which perform these analyses
use many different statistical methods for this task [32] 45]].

The existence of association between two binary properties is commonly tested
with either Fisher’s exact test, binomial test or chi-square test. If one of the
properties is real-valued and the other binary, then the frequent choices are the
Kolmogorov-Smirnov test, the Wilcoxon test, and the Student’s t-test. Alterna-
tively, some methods look for an optimal threshold to convert the real-valued
property into binary, and by this reduce the task to testing the association of two
binary properties [2, 55]. Note that in the context of functional and regulatory en-
richment analyses these tests are usually repeated many times for different pairs
of properties, and thus multiple testing correction is required.

Besides testing the existence of association, the functional and regulatory en-
richment analyses often output information about the strength of association be-
tween the two properties of genes. In the simplest scenario, the strength is mea-
sured by the p-value resulting from the test of existence of association. Alterna-
tively, any empirical measure of association can be used.

Next, we present the one-tailed Fisher’s exact test and the two-sample Kolmo-
gorov-Smirnov test as statistical enrichment tests which can detect the existence
of association between two properties of genes or any other biological entities.

One-tailed Fisher’s exact test

The one-tailed Fisher’s exact test can be used for testing the existence of positive
correlation between two binary properties. Let us denote the values of the two
properties of gene ¢ by x; and y; for ¢ = 1,...,n. In order to apply statistical
methods we assume that the pairs (z;,y;) are observations of an i.i.d. sample
(X;,Y;), from the joint distribution of some binary random variables X and
Y. Intuitively, we assume that the values of the properties of different entities are
obtained independently and in an identical setting.
The variables X and Y are positively correlated, if

P (1,1) > P*(1) P¥ (1)
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One-tailed Fisher’s exact test
Inputdata: D = (X;,Y;)",
Quantity: ¢(D) = N} (1, 1)
Reference: Rp ~ H(n, N} (1),Ny (1))
Test: P( Rp>q(D)
Null hypothesis: corr(X,Y
Alternative hypothesis: corr(X,Y

N——

<«

) <0
) >0

Table 2.1: The one-tailed Fisher’s exact test presented as an enrichment test which detects
positive correlation between binary random variables X and Y based on an i.i.d. sample
from the joint distribution of these variables. Here #(n, k, m) denotes the hypergeometric
distribution and « is the significance level.

where we have used the notation introduced in Section and summarized in
Section[I.3] Estimating these probabilities empirically, we could check if

Py (1, 1) > Py (1) Py (1)
or equivalently, if
NY (1, 1) > Ny (1) Ny (1) /n

However, if the difference between the two sides of the latter inequality is small,
then we do not know whether it is due to true correlation or just due to random
fluctuations in the data. This can be decided using the one-tailed Fisher’s exact
test (also known as the hypergeometric test), which is presented as an enrichment
test in Table It tests whether the data are enriched in the quantity N (1, 1)
with respect to the hypergeometric reference which expects independence of X
and Y. Or in other words, it tests whether the number of genes having both
properties equal to 1 at the same time is significantly higher than expected to be if
the properties would be unrelated. Note that in Table [2.1] we have presented data
as a random vector D instead of a fixed value d as we know that the data are a
random sample.

The Fisher’s exact test is applied in most of the Class I tools of functional
enrichment analysis [32]] and in several motif enrichment tools [27, 311143} 55]].

Two-sample Kolmogorov-Smirnov test

The two-sample Kolmogorov-Smirnov test can be used for testing the existence of
association between a binary and a real-valued property. Let us denote the values
of the binary and real-valued property of gene ¢ by x; and w; fori =1,...,n. As
for the Fisher’s exact test, we assume the pairs (x;, w;) to be observations of an
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Two-sample Kolmogorov-Smirnov test
Input data: D = (X;, W;)I,

Quantity: ¢(D) = %-m}% ‘Fylx(w|1)—FX'X(w|0)

Reference: Rp ~ K
Test: P( Rp>q(D) ) <
Null hypothesis: X and W are independent

Alternative
hypothesis: X and W are associated

Table 2.2: The two-sample Kolmogorov-Smirnov test presented as an enrichment test
which detects association between a binary random variable X and a real-valued random
variable W based on an i.i.d. sample from the joint distribution of these variables. Here
IC denotes the limiting distribution of the Kolmogorov-Smirnov statistic [S7]].

i.i.d. sample (X;, W;)_, from the joint distribution of random variables X and
wW.

The variables X and W are associated, if the conditional cumulative distribu-
tion functions F" (w[1) and FWX (w|0) are different. This occurs if and only if
the maximum difference of these functions over all possible arguments is positive,

sup’FW|X (w[1) — FWK (w|0)) >0
weR

Estimating the conditional cumulative distribution functions empirically, we could
check if

sup’F}f"X (w[1) — FY& (w|0)’ >0
weR

However, if the empirical maximum difference is only slightly larger than zero,
then we do not know whether it is due to true association or just due to random
fluctuations in the data. This can be decided using the two-sample Kolmogorov-
Smirnov test, which is presented as an enrichment test in Table [2.2] Note that the
sample of size n is split into two subsamples based on the values of X;, and thus

N7 (1) + N (0) =

The Kolmogorov-Smirnov test is used in some Class II tools for functional en-
richment analysis, such as GeneTrail [3)], GOdist [7] and GSEA [59]]. The test
statistic g(D) without the square root term is known as the Kolmogorov-Smirnov
distance between samples and will also be used in Section4.2]
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CHAPTER 3

HIERARCHICAL CLUSTERING AND
FUNCTIONAL ENRICHMENT

In the previous chapter we introduced different forms of statistical enrichment
analysis, in the three remaining chapters we apply these for studying gene reg-
ulation. In the current chapter we introduce the Papers I and II, where we have
proposed novel methods for fast approximate hierarchical clustering and hierar-
chical functional enrichment analysis of clustered gene expression data.

3.1 Motivation

One of the first and most important steps in studying gene regulation is to measure
gene expression in different cell types, developmental stages, pathological states
and environmental conditions. This is commonly done with either gene expres-
sion microarrays [56] or in recent years also with RNA-seq [48] based on next
generation sequencing [42]]. These are high-throughput technologies which can
provide the expression levels of most of the genes in a sample simultaneously.

A typical second step is grouping the genes or conditions by similarity of
expression [22} [52]]. This allows for better visualization of the data as well as
supports further analyses. Alternatively or complementarily to grouping, genes
expressed differentially between several conditions are determined [36]].

Hierarchical clustering is a technique used often for grouping the gene expres-
sion data [22]]. It builds a hierarchy of groups or clusters, such that each cluster
which has at least two entities consists of two smaller clusters [34]]. The result can
be depicted as a tree called dendrogram.

A standard method for performing hierarchical clustering is agglomerative
hierarchical clustering with different alternatives for linkage, i.e. for choosing
which clusters to merge at each step [34]. This method is highly configurable,
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allowing any similarity measure to be used. The complexity of the algorithm de-
pends on the linkage method but is at least quadratic in the number of clustered
items, as all pairwise similarities have to be calculated [[18]. For large gene ex-
pression data sets this can take several minutes or even hours (see details in Paper

D.

3.2 Fast approximate hierarchical clustering (Paper 1)

Paper I introduces the concept of approximate hierarchical clustering and pro-
poses an algorithm called HappieClust for performing it fast. HappieClust is es-
pecially suited for interactive applications where users expect a fast response but
at the same time are not willing to give up on quality.

The key to the algorithm is to limit the number of calculated pairwise distances
to a carefully chosen subset of all possible pairs. For this we have developed
a heuristic producing a subset of object pairs, which is enriched in pairs with
smaller distances (empirical data shown in Figure 1 of Paper I on p.74). Knowing
pairs of similar objects is of critical importance in mimicking the greedy choices
of full hierarchical clustering.

The heuristic relies on the geometric properties of the data space, particularly
the triangle inequality which states that the distance from A to B cannot be longer
than the sum of distances from A to C' and C' to B. A direct corollary from this
is that if A and B are very close to each other, then the distance to any C' from
A and B is approximately the same. The heuristic turns this observation upside
down and looks for pairs of objects which are approximately at the same distance
from several other objects which are referred to as pivots. Pivots are used widely
in the methods for performing similarity search [66]. The proposed approximate
hierarchical clustering algorithm HappieClust performs the following steps:

1. A small set of pivots is chosen randomly (e.g. 20 pivots).
2. The distance from each object to each pivot is calculated.

3. The heuristic is used to obtain a subset of pairs enriched in pairs of similar
objects.

4. A random subset of pairs is added to the heuristical subset, a step experi-
mentally shown to improve the quality of approximation (results shown in
Figure 4 of Paper I on p.78).

5. Agglomerative hierarchical clustering is performed using an algorithm mod-
ified to work with a subset of all pairs of distances.
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Besides the same inputs as full hierarchical clustering, HappieClust addition-
ally requires the user to specify the number of pivots, the number of distances to
be calculated, and the expected proportion between heuristical and random pairs.
It is also possible to provide a limit for the program running time. In that case,
HappieClust dynamically chooses the appropriate number of distances to calcu-
late. Computational experiments show that 20 pivots and an equal number of
heuristical and random pairs (i.e. proportion 0.5) are choices which work well
most of the time (see Figure 4 of Paper I on p.78).

Finally, the suitability of approximate hierarchical clustering for gene expres-
sion data clustering is evaluated. For this three different strategies are used to
measure the quality of a dendrogram.

e Joining distance ratio adds up the distances between all pairs of clusters that
are merged at some point in HappieClust and compares this to the respective
sum for full hierarchical clustering.

e Subtree content conservation studies how compactly the objects in one sub-
tree of full hierarchical clustering are positioned in the approximate den-
drogram.

e Functional enrichment conservation studies if the functional enrichment of
the genes in some subtree of full clustering is preserved in the approximate
clustering.

The analysis of the computational experiments reveals that with a large dataset
most of the biologically meaningful clusters can be obtained more than an order
of magnitude faster. With clusters of more than 200 genes Happieclust performed
on full data almost as well as the full clustering on 90% of the data. This suggests
that the approximation error of HappieClust can be almost as small as the natural
variance in the data.

3.3 Hierarchical functional enrichment analysis of
microarray data (Paper Il)

Since the genes with similar function tend to be co-expressed, functional enrich-
ment analysis can be used to provide biological interpretation for the clusters of
gene expression data [3, 137)]. This can also help the biologist to find interesting
clusters from a dendrogram containing tens of thousands of genes. Paper II in-
troduces a web server VisHiC for clustering and visualization of gene expression
data combined with automated functional enrichment analysis.

VisHiC inputs a gene expression data set, performs hierarchical clustering
with HappieClust, functional enrichment analysis with g:Profiler [54], and finally
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visualizes the results. The results are represented in a similar manner as in many
gene expression data visualization tools, where the dendrogram is accompanied
with a heatmap specifying the color-coded expression levels of all genes in all
conditions. The main difference of VisHiC is that it can provide a compact view
where functionally most relevant clusters according to enrichment data are high-
lighted and summarized, whereas the remaining genes are hidden.

VisHiC provides two alternatives for measuring relevance of a cluster. First
measure is just the best p-value from the functional enrichment analysis of the
cluster, whereas the second adds up the p-values for all significant functional an-
notations after logarithmic transformation. The latter measure is divided by the
size of the cluster as larger clusters tend to have more and better p-values. Sum-
marization is performed according to the relevance measure starting from the most
relevant ones and avoiding clusters which already have some subcluster summa-
rized.

Once the visualization is generated, the web server allows to zoom into the
summarized clusters to see the full data, functional enrichment information and a
lineplot with the expression profiles of genes in the cluster.
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CHAPTER 4

REGULATORY ENRICHMENT IN
PROMOTER ANALYSIS

In this chapter we give a detailed description and a theoretical explanation of the
methods used for performing promoter analysis in the Papers III and IV.

4.1 Motivation

In the previous chapter we studied clusters of co-expressed genes and discussed
that these often share annotations about the molecular function, biological process
and cellular component. In addition to that, the co-expressed genes often share the
regulatory mechanisms [46]. Specifically, Meng et al. [46]] have confirmed that in
many mammalian transcription factor manipulation experiments the promoter se-
quences of co-expressed genes are enriched in binding motifs of the manipulated
factor. Therefore, such regulatory enrichment in the co-expressed genes of some
process can point to transcription factors which are important during this process.
This has been used in several studies [24, 64].

Several bioinformatics software tools have been developed to discover such
regulatory enrichment of transcription factor binding motifs, such as Toucan [1]],
Clover [26], oPOSSUM [31]], PAP [16], CORE_TF [30], ASAP [43], Pscan [65]],
PASTAA [53]], FactorY [27]] and AME [45]. All these tools scan through a large
set of known transcription factors and calculate some score allowing to prioritize
the factors with respect to enrichment. These tools cover a wide variety of regu-
latory scoring and association functions. Most of the tools provide a threshold to
decide whether the enrichment score is statistically significant.

Our final goal in this chapter is to perform such regulatory enrichment anal-
ysis on two biological cases. For this we propose a novel method of measuring
association and therefore do not use any of the above-mentioned tools.
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4.2 The proposed method for measuring association

Here we propose a novel method for measuring the strength of association be-
tween a given subset of genes and their potential regulator. For each gene we use
two pieces of information. First, a binary value x; denotes whether the gene ¢
belongs to the given subset (1 =belongs, 0 =not). Second, a real value w; denotes
the regulatory score we have somehow obtained for this gene. In addition, we as-
sume that there is a hidden binary value y; denoting whether the gene ¢ is actually
regulated by the regulator under study (1 =regulated, O =not). We are interested
in quantifying the enrichment of the given subset in regulated genes.

As in Section [2.4] where we studied the association of properties, we assume
here that vectors (z;,y;, w;) are observations of an i.i.d. sample (X, Y;, W;)™",
from the joint probability distribution of some random variables X, Y and W. We
further assume that X and W are independent conditional to Y, i.e. the regulatory
scores W say nothing about the given set X in addition to what is already said
by regulation Y. This is a reasonable assumption, if the experimental procedures
for obtaining x; and w; are using different types of data, such as the expression
and sequence data. Formally, we do not require anything else, but the proposed
association measure will be effective only if smaller regulatory scores suggest
higher probability of regulation. If the situation is the opposite, the negated scores
—w; should be used instead of w;.

Since X and Y are binary, the assumption of conditional independence can
be formulated as the following statistical model for some s, p, ¢ € [0, 1] and for
some probability distributions Reg and Neg:

X ~ B(1,s)
Y|X=1~ B(1,p)
Y|X=0~ B(1,q) 4.1)
W[Y =1~ Reg
W|Y=0 ~ Neg

where B(1, p) denotes the Bernoulli distribution with parameter p. The particular
order X =Y — W of conditioning was chosen because below we will use the
values p= P (1]1) and ¢= P¥™ (1]0) to quantify the association between X
and Y. The random variables W and X are indeed independent conditional to Y
in this model, since the distribution of W depends on Y, but not on X directly.
Note that there are no restrictions on the distributions Reg and Neg, i.e. they do
not have to belong to any known family of probability distributions. The param-
eters s, p, ¢ and distributions Reg and Neg in the model have the following
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Figure 4.1: Example data with n =90 data points (w;, x;), where 62 points have z; =0
and 28 points have z; = 1. (A) A plot of the data points, where the points are horizontally
randomly positioned inside the panels z; =1 and z; = 0 for better overview. (B) The pa-
rameters of the model (#.1]) used to generate the above data points. (C) Non-empirical and
empirical measures of association between the random variables. The optimal thresholds
from the calculation of KS,, (W |X) and Q/,(W|X) are denoted as w and w’, respectively.
The significance level in the calculation of Q),(W|X) was o = 0.05.

interpretations:

s — the expected proportion of given genes among all genes;

p — the expected proportion of regulated genes among the given genes;

q — the expected proportion of regulated genes among the non-given genes;
Reg — the expected distribution of scores among the regulated genes;

Neg — the expected distribution of scores among the non-regulated genes.

Figure .T]A plots example data with 90 data points drawn from the model
(#.1) with parameters specified in Figure d.1B.

Association between X and Y

Recall that our goal is to measure the strength of association between a given
subset of genes and their potential regulator. In the current notation, this means the
association between X and Y, whereas we know only the values (x;,w;)!"_;. The
task might seem unsolvable, but due to the independence of X and W conditional
to Y it is possible to say something about the association between X and Y.
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We find p and ¢ to be intuitive starting points for quantifying this association,
as these measure the expected proportion of regulated genes among the given and
non-given genes, respectively. Regulatory enrichment of the given subset of genes
would indicate more regulated genes among the given genes, p > ¢g. Two natural
association measures based on p and ¢ are the absolute risk change and the relative
risk,

ARC(Y|X) = [P (1]1) = P"*(1]0)| = |p — ¢

Y| X
RR(Y|X) = P () _bp
PY(100) ¢
representing the difference and fold-change of the expected proportion of regu-
lated genes between given and non-given genes. According to the absolute risk
change the association between X and Y with p =0.59 and ¢ =0.50 is the same
as with p=0.10 and ¢ =0.01, since the difference is 0.09 in both cases. We de-
cided the latter case to be biologically more interesting, and therefore preferred
relative risk for the promoter analyses in the Papers III and IV. However, in the
following theoretical subsection we consider both association measures.

Empirical association between X and IV
is an approximate lower bound for association between X and Y

As the values y; are hidden, we cannot measure the association between X and
Y directly. In the following we prove that the two-sample Kolmogorov-Smirnov
distance KS,,(W|X) and a proposed empirical association measure Q,, (W |X)
are approximate lower bounds for ARC(Y'|X) and RR(Y'| X), respectively.

The empirical measures KS,,(W|X) and Q,,(W|X) both involve testing dif-
ferent thresholds w € R and calculating the proportion of data points with w; <w
among the points with z; = 1 and among the points with x; = 0. For any w, these
proportions are the values of the empirical conditional cumulative distribution
functions F'* (w|1) and Fy Ix (w]0), respectively (for statistical preliminaries
see Section . For example, in Figure the value Fy'™ (w'|1) is 8/28,
because there are 28 data points with z; =1 and 8 of those have w; <w’. The
measure KS,,(W|X) is defined as the maximum difference between F), x (w|1)
and F)'" (w|0) over all thresholds w € R,

KSW(WIX) = sup [F™ (w]1) = F™ (w]0) 42)
weR

The value of this measure and the maximizing threshold w for the example data
are given in Figure . IIC. Although the maximum is taken over all w € R, it is
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enough to find the maximum over all values w = w;, because the value of func-
tions Fjr'™ (w|1) and F},’ Ix (w]0) changes only when w passes the data points. The
measure KS,,(W|X) is the Kolmogorov-Smirnov distance between empirical dis-
tributions of W in the two subsamples corresponding to X=1 and X=0. Theo-
remproves that with sample size n growing to infinity, KS,, (W |X') converges
almost surely to a value KS*(W|X), which is a lower bound for ARC(Y'| X).

Theorem 4.1. Let X, Y, W be random variables satisfying the statistical model
where 0 < s < 1. If (X;, W;)?_, is an i.i.d. sample from the joint distribution
of X and W, then the following holds:

lim KS,(W|X) L KS*(W]X) < ARC(Y|X)

where KS,,(W|X) is defined by the equality (#.2)), the convergence occurs almost
surely (a.s.) and

KS*(W]X) = sup ‘FW‘X (w]1) — F" (w0]0)
weR

Proof. See Appendix [A] O

The intuition behind Theorem is that as X and W are independent con-
ditional to Y, then any association between these must be due to the associations
between X and Y and between Y and W.

The measure Q,,(W|X) is defined using the same functions Fy,’ Ix (w|1) and

folde (w|0) as KS,,(W|X), but it maximizes the ratio of these instead of the dif-
ference. As for small values of w the value of F'* (w]0) becomes small and thus
the variance of the ratio becomes huge, we restrict w to larger values, specified by

the set B,,:

W|X
Qu(W|X) = sup T ()

= WX -8
weB, Fa™ (w]0) Bn {wER‘Fn (w]0) >n } (4.3)

The restrictive set 13,, and the measure Q,,(WW|X) are parametrized by /3, where
0 < 8 < 1/4. Such range of values for (3 is chosen because according to the Theo-
rem 4.2|the quantity Q,,(WW|X) converges for any such 3 almost surely to a value
Q*(W|X), which is a lower bound for RR(Y'|X).

Theorem 4.2. Let X, Y, W be random variables satisfying the statistical model
where 0<s<1and 0<q<p<1. If (X;,W;)!, is an i.i.d. sample from
the joint distribution of X and W, then the following holds for any 0 < 8 < 1/4:

lim Q,(W]X) ¥ Q" (W|X) < RR(Y|X)
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where Qn,(W|X) is defined by the equalities (#.3), the convergence occurs almost
surely (a.s.) and

) — ey F D)
@IV = 2 5 (wlo)

Proof. See Appendix [A] O

The empirical association measure used in the Papers Ill and IV

Note that the Theorems [4.1] and [4.2] describe only the asymptotic behaviour of
KS,(W|X) and Q,(W|X). The theorems do not specify the quality of these
estimates for any fixed n. In particular, Theorem §.2] does not provide the best
choice of 3 for specifying the restrictive set BB, for a fixed n. Therefore, further
theory or computational experiments are required before using these methods.

As mentioned before, we decided to prefer relative risk to absolute risk change
in the promoter analysis, as it coincided better with our understanding of what is
biologically interesting. But since the Papers III and IV were published before we
obtained the statement and proof of Theorem [4.2] we approximated relative risk
with a modification of measure Q,,(W|X). The used measure Q},(W|X) differs
from Q,,(W]X) in the restriction on w, and is defined as follows:

W|X
Fy 1
Q,(W]X) = sup #
weBl, '™ (w)0)
Bl = {w eR ‘ P( Rp > N2 (1, (—o0, w)) ) < a} (4.4)

Rp ~H(n, Ny (1), Ny ((—o0,w]))

where « is the significance threshold and H (n, k, m) is the hypergeometric distri-
bution. The definition of B/, is based on the Fisher’s exact test (see Table for
testing if the two binary random variables X and W <w are associated. We cannot
claim significant association as the same test is performed for many values of w
and there is no multiple testing correction. But since the binary random variables
W <w for different w are highly correlated, then the set 3], is non-empty only if
there is quite some evidence for association.

Similar search for an optimal threshold with multiple Fisher’s exact tests has
been used earlier, but with different objective functions [2,|55]].

4.3 Computational experiments

In this and the following sections of this chapter we use the short notation of
Q/, and RR instead of Q) (W|X) and RR(Y|X). In order to test how often
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Figure 4.2: Distributions Reg =N'(—1, 1) and Neg =N(0, 1) that were used to generate
artificial data for computational experiments.

Q), is a lower bound for RR, we carried out some computational experiments.
The data were generated as an i.i.d. sample from the statistical model .1 with
Reg=N(—1,1) and Neg =N (0, 1). Figure presents the first example where
Q/, is a lower bound for RR.

For large scale experimentation we decided to test 100 and 1000 as the ex-
pected numbers of given and non-given genes. This fits approximately the order of
magnitude of data in Papers III and I'V. Hence, we chose sample size n = 1100 and
s=1/11. For p and ¢q we tested all combinations of values 0.01,0.02, . ..,0.99.
The distribution Reg was chosen to be shifted towards smaller values compared

to Neg because the measure Q/, becomes useful (Q/, > 1) only if F), Ix (wl) is

greater than F),’ Ix (w]0) for some w. The chosen shift was small to make it hard
enough to distinguish between regulated and non-regulated genes based on the
regulatory score (see Figure d.2).

Figure presents the probabilities P(Q/, > 1.8) estimated in the experi-
ments for all combinations of values p and q. Here we consider the particular
value 1.8 because in Paper IV we reported only the cases with Q/, > 1.8 to limit
the number of results. The figure shows that the rate of false positives is very low,
i.e. the cases with relative risk below 1.8 are almost never reported. This adds
confidence to the relevance of the reported cases.

Theorem [4.2] proved that Q,,(W|X) is an asymptotic lower bound for relative
risk. Figure [4.3B presents the empirical conditional probabilities that a reported
Q;l is indeed a lower bound for relative risk. As Figure says that Q;1 >1.8
implies RR > 1.8 with high probability, then by combining the Figures #.3]A and
we can say that Q/, > 1.8 implies RR > Q/, > 1.8 with high probability. This
follows from the fact that the region with high reporting probability in Figure[d.3A
shows high probability of being a lower bound in Figure @.3B. If all combinations
of values of p and ¢ would be equally likely, then the probability of Q) <RR
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Figure 4.3: The results of computational experiments for different values of p and q. The
black line refers to the points with RR = p/q = 1.8. The probabilities were estimated from
100 repeated experiments in (A) and from experiments with 100 reported cases in (B).
The white area indicates the region for which not enough experiments were performed as
the reporting probability was very low. (A) The probability that the case was reported.
(B) The conditional probability that Q/, was a lower bound of RR, if it was known to be
reported.

given Q/, > 1.8 would be about 0.8.

To conclude, the experiments have indicated that for a realistic value n = 1100
our association measure Q/, is a lower bound of relative risk with high probability.
We now proceed to the biological studies in Papers III and IV where we have used
the measure Q/,.

4.4 Promoter analysis of genes differentially expressed
in mouse mesoderm development (in Paper Ill)

Paper 111 studies early development of mesoderm, the part of the embryo which
develops into cell types such as muscles, heart, blood and kidney. Brachyury (also
known as T) is a gene which has earlier been shown to be important in the devel-
opment of mesoderm. Paper III applied a treatment technique on a transgenic
mouse embryonic stem cell line to obtain brachyury™ cells — 6-day-old embryoid
bodies enriched in brachyury expressing cells. Next, the transcripts up- or down-
regulated in the brachyury™ cells compared to embryonic stem cells and control
embryoid bodies were determined using gene expression microarrays. Functional
enrichment analysis was performed on the list of differentially expressed genes,
showing associations with Gene Ontology [3]] terms blood vessel morphogenesis,
placenta development and cell death, and KEGG [35] pathways for MAPK and
TGFp signalling, for example.

Two transcripts (Larp2 and Ankrd34b) with function unknown and the least
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amount of description in earlier literature were chosen for further investigation
from the transcripts up-regulated specifically in the brachyury™ cells. Larp2 and
Ankrd34b were silenced using siRNA knockdown protocol in the embryonic stem
cells which were then monitored for any morphological changes. Also, the relative
mRNA expression levels of 10 genes were analyzed in these cells using qRT-
PCR technology. As a result, Larp2 was hypothesized to be positively involved
in regulation of BMP-2 expression. Ankrd34b was suggested to be a positive
regulator of the ectoderm-dependent neurogenesis and a negative regulator of the
mesoderm-dependent adipogenesis and hematopoiesis.

The task for the author of this dissertation was to perform promoter analysis
of the transcripts upregulated exclusively in the brachyury™ cells (105 genes).
Genes up-regulated exclusively in the BMP-27 cells (266 genes) and exclusively
in the a-MHC™ cells (584 genes) were used as background. In the notations of the
previous sections, we had n = 10542664584 = 955 genes with size of the given
subset of genes equal to 105. Our first step was regulatory scoring of genes, i.e.
estimating the potential of each transcription factor to regulate each gene.

Transcription of a gene can be influenced by both, near and far events of tran-
scription factor binding to the genome. We considered only the closeby region
of 2,000 bp upstream of the transcription start site, which should cover the pro-
moter region in most cases. In these regions we scanned for putative transcription
factor binding sites by matching the known motifs of transcription factor binding
preferences obtained from the databases Transfac [44] and Jaspar [12] as position
weight matrices. The regulatory score of a motif for each gene was calculated as
the average score of the three highest scoring matches in the promoter.

In the previous section we noted that Q/, becomes useful if the regulatory
scores corresponding to regulated genes are shifted towards smaller values, but
here, on the contrary, the regulated genes have probably higher average scores.
Therefore, during the calculation of Q/, we counted the proportions of points with
w > w; instead of w < wj. It can also be interpreted as negating all the regulatory
scores and only then calculating Q/, to obtain the enrichment score.

As a result, two motifs showed values Q], > 1. The enrichment scores for
the motifs PPAR« and ISRE were Q/, = 5.2 and Q], = 2.7, respectively. The pro-
moters of genes scoring higher than w which reached the maximum in Q), are
visualized in Figure 3 of Paper III on p.105. The figure also illustrates how a gene
can have a high regulatory score (calculated as the average score of the three best
matches of a motif) with just a single strong match or alternatively, with two or
three weaker matches. PPARa was earlier known to be involved in cell differenti-
ation, in particular cardiomyocytes differentiation of mouse embryonic stem cells.
ISRE was known to induce apoptosis, which is in accordance with the observation
that genes annotated to cell death are enriched among the genes upregulated in the
brachyury™ cells.
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4.5 Promoter analysis of genes differentially expressed
in mouse adipogenesis (in Paper 1V)

Paper 1V studies adipogenesis, which is the development of fat cells, also known
as adipocytes. Several treatment techniques were used to induce and inhibit dif-
ferentiation of mouse embryonic stem cells towards the adipocyte lineage. Large
scale gene expression profiling was performed to reveal differential expression
between the inducing and inhibiting treatments at several time points. As a result,
four clusters of genes were obtained as upregulated and downregulated genes in
day 6 and day 11. In addition, the fifth cluster included genes which were differ-
entially expressed (either up- or downregulated) on both days.

Functional enrichment analysis was performed for each of the five clusters
using g:Profiler [54]. The results are provided in Figure 2 of Paper IV on p.120.
The biological highlights of this enrichment analysis include the association of
adipocyte development with blood vessel development, neural development and
the Wnt pathway.

The remaining part of Paper IV studies the transcriptional control of adipocyte
development. First, Figure 5 lists the transcription factors within the five clusters
of genes which were differentially expressed. These provide a simple hypothesis
set of factors regulating the adipocyte development. It was shown experimentally
that 7 out of 11 tested transcription factors of clusters 1 and 3 (genes upregulated
on days 6 and 11, respectively) were upregulated in stromal vascular fraction of
white adipose tissue in young mice, compared to the adipocyte fraction. This adds
confidence to the hypothesis that these factors regulate adipogenesis, because the
stromal vascular fraction contains adipocyte progenitors, whereas the adipocyte
fraction encompasses only mature adipocytes.

Finally, the task for the author of this dissertation was to perform in silico
analysis of transcription factor binding site enrichment in the promoters of genes
in clusters 1-5 (the given subsets of genes) with 175, 25, 126, 52, and 15 genes,
respectively. The total number of genes in the study was n = 20694. The analysis
was similar to the analysis for Paper III presented in the previous section, and we
will therefore highlight only the differences.

First, we extended the 2,000 bp upstream region 1,000 bp downstream of the
transcription start site. Second, as the transcription factor binding sites tend to be
more evolutionarily conserved than the surrounding sequence, we also took into
account the conservation rate of the putative binding sites in rodents and primates
(Euarchontoglires). So in addition to the regulatory score used in Paper III (av-
erage score of three best matches) we used regulatory scores defined by the score
of the single highest scoring match which is above a conservation threshold. We
tested thresholds 0.7, 0.8, 0.9 and 1.0, where the latter stands for 100% conser-
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vation. Enrichment score was obtained using the reversed Q;l as described in the
previous section, but with reporting threshold Q/, > 1.8.

There were no results for the small clusters 2, 4 and 5, but for clusters 1 and 3
we found respectively 16 and 14 motifs with Q/, > 1.8. The results are presented
in Figure 7 of Paper IV on p.127, where we list for each motif the following val-
ues:

e Conservation — the evolutionary conservation threshold used for defining
the regulatory scores;

o Targets in cluster — the number of genes in the cluster which had a regula-
tory score above the optimal threshold w from the calculation of Q/,;

e Enrichment ratio — the value Q),;

e Enrichment P-value — the p-value of the Fisher’s exact test applied for
measuring the association between binary random variables X and W 2>w,
where w is the optimal threshold from the calculation of Q),. Note that
this p-value was used in deciding if the particular value w belongs to the
restrictive set 3},, see formula (4.4).

Several of the motifs reported for clusters 1 and 3 have been associated with adi-
pogenesis earlier, see details in Paper I'V. In addition, the motifs CART1, PRRX2,
and MEIS1 that were enriched in the promoters of genes upregulated on day
11 (cluster 3), were corresponding to transcription factors upregulated on day 6
(marked with stars in Figure 7 of Paper IV on p.127). Together with informa-
tion from protein-protein interactions (see details in Paper IV) this supports the
hypothesis that these transcription factors are important for adipogenesis.
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CHAPTER 5

EVOLUTIONARY MODELS OF
ENRICHMENT (PAPER V)

In this final chapter we propose an evolutionary model of regulatory sequences.
It models the DNA substring distribution, which determines the abundance of all
motifs, and is therefore the key to the enrichment of motifs.

5.1 Motivation

In the previous chapter we performed regulatory enrichment analysis, which used
the known transcription factor binding motifs to suggest which transcription fac-
tors regulate a user-given set of genes. Methods of de novo motif discovery search
novel motifs that are enriched in the regulatory sequences of the user-given genes.
The found motifs are good candidates for being binding motifs for some tran-
scription factors with yet uncharacterized binding preference. The reference for
enrichment determining the expected abundance of the motif is specified by either
a genomic region which has presumably less binding sites of transcription factors
(called a background sequence), or a probabilistic model which is often learned
from such region (called a background model) [17]].

The simplest background generating model is the zero-order hidden markov
model (HMM) [6, [17]. It specifies the probabilities for nucleotides and the nu-
cleotide at each position is generated independently from others. It has been
shown that higher-order models which specify the distribution of longer substrings
(e.g. of length up to 5, i.e. fourth-order HMM) can improve the sensitivity of motif
discovery [62]]. However, sometimes even the higher-order models do not describe
enough statistical properties of a true biological sequence, so some methods use a
biological background sequence [53]].

The choice of a good background is important, otherwise the performance
decreases significantly [62]. There are at least two reasons for that. First, if the
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motifs we would like to find have high abundance in the chosen set of background
sequences, then the enrichment can be statistically too weak for detection. Sec-
ond, any features of the studied sequences lacking in the background can create a
plethora of enriched motifs which overwhelm the results and hide the relevant sig-
nal. For instance, if the studied sequences include relatively more adenines (“A”
nucleotides) than the background, then we may see enrichment of adenine-rich
motifs. Taking into account the effect of such differences is non-trivial [11].

There are several reasons why the distribution of substrings can be different in
two regions of the genome. First, there can be different functionally important fea-
tures which do not accept mutations at various sites of the sequence. Second, the
rates of different types of mutations can in principle be different at various regions
of the genome. For instance, the mutations from CpG to TpG occur at different
rates depending on whether or not the cytosine is methylated [[14]. Finally, the
distributions can be different due to larger genomic rearrangement events, such as
duplication, insertion or deletion of long sequences.

In Paper V we propose an evolutionary model of DNA substring distribu-
tion. Given the functionally important features and mutation rates in a sequence
of length n, the model provides the expected distribution of substrings of length
k <n. Such evolutionary processes are hard to capture with an HMM. For exam-
ple, our model allows to change the mutation rate from CpG to TpG by changing
one parameter, while it is not at all clear how to change a background modelling
HMM to achieve the same effect. Our evolutionary model also supports incremen-
tal motif discovery which looks for new motifs and complements the background
model with the discovered motifs iteratively.

5.2 The proposed evolutionary model

We chose to model the evolution of a regulatory genomic sequence of individuals
in a population with asexual reproduction, meaning that each descendant has a
single parent. In our model, the presence and multitude of functionally important
features in the regulatory sequence determines the fitness of an individual, which
is a quantitative property describing the reproductive capability. In addition, there
can be mutations in the sequence during reproduction.

We assume that over time the fitness function and mutation probabilities re-
main the same. Therefore, we might expect that over long enough time a large
enough population gradually stabilizes to have a specific proportion of each of
the possible sequences. We call such state an equilibrium, i.e. the state where the
expected proportion of individuals with any particular sequence in the next gen-
eration is the same as in the current generation. Theorem 1 in Paper V on p.137
proves that if fitness is positive for all sequences and the probability of any se-
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quence mutating into any other is positive, then there exists a unique equilibrium
distribution which can be calculated as the unique positive eigenvector of a ma-
trix specified in the paper. Theorem 2 adds that the equilibrium is asymptotically
reached from any starting distribution of sequences.

The remaining part of Paper V studies the possibilities of calculating the dis-
tribution of substrings of length &k in an equilibrium distribution of sequences of
length n. Determining the equilibrium distribution of full sequences is gener-
ally intractable as this would require solving an eigenproblem of dimension 4",
a task too hard already for small values of n, such as n=20. So the question is,
how well can the substring distribution be approximated without finding the full
equilibrium? In the paper we have suggested one possible approximation which
requires solving the same kind of eigenproblem as for finding the equilibrium, but
with dimension 4F.

To check the applicability of this approximation we performed experiments to
compare the approximated distribution with the exact substring distribution under
equilibrium. As finding the exact equilibrium is computationally so expensive,
we used a 2-letter-alphabet and sequence length n = 8. The mutation probability
at each position was identical and independent from other positions. The fitness
of a sequence was defined based on the number of occurrences of a specific sub-
string in the sequence. To estimate the quality of approximation, we measured
the Kullback-Leibler divergence per position from the exact distribution to the ap-
proximated distribution, and the Pearson correlation between these distributions.

The experiments were performed for various mutation probabilities and fit-
ness functions. The results turned out to depend mainly on the point-mutation
probability. Figures 1 and 2 in Paper V on p.142 show that with mutation rate 0.1
or higher the approximation of the substring distribution was very close to the ex-
act distribution. While correlation remained moderately good for lower mutation
rates also, the Kullback-Leibler divergence showed decreasing quality of approxi-
mation. According to Figure 2 in Paper V on p.142 this was apparently caused by
substrings with moderate true frequency but very low approximated frequency. In
this example it seems (data not shown) that if the mutation rate approaches zero
then the exact equilibrium distribution converges to the uniform distribution over
sequences with maximum fitness, not captured well by the approximation.

5.3 Discussion

The conducted experiments show that we were able to approximate the substring
distribution generated by the evolutionary model fairly well in various conditions.
However, too few conditions were tested to suggest any requirements that would
guarantee high quality approximation. Further experiments should be performed
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with the 4-letter-alphabet and a larger variety of fitness and mutation functions.

Currently we have studied how to calculate the substring distribution once we
have fixed the model. It would be useful to be able to learn the parameters of
the model from a given substring distribution. This could be applied for studying
the evolution of a particular sequence. More generally, it would be interesting to
know what information it is possible to extract from a substring distribution using
some prior information and assuming genetic equilibrium.

The assumption of genetic equilibrium of a long sequence is strong and prob-
ably does not hold in a real-life population. Small population size, large genomic
rearrangement events, horizontal gene transfer, and time-varying fitness and mu-
tation functions — all these can work against equilibrium. However, even if the
population is not in equilibrium with respect to the long sequence, the substring
distribution might still be similar to the case of equilibrium, a hypothesis worth
studying further.
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CONCLUSIONS

The goal of this dissertation was to enhance and apply algorithms involving or re-
lated to statistical enrichment analysis for studying gene regulation. We have first
provided a formal definition of enrichment and studied how functional and motif
enrichment analyses fit into this definition. We revealed that many algorithms that
apply these analyses internally study the association between two properties of
genes.

Hierarchical clustering of gene expression data is often one of the first steps
in studying gene regulation. We developed a new algorithm for performing fast
approximate hierarchical clustering using similarity heuristics, suitable for in-
teractive applications which require fast algorithms. To highlight functionally
more relevant parts in the results of clustering gene expression data hierarchically,
we developed a software tool which performs hierarchical functional enrichment
analysis.

Motif enrichment analysis can be applied to reveal which transcription fac-
tors are potentially important in the regulation of a group of genes. In order to
take into account any relevant data in addition to the genomic sequence, such as
evolutionary conservation or DNA methylation or histone modification, we have
proposed a framework of regulatory enrichment analysis. This analysis requires
quantifying the differences of the given group of genes and the group of all other
genes with respect to potential of being regulated by the factor under study. This
can be done with the Kolmogorov-Smirnov distance, measuring the difference of
the proportion of the potentially regulated genes in the two groups. We have also
proposed a novel measure for this purpose, using fold-change instead of the dif-
ference between the proportions. We have proved that the Kolmogorov-Smirnov
distance and our measure are respectively the approximate lower bounds for ab-
solute risk change and relative risk of regulation associated with the given group
of genes. We have applied the novel measure to perform regulatory enrichment
analysis of gene promoter regions in two studies of mouse embryonic stem cells.

Motif discovery can be applied to find unknown regulatory motifs in the geno-
me. It requires as input a sequence which is presumably enriched in such motifs
compared to some background. The background is commonly either some ge-
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nomic sequence or a hidden markov model learned from it. As the final contri-
bution of the dissertation we proposed an evolutionary model of DNA substring
distribution, which can be used as a background model in motif discovery. The
model supports incremental motif discovery which looks for new motifs and com-
plements the background model with the discovered motifs iteratively.

Hopefully we have convinced the reader in the wide applicability of statistical
enrichment analysis in bioinformatics. Most commonly, it is used to reveal asso-
ciation between properties of genes or any other biological entities. The results
should always be interpreted with care, as there can be various reasons for enrich-
ment, starting from causal relationships anywhere in the data and ending with a
bias caused by technical problems in the experimental protocol. Also, in general
the lack of enrichment does not rule out the possibility of associations in the data.
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APPENDIX A

PROOFS OF THEOREMS 4.1 AND 4.2

Theorems[d.1]and 2] both contain two claims — an almost sure convergence and an inequality. For
better readability we will prove these claims in separate theorems. Theorem [A.1] follows directly
from Theorems [AT] and [A3] and similarly Theorem [4.2] follows from Theorems [A.2] and [A.4]
Additionally, Theorems and [A2]include the conditions stating when the inequalities become
equalities. For Lemmas and and Theorems and we define 0/0 = 0 and ¢/0 = oo
for any ¢ > 0.

Proofs of the inequalities

Lemma A.l1. Let X and Y be binary random variables and W a real-valued random variable,
where X and W are independent conditional to Y. If 0<P* (1) <1, then the following equality
holds for any x € {0,1} and w € R:

PV (ufz) = P (wf1) - P (1) + P (wl0) - (1 - P (1))

Proof. Due to the independence of X and W conditional to Y, we have for any =,y € {0, 1} and
weR
PW<w|Y=y, X=x) = P(W<w|Y=y)

Therefore,

FYX (w|z) = P(W<w|X=z) =

=P(W<w, Y=1|X=z) + PW<w, Y=0|X=x) =

=P(W<w|Y=1, X=z)P(Y=1|X=2) + PW<w|Y=0, X=2)P(Y=0|X=z) =

= P(W<w|Y=1)P(Y=1|X=z) + P(W <w|Y =0) (1 _P(Y= 1|X::r)) =

= F"Y (w]1) P (1]z) + FYY (w]0) (1 — pYX (1|x))

O

Theorem A.1. Let X and Y be binary random variables and W a real-valued random variable,
where X and W are independent conditional to'Y . If 0<P* (1) <1, then the following inequality
holds:

KS*(W|X) < ARC(Y|X)
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where

KS™(W|X) = sup ’FW'X (w|1) — FVX (w\O)‘

weR
ARC(Y|X) = (PY‘X (11) — P (1\0).
The inequality becomes an equality if and only if KS* (W 1Y) =1.

Proof. The theorem follows easily from Lemma [AT}

KS*(W|X) = sup

weR

FYY (w)1) P (1]1) + P (w]0) (1 — pYX (1|1)) -

FYX (w]1) — FYIX (w|0)‘ =

Lemmal[A]]
= sup

weR

— FYIY (w]1) PYX (1]0) — FWX (w]0) (1 — pYX (1|0)) l -

= sup
weR

(P i) = P 10)) - (P () = £ (0l0)) | =

- ‘PY'X (1[1) — PY™ (1|0)‘ - sup
weER

= ARC(Y|X) - KS*(W]Y) < ARC(Y|X)

FYY (w|1) = FVIY (w\o)‘ =

The inequality becomes an equality if and only if KS*(W|Y) = 1. O

Lemma A.2. Let p, q be real numbers with 0 < q < p < 1 and f, g be functions with f,g : R —
[0, 00). Then

p-f(t)+ (1 =p)-g(t)
S RO+ (=) g(t) =

where the equality holds if and only if sup 1O — o,
teR

ISk}

g(t)

Proof. For any t € R the following holds:

pfO+0=p)g®) _p v SO +e(l—p)g(t) _ pa(f(t) —g()) +a-9(t)

g fW)+1—q)-9(t) ~q " pg-fO)+p(L—q)-gt) pa(f(t)—g) +p-g(t)

The latter inequality holds because ¢ < p, and thus we have proved the inequality stated by the
lemma. If g(¢) = O then the inequality becomes an equality if and only if f(¢) > 0. If g(¢) > 0
then

pa(f(t) — g(®) +q-gt) _ PallH =1 +a

pa(f(t) = g()) +p-9(t)  pg(£@ —1)+p

which converges to 1 if and only if 1)

g(t)
ilel]g % = 00, proving the lemma. =

— o0. The two cases can be joined under the condition

Theorem A.2. Let X and Y be binary random variables and W a real-valued random variable,
where X and W are independent conditional to Y. If 0<P* (1) <1 and

0< P*(1)0) < P*(1]1) < 1
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then the following inequality holds:
Q" (W[X) < RR(Y|X)
where

P (1))

WIX (0
Q" (W|X) = sup F (w]1) m

SUD TR (10[0) RR(YY|X) =
The inequality becomes an equality if and only if Q* (WY") = cc.
Proof. Applying Lemma[A.T]and Lemma[A-2] with

p=Pan)  g=P™a)  fw)=F"(@w]1)  g(w)=F"Y (w0)

we obtain the required inequality:

* _ FIX (w|1) _
VI =2 T o) ~

Lemma&D  F™Y (w[1) - PYX(1]1) + WYY (w]0) - (1 — PV (1]1))

= <
wew FVIY (w[1) - PYX(L]0) + F¥ (w[0) - (1= PYX(1]0)) ~
LemmaB2 PYIX (1]1)
————= =RR(Y|X
< (i) = RROIX)
According to Lemma[A-2]the last inequality becomes an equality if and only if
su LMY (wll) _ 00
wer P (w]0)
which is by the notations the same as Q* (W|Y") = co. O

Proofs of the almost sure convergences

To prove almost sure convergences we will need Lemma [A-3] which is proved using the strong
law of large numbers, the classical Borel-Cantelli lemma [8] and the Glivenko-Cantelli theorem as
stated by Devroye et al. [19]. Note that this version of the Glivenko-Cantelli theorem includes a
concentration inequality which is required for proving Corollary [AJ3]

Corollary A.1 (of the strong law of large numbers [8]). Let X1, Xo, ... be i.i.d. random variables
distributed identically to a binary random variable X. Then for each x € {0,1}
lim |PX(z) — PX (w)‘ =0 as.

n— o0

Corollary A.2 (of the first Borel-Cantelli lemma [8]]). Ler R1, Ro, ... be real-valued random vari-
ables. If Y00 P(Rn > €) converges for each € > 0, then lim R, = 0 almost surely.

n— oo

Theorem (Glivenko-Cantelli [19]). Let W1, Wa, ..., Wy, be i.i.d. real-valued random variables
with the cumulative distribution function F* (w) and the empirical cumulative distribution function
FY (w). Then for each € > 0

P(sup
weR

In particular, by the first Borel-Cantelli lemma

Y (w)— F" (w)\ > e) < 8(n+1)exp [‘%2]

lim sup

EY (w) — FV (w)‘ =0, as.
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Corollary A.3 (of the Glivenko-Cantelli theorem). Let W1, Wa, ..., W, be i.i.d. real-valued ran-
dom variables with cumulative distribution function F (w) and empirical cumulative distribution
function F)Y (w). Then for any oo < 1/2 the following holds:

lim n® sup |y (w) — FY (w)‘ =0, as.

Proof. According to Corollary [A7]it is sufficient to prove the convergence of the series
ZP(na sup ‘F,\{V (w) — F%V (w)’ > e)
n=1 weR

for any € > 0. By the Glivenko-Cantelli theorem we obtain

B (w) - FY (w)’ > e) < 8(n+1)exp {7%?)2} _

P(nasup
weR
1-20 2

n €

=38 1 ey ——

s o 2]

The required series converges because 1 — 2a0 > 0. O
Lemma A.3. Let (X;, W;)i, be an i.i.d. sample from the joint distribution of a binary random

variable X and a real-valued random variable W. If 0 < P* (1) < 1, then for any a < 1/2 and
any x € {0, 1} the following holds:

lim n® sup |Fe'* (w|z) — FWX (w|x)’ =0, as.

Proof. First note that it is enough to prove the almost sure convergence under the assumption
lim P} (z) = P* (z)
n— oo

because this is an almost sure event according to Corollary As NX(z) = n - PX(z) and
PX(x) > 0 then NX () grows to infinity with n — co.

Let W{, W3, ... be the subsequence of W1, Wa, ... where we include all W; for which X; =
. For any n, the number of included values W; among Wi, . .., Wy, is equal to NX (z). Therefore,
the following sets are equal

{w
and the proportion of values below any threshold w € R must be the same in these two sets,

¥ () = FY (w]e)

1§i§NT)f(:r)}:{Wi

lgign,Xi:x}

As the random variables Wy, W, . .. were i.i.d., then so must be the variables Wy, W3, . ... Each
of the variables W/ has the cumulative distribution function

V' (w) = FY* (w|z)

due to the condition X; = x. The sequence W{, W3, ... is infinite because lim NX (z) = oo.
n—oo

Now we can write
: X a w’ oW
Jim (N (@) sup [FN ) (w) = " (w)
X «@
lim <7N"n($))
n— 00

According to Corollary the numerator is almost surely zero and by our assumption NX () /n =
PX (z) converges to P* (x) # 0, proving the lemma. O

lim n® sup ‘FX\”X (w|z) — FV* (w|x)‘ =
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In the final two theorems we study only the association measures between W and X, and
therefore we drop (W|X) in the notation of measures, e.g. we write KS,, instead of KS,, (W |X).
In addition, we introduce the following notations for z = 0 and z = 1:

Fy(w) = F'™ (w])
F*(w) = F"™ (w]z)
Aq = sup [F(w) — F* (w)|

weER

Theorem A.3. Ler (X;, W;)i_, be an i.i.d. sample from the joint distribution of a binary ran-
dom variable X and a real-valued random variable W. If 0 < P* (1) < 1, then the following
convergence occurs almost surely:

lim KS,, = KS* as.

n—>00

where
KS,, = sup |Fé(w) - Fg(w)|
weR

KS* = sup |F' (w) — Fo(w)|

weR

Proof Since‘|a—b\ - |c—d|‘ < la—c| + |b— d| forany a, b, c,d € R, then for any w € R

‘|F,1( - Fy(w)| = |[F'(w Fo(w)|‘ <
< |F(w) = P (w)] + | B (w) = F(w))
Therefore,

|KS,, — KS*| = ‘sup|Fi(w) - Fg(w)’ - sup|F1(w) — Fo(w)” <

weR

< sup||[Fi(w) = F(w)| — |F' (w) = F(w)]| <
weER

< sup (| (w) = F'(w)] + |F(w) — F(w)]) <
weR

< sup|F,1(w) — Fl(w)’ + sup‘Fg(w) — Fo(w)| —0 as.
weR weR

where the convergence is due to Lemma[A3] with a = 0. O

Lemma A4. Leta,c,d > 0andb > 0. Ifc/d < oo, then

la — | c-|b—d|
<
b b (b—|b—d)

¢
7=

@
b

Proof. If d =0, then also ¢ =0, since ¢/d < co. In this case the inequality holds as both sides are
equal to a/b. If d > 0, then

< + :|a;c|+c~l|)b.;d|

€
d

e
Qo
e
[SNeY
[SNeY

Now it remains to prove that d > b — |b — d|, which follows immediately fromb—d < [b—d|. O
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Theorem A.4. Let (X;, W;)i—y be an i.i.d. sample from the joint distribution of a binary random
variable X and a real-valued random variable W. If 0 < P* (1) < 1 and Q" < oo, then for any
Bwith0 < < % the following convergence occurs almost surely:

lim Q, =Q* as.
n—oo
where

B F} (w) . F (w)
Qu = WP To () Q= SUD T ()

{wER‘FS(w)>n7B}

By,

Proof. Let us first introduce some more notation:

Since |Qn — Q%] < |Qn — Q| + |Q;, — Q| then we can prove the theorem in two parts:
(A) Qu — QI *5 0
B) Q= Q

(A) First we note that

Qn — Qnl =

Fa(w) Fl(w) ‘ < sup
- weBy

sup

wesy, FO(w)  web, FO(w) Fo(w)  FO(w)

As for any w € B,, we have F2(w) > n™" > 0and F'(w)/F°(w) < Q" < oo, then we can
apply Lemmawith a=FXw),b=F(w),c=F'(w),d = F°(w) and get

Fa(w) Fl(w)’ - |Fp(w) — F' (w)| F(w) |F(w) — F°(w)|
FR(w)  FO(w) |~ FR(w) FR(w) - (FR(w) — [FR(w) — FO(w)| ~
Al 1-A° 51 n2PA°
< + =n"A, +

n=f  n=B.(n"F—A9) 1—nbAY

The required result follows now from Lemmawith a = fand a = 2 since 5 < 28 < %:

n?f A%
1—nBfAQ

Fu(w) _ F'(w)

Fo(w) — Fo(w) — 0 a.s.

|Qr — Qr| < sup

weEBn

‘SnﬁAiJr

(B) First we note that Q}, < Q™ since the supremum is taken of the same expression but in the
case of Q" over a larger set. Therefore,

limsup Q;, < Q”

n—r00

It remains to show that lim inf Q;, > Q™ almost surely. Since Q* < oo, it is possible to choose a
n—oo

sequence (wy, ) such that F°(w,,) > 0 for each m and




Now according to Lemma[AJ3]with o = 0 we get for each m

0 < limsup . (F,?(wm) — niﬁ) — Fo(wm)’ <

n— oo

< lim sup |F3(wm) — Fo(wm)’ +limsupn~? < limsup A2 + limsupn™® %0

n— oo n—00 n—00 n—00

and therefore,

lim (F,?(wm) - n_B) = P (wm)

n—r00

Since wy, € By, if and only if sgn (F,?(wm) — n_B) = 1 and since F°(wy,) > 0, we get

lim Ig, (wm) = lim sgn(F,?(wm) — n75> = sgn FO(w) = 1

n— o0 n—o0

where I, (wy,) is the indicator function with value 1 if w,, € B,, and 0 otherwise. Now

. o Fl(w) .. Fl(w)
MR =Rl P o) ~ IR e () 2
. . Fl(wm) a.s. Fl(w"l)
> hnnlgfIBn (wm)FO(wm) T FO(wp)

As this holds for every m, we finally get
L L AS F! (wm) N
it Qo 2 i o — @

which concludes the proof.
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KOKKUVOTE
(SUMMARY IN ESTONIAN)

STATISTILINE RIKASTATUSE
ANALUUS GEENIREGULATSIOONI
UURIMISEKS LOODUD
ALGORITMIDES

Uha suurema hulga organismide genoomide sekveneerimisega on meil tekkimas
péris hea iilevaade geenide mitmekesisusest. Geenid, mis on pdhiliseks ehitus-
instruktsiooniks elule Maal, mééravad &ra selle, kuidas toota vajalikke RNA- ja
valgumolekule, kuid mitte seda, millal ja kui palju toota. Geeniregulatsioon on
mdiste, mis viitab suurele hulgale geeniproduktide tootmise hulka ja ajastust mo-
jutavatele mehhanismidele. Héired iiheainsa geeni regulatsioonis vdivad inimesel
pohjustada mitmeid haigusi ja siindroome.

Kiesoleva dissertatsiooni eesmérk on edasi arendada ja rakendada geeniregu-
latsiooni uurimiseks loodud algoritme, mis on seotud statistilise rikastatusana-
liitisiga. Statistiline rikastatusanaliiiis on hulk andmeanaliiiisi meetodeid, mis uu-
rivad, kas ja mil mééral on andmed mingi suuruse poolest rikastatud. Seda analiiii-
si saab rakendada, kui meil on vaadeldava suuruse arvulise viirtuse suhtes min-
gi ootus, ja sellisel juhul viitab rikastatus juhtumile, kus tegelik viirtus osutub
oodatust oluliselt suuremaks. Rikastatusanaliiiisi on kasutatud laialdaselt bioin-
formaatikas, et uurida geenide ja muude bioloogiliste objektide vahelisi seoseid,
kombineerides andmeid eksperimentidest ja bioloogilistest andmebaasidest. Dis-
sertatsioon annab iildise formaalse definitsiooni rikastatuse kohta, mida meile tea-
daolevalt varem tehtud pole.

Geeniregulatsiooni uurimiseks kasutatakse sageli funktsionaalse rikastatuse
analiilisi ning motiivide rikastatuse analiilisi. Esimene neist uurib, kas etteantud
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geenide kogum sisaldab oodatavast rohkem iihe ja sama funktiooniga annoteeri-
tud geene. Teine uurib aga seda, kas etteantud motiiv esineb oodatavast rohkemal
maéral mingis bioloogilises sekventsis. Dissertatsioon toob esile selle, et mdle-
mal juhul on sisuliselt tegemist bioloogiliste objektide omaduste vahelise assot-
siatsiooniga, ning esitab formaalsele rikastatuse definitsioonile vastaval kujul kaks
tuntud statistilist meetodit assotsiatsiooni tuvastamiseks — Fisheri tépse testi ning
Kolmogorov-Smirnovi testi.

Jargnevas baseerub dissertatsioon viiele artiklile, mis on &ra toodud lk. 67—
145.

Esimeses artiklis (,,Fast approximate hierarchical clustering using similarity
heuristics”) on geeniekspressiooni andmete hierarhilise klasterdamise jaoks vilja
arendatud kiire ligikaudne algoritm, mis kasutab lihedusheuristikuid. Kiirus on
saavutatud kauguste arvutamisega vaid osade geenipaaride vahel, kusjuures klas-
terduse kvaliteeti tdstab heuristik, mis leiab ldhedaste paaridega rikastatud alam-
hulga kdigist geenipaaridest.

Teises artiklis (,,VisHiC—hierarchical functional enrichment analysis of mic-
roarray data”) on vilja arendatud interaktiivne tarkvara geeniekspressiooniand-
mete visualiseerimiseks. Tarkvara rakendab esimeses artiklis loodud algoritmist
saadud hierarhilise klasterduse kdigile klastritele funktsionaalse rikastatuse ana-
liitisi ning tdstab visuaalselt esile sarnase funktsiooni ja ekspressiooniga geenide
grupid.

Kolmandas ja neljandas artiklis (,,Global transcriptomic analysis of murine
embryonic stem cell-derived brachyury™ (T) cells” ja ,,Comprehensive transcrip-
tome analysis of mouse embryonic stem cell adipogenesis unravels new proces-
ses of adipocyte development’) on uuritud hiire embriionaalsete tiivirakkude dife-
rentseerumist ning kdesoleva dissertatsiooni autori panus seisnes promootorpiir-
kondade regulatoorse rikastatuse analiiiisi kavandamises ja teostamises. Dissertat-
sioonis on tdestatud, et analiilisis kasutatud uudne binaarse ja reaalarvulise tunnu-
se vahelise assotsiatsiooni mdot on ligikaudseks alumiseks tdkkeks reguleerituse
suhtelisele riskile (relative risk). See tulemus lisab kindlust, et mdlemas artik-
lis on eksperimentaalselt saadud geenigruppide regulaatoriteks ennustatud transk-
riptsioonifaktorite seas vihe valepositiivseid.

Viiendas artiklis (,,An evolutionary model of DNA substring distribution’) on
loodud evolutsiooniline mudel, mis médérab ldhtuvalt etteantud mutatsioonisage-
dustest ja sobivusfunktsioonist oodatava DNA alamstringide sagedusjaotuse. Mu-
delit saab potentsiaalselt rakendada taustana inkrementaalsel motiiviotsingul, kus
iteratiivselt otsitakse uusi motiive ja tdiendatakse taustamudelit juba leitud motii-
videga.
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