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ABBREVIATIONS 

AC alternating current 
AFM atomic force microscope 
DC direct current 
EDOT 3,4-ethylenedioxythiophene 
Fe(Tos)3 iron(III) p-toluenesulfonate 
ICP intrinsically conducting polymer 
IMT insulator-to-metal transition 
ITO indium tin oxide 
LED light-emitting diode 
LPDP liquid phase deposition polymerization 
NIR near-infrared 
oCVD oxidative chemical vapor deposition 
PEDOT poly(3,4-ethylenedioxythiophene) 
PEG polyethylene glycol 
PHC poly(1,6-hexanediol-co-citric acid) 
PPG polypropylene glycol 
PSS polystyrene sulfonate 
RH relative humidity 
RMS root mean square 
TENG triboelectric nanogenerator 
Tos p-toluenesulfonate 
UV ultraviolet 
Vis visible 
VPP  vapor phase polymerization 
XPS X-ray photoelectron spectroscopy 
 
For indicating the type of counterion in PEDOT, notation PEDOT:counterion is 
used.  
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INTRODUCTION 
Intrinsically conducting polymers (ICPs) have fascinated scientists since the end 
of 20th century. These materials have numerous potential applications, including 
general use as transparent electrodes and more specific applications in various 
electronic and optoelectronic devices, for energy storage and electricity pro-
duction, in electrochromic devices and various sensors. However, the properties 
of ICPs must correspond to the performance requirements regarding specific 
applications. For example, for using an ICP film as a transparent electrode, it 
needs to conduct sufficiently electricity and simultaneously have necessary trans-
mittance in the visible wavelength range. Furthermore, the stability of relevant 
properties is also crucial. Polyacetylene may have high conductivity, but still 
remains only a scientific curiosity without commercial applications, because the 
stability of the material is too low. 

Poly(3,4-ethylenedioxythiophene) (PEDOT) is an ICP, which is generally 
known for its quite high conductivity, transparency and stability in ambient 
conditions. Still, although PEDOT has remarkable properties among ICPs, these 
are not sufficient for every application. There is a remarkable variety of PEDOT 
preparations methods, which all have their downsides and upsides. It is 
necessary to understand PEDOT preparation methods to have a better control 
over the properties of the polymer. 

In this study, two different PEDOT film preparation methods are explored 
and the stability of PEDOT films is determined in different environments. 
PEDOT film performance as a triboelectric nanogenerator (TENG) working 
electrode and contact surface is assessed. 

Paper I in this thesis focuses on base-inhibited vapor phase polymerization 
(VPP), which is a well-known method suitable for preparation of highly con-
ductive PEDOT films. However, VPP is very sensitive to environmental condi-
tions. Paper I focuses on optimization of VPP process and the use of in situ 
resistance measurements for investigating polymerization. 

Paper II explores the possibilities of liquid phase deposition polymerization 
(LPDP), which is a relatively novel method for preparing PEDOT films. In situ 
resistance measurements are combined with in situ transmittance measurements 
to gain a more complete understanding of the polymerization process. 

The aim of paper III is to study the stability of VPP PEDOT and investigate, 
which factors accelerate degradation of conductivity. Different gaseous 
environments will be used for this purpose and room temperature measurements 
are combined with accelerated aging at elevated temperatures. 

The purpose of paper IV is to use PEDOT films in TENGs. Different 
PEDOT-based electrodes are compared to choose a suitable material for 
PEDOT-based TENG contact surface/working electrode. 

The optimal preparation conditions of PEDOT film by VPP and LPDP were 
determined and PEDOT film conductance was the most stable in dry and dark 
environments. VPP PEDOT was the best choice for TENG contact surface/ 
working electrode.  
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1. LITERATURE OVERVIEW 

1.1. Intrinsically conducting polymers 
ICPs are organic polymers, which conduct electricity. A breakthrough in ICP 
research was reported in 1977 in papers describing conductivity increase of 
polyacetylene doped with halogens or AsF5.1,2 For this discovery A. J. Heeger, 
H. Shirakawa and A. G. MacDiarmid were honored with the Nobel Prize in 
Chemistry 23 years later. Although several conducting polymers (e.g., poly-
aniline, polypyrrole and polyacetylene) and their conductive properties were 
known before these reports, the dramatic increase in conductivity up to more 
than seven orders of magnitudes sparked a wider scientific interest in this 
research area.3 

Several types of ICPs have been developed, which have in common a 
characteristic conjugated system in the polymer backbone. Some examples of 
important ICPs are depicted in Figure 1. Good conductivity is generally 
achieved, when the concentration of charge carriers is high (high doping level), 
effective conjugation lengths long and polymer highly ordered (well-aligned 
polymer chains in a crystalline arrangement). For inorganic semiconductor 
“doping” means insertion of neutral atoms, but for ICPs “doping” is reduction 
or oxidation of the polymer with incorporation of counterions for electro-
neutrality.3 In an undoped state, ICPs are insulators or low-conductivity semi-
conductors, because the band gap is typically around few eV, which is signifi-
cantly larger than thermal energy at room temperature (~0.025 eV).4 Charge 
carriers are introduced into ICPs as solitons, polarons or bipolarons.3 Solitons 
are states in the center of the band gap, which occur only in degenerate poly-
mers and can be filled with one electron (neutral soliton), two electrons (negati-
vely charged soliton) or be empty (positively charged soliton). A polaron forms 
when an electron is added to or removed from the conjugated chain, a chain 
deformation occurs as a result and one electronic level is moved to the band gap 
both from the valence and conductance band. In the case of an electron polaron 
(radical anion), an electron is added to a level drawn from the conductance band 
and for a hole polaron (radical cation), an electron is removed from the level 
drawn from the valence band. By combination of two polarons with the same 
charge, a spinless bipolaron (dication or dianion) forms.  
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Figure 1. Important ICPs depicted in undoped state: a) trans-polyacetylene, b) 
polyaniline, c) poly(p-phenylene vinylene), d) polypyrrole, e) polythiophene, f) 
PEDOT. 
 
 
Energetic barrier to motion of the charged species along the chain is small, but 
charge transport through a macroscopic sample is impeded by defects in the 
polymer chains and finite length of the chains.4 Charge carrier motion in this 
kind of disordered materials is determined by hopping. Most of the ICPs behave 
as disordered semiconductors and conductivity reaches into metallic regime 
only for a few cases and even more rarely remains metallic at low tempe-
ratures.4 In these cases, insulator-to-metal transition (IMT) can be observed. In 
an insulating (semiconducting) regime, conductivity could be generally 
described by hopping mechanism,5 which has a following temperature depen-
dence of conductivity:6 
 
 𝑅(𝑇) = 𝑅଴ exp ቈ൬𝑇଴𝑇 ൰ఈ቉ (1) 

 
T is temperature, R(T) temperature-dependent resistance, R0 and T0 material-
dependent constants and α depends on dimensionality of transport (D), when 
variable-range hopping model is used: 
 
 𝛼 = 11 + 𝐷 (2) 

 
α=1 has been explained by nearest-neighbor hopping, while α=0.5 is consistent 
with an energy gap caused by Coloumb interactions between the carriers or 
charging-energy limited tunneling model.7 α could be determined from the nega-
tive slope of log-log plots of reduced activation energy W as a function of T:6 
 
 𝑊 = −𝑑(ln 𝑅 (𝑇))𝑑(ln 𝑇)  (3) 

 



11 

In the insulating (semiconducting) regime, W has a negative temperature co-
efficient; in the critical regime at the IMT, W is temperature independent for a 
wide range of temperatures and in the metallic regime, W has a positive tempe-
rature coefficient. Models describing transition to metallic conductivity regime 
need to take into account disorder in ICPs. The exact nature of IMT in ICPs has 
been controversial.4,5 Two different possible models considered for ICPs are the 
Anderson disorder-induced transition or a percolation threshold for hetero-
geneously doped material. In the Anderson model, ICPs have a large homo-
geneously distributed disorder, which produces localized states and a mobility 
edge at the boundary between localized and delocalized states. At IMT, the 
Fermi level crosses the mobility edge. For heterogeneously doped material 
where highly doped metallic islands are separated by less conductive areas, 
reaching to percolation threshold at higher doping levels causes rapid increase 
in conductivity. 

ICPs have rigid backbones, because a large amount of energy is required to 
disrupt the planarity of conjugated systems. Therefore, it is difficult to dissolve 
or melt these polymers, which results in poor processability.4 Until the end of 
1980s, usage of ICPs remained to be impractical due to insufficient stability of 
conductivity for known ICPs, but in the following decades polyaniline, poly-
pyrrole and special polythiophenes found their way into the market.3 PEDOT 
has played a considerable role in this development as the most successful and 
widely used polythiophene derivative.  

 
 

1.2. Poly(3,4-ethylenedioxythiophene) 
In the second half of 1980s, scientists at Bayer started to work with conducting 
polyheterocycles after initial failures to develop commercial products from 
other electrically conductive organic materials (e.g., polyacetylenes).3 Although 
some polythiophenes exhibited a high conductivity, the instability of these 
materials in highly conductive form was problematic. Oxygen-substituted thio-
phenes were thought to stabilize the doped state. Although PEDOT was found 
to be insoluble, it had other remarkable properties like high conductivity  
(~300 S/cm), high stability in oxidized state and high transparency in thin oxi-
dized films.8 Unlike conducting polythiophenes PEDOT possessed remarkable 
stability against air humidity, which enabled to develop easily processable 
PEDOT suspension with polystyrene sulfonate (PSS) used initially as antistatic 
coatings.3 PEDOT:PSS is prepared by oxidizing the monomer 3,4-ethylenedio-
xythiophene (EDOT) in the presence of PSS anions. 

PEDOT could be prepared by chemical or electrochemical methods. The 
most widely used method is chemical oxidative polymerization (Figure 2), but 
there are also some additional methods like transition metal-mediated coupling 
of EDOT dihalogen derivatives and even spontaneous polymerization of 2,5-
dibromo-EDOT.3 Oxidative polymerization starts with the slowest step, EDOT 
oxidation to radical cation, which rapidly dimerizes. Endgroup oxidation is 
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remarkably faster for the dimer than the monomer. Finally, the polymer is oxi-
datively doped (Figure 3). Several oxidants could be used for chemical oxida-
tive polymerization, including FeCl3, MnO2, Ce(SO4)2, (NH4)2Ce(NO3)6 and 
CuCl2, while peroxodisulfates are a common choice for preparing PEDOT:PSS 
and iron(III) sulfonates suitable for making highly conductive PEDOT films.3 

High conductivity of PEDOT is achieved by oxidizing the polymer and 
although it is possible to reductively dope PEDOT, it is impractical and results 
in instable conductivities.8 About 1 in 3–5 monomeric units are usually oxidized 
in PEDOT:Tos and PEDOT:PSS films (doping level 20–35%).9–12 However, for 
some systems extremely high doping values have been claimed in the literature, 
over 50%13 and even up to ~90%14. Usually, the conductance in PEDOT 
systems (like PEDOT:PSS) is described by variable range hopping.6 Although 
until recently, no metallic conductivity had been observed for PEDOT films,3 
several papers published in 2010s have reported that highly conductive PEDOT 
films are in the metallic conductance regime.15–18 High conductivity in PEDOT 
has been associated with ordering of polymer chains, as evidenced by the ultra-
high conductivity values (~8000 S/cm) of PEDOT nanocrystals19 or influence of 
film structuring additives on the growth of PEDOT films16,20. However, too bold 
generalizations about these complicated systems are frequently unwarranted. 
For PEDOT with moderately high conductivity values (600 S/cm), large chan-
ges in molecular ordering occurring during polymer washing did not improve 
the film conductivity at all.21 

First commercially successful applications of PEDOT were its use in antista-
tic coatings and as a cathode material in solid electrolyte capacitors.8 Later, a 
range of possibilities for PEDOT-containing devices has been studied, including 
electroluminescent lamps, organic light-emitting diodes, organic solar cells and 
field-effect transistors.3 Furthermore, PEDOT is a promising material for 
replacing the most widely known transparent electrode material indium tin 
oxide (ITO). Compared to PEDOT, ITO is expensive and not compatible with 
flexible applications.22 However, for replacing ITO PEDOT must have suffi-
ciently high conductivity, transparency and stability. 
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Figure 2. Chemical oxidative polymerization of EDOT. Oxidation of EDOT into 
radical cation is followed by EDOT+ coupling into the EDOT dimer and subsequent 
similar coupling steps cause the formation of longer chains.23  
 
 

 
 

Figure 3. PEDOT could be in oxidatively doped (oxidized) or reduced (neutral) form.23 
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1.3. Preparation of PEDOT films 
For PEDOT film preparation several methods based on electropolymerization 
and chemical oxidative polymerization are known. Typically, EDOT is electro-
polymerized in a three-electrode configuration in galvanostatic, potentiostatic or 
potentiodynamic mode.24 PEDOT electropolymerizations are usually carried out 
in organic media,24 but although EDOT has relatively low solubility in water, it 
could be electropolymerized in solvent-water mixtures or even in water.8 Con-
ductivities depend on used method and counterion, but values of 400–600 S/cm 
could be easily achieved.8,10 It is possible to control the reaction by controlling 
the total charge passing through the electrode.24 Still, electrochemical poly-
merization for PEDOT film preparation has some serious drawbacks as it is 
limited to conductive substrates and may produce non-uniform films for large 
areas25 and uneven surfaces. By using chemical oxidative polymerization 
methods, virtually any surface could be covered with conductive PEDOT film. 

PEDOT forms stable dispersions with PSS, which are commercially avail-
able and could be deposited by all common techniques employed for the depo-
sition of waterborne coatings. Conductivity of PEDOT:PSS depends on PEDOT 
to PSS ratio, pH value (highest conductivities are in the pH range of 0 to 3) and 
the use of additional conductivity enhancing agents (so-called “second 
dopants”), e.g., ethylene glycol or dimethyl sulfoxide.3 Effective second dopants 
are water-soluble additives with high dielectric constant and boiling point, 
which cause reorganization in the film structure and formation of highly 
conductive PEDOT-rich conduction path in the films. The best conductivity 
values of PEDOT:PSS films compare well to films prepared by other methods 
and conductivities up to 1000 S/cm could be routinely achieved by using 
commercially available PEDOT:PSS dispersions with the correct secondary 
dopant.3 Furthermore, several methods enable to increase PEDOT conductivity 
to several thousands of S/cm, e.g., adding ionic liquid to PEDOT:PSS disper-
sion26 or acid (e.g., sulfuric acid) treatment of prepared films27. Solution 
shearing and post-processing methanol treatment enabled to achieve sheet 
resistance (Rs) of 17 Ω/sq with 97% transmission at 550 nm and conductivity of 
4600 S/cm.22 

PEDOT films could be produced by directly mixing the oxidant (e.g., 
iron(III) p-toluenesulfonate, Fe(Tos)3) and the monomer in a solvent (e.g., n-
butanol) and casting the mixture on a substrate.28 While Fe(Tos)3 has good film-
forming properties, the acidic environment of Fe(Tos)3 solutions induces 
undesirable side reactions, likely including both formation of non-conjugated 
polymer and ether cleavage in the dioxane ring, which could be avoided by 
adding a basic inhibitor (e.g., pyridine).28,29 The solution containing the 
monomer and the oxidant has a short pot-life of 10–20 minutes due to rapid 
polymerization and flocculate formation, causing difficulties in homogeneous 
film preparation, but pyridine additive enables to extend the pot-life to several 
days by slowing PEDOT formation reaction.28 Polymerization is initiated by 
heating the monomer-containing oxidant films, which causes volatile pyridine 
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to slowly evaporate and desired polymerization reaction occurs only in a 
specific acidity range during evaporation of pyridine. This method enabled to 
achieve polymer film conductivities exceeding 1000 S/cm, surpassing the 
conductivities achieved by other known methods for PEDOT at the time of 
publication of these articles in years 2004–2005.28,29 In addition to pyridine, 
other compounds, which are sufficiently basic and volatile, have been used for 
improving film conductivities. The conductivity-enhancing effect of basic 
inhibitors has been also explained by lowering the polymerization rate by 
decreasing the reactivity of Fe3+.30,31 Both basic properties and complexation 
with Fe3+ has been proposed to explain this rate-decelerating influence, although 
the exact mechanism is far from clear and inhibitors may influence poly-
merization also through several other factors.30,32 As PEDOT films with very 
high conductivity have been later prepared with non-basic glycol copolymer 
inhibitors20,33 and the influence of these inhibitors could partially be explained 
by slowing down reaction rate,9,34 acid-initiated side-reactions do not seem to be 
an universal problem for this PEDOT preparation method. Imidazole and 
quinoline are suitable inhibitors for base-inhibited polymerization of EDOT, but 
due to the high boiling point of these compounds (257 °C35 and 230 °C28, 
respectively), it is inconvenient to evaporate these compounds, especially con-
sidering possible evaporation of EDOT (boiling point 190 °C), while pyridine 
with a lower boiling point of 115 °C is far more easily removed.28 The relation-
ship between acidity and conductivity of PEDOT films is complicated and 
acidic environment may enhance conductivity, if the film is exposed to acid 
after preparation. For PEDOT films prepared by spin-coating, a solution 
containing the monomer, iron(III) trifluoromethanesulfonate and a copolymer of 
polyethylene glycol (PEG) and polypropylene glycol (PPG) as an additive, 
subsequent treatment with p-toluenesulfonic, trifluoromethanesulfonic and 
sulfuric acid increased the conductivity, while hydrochloric and nitric acid 
decreased it.15 Optimal results were gained with pH~1, pH below 0.5 caused 
degradation of the films. In 2016, PEDOT film conductivity of 3600 S/cm was 
achieved by a modification of the previously described synthesis technique 
involving addition of N-methyl-2-pyrrolidone as a cosolvent, while sulfuric acid 
treatment increased the film conductivity to an unprecedentedly high value of 
5400 S/cm.16 However, the practical value of acid treatment is likely somewhat 
limited, because acidic environments are frequently incompatible with practical 
applications of PEDOT films. The acidic and hygroscopic nature of 
PEDOT:PSS causes also instability of ITO/PEDOT:PSS interfaces,36 which is 
one of the reasons for research in alternative PEDOT film preparation methods. 

LPDP is a recently introduced polymerization method, which resembles 
VPP, but the source of the monomer is a liquid phase. A substrate covered with 
an oxidant layer is immersed into a monomer solution.37,38 The oxidant film is 
poorly soluble in the solvent, which prevents the film from dissolving. This 
method enables to achieve better control over reaction environment compared to 
VPP, which depends on the distribution of monomer and water vapor in the 
chamber. Trichloromethane, cyclohexane and petroleum ether have been used 
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as solvents, while both FeCl3 and Fe(Tos)3 have served as oxidants.37–39 
Reported conductivities of LPDP PEDOT films are relatively modest (200– 
400 S/cm), but post-treatment in the oxidant solution increases the doping level 
and after post-treatment the conductivity may exceed 700 S/cm.39 

 
 

1.4. Oxidative vapor deposition processes for  
PEDOT film preparation 

Several methods utilizing the vapor phase for ICP deposition are known, 
including plasma-enhanced chemical vapor deposition, pulsed laser deposition, 
oxidative chemical vapor deposition (oCVD) and VPP.31 For preparation of 
PEDOT films, oCVD and VPP are the most important of these techniques. 
oCVD of ICPs was first reported in 1986 by introducing pyrrole monomer 
vapor to FeCl3 vapor under vacuum conditions.40 oCVD of PEDOT was 
presented in 2006.23 FeCl3 was chosen as an oxidant, because Fe(Tos)3 used 
frequently for VPP did not yield polymer films likely due to pyrolysis at high 
temperatures. oCVD does not depend on the wetting properties of a solution and 
therefore simplifies the coating process on a variety of organic and inorganic 
materials, being also suitable for coating high surface area morphologies, e.g., 
fibers and pores.23 In a typical oCVD experiment, a substrate is placed inside a 
vacuum chamber onto an inverted temperature-controlled stage and FeCl3 is 
sublimated from a heated crucible under the substrate, while the monomer is 
introduced at controlled flow rate from a heated vacuum system.40 Use of 
bromine as an oCVD oxidant enabled to prepare PEDOT films in a completely 
dry process, avoiding not only the need to use solvent during preparation of the 
polymer film, but also washing the film to remove unreacted oxidant and 
undesirable by-products.41 As an additional advantage, bromine is highly 
volatile, avoiding difficulties with uniform spatial delivery of oxidant, which 
complicate oCVD with FeCl3.40 However, bromine is highly corrosive and 
toxic. Although initially the conductivities of oCVD PEDOT films were  
limited to ~100 S/cm,23 very high conductivities have been achieved later  
(~3500 S/cm)42 by using FeCl3 as an oxidant. 

While during oCVD, both the oxidant and the monomer are delivered 
through the vapor phase, VPP (depicted in Figure 4) is a two-step process.40 
Initially, the substrate is covered with the oxidant solution, e.g., by spin-coating. 
The oxidant-treated substrate is subsequently inserted in a chamber containing 
monomer vapors, followed by washing the films with a suitable solvent to 
remove by-products and unreacted reactants. VPP takes place at the liquid-
vapor interface31 and although the oxidant films may appear to be dry prior to 
the experiment, the liquid-like state of oxidant films is necessary for film 
growth.33 Without access to water vapor, no polymerization occurs in dried 
oxidant films, which was initially explained by water molecules possibly acting 
as proton scavengers in the deprotonation step of oxidative polymerization.12,43 
Later investigations revealed that the liquid-like behavior of the oxidant films 
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also allows the transport of the oxidant to the outermost surface of the film. This 
takes place via capillary action through a viscous liquid layer containing 
granular PEDOT particles, enabling film growth after the formation of the 
initial layer of PEDOT.33 This conclusion was supported by X-ray photoelectron 
spectroscopy (XPS) results, which showed that even for oxidant-PEDOT films 
grown to a 150 nm thick PEDOT layer, iron species, including Fe3+, were 
present at the topmost surface. VPP may be performed at ambient pressure, but 
vacuum conditions have been reported to increase the homogeneity of vapor 
distribution in the chamber, improving the homogeneity and reproducibility of 
the prepared PEDOT films.44 Washing the film for by-product removal in-
creases order in polymer chain alignment, but this effect does not seem to result 
in increased conductance.21 However, conductivity depends mostly on reaching 
the percolation threshold for the unwashed film.  

 
 

 
 
Figure 4. Schematic representation of general VPP procedure. a) Oxidant solution with 
necessary additives is cast onto a substrate, b) polymerization occurs at elevated tempe-
rature and frequently at lowered pressure in a special chamber and subsequently, c) the 
film is washed to remove unreacted oxidant and by-products.31 
 
 
The conductivities of PEDOT films prepared by VPP using FeCl3 oxidant were 
relatively low (~70 S/cm) when the method was initially applied for PEDOT 
film preparation.45 Later, Fe(Tos)3 has become a standard choice for preparing 
PEDOT by VPP. Fe(Tos)3 oxidant gave superior VPP PEDOT films with more 
than ten times higher conductivity than using a variety of different Fe3+ salts 
containing chloride, camphor sulfonate, 4-ethylbenzenesulfonate and tetra-
decylsulfonate anions.46 As attempts to exchange ions electrochemically did not 
influence the film conductivity, the authors proposed that different conducti-
vities are caused by the ordering effect of the anion witnessed by a correlation 
between inter-chain stacking distance and conductivity. Interestingly, the degree 
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of ordered π-stacking did not influence the conductivity of the films. However, 
the claim remains controversial as effectiveness of the ion exchange was not 
proven and a later investigation has shown that ion exchange may take place 
only partially and even this kind of partial ion exchange actually influences the 
conductivity.13 Ordered polymer forms only during washing the film without a 
large influence on base-inhibited VPP PEDOT conductivity.21 Fe(Tos)3 has 
been associated with higher conductivities than FeCl3 oxidant due to lower 
effective oxidation strength and slower polymerization rate, which should give 
longer conjugation lengths and less defects in the polymeric material.31 Using 
the Fe(Tos)3 oxidant inhibited by pyridine enabled to increase the conductivities 
of VPP PEDOT films over 1000 S/cm.28,29 In recent years it was demonstrated 
that iron(III) trifluoromethanesulfonate is also suitable for preparing very highly 
conductive PEDOT films.15,16 

As an alternative to pyridine, different amphiphilic copolymers of PEG and 
PPG have been added to the oxidant solution for improving PEDOT film 
conductivity. Initially, it was demonstrated that adding PEG-ran-PPG copoly-
mer enables to achieve similar conductivities to base-inhibited polymerization 
by suppressing oxidant crystal formation during water absorption from atmo-
sphere in humid environments prior to polymerization.25 Crystallized oxidant 
areas do not participate effectively in polymerization process, causing defect 
formation in the films. However, as water is necessary for film formation, 
presumably due to acting as proton scavenger during polymerization, it is not 
possible to obtain PEDOT films in completely water-free environments.12,43 
Also, PEG-ran-PPG was reported to decrease the growth rate of PEDOT films 
and extend the polymerization stage with slow growth rate, which allows to 
terminate polymer growth in a polymerization stage yielding high-conductivity 
films.12,34 PEG-PPG-PEG copolymer forms complexes with the oxidant, in-
creases the doping level and may also influence conjugation length and defects 
in the PEDOT backbone.47 Further studies with tri-block PEG-PPG-PEG 
copolymers have claimed that the role of these additives in the EDOT poly-
merization process is even more complicated, improving water retention in the 
oxidant film48 and maintaining liquid-like state of the oxidant layer in vacuum 
conditions with proposed simultaneous structure-directing effect on growing 
PEDOT.33 The liquid-like state allows sufficient mobility of oxidant for film 
growth, while the hydrophilic and hydrophobic domains of amphiphilic 
copolymer cause redistribution of solution constituents according to their 
polarity resulting in structure-directing effect.20 PEDOT thin film conductivity 
comparable to ITO (3400 S/cm) combined with a relatively low Rs (45 Ω/sq) 
and high transparency (transmittance >80% in the visible spectrum) has been 
achieved by optimizing the copolymer and solvent during the vacuum VPP.20 

Fabretto et al. studied the PEDOT film growth process with Fe(Tos)3 oxidant 
and PEG-ran-PPG additive using quartz crystal microbalance and AFM.9 
According to their results, PEDOT film grows in four stages. Initially, a first 
layer of PEDOT nodules forms. This step is dependent on the arrival rate of 
monomer and/or water vapor from the vapor phase. As the availability of the 
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exposed oxidant decreases when the PEDOT film starts to cover the oxidant 
surface, PEDOT growth rate slows down, marking the beginning of the second 
stage of polymerization. In the third stage, film growth rate accelerates again. 
For explanation, Fabretto et al. proposed initially that starting from the 
beginning of the second stage, the first step in the oxidative polymerization 
mechanism requires electron movement through the conductive polymer itself 
from the monomer to Fe3+, as the oxidant is mostly covered by polymer 
surface.9 Therefore, the polymerization rate decelerates compared to the first 
stage, as the number of conductive pathways to active oxidant sites is small. As 
percolation occurs in the film and more conductive pathways become available, 
the rate of polymerization accelerates again, marking the beginning of the third 
stage of polymerization. However, in a later study the same research group 
claimed that capillary transport of the viscous oxidant solution through the 
granular PEDOT layer enables polymerization by allowing the oxidant to 
directly contact with the monomer even in the later stages of film formation, 
which is contradictory to the previously proposed electron transport ex-
planation.33 Although the authors did not measure PEDOT growth rate in the 
second study, they showed that the amount of Fe3+ is extremely low at the 
surface in the early stages of PEDOT growth, but increases later, and proposed 
that the formation of a tight granular bed is necessary for initiating the capillary 
transport. The final stage of polymerization brings a decrease in polymerization 
rate, as the availability of oxidant becomes again limiting for the film growth.9 
The conductivity of PEDOT is high in the initial slow growth stages, but 
decreases at the start of the rapid third stage, which may be caused by different 
doping levels (higher in the beginning of polymerization) and possibly also 
more defective PEDOT chains with smaller conjugation lengths, which are less 
orderly aligned.9 Although increasing doping levels may result in higher charge 
carrier densities and increased conductivity, the relationship between doping 
and conductivity is more complicated as excessive doping is associated with 
lower conductivity. Too high ratio of Fe(Tos)3 to monomer leads to lower con-
ductivity and transparency of PEDOT, presumably generating overdoped films 
containing immobilized charge carriers.30 
 
 

1.5. Stability of PEDOT thin films prepared by  
oxidative vapor deposition processes 

The stability of ICPs is an important factor limiting the potential applications of 
these materials. ICPs are used only sparingly in commercial devices, which 
could be explained to a large degree by stability issues, e.g., degradation in air 
and thermal decomposition at elevated temperatures.31 Winther-Jensen and 
West determined that the conductivity of VPP PEDOT films slowly decreases 
and drops to a stable plateau value during one year, while similar changes occur 
almost instantaneously in water.49 While initially PEDOT films had relatively 
high conductivities around 500–1000 S/cm, the new stable values of con-
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ductivity were less than half of the initial values. However, the changes were 
largely reversible by immersing the aged films into p-toluenesulfonic acid 
solution, which increased conductivities almost to the initial values after aging. 
Winther-Jensen and West determined that film conductance is dependent on pH 
and decreases after immersing the PEDOT film into a basic solution and 
increases after immersing the film into acidic solution. The reversible nature of 
these changes indicated that no damage is done to the polymer backbones, but 
changes occur in the doping level, which was additionally indicated by changes 
in the bipolaron band in near-infrared (NIR) absorbance spectra. Although the 
reversibility of aging effects in acidic solutions is useful concerning PEDOT 
applications in aqueous environments, for most other applications this kind of 
treatment is not a practical possibility for avoiding aging-related degradation. 
Madl et al. obtained somewhat contradictory results to Winther-Jensen and 
West by observing that the conductivity of a VPP PEDOT film decreased for 
the first week, but was relatively stable for a following period of 50 days of 
storage in air.50 Compared to VPP PEDOT, PEDOT:PSS and PEDOT prepared 
in situ from a solution were more stable according to Madl et al., but had 
significantly lower conductivities. 

The conductivity of oCVD PEDOT prepared by using FeCl3 or Br2 de-
creased exponentially during accelerated aging experiments.41 The stability of 
these PEDOT films was quite low at 100 °C, although the PEDOT films pre-
pared by using Br2 aged significantly slower. The lifetime of conductivity was 
in these conditions ~2000 s for PEDOT:Cl, but ~10 000 s for PEDOT:Br. In a 
later study, degradation of PEDOT:Cl films prepared by oCVD was associated 
with FeCl3 impurity remaining in the film even after washing the films with 
methanol.14 This impurity causes dedoping and a decrease in charge carrier 
density, which was determined by AC Hall effect measurements. Treatment of 
oCVD PEDOT:Cl films with aqueous solutions of some acids (HBr, H2SO4) 
does not only increase conductivity, but also increases stability.14,51 It is still 
necessary to consider that for standard VPP PEDOT:Tos films the stability 
results of oCVD PEDOT:Cl may not apply, as the used oxidant and dopant 
anion are different.   
 
 

1.6. Triboelectric nanogenerators 
The working principle of TENGs was first demonstrated in 2012.52 In these 
devices, two different materials are brought into contact with each other by 
external force and the surfaces of these materials obtain static charges. The 
contacting surfaces may be dielectric films prepared onto electrode materials 
that are connected by an external circuit. Alternatively, one of the surfaces may 
be a conductor, being both the triboelectric layer and the electrode.53 Separating 
the oppositely charged surfaces generates an electric potential difference, which 
could be used for driving a current in an external circuit. To balance the 
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potential difference, charges flow from one electrode to another during the 
release. Bringing the surfaces again into contact will generate an opposite 
current flow; therefore, periodic switching will generate an output consisting of 
alternating current (AC) pulses. 

Contact charging at conducting polymer interfaces may involve several 
different processes.54 In the case of metal-metal or metal-semiconductor inter-
faces with zero or small band gaps, electron donor-receptor behavior is respon-
sible for the acquired charge polarity and electrons flow until the equilibration 
of Fermi levels, but analogous processes require a large activation energy in 
dielectrics and for contact charging there is generally neither accepted theore-
tical basis nor definite relationship to some simple parameter (e.g., conductivity 
or dielectric constant).55 Contact charge formation on organic polymers could be 
described by so-called triboelectric series, which lists the materials in the order 
of relative contact charge polarity starting from the material with the highest 
propensity to charge positively to the material, which has the highest propensity 
for negative charge accumulation.56 Baytekin et al. investigated surface 
charging with Kelvin force microscopy and discovered that oppositely charged 
mosaic patterns form on polymer surfaces during contact electrification, which 
mostly compensate each other and only a slight excess of one type of charged 
micro-patterns determines the overall charge.57 This indicates that surface 
charging is not a simple function of material composition. Still, Diaz and Felix-
Navarro noticed that although contact charge formation in polymers is sensitive 
to numerous parameters (e.g., surface composition, surface characteristics, 
contact pressure, nature of the contact, relative humidity), nitrogen-containing 
polymers obtain highly positive charge, halogenated polymers highly negative 
charge and hydrocarbons almost no charge, while oxygen-containing polymers 
tend to charge slightly positively.56 These effects were related to acid-base 
properties of the polymers, as polymers with basic properties had a tendency to 
charge positively, indicating water dissociation and transfer of resulting ions as 
the main contact charging mechanism. Heterolytic bond breakage may also 
have a role in contact charge formation.57 However, it is still controversial to 
what extent the insulator surface charging results from the transfer of ions, 
because there is also evidence supporting electron transfer.55 Additionally, for 
some softer materials so-called mass transfer may take place and charged 
species are transferred with minute amounts of polymeric material.57,58 

TENGs could function in four fundamental working modes: vertical contact-
separation mode, contact-sliding mode, single-electrode mode and freestanding 
triboelectric layer mode (Figure 5).59 The simplest mode of vertical contact-
separation has two dissimilar films (at least one of the films is an insulator) 
separated by a gap, which are tapped together during device operation. The 
contact of the surfaces creates opposite charges and once the two surfaces are 
again separated by a gap, a potential difference is created between electrodes 
and current flows through external load to balance the electrostatic field. After 
closing the gap, the triboelectric-charge-created potential disappears and the 
electrons flow back. Periodically repeating the procedure creates an AC output. 
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In the lateral sliding mode, triboelectric charges are created by relative sliding 
of the surfaces in parallel of the interface. A potential difference is generated by 
uncompensated charges in mismatched areas of periodically sliding electrodes. 
Sliding generates triboelectric charge more efficiently than vertical contact. In 
single-electrode mode, an electrically grounded electrode is in periodic contact 
with an insulating surface, developing contact charges and potential difference 
due to some kind of periodic movement (sliding or vertical contact-separation) 
between these two surfaces. The current is generated by electrons moving 
between the electrode and the ground. This design enables to harvest energy 
from an arbitrary freely moving object, but electrostatic screening limits its 
effectiveness. For the freestanding triboelectric layer mode, a pair of symmetric 
electrodes underneath a charged dielectric layer is separated by a gap and the 
cyclically moving dielectric layer generates potential difference by induction. 
This mode is known for its effectiveness and robustness. 

 
 

 
 
Figure 5. Working modes of a TENG are a) vertical contact-separation mode, b) 
contact-sliding mode, c) single-electrode mode and d) freestanding triboelectric layer 
mode.60 
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TENGs have potential applications for harvesting mechanical energy wasted in 
daily life and using it to power mobile self-powered devices, including bio-
mechanical devices (e.g., pacemakers) and active sensors (pressure, motion, 
vibration, chemical and biomedical sensors), but also electricity production at a 
larger scale (wave and wind energy).59 TENGs have high output power, could 
be prepared by scalable preparation process, are lightweight and require only 
small quantities of materials, which are all easily available.61 Area power 
densities of 500 W/m2, volume power densities of 15 MW/m3 and instantaneous 
energy conversion efficiencies ~70% have been achieved.59 Unfortunately, there 
are still some problems with practical applications of TENGs, mainly the mis-
match of impedance between TENGs (high voltage, low current) and electronic 
devices (low voltage, high current), and also mechanical wear of polymer 
materials used for preparation of TENGs.61 
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2. AIMS OF THE STUDY 

General aim of the present study was to investigate PEDOT preparation con-
ditions and film properties relevant for the application of PEDOT films as 
transparent conductive electrodes. Potential practical applications of conductive 
polymer films as transparent electrode materials depend on several parameters 
of the films (e.g., conductivity, optical transmittance and stability of conduc-
tivity). For controlling film conductivity and transmittance, it is necessary to 
understand PEDOT film formation and growth better, which is the wider 
purpose of this study. Different PEDOT preparation methods based on chemical 
oxidative polymerization were in the focus of this study: VPP as a well-known 
PEDOT preparation method and LPDP as a relatively recently developed 
technique. These methods were investigated by rarely used in situ measurement 
techniques. 

The other focus of research was the stability of PEDOT film conductivity as 
sufficient stability of the material in the working environment is crucial for any 
potential application. Therefore, investigating PEDOT stability in various 
environments is an important basis to determine potential uses of PEDOT 
electrodes. Moreover, testing potential applications of PEDOT electrodes was 
among the purposes of the study. The specific aims of the study were the 
following: 
1. Investigating the influence of PEDOT preparation conditions during base-

inhibited VPP on conductance and transmittance of the material for 
preparing PEDOT films with optimal properties (paper I). 

2. Comparing PEDOT preparation by base-inhibited VPP with preparation by 
LPDP as an alternative method of chemical oxidative polymerization 
(paper II). 

3. Investigating the stability of PEDOT thin film conductance in different 
gaseous environments, at different temperatures and in dark and UV-
illuminated conditions (paper III). 

4. Characterizing the PEDOT electrode as a replacement for the ITO 
electrode in TENGs (paper IV). Prepared VPP PEDOT films were suitable 
as a replacement for ITO contact surface/working electrode in TENGs. 
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3. METHODS 

3.1. Preparation of substrates 
Several different types of substrates were used for preparing PEDOT films. 
Amorphous silicon-titanium mixed oxide-coated glass substrates were chosen 
for optimizing the reaction time and temperature, because this oxide is used in 
liquid crystal-xerogel composite electro-optical films, making the surface pro-
perties of substrates comparable to these films. Silicon-titanium mixed oxide 
coated glass substrates were prepared using sol-gel method from tetra-
ethylorthosilicate and titanium isopropoxide. The specific details are given in 
the published article.62 

For monitoring electrical resistance during film growth and aging, a glass 
substrate patterned with highly conducting electrode film of Pt or ITO was used, 
which had a square-shaped glass surface in the center of the substrate surface 
surrounded by two rectangular substrate areas covered with highly conductive 
electrode films. For preparing TENG PEDOT electrodes, glass substrates with 
an ITO electrode strip in the edge were used for better electrical contact. 

For preparing glass substrates with patterned ITO electrodes, ITO-covered 
glass substrates (Rs = 15 Ω/sq) were initially partially covered with Scotch tape. 
Subsequently, these substrates were repeatedly etched with concentrated hydro-
chloric acid (36.5–38%) and washed with deionized water, until the acid-
exposed surface was non-conductive (up to a range of GΩ) and no ITO could be 
visually detected in the etched area. This method allowed to prepare a square-
shaped ITO-free surface between ITO-electrodes on rectangular substrates  
(25 mm × 12.5 mm).  

Pt-patterned electrodes were grown by sputter coating (Quorum Techno-
logies SC7640 Sputter Coater) of platinum onto glass substrates, which were 
cut from microscope glass slides. A square-shaped area at the center of the 
substrate was covered with tape prior to sputter coating and rectangular Pt-
electrodes were deposited onto the exposed area. The electrodes were annealed 
at 550–600 °C and had Rs values below 15 Ω/sq. 
 
 

3.2. Preparation of PEDOT films 
Preparation of PEDOT films by VPP comprised of several steps. Firstly, oxi-
dant films were prepared onto substrates by spin-coating Fe(Tos)3 solutions in 
n-butanol with a pyridine additive at 3000 rpm for 12 s. For in situ resistance 
measurements, a few mm wide strip on the measurement electrode was also 
covered with the oxidant solution to ensure electrical contact between polymer 
film and electrodes (inset in Figure 6). Solutions contained Fe(Tos)3 and 
pyridine in a mass ratio of 25:1. Generally, 16% Fe(Tos)3 solution by weight 
was used, if not claimed otherwise. After spin-coating, the films were dried in 
an oven at 80 °C for two minutes and inserted into a polymerization chamber 
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(Figure 6) placed on top of a temperature-controlled hot-plate at an elevated 
temperature. The polymerization chamber consisted of an 8 L glass dome 
hermetically sealed to an aluminum bottom with a stainless steel rim, equipped 
with air inlet valves used for pumping in air with specific relative humidity for 
humidity experiments, a relative humidity sensor (Honeywell HIH-4000-001) 
calibrated with saturated salt solutions and a Pt100 thermoresistor connected to 
Keithley 2400 sourcemeter for precise humidity and temperature measurements 
in air near the substrates. A drop of EDOT was inserted on a glass slide into the 
chamber. Polymerization was initiated by condensation of monomer vapors 
onto the substrates. Different polymerization temperatures, growth times and 
relative humidities were used for preparing the films. For some films prepared 
on Pt-patterned electrodes, electrical resistance was measured during film 
growth. The freshly polymerized films were washed with methanol for ob-
taining pure polymer films and removing unreacted oxidant, pyridine and 
reaction by-products. 
 
 

 
 

Figure 6. Chamber used for VPP of EDOT. The chamber is placed on a hot-plate (1), 
equipped with gas inlet valves connected to hoses (2), temperature and humidity sensors 
near the substrate (3). A source of EDOT vapors is a drop of EDOT on a glass slide at 
the bottom of the chamber (4). Polymerization occurs on the substrate above the EDOT 
drop (5). PEDOT film forms in the oxidant layer (6) and patterned ITO electrodes (7) 
enable to measure resistance in situ during film formation.   
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Pt-patterned substrates were used for preparing PEDOT films by LPDP. In 
general, the preparation method of PEDOT films by LPDP followed similar 
steps as the preparation of PEDOT films by VPP, but the monomer was 
deposited onto the substrates from solution. Fe(Tos)3 oxidant films were pre-
pared by spin-coating. Some of the films were subsequently dried at 80 °C, but 
undried films were also used for comparison. Polymerization was conducted in 
heptane solutions of EDOT at room temperature (21–22 °C) in a special cuvette 
designed for simultaneous measurements of resistance and optical trans-
mittance. The obtained films were washed with methanol. 

Electrochemical polymerization of PEDOT was carried out in a solution 
containing 0.1 M of EDOT and 0.1 M of p-toluenesulfonic acid, which were 
dissolved in deionized water-acetonitril mixture in a volume ratio of 1:1. The 
electropolymerized films were grown in a galvanostatic mode for 100 s using a 
current of 1 mA/cm2 and as a counter-electrode 0.075 mm thick stainless steel 
foil (Goodfellow, AISI 316) was used. PEDOT composite film with the elasto-
mer poly(1,6-hexanediol-co-citric acid) (PHC) used as one of the electrode 
materials in TENG was prepared according to the procedure described in the 
publication.54 
 
 

3.3. Resistance measurements, atomic force microscopy, 
spectroscopic and grazing incidence X-ray diffraction 

characterization 
Two-point resistance measurements were performed in situ during film growth 
and film aging. Temperature dependence of resistance was measured at low 
temperatures (10–150 K). AC of 20 Hz was used for in situ resistance mea-
surements during VPP, but for other in situ resistance measurements DC was 
used. The used setup for two-point resistance measurements gave comparable 
Rs values to the values obtained by a four-point probe. 

Four-point probe measurements were used to characterize the resistance of 
prepared PEDOT films. A four-point probe was equipped with gold-plated 
contacts spaced equally 2 mm apart in a linear configuration. The resistance of 
the films was generally measured in eight symmetrically positioned points on 
the film for films prepared on silicon-titanium mixed oxide coated glass sub-
strates. The Rs values were calculated using accurate correction factors for 
specific measurement geometries by the method described in the literature.63 
Agilent 34410A multimeters were used for resistance measurements. 

For PEDOT film thickness measurements, polymer films were scraped with 
a sharp needle, revealing the surface of the substrate. Atomic force microscope 
(AFM) (Veeco Dimension Edge) working in tapping mode was used for 
measuring the height difference between substrate surface and polymer surface. 
The thickness of the films was measured from at least three different locations 
averaging over several line scans for each location. AFM was also used for 
characterizing the surface morphology of the films. 
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The UV-Vis-NIR transmittance/absorbance spectra of washed PEDOT films 
were measured by JASCO V-570 spectrophotometer and Cary 5000 (Agilent 
Technologies) spectrophotometer. Transmittance of the PEDOT during LPDP 
was measured by Ocean Optics HR2000+ES spectrometer, using Ocean Optics 
LS-1 white light source. The measurement chamber was connected to the light 
source and spectrometer with optical fibers and collimator lenses with SMA 905 
connector. Renishaw inVia micro-Raman spectrometer (spectral resolution  
2 cm–1) equipped with a continuous mode Ar+ gas laser (514.5 nm) was used for 
measuring Raman spectra. For XPS measurements a Gammadata Scienta SES-
100 hemispherical energy analyzer and a non-monochromatised Mg Kα 
radiation source (a Thermo VG Scientific XR-4 X-ray gun) was used with 
overall resolution of approximately 0.6 eV. The XPS data were fitted with 
asymmetric line profiles (a Gaussian profile with an exponential tail on the high 
binding energy side), maintaining the same shape and width for all the six line 
components of the three line doublets, with the S 2p spin orbit splitting derived 
energy difference allowed to vary within 0.1 eV of the expected value of  
1.15 eV. Grazing incidence X-ray diffraction (GIXRD) results were obtained by 
SmartLab (RigakuTM) diffractometer using 9 kW Cu rotating anode radiation 
source and a fixed 0.14° incidence angle. 
 
 

3.4. Aging in different environments 
Different gaseous environments (inert gas environments, oxygen, air, vacuum) 
were used for assessing the PEDOT film stability. Experiments at room tempe-
rature were performed in two-liter glass jars and in a stainless steel jar with a 
vacuum gauge for determining the effects of vacuum. The humidity of gaseous 
environments was regulated with saturated salt solutions in a humidity chamber 
prior to the aging experiments. A UV LED (110° viewing angle, 1 mW output 
power and peak wavelength at 370 nm) positioned 16 cm away from the film 
enabled to measure the effect of UV illumination on the stability of PEDOT. To 
avoid the influence of ambient lighting, the glass jars were covered with alu-
minum foil during the experiments. Thermal aging experiments were performed 
in an oven. Inert gas environment was created in a quartz tube with aluminum 
caps equipped with hoses. The data collection was started after the films were 
warmed up to the desired temperature to exclude the possible influence of 
temperature change on the resistance of the films. 
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4. RESULTS AND DISCUSSION 

4.1. Preparation of PEDOT films by VPP (paper I) 
The main objective of the first part of the study was to investigate the effect of 
preparation conditions on the properties (Rs, electrical conductivity and visible 
light transmittance) of VPP PEDOT films prepared in our polymerization 
chamber. However, significant additional insights into the polymerization pro-
cess where gained during this investigation. Both increasing temperature at 
constant reaction time and reaction time at constant temperature resulted in 
similar outcomes in terms of transmittance, thickness, Rs and conductivity of the 
films (Figure 7). This offers evidence that to a large degree the effect of tempe-
rature and reaction time do not have a specific influence on the growth of 
PEDOT films and at higher temperatures growth proceeds in similar stages to 
growth at lower temperatures, only faster. Initially, film thickness increases 
slowly, but this is followed by a period of fast growth and finally the growth 
rate slows down again. Therefore, three different stages of film formation could 
be distinguished from these data. Rs reaches to a minimum value after the end of 
the second stage, but film thickness still slowly increases, transmittance de-
creases and conductivity decreases. Nonconductive polymer formation in the 
acidic environment may be responsible for this effect.29 However, as the second 
part of this investigation demonstrates, washing out nonconductive material 
from PEDOT films seems to influence a well-formed PEDOT film surprisingly 
little, which casts doubt on this explanation. To some degree, PEDOT conducti-
vity decay resulting from aging at elevated temperatures may also contribute to 
this.  

Similar influence of increasing reaction time and temperature on conduc-
tivity implied that there should be a general relationship between the progress of 
film growth and the intrinsic parameters of PEDOT characterizing the specific 
growth stage. At constant initial oxidant concentration and oxidant film thick-
ness, the resulting PEDOT film thickness should indicate the growth stage and 
the film should have properties characteristic to this stage. Indeed, plotting 
electrical conductivities as a function of thickness from several temperature and 
time series (previously shown series in Figure 7 and additional series in similar 
conditions) reveals differences of PEDOT conductivities at different stages 
(Figure 8). At the first stage of growth, the PEDOT film conductivity is relati-
vely high, exceeding considerably 1000 S/cm. The second stage is marked by 
absence of data points, because due to the rapid nature of film growth no 
PEDOT film from this stage was isolated. The third stage is marked by slow, 
but steady decline in film conductivity. The films exhibit the best properties for 
practical use as transparent conductors after the end of second stage of rapid 
growth. Although prior to the second stage the film conductivities are slightly 
higher, the films are very thin and could sometimes peel off from the substrate 
during washing with methanol. 
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Figure 7. The effect of hot-plate temperature (at a reaction time of 30 min) on a) 
thickness and transmittance (at 550 nm), b) Rs and conductivity. The effect of poly-
merization time (at a hot-plate temperature of 60 °C) on c) thickness and transmittance 
(at 550 nm), d) Rs and conductivity. 
 
 
 

 
 

Figure 8. The dependence of VPP PEDOT film conductivity on PEDOT film thickness. 
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These results are mostly in agreement with the results obtained by Fabretto et al. 
and demonstrate that the preparation of PEDOT by base-inhibited version of 
VPP proceeds broadly in similar stages to VPP assisted by PEG-ran-PPG addi-
tive.9 Both of these VPP processes are characterized by higher film conducti-
vities obtained during initial slow polymerization, acceleration of polymer 
formation after the slow growth phase with a decrease of conductivity and 
finally again slow growth with a decline of conductivity. While Fabretto et al. 
distinguished two different polymerization stages before the rapid growth, 
according to the results reported in this study, only one stage precedes to the 
rapid growth. However, as measuring thickness of washed PEDOT films 
polymerized for a certain time in the reaction chamber is a much cruder method 
than the method used by Fabretto et al. (following mass increase in situ conti-
nuously during growth of a specific film), the differences between these stages 
could have remained unnoticed. In hope of obtaining better insight into the 
polymerization process, in situ resistance measurements were used to monitor 
the polymerization process. 

In situ resistance measurements enabled to follow film growth at different 
relative humidities (RH) and oxidant solution concentrations (oxidant film 
thicknesses) (Figure 9). It has been determined that without enough water in the 
environment PEDOT does not form or has poor properties (e.g., a low con-
ductivity), while too high RH causes crystallization of the oxidant and a patchy 
film formation.12,25,43 RH did not reach to a sufficiently high value to have a 
detrimental effect on PEDOT film conductivity and other properties, but the 
lowest RH resulted in conductivities about three times lower than the highest 
RH. Resistance drops indicating percolation in the film started later for films 
prepared at lower RH values and lower oxidant solution concentrations. As 
expected, higher oxidant concentrations, which give higher Fe(Tos)3 film thick-
nesses, result in thicker PEDOT films, but evidently some oxidant remains 
unreacted at lower RH values (Figure 9d).  

During these experiments, a peculiar change in Rs value due to washing was 
noticed. This change ranged from –38% to +27% and lower (more negative) 
values of the Rs change were associated with lower RH values. This generated 
an idea that the progress of interconnected film formation could be monitored 
by using the change of resistance during washing. The change should depend on 
the ratio of polymer to oxidant and whether the percolation threshold is 
achieved or not. In Figure 10, which depicts resistance change due to washing, 
it is clearly seen that while the resistance of films polymerized for a short time 
drops several orders of magnitude during washing, the change is small and 
slightly positive for longer polymerized films. It could be deduced that for 
earlier stages of reaction progress, polymer-rich areas (presumably nodules 
according to AFM results) are separated to a large degree by nonconductive 
oxidant and reaction by-products, implying nodular growth. Washing the film 
removes nonconductive matter, PEDOT nodules become connected to each 
other and resistance drops dramatically. As PEDOT growth continues, finally 
interconnected PEDOT structure with an abundance of connective pathways 
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forms and nonconductive material has no significant influence on the resistance 
of the film. This interpretation was confirmed a few years after the publication 
of paper I, when the same trend in resistance change during washing was 
noticed by another research group, who varied the EDOT ratio to oxidant in a 
polymerizing solution.21 The conductivities remained essentially the same in the 
washed PEDOT, but below a surprisingly low percolation threshold value (3% 
to 4.5% of PEDOT in oxidant matrix) washing caused a large decrease in resis-
tance, but at high PEDOT content. Moreover, even a small increase in resis-
tance due to washing was reported, what could be seen also as a result of our 
study. 

 
 

 
 

Figure 9. In situ measured Rs of PEDOT oxidant films prepared from 22%, 16% and 
10% Fe(Tos)3 solutions at a) 15% RH, b) 9–10% RH and c) 4–5% RH in the poly-
merization chamber. d) The influence of Fe(Tos)3 solution concentration on the PEDOT 
film final thickness for films polymerized at 4–5% RH, 9–10% RH, and 15% RH. For 
all the experiments, the hot-plate temperature was 60 °C and total polymerization time 
60 minutes. 
 
 
The exact basis of conductivity variation between films at different polymeri-
zation stages remains inconclusive. No significant differences between the Ra-
man spectra of polymer films are detectable. The inter-chain stacking is similar 
for all samples, although there was intensity variation implying different degree 
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of order in different polymer films normal to the plane of substrate (Figure 11). 
The lowest intensity was recorded for the film polymerized at low RH, which 
may explain low conductivity. However, there was no clear straightforward 
trend in the GIXRD results. The relation between the order in chain alignment 
and conductivity in base-inhibited VPP PEDOT is doubtful.21 Slight increase in 
surface roughness after the period of quick growth may also be related to the 
lower conductivities. Generally, as conduction in PEDOT may be sensitive to a 
variety of parameters and the detailed conduction mechanism of PEDOT is still 
under intense debate, it is difficult to gain a clear view of the exact reasons of 
conductivity variation. 
 
 

 
 

Figure 10. PEDOT-oxidant film Rs before washing and the Rs of the same film after 
washing out nonconductive material. The films were prepared at 14–18% RH and at a 
hot-plate temperature of 60 °C. 
 
 

 
 

Figure 11. GIXRD patterns for different PEDOT films polymerized for 15 min (I),  
45 min (II), 75 min (III) at a hot-plate temperature of 60 °C, for 30 min at a hot-plate 
temperature of 50 °C (IV), 70 °C (V), 90 °C (VI), for 60 min at a hot-plate temperature 
of 60 °C at low RH of 4–5% (VII) and high RH of 15% (VIII). 
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In conclusion, base-inhibited VPP enables to prepare PEDOT films with relati-
vely high conductivity compared to most formulations of PEDOT:PSS and 
electropolymerized PEDOT, but still lacks the high conductivity and trans-
parency of commercial ITO or best PEDOT films. The minimum value of Rs 
was ~280 Ω/sq, still more than an order of magnitude higher than corresponding 
value for commercial ITO and the best conductivity ~1350 S/cm, which is ~1/3 
of commercial ITO conductivity. The choice of proper preparation conditions is 
crucial for obtaining high quality PEDOT films.  
 
 

4.2. Preparation of PEDOT films by LPDP (paper II) 
The aim of the second part of the study was to prepare PEDOT films by a relati-
vely recently proposed EDOT preparation method LPDP and compare the 
method to a more well-established VPP. In principle, as the source of EDOT 
monomer is a solution in VPP, it is easier to control the concentration of  
EDOT and guarantee homogeneous distribution of the monomer. For gaining a 
thorough overview of the LPDP process, in situ resistance measurements were 
combined with in situ transmittance measurements. Previously dried and un-
dried oxidant films were used for comparison. 

In Figure 12 simultaneous measurements of transmittance and resistance are 
depicted at different EDOT concentrations for polymerizing undried Fe(Tos)3-
PEDOT films and in Figure 13 analogous measurements for polymerizing dried 
Fe(Tos)3-PEDOT films. With higher EDOT concentrations, polymerization 
proceeded faster. It is interesting to note that compared to VPP, much higher 
EDOT concentrations in the polymerization chamber are necessary, probably 
due to the EDOT propensity to remain in the nonpolar solvent phase. For dried 
films the polymerization times were significantly longer and higher EDOT 
concentrations were required to achieve similar polymerization rates to undried 
films. Generally, according to transmittance change three stages of growth 
occur at lower EDOT concentrations. Like for VPP of EDOT, an initial stage of 
slow growth is followed by a period of quicker growth prior to a decrease of 
growth rate at the end of reaction, when oxidant supply is low. At higher EDOT 
concentrations the initial stage of slow growth was not detectable, likely due to 
a general overall large reaction rate increase compared to reactions at lower 
concentrations. Some curves depict additional variation in growth rate, but 
generally the tree-stage description fits quite well for lower concentrations and 
two-stage description for higher concentrations. For several films a small drop 
in transmittance (~0.5%) was evident before the second stage of quick growth. 
This implies percolation, which must occur according to the low transmittance 
value at a very low amount of PEDOT, implying film formation at the interface, 
not homogeneously inside the oxidant film.  
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Figure 12. a) Resistance and b) transmittance (at 700 nm) of polymerizing undried 
Fe(Tos)3-PEDOT films in solutions containing 0.1%–0.8% EDOT (v/v). 
 
 

 

  
 

Figure 13. a) Resistance and b) transmittance (at 700 nm) of polymerizing dried 
Fe(Tos)3-PEDOT films in 0.6% and 0.8% (v/v) EDOT solutions. c) Resistance and d) 
transmittance (at 700 nm) of polymerizing dried PEDOT films in 1%–1.4% (v/v) EDOT 
solutions. As the polymerization times were extremely long for dried films in 0.6% and 
0.8% EDOT solution, these graphs are depicted separately from others for clarity. 
 
 
With longer polymerization times, resistance of the films achieved a plateau 
value, while the transmittance slowly, but continuously decreased. This shows 
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that similarly to VPP, the quality of the films decreases in the later polymeri-
zation stages. UV-Vis-NIR spectra (Figure 14) revealed that with longer poly-
merization period shorter oligomers were likely to form. It is evidenced by an 
increase in UV absorbance44 and decrease in the band associated with 
bipolarons64 for extremely long polymerization time (40 h). 
 
 

 
 
Figure 14. UV–Vis-NIR absorbance spectra in the range of 300 to 2500 nm for films, 
which polymerization was terminated at rapid growth (RAP), at resistance minimum 
(MIN) and after 40 h of growth (40 h). 
 
 
Both dried and undried oxidant films gave generally higher conductivities at 
lower EDOT concentrations (Figure 15). Although PEDOT films prepared 
from dried Fe(Tos)3 have higher conductivities than the ones from undried 
oxidant films, these values are still much lower than the results for VPP 
PEDOT. Drying of the oxidant layer has been already earlier reported to have 
positive effect on LPDP PEDOT Rs.38 
 
 

 
 

Figure 15. a) Electrical conductivity of PEDOT films prepared from undried Fe(Tos)3 
films and b) electrical conductivity of PEDOT films prepared from dried Fe(Tos)3 films. 
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PEDOT films prepared by LPDP had high surface roughness. Root mean 
squared (RMS) roughness values were in the range of 6.3 nm to 17.1 nm for the 
previously described PEDOT film series from dried oxidant films and in the 
range of 10.5 nm to 30.7 nm for the PEDOT series from undried oxidant films. 
These values are significantly higher than the values for VPP PEDOT films 
(RMS roughness around few nm). Typical surface morphologies showed 
oxidant crystal formation and even structures showing possible phase sepa-
ration. Figure 16 depicts the morphologies of PEDOT films prepared from the 
undried Fe(Tos)3 as examples of PEDOT films with rough surfaces. 
 
 

 
 

Figure 16. AFM images of the PEDOT films prepared from undried oxidant films 
(RMS roughness indicated in parenthesis) in a) 0.1% (18.0 nm); b) 0.2% (30.7 nm);  
c) 0.4% (27.6 nm); d) 0.6% (10.5 nm) and e) 0.8% (21.3 nm) EDOT solutions. 
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Although LPDP allows better control over EDOT distribution, controlling sur-
face morphology is difficult and this method needs further development to be 
competitive with VPP. Relatively low conductivities and rough uneven surface 
with holes almost reaching down to the substrate indicate that there is still a 
need for large improvement of film properties. However, as the method is 
relatively novel, there are only a few reports in the literature and likely the full 
potential of the method has not been discovered. Recently reported oxidative 
post-treatment is one of the options, which improves the conductivity of LPDP 
films significantly.39 
 
 

4.3. Stability of PEDOT films prepared by VPP  
(paper III) 

The aim of paper III was to investigate the stability of PEDOT film conductance 
in different environments and to find the conditions most suitable regarding 
polymer stability. For determining PEDOT stability, VPP PEDOT as a relati-
vely highly conductive material was chosen. From a practical point of view, 
stability is frequently the factor that limits the actual usefulness of ICPs. For 
this investigation, different gaseous environments were used, both at room 
temperature and at elevated temperatures. Oxygen and water vapor are usually 
thought to be the main factors behind this degradation, but a systematic study of 
different parameters influencing the conducting system is necessary. Although 
there are some reports about the stability of VPP PEDOT films, these reports 
have not been focused on systematic study of various working conditions. 

The influence of increasing temperature unsurprisingly accelerates the de-
gradation of film conductance (Figure 17). However, surprisingly degradation 
of conductance at 140 °C was as fast in the argon environment than in the air. 
This degradation of conductance was not well explained over the measured 
range by previously established models like diffusion-controlled aging or 
shrinking in conductive grains compared to widening of insulating barriers 
described in polypyrrole65 or PEDOT:PSS7, also pseudo-exponential decay pre-
viously attributed to PEDOT:Tos did not describe the situation.66 To determine 
the specific model suitable for describing the aging mechanism requires 
additional in-depth study, which is not the purpose of this work. 
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Figure 17. PEDOT film resistance stability (depicted as resistance normalized to initial 
value) at different temperatures (100 °C, 120 °C and 140 °C) in air and under argon 
flow at 140 °C (140 °C, Ar). 
 
 
Resistance increases (Figure 18) at room temperature conditions were con-
siderably smaller than resistance increases at elevated temperatures. As for 
accelerated aging experiments, previously described simple models did not 
explain the degradation properly in the duration of the experiment. Generally, 
humidity and UV light increased the degradation of film conductance. Humidity 
influenced the films detrimentally at least for a few first days of the experiment, 
later the degradation rates were comparable in dry and humid dark environ-
ments. Interestingly, vacuum had similar effect of increasing the resistance to 
water vapor. It is possible, that there is some complex relationship between the 
conductivity and transport of small molecules between films and the environ-
ment. UV illumination caused significant increase of resistance in both dry 
nitrogen and oxygen. Unexpectedly, the oxygen environment did not accelerate 
the aging at all compared to nitrogen environment, although light-induced 
degradation in PEDOT has been associated with a mechanism involving 
oxidation by singlet oxygen.67 However, it is not possible to exclude the 
influence of oxygen totally, as the films were prepared in ambient conditions 
and were not subjected to long vacuum treatment before the aging experiment. 
PEDOT conductivity was the most stable in dark and dry environments, but 
even in these environments the resistance increased almost up to 0.5% per day. 
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Figure 18. The influence of aging in different environments on PEDOT film resistance 
(normalized to initial value). The different environments are following: I – 20 mbar 
vacuum, II – N2 with 59% RH, III – UV illumination in dry O2, IV – UV illumination in 
dry N2, V – UV illumination in humid O2 with 59% RH, VI – O2 with 58% RH, VII – 
dry O2, VIII – dry N2. 
 
 
The influence of temperature on the resistance of a thermally aged film and 
freshly prepared film is depicted in Figure 19. According to equation 1 the 
resistance of the aged film could be described by 3-D variable-range hopping 
(Figure 19b), while the freshly prepared film seems to be in the critical regime 
of IMT5 (Figure 19c). Freshly prepared samples with low resistance are near to 
IMT as evidenced by α values close to zero, while α values (0.2–0.3) for 
thermally aged samples correspond better to 2-D or 3-D variable-range hopping. 
The critical regime depends on the disorder in the polymer films.5 This implies 
that thermal aging causes IMT by increasing some kind of disorder in the 
polymer film, although it does not reveal the nature of this disorder. 
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Figure 19. Temperature dependence of resistance for a freshly prepared PEDOT film 
and a film aged at 120 °C for 159 h as a) R versus T; b) R versus T−0.25; c) R versus T on 
a log-log scale. d) α values for PEDOT films depending on the resistance of the films at 
150 K. 
 
 
While in the Raman spectra of aged films there were no significant differences, 
UV-Vis-NIR spectra were different for the freshly prepared and aged films 
(Figure 20). An absorbance maximum appears at ~940 nm and absorbance 
increases also at ~600 nm, the latter change being especially visible for the film 
heated in argon (Figure 20c), but at higher wavelengths absorbance decreases 
with aging. Absorbance maximum at ~600 nm is assigned to neutral PEDOT, 
~800 nm to polaron states and the broad absorbance band ~1800 nm to 
bipolaron states.64 During electrochemical reduction, similar spectral changes to 
the changes depicted in Figure 20 occur.68 Therefore, these changes may be 
associated with a decrease in charge carrier density. However, charge carrier 
redistribution between different states due to structural changes is also a pos-
sibility.69 These spectral changes show that charge carrier properties of PEDOT 
have been changed. In some cases, these spectral features could still have 
surprisingly little influence on PEDOT conductivity.21 However, it is clear that 
these changes decrease slightly the transparency of the films. 
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Figure 20. UV-Vis-NIR absorbance spectra (350–2500 nm) of freshly prepared PEDOT 
films and the same films aged for a) 159 h at 100 °C in air; b) 159 h at 140 °C in air; c) 
159 h at 140 °C in argon flow; d) 25 days at room temperature in argon environment. 
 
 
XPS results showed that there is some evidence of chemical changes occurring 
during thermal aging in the surface layer of the film. Generally, three different 
kinds of sulfur atoms were detectable with S(2p3/2) lines at 163.1 eV (thiophene 
S), 166.3 eV (p-toluenesulfonate S) and 167.7 eV (oxidized S). While the fresh-
ly prepared films and the films aged at room temperature in inert gas (in dark or 
under UV light) had thiophene and p-toluenesulfonate lines and almost no 
additional oxidized S, thermally aged films had a high proportion of oxidized S. 
However, as no significant changes take place according to Raman spectro-
scopy or GIXRD results and XPS is surface sensitive, these may be related to 
surface processes, which have no significant influence on film properties. 

In conclusion, it is possible to slow down the degradation of VPP PEDOT 
conductance by using the films in dark and dry environments. However, even 
this will not enable to avoid completely the decrease of PEDOT film con-
ductance. For more sensitive applications to conductance stability, this may be 
problematic. 
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4.4. PEDOT electrode as a replacement  
for ITO electrode in TENGs (paper IV) 

Finally, PEDOT electrodes were tested as a working electrode and a contact 
surface for a replacement of ITO in a specific potential application, TENG. The 
fabrication of TENGs is a rapidly developing research area, for which novel 
materials are useful. To our best knowledge, PEDOT has not been used as a 
contact surface in this kind of device. This application does not require espe-
cially high conductivity, which alleviates the potential stability problems of 
PEDOT. 

In Figure 21, current densities, power densities and voltages from TENGs 
containing different PEDOT-based electrodes/contact surfaces (VPP PEDOT, 
electropolymerized PEDOT and PEDOT/PHC elastomeric composite) in com-
parison with ITO are depicted. The highest peak current density (0.45 mA/m2) 
and peak power density (95 W/m2) were generated by VPP PEDOT electrode. 
In conjunction with PDMS used in specific TENGs, PEDOT is a better contact 
surface than commercial ITO, because it generates ~3 higher power density. 
VPP PEDOT generates also the highest voltage. The performance for other 
PEDOT-based electrodes is worse compared to ITO. All the PEDOT electrodes 
exhibited continuous output without stability issues for more than 1000 cycles.  

The observed differences between electrode performances were not related 
to Rs values. While electropolymerized PEDOT had much higher RMS rough-
ness (34.09 nm) than VPP PEDOT (1.88 nm) and even PEDOT/PHC had higher 
RMS roughness (7.35 nm), the performance was much better for VPP PEDOT. 
Higher contact surface area should improve the TENG performance,70 therefore, 
the results are somewhat counterintuitive. However, as PDMS contact surface 
was smooth, effective surface area may have been larger for the smooth 
PEDOT. Also, the chemical differences between surfaces may be important in 
determining the performance of the device. Differences in work function, 
heterolytic bond breaking, mechanical properties of the material and con-
centration of mobile ions (p-toluenesulfonate) on the surface may all be im-
portant for TENG performance. 
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Figure 21. Measured TENG performance with different contact electrodes. a) Measured 
current versus load resistance, b) calculated power density versus load resistance (inset 
shows schematic illustration of layered structure of TENG), c) measured voltage for 
VPP PEDOT, d) PEDOT/PHC, e) electropolymerized PEDOT and f) ITO contact 
electrodes by contacting with PDMS at the circuit resistance of 90 MΩ. 
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CONCLUSIONS 

VPP and LPDP are two different methods of oxidative polymerization, which 
were used for preparing ICP PEDOT films in this thesis. During VPP PEDOT, 
thin films with relatively high conductance and transparency (90% trans-
mittance at 550 nm at a Rs below 300 Ω/sq) were prepared. The best con-
ductivity values exceeded 1300 S/cm. The influence of temperature, growth 
time, concentration of oxidant solution and relative humidity on the optical and 
electrical properties of the films was investigated and suitable conditions for 
film preparation were determined. Three different stages of growth, which 
resulted in films with different properties, were detected. Washing of the as-
prepared PEDOT/oxidant films in an early growth stage caused a large decrease 
in resistances, implying nodular growth of PEDOT during film formation.  

Compared to VPP, the polymer films prepared by LPDP had lower conduc-
tivities and a defective surface microstructure. In situ transmittance measure-
ments were combined with simultaneous in situ resistance measurements for a 
closer overview of polymerization process, revealing a three-stage polymeri-
zation process similar to the polymerization during VPP. 

In situ resistance measurements were used to assess the stability of VPP 
PEDOT films both at room temperature and elevated temperatures in different 
gaseous environments. PEDOT had relatively high stability in dry and dark 
environments at room temperature, although even in these cases a slight linear 
increase of resistance (~4–5% per 10 days) occurred. UV illumination, water 
vapor and, surprisingly, vacuum conditions caused significant additional resis-
tance increase at room temperature. Aging was accelerated by raising the tem-
perature up to 140 °C and at elevated temperatures both inert gas environment 
and air resulted in comparable aging. Characteristic changes in UV-Vis-NIR 
absorption spectra for aged films indicates changes in polaron and bipolaron 
states in the material. Low-temperature resistance measurements revealed that 
while freshly prepared PEDOT films display conductance properties charac-
teristic to the critical regime at metal-insulator transition, thermally aged samp-
les correspond better to a 2-D or 3-D variable range hopping model in insulating 
regime. 

PEDOT films were used as both a contact surface and as an electrode in 
TENGs, which convert mechanical energy to electrical energy. VPP PEDOT 
was superior compared to ITO, generating approximately three times higher 
power density. VPP PEDOT-containing device exhibited stable output for more 
than 1000 cycles, demonstrating the suitability of PEDOT for this application. 
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SUMMARY IN ESTONIAN 

Polü(3,4-etüleendioksütiofeeni) õhukeste kilede valmistamine ja 
stabiilsus rakendusteks läbipaistva elektroodina 

Polümerisatsioon gaasifaasist (VPP) ja vedelfaasilise sadestamise polümerisat-
sioon (LPDP) on kaks erinevat oksüdatiivse polümeristsiooni meetodit mida 
kasutati käesolevas töös elektrit juhtiva polümeeri polü(3,4-etüleendioksütio-
feeni) (PEDOT) kilede valmistamiseks. VPP käigus valmistati suhteliselt kõrge 
juhtivusega ja läbipaistvusega PEDOTi kiled (550 nm juures 90% läbilaskvus ja 
pindtakistus alla 300 Ω/ruut). Parimad juhtivuse väärtused ületasid 1300 S/cm. 
Uuriti temperatuuri, kasvuaja, oksüdeerija lahuse kontsentratsiooni ja suhtelise 
õhuniiskuse mõju kilede optilistele ja elektrilistele omadustele ning määrati 
kilede valmistamiseks sobilikud tingimused. Täheldati kolme erinevat kasvu-
staadiumit, mis andsid erinevate omadustega kiled. Valmistamisjärgselt põhjus-
tas varases kasvustaadiumis PEDOTi/oksüdeerija kilede pesemine suure takis-
tuse languse, mis viitab PEDOTi nodulaarsele kasvule kile moodustumisel.  

Võrreldes VPPga andis LPDP madalamate juhtivustega kiled, millel oli de-
fektne pinna mikrostruktuur. In situ läbilaskvuse mõõtmised kombineeriti sama-
aegsete in situ takistuse mõõtmistega, et saada polümerisatsiooniprotsessist 
paremat ülevaadet. Avastati, et see oli kolmeastmeline ja meenutas VPP prot-
sessi. 

In situ takistuse mõõtmiste abil hinnati VPP PEDOTi kilede stabiilsust nii 
toatemperatuuril kui ka kõrgendatud temperatuuridel erinevates gaasikesk-
kondades. PEDOT oli suhteliselt stabiilne kuivades ja pimedates keskkondades 
toatemperatuuril, kuigi ka siis esines väike lineaarne takistuse kasv (~4–5%  
10 päeva kohta). UV-valguse, veeauru ja üllatuslikult ka vaakumi mõjul toimus 
toatemperatuuril kiirem takistuse kasv. Vananemist kiirendati ka temperatuuri 
tõstmisega kuni väärtuseni 140 °C ja nii inertgaasi kui õhu keskkonnas toimus 
vananemine kõrgendatud temperatuuril sarnaselt. Iseloomulikud muutused UV-
Vis-NIR neeldumisspektris näitavad polaronide ja bipolaronide olekute jaotuse 
muutust materjalis. Madaltemperatuursed takistuse mõõtmised näitasid, et kui 
värskelt valmistatud PEDOTi kiled on juhtivuse kriitilises režiimis metall-
isolaator siirde juures, siis termiliselt vanandatud kilede juhtivus on isoleerivas 
režiimis kirjeldatav 2-D või 3-D Motti mudeli abil. 

PEDOTi kilesid kasutati korraga nii kontaktpinnana kui ka elektroodina 
triboelektrilises nanogeneraatoris mehaanilise energia elektrienergiaks muunda-
miseks. VPP PEDOT oli sellises rakenduses parem kui indiumtinaoksiid, või-
maldades ~3 korda kõrgemat võimsustihedust. VPP PEDOTi sisaldav seade oli 
stabiilne rohkem kui 1000 tsüklit, mis näitab PEDOTi sobilikkust selleks 
rakenduseks. 
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