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Info page 

Development of new tools for live imaging of BMP signalling in the Drosophila wing 

BMP signalling pathway has a central part in animal development. It is responsible for many 

different functions during animal development including cell proliferation, adult tissue 

homeostasis, apoptosis, early axial patterning. To study the dynamics of BMP signalling new 

and more precise tools are needed. During this bachelor’s thesis, a LlamaTag based tool was 

created. Which can be used to observe BMP signalling pathway protein Mothers against Dpp 

(Mad) movement in vivo in fruit fly Drosophila melanogaster using live imaging method.  

Key words: Drosophila melanogaster, BMP, Mothers against Dpp (Mad), LlamaTag 

CERCS: B350 Development biology, growth (animal), ontogeny, embryology 

 

Uudse tööriista arendamine reaalajas BMP signaaliraja jälgimiseks Drosophila tiiva 

arengus 

BMP signaalirajal on keskne roll looma arengus. BMP signaalirada vastutab erinevate 

funktsioonide eest kogu looma arengu jooksul. Näiteks BMP kontrollib rakkude 

proliferatsiooni, apoptoosi, hoiab homoöstaasi ja määrab ära varajase kehatelgede mustri. 

Selleks, et uurida BMP signaaliraja dünaamikat on vaja luua uusi ja täpsemaid meetodeid. Selle 

bakalaureusetöö käigus loodi LlamaTag’il põhinev meetod, mis võimaldab vaadelda BMP 

signaaliraja valgu Mothers against Dpp (Mad) liikumist in vivo äädikakärbses Drosophila 

melanogaster, kasutades live imaging meetodit.  

Märksõnad: Drosophila melanogaster, BMP, Mothers against Dpp (Mad), LlamaTag 

CERCS: B350 Arengubioloogia, loomade kasv, ontogenees, embrüoloogia 
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Abbreviations 

AP – After pupariation 

BMP – Bone morphogenetic protein 

Dpp – Decapentaplegic, fly equivalent of BMP 

eGFP – enhanced green fluorescent protein 

Mad – Mothers against Dpp 

pMad- Phosphorylated Mad 

TGF-β – Transforming growth factor type β 

Tkv – Thickveins, type 1 membrane bound receptor 
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Introduction 

Animal development is widely studied area in biology, from embryonic development to 

organogenesis. A part of animal development, tissue morphogenesis is often directed by 

evolutionarily conserved signalling proteins including bone morphogenetic proteins (BMPs). It 

has been shown that BMPs are highly conserved in multiple species. For example, Drosophila 

equivalent BMP, decapentaplegic (Dpp) is a functional ortholog to human BMP2 and BMP4 

(Padgett et al., 1993). BMP signalling is responsible for directing cell proliferation, tissue size 

control and cell differentiation among many other functions. 

Animal developmental process is dynamic. During development the cells are proliferating, 

differentiating and reorganizing in order to form fully functional organs. Tissue morphogenesis 

is tightly connected to growth factor signalling. Gui et al., 2019 used Drosophila pupal wing as 

a model to study tissue morphogenesis and BMP signalling coordination. However due to lack 

of tools to detect BMP signal in vivo, precise dynamics of how tissue growth and BMP 

signalling affect each other remains unclear. BMP signalling starts when ligand-bound receptor 

phosphorylates Mothers against Dpp (pMad), which then creates a complex with co-Smad 

Medea and is translocated into nucleus where it regulates the expression of many target genes. 

This new tool is based on the ability to detect Mad in the nucleus, which shows activated BMP 

signal. In this thesis we plan to design a new tool for live imaging to detect BMP signalling in 

vivo. 

Newly developed tagging technique LlamaTag was used as a base for designing our new tool 

for live imaging. LlamaTag is a single domain antibody (nanobody) from llamas (Bothma et 

al., 2018; Hamers-Casterman et al., 1993). LlamaTag was fused to Mad, which was raised 

against enhanced green fluorescent protein (eGFP). Mad-LlamaTag fusion protein and eGFP is 

then transfected into Drosophila S2 cells, where they will be translated into fully functioning 

proteins. Mature eGFP is then able to bind to Mad-LlamaTag fusion protein in seconds, 

resulting in an accumulation of GFP signal in nucleus when BMP signalling pathway is active. 

This new tool should allow us to study tissue dynamics and BMP signalling using live imaging. 

The goal of this thesis is to develop LlamaTag based tool which allows us to study BMP 

signalling dynamics in vivo in Drosophila melanogaster using live imaging. Thesis was made 

in the Institute of Molecular and Cell Biology Chair of Developmental Biology 
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1 Literature overview 

1.1 Overview on Drosophila wing development 

Developing Drosophila wing is great model for studying, for example, how tissue size and 

patterning is controlled by BMP signalling, due to wing’s apparent simplicity. Like many other 

insects, Drosophila melanogaster goes through two stages of development.  

First, during larval stage wing’s development takes place inside the larva in a region called 

wing imaginal disc. At this point the wing consists of 2-dimensional single layer of epithelial 

cells. Normal wing development includes the correct patterning of wing veins. There are total 

4 main longitudinal veins (L2-L5) and 2 incomplete longitudinal veins, which do not reach the 

wing margin. In addition, there are 2 cross-veins, anterior cross-vein and posterior cross-vein 

(ACV and PCV respectively) (Celis, 2003). Already in wing imaginal discs, there are some 

cells identified as pro-veins (Figure 1 a). The main driving force in wing imaginal disc 

development is the formation of long-range Dpp morphogen gradient between longitudinal 

veins L3 and L4 together with signalling protein Hedgehog, Notch and epidermal growth factor. 

BMP signalling pathway type 1 receptor thick veins (Tkv) helps regulate the range of long-

range Dpp gradient. The levels of Tkv is lower near the center of the Dpp morphogen gradient 

and higher in lateral part of the wing imaginal disc(T. Lecuit and Cohen, 1998). 

 

Figure 1. Drosophila wing development. (a) Development of wing veins of third-instar larva wing imaginal disc. 

Dpp long-range morphogen gradient separates anterior (A) and posterior (P) sides of the wing imaginal disc (dotted 

line). Red lines represent longitudinal veins L2-L5. The grey circle represents the wing pouch. (b, TOP) Dpp 

expression in longitudinal veins (blue) during early pupal stage. (b, BOTTOM) Dpp signal in all veins, including 

longitudinal veins (L2-L5) and anterior and posterior cross veins (ACV and PCV respectively). Modified by 

Shimmi et al., 2014. 
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Second, the next step in wing development takes place in pupal stage. In early pupal stage the 

single layered wing imaginal disc forms into two-layered 3D wing through apposition (0-10 

hours after pupariation (AP)), inflation (10-20 hours AP) and second apposition (~20 hours AP). 

During pupal stage Dpp signalling is shown to be necessary in tissue proliferation and 

differentiation of vein cells, including cross veins (De, 1997; Gui et al., 2019; Wartlick et al., 

2011). Both long-range signalling and short-range signalling of Dpp is required for normal wing 

vein patterning. 

 

1.2 BMP signalling pathway 

Bone morphogenetic protein (BMP) belongs to the transforming growth factor type β (TGF-β ) 

superfamily. These extracellular proteins regulate animal development including Drosophila 

wing patterning, controlling cell proliferation and tissue growth, adult tissue homeostasis, 

apoptosis, in both vertebrates and invertebrates. There are many similarities between vertebrate 

and invertebrate BMPs. For example, human’s BMP2 and BMP4 can substitute 

decapentaplegic (Dpp) in Drosophila as shown in Padgett et al., 1993. This thesis focuses 

mainly on Drosophila’s BMP decapentaplegic (Dpp) pathway. Dpp pathway consists mainly 

of ligand (Dpp), type 1 and type 2 receptors (Tkv and punt respectively), receptor-regulated 

Smad (R-Smad), Mothers against Dpp (Mad), and common mediator Smad (Co-Smad), Medea 

(Figure 2). 

 

Figure 2. Simplified BMP signalling pathway. Modified by Raftery and Sutherland, 1999. 

Signalling is initiated when the Dpp binds to type 1 receptor Tkv. Type 2 receptor then 

phosphorylates ligand-bound type 1 receptor to activate it. Type 1 receptor is then able to 
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phosphorylate R-Smad (Mad). After this phosphorylated Mad (pMad) associates with co-Smad 

(Medea). This pMad/Medea complex is then translocated to nucleus where it binds to target 

genes like spalt (sal) and optomotor blind (omb) based on distinct pMad concentrations. 

(Thomas Lecuit et al., 1996; Raftery and Sutherland, 1999)  

 

1.3 LlamaTag systems: new tools for reading out BMP signal in vivo 

In recent years new tools have been developed to live image protein localization in Drosophila 

(Bothma et al., 2018; Harmansa et al., 2017). The half-life of fluorescent proteins in vivo is >40 

minutes in Drosophila (Hazelrigg et al., 1998). For example, compared to the half-life of about 

8 minutes of fly transcription factor Fushi Tarazu (Edgar et al., 1987). This means that we need 

new tools that allows us to get fluorescent signal much faster. Bothma et al., 2018 developed 

new tagging method, which is based on nanobodies, which they named LlamaTag. Nanobodies 

are smallest naturally functioning single domain antibodies. These antibodies contain only one 

variable domain, though surprisingly these nanobodies exhibit broad antigen binding 

possibilities. (Muyldermans, 2001) Using Bothma et al., 2018 nanobody tagging method, 

LlamaTag and transcription factor Mad were fused and raised against enhanced green 

fluorescent protein (eGFP). (Figure 3) This brings an advantage to avoid the long maturation 

time of fluorescent protein fusions and allow precise observation of transcription factor  

dynamics in vivo. Mad protein localized in nucleus can be used as an intracellular marker to 

observe Dpp activity (Tanimoto et al., 2000). 
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Figure 3 LlamaTag system. TOP: LlamaTag (purple) grab cytoplasmic GFP (green), localizing it to the fused 

Mad (blue) and increasing GFP fluorescence intensity. 

BOTTOM: In this example, the LlamaTaged protein is a transcription factor involved in patterning of the early 

fruit fly embryo. Recruitment of the readily available GFP to the tagged transcription factor therefore causes the 

nuclei containing the factor to glow brightly. (Bothma et al., 2018) 
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2 Experimental part 

2.1 Aim of the thesis 

The main goal of this thesis is to develop a new tool that allows us to study BMP signalling 

dynamics in vivo in Drosophila melanogaster. To achieve this, following sub-goals were made: 

1. Generating recombinant plasmid containing LlamaTag-Mad fusion protein. 

2. Testing the ability of LlamaTag as a reporter of BMP signal in S2 cells. 

 

2.2 Materials and methods 

This thesis was built on the idea that we can make our own tool to study Dpp activity through 

pMad concentration in vivo. As explained by Bothma et al., 2018 the reason we need new tools 

for live imaging is the slow maturation step of fluorescent protein fusions to transcription 

factors in vivo. Our tool aims to completely by-pass this problem, by creating Llama-tagged 

Mad fusion protein that is raised against eGFP. Mature eGFP is located in cytoplasm and 

whenever Llama-tagged Mad is translated, eGFP is then able to bind to LlamaTag within 

seconds. (Figure 3) 

 

2.2.1 Materials 

LlamaTag fly stocks (kindly provided by Dr. Hernan G. Garcia from UC Berkeley, USA) 

• LlamaTag 1: yw; Sp/Cyo; SnaNB 

• LlamaTag 2: yw; Sp/Cyo; HbNbCRISPR(6)/TMb,C 

DNA purification kit (Thermo Fisher Scientific)  

Taq Polymerase DNA Polymerase (Thermo Fisher Scientific)  

Gel extraction kit (GeneJET Gel Extraction Kit) 

DreamTaq Green PCR Master Mix (Thermo Fisher Scientific) 

Nuclease free H2O  

5 U/μl T4 DNA ligase (Thermo Fisher Scientific) 

10×T4 DNA ligase buffer (Thermo Fisher Scientific) 

pIB/V5-His vector (Thermo Fisher Scientific; plasmid V802001) 

XhoI restriction enzyme (Thermo Fisher Scientific) 

HindIII restriction enzyme (Thermo Fisher Scientific) 

E. coli DH5α 

LB agar plates containing 100 μg/ml ampicillin 

GeneJET Plasmid Miniprep Kit (Thermo Fisher Scientific) 
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Primer sequence: 

• Mad fragment: 1. Forward (Mad-linker) 

5’GGTGGTTCTGGTGGTGGTTCTGGTGGTGGTTCTGGTATTTTATTTTGACTG

ATAG 3’ 

2. Reverse (XhoI-Mad) 5’CTCGAGATGTTGCCCAGGTTAGCTATTCGGAGCC3’ 

• LlamaTag fragment: 1. Forward (HindIII-LlamaTag) 

5’AAGCTTGATGGCCCAGGTTCAGCTGGT3’ 

2. Reverse (Linker-LlamaTag) 

5’ACCAGAACCACCACCAGAACCACCACCAGAACCACCCGACGAGACAGT

GACCTGAG3’ 

Thermal cycler 

0.2-ml PCR tubes 

 

2.2.2 Methods 

2.2.2.1 Designing primer 

To fuse LlamaTag and Mad we designed primers that include restriction enzyme sites and 

overlapping sequence. In the forward primer for nanobody fragment we added HindIII 

restriction enzyme site sequence 5’AAGCTT3’. In the reverse primer, we added overlapping 

sequence 5’GGTGGTTCTGGTGGTGGTTCTGGTGGTGGTTCTGGT3’. Forward primer of 

the Mad fragment included the overlapping sequence, which is 

5’GGTGGTTCTGGTGGTGGTTCTGGTGGTGGTTCTGGT3’ and to the reverse primer we 

added XhoI restriction enzyme site 5’CTCGAG3’. The overlapping sequence (marked in red) 

is used to fuse together LlamaTag fragment and Mad fragment (Figure 4).  
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2.2.2.2 Generating the recombinant vector construct 

 

Step 1 in generating the recombinant vector construct is to amplify the nanobody fragment and 

Mad fragment. This PCR will add restriction enzyme sites and overlapping sequence to the 

nanobody fragment and Mad fragment (Figure 4 Step 1). 

The PCR mix (50 µl) for amplifying nanobody fragment/ Mad fragment if following: 

- 25 µl of DreamTaq G2 Green Master Mix 

- 1 µl of 10 μM Forward primer HindIII-Nanobody/ Forward primer Mad-linker (0.2 µM) 

- 1 µl of 10 μM Reverse primer Nanobody-Linker/ Reverse primer Mad-XhoI (0.2 µM) 

- 1 μl of DNA (Nanobody, genomic) (50 ng/µl) 

- 22 µl of nuclease free water 

 

 

Figure 4. Workflow for generating the recombinant plasmid construct. Step 1 Use PCR to add restriction sites 

(XhoI and HindIII) and overlapping sequence (Linker, yellow) to LlamaTag and Mad fragments. Step 2 Fuse 
together LlamaTag and Mad fragments using overlap extension PCR. Step 3 is the digestion of pIB/V5-His vector 

and LlamaTag-Mad fragment by restriction enzymes XhoI and HindIII. Step 4 Ligate LlamaTag-Mad fragment into 

pIB/V5-His vector. Step 5 Transform the bacteria. Step 6 Confirm the recombinant vector using restriction enzyme 

analysis and DNA sequencing. 
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PCR was carried out using the following program: 

 Initial denaturation   94°C  5 minutes 

 30 cycles  denaturation  94°C  30 seconds 

   Annealing  68°C  30 seconds 

   Elongation  72°C  60 seconds 

 Final extension   72°C  7 minutes 

 Hold     4°C  ∞ 

Step 2, fuse amplified Nanobody fragment to Mad fragment using overlap extension PCR 

(Figure 4 Step 2). 

The following PCR mix (50 µl) is used: 

- 25 µl of DreamTaq G2 Green Master Mix 

- 1 µl of 10 μM 10 μM Forward Primer HindIII-Nanobody (0.2 µM) 

- 1 µl of 10 μM Reverse primer Reverse Primer Mad-XhoI (0.2 µM) 

- 1 μl of DNA (Amplified nanobody) 

- 1 μl of DNA (Amplified Mad fragment) 

- 21 µl of nuclease free water 

Overlap extension PCR was carried out using the following program. 

Initial denaturation    94°C  5 minutes 

 30 cycles  denaturation  94°C  30 seconds 

   Annealing  68°C  90 seconds 

   Elongation  72°C  60 seconds 

 Final extension   72°C  7 minutes 

 Hold     4°C  ∞ 

Step 3, purify the fusion fragment using gel agarose electrophoresis and gel extraction kit. DNA 

concentration is measured by using Nanodrop. 

Step 4, digest the fusion fragment and plasmid pIB/V5-His with both restriction enzymes (XhoI 

and HindIII) (Figure 4 Step 3). 1 µg of fusion fragment and 1 µg of plasmid pIB/V5-His are 

digested using 10 U of restriction enzyme. The mixture is incubated at 37°C for 2 hours. 

Digested fusion fragment and plasmid is purified using gel agarose electrophoresis and gel 

extraction kit. NanoDrop is used to measure DNA concentration.  

Step 5, ligate digested fusion fragment into pIB/V5-His vector (Figure 4 Step 4). Combine 50 

ng of pIB/V5-His, 3:1 molar ratio of digested fusion fragment, 1 µl T4 DNA ligase, 1 µl of 10x 

T4 DNA ligase buffer (1x), up to 20 µl of nuclease free water. The mixture is incubated at 4°C 

overnight. 
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Step 6, transform the ligation reaction into E. coli and select the colonies on LB agar plate 

containing 100 µg/ml ampicillin (Figure 4 Step 5). For transformation I use 5 µl of ligation 

mixture into 100 µl of competent cells. I plate 100 µl of the transformed bacteria to the 

ampicillin (100 µl/ml) containing agar plate. 

Step 7, isolate the plasmids using GeneJET Plasmid Miniprep Kit. 

Step 8, screen the colonies for recombinant vector using restriction enzyme analysis. DNA 

sequencing was used to confirm the correct vector (Figure 4 Step 6). 
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2.3 Results and discussion 

2.3.1 Using PCR to add restriction sites and overlapping sequence to the ends of Mad 

and nanobody fragments 

The goal of the PCR experiment was to amplify the Mad and Nanobody fragments, while also 

adding restriction enzyme sites and overlapping sequence to the end of the Mad and LlamaTag 

fragments. 

The size of amplified Mad fragment was 746 bp and the expected band was between 1000 bp 

and 500 bp. (Figure 5) The size of amplified LlamaTag was 369 bp and the expected band was 

below 500 bp. There was single correct sized band visible. (Figure 6) 

Figure 5. PCR results of Mad fragment. PCR was used to add XhoI restriction site and overlap sequence to Mad 

fragment. Bands are in expected size (746 bp). All 4 Mad fragments are the same and used in future experiments.  

Figure 6. PCR results of LlamaTag fragment. PCR was used to add HindIII restriction site and overlapping 

sequence to LlamaTag fragment. Bands are in expected size (369). There is no notable difference between 

LlamaTag 1 and LlamaTAg 2. 
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2.3.2 Using overlap extension PCR to fuse together amplified Mad and nanobody 

fragments via overlapping sequence 

The overlap extension PCR is a valuable technique used to fuse together two or more DNA 

fragments via overlapping sequences. In our case the overlapping sequence acted as a bridge 

for fusing amplified Mad and nanobody fragments. The combined size of the fusion fragment 

was 1123 bp. The brightest band was slightly above the 1000 bp band, which was expected. 

There were also some higher non-specific bands visible and some smearing (Figure 7). To avoid 

the possible problems caused by these non-specific bands, the fusion fragment was extracted 

from the gel. The DNA concentration after purification for Mad-LlamaTag 1 was 25.6 ng/µl 

and 11.7 ng/µl for Mad-LlamaTag 2. 

  

Figure 7. Overlap extension PCR results of Mad-LlamaTag fusion fragment. Mad (746 bp) and LlamaTag 

(369 bp) fragments were fused together via overlapping sequence, thus forming Mad-LlamaTag fusion fragment 

(1123 bp). Bands are in expected size, slightly above 1000 bp band. Due to smearing and two non-specific bands, 

the correct sized bands were extracted from the gel. 
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2.3.3 Using restriction enzyme digestion on pIB/V5-His vector and fusion fragments. 

1 µg of pIB/V5-His vector and fusion fragments were digested by 10 U of restriction enzyme 

(XhoI and HindIII). Digestion of pIB/V5-His vector results in two linear DNA fragments. The 

big fragment is about 3.5 kb and small fragment is about 50 bp. As a result, on Figure 8 we can 

see one clear bright band above 3000 bp and one barely visible band below 3000 bp. 

After digestion of fusion fragment, we can see two clear bands above 1000 bp. 

The correct sized bands (inside blue box) were excised and purified using gel extraction kit. 

DNA concentration was measured using NanoDrop and was following: 29.8 ng/µl for plasmid, 

55 ng/µl for Mad-LlamaTag 1 fragment and 54 ng/µl for Mad-LlamaTag 2 fragments. 

 

2.3.4 Ligation of insert into vector and transformation. 

Ligation is used to fuse together the vector and insert, circularizing the vector, thus making the 

vector acceptable for transformation. We ideally used vector to insert ratio 1:3. We set up the 

following control reactions in Table 1. 

  

Figure 8. Results of digestion of pIB/V5-His vector and fusion fragments. Both the plasmid and Mad-

LlamaTag fusion fragment, were digested by restriction enzymes XhoI and HindIII. Area inside blue box was 

excised and purified using gel extraction kit. 
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Table 1. Control reactions used in transformation 

Vector  Ligase insert Result Note 

+ + + Ligation reaction Main reaction 

+ + - Quantifies undigested + re-

ligated vector 

Negative control for 

the background 

+ (not 

digested) 

- - Verifies transformation 

procedure, antibiotic, cell 

competency 

Negative control 

 

In the transformation step we set up two different negative controls. One negative control was 

used to check the antibiotic resistance of the bacteria. The second negative control was used to 

check for the quality of transformation. 

In our experiment, we observed that the bacterial colonies from the transformation resulted in 

the positive control and the sample plates, without in the negative control plate. 

 

2.3.5 Using restriction enzymes to verify if the target gene of interest was successfully 

cloned. 

Restriction enzyme cutting is often used to verify the existence of target gene in recombinant 

vectors after cloning. On Figure 9 two clear bands for each colony can be seen. The band above 

3000 bp is digested plasmid and the band above 1000 bp and below 1500 bp is inserted fusion 

fragment. There were no smearing or other abnormal bands. 
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2.3.6 DNA sequencing was used to confirm the results of restriction enzyme analysis. 

DNA sequencing is fast method for determining the sequences of different DNA fragments.  

In our result we compared the DNA sequence of fusion fragment with the original Mad and 

LlamaTag DNA sequence, using ncbi nucleotide BLAST sequence alignment tool, which 

showed 98-99% similarity between the fusion fragment and original Mad and LlamaTag 

fragment. 

We conclude that we have successfully created the recombinant vector construct. 

 

  

Figure 9. Restriction enzyme screening for target gene in recombinant vector. Recombinant vector (4.5 kb) 

was digested using restriction enzymes XhoI and HindIII, resulting in two smaller fragments. Big fragment is the 

vector backbone (3.5 kb) and small fragment is our inserted Mad-LlamaTag fusion fragment (1.1 kb). All the 

colonies show the same result, indicating that the Mad-LlamaTag fusion fragment was successfully cloned into 

pIB-V5/His vector. 
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3 Conclusion 

The aim of this thesis was to develop new tools for live imaging of BMP signalling in 

Drosophila wing. Based on restriction enzyme analysis and DNA sequencing, we have 

successfully created recombinant vector containing Mad fragment. Recombinant vector 

functionality was tested on Drosophila S2 cell culture by my colleague and is thus included in 

Supplementary Information. Preliminary tests on S2 cells show that Llama-tagged Mad works 

for detecting BMP signals is S2 cell culture (see Supplementary Information). Based on these 

results, we have successfully developed a new tool, which can be used to study BMP signalling 

pathway in vivo. 

Next step in developing this tool further is to introduce Mad-LlamaTag fusion fragment into 

live Drosophila melanogaster using CRISPR/Cas9 system. This tool can then be fully used in 

live imaging to further study BMP signalling pathway in Drosophila melanogaster.  
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Uudse tööriista arendamine reaalajas BMP signaaliraja jälgimiseks Drosophila tiiva 

arengus 

Robin Pau 

Resümee 

Organismi areng on laialdaselt uuritav teema bioloogias, alates embrüo arengust kuni 

äädikakärbse Drosophila tiiva mustrite moodustumise mehhanismide uurimiseni. 

Äädikakärbse tiib on hea mudel organ erinevate kasvu mõjutavate signaaliradade uurimiseks 

Esiteks koosneb tiib oma ehituselt kahest epiteelraku kihist. Teiseks signaalirajad on 

evolutsiooniliselt konserveerunud erinevate liikide vahel. Lõpuks geneetiliste meetodite abil on 

võimalik lihtsalt uurida ühe geeni mõjusid.  

Peamine uuritud signaalirada Drosophila tiivas on Dpp/BMP signaalirada. Paljud artiklid on 

leidnud mitmeid BMP signaaliraja homolooge erinevates loomades. Näiteks Drosophila BMP 

ligand, Dpp on funktsionaalne ortoloog inimese BMP2 ja BMP4-le. BMP signaaliraja peamised 

funktsioonid on kontrollida rakkude proliferatsiooni koe suurust, rakkude diferentseerumist, 

apoptoosi ja hoida homöostaasi. 

Looma areng on dünaamiline. Arengu käigus toimub pidev rakkude jagunemine ja 

ümberpaiknemine. Erinevate kudede areng on tugevalt seotud kasvu faktori signaaliradadega. 

Kasutades mudelina äädikakärbse tiiba on kirjeldatud morfogeneesi ja BMP signaali 

omavahelist seost. Täpsete töövahendite puudumise tõttu on ebaselgeks jäänud, kuidas on BMP 

signaal mõjutab rakkude kasvu ja vastupidi. BMP signaalirada algab kui ligand Dpp fosforüülib 

transkriptsiooni faktori Mad (pMad). pMad seejärel moodustab kompleksi co-Smad Medeaga, 

millejärel suundub pMad/Medea kompleks rakutuuma, kus ta reguleerib mitmete sihtmärk 

geeni ekspressiooni. 

Antud bakalaureusetöö eesmärk on uudse tööriista välja töötamine, millega on võimalik 

reaalajas jälgida BMP signaalirada Drosophila tiivas. See tööriist võimaldab tuvastada 

rakutuumast pMadi, mis näitab aktiveeritud BMP signaalirada. 

Uue tööriista väljatöötamisel kasutati uudset valgu märgistamise süsteemi LlamaTag. 

LlamaTag on ühe domeenne laamadest pärit antikeha. Tööriista väljatöötamiseks esiteks 

moodustati rekombinantne vektor, mis sisaldab Mad’i DNA järjestusele juurde lisatud 

LlamaTag’i DNA järjestust. Restriktsiooni analüüsi ja DNA sekveneerimis tulemuste põhjal 

saab öelda, et suutsime tööriista luua. Lisaks katsetati uut tööriista Drosophila S2 rakukultuuris. 

S2 rakkudes küps eGFP seondus kiiresti Mad-LlamaTag’ile, mis põhjustas GFP signaali 

kogunemise rakutuuma, mis näitab BMP signaaliraja aktiivsust. Nende tulemuste põhjal võib 

öelda, et õnnestus välja töötada tööriist, millega on võimalik uurida BMP signaalirada in vivo.  
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SUPPLEMENTARY INFORMATION 

Llama-tagged Mad works for detecting BMP signal in tissue culture cells 

To investigate whether the Llama-tag Mad is functional in tissue culture cells, we performed 

co-transfection analysis of eGFP, a constitutive active form of BMP type I receptor, and 

LlamaTag-Mad constructs into S2 cells. When Llama-tag Mad and eGFP are transfected into 

S2 cells, we observed that Llama-tag bound eGFP highly accumulates into the nucleus when 

the BMP signal is positive. In contrast the majority of eGFP locate in the cytosol without signal. 

Thus, Llama-tag Mad appears to serve as an excellent system for the readout of BMP signaling 

in vivo. 

Taken together, we conclude that Llama-tagged Mad works for detecting BMP signals in tissue 

culture cells.  

 

Figure S1. The procedure to test the ability of LlamaTag as a reported of BMP signal in the S2 cells. 
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Figure S2. Transfection of eGFP into S2 cells. The eGFP was located in the cytosol. 

 

Figure S3. Co-transfection analysis of eGFP and LlamaTag-Mad constructs into S2 cells without 

constitutive active form of BMP type I receptor (caTKV). The Mad-nanobody was not translated. The BMP 

signal was negative and eGFP was enriched in cytosol.  

 

Figure S4. Co-transfection analysis of eGFP, constitutive active form of BMP type I receptor and 

LlamaTag-Mad constructs (caTKV) into S2 cells. The Mad-nanobody was translated, then it bound 

cytoplasmic eGFP, and Llama-tag Mad-eGFP complex was enriched into nucleus when BMP signal was 

positive. 
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