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Introduction

Music in digital form is widely spread nowadays. Traditional methods of lis-
tening to and discovering music, such as radio broadcasts and record stores,
are being replaced by personalized ways to hear and learn about music
[CVG+08]. In recent years, due to the broad adoption of digital music and
personal digital music players, there has been increasing interest in auto-
matic generation of playlists. A playlist may be de�ned as a �nite sequence
of songs which is played as a complete set [RBBC].

The easiest and the most e�ective way for constructing a playlist is to do
it manually. However, this is a time-consuming task that, at the same time,
allows a certain degree of freedom. The huge size of music collections nowa-
days exceeds a person's ability to recall which compositions might comply
best to current mood or situation. Moreover, many social contexts, such as,
for example, being at work, or driving a car, do not allow to waste too much
time on hand-picking music. In our work we focus on the development of
an algorithm for automatic construction of personalized playlists, primarily
targeting casual users rather than professional DJs. Such a playlist consists
of a start and an end seed songs, both chosen by a user. The choice and order
of songs inbetween should correspond to the user's personal taste, extracted
from pre-labeled �good� and �bad� playlists. This algorithm can be further
used for constructing more complex personalized playlists.

The solution contains two main parts: the choice of the playlist generation
method and the construction of the evaluation function for discriminating
good playlists from the bad ones. For the �rst task we consider shu�e, ran-
domized and genetic generation algorithms. For the second task we use the
Naïve Bayesian classi�er. The input features for the classi�er are comprised
of audio content-based features of the songs and their normalized variabil-
ity over the playlist. As a result we develop an algorithm for automated
personalized playlist generation (APPG) that, according to our evaluations,
satis�es the user expectations better than random shu�ing. However, we
should assume that algorithm has a high potential to be improved.

The organization of the thesis is the following. Chapter 1 provides the
preliminary background in digital audio processing and machine learning
necessary to understand the rest of the work. Chapter 2 provides the formu-
lation and motivation of automated personalized playlist generation problem
(APPG), as well as reviews some related work in this area. The description
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of the proposed algorithm for APPG together with some implementation de-
tails is given in Chapter 3. Chapter 4 describes the results of performance
evaluations. The thesis is concluded by a Conclusion section which summa-
rizes the results and suggests ideas for future work. The source code used in
the experiments is supplied on a separate CD (Appendix A).

6



Chapter 1

Preliminaries

In this chapter we present brief de�nitions of the basic concepts used further
in the thesis.

1.1 Mathematical Treatment of Music

Before constructing the algorithm to solve the problem of automatic person-
alized playlist generation (APPG) we must clarify what a music playlist is,
what parameters in�uence the subjective value of playlist goodness, and how
they can be computed.

1.1.1 Digital Representation of Sound

Music playlists consist of musical compositions. Music, is a melodic type of
sound. Sound is, in turn, an oscillation in air pressure, produced by a vi-
brating object, such as a musical instrument. Moreover, sound is a travelling
wave (sound wave) that can be represented as a continuous periodic function
of time (Figure 1.1).

In order to process sound waves on a computer, the corresponding func-
tion needs to be converted to digital form � a process known as sampling

(Figure 1.2). Sampling is performed by measuring the continuous signal at
regular intervals, thus converting it into a stream of numbers. These num-
bers may then be stored on a computer. Each measurement is referred to as
a sample.

Once we have converted the sound wave into a stream of numbers we can
store and process this information on a computer. The data of a music �le
can be stored in many di�erent ways. One of the main parameters is sampling
frequency of the stored signal � the number of times per second samples were
taken. This attribute, also known as sampling rate, is measured in Hertz (1
Hz = 1 measurement per second).

The optimal sampling frequency may be di�erent, depending on the situ-
ation. If we store data for listening, it is always preferable to choose the com-
position with the highest reasonable sampling frequency. For the purposes of
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Figure 1.1: Sound wave can be represented as a function of time.

Figure 1.2: The sinusoidal curve represents the continuous analog waveform
being sampled. Measurements of the instantaneous amplitude of the signal
are taken at a sampling rate of ∆t [ft].

analysis we usually select some golden middle, so that the calculations would
be faster and yet no important information is lost.

1.1.2 Spectral analysis

One of the classical methods of extracting the properties of a sound wave is
known as Fourier series, Fourier transform or spectrum.

Any 2π-periodic function may be represented as an in�nite sum of simpler
functions � sine waves (Figure 1.3):

f(x) =
a0
2

+
∞∑
n=1

[an cos(nx) + bn sin(nx)], N ≥ 0

The coe�cients ai and bi of the Fourier series can be found as

ai =
1

π

∫ π

−π
f(t) cos(nt)dt,
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Figure 1.3: Complex sound as a sum of sinewaves.

bi =
1

π

∫ π

−π
f(t) sin(nt)dt,

The practical meaning of the Fourier transform for sound processing is
that any sound can be represented as a combination of frequencies. The
spectrum provides the intensities of those frequencies. The importance of
Fourier representation lies in the fact that human sound perception is also
based on spectral analysis, performed by the biological machinery of our
ears [ear].

For representing digital sound, a discrete version of the Fourier series
is commonly used, the discrete fourier transform (DFT). The DFT can be
computed e�ciently using the algorithm known as the fast fourier transform
(FFT). We refer the reader to the book of D. Benson [Ben06] for a thorough
coverage of this and related topics. For practical purposes it su�ces to know
that the application of FFT to a discrete signal (i.e., a vector of numbers
representing signal intensities at di�erent timepoints) produces a discrete
spectrum (i.e., a vector of numbers representing frequency intensities).

1.1.3 Higher-level Audio Features

The raw frequency intensities can be further transformed into yet more in-
formative higher-level sounding characteristics. A comprehensive overview
of numerous such features is provided in [mir]. In the following we provide a
description of the most important of them.
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Spectral Centroid (centroid)

The spectral centroid is a measure used in digital signal processing to char-
acterise a spectrum. It indicates where the �center of mass� of the spectrum
is. It is calculated as the weighted mean of the frequencies present in the
signal, with their magnitudes used as the weights by the following formula:

centroid =

∑N−1
n=0 f(n)x(n)∑N−1

n=0 x(n)
,

where x(n) represents the frequency value (magnitude of the frequency bin
number n), and f(n) represents the central frequency of that bin.

Spectral Flatness (flatness)

Spectral �atness, measured in decibels, provides a way to quantify how tone-
like or noise-like a sound is. High spectral �atness indicates that the spectrum
has a similar amount of power in all spectral bands � this would sound similar
to white noise. Low spectral �atness indicates that the spectral power is
concentrated in a relatively small number of bands � this would typically
sound like a mixture of sine waves, and the spectrum would appear �spiky�.

Spectral �atness is de�ned as follows:

flatness =

N

√∏N−1
n=0 x(n)∑N−1

n=0 x(n)

N

.

Mel-Frequency Cepstral Coe�cients (mfcc)

Figure 1.4: Mel-Frequency Cepstral Coe�cients. After taking the log-
amplitude of the magnitude spectrum, the FFT bins are grouped and
smoothed according to the perceptually motivated Mel-frequency scaling.
Finally, in order to decorrelate the resulting feature vectors a discrete cosine
transform is performed.

Mel-Frequency cepstral coe�cients (MFCC) are a set of perceptually mo-
tivated features that have been widely used in music information retrieval ap-
plications, such as speech recognition, audio similarities measures and genre
classi�cation. MFCC provide a compact description of the spectral shape of
the sound, such that most of the signal energy is concentrated in the �rst
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coe�cients. MFCC take human perception sensitivity with respect to fre-
quencies into consideration, and therefore are best for speech/speaker recog-
nition. Taken simply, the MFCC are computed by taking the spectrum of
the signal, log-rescaling its both axes, and taking the spectrum again. The
resulting vector contains the mel-cepstral coe�cients (see Figure 1.4).

Spectral Flux (flux)

The spectral �ux is a measure of the amount of local spectral change, i.e. the
change in the spectra of nearby audio excerpts (windows). It can be used,
among other things, to determine the timbre of an audio signal, or used in on-
set detection. Spectral �ux at time t of the composition is usually calculated
as the 2-norm (Euclidean) distance between the normalized (with uniformly
increased (or decreased) amplitude of an entire audio signal) spectra at two
nearby time frames t and t− 1:

fluxt =
N−1∑
n=0

(x̃t(n)− x̃t−1(n))2, [TC02],

where x̃t and x̃t−1 are the normalized magnitudes of the Fourier transform
at the time frames t and t− 1, respectively.

To calcalate flux we take mean value of all fluxt within the texture
window.

Spectral Irregularity (irregularity)

Spectral irregularity measures noisiness of the audio signal [Jen04]. The
irregularity of a spectrum is the degree of variation of the successive peaks
of the spectrum. Peaks are local maxima of the function values being bigger
than all the points in a given neighbourhood (Figure 1.5).

Figure 1.5: If x is a curve, peaks are represented by red circles.

The irregularity is measured as the sum of the squares of the di�erences
in amplitudes between adjoining peaks:

irregularity =

∑N
k=1 (ak − ak+1)

2∑N
k=1 a

2
k

,

where ak is a local peak value.
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1.2 Naïve Bayes as a Machine Learning Tech-

nique

Once an object (e.g. a playlist or a musical composition) is represented as
a vector of numbers (feature vector), we would like to �nd a classi�cation
rule that can devise the category (e.g. goodness) of each object based on
its features. Although it might be possible to design such an algorithm
manually, by specifying some common sense rules of thumb, this is often
inconvenient or complicated. An alternative approach is to collect a data
set of labeled objects and train a classi�er that detects the most appropriate
rule by generalizing the information in the data. This approach is commonly
referred to as machine learning. In the following, the process of constructing
the dataset and training a particular classi�er is provided.

Numerous algorithms for training classi�ers exist. In our work we use the
Naïve Bayesian classi�er.

Let F1, F2, . . . , Fn denote the feature values of an object (e.g. sounding
characteristics of a song, or certain features of the whole playlist) and G be
its class (e.g. goodness). By the classical Bayes approach, the object should
be classi�ed according to the most frequent class among the objects with
same values of the feature variables in the training set:

argmaxG Pr(G|F1, F2, . . . , Fn) .

When the number of variables is large enough, this would require a training
set of unrealistically large size, where all possible combinations of values
of the predictor variables would be available. The Naïve Bayesian method
overcomes this practical limitation by using the assumption that predictor
variables are independent for each class:

Pr(F1, F2, . . . , Fn|G) ≈ Pr(F1|G) Pr(F2|G) . . .Pr(Fn|G) .

Now, by applying the Bayes theorem:

Pr(G|F1, F2, . . . , Fn) = Pr(G) Pr(F1,F 2, . . . , Fn|G)/Z ≈

≈ 1

Z
p(G)

n∏
i=1

p(Fi|G)

where Z is a scaling factor dependent only on F1, F2, . . . , Fn, i.e., a constant
if the values of the feature variables are known.

In spite of the �naïve� assumptions, the Naïve Bayes classi�ers often works
well for many complex real-world situations. An advantage of the Naïve
Bayes classi�er is that it requires a relatively small amount of training data
to estimate the parameters necessary for classi�cation.
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1.3 Algorithm Validation

1.3.1 Cross-validation

To validate the performance of a classi�cation algorithm we used the 10-fold
cross validation technique. This means, we split the training set into 10
parts, use 9 for training and 1 for testing (measuring the precision), then
repeat this procedure for each of the 10 parts and �nally take the average
of the 10 obtained precision estimates. This validation method is known to
produce reasonably accurate precision estimates even when the training set
is small [Wit05].

1.3.2 Evaluation Measures

To evaluate correctness of the classi�er, we used such metrics as classi�cation
accuracy, precision and recall, all computed from the values of the confusion
matrix.

Confusion Matrix

Each object in the dataset has an assigned �true� class (the so-called gold

standard or ground truth). In addition, we can observe for each object,
which class is assigned to it by the classi�cation algorithm (test outcome).
If we split all the objects in the dataset into four groups according to these
two dimensions and count the number of objects in each group, we obtain a
confusion matrix (Figure 1.6).

Figure 1.6: Confusion matrix for binary classi�cation parameters

In our case, the cells of the confusion matrix correspond to the following
objects:

• True positive (tp) � the instances of `good' playlists are labeled as
`good'

• True negative (tn) � the instances of `good' playlists are labeles as `bad'

13



• False positive (fp) � the instances of `bad' playlists are labeles as `bad'
(also called Type I error)

• False negative (fn) � the instances of `bad' playlists are labeles as `good'
(also called Type II error)

Although the confusion matrix neatly summarizes the classi�cation re-
sults into four numbers, sometimes it is useful to get a single-number sum-
mary.

Accuracy

Classi�cation accuracy denotes the fraction of instances that were classi�ed
correctly:

Accuracy =
tp+ fp

tp+ tn+ fp+ fn

An accuracy of 100% denotes perfect classi�cation.

Precision

Precision is the probability that a positively-classi�ed playlist is indeed a
`good' playlist:

Precision =
tp

tp+ fp

Precision measures the exactness of a classi�er. A higher precision means
less false positives, while a lower precision means more false positives.

Recall

Recall is the probability that a randomly selected good playlist will be de-
tected as `good' by the classi�er.

Recall =
tp

tp+ fn

Recall measures the completness, or sensitivity of a classi�er. Higher recall
means less false negatives, while lower recall means more false negatives.

1.4 Combinatorial Optimization

Let there be a function f(x) : A→ R. In our case this is a classi�er, assigning
a �goodness� measure to a playlist x. The problem of �nding a good playlist
is then equivalent to the problem of maximizing the function f . Considering
the discrete structure of a playlist object, such problem is commonly referred
to as combinatorial optimization.

14



Various techniques of combinatorial optimization exist. In this work we
tried a simplistic randomized search technique and a more involved genetic

algorithm.

1.4.1 Randomized Search (RS)

Randomized search is perhaps the simplest approach to combinatorial opti-
mization. The idea is to generate N random values x uniformly and select
the one which achieves the largest value of f(x). The only important aspect
of this algorithm is in the method of generating random instances. In our
case the instances are random playlists with prede�ned start and end songs.
Each playlist is thus generated by randomly sampling k songs (with replace-
ment), then prepending the start song, and appending the end song to the
resulting list.

1.4.2 Genetic Algorithms (GA)

A genetic algorithm can be viewed as an extension of the randomized search
technique. The main idea is to start with a random set of objects (playlists
in our case), then mutate and �cross-breed� the best of them during several
populations in order to receive better results in future generations. Genetic
algorithms work very well on mixed (continuous and discrete) combinatorial
problems, but they tend to be computationally expensive.

To use a genetic algorithm, we must represent the solution to the problem
as a chromosome. In our case the chromosome is the playlist itself. A popu-
lation of chromosomes will then be �evolving� with various genetic operations
being applied to them. The most common genetic operations are mutation
(replacing a random element of the chromosome (i.e. a song) with another
random element) and crossover (creating a new chromosome by combining
the head of one chromosome with the tail of another).

The performance of the genetic algorithm can sometimes be in�uenced
by tuning the frequency at which each of the genetic operations is performed
� the mutation rate and crossover rate parameters, selecting appropritate
population size and iteration count.
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Chapter 2

Motivation

In this chapter we present the motivation for the automatic personalized
playlist generation problem as well as give an overview of related work.

2.1 The Power of Music

To appreciate the importance of the chosen research topic, we should under-
stand the power and the role of music in our lives. All life long, irrespectively
of our desire, we are surrounded by di�erent sounds. One of the most pleas-
ant types of sounds we hear is music. Soon after birth we listen to the �rst
melodies as our mothers hum soothing lullabies to help us sleep. As we
get older we discover that music is an inseparable part of the society. We
can hear it everywhere: at home, in shops, cars, gyms, theatres, churches,
parades. We can not imagine movies, games, sport trainings, etc without
music. Thus, in the modern Western culture, the main purpose of music is
to entertain or to accompany an entertainment. However, music has more
power and in�uence on our lives than we used to expect.

The main advantage of music compared to other types of media is that
it can convey emotional state and sometimes does it more e�ectively than
words or pictures. Music can relax or make us dance, keep spirits up or
induce nostalgy. Familiar songs help us recall special moments in our lives,
we sing church hymns to help build our spiritual being, and patriotic songs to
give us a sense of national identity. Some researches try to prove that music
even has healing power. As one can see, music evokes emotions, portrays
moods and a�ects our perceptions. It helps each one of us �nd our unique
social niche, bringing us together with other folks who share similar interests.

Everyone is sensitive to music and everyone can understand music lan-
guage independent of nationality or education. Music can be regarded as a
universal language for the whole humanity. That is why people like music so
much despite of the underestimation of its power. With the advent of digi-
tal technologies the accesibility of music increased signi�cantly and music is
becoming ubiquitously available.
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Nowadays, traditional methods of listening to and discovering music, such
as radio broadcasts and record stores, are being replaced by personalized ways
to hear and learn about music [CVG+08]. In recent years, there has been
increasing interest in the automatic generation of playlists, partly due to the
broad adoption of digital music and personal digital music players [Oli].

2.2 Music Information Retrieval

The increasing availability of music in digital format, the growing size of per-
sonal music libraries and the freely available online music streaming services
such as Spotify [spo] or Last.fm [las02] encourage the development of tools for
music access, �ltering, classi�cation, and retrieval. The interdisciplinary re-
search area that covers all those and other problems connected with digitally
available music data is called Music Information Retrieval (MIR).

The concept of information need is central in MIR. Users interact with
software to retrieve information that is relevant to their wishes. The fact that
audio information is perceived di�erently by each personality, introduces the
complication in how well the users can describe their personal music needs
and preferences.

2.2.1 MIR Users

According to the degree of knowledge and involvement, the potential users
of MIR systems can be divided in three categories. Casual users want to
enjoy music, listen and collect the music they like, also discover new music.
Professional users need music suitable for particular usages related to their
activities, which may be media production, advertisements or entertaintment
industry. Music scholars, music theorists, musicologists, and musicians -
typically interested in studying or producing music [Ori06].

2.2.2 MIR Approaches

Research in MIR comprises a broad range of topics including user interfaces
for audio collections, vizualization, search, classi�cation, clustering, mod-
elling, segmentation, etc. Di�erent approaches to music processing can be
applied to solve the mentioned problems. Depending on the form and for-
mat in which musical documents are instantiated and on the dimensions of
interest, the techniques used in MIR researches can be divided into three
main groups: metadata analysis (year, tempo, genre, mood [Lan09]), listen-
ing model (rating, skips, replays [CTLjH10, ZGMRMF10]) and content-based
learning (MFCC, �ux, rollo�, crossover, average energy [TC02]).
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Metadata Analysis

The simplest approach, called metadata analysis focuses on metadata pro-
vided with a musical composition, such as names of the artist and composi-
tion, year of release, genre, tags, etc. Despite the fact that metadata-driven
systems are quite popular nowadays due to their simplicity and acceptable
e�ectiveness, a combination of metadata analysis with other techniques cur-
rently dominates MIR research.

Content-based Analysis

The basic assumption behind content-based approaches, the most time and
resources consuming, is that metadata are either not suitable, unreliable, or
missing. Consequently, an object is described by a set of features that are
directly computed from its content. In a case of music the content can be
music wave itself or some type of symbolic data � lyrics, notes, chords, etc.
As it can be expected, attributes such as pitch, timbre, intensity, rhythm,
melodic sequences, instrumentation, and others can be computed from the
audio using signal processing techniques. Other features, such as chords,
keywords, key chord sequences, are mainly extracted using di�erent types
of text algorithms. The analysis of publications on feature extraction shows
a clear drift from symbolic toward audio forms [Ori06]. First experiments
on content-based audio retrieval were reported in [Foo99] � were focused on
automatic genre classi�cation [TC02]. Nowadays, most of the research in
MIR is either purely content-based or uses content-based approaches in a
combination with other techniques.

Listening Model Analysis

The third approach, listening model, does not take into account neither the
content nor the metadata, but rather the data about how the object is per-
ceived or described by the users (feedback). This data for analysis contains
an information about songs' ratings, skips, replays etc. The listening policy
is irregular, but some clues can be inferred from an everyday experience: it
follows changes of mood, which are indeed unpredictable, but are rarely to-
tally chaotic. Therefore skipping or replaying behaviour mirrors the interest
in the song in particular context.

One of the approaches to detect overal music preference is to analyze
feedback data � collaborative �ltering (CF). CF is the process of ��ltering�
information from very large datasets based on data obtained from a collab-
oration among multiple agents, viewpoints, data sources, etc. CF is widely
used for making automatic predictions about the interests of a user by col-
lecting information from many users. In the recent years a lot of data for CF
is taken from social networks.
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To sum up, freely available audio content continues to become more ac-
cessible, listeners require more sophisticated tools to for discovery and or-
ganization of new music that they �nd enjoyable and the main goal of MIR
research is to �nd a way for solving those problems using di�erent information
retrieval techniques.

2.3 Basic Parameters of a Music Playlist

This section provides a de�nition of a playlist and discusses the subjective
factors, in�uencing playlist preferences.

2.3.1 Playlist De�nition

Although the concept of a playlist is intuitively clear, it is surprising that
there is no �standardized� de�nition of a playlist (with respect to its content,
structure and purpose) in the related literature: some authors suggest par-
ticular, but di�ering, de�nitions [CBF06, Lan09, RBBC], some rely on the
reader's own interpretation of the term [AH06, RBH05, Oli], some provide la-
tent explanation, such as �radio playlists� being the ground truth [MEDL09]
or attempt to construct a sequence of songs with an inherent order de�ned
by smooth transitions between neighbours [BCT08]. For the purposes of this
work, a playlist may be de�ned as a �nite sequence of songs which is played
as a complete set [RBBC].

Some playlists are created for personal use by oneself or a few close friends,
primarily as background for another activity (e.g. music to listen to while
traveling, studying, or exercising at the gym). A playlists may be created
to re�ect a particular mood or emotion of the creator, such as depression,
angst, or cheerfulness.

Playlists are often confused with DJ-created mixes, which involve cutting,
changing or merging of the original compositions into basically a new piece of
art. The main controversies of playlist de�nition are related to such aspects
as existence of a principle and importance of the songs order. Cunningham et
al. [CBF06] make the distinction between playlists and �mixes�. So, a playlist
is a collection of songs grouped together under a particular principle. The
principle could be objective, such as �rock songs from the 70's� or subjective,
such as �songs that remind me of Melanie� [Lan09].

2.3.2 Songs, Order, Length

There are three main aspects to a playlist that are of interest: the songs in
the sequence, the order in which these songs occur, and the length of the
playlist [vos].
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Songs

People do not always know which speci�c songs they want to hear: they either
do not remember the title or the artist or even do not know them at all, but
they remember their emotions, mood connected with those songs. However,
it is usually hard to explicitly express the characteristics of the songs they
want to hear in a certain situation. It is therefore essential that each song
contained within the playlist satis�es the expectations of the listener. These
expectations are formed based upon the listener's mood, which in turn is
in�uenced by the environment [RBBC].

Order

The order in which the songs are played provides the playlist with a sense of
balance which a randomly generated playlist can not produce. In addition it
can provide a sense of progression such as, a playlist is changing from slow
to fast or from loud to soft. [RBBC]. In other words, not only the grouping
of the pieces is of importance, but also in which order they were listened to.

It is hard, however, to �nd an explanation as to what are the rules to good
ordering. �It's been said that there is only one rule. . . There are no rules�
[CBF06]. S. J. Cunningham et al. performed an extensive study analyzing
typical suggestions given by the user. The most important were: a) no more
than two songs from the same artist or genre in a row, b) consecutive songs
should have complementary styles or sounds so that the mix does �not clash
one song up against another� � the �rst song should be good, but not the
best, d) particular care should be taken in selecting the �nal song, as �they
will remember the last song easily, e) trying to avoid boring repetition and
excessive change: not too many slow songs, hard rock, sad songs together.
To sum up, overall, people prefer playlists containing variable songs � of
di�erent artist, genre, tempo, mood, but at the same time not too random.
One of the most valuable properties of a good playlist, con�rmed by expert
DJs is that there should be 3-4 songs of the same genre, tempo etc in a row,
after which those parameters should change.

Number of Songs, Length

The number of songs in a playlist primarily determines the time duration of
the playlist. An understanding of the length of a playlist is important, as
song ordering and song balancing of the playlist is unachievable otherwise
[RBBC].

The length of a piece is important also in the sense that it is quite rare
that one chooses two pieces of very di�erent lengths in the same collection.
The length of a piece in fact can be a clue to determine some other properties.
Longer pieces tend to be more serious and involving, whilst the short ones
should be more informal [AH06].
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2.3.3 Musical Taste, Preferences and Listening Habits

In the situation considered in this work, playlists are not meant for music
discovery. All the individual songs are known by the user and assumed to
be liked by the listener. Songs in the music collection used for a playlist
generation should mirror the users' musical taste. The notion of musical
taste can be de�ned as a person's slowly evolving long-term commitment
to a particular music idiom [Pau02]. Its development is assumed to depend
on the cultural environment, the major consensus [Fur88], peer approval,
musical training [Ger82], age as an indirect factor [HS89, Rub88] a particular
period or social context [AH06] and other personal characteristics.

Hence, the music collection represents the user's taste in long-term, and
a playlist � the current preference. Moreover, each song in the music library
answers the global information need of the owner. The music preference is
the one that interests us for predicting the future playlists.

The factors that can in�uence the user's musical preference are very com-
plex, and they are both subjective and objective. An incomplete list of these
factors could be as follows [AH06]:

• education,
• environmental e�ects, social context (place, people around),
• factors of the moment (mood, attention level, etc),
• social and cultural in�uences (ethnical issues, membership of social/
subculture groups),
• individual di�erences (age, gender, introversion/extraversion, indepen-
dence, sensitivity, anxiety),
• real world applications (clinical and therapeutic uses of music, con-
sumer behavior and music education).

In addition, music preference changes over time. More regular criteria
that can be used for personalized playlist generation are listening habits.
Consequently, if a piece is played often quite recently, it is expectable that
it will be played in the near future. If a group of pieces is played together a
number of times recently, it is quite likely for the whole group to be played in
the same order in the near future as well [AH06]. If playlists contain songs of
di�erent genres seems like a person likes variability etc. it is important to ac-
cept these and other observations while modelling an automatic personalized
playlist generator.

2.3.4 Criteria for `Good' and `Bad' Playlists

As we mentioned before, the playlist generation task is a user's information
need satisfaction problem. The general wisdom for information retrieval sys-
tem design is that users wish to achieve their information goals e�ciently
and with a minimum of interaction with the system [CBF06].
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Category No %

Artist/Genre/Style 29 25.2%
Event or Activity 29 25.2%
Romance 22 19.1%
Message or Story 19 16.5%
Mood 19 16.5%
Challenge or Puzzle 12 10.4%
Orchestration 8 7.0%
Characteristics of Recipient 7 6.1%
Cultural References 7 6.1%
Other 3 2.6%

Table 2.1: Categorization of organizing principles for mix requests [artes].
As many proposed mixes had more than one theme, the percentages total to
more than 100%.

A good playlist has a central theme or organizing principle: it tells a
story, shares a mood, �gives a perspective into the individual songs that you
would not have had without seeing them in that idea� [CBF06]. Table 2.1
presents a categorization of the organizing principles for 115 mix requests
posted to the Art of the Mix Discussion Forum [artes].

In the research of music seeking criteria [Ada08] experiment participants
mentioned that emotion, mood, and listening context are important at-
tributes for music seeking.

2.4 Approaches to Playlist Construction

There are three main parameters to each existing playlist generation method:
the level of automation, the time needed to construct a �rst good playlist, the
way of modelling user's preference.

2.4.1 Level of Automation

By the level of automation, all methods can be divided into three main
categories: made manually, automatically or manually with support (semi-
automatically). The easiest and the most e�ective way for constructing a
playlist is to do it manually. However, this is a time-consuming task that,
at the same time, allows a certain degree of freedom. However, the huge
size of music collections nowadays exceeds a person's ability to recall which
compositions comply best to the current mood or situation. Semiautomatical
playlist generator is used to help users to orient in their music collections by
vizualizing or by proposing some variants for the next song in a sequence
satisfying some prede�ned constraints.
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If a user just needs background music for studying, (s)he is not very
demanding to the exact choice of the songs. None the less, the transition
from Shakira to Bach or Metallica provided by uniformly random shu�e is
probably still not desirable. Moreover, many social contexts, such as, for
example, being at work, or driving a car, do not allow to waste too much
time on hand-picking music. In these cases automated playlist generation
can be used.

Earlier music retrieval work regarding playlists has focused on `automatic
playlist generation' [CTLH10, RBBC, FRCJ08], and to a lesser extent on sup-
porting users in more easily constructing their own playlists [CBF06]. In our
work we focus on creating an algorithm for automated personalized playlist
generation (APPG), primarily targeting casual users rather than professional
DJs, who are interested in generating �good enough� background playlists by
providing just a couple of sample playlists.

2.4.2 Time Resources

Another parameter of playlist construction task is the time needed to con-
struct a �rst good playlist. Some algorithms do it on the �y [BK09, age10]
and the level of playlist's goodness is constant if muisic library and con-
straints stay the same, some methods based on �learning� algorithms provide
better and better results the more they are used and rated � such approach
usually have big problems with �rst playlists. Moreover, the type of data
used for playlist construction de�nes the time needed to process it: meta-
data (artist name, song title, year of release, genre etc) [GV05], skipping
behaviour [CTLjH10] and collaborative �ltering [BPK] based approaches
usually require less time to process the data than algorithm that use au-
dio feature extraction [BCT08, TPW05] to solve the problem.

2.4.3 Modelling User's Preference

Many di�erent approaches are possible to automatically generate playlists
from a music collection. Besides the basic random (shu�e) method a con-

straint satisfaction, similarity-based and landscape methods can be identi-
�ed [CVER07]. Constraint satisfaction-based playlist composition uses sev-
eral constraints including the desires of users [Pau02, AP02, RBBC]. Cre-
ation of playlists satisfying user constraints can be based on rich meta-
data [RBBC], temporal order of the playlists (e.g. rising tempo, change of
genre), notions of audio similarity [CTLH10]. Similarity-based approaches
try to guess the users' interest and mood and propose lists of similar sound-
ing characteristics using seed songs [MEDL09, BCT08], observed user in-
teractions (e.g. collaborative �ltering) [CVER07] or some kind of metadata
[Pau02, GPB+01, RBH05, FRCJ08, TPW05]. Cunningham et al. con�rmed
the relevance of the seed-song approach analyzing the user study reports and
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stating the fact that 50 percent of requests for help in creating playlists in-
cluded a song as an example. The problem of seed-based creation of playlists
is that the result is often too uniform and too dependent on music database
size [BCT08]. New methods have recently been proposed that are based on
a music landscape. The playlists to be composed are speci�ed, either with
an implicit path like in [CVER07] or an explicit path that goes through the
landscape. Few authors report about generating playlists with an inherent
sequential order.
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Chapter 3

The Algorithm for APPG

In this chapter, we describe an automatic personalized playlist generation
(APPG) algorithm that generates music playlists according to the taste of a
concrete user learned on a set of provided sample `good' and `bad' playlists.
First, we set constraints and de�ne a personalized classi�er for distinguishing
`good' and `bad' playlists. Next, we describe how randomized and genetic
algorithms can be used to solve the optimization problem.

3.1 Algorithm Description

The main steps of the algorithm are shown on the scheme below (Figure 3.1).
The input for the algorithm should be a large collection of music pieces and
a set of playlists rated by the user as `good' or `bad'. The output, in turn,
should give a list containing some of the music �les from the dataset. The
criterion according to which the lists should be assembled is to maximize
user's satisfaction.

Figure 3.1: The main steps of the algorithm are: a) train a classi�er to distin-
guish good and bad playlists b) use the classi�er to measure the goodness of
a generated playlist c) apply optimization algorithm to �nd the best playlist.
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3.2 Playlist Constraints

We set some constraints to our dataset and playlists. Firstly, the dataset
should not contain duplicates of music �les and should not be a collection of
one genre/style only.

Secondly, the generated playlist must satisfy the following criteria: a) the
length of the playlist is n, b) variability of styles and artists (i.e. not all songs
must be of the same style/artist), c) start and end songs are chosen by the
user, d) no duplicate songs in the playlist.

The reason for disallowing playlists of the same style and artist is mainly
the following. It is quite simple to construct a coherent background playlist of
songs just by choosing them randomly from a subset of some style or a single
artist. To exclude this trivial case and motivate a more involved algorithm,
we exclude this possibility from our algorithm.

3.3 Dataset Construction

The dataset of playlists was constructed manually from a personal music
collection of 500 MP3 �les of various styles and genres (manually labeled).
To reduce the size of data and save on computation, we decreased the sample
rate of all compositions from 44 kHz down to 8 kHz and selected a 10 second
piece from the middle part of each song. The acoustic characteristics of each
song were computed from this downsampled middle-piece.

Next, we manually constructed 50 playlists, each of length n = 10 songs
and satisfying the abovementioned constraints, such that 25 would provide
examples of `good' playlists and 25 would be `bad' playlists.

3.4 Learning Subjective Playlist Preference

One of the main parts of our algorithm is a playlist goodness classi�er. The
description is provided in the following sections.

3.4.1 Song and Playlist Representation

Most classical machine learning techniques require data in the form of vectors.
As described in Chapter 1, we represent all songs in the musical collection in
terms of their sounding characteristics such as centroid, flatness, mfcc,
flux and irregularity, which can be computed from the audio signal.
Therefore, each song i gets assigned a �nite feature vector si = (vi1, . . . , viK).

Each playlist is a sequence of songs p = (s1, s2, . . . , s`). Similarly to the
song representation, we aim at representing the playlist using a �nite set of
features, where the main idea is to capture the type of transitions between
neighbouring songs (smooth or sharp transitions).
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Consequently, we propose to de�ne the following playlist feature repre-
sentation:

p = (v1, . . . , vK) ,

where each vk is calculated as the normalized sum of absolute di�erences in
the corresponding song features:

vk =

∑n−1
i=1 |vi+1,k − vi,k|
`|vn,k − v1,k|

,

where vi,k � is a k-th feature value of the i-th song in the playlist.
Alltogether we had constructed an initial feature vector consisting of 26

elements representing each playlist(Figure 3.2). It included classical spectral

features, such as mfcc, rollo�, lowenergy, centroid, as well as emotional fea-
tures: sadness, tender, tension, anger, happiness, etc (the full list corresponds
to features supported by the MIRtoolbox [mir]).

Figure 3.2: MIRtoolbox audio content-based features tested in our experi-
ments.

Finally, when the feature set is �xed, all features are extracted and the
data collected, all information could be represented as a matrix with each
row corresponding to a playlist: each column corresponding to a feature and
each cell assigning the feature value to a given playlist in turn (Figure 3.4).
The last column is the label of the playlist category.
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Figure 3.3: Percentage of correctly classi�ed compositions obtained by 10-
fold evaluation strategy on the dataset of 50 playlists of two classes (`good'
and `bad') using di�erent algorithms. The feature set contains 5 spectral
features described in Chapter 1

Figure 3.4: Features representation: in a supervised learning scenario each
training example (musicplaylist) consists of an object to be classi�ed pre-
sented by its features, as well as the correct category (style) to which it
should be assigned.

3.4.2 The Choice of Classi�er

Once we collect a dataset of labeled playlists and represet all the playlists as
features, we are free to apply standard machine learning techniques, which
are otherwise independent of the speci�c application area [TC02].

In the present paper we selected the Naïve Bayes algorithm for automatic
playlist goodness classi�cation mostly due to its conceptual simplicity and
comparably good e�ciency. Our preliminary studies have con�rmed that its
performance is better than other algorithms, such as SMO, J48, NBTree
(Figure 3.5).
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Figure 3.5: Percentage of correctly classi�ed playlists obtained by 10-fold
evaluation strategy on the dataset of 50 playlists of two categories (`good'
and `bad') using di�erent. The feature set contains features of music surface
proposed in the paper

3.5 Automatic Playlist Generators

Having trained Naïve Bayes classi�cation algorithm we are able to assign
goodness probability to any other playlist. This makes it possible to view
the playlist generation problem as a combinatorial optimization task. We use
the randomized search technique and the genetic algorithm to perform this
optimization and compare our results with the baseline �shu�e� approach.

Shu�e

The most trivial approach to playlist generation is generating playlists purely
randomly. In our experiments we used this approach as the baseline to
compare with the results of the more clever algorithms.

Randomized Search (RS)

For random search, 1000 di�erent playlists were randomly generated and
evaluated by the classi�er function. One of the playlists that had a goodness
score > 0.995 was returned to the user. The distribution of the evaluation
function values (Figure 3.6) shows that it is, in fact, fairly �easy� to generate
a good playlist. We later found out that most of the �good� playlists were
highly homogeneous in their style. When more stringent constraints were
used, the proportion of high-quality candidates within a random population
drops drastically.
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Figure 3.6: Distribution of playlist goodness probability. 1000 playlists gen-
erated by randomized algorithm.

Genetic Algorithm (GA)

In the case of automatic playlist generation problem, the chromosomes are
represented by a sequence of songs identical numbers. Each chromosome will
be also checked/tested for the goodness probability by the playlist classi�-
cation algorithm presented above making clear how good it is at solving the
problem at hand and assign a �tness score accordingly. The �tness score is a
measure of how good that chromosome is at solving the problem. In our case
it is a playlist goodness probability returned by the Naïve Bayes classi�er.

Next step is to select two members from the current population choosing
members from the population of chromosomes in a way that is proportional
to their �tness � Roulette wheel method. It does not guarantee that the
�ttest member goes through to the next generation, merely that it has a
very good chance of doing so. In our case the algorithm looks as follows:

1. Randomly generate an initial playlist population V (0)

2. Compute and save the goodness u(v) for each individual (playlist) v in
the current population V (t)

3. De�ne selection probabilities p(v) for each individual (playlist) m in
V (t) so that p(v) is proportional to u(v)

4. Generate V (t + 1) by probabilistically selecting individuals from V (t)

to produce o�spring via genetic operators

5. Repeat step 2 until satisfying solution is obtained.

We use the PyEvolve library [Per09] and its default GA parameters:
evolve for 100 generations with a population size of 80 individuals, the mu-
tation rate of 2% and a crossover rate of 80%.
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3.6 Implementation details

In the implementation we used the following packages:
Data processing and feature extraction was done by using MIRtoolbox

[mir] � a toolbox for music information retrieval that o�ers an integrated
set of functions written in MATLAB [mat], dedicated to the extraction from
audio �les of musical features such as tonality, rhythm, structures, etc. We
tried 26 di�erent acoustic features that potentially could help to clarify an
individual playlist taste of the user.

As MIRtoolbox [mir] prefers to read sound �les in WAV format and does
it much faster than others, we used the Sound eXchange [sox] sound converter
software to convert MP3 �les to WAV.

For initial analysis of playlist feature vectors we used Weka [HDW94] � a
suite of machine learning software which supports several standard data min-
ing tasks, such as clustering, classi�ation, visualization and feature selection
that we have used in our work.

To implement the playlist generation algorithm we used Python packages
GNB and pyevolve. GNB is an implementation of the Gaussian Naïve Bayes
Classi�er that allows to train a classi�er and test the input playlists for the
probability of being `good'. Pyevolve was used to run the genetic algorithm.
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Chapter 4

Algorithm Evaluation

In this chapter we evaluate the performance of the algorithm and present
the results. For evaluation we used the dataset of manually constructed and
labeled playlists described in the previous chapter.

4.1 Classi�cation Performance

To illustrate the usefulness of each separate feature, we shall illustrate its
ability to discriminate `good' and `bad' playlists that we used in our experi-
ments.

The overall performance of the Naïve Bayes classi�cation algorithm for
playlists is presented in the confusion matrix in Table 4.1. Those results
correspond to accuracy 82%, recall 90% and precision 44%.

Table 4.1: Confusion Matrix

a b <�classi�ed as
18 7 a = good
2 23 b = bad

To sum up, the classi�cation algorithm for `good' and `bad' playlists is
quite precise for being used as a part of automatic playlist generator.

4.2 Generation Performance

In our work we tried a genetic generation algorithm and compared its result
with a simpler randomized search and a baseline shu�e algorithms.

4.2.1 User Evaluation

In solving the APPG problem one of the most important tests that can be
done is user evaluation, i.e. getting a feedback of the potentioal user of our
algorithm. The test itself and its results are described below.
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Test Description

For the user test, the same music collection was used as for the other tests
that are described in this chapter. From the collection of 500 music �les,
150 di�erent playlists were automatically generated using three algorithms:
shu�e, randomized search (RS) and genetic (GA).

Playlists were generated in triples, so that each playlist in the triple was
generated using a separate algorithm. The task of the user was to choose the
one of the three that seems better than the other two. The test was blind �
the user did not know which of the three playlists was generated by which
algorithm.

As the work is about the automatic personalized playlist generation al-
gorithm and the original dataset was created by the thesis author, all tests
were also done by the author of the thesis. Thus, the present user evaluation
assessed the subjective quality of music playlists.

Results

Playlist quality was measured by the proportion of the playlists that were
chosen by the user as the best ones out of the provided couple generated
by the same constraints and the same start and end seed song. As a result,
playlists generated by the RS were judged to be of higher quality than those
generated by the GA algorithm and shu�e method in the case of longer
10-songs playlists. The same situation was detected for shorter playlists of
5 songs. In both cases the RS algorithm outperformed without signi�cant
advantage - just 4% of more user choices (Figure 4.2).

Type of test Shu�e (SH) Randomized (RS) Genetic (GA)
10-song playlists 10 19 21
5-song playlists 12 18 20

Table 4.2: Algorithm quality was measured by the proportion of the preferred
playlists. As the work is about the automatic personalized playlist generation
algorithm, all tests were done by the authors of the thesis - same people rated
the test dataset.

So we can make an assumption that the quality of playlist generator
is more or less the same for playlists containing 5-10 compositions. In turn,
comparing the playlists constructed by Randomized Search (RS) and Shu�e,
we see the positive impact of audio content-based features into the APPG
algorithm (Figure 4.1).

4.2.2 Run Time Evaluation

In this section the genetic playlist generation algorithm is compared to the
randomized approach in a sence of run time. We measured how long does it
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Figure 4.1: The result of the following experiment: for each couple of start
and end seed songs three playlists were automatically generated using three
algorithms: shu�e, randomized search (RS) and genetic (GA). The user
chose (blindly) the one of the three that seems better than the other two.

take to generate playlists of di�erent length with given constraints. The algo-
rithms were tested on the machine with following parameters: Intel CoreTM2
Duo CPU T7300 2 GHz 2GB RAM, 32-bit OS.

As we see from the table (Figure 4.3) � the time needed for genetic algo-
rithm is much greater than for randomized.

Genetic algorithm (GA) Randomized Search (RS)
18,634 s < 1 s
618,910 s < 1 s
155,642 s < 1 s
409,441 s < 1 s
351,283 s < 1 s
430,282 s < 1 s
580,342 s < 1 s
9,406 s <1 s
320,501 s < 1 s
98,234 s < 1 s
mean: mean:

299,269 s < 1 s

Table 4.3: Run Time of the Algorithms measured in seconds (s).

With a known dataset it takes just a couple of seconds to generate a
random set of playlists, test them by our category classi�cation algorithm
and choose some of the best of them to propose to the user.

37





Summary

In this thesis we presented a study of an approach to automated personalized
playlist generation. Besides a brief overview of the theoretical background,
we documented our approach, the experiments we performed and the results
we obtained. In the practical part of our work we extracted features proposed
by MIRtoolbox and mostly de�ned in the paper of [TC02] and evaluated the
work on our data set using di�erent approaches. Afterwards, we �xed the
classi�er, made some proposals for the feature set, tested them, constructed
a feature set of 5 elements that classify playlists for `good' and `bad' with the
accuracy of 82% that is much better than random (50 %). Finally, we tried
diferent playlist generation methods and came to a conclusion that Random-
ized Search is an optimal solution for a given problem by both parameters:
quality and run time.

There are several directions for future research. One of the obvious is
to continue work on the improvement of `good' and `bad' playlist classi�ca-
tion algorithms, searching for new valuable features that could be extracted
from the audio signal, as well as adding new metadata features and informa-
tion for the collaborative �ltering. From the other point of view, we could
learn human playlist generation strategies and constraints and accept them
in the generation algorithm. This could provide an easier search for a par-
ticular set of music compositions that will help people to construct their
background playlists automatically according to their music preferences and
playlist taste with minimal time consumption. Moreover, we believe that
such an algorithm could simplify the work of professional DJs; they will be
able to get intelligent proposals of music compositions for the next track by
their arti�cial characteristics.
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Automaatse personaliseeritud

esitusloendi generaator

Magistritöö(30 EAP)

Anastassia Semjonova

Resümee

Tänapäeval hoitakse muusikat peamiselt digitaalvormis. Viimasel ajal suure
digitaalmuusika ning isikliku muusika mängijate kättesaadavuse tõttu on üha
rohkem huvi automaatse põlvkonna muusika esitusloendite vastu. Muusika
esitusloend või pleilist võib olla de�neeritud nagu lõplik muusika komposit-
sioonide järjestus, mis on mängitud ning tajutud nagu tervik kogum.

Kõige lihtsam viis on konstrueerida esitusloendi käsitsi. Kuid, see on
väga aeganõudev ülesanne, mis aga samal ajal lubab mingil määral vabadust.
Samuti, personaalsed muusika kogumid on tänapäeval nii suured, et paljud
inimesed ei suuda kiiresti valida muusika faile, mis vastavad nende tujule an-
tud hetkel ja olukorral. Ka paljud sotsiaalsed kontekstid, nagu töökohal või
autos, ei anna võimalust käsitsi muusikat valida. Seepärast käesolevas mag-
istriöös me fokuseerime automaatse personaliseeritud taustamuusika esitus-
loendi generaatoril, mille peamisteks kasutajateks on mitte professionaalsed
DJ-d. Kasutaja määrab pleilisti pikkust ning esimest ja viimast komposit-
siooni. Meie algoritm omakorda täidab järjestust vastavalt kasutaja mait-
sele, mis on kavandatud eelnevalt märgistatud `hea' ja `halva' esitusloendite
järgi. Kõikide meie esitusloendite jaoks on keelatud laulja ning kompositiooni
kordumine. Käesolevas magistritöös on esitatud automaatse personaliseeri-
tud esitusloendi generaatori probleemi lähenemisviiside uuring. Lisaks teo-
reetilise tausta lühiülevaatele me dokumenteerisime oma lähenemist: meie
poolt tehtud katsed ning nende tulemused.

Meie algoritm koosneb kahest põhiosast: esitusloendi hindamisfunktsiooni
konstrueerimine ning pleilisti genereerimisstrateegia valik. Esimese �ulesande
lahendamiseks on valitud Naïve Bayes klassi�tseerija ning 5-elemendiline
MIRtoolbox tööristakasti poolt kavandatud audio sisupõhiste attribuutide
vektor, mis klassiitseerivad pleilisti heaks või halvaks 82% täpsusega - palju
parem kui juhuslik klassi�tseerija (50%). Teise probleemi lahendamiseks
proovisime kolm genereerimisalgoritmi: lohistus (Shu�e), randomiseeritud
otsing (Randomized Search) ning geneetiline algoritm (Genetic Algorithm).
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Vastavalt katsete tulemustele kõige paremini ja kiiremini öötab randomiseer-
itud otsingu algoritm. Kõik katsed on tehtud 5 ning 10 elemendilistel esitus-
loenditel.

Kokkuvõttes, oleme arendanud automatiseeritud personaliseeritud esin-
dusloendi generaatori algoritmi, mis vastavalt meie hinnangutele vastab ka
kasutaja ootustele rohkem, kui juhuslikud lohistajad. Algoritmi võib kasu-
tada keerulisema pleilistide konstrueerimiseks.

On olemas mitu suunda edasisteks uuringuteks. Üks variant on jätkata
tööd `hea' ja `halva' esitusloendite klassi�tseerija parandamise valdkonnas,
uurides milliseid atribuute ning klassi�kaatorit kasutada. Samal ajal võib
uurida, kuidas automaatset personaliseeritud muusika pleilisti genereerijat
paremaks muuta: testida teisi genereerimisstrateegiaid ning algoritme. Väga
kasulik oleks ka mingi �uldise andmekogumiku koostamine, mis oleks võimalik
testimiseks kasutada.
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