
1
Tartu 2017

ISSN 1024-4212
ISBN 978-9949-77-443-2

DISSERTATIONES
MATHEMATICAE

UNIVERSITATIS
TARTUENSIS

114

A
LISA

 PA
N

K
O

VA
	

Efficient M
ultiparty C

om
putation Secure against C

overt and A
ctive A

dversaries

ALISA PANKOVA

Efficient Multiparty Computation
Secure against Covert and
Active Adversaries

DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS

114

DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS

114

ALISA PANKOVA

Efficient Multiparty Computation

Secure against Covert and
Active Adversaries

Institute of Computer Science, Faculty of Science and Technology, University of
Tartu, Estonia

Dissertation is accepted for the commencement of the degree of Doctor of Philos-
ophy (PhD) on May
University of Tartu.

Supervisor:

Ph.D Peeter Laud
Cybernetica AS
Tartu, Estonia

Dr.Tech Sven Laur
University of Tartu
Tartu, Estonia

Opponents:

PhD Joël Alwen
Institute of Science and Technology Austria
Klosterneuburg, Austria

PhD Jun Furukawa
NEC Corporation America
Herzliya, Israel

The public defense will take place on June

The publication of this dissertation was financed by Institute of Computer Science,
University of Tartu.

Copyright: Alisa Pankova, 2017

ISSN 1024-4212
ISBN 978-9949-77-443-2 (print)
ISBN 978-9949-77-444-9 (PDF)

University of Tartu Press

i4, 2017 by the Council of the Institute of Computer Science,

i22, 2017 at 10:15 in Liivi 2-403.

www.tyk.ee

i
i

Contents

Abstract 9

1 Introduction 10
1.1 Secure Multiparty Computation 10
1.2 Assumptions of Secure Multiparty Computation 11
1.3 Claims of This Thesis . 12
1.4 Outline and Author’s Contributions 13

2 Preliminaries 15
2.1 Multiparty Computation . 15
2.2 Security of Multiparty Computation 16

2.2.1 Secrets . 16
2.2.2 Adversary . 16
2.2.3 Basics of Universal Composability 17
2.2.4 Languages for Secure Computation 21

2.3 Basics and Notation . 22
2.3.1 Types of Indistinguishability 22
2.3.2 Digital Signatures . 25
2.3.3 Message Authentication Codes 26
2.3.4 Hash Functions and Merkle Tree 27
2.3.5 Finite Fields and the Schwarz-Zippel Lemma 28
2.3.6 Linear Programming . 28

2.4 Linear Secret Sharing Schemes 29
2.4.1 Additive Sharing . 29
2.4.2 Linear Threshold Sharing 29
2.4.3 Permutation Sharing . 31

2.5 Correlated Randomness . 31
2.6 Commitments . 32
2.7 Verifiable Computation . 34

2.7.1 Linear Probabilistically Checkable Proofs 34
2.7.2 Verification as Quadratic Arithmetic Program 35

5

2.7.3 LPCP for Quadratic Arithmetic Programs 37

3 Related Work 40
3.1 Actively and Covertly Secure Multiparty Computation 40

3.1.1 A Note on Covert Adversaries 40
3.1.2 Compilers from Passive to Active Security 41
3.1.3 Active Security for any Number of Corrupted Parties . . . 41
3.1.4 Active Security with an Honest Majority 45
3.1.5 Passive Security with an Honest Majority 47

3.2 Multiple Adversary Models . 48
3.2.1 Collusion Preserving Computation 49
3.2.2 Local Universal Composability 49

3.3 Private Conditionals in SMC Programs 50

4 Verifiable SMC with an Honest Majority 51
4.1 Chapter Overview . 51
4.2 The Ideal Functionality for Verifiable Honest Majority SMC . . . 52
4.3 The Protocol for Verifiable 3-Party SMC with one Corrupted Party 53

4.3.1 Building Blocks . 55
4.3.2 Protocol Implementing Fpre 58
4.3.3 Protocol Implementing Fverify 61

4.4 Generalization to Verifiable n-Party SMC with an Honest Majority 66
4.4.1 Building Blocks . 66
4.4.2 Generalization of Πverify 67

4.5 Security Proofs for n-Party Verifiable SMC with an Honest Majority 70
4.5.1 Ensuring Message Delivery 71
4.5.2 Linearly Homomorphic Commitments 79
4.5.3 Generating Uniformly Distributed Randomness 87
4.5.4 Generation of Precomputed Tuples 91
4.5.5 Verification of Circuit Computation 102
4.5.6 The Main Protocol for Verifiable SMC 112
4.5.7 Proof of the Main Theorem 119
4.5.8 Another Protocol for Verification 122

4.6 Extensions . 128
4.6.1 Additional Circuit Operations 129
4.6.2 Reducing the Number of Bit Decompositions 130
4.6.3 Input and Output Parties 132
4.6.4 Auditability . 133

4.7 Evaluation . 133
4.7.1 Implementation . 133
4.7.2 The Total Cost of Covertly Secure Protocols 135

6

4.7.3 State-of-the-art Complexity of Actively Secure Integer
Multiplication and AES 138

4.7.4 Estimating the Cost of other Sharemind Protocols 140
4.8 Summary . 142

5 Protecting Data from Honest Parties 144
5.1 Chapter Overview . 144
5.2 Attacks that We Want to Cover 146
5.3 Weak Collusion Preservation . 147

5.3.1 Intuition . 147
5.3.2 Definitions . 149
5.3.3 Technical Details . 152
5.3.4 Relations with Generalized Universal Composability . . . 154
5.3.5 Capturing Information Leakage to an Honest Party 155
5.3.6 Composition Theorem 156
5.3.7 Relations to the Existing Notions 160
5.3.8 Applicability of the WCP Model 167

5.4 Protocol Transformations for Achieving the WCP Security 171
5.4.1 Passive Adversaries . 171
5.4.2 Fail-Stop Adversaries . 172
5.4.3 Covert Adversaries . 187
5.4.4 Active Adversaries . 206

5.5 Summary . 217

6 Optimization of SMC Programs with Private Conditionals 218
6.1 Chapter Overview . 218
6.2 Programming Language for SMC 219
6.3 Computational Circuits . 221

6.3.1 Circuit Definition . 221
6.3.2 Circuit Evaluation . 223
6.3.3 Transforming a Program to a Circuit 224

6.4 Optimization of the Circuit . 225
6.4.1 The Weakest Precondition of a Gate 225
6.4.2 Informal Description of the Optimization 228
6.4.3 Notation . 230
6.4.4 Subcircuits as Gates . 232
6.4.5 Simple Greedy Heuristics 233
6.4.6 Reduction to an Integer Linear Programming Task 238
6.4.7 Circuit Transformation 245

6.5 Formal Constructions and Proofs 248
6.5.1 Circuit Composition . 248

7

6.5.2 Transformations of Programs to Circuits 250
6.5.3 Correctness of the WP Generating Algorithm 256
6.5.4 Correctness of the Subcircuit Partitioning Algorithm . . . 258
6.5.5 Correctness of the Greedy Algorithms 260
6.5.6 Correctness of the Reduction to ILP 261
6.5.7 Correctness of the Circuit Transformation 265

6.6 Implementation and Evaluation 275
6.7 Discussion . 278
6.8 Summary . 279

Conclusion 280

Appendix A Optimized Sample Programs 281

Appendix B Running Times of Programs after Optimization 289

Bibliography 293

Acknowledgments 306

Kokkuvõte (Summary in Estonian) 307

List of Original Publications 309

Curriculum Vitae 310

Elulookirjeldus 311

8

ABSTRACT

Secure multiparty computation is one of the most important employments of mod-
ern cryptography, bringing together elegant mathematical solutions to build up
useful practical applications. It allows several distinct data owners to perform
arbitrary collaborative computation on their private data without leaking any in-
formation to each other.

The security of multiparty computation often relies on assumptions about the
behaviour of parties. A passively secure protocol is secure as long as all parties
follow its rules. A covertly secure protocol works under assumption that no party
will cheat if it will be detected by the other parties. An actively secure protocol is
able to tolerate any behaviour of corrupted parties.

This thesis presents a generic method for turning passively secure multiparty
protocols to covertly or actively secure ones, assuming that the majority of parties
is honest. The method is optimized for three party computation over rings of
residue classes Z2n , which has proven to be quite an efficient model, making large
real-world applications feasible.

In this thesis, we also study a new adversarial goal in multiparty protocols.
The goal is to manipulate the view of some honest party in such a way, that this
honest party learns the private data of some other honest party. The adversary
itself might not learn this data at all. Such attacks are significant because they
create a liability to the first honest party to clean its systems from the second honest
party’s data, which may be a highly non-trivial task in practice.

Finally, this thesis addresses the problem of excessive computation in secure
multiparty applications. In some cases, the parties need to make a decision, in
which direction their computation should proceed further. If this decision depends
on private data, then the parties are not allowed to know which computational
branch has been chosen, so in general the parties need to execute all of them. If
the number of branches is large, the computational overhead may be enormous,
as most of the intermediate results will not be needed for the final answer. This
thesis proposes an optimization that reduces this overhead.

9

CHAPTER 1

INTRODUCTION

1.1 Secure Multiparty Computation

Secure multiparty computation is a methodology that allows several parties to pro-
cess private data collaboratively without revealing the data to any party. The data
are protected by encryption or some other similar method such as secret sharing.
Some possible scenarios of secure multiparty computation are the following:

• A client uses external resources (e.g. a cloud) to process data collected from
multiple data owners. The data should be protected from both the resource
controller and the client.

• Multiple clients collaborate to process data provided by themselves, protect-
ing their own data from each other.

• Multiple clients collaborate to process data provided by multiple data own-
ers. The data should be protected from each client.

First research results on secure multiparty computation have been published
in 1980-s [104]. Numerous theoretical solutions and implementation prototypes
have been proposed since that time [47, 8, 75]. It took time for secure multiparty
computation to become practical, and the first really big application of secure
multiparty computation on real data was Danish sugar beet auction [19] that took
place in 2008, where the task of sugar beet providers and their customer was to
agree on the selling price.

Much work on practical use of secure multiparty computation on real data
has been accomplished since that time. A secure system for jointly collecting
and analyzing private financial data was implemented and deployed in 2011 [18].
A tax fraud detection system that works with private data has been implemented
and evaluated in 2014 [11]. The relationship between working during university

10

studies and graduating on time has been studied in 2015 [12], and it was required
to combine private data of the Ministry of Education and the Tax and Customs
Board. Secure survey systems have been used in large scale in 2015-2016, when
BostonWomen’sWorkforce Council initiated a study of gender and ethnicity wage
gaps among employers within the Greater Boston Area [61].

Secure multiparty computation is increasingly being used in the real world
scenarios, and hence it is important to contribute to this area, so that it could be
used in even a better way.

1.2 Assumptions of Secure Multiparty Computation

Securemultiparty computation oftenmakes some assumptions about the behaviour
of computing parties, i.e. the parties that actually perform the computation, who
are not necessarily the data owners. One possible assumption is the guaranteed
number of honest parties. If the inputs are protected by secret sharing them among
the parties, then existence of at least one honest party should be assumed in any
case. Otherwise, if all the computing parties colluded, they would recover the
secret even if no computation took place at all. Making a bit stronger assumptions,
such as an honest majority of parties, may result in much more efficient protocols.

Assumptions are also being made about the behaviour of dishonest parties.
Passively corrupted parties are curious, and may collude to recover the secret,
but they do not violate the protocol rules. Actively corrupted parties may also
collude, and in addition they may deviate from the protocol rules. Protocols
secure against actively corrupted parties (actively secure protocols) are relatively
efficient nowadays, but they still underperform severely when compared to the
protocols that are secure only against passively corrupted parties (passively secure
protocols). If data are big, execution of an actively secure protocol on these data
may be infeasible.

When a passively secure protocol is used, data protection is guaranteed only if
none of the computing parties will actually try to break the rules deliberately. This
is often a reasonable assumption, depending on who the computing parties are. If
a party is some honorable institution, then it would take care of its reputation and
never try to cheat if there was any possibility that the cheating could be detected. A
party that will not cheat if it will be detected by the other parties is called covertly
corrupted. In general, passively secure protocols do not attempt to detect such
cases. Even if all the other parties notice that something goes wrong, it is quite
unlikely that the cheater will be identified.

To get a protocol that would be secure against covertly corrupted parties, it is
sufficient to extend a passively secure protocol with a verification phase such that,
if any party has cheated during the execution, it would be noticed by all the other

11

parties. It would be even better if the computation could be verified publicly, so
that the misbehaviour of the cheater could be proven to an external judge. Looking
for new efficient methods to achieve accountable security is a promising research
area. In this thesis, we investigate this area and propose a verification method that
works under honest majority assumption and is quite efficient for a small number
of parties.

One problem of the existing security models of multiparty protocols is that
they do not cover well the ability of the attacker to leak the data of one honest
party to another honest party. Such attacks are possible, even if the attacker does
not see these data himself. This is not a problem if the protocol does not make any
assumptions on the number of honest parties, since any party may potentially be
corrupted, so the protocol should protect data from all of them. However, if there
is an assumption that the number of corrupted parties is bounded, then the models
take into account only the data leaked to these corrupted parties. Little research
has been done in this direction so far, and we investigate the problem in this thesis.

1.3 Claims of This Thesis

The aim of this thesis is to weaken some set-up assumptions of secure multiparty
computation while keeping efficiency on a level that allows to apply it to real data.
In particular, this thesis proposes a method for making passively secure protocols
efficiently verifiable, and a method for preventing the honest parties from learning
too much. On the other hand, it does not attempt to get rid of the honest majority
assumption. This thesis states and proves the following claims:

Claim 1: One can transform passively secure multiparty protocols over rings of
residue classes Zn to protocols that are actively secure under the honest majority
assumption, introducing a small overhead. The resulting protocols are especially
efficient for three parties and for rings Z2m .

Claim 2: There exists a security model that allows detecting the leakage of
one honest party’s data to another honest party. The simplicity of proofs in this
model is similar to the existing widely used security models that fail to detect such
leakage, and achieving security in this model is feasible in practice.

Claim 3: The overhead of secure computation applications, caused by the ne-
cessity of computing all branches of choices that depend on private data, can be
reduced by an optimization that does not affect security of the initial application.

12

1.4 Outline and Author’s Contributions

We explain the notation and the basics needed to understand our work in Chapter 2.
We discuss the related work in Chapter 3. The subsequent chapters comprise the
actual contribution of this thesis.

Contribution 1: In Chapter 4, we construct a protocol set for verifying secure
multiparty computation. The verification property is very strong, and a misbehav-
ing party will remain undetected at most with negligible probability. This allows
to turn passively secure protocols to covertly secure (if the verification is applied
once), or actively secure (if the verification is applied after each protocol round).
Compared to other similar verification methods from related work, the specific
feature of our mechanism is its straightforward compatibility with computation
over rings, and its efficiency in the case of three parties. We apply our verification
mechanism to the protocol set [17] employed in the Sharemind platform [16],
demonstrating for the first time a method to achieve active security for Sharemind.

Chapter 4 proves Claim 1 of this thesis. This chapter is based on a previous
publication of the author [62], and an unpublished result [63].

• Laud, P., Pankova, A.: Verifiable Computation in Multiparty Protocols with
Honest Majority. In: Provable Security - 8th International Conference,
ProvSec 2014, Hong Kong, China. Proceedings. LNCS, vol. 8782, pp.
146–161. Springer (2014).

• Laud, P., Pankova, A.: Preprocessing-based Verification of Multiparty Pro-
tocols with Honest Majority. Cryptology ePrint Archive, Report 2015/674.

Contribution 2: In Chapter 5, we define a new adversarial model that allows to
capture protocol vulnerabilities resulting in leaking information to honest parties.
We prove that our model is as strong as the standard universal composability [21]
model, and that it discovers attacks that are not captured by alternative models
from related work. As an example, we study our verification mechanism in this
new model, find the vulnerabilities in our protocols, and show how to fix them.
We estimate the overheads caused by this improvement, showing that it is feasible
to achieve security in the new model without complicated constructions.

Chapter 5 proves Claim 2 of this thesis. This chapter is based on a previous
publication of the author [65].

• Laud, P., Pankova, A.: Securing multiparty protocols against the exposure
of data to honest parties. In: Data Privacy Management and Security
Assurance - 11th International Workshop, DPM 2016 and 5th International
Workshop, QASA 2016, Heraklion, Crete, Greece, Proceedings. LNCS,
vol. 9963, pp. 165–180. Springer (2016)

13

Contribution 3: In Chapter 6, we propose an optimization for secure computa-
tion, applicable to both execution and verification of computation. The goal of the
optimization is to reduce the number of computations whose results are not needed
for the final answer, but which unfortunately have to be introduced in some cases to
ensure data privacy. We estimate performance and usefulness of our optimization
algorithms on the example of the Sharemind platform [16].

Chapter 6 proves Claim 3 of this thesis. This chapter is based on a previous
publication of the author [64].

• Laud, P., Pankova, A.: Optimizing secure computation programs with pri-
vate conditionals. In: Information and Communications Security - 18th
International Conference, ICICS 2016, Singapore, Proceedings. LNCS,
vol. 9977, pp. 418–430. Springer (2016),

14

CHAPTER 2

PRELIMINARIES

2.1 Multiparty Computation

In multiparty computation, there are n distinct parties with mutually disjoint inner
states that compute a certain functionality f on their inputs x1, . . . , xn, getting the
outputs y1, . . . , yn = f(x1, . . . , xn). The parties are connected with each other
via channels that they use to exchange messages. The i-th party performs some
local computations on xi and the messages it receives from the other parties. As
the result, it gets messages that it sends to the other parties, and the output yi. The
value of yi in general depends not only on xi, but on all the inputs x1, . . . , xn,
as well as on randomness of the parties. A multiparty protocol is a set of rules
specifying which computation should be performed by which party, and which
messages should be exchanged.

The parties can represent different physical machines in the network, e.g. the
client and the server, or just different computational units in the samemachine, e.g.
interaction of a trusted computation hardware unit [77, 48, 2] with an untrusted
memory. A single party may also represent a set of machines. In this thesis, we
treat parties as logical entities, without going into detail of their implementation.

Circuits. The functionality f that the parties collaboratively compute, as well as
the local computations of each party, are often formalized by arithmetic or boolean
circuits. A circuit is a directed acyclic graph, whose nodes (gates) represent the
computational operations, and whose arcs (wires) denote the input/output relations
between the gates. Each gate computes some operation on the values coming from
its incoming arcs (input wires), and propagates the result to all its outgoing arcs
(output wires). Some wires may have only one endpoint. The wires that have no
source are called circuit inputs, and the wires that have no target are called circuit
outputs.

15

An arithmetic circuit consists of addition, multiplication by a constant, mul-
tiplication of two variables, and constant gates, all defined over a ring or a field.
A boolean circuit consists of exclusive disjunction (XOR), conjunction (AND),
negation (NOT), and constant gates, defined over the boolean values {0, 1}. It is
known that both types of circuits are sufficient to represent any computation.

Rounds and Synchronicity. Computation between parties takes place in rounds.
A round covers the parties’ computation that takes place between the receipt of the
inputs or messages of the previous round, and the output of the messages of the
next round to the other parties. The computation of parties can be represented by
a set of circuits C`ij computing the messages that a party Pi sends to the party Pj
on the `-th round. The communication is synchronous if all the messages of the
`-th round are output before any message of the `+ 1-st round is output.

2.2 Security of Multiparty Computation

2.2.1 Secrets

The inputs of parties in multiparty computation can be private. To deal with
this, multiparty computation can be constrained to secure multiparty computation
(SMC), where the initial inputs of the parties, and often also their outputs, are
treated as secrets.

In SMC protocol sets based on secret sharing [47, 26, 17, 33], the involved
parties are usually partitioned into input, computation, and output parties [90].
The input parties provide the inputs by secret-sharing them among the computation
parties. The computation parties carry out computation on these shares to obtain
the desired result. The output parties receive the shares of final outputs, which they
can recombine into the final outputs of the computation. In this case, the actual
secrets are the values that have been provided by the input parties, and the values
that are finally given to the output parties. No computation party should be able
to infer any information about these values, and this property must be ensured by
the used secret sharing scheme. We discuss some of these schemes in Section 2.4.

2.2.2 Adversary

Intuitively, the adversary is an evil entity that tries to break the computation,
and/or extract some secret information out of it. We need to define more precisely
where this evil entity is residing in the SMC setting. Assuming that there are
secure authenticated channels between the parties eliminating man-in-the-middle
attacks, the only possible attackers are the parties themselves. Some parties may
try to infer the other parties’ inputs from the messages they get, or even try to break

16

the protocol by sending invalid messages on their own behalf. As it is possible
that different parties will collaborate to conduct stronger attacks, the adversary is
usually viewed as a single entity controlling all the parties that it corrupts. The
allowed upper bound on the number of corrupted parties is defined explicitly for
each SMC protocol.

A static adversary corrupts the parties in advance before the protocol starts.
An adaptive adversary may corrupt parties at any time during protocol execution,
possibly releasing them at some point, in order to corrupt some other parties while
maintaining the upper bound on the total number of currently corrupted parties.
In this thesis, we only consider static adversaries.

Adversaries can also be differentiated based on the behaviour of parties that
they corrupt.

• Passive (semihonest, honest-but-curious): the corrupted party follows the
protocol as an honest party, but it shares its internal state with the adversary.

• Covert [4]: the corrupted party may misbehave, but only as far as the
probability of being caught is negligible. By being caught we mean that all
honest parties of the protocol unanimously agree that this party is guilty.

• Fail-Stop [42]: the corrupted party follows the rules, but at some moment
it may try to stop the protocol, so that the computation fails. In this thesis,
we use the definition where the party may stop the protocol only if the
probability of being caught is negligible. In this way, we consider fail-stop
adversary as an instance of covert adversary.

• Active (malicious): the corrupted party does whatever it wants.

The passive and the active adversary are the two main kinds of adversaries
for SMC protocols that are typically considered. The highest performance and
the greatest variety is achieved in protocols secure against passive adversaries. In
practice we would like to achieve stronger security guarantees. Achieving security
against active adversaries may be expensive. Hence, intermediate classes between
passive and active adversaries have been introduced. In this thesis, we pay special
attention to the covert adversary.

2.2.3 Basics of Universal Composability

In this thesis, we study security of our protocols in the universal composability
(UC) model [21]. This model considers systems of interactive Turing machines
(ITM) connected to each other by input and output communication tapes and
maintaining some internal state. Throughout this thesis, in the figures, ITMs are
represented by boxes, and the communication tapes by arrows.

17

Z

∃S ∀Z ∀A
≈ π

Z

φ S A A

Figure 2.1: UC-emulation: the protocol π UC-emulates the protocol φ

Model Description

A protocol Π consists of ITMs Pi, where i is a unique identifier. The protocol
represents the computing parties that mutually realize some functionality F. The
parties may be connected to each other, and may also use a trusted resource ITM
R to mediate their communication or even compute something for them. A special
ITM A represents the adversary that may corrupt some parties Pi and get access
to their internal states. There is a special ITM Z , the environment, that chooses
the inputs for each Pi and receives their outputs. Z may represent the users sitting
behind the machines Pi, as well as any other protocols running concurrently with
Π, probably even some other sessions of Π. There is also communication between
Z and A.

In security proofs, one defines an ideal functionalityF represented by a trusted
ITM. It receives the inputs fromall parties, computes some function on these inputs,
and returns to each party its output. It may deliberately output to the adversary
some data that is insensitive enough to be leaked. On the other hand, there is a
protocol Π that shares exactly the same communication tapes with Z as F does,
but that consists of untrusted machines Pi communicating with each other, and
optionally some other resource R used by these machines. The settings of Π are
much more realistic than F, and the goal is to show that Π is secure enough to be
used instead of F. This can be done by proving that any attack (represented by
A) against Π can be converted to an attack (represented by some ideal adversary
AS) against F. Formally, one proves that no environment Z is able to distinguish
whether Π with A or F with AS is running, regardless of the adversary A.
The proof is done by finding a suitable adversary AS , and it is often defined as
AS = (S‖A) for the simulator S that mediates the communication betweenA and
F, trying to convince A that it is communicating with Π, and trying to convince
F that it is communicating with AS . The ability of Z to distinguish between the
two protocols is captured by defining the final output of Z . The distributions of
the final outputs of Z should be indistinguishable for F and Π, regardless of the
values that Z actually outputs. Let EXECΠ,A,Z denote the probability ensemble
of outputs of the environment Z running the protocol Π with the adversary A.

18

AS
Pn

AF
∃S ∀Z ∀A
≈

Z Z

π

P1

Figure 2.2: UC-realization: the protocol π UC-realizes the ideal functionality F

Definition 2.1 (UC emulation [21]). Let π and φ be probabilistic polynomial time
(PPT) protocols. We say that π UC-emulates φ if there exists a PPT machine
S, such that for any PPT adversary A, and for any PPT environment Z , the
probability ensembles EXECπ,A,Z and EXECφ,(S‖A),Z are indistinguishable
(denoted EXECπ,A,Z ≈ EXECφ,(S‖A),Z).

UC-emulation is depicted in Figure 2.1. If the protocol φ is defined in such a
way that forwarding messages between Z and the subroutine F is the only thing
that the parties do, we may also say that the protocol π UC-realizes F. This is
depicted in Figure 2.2. We give some formal interpretations of indistinguishability
in Section 2.3.1, explaining why we require the machines A, S, Z to be PPT.

Since Definition 2.1 does not specify the adversary type, we will further
explicitly specify whether a protocol emulates the functionality passively, covertly,
or actively. If there are no additional adversary specifications, then by default an
active adversary is assumed.

In order to make the proofs of this thesis simpler, we modularize them, proving
the following two properties separately:

1. Simulatability: the simulator S is able to simulate to A all the messages
sent to the corrupted parties, so that they come from the same distribution
as if Π was run on the same party inputs.

2. Correctness: the party outputs in the ideal functionality F are exactly the
same as in the simulated Π. This is true also for the probabilistic outputs.

If these properties hold, then Z cannot distinguish between F, AS and Π, A,
even if it puts together the messages it receives from F and AS (Π and A).

Composition Theorem

An important feature of the UCmodel is that the proofs are extended automatically
to protocol compositions. Namely, proving that a protocol π UC-emulates φ is suf-
ficient to substitute any instances of φ in a complex protocol with π, without losing
in security, even if multiple instances of φ are running in parallel or sequentially.

19

Pn

P1
≈

Z Z

S A A

G

F

∃S ∀Z ∀A

π

Figure 2.3: UC hybrid model: the protocol π UC-realizes F in G-hybrid model

Theorem 2.1 (UC composition theorem [21]). Let ρ, φ, π be protocols such that
ρ uses φ as subroutine, and π UC-emulates φ. Then ρ[φ → π] (a protocol that
results from substituting φ with π in ρ) UC-emulates ρ.

Theorem2.1 allows the protocolπ (whose security is being proven) to use some
ideal functionality G as a subroutine, assuming that, in the actual implementation,
G will be substituted with some protocol UC-realizing it. In this case, we say that
the proof of π UC-realizing an ideal functionality F is done in so-called hybrid
model. UC-realization in the hybrid model is depicted in Figure 2.3.

Generalized UC

The proofs in the UC model make an assumption that each protocol runs its own
instance of each subroutine that it uses, and these subroutines cannot be accessed
by any other protocol. This gives the simulator full control over the subroutines.
For example, if a protocol uses a subroutine that models public key infrastructure,
then the proofs assume that a new set of public/private keys is generated each time
for each protocol execution, although in reality the same keys would be reused by
different protocols.

An extension of UC, called generalizedUC (GUC [22]) was proposed tomodel
such a global trusted setup. In this model, the keys can be generated by a shared
functionality that can be accessed by different protocols, or multiple sessions of
the same protocol. In general, GUC allows to use any subroutine as a shared
functionality. If F is a functionality used as a subroutine, then F denotes a shared
instance of the same functionality. Formally, all these outer protocols using F can
be treated as a part of the environment. In this way, the GUC model can be seen
as a generalization of UC, where the environment is not constrained to invoking
only one session of the protocol that it is attempting to distinguish.

Even if there is just one shared functionality G used by the protocol, the
proofs in the plain GUC model are quite complex as there can be an unbounded

20

Z

AS
≈

Z

Pn A

P1∃S ∀Z ∀A
F

GG

π

Figure 2.4: The protocol π G-EUC-realizes the ideal functionality F

number of instances of G running externally. It is usually more convenient to
study the protocols under G-externally constrained environments. This means
that the environment is allowed to execute only a single instance of G, shared by
the protocol that the environment is distinguishing. Such a model is called EUC
(externalized). It has been shown in [22] that G-EUC emulation implies GUC
emulation for any protocol that uses only G as a shared functionality.

Recall that, in the UC model, we say that a protocol π UC-realizes the ideal
functionality F if it emulates a protocol φ where the parties are just forwarding
messages between Z and F. When this notion is extended to G-EUC, then the
shared functionality G is formally present also in the ideal execution (see [22]).
The dummy parties are able to forward messages between Z and G, but it is not
stated explicitly whether the dummy parties are able to forwardmessages fromF to
G, and it is not important for the public key infrastructure or the common reference
string examples, as the parties only read data from the shared functionalities, but
do not write anything to them.

In this thesis, we are interested in proving that the impact of the real protocol
π on G is indistinguishable from the impact of the ideal functionality F on G. In
order to be able to define such an impact, we need to allow communication between
F and G. Formally, we modify the definition of the G-EUC realization, allowing
to forward messages from F to G. The real protocol π will have to enforce such
forwarding in order to G-EUC-realize F. Any message m that is supposed to be
delivered to a shared functionality G will be denoted m, so that it would be clear
whether the dummy parties forward this message to Z or to G. The message sent
by F to the output port of the party Pk will arrive at G from the input port of the
party Pk. The pictorial representation of G-EUC realization is given in Figure 2.4.

2.2.4 Languages for Secure Computation

SMC applications are often written in a high level language that allows the pro-
grammer to use a set of basic operations as building blocks, without taking into

21

account the underlying cryptography. If all the basic protocols (called arithmetic
blackbox protocols) are proven to be secure in the UC model, then the program-
mer may compose them in his applications in an arbitrary way, without needing
distinct security proofs for each particular application. In this thesis, we call such
applications privacy-preserving.

The high level languages are usually provided for existing computational plat-
forms [106, 17, 75, 28]. Thesemay be either domain-specific languages [15, 75, 97]
or variants of general-purpose languages [39]. A program looks very similar to an
ordinary imperative language (such as Java, Python, or C), but it does much more,
as it is being compiled to a sequence of cryptographic protocols.

The control flow of such programs should not leak any information about the
private values, so it has to be independent of them. Hence, branching on private
values is often disallowed and, in general, one needs to compute all the branches
simultaneously to avoid leaking information about the chosen branch. In this
thesis, the program conditionals that make a choice depending on a value of a
private variable are called private conditionals. As a part of this thesis, we provide
an optimization for reducing their overhead.

2.3 Basics and Notation

In this section we give some basic notions that we use in building SMC. The
notation used throughout this thesis is given in Table 2.1.

For measuring protocol cost, we take into account the number of rounds as well
as the total number of bits communicated through the network. Formally, we define
a typeCost = N×N, where the first component is the bit communication, and the
second component is the number of rounds. In order to handle the cost of protocol
compositions more easily, we introduce the operations ⊗ : Cost×Cost→ Cost
(parallel composition) and ⊕ : Cost × Cost → Cost (sequential composition),
defined as follows:

• (a, b)⊗ (c, d) = (a+ c,max (b, d));

• (a, b)⊕ (c, d) = (a+ c, b+ d).

We will use the shorthand (a, b)⊗n to denote (a, b)⊗· · ·⊗ (a, b), where (a, b)
occurs n times. Let the operation ⊗ have higher priority than ⊕.

2.3.1 Types of Indistinguishability

Let x be a value observed by the attacker who wants to extract some information
out of x. In general, the ability of the attacker to get information can be reduced to
a sequence of guesses, whether x comes from the distributionX0 orX1, each guess

22

Table 2.1: Notation

Notation Explanation
1n 1, . . . , 1︸ ︷︷ ︸

n

negl(η) a function negligible in η
x← y assigning to a variable x the value y
e[x← y] substituting x with y in the expression e
x

$← X sampling x from the uniform distribution over X
~x, [x1, . . . , xn] a vector
xi the i-th entry of ~x
A a matrix
aij the entry in the i-th row and j-th column of A
Sn the group of permutations of length n
〈~x, ~y〉

∑|~x|=|~y|
i=1 xi · yi, the dot product of ~x and ~y

~x+ ~y, α~x sum of two vectors, multiplicaton by a scalar α
~x op ~y, op ∈ {<,≤,=} pointwise comparison of ~x and ~y
x‖y concatenation of vectors/bitstrings x and y
x ◦ y composition of x and y (for various types of x, y)
A ⊆ B the set A is a subset of B
A ⊂ B the set A is a non-inclusive subset of B
N the set of natural numbers
Z the set of integers
R the set of real numbers
F a finite field
idX identity function X → X

Domf , Ranf domain and range of a function f
Pr[A] probability of the event A
[n] {1, . . . , n}
(xi)i∈[n] [x1, . . . , xn]

JxK = (xk)k∈[n] sharing of x (the scheme is implied by the context)
JxK := classify(x) decomposition of x to shares
x := declassify(JxK) reconstruction of x from shares
[[p]] semantics of p

(used only in Chapter 6,
where sharing notation J·K is no longer used)

b ? x : y if b thenx else y

C⊗n, C ⊗D parallel composition of protocol costs C, D
C ⊕D sequential composition of protocol costs C, D

23

extracting one bit of information. For example, given a ciphertext x, the attacker
wants to know whether the encrypted message is “Attack at night” (the distribution
of possible ciphertexts is X1), or “Do not attack at night” (the distribution of
possible ciphertexts is X0).

We formalize the ability of the attacker to distinguish between the distributions
X0(η) and X1(η) parametrized by the security parameter η ∈ N. The attacker can
be represented by an algorithm A taking x as input. It outputs 0 if it thinks that x
has come from X0(η), and it outputs 1 if it thinks that x comes from X1(η).

A function f(η) called negligible in η if it grows slower than any inverse
polynomial of η. Throughout this thesis, we use negl(η) to denote such a function.
An example of negligible function is 2−η.

There exist the following standard notions of indistinguishability:

• Perfect: |Prx←X0(η)[A(x) = 1] − Prx←X1(η)[A(x) = 1]| = 0 for any η,
i.e. the attacker cannot infer any information from x, and may only make a
random guess.

• Statistical: |Prx←X0(η)[A(x) = 1] − Prx←X1(η)[A(x) = 1]| ≤ negl(η).
The attacker is able to distinguish the two sets, but his advantage can be
made very small by increasing η.

• Computational: |Prx←X0(η)[A(x) = 1]−Prx←X1(η)[A(x) = 1]| ≤ negl(η)
for any A that works in time that is polynomial in η. In other words, A is
able to distinguish X0(η) and X1(η) with probability higher than negl(η)
only if its work time is superpolynomial in η (i.e it grows faster than any
polynomial of η).

The notion of indistinguishability can be extended to protocols. We give a
general definition of a δ-private protocol that covers all types of indistinguishability,
depending on the chosen parameters. The idea of this definition is that, whatever
inputs the corrupted parties choose, as far as all parties follow the protocol, the
adversary controlling the corrupted parties cannot distinguish the protocol running
on real inputs of honest parties from a protocol where all messages are simulated
from the inputs of corrupted parties.

Definition 2.2 (δ-private protocol [14]). Let Π be a multiparty protocol that takes
input ~x from honest parties and ~y from corrupted parties. LetΠ(~x, ~y) be a function
that outputs messages received by corrupted parties during the execution of Π on
inputs ~x and ~y. LetAO denote an adversary that has a blackbox access to a function
O. We say that the protocol Π is δ-private against a class of adversaries A if
there exists a simulator Sim, such that for all adversaries A ∈ A and inputs ~x, ~y,∣∣Pr

[
AΠ(~x,~y)(~y) = 1

]
−Pr

[
ASim(~y)(~y) = 1

]∣∣ ≤ δ.
24

2.3.2 Digital Signatures

Signatures allow to bind a message to a signer S in such a way that any other
party may verify that that the message indeed originates from S and has not been
modified in any way.

Definition 2.3 (Digital signature scheme [52, Definition 12.1]). A signature
scheme is a triple of PPT algorithms (Gen,Sign,Vrfy) satisfying the following:

1. The key generation algorithm Gen takes 1η as input and outputs a public/se-
cret key pair (pk, sk) of length at least η.

2. The signing algorithm Sign takes as input a secret key sk and a message
m ∈ {0, 1}∗, outputting a signature σ ← Signsk(m).

3. The deterministic verification algorithm Vrfy takes as input a public key pk,
a messagem, and a signature σ, outputting a bit b← Vrfypk(m,σ).

It is required that, for all η, for all (pk, sk) output byGen(1η), and allm ∈ {0, 1}∗,
it holds that Vrfypk(m,Signsk(m)) = 1.

It should be computationally hard for the attacker to come up with a valid
message/signature pair without knowing the signing key. Even if the attacker has
seen some valid message/signature pairs, as far as their number is polynomial in
η, it should not help him to come up with another valid message/signature pair.

Definition 2.4 (Existentially unforgeable signature scheme [52, Definition 12.2]).
Let Π = (Gen,Sign,Vrfy) be a signature scheme. Let the adversary A conduct
the following security experiment Sig-forgeA,Π(η):

1. Gen(1η) is run to obtain keys (pk, sk).

2. The adversary A is given pk and access to Signsk(·) as a black box. It
requests a set of signatures σ′ ← Signsk(m

′) for some messagesm′ chosen
by A itself, where the number of requests is polynomial in η. In the end, A
outputs (m,σ), wherem 6= m′ for all messagesm′ whose signaturesA has
already requested.

3. The output if the experiment is defined to be 1 iff Vrfypk(m,σ) = 1.

The signature scheme Π is existentially unforgeable under an adaptive chosen-
message attack if for all PPT adversaries A it holds that

Pr[Sig-forgeA,Π(η) = 1] ≤ negl(η) .

Throughout this thesis, we assume that all used signature schemes are exis-
tentially unforgeable under an adaptive chosen-message attack. In our practical
experiments, we will use hashed RSA based on SHA-256, although its existential
unforgeability is not formally proven [52, Section 12.3].

25

2.3.3 Message Authentication Codes

In multiparty protocols, it is usually sufficient for authentication that only the
receiver is convinced that the message has originated from the sender S. In this
case, public key cryptography is not necessary, and it suffices that each pair of
parties holds a common symmetric key.

Definition 2.5 (Message authentication code (MAC) [52, Definition 4.1]). Ames-
sage authentication code is a tuple of PPT algorithms (Gen,Mac,Vrfy) satisfying
the following:

1. The key generation algorithm Gen takes 1η as input, and outputs a key k of
length at least η.

2. The tag generation algorithm Mac takes as input a key k and a message
m ∈ {0, 1}∗, outputting a tag t← Mack(m).

3. The deterministic verification algorithm Vrfy takes as input the key k, a
messagem, and a tag t, outputting a bit b← Vrfyk(m,σ).

It is required that, for all η, for all k output by Gen(1η), and all m ∈ {0, 1}∗, it
holds that Vrfyk(m,Mack(m)) = 1.

It should be computationally hard for the attacker to come up with a valid
message/tag pair without knowing the key. Even if the attacker has seen some
valid message/tag pairs, as far as their number is polynomial in η, it should not
help him to come up with another valid message/tag pair.

Definition 2.6 (Existentially unforgeabile MAC [52, Definition 4.2]). Let the
tuple Π = (Gen,Mac,Vrfy) be a message authentication code. Let the adversary
A conduct the following security experiment Mac-forgeA,Π(η):

1. Gen(1η) is run to obtain a key k.

2. The adversaryA is given 1η as input, and access toMack(·) as a black box.
It requests a set of tags t ← Mack(m) for some set m ∈ Q, where the
number of requests is polynomial in η. In the end, A outputs (m, t).

3. The output of the experiment is defined to be 1 iff Vrfyk(m, t) = 1.

The MAC Π is existentially unforgeable under an adaptive chosen-message attack
if for all PPT adversaries A it holds that

Pr[Mac-forgeA,Π(η) = 1] ≤ negl(η) .

26

2.3.4 Hash Functions and Merkle Tree

A hash function is a function that maps inputs coming from a large (possibly
infinite) set to some smaller set of fixed size, trying to keep the number of collisions
small. In cryptographic applications, it is often required that not just the number
of collisions is small, but it is computationally hard for the adversary to find a
collision.

Definition 2.7 (Hash function [52, Definition 4.11]). A hash function is a pair of
PPT algorithms (Gen, H) satisfying the following:

1. Gen takes as input a security parameter 1η and outputs a key s.

2. There exists a polynomial ` such thatH takes as input a key s and a bitstring
x ∈ {0, 1∗}, and outputs a bitstring Hs(x) ∈ {0, 1}`(η).

It should be computationally hard for the attacker to come up with two inputs
x 6= x′ such that H(x) = H(x′).

Definition 2.8 (Collision resistant hash function [52, Definition 4.12]). Let Π =
(Gen, H) be a hash function. Let the adversary A conduct the following security
experiment Hash-collA,Π(η):

1. Gen(1η) is run to obtain a key s.

2. The adversary A is given s. It outputs x, x′.

3. The output of the experiment is defined to be 1 iff x 6= x′ and Hs(x) =
Hs(x′).

The hash function Π is collision resistant if for all PPT adversariesA it holds that

Pr[Hash-collA,Π(η) = 1] ≤ negl(η) .

Throughout this paper, we will omit the explicit key s from the notation, and
denote a hash function by H .

Merkle hash tree [78]. Hash functions can be used to verify signatures of single
messages that are signed in batches. Let m1, . . . ,mn (for simplicity, let n be a
power of two) be the messages for which we want to generate just one signature.
Suppose that we want to get a signature scheme that only allows to check whether
mi was signed correctly, without opening any othermj . Given a collision-resistant
hash function H , the signer first computes hi = H(mi‖ri), where ri is freshly
generated randomness. It then partitions the values hi into pairs, and computes
hij = H(hi‖hj‖rij), where rij is again some fresh randomness. Applying this

27

step recursively to hij , treating them similarly tomi, it constructs a binary tree of
height log n, getting a single hash h that it eventually signs. At any time when the
signature should be verified on mi, it is sufficient to open the randomness ri and
the siblings of all hashes in the binary tree on the way from mi to the root (there
are log n of them). Using new randomness in each hash ensures that the siblings
do not leak any information about the other messagesmj .

2.3.5 Finite Fields and the Schwarz-Zippel Lemma

In our protocols, we will often need to check whether some quantity equals 0.
In general, there is a multiset X of values, and for all x ∈ X we want to check
whether x = 0. In the SMC setting, comparison is not an easy operation, and we
would like to make the number of comparisons much smaller than |X|. IfX ⊆ F,
then we may make use of well-known results from field theory.

Lemma 2.1 (Schwarz-Zippel lemma [81, Theorem 7.2]). Let F be a finite field.
Let p(x1, . . . , xn) 6= 0 be a multivariate polynomial of degree d. Let S ⊆ F be
any subset of F. Let y1, . . . , yn

$← Sn. Then Pr[p(y1, . . . , yn) = 0] ≤ d
|S| .

In particular, instead of checking xi = 0 one by one, we may generate n
random numbers r1, . . . , rn

$← F, and verify r1 · x1 + · · ·+ rn · xn = 0 instead.
By the Schwarz-Zippel lemma, if this value equals 0, then xi = 0 for all i ∈ [n]
with probability ≥ 1 − 1

|F| , which can be increased with the size of F. In the
SMC setting, multiplication is usually more efficient than comparison, and it is
significantly more efficient in the algorithms that we use in our protocols.

In our protocols, we use finite fields of the form Zq for a prime number q > 2.
We also make use of the fact that Z∗q is a multiplicative group under modular
multiplication.

2.3.6 Linear Programming

We will reduce some optimizations to well-known standard methods. A linear
programming task (LP) is an optimization task stated as

minimize 〈~c, ~x〉, subject to A~x ≤ ~b, ~x ≥ ~0 , (2.1)

where ~x ∈ Rn is a vector of optimization variables, and the quantitiesA ∈ Rm×n,
~b ∈ Rm, ~c ∈ Rn are the parameters that define the task itself.

Adding the constraint that xi ∈ Z for i ∈ I for some I ⊆ {1, . . . , n} gives us
a mixed integer linear programming task (ILP).

While linear programming can be solved in time polynomial in n,m, this is
not the case for mixed integer linear programming. However, the existing ILP
solvers (e.g. [44]) are quite efficient in practice.

28

2.4 Linear Secret Sharing Schemes

The main idea of secret sharing is that no party is able to infer any information
about the shared value, observing just its own share. Since the protocols often
assume the existence of several corrupted parties, it is required that no subset of
parties is able to reconstruct the secret, unless there are sufficiently many shares
(e.g. all of them). We give some examples of secret sharing schemes that we will
use in this thesis.

2.4.1 Additive Sharing

We start from additive sharing, which is one of the simplest examples of secret
sharing. Let x ∈ Zm be a secret that we want to share among n parties. Let
xi

$← Zm for i ∈ [n−1], and xn = x−x1−· · ·−xn−1. It is known that not only
x1, . . . , xn−1 are independent uniformly distributed variables, but also any subset
of n − 1 variables xi1 , . . . , xin−1 for {i1, . . . , in−1} = I ⊂ [n] (see e.g. [16]).
Therefore, seeing the values xi1 , . . . , xin−1 does not give any clue about what x
could be, since the remaining xi for i ∈ [n] \ I may change the final result to any
element of Zm with equal probability.

In additive sharing, two shared values can be added by summing their shares,
which can be done locally by each party. Multiplication requires some interaction
between the parties. For three parties, it can be done quite easily using for example
the protocol of [17]. Defining addition and multiplication is sufficient to perform
any computation, although more efficient elaborated protocols can be developed.

The security properties hold not only in Zm using the addition operation (+),
but also in any group (A,⊕) using the group operation ⊕. We are now ready to
give a more general definition of linear secret sharing. Let (R,+, ·) be a ring. A
sharing scheme is called linear if the shared secret x ∈ R can be viewed as a linear
combination of its shares x1, . . . , xn ∈ R, i.e. x = α1 · x1 + · · · + αn · xn for
some constants αi ∈ A ⊆ R. By reasoning similar to additive sharing, sampling
x1, . . . , xn−1

$← R, and taking xn = α−1
n · (x −

∑n−1
i=1 αi · xi) should keep any

subset of n− 1 shares uniformly distributed to the observer. The choice of the set
A depends on the type of R, e.g. A = R \ {0} is suitable for fields, and A = {1}
for arbitrary rings.

2.4.2 Linear Threshold Sharing

It is often useful to share a secret amongn parties in such away that any t parties are
able to recover it, but fewer than t are not. For example, a government consisting
of nmembers may be officially allowed to use a dangerous weapon only if at least
t of them agree on it. The weapon could be locked in a safe, and the key distributed

29

among the n members in such a way that at least t shares are required to open
the lock. Instead of a weapon, the safe could contain any confidential information
that is only allowed to be opened or involved into computation if sufficiently many
parties agree on it. This kind of sharing is called (n, t)-threshold secret sharing.

Replicated secret sharing [25]. An (n, t)-threshold sharing for arbitrary rings
can be constructed on the basis of additive sharing. Let a ∈ R for some finite ring
R. Let V1, . . . ,V(nt)

be all subsets of [n] of size t. The share of each party Pk is a

vector ~ak ∈ R(nt), such that for each j ∈ [
(
n
t

)
], the equation

∑
k∈Vj a

k
j = a holds.

Also, akj = 0 whenever k 6∈ Vj . In other words, the same value a is additively
shared in

(
n
t

)
different ways, each time issuing some shares a1, . . . , at such that

a1 + . . . + at = a to a certain subset of t parties. All these
(
n
t

)
sharings are

independent. In this way, any t parties are able to reconstruct the secret. However,
to any set of less than t parties, the shares should look uniformly distributed and
independent.

Shamir’s secret sharing [99]. Replicated secret sharing scales badly with n.
For finite fields, more efficient (n, t)-threshold sharings are available. Let F be a
finite field. Shamir’s secret sharing is defined as follows:

• Before the computation, the parties agree on n distinct field elements αi ∈
F \ {0, 1} for i ∈ {1, . . . , n}. All these values are public.

• Let f0 ∈ F be a value that some party Pk wants to share. Pk generates
independent random values f1, . . . , ft−1

$← F. Let F (x) be the polynomial
f0 + f1x + f2x

2 + · · · + ft−1x
t−1. Pk evaluates F (αi) for all i ∈ [n],

and for i 6= k it sends F (αi) to Pi. In matrix terms, this operation can be
represented in the following way.

F (α1)
F (α2)

...
F (αn)

 =


1 α1 α2

1 . . . αt−1
1

1 α2 α2
2 . . . αt−1

2
...

...
...

1 αn α2
n . . . αt−1

n

 ·


f0

f1
...

ft−1


• Let T = {i1, . . . , it} be an arbitrary subset of t parties that want to recon-
struct the secret. They need to solve the following equation system.

1 αi1 α2
i1

. . . αt−1
i1

1 αi2 α2
i2

. . . αt−1
i2...

...
...

1 αit α2
it

. . . αt−1
it

 ·


f0

f1
...

ft−1

 =


F (αi1)
F (αi2)

...
F (αit)


30

Let AT denote the matrix that corresponds to αi for i ∈ T . It turns out
that any matrix of such form (a Vandermondematrix [81, Definition 7.1]) is
invertible. Hence the t parties may compute

f0

f1
...

ft−1

 = A−1
T


F (αi1)
F (αi2)

...
F (αit)

 .

Since the parties are interested only in f0, it is sufficient to compute just
one scalar product. Let ~b denote the first row of A−1

T The parties have to
compute

f0 = b1F (αi1) + · · ·+ btF (αit) .

Similarly to additive sharing, the addition of values can be done locally by
adding the shares, and multiplication requires some interaction. It can be done
using e.g. the protocol of [26].

2.4.3 Permutation Sharing

Let Sm be the group of permutations of length m. It is known that Sm is a
group w.r.t. the composition operation (◦). Hence, we can apply the idea of
additive sharing to secret share permutations as π = π1 ◦ · · · ◦ πn. Let πi

$← Sm
for i ∈ [n − 1], and πn = π−1

n−1 ◦ . . . ◦ π
−1
1 ◦ π. Seeing πi1 , . . . , πin−1 for

{i1, . . . , in−1} = I ⊂ [n] does not give any clue about what π could be, since
πi for i ∈ [n] \ I may change the final result to any element of Sm with equal
probability. A threshold variant of permutation sharing can be obtained using the
idea of replicated sharing, letting the same permutation be shared in

(
n
t

)
ways.

2.5 Correlated Randomness

It is often useful to let the parties share some correlated randomness. In particular,
there is a uniformly distributed random bitstring sx, and additionally sy ← f(sx)
for some certain function f . While a uniformly distributed sx is relatively easy to
generate bit by bit using any coin toss protocol (see e.g. [24]), computing sy is in
general non-trivial.

A simple example of correlated randomness is Beaver multiplication triple [8].
These are triples of values (a, b, c) in some ring Zn, such that a, b $← Zn are
distributed uniformly, and c = a · b. Precomputing such triples can be used to
linearize multiplications. For example, if we want to multiply x · y, and there is a
triple (rx, ry, rxy) already precomputed and preshared, we may first compute and

31

publish x̂ := x − rx and ŷ := y − ry, and then compute the linear combination
x · y = (x̂ + rx)(ŷ + ry) = x̂ŷ + rxŷ + x̂ry + rxry = x̂ŷ + rxŷ + x̂ry + rxy.
Publishing x̂ and ŷ leaks no information about x and y, since they are masked
by uniformly distributed rx and ry. This works similarly to hiding the secrets in
additive sharing (Section 2.4).

Applying Beaver triples yields another way to implement the multiplication
protocol for linear secret sharing. Although the online protocol phase becomes
cheaper, all the multiplications are just being pushed into the preprocessing phase
in which the triples are generated, and hence the total amount of communication
between the parties may only increase. A good property of this approach is that
the generation of all triples for the protocol can be done in parallel, so the total
running time may actually decrease.

2.6 Commitments

In this thesis, we will verify the correctness of parties’ computation w.r.t. their
inputs, outputs, and the messages that they exchanged. In order to make this
possible, each party must be somehow bound to all these quantities. For this,
we will need to use commitments. First, let us give a general definition of a
commitment scheme.

Definition 2.9 (Commitment scheme [45, Definition 4.4.1], extended to arbitrary
messages). A commitment scheme is a tuple of PPT algorithms (Gen,Comm,
Open) satisfying the following:

1. Gen takes as input a security parameter 1η, and outputs a public key pk.

2. The commitment algorithm Comm takes as input the key pk and a message
m ∈ {0, 1}∗, outputting a pair (c, d)← Commk(m). The value c is public
to everyone, while d is initially known only to the party committed tom.

3. The deterministic verification algorithm Open takes as input the key k, the
pair (c, d), and outputsm← Openpk(c, d). It is possible thatm = ⊥.

It is required that, for all η, for all pk output by Gen(1η), and all m ∈ {0, 1}∗, it
holds that Openpk(Commk(m)) = m.

The idea behind commitment schemes is that the value c should not leak any
information about the committed m. The message m is opened by publishing d,
which in general happens at some point after some other protocol interactions have
taken place. However, publishing c should ensure that the committing party (the
committer) is bound to m, and it cannot later choose a different d′ 6= d to open
a message m′ 6= m. These requirements are expressed by the following security
definitions.

32

Definition 2.10 (Binding property [45, Definition 4.4.1], extended to arbitrary
messages). Let Π = (Gen,Comm,Open) be a commitment scheme. Let the
adversary A conduct the following security experiment Comm-bindA,Π(η):

1. Gen(1η) is run to obtain a public key pk.

2. The adversary A is given pk. It outputs c, d0, d1.

3. The output if the experiment is defined to be 1 iff m0 6= m1, m0 6= ⊥,
m1 6= ⊥ form0 ← Openpk(c, d0) andm0 ← Openpk(c, d1).

A commitment scheme Π = (Gen,Comm,Open) is binding if for all PPT adver-
saries A it holds that

Pr[Comm-bindA,Π(η) = 1] ≤ negl(η) .

Definition 2.11 (Hiding property [45, Definition 4.4.1], extended to arbitrary
messages). A commitment scheme Π = (Gen,Comm,Open) is hiding if for
all PPT adversaries A, for any pair of messages (m0,m1) chosen by A, pk ←
Gen(1η), it holds that

|Pr[A(Commpk(m0)) = 1]−Pr[A(Commpk(m1)) = 1]| ≤ negl(η) .

In this thesis, we will use a particular kind of commitment based on linear
(n, t)-threshold secret sharing (defined in Section 2.4) for t = dn/2e + 1. This
kind of commitment works under the honest majority assumption. The public key
pk can be viewed as a set of parameters defining a certain sharing scheme (e.g. the
coefficients αi of Shamir’s sharing). Without loss of generality, let the messagem
be a ring or a field element, depending on the used sharing scheme. The algorithm
Comm shares themessagem among then parties, where each share is signed by the
committer. Each other party may treat the share it receives as c, and the remaining
n − 1 shares as d. The algorithm Open reconstructs m from all the shares that
are provided with valid signatures of the committer. If the resulting shares are
inconsistent, then Open outputs ⊥. Since there are at least t honest parties, and t
shares are sufficient to reconstruct the secret, Openpk(Commk(m)) = m always
holds for an honest committer that never signs inconsistent shares.

This commitment scheme is perfectly hiding since no set of less than t parties
is able to reconstruct the shared value, and by assumption there are strictly less
than t corrupted parties. It is perfectly binding since tampering with the shares of
corrupted parties may only lead to inconsistency of shares, causing⊥ to be output.
Such a commitment is homomorphic: linear secret sharing allows to compute any
linear combinations of commitments without opening them. Since the signatures
of shares are not homomorphic, opening the linear combinations is a bit more
tricky. We will discuss it in more detail in Chapter 4.

33

2.7 Verifiable Computation

In practical settings, it is often sufficient that the active adversary is detected not
immediately after the malicious act, but at some point later. Hence, ideas from
verifiable computation (VC) [43] are applicable to SMC. In general, VC allows a
weak client to outsource a computation to amore powerful server that accompanies
the computed result with a proof of correct computation that is relatively easy for
the weak client to verify. Similar ideas can be used to strengthen protocols secure
against passive adversaries: after execution, each party will prove to others that it
has correctly followed the protocol.

2.7.1 Linear Probabilistically Checkable Proofs

First, we give an intuitive description of what an interactive proof is. Let L be
a formal language defined over bitstrings. For the given bitstring x, the goal of
the party P (the prover) is to convince the party V (the verifier) that x ∈ L. Let
R be a binary relation such that R(x,w) = 1 iff w is a witness proving that
x ∈ L. In general, proving that x ∈ L reduces to proving the existence of w s.t
R(x,w) = 1. It is possible that V does not get any information about w, just a
single bit ∃w : R(x,w) = 1, such proofs are called zero-knowledge. The prover
may be allowed to cheat with some probability, such proofs are called probabilistic.

Let us now become more concrete and assume that L is a language of vectors
over a finite field F. We now define a narrower class of interactive proofs that we
will use in this thesis.

Definition 2.12 (Linear Probabilistically Checkable Proof (LPCP) [10]). Let F be
a finite field, k, ` ∈ N, R ⊆ Fk × F`. Let P and Q be probabilistic algorithms,
andD a deterministic algorithm. The pair (P,V), where V = (Q,D) is a d-query
δ-statistical HVZK linear PCP forR with knowledge error ε and query lengthm,
if the following holds.

Syntax. On input ~v ∈ Fk and ~w ∈ F`, the algorithm P computes ~π ∈ Fm.
The algorithm Q randomly generates d vectors ~q1, . . . ~qd ∈ Fm and some
state information ~u. Let V~π(~v) denote the execution of Q followed by the
execution of D on input (~v, ~u, a1, . . . , ad), where ~u is the output of Q, and
ai = 〈~π, ~qi〉. The algorithm D either accepts the input (outputs 1) or rejects
the input (outputs 0).

Completeness. For every (~v, ~w) ∈ R, the output of P(~v, ~w) is a vector ~π ∈ Fm
such that Pr[V~π(~v) = 1] = 1.

Knowledge. There exists a knowledge extractor E such that for all ~π∗ ∈ Fm, if
Pr
[
V ~π∗(~v) = 1

]
≥ ε then E(~π∗, ~v) outputs ~w such that (~v, ~w) ∈ R.

34

Honest Verifier Zero Knowledge (HVZK). The protocol between an honest pro-
ver executing ~π ← P(~v, ~w) and adversarial verifier executing V~π(~v) with
common input ~v and prover’s input ~w is δ-private (see Definition 2.2) for
the class of passive adversaries.

In the settings of verifiable computation, prover P is the party performing
the computation, and verifier V the party that needs to be convinced that the
computation was done correctly. In this case, ~v can be viewed as a commitment
on all the prover’s inputs and outputs. The vector ~w consists of all values known to
the prover, that it uses to construct the proof ~π = P(~v, ~w). The proof ~π consists of
some helpful hints from the prover, convincing the verifier that the prover knows ~w
such that (~v, ~w) ∈ R. Given access to ~π, the verifier V runs the algorithm V~π(~v)
to check whether ~π proves that the computation was correct w.r.t. ~w. Note that V
is not given a direct access to π, but calls V~π(·) as a black box. If it outputs 1, the
proof of P is believable due to the knowledge property. Any proof of an honest P
will be accepted due to the completeness property. If V follows the protocol, no
information about potentially private ~w is leaked to V due to the HVZK property.

2.7.2 Verification as Quadratic Arithmetic Program

We now describe a particular verification scheme proposed in [9]. The main ideas
behind the verification mechanism are not the main contribution of [9], and there
are many other works [10, 72, 9, 85, 98] that are similar to it in their nature.

For simplicity, let us assume that the computation of the prover is represented
by an arithmetic circuit. Given committed inputs and outputs of the circuit, the task
of the prover is to convince the verifier that there exist valuations of intermediate
gates, and possibly some additional inputs, such that the circuit indeed produces
the given output with the given input. Let each gate input wire and each gate output
wire be represented by a variable. Then we may rewrite the computation of each
gate as an equation. For example, an addition gate can be written as x + y = z,
where x and y correspond to the inputs and z to to the output. If the output is in
turn used as an input for some other gate, we just reuse the same variable.

A multiplication subcircuit is an arithmetic circuit that has exactly one two-
variable multiplication gate, which is the one that outputs the final result. Each
arithmetic circuit can be seen as a composition of such subcircuits.

Verifying multiplication subcircuits. Let C be a multiplication subcircuit with
input ~x = [x1, . . . , xm] and output ~y = [y]. The function it computes can be
written as

y = ρ1(x1, . . . , xm) · ρ2(x1, . . . , xm)

35

for some linear functions ρ1, ρ2, i.e. there is a vector of constants ~di such that
ρi(x1, . . . , xm) = 〈~di, [1]‖~x〉. In this case, the equality is of the form

〈[0, . . . , 0, 1], ~w〉 = 〈 ~d1‖[0], ~w〉 · 〈 ~d2‖[0], ~w〉

for ~w = [1]‖~x‖~y. This can be viewed as A~w · B~w = C ~w for one-row matrices
A = [~d1||[0]], B = [~d2||[0]], and C = [[0, . . . , 0, 1]], where (·) denotes pointwise
vector multiplication.

Verifying subcircuit composition. Let (A1, B1, C1) and (A2, B2, C2) be two
triples of matrices for verification of subcircuits C1 and C2 respectively. Let some
inputs of C2 be some outputs of C1. Let I1 be the variables used by C1, and I2 the
variables used by C2. In general, it is possible that I1 ∩ I2 6= ∅. Each variable
in Ii corresponds to a certain column of each of the matrices Ai, Bi, Ci. We
can extend Ai, Bi, Ci to the entire vector of variables I1 ∪ I2 by introducing zero
columns for the unused variables, obtaining the matrices A′i, B′i, C ′i of |I1 ∪ I2|
columns, where, again, each variable is represented by exactly one column. The
composition (A,B,C) of (A1, B1, C1) and (A2, B2, C2) includes all the checks
that (A1, B1, C1) and (A2, B2, C2) do. It is defined as

A :=

(
A′1
A′2

)
, B :=

(
B′1
B′2

)
, C :=

(
C ′1
C ′2

)
.

In this way, each multiplication gate of the circuit contributes a row to A, B,
C, and each wire contributes a column. In addition to the initial input and output
vectors ~x and ~y, there will be some new variables ~z that represent the values of
the intermediate multiplication gate outputs, so in general ~w = [1]‖~x‖~y‖~z. If the
variables come in a different order, we may always reorder the columns of A,B,C
if necessary.

Example 2.1. Let C be a circuit computing the function 2x1 ·x2+(x1+x2)·x2+1
from the inputs x1 and x2. Let z1 and z2 be intermediate variables such that
z1 = 2x1 · x2 and z2 = (x1 + x2) · x2. Let y be the final result.

The proof that y is indeed the output of C on the inputs x1 and x2 can be
reduced to the proof of existence of z1 and z2 satisfying the following equation,
where · denotes pointwise product of two vectors:

0 2 0 0 0 0
0 1 1 0 0 0
1 0 0 0 1 1




1
x1

x2

y
z1

z2

 ·
0 0 1 0 0 0

0 0 1 0 0 0
1 0 0 0 0 0




1
x1

x2

y
z1

z2

 =

0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0




1
x1

x2

y
z1

z2

 .

36

We now formalize the properties that the matrix triple (A,B,C) must satisfy.

Definition 2.13 (Quadratic Arithmetic Program). Consider integers m,n, k such
that n − 1 ≥ k. A strong quadratic arithmetic program (QAP) over a field F,
denoted P(A,B,C), consists of three m× n matrices A,B,C over a field F. P
accepts a vector ~v ∈ Fk iff there exists a vector ~w = [1, w1, . . . , wn−1] such that
[w1, . . . , wk] = ~v and A~w ·B~w = C ~w. This defines a relation RP(A,B,C):

∃~w (~v, ~w) ∈ RP(A,B,C) ⇐⇒ P(A,B,C) accepts on input ~v .

Let C be the arithmetic circuit, and A, B, C the matrices derived from this
circuit. By construction, if C(~x) = ~y then P(A,B,C) accepts [~x||~y]. Conversely,
if P(A,B,C) accepts ~x‖~y, then C(~x) = ~y. It follows from the definition that
accepting means satisfying each row constraint. This in turn means that each
multiplication subcircuit is computed correctly. Reusing the same variables in
different rows ensures that the composition of multiplication subcircuits is taken
into account.

Let Nx be the number of inputs, Ny the number of outputs, Ng the total
number of gates, and Nm ≤ Ng the number of multiplication gates in a circuit
C. Without taking into account repetitions of intermediate forking output wires,
Nw = Nx +Ng is the total number of wires in C.

Let RP(A,B,C) be the relation for verifying C. The relation is defined over
pairs (~v, ~w) = FNx+Ny ×FNw , where ~v, and hence the firstNx+Ny entries of ~w,
contain the Nx inputs and the Ny outputs. The rest Ng −Ny entries of ~w are the
intermediate values. By construction, the matrices A, B, C are all in FNm×Nw .
We note that Nm, Nw ∈ O(|C|), i.e. they are linear in the circuit size.

2.7.3 LPCP for Quadratic Arithmetic Programs

The problem of verifying circuit computation has been reduced to the problem
of proving the existence of ~w such that (~v, ~w) ∈ RP(A,B,C), where A,B,C are
defined by the arithmetic circuit that the party computes, and ~v is the vector of
inputs and outputs of the circuit. We now define a LPCP for verifying whether
∃~w (~v, ~w) ∈ RP(A,B,C). Let A,B,C ∈ Fm×n, |~v| = k.

Preprocessing: Let A = (aij), B = (bij), C = (cij) for i ∈ {0, . . . ,m− 1},
j ∈ {0, . . . , n− 1}. Let ω be the principal m-th root of unity in F (we assume
that F is chosen in such a way that this root exists).

Let Aj , Bj , Cj be polynomials of degree m − 1 defined in such a way that
Aj(ω

i) = aij , Bj(ωi) = bij , Cj(ωi) = cij . The coefficients of these polynomials
can be computed for example using the Fast Fourier Transform [89]. These
polynomials have degree m − 1 since they are defined on m distinct points.

37

Let ~A(x) := [A0(x), . . . , An−1(x)], ~B(x) := [B0(x), . . . , Bn−1(x)], ~C(x) :=
[C0(x), . . . , Cn−1(x)].

Let S = {ω0, . . . , ωm−1} ⊆ F. Let ZS(x) :=
∏
s∈S(x − s) be an m-degree

polynomial over F. It has exactlym roots which are the elements of S.
The set S and the coefficients of ~A(x), ~B(x), ~C(x), ZS(x) are published.

Linear PCP Prover algorithm P(~v, ~w): Let ~v ∈ Fk, ~w ∈ Fn.

• Let δA, δB, δC
$← F be random independent field elements.

• Let A(x), B(x), C(x) be polynomials such that:

A(x) := 〈~w, ~A(x)〉+ δAZS(x) ,

B(x) := 〈~w, ~B(x)〉+ δBZS(x) ,

C(x) := 〈~w, ~C(x)〉+ δCZS(x) .

All these polynomials have degree m since the degree of each polynomial
in ~A(x), ~B(x), ~C(x) ism− 1, and the degree of ZS(x) ism.

• Let ~h = [h0, . . . , hm] be the coefficients of the polynomial

H(x) :=
A(x)B(x)− C(x)

ZS(x)
.

The algorithm returns ~π = [δA, δB, δC]||~w||~h. All values can be computed by
the prover in time O(|C| log |C|). Details of the algorithm can be seen in [9].

Linear PCP Verifier algorithm Vπ(~v)): The work of the verifier is split into
two parts: the query algorithm Q and the decision algorithm D.

• Q: First of all, a random element τ ∈ F is generated. Then the following
queries ~qi ∈ F3+n+(m+1)=4+n+m are computed:

1. ~q1 = [ZS(τ), 0, 0]‖ ~A(τ)‖[0, 0, . . . , 0],
2. ~q2 = [0, ZS(τ), 0]‖ ~B(τ)‖[0, 0, . . . , 0],
3. ~q3 = [0, 0, ZS(τ)]‖~C(τ)‖[0, 0, . . . , 0],
4. ~q4 = [0, 0, 0]‖[0, 0, . . . , 0, 0, . . . , 0]‖[1, τ, . . . , τm],
5. ~q5 = [0, 0, 0]‖[1, τ, . . . , τk, 0, . . . , 0]‖[0, 0, . . . , 0].

The state information is ~u := [1, τ, τ2, . . . , τk, ZS(τ)]. The query results
are ai = 〈~π, ~qi〉 for i ∈ {1, . . . , 5}. Everything can be computed in O(|C|).
Details of the algorithm can be seen in [9].

38

• D(~v, ~u,~a): Let ~u = [u1, . . . , uk+2], ~a = [a1, . . . , a5]. The algorithm
accepts iff the following two equalities hold:

1. a1a2 − a3 − a4uk+2 = 0,
2. a5 − u1 − 〈~v, [u2, . . . , uk+1]〉 = 0.

These two checks verify that P1(τ) = 0 and P2(τ) = 0 for certain polyno-
mials P1 and P2. The Schwarz-Zippel lemma ensures that proving P (τ) for
a uniformly sampled τ is sufficient to prove that P (x) is a zero polynomial.
After all additional values related to ZS , ~h, δA, δB, δC are canceled out, we
can see that P1(x) = 0 (the first equality) proves A~w ·B~w − C ~w = ~0, and
P2(x) = 0 (the second equality) proves that the first k entries of ~w equal to
the first k entries of ~v.
The randomness δA, δB , δC makes the proof a statistical HVZK proof.
Namely, this randomness ensures that the scalar products 〈~π, ~qi〉 do not leak
information about ~w.

In Chapter 4, we will implement this particular LPCP using SMC. The verifier
algorithm Vπ(·) will be implemented in a distributed way, so that no information
about ~v is leaked to the adversary, while keeping the proof bound to the particular
committed vector ~v. The honest majority assumption ensures that the distributed
Vπ(·) acts as an honest verifier, so that we may use the HVZK property.

39

CHAPTER 3

RELATED WORK

3.1 Actively and Covertly Secure Multiparty
Computation

Several techniques exist for multiparty computation secure against active adver-
saries. There are implementations based on garbled circuits (GC) [58, 83], on
additive sharing with message authentication codes (MACs) to check for correct
behaviour [33, 31, 35], on Shamir’s secret sharing [99, 28], and on the GMW
protocol [47] paired with actively secure oblivious transfer (OT) [83]. Different
techniques are suitable for different kinds of computations.

We give a brief overview of the GMW protocol in Section 3.1.2. More details
aboutMACs and secret sharing can be found in Sections 2.3.3 and 2.4 respectively,
and we give a particular protocol set using these techniques in Section 3.1.3. The
details of GC and OT are not relevant for this thesis. The verification method that
we propose in this thesis is mostly suitable for secret-sharing based SMC, with no
preference towards the algebraic structures underlying the computation.

In this section, we describe in more detail some interesting sharing-based
SMC protocols that share some common features with our work. We briefly
explain which components we reuse, and what the main difference is from their
usage in related work.

3.1.1 A Note on Covert Adversaries

Protocols that are secure against a covert adversary are in general much faster than
fully actively secure protocols. The main techniques for achieving covert security
are based on cut-and-choose, where the parties perform extra computation on
dummy inputs, opening the dummy results afterwards to let the other parties
check whether the computation was correct. These kinds of adversaries have been
considered for example in [4, 29, 31, 70, 57]. In general, one does not aim to

40

achieve negligible cheating probability, and the covert adversary will not cheat
even if the probability of detection equals a sufficiently large positive constant.

While in this thesis we are dealing with post-computation verification mech-
anisms, our ultimate goal is to achieve not covert, but active security. In all
intermediate constructions achieving covert security, we assume that cheating is
possible only with negligible probability. The work on covert adversaries in set-
tings most similar to ours is [29], and we even borrow one functionality from them,
but their probability of cheating is constant and cannot be made negligible without
superpolynomial computational overhead.

3.1.2 Compilers from Passive to Active Security

One of the first SMC protocols was proposed by Goldreich et al. [47]. In this
protocol, the function that the parties compute is defined by a boolean circuit, and
special computation prescriptions are provided for the addition (exclusive OR)
gates, and the multiplication (AND) gates. In its original form, the protocol is
only secure against passive adversaries, since there is no way to check whether the
parties have followed the protocol. A generic way to achieve active security is to
use zero-knowledge proofs [45] to show that the protocol is being followed [46,
Chapter 7.4]. These proofs are in general very complex, but they can be more
efficient ifwemake some additional assumptions. Wewill use a similar approach in
this thesis, appending a customized zero-knowledge verification phase to passively
secure protocols.

More elaboratemethods for post-execution verification of the correct behaviour
of protocol participants have been presented in [29, 5]. We note that the general
outline of our verification scheme is similar to [5]. We both commit to certain
values during protocol execution and perform computations with them afterwards.
However, the committed values and the underlying commitment scheme are very
different. Honest majority assumption allows us to use more efficient linear
threshold commitments (introduced in Section 2.6). Another important difference
is that our solution can be straightforwardly applied to computation over rings.

3.1.3 Active Security for any Number of Corrupted Parties

The multiplication operation is often assisted by Beaver triples (Section 2.5).
Such triples are used by several existing SMC frameworks, including ABY [38] or
SPDZ [33]. We give a brief description the SPDZ protocol. It makes use of the
following techniques.

• Message authentication codes (Section 2.3.3) allow to verify whether the
shares have been affected by a malicious adversary.

41

• Beaver triples (Section 2.5) reduce multiplication to linear combinations.

• Somewhat homomorphic encryption is used in the preprocessing phase to
compute the MAC key and Beaver triple shares. We only note that this
technique involves expensive cryptographic operations, although it is much
faster than fully homomorphic encryption, and we do not explain it in detail,
as it is not essential in the context of our work.

SPDZ uses two kinds of additive sharings that allow message checking. The
generation of these shares is described in more detail in [33]. There is a global
MAC key α. It remains private throughout the computation, and it will be opened
in the end to check whether the computation was correct.

1. The first sharing is

〈a〉 = (δ, (a1, . . . , an), (γ(a)1, . . . , γ(a)n)) ,

where a1 + · · ·+an = a and γ(a)1 + · · ·+γ(a)n = α ·(a+δ) for the global
key α and a public value δ. The party Pi holds the pair (ai, γ(a)i). Here
γ(a)i are just additive shares of the value α · (a+δ), and their interpretation
is that γ(a) := γ(a)1 + · · ·+ γ(a)n is the MAC authenticating the message
a under the global key α.
For two valuesa and bwehave 〈a〉+〈b〉 = 〈a+ b〉, where 〈a+ b〉 is obtained
by adding 〈a〉 and 〈b〉 componentwise, i.e. 〈a+ b〉 = (δa + δb, (a1 +
b1, . . . , an+bn), (γ(a)1 +γ(b)1, . . . , γ(a)n+γ(b)n)). For a constant c, we
have c + 〈a〉 = (δ − c, (a1 + c, a2, . . . , an), (γ(a)1, . . . , γ(a)n)). Hence,
any linear combination can be computed locally, directly on the shares.
For this sharing, a partial opening is defined: each party Pi sends ai to some
fixed party (e.g. P1) who computes a = a1 + . . .+ an and broadcasts a to
all parties. The correctness of opening may be checked later by opening the
MACs γ(a)i, verifying that γ(a)1 + · · ·+ γ(a)n = α · (a+ δ).

2. The second sharing is

JaK = ((a1, . . . , an), (b1, . . . , bn), (γ(a)i1, . . . , γ(a)in)i∈[n]) ,

where a = a1 + · · · + an and γ(a)i1 + · · · + γ(a)in = a · bi. The party
Pi holds the values ai, bi, γ(a)1

i , . . . , γ(a)ni . The idea is that γ(a)i :=
γ(a)i1 + · · · + γ(a)in is the MAC authenticating a under the private key bi
of Pi. To open JaK, each party Pj sends to each other party Pi its share aj
of a and its share γ(a)ij of the MAC on a computed with the private key bi
of Pi. Pi checks that

∑
j∈[n] γ(a)ij = a · bi. To open the value to only one

party Pi, the other parties simply send their shares only to Pi, who checks
them. Only shares of a and γ(a)i = a · bi are needed for that.

42

In the specification of the protocol, it is assumed for simplicity that a broadcast
channel is available, that each party has only one input, and only one public
output value has to be computed. The number of input and output values can be
generalized to an arbitrary number, without affecting the overall complexity, as
shown in [33]. The protocol works as follows.

Initialization. Parties invoke preprocessing to get:

• the shared secret key JαK;
• a sufficient number of Beaver triples (〈a〉, 〈b〉, 〈c〉);
• a sufficient number of pairs of random values 〈r〉, JrK;
• a sufficient number of single random values JtK, JeK.

Generation of all these values is presented in more detail in [33]. It is
based on a somewhat homomorphic encryption scheme. This makes the
initialization phase quite expensive.

Inputs. If the party Pi provides an input xi, a preshared pair 〈r〉, JrK is taken, and
the following happens.

1. JrK is opened to Pi.
2. Pi broadcasts x′i = xi − r.
3. The parties compute 〈xi〉 = 〈r〉+ x′i.

Addition. In order to add 〈x〉 and 〈y〉, compute locally 〈x+ y〉 = 〈x〉+ 〈y〉.

Multiplication. To multiply 〈x〉 and 〈y〉 the parties do the following.

1. Take two triples (〈a〉, 〈b〉, 〈c〉), (〈f〉, 〈g〉, 〈h〉) from the set of the avail-
able ones and check that indeed a · b = c. This can be done as follows.

• Open a random value JtK, receiving t.
• Partially open a′ = t · 〈a〉 − 〈f〉 and b′ = 〈b〉 − 〈g〉.
• Evaluate t · 〈c〉 − 〈h〉 − b′ · 〈f〉 − a′ · 〈g〉 − a′ · b′, and partially
open the result.

• If the result is not zero the protocol aborts, otherwise go on with
(〈a〉, 〈b〉, 〈c〉).

The idea is that, as t is random, it is difficult for the adversary to
generate malicious shares such that the result is 0. This check can
be done as a part of the preprocessing, for all triples in parallel, and,
hence, only one random value t is sufficient.

43

2. Partially open x′ = 〈x〉 − 〈a〉 and y′ = 〈y〉 − 〈b〉. Compute 〈z〉 =
x′ · y′ + x′ · 〈b〉+ y′ · 〈a〉+ 〈c〉.

Outputs. The output stage starts when parties already have 〈y〉 for the output
value y, but this value has not been opened yet. Before the opening, it
should be checked if all the parties have behaved honestly.

• Let a1, . . . , aT be all values publicly opened so far, where

〈aj〉 = (δj , (aj1, . . . , ajn), (γ(aj)1, . . . , γ(aj)n)) .

The parties open a new random value JeK, and set ei = ei for all
i ∈ [T] (here ei denotes the i-th power of e). All parties compute
a =

∑
j∈[T] ej · aj .

• Each Pi commits to γi =
∑

j∈[T] ej · γ(aj)i. For the output value 〈y〉,
Pi also commits to the shares (yi, γ(y)i) in the corresponding MAC
of 〈y〉.

• JαK is opened.
• Each Pi opens the commitment γi, and all parties check that α(a +∑

j∈[T] ej · δj) =
∑

i∈[n] γi. If the check does not pass, the protocol
aborts. Otherwise, the parties conclude that all the messages aj are
correct.

• To get the output value y, the commitments to (yi, γ(y)i) are opened.
Now y is defined as y :=

∑
i∈[n] yi, and each player checks that

α(y + δ) =
∑

i∈[n] γ(y)i. If the check passes, then y is the output.

This process verifies that all the intermediate values aj , and also y, have
indeed all been computed correctly.

While such methods can be secure for a dishonest majority, they lead to proto-
cols that are in some sense weaker than ours. They do not allow the identification
of a misbehaving party. In general, such protocols need to be extended with a pos-
sibility of an identifiable abort [49], making the honest parties blame a particular
corrupted party that has caused the protocol to abort. Recently, some identifica-
tion mechanisms for SPDZ-like protocols have been proposed [100, 27, 7], but the
complexity of determining the identity of a misbehaving party may be too high for
being a sufficient deterrent.

Another challenge is the difficulty of generating Beaver triples. The problem
is that they must be private. Heavyweight cryptographic tools are used to gen-
erate them under the same privacy constraints as obeyed by the main phase of
the protocol. Existing frameworks utilize homomorphic [38, 84, 91] or somewhat

44

(fully) homomorphic encryption systems [31, 20] or oblivious transfer [83]. Re-
cently [54], the oblivious transfer methods of [40] have been extended to construct
SPDZ multiplication triples over finite fields Zp, which made their generation sig-
nificantly faster. However, these techniques only work for finite fields, not rings.
To ensure the correctness of tuples, the generation is followed by a much cheaper
correctness check [31].

In this thesis, we keep the correctness check, but the generation will be done
in the open by the party whose behaviour is going to be checked. Differing from
SPDZ, we use the triples, (and analogous tuples for other operations) not for
performing computations, but for verifying them. This idea allows us to sidestep
the most significant difficulties in precomputing the tuples. We note that a similar
idea appeared in [41], where the triples are used to verify whether multiplications
are computed correctly, but without pointing out the cheater. We discuss that work
in the next subsection.

3.1.4 Active Security with an Honest Majority

For honestmajority and three parties, a recentmethod [41], developed concurrently
with our work, proposes a highly efficient actively secure protocol that is also based
on precomputed multiplication triples. We will describe in more details how this
protocol works.

The passively secure version of the protocol (without triple generation) was
first proposed in [3]. It is based on additive sharing over finite rings Z2m among
three computing parties. The number of parties providing inputs or receiving
outputs may be much larger. Typically, the rings represent integers of certain
length. The protocol set tolerates one passive corruption. It makes use of the
following techniques.

• Correlated randomness: for every multiplication gate, the parties P1, P2,
P3 are given correlated randomness in the form of random ring elements
x1, x2, x3 such that x1 + x2 + x3 = 0.

• Linear threshold sharing: each value v is shared in pairs (x1, a1), (x2, a2),
(x3, a3), where v = x1 + x2 + x3 = x1− a2 = x2− a3 = x3− a1. In this
way, any two parties are able to reconstruct v.

The protocol works as follows.

Initialization. Parties invoke the preprocessing phase to get random ring elements
x1, x2, x3 such that x1 + x2 + x3 = 0 for each multiplication gate. The
generation of such randomness is very cheap.

45

Inputs. Let v be the input that will be shared among Pi. It is done using a
2-out-of-3 secret sharing scheme as follows.

• P1’s share is the pair (x1, a1) where a1 = x3 − v;
• P2’s share is the pair (x2, a2) where a2 = x1 − v;
• P3’s share is the pair (x3, a3) where a3 = x2 − v.

Addition. Let (x1, a1), (x2, a2), (x3, a3) be a secret sharing of v1, and let (y1, b1),
(y2, b2), (y3, b3) be a secret sharing of v2. In order to compute a secret
sharing of v1 + v2, each Pi locally computes (zi, ci) with zi = xi + yi and
ci = ai + bi.

Multiplication. Let (x1, a1), (x2, a2), (x3, a3) be a secret sharing of v1, and let
(y1, b1), (y2, b2), (y3, b3) be a secret sharing of v2. It is assumed that the
parties P1, P2, P3 hold correlated randomness α, β, γ respectively, where
α+ β + γ = 0. The parties compute the shares of v1 · v2 as follows.
Step 1: Let 3−1 denote the inverse of 3 in Z2m . The following messages
are computed and sent in parallel:

• P1 computes r1 = (x1 · y1 − a1 · b1 + α) · 3−1, and sends r1 to P2.
• P2 computes r2 = (x2 · y2 − a2 · b2 + β) · 3−1, and sends r2 to P3.
• P3 computes r3 = (x3 · y3 − a3 · b3 + γ) · 3−1, and sends r3 to P1.

Step 2: The following values are computed locally:

• P1 stores (z1, c1), where z1 = r3 − r1 and c1 = −2r3 − r1;
• P2 stores (z2, c2), where z2 = r1 − r2 and c2 = −2r1 − r2;
• P3 stores (z3, c3), where z3 = r2 − r3 and c3 = −2r2 − r3.

Outputs. Each party Pi outputs zi.

In consequent work [41], this passively secure protocol is extended with a
Beaver triple based verification. After the computation, before any values are
output, the correctness of eachmultiplication x·y = z is verified by a precomputed
Beaver triple (rx, ry, rz) similarly to the pairwise verification of SPDZ. Using
threshold sharing ensures that the output cannot be modified by tampering with
the share of the corrupted party, and it may at most lead to inconsistent opening,
which results in the protocol aborting. The triples can be generated using the
passively secure protocol described above, without relying on heavy cryptographic
techniques like somewhat homomorphic encryption. The triples are then verified
using cut-and-choose and pairwise verification, similarly to SPDZ.

46

Again, this method only allows the detection of misbehaviour, but no iden-
tification of the guilty party. Hence, this method is not applicable to a covert
adversary, and the verification should take place at least after each declassification
to ensure security against an active adversary. In our work, we will use Beaver
triples to verify the multiplication gates corresponding to the local computation of
each party. This allows us to generate the initial triples more efficiently since they
should not remain private to the prover anymore, and he can generate the tuples
himself instead of running a passively secure protocol. While the efficiency gain
is not too high for common multiplication triples, delegating work to the prover
becomes more important when generating more complex types of precomputed
tuples.

3.1.5 Passive Security with an Honest Majority

The basic passively secure protocol of [3] is quite similar to Sharemind [16], which
is also based on additive sharing over finite rings Z2m among three computing
parties, tolerating one corrupted party. The basic Sharemind protocol works as
follows.

Initialization. Parties invoke the preprocessing phase to get random ring elements
x1, x2, x3 such that x1 + x2 + x3 = 0 for each multiplication gate. The
generation of such randomness is very cheap.

Inputs. Let v be the input that will be shared among Pi. It is done using additive
secret sharing as v = x1 + x2 + x3, where xi is given to Pi.

Addition. Let x1, x2, x3 be a secret sharing of v1, and let y1, y2, y3 be a secret
sharing of v2. In order to compute a secret sharing of v1 + v2, each Pi
locally computes zi = xi + yi.

Multiplication. Let x1, x2, x3 be a secret sharing of v1, and let y1, y2, y3 be a
secret sharing of v2. It is assumed that the parties P1, P2, P3 hold correlated
randomnessα1, β1, γ1 respectively, whereα1+β1+γ1 = α2+β2+γ2 = 0.
The parties compute the shares of v1 · v2 as follows.
Step 1: The following messages are computed and sent in parallel:

• P1 computes r1 = x1 + α1 and s1 = y1 + α2. It sends r1 to P2, and
s1 to P3.

• P2 computes r2 = x2 + β1 and s2 = y2 + β2. It sends r2 to P3, and
s2 to P1.

• P3 computes r3 = x3 + γ1 and s3 = y3 + γ2. It sends r3 to P1, and
s3 to P2.

47

Step 2: The following values are computed locally:

• P1 stores z1 = r1 · s1 + r3 · s1 + r3 · s2;
• P2 stores z2 = r2 · s2 + r1 · s2 + r1 · s3;
• P3 stores z3 = r3 · s3 + r2 · s3 + r2 · s1.

Outputs. Each party Pi outputs zi.

Although the online phase of the multiplication operation is more efficient
for [16] if compared straightforwardly, Sharemind derives its efficiency from the
great variety of protocols [17, 68, 59, 56] for integer, fix- and floating point
operations, as well as for shuffling the arrays. The deployments of Sharemind [18,
51, 101] include the largest SMC applications ever [11, 12].

At the time of writing this thesis, only passive security was available for
Sharemind. An auditability mechanism for Sharemind has been proposed and
implemented in [87]. The idea of auditability is that, after the protocol execution
has been finished, each party is assigned its own auditor who gets the local
transcript of the party’s computation and verifies that the computation has been
correct. For this, the auditor needs to see all data of the party that he audits. In
order to achieve active security with identifiable abort, the parties should be able to
verify computation of each other by themselves, without help of external auditors,
andwithout revealing their data to each other. In this thesis, we design a verification
mechanism that we apply to the passively secure protocols of Sharemind, turning
them to covertly and actively secure.

It would be interesting to apply our verification to [3] to enhance it with an
identifiable abort that [41] does not provide. However, the protocol variety is
currently much richer for Sharemind, and there are many more possible ways of
optimizing specific protocols.

3.2 Multiple Adversary Models

There exist some alternative models, analogous to the UC model (described in
Section 2.2.3), that support multiple adversaries, such as collusion preserving
(CP) computation [1] or local UC (LUC) [23]. Both models are stronger than UC
and allow to express more interesting properties.

Our initial idea was to take one of these models straightforwardly and apply
it for our needs concerning detection of leakage from one honest party to another
honest party. However, it turned out that both models are too strong, and some
protocols that we intuitively treated as acceptable would be immediately ruled out
by these models.

48

F
AnPn

Z

A1
R

P1A1

An

S1

Sn

Z

∃S = {S1, . . . ,Sn} ∀Z ∀A

π≈

Figure 3.1: CP realization: the protocol π CP-realizes F

3.2.1 Collusion Preserving Computation

We base our work on the collusion preserving (CP) computation of [1]. Although
CP is based on generalized universal composability (GUC) [22], which assumes
that the protocols may use some shared global setup, we give a simplified definition
based on common UC.

Similarly to UC, there are ITMs P1, . . . , Pn interacting with each other, the
environment Z , and the adversary A. However, instead of one monolithic adver-
sary A, there are n adversaries A1, . . . ,An, one for each party. It is assumed that
Ai does not interact with Pi directly, but by means of some fixed communication
resourceR. All the adversaries are connected with the environmentZ , and, hence,
potentially may use it for communicating with each other. The model is depicted
in Figure 3.1.

In the definition of CP emulation, the simulator S should be of the form
S1, . . . ,Sn, where Si mediates the communication between Ai and Pi or the
communication resource R. It is important that different simulators Si cannot
communicate with each other, whichmakes themweaker compared to amonolithic
simulator S. Proving that a protocol π is as secure as a protocol φ now requires
that the view of each party should be the same in π and φ. This immediately
implies collusion preservation, i.e. any existing side-channel between any pair of
adversaries Ai and Aj can be amplified by π no more than it could be amplified
by φ. The security in the CP model is achievable, but it is quite complicated,
as any subliminal channels that are not covered by φ should be eliminated from
the protocol π to forbid additional communication between the corrupted parties
(see [1] for details).

3.2.2 Local Universal Composability

Another model that supports multiple adversaries is Local UC (LUC) [23]. There
is an adversary A(i,j) for each ordered pair of parties Pi and Pj , residing on the
communication channel from Pj to Pi. The model is depicted in Figure 3.1.

49

F
Pn

Z

P1

Z

S1,n

Sn,1

A1,n

An,1 An,1

A1,n

∃S = {S1,n, . . . ,Sn,1} ∀Z ∀A

≈ π

Figure 3.2: LUC realization: the protocol π LUC-realizes F

Each party Pi may be corrupted by n − 1 adversaries A(i,j) that can deliver
messages to the party Pi, where the sender identity of the delivered messages must
be Pj . Proving that a protocol π is as secure as a protocol φ now requires that in
π each entity affects each other entity in the same way as in φ. This model can
be used to express more interesting properties than CP allows, such as anonymity,
deniability, confinement (see [23] for more details).

3.3 Private Conditionals in SMC Programs

The support of conditionals with choices that depend on private data is present in
SMCL [82], as well as in newer languages and frameworks, such as PICCO [106],
Obliv-C [105], Wysteria [92], SCVM [73], or the DSL embedded in Haskell by
Mitchell et al. [79]. A necessary precondition of making private conditionals
possible is forbidding any public side effects inside the private branches (such as
assignments to public variables or termination), since that may leak information
about which branch has been executed. All the branches are executed simulta-
neously, and the value of each variable that could have been modified in at least
one branch is updated by selecting its value obliviously, i.e. in such a way that no
party knows which value has been chosen. Planul and Mitchell [88] have more
thoroughly investigated the leakage through conditionals. They have formally de-
fined the transformation for executing all branches and investigated the limits of
its applicability to programs that have potentially non-terminating sub-programs.

The existing compilers that support private conditionals by executing all
branches do not attempt to reduce the computational overhead of such an exe-
cution. We are aware of only a single optimization attempt targeted towards these
sorts of inefficiencies [55]. They are targeting privacy-preserving applications
running on top of garbled circuits, building a circuit into which all circuits rep-
resenting the branches can be embedded. Their technique significantly depends
on what can be hidden by the garbled circuit protocols about the details of the
circuits. Our approach is more generic and applies at the language level.

50

CHAPTER 4

VERIFIABLE SMC WITH AN HONEST
MAJORITY

4.1 Chapter Overview

In this chapter we propose a transformation for turning any passively secure mul-
tiparty protocol to a protocol that is covertly, or even actively secure under the
honest majority assumption. The entire construction constitutes a variant of the
GMW compiler (Section 3.1.2) from passively to actively secure protocols. Our
verification phase can be seen as an interactive proof, where the verifier has been
implemented using SMC to ensure its correct behaviour and prover’s privacy. The
main ideas behind our mechanism are the following:

• All the inputs and the incoming/outgoing messages of the prover are secret-
shared among all the other parties using a threshold linear secret-sharing
scheme. The verifiers repeat the prover’s computations, using verifiable
hints from the prover. The verification is zero-knowledge to any minority
coalition of parties.

• The prover’s hints are based on precomputed multiplication triples (Sec-
tion 2.5), adapted for verification. Before starting the verification, and even
the execution, the prover generates sufficiently many such triples and shares
them among the other parties. Importantly, the prover provides a proof that
these triples are generated and shared correctly. During verification, the
correctness of triples implies the correctness of prover’s computation.

Applying this verification mechanism n times to any n-party computation
protocol, with each party acting as the prover in one instance, gives us a protocol
secure against covert adversaries corrupting a minority of parties. Applying the
verification after each round would result in an actively secure protocol.

51

4.2 The Ideal Functionality for Verifiable Honest
Majority SMC

In this section, we formalize the initial passively secure protocol and specify the
desired functionality of the resulting verifiable protocol in the UC framework
(see Section 2.2.3). Such specification allows us to precisely state the security
properties of the execution.

The initial passively secure protocol. The protocol is run by n parties, indexed
by [n], where C ⊆ [n] denotes the set of corrupted parties, |C| < n/2. We denote
H = [n]\C. There is a secure channel between each pair of parties. The protocol
is synchronous. It has r rounds, where the `-th round computations of the party
Pi, the results of which are sent to the party Pj , are given by a publicly known
arithmetic circuit C`ij . This circuit computes the `-th round messages ~m`

ij to the
party j ∈ [n] from the input ~xi, uniformly distributed randomness ~ri and the
messages ~mk

j′i (k < `) that Pi has received before. All values ~xi, ~ri, ~m`
ij are

vectors over rings Z2N . The messages received during the r-th round comprise
the output of the protocol.

Arithmetic circuitsC`ij over ringsZ2n1 , . . . ,Z2nK represent local computation
of parties. Such a circuit consists of connected gates, performing arithmetic
operations on inputs and producing outputs. An operation may be one of the
following:

• an addition, a constant multiplication, or a multiplication in a ring Z2nk ;

• the operation “x = trunc(y)” for x ∈ Z2n , y ∈ Z2m , n < m, that computes
x = y mod 2n;

• the operation “y = zext(x)” for x ∈ Z2n , y ∈ Z2m , n < m, that lifts
x ∈ Z2n to the larger ring Z2m ;

• the operation (z1, . . . , zm) = bd(x) that decomposes x ∈ Z2m into bits
zi ∈ Z2.

Gate outputs can be used as inputs of some other gates. The gate inputs that
are not outputs of any other gates of C`ij are called the inputs of C`ij . Some gate
outputs are treated as the final result of computingC`ij on its inputs ~x, and these are
called the outputs of C`ij . Computing the outputs ~y from the inputs ~x is denoted
~y = C`ij(~x).

This set of gates is sufficient to represent any computation. Any other op-
erations can be expressed as a composition of the available ones. Nevertheless,
the verifications designed for special gates may be more efficient, and we discuss
some of them in Section 4.6.1.

52

The resulting verifiable protocol. The verifiable protocol execution is specified
by the ideal functionality Fvmpc given in Figure 4.1. Parties are given a set
of publicly known arithmetic circuits C`ij specifying the initial passively secure
protocol. Honest parties use C`ij to compute their outgoing messages m`

ij . The
outgoing messagesm∗`ij of corrupted parties are chosen by the adversary.

After the computation ends, Fvmpc outputs to all honest parties a set M
containing all corrupted parties Pi that have sent ~m∗`ij 6= ~m`

ij to any honest party
Pj during the execution, and also all parties that have caused the protocol to abort
(the set B0). Even if only some rounds of the protocol are computed, all the parties
that deviated from the protocol in completed rounds will be detected.

The setsBi of parties that are finally blamed byPimay contain some additional
parties that do not belong toM. This is related to unsuccessful cheating that may
have been detected only by some parties. Since Bi ⊆ C, no honest parties (in H)
can be falsely blamed.

We note that ifM = ∅, then AS does not learn anything that a semi-honest
adversary could not learn. In this way, the transformed protocol defines a covertly
secure execution of the protocol specified by C`ij : even though the corrupted
parties may cheat, they will be finally detected if they do it.

Differently from the initial passively secure protocol, the parties are no longer
trusted to generate their randomness ~ri themselves. Instead, ~ri is generated by
Fvmpc , before the parties get their inputs ~xi from Z . At this point, the adversary
may stop the functionality. This corresponds to the failure of randomness gener-
ation in the real protocol, and it is allowed by Fvmpc , since it is safe to abort the
computation that does not involve private inputs.

4.3 The Protocol for Verifiable 3-Party SMC with one
Corrupted Party

The initial passively secure protocol is defined by circuits C`ij representing local
computation of parties, as defined in Section 4.2. In order to get an implementation
of Fvmpc , we transform such a protocol to a verifiable one, outlined as follows.

At the beginning of the execution phase, Pi commits itself to its inputs ~xi
and the randomness ~ri. The commitment method ensures that ~ri is distributed
uniformly. Then the parties start executing the protocol defined by C`ij . During
the execution, Pi computes the messages ~m`

ij using C`ij , committing itself and
the receiver Pj to them. If Pi and Pj are both corrupted, then they are allowed
to commit to arbitrary ~m∗`ij . For Fvmpc it is sufficient that Pi and Pj commit to
~m`
ij already after the execution phase ends, but if exactly one of them is honest, it

should be able to prove which ~m`
ij has actually been transmitted.

53

• In the beginning, Fvmpc gets from Z for each party Pi the message (circuits, i, (C`ij)
n,n,r
i,j,`=1,1,1)

and forwards it to AS .
For each i ∈ [n], Fvmpc generates the randomness ~ri for the party Pi. For i ∈ C, it sends
(randomness, i, ~ri) to AS .
At this point, AS may stop the functionality. If it continues, then for each i ∈ H [resp i ∈ C],
Fvmpc gets the inputs (input, ~xi) for the party Pi from Z [resp. AS].
• For each round ` ∈ [r], i ∈ H and j ∈ [n], Fvmpc uses C`ij to compute the message ~m`

ij that the
party Pi is supposed to deliver to Pj on the `-th round. For all j ∈ C, it sends ~m`

ij toAS . For each
j ∈ C and i ∈ H, it receives ~m`

ji from AS .
• After r rounds, Fvmpc sends (output, ~mr

1i, . . . , ~m
r
ni) to each party Pi with i ∈ H. Let r′ = r

and B0 = ∅.
Alternatively, at any time before outputs are delivered to parties,AS may send (stop,B0) toFvmpc ,
where B0 ⊆ C are the parties that caused the abort. In this case the outputs are not sent. Let
r′ ∈ {0, . . . , r − 1} be the last completed round.
• After r′ rounds, AS sends to Fvmpc the messages ~m`

ij for ` ∈ [r′] and i, j ∈ C.
Fvmpc defines the set of cheaters M = B0 ∪ {i ∈ C | ∃j ∈ [n], ` ∈ [r′] : ~m`

ij 6=
C`ij(~xi, ~ri, ~m

1
1i, . . . , ~m

`−1
ni)}.

• Finally, for each i ∈ H, AS sends (blame, i,Bi) to Fvmpc , withM⊆ Bi ⊆ C. Fvmpc forwards
this message to Pi.

Figure 4.1: The ideal functionality Fvmpc for verifiable computations

After the execution phase ends, the verification phase starts. Each party
(the prover P) has to prove to the other parties (the verifiers V1, . . . , Vn−1) that
it computed its local circuits C`ij correctly w.r.t. committed ~xi, ~ri, ~m`

ij , ~m`
ki for

k ∈ [n]. All n interactive proofs of the n provers take place in parallel. It is
possible that some verifiers Vi misbehave during the proof, and they should be
blamed for that, even if they have not cheated during the execution phase. The
proofs of all parties should terminate even if corrupted verifiers leave the protocol.

The previous discussion is summarized by the ideal functionality Fverify de-
picted in Figure 4.2. It treats all circuits C`ij of one party Pi as a single circuit Ci.
It assigns a unique index id to each input and output of the circuit. Such indexation
makes it easier to see which commitments correspond to which inputs and outputs
of the circuit Ci.

In the rest of this section, we describe the protocol UC-realizing Fverify , and
the building blocks used by it. The protocol is going to have its own preprocessing
phase, aiming to make the verification phase cheaper.

Throughout this section, we assume that the number of parties is 3, and at most
one of them is corrupted. This assumption makes the presentation simpler, and it
describes precisely our actual implementation, including all optimizations specific
to 3 parties. We discuss in Section 4.4 how the transformation can be generalized
to any number n of parties, still assuming an honest majority. In Section 4.5, we
give formal definitions of n-party protocols and the corresponding proofs.

54

Fverify uses arrays comm and sent for storing the commitments. It works with unique indices id,
defining a commitment comm[id] and its ring sizem(id). The messages are first stored as sent [id]
before they are finally committed.
• Initialization: On input (init, (C`ij)

n,n,r
i,j,`) from all (honest) parties, where C`ij is an arithmetic

circuit, initialize comm and sent to empty arrays. For all i ∈ [n], treat the composition of C`ij for
j ∈ [n], ` ∈ [r] as a single circuit Ci. Generate a unique index xidik for the k-th input of Ci, and
yidik for the k-th output of Ci. For all obtained indices id, read out from Ci the ring sizem(id) of
the value indexed by id. Store Ci and all id,m(id).
• Randomness Commitment: On input (commit_rnd, xidik) from all (honest) parties, if
comm[xidik] is not defined yet, generate r $← Zm(xidi

k
), and assign comm[xidik] ← r. Out-

put r to Pi. If i ∈ C, output r also to AS .
• Input Commitment: On input (commit_input, x, xidik) from Pi, and (commit_input, xidik)
from all (honest) parties, if comm[xidik] is not defined yet, assign comm[xidik]← x. If i ∈ C, then
x is chosen by AS .
•Message Commitment:

1. On input (send_msg, x, yidil, xid
j
k) from Pi, output x to Pj . If i ∈ C, then x is chosen by

AS . If j ∈ C, output x to AS . If sent [yidil] is not defined yet, assign sent [yidil]← x.
2. On input (commit_msg, yidil, xid

j
k) from all (honest) parties, if sent [yidil] is defined, and

comm[yidil] is not defined, assign comm[yidil] = comm[xidjk]← sent [yidil]. If i, j ∈ C,
assign comm[yidil] = comm[xidjk]← x∗, where x∗ is chosen by AS .

• Verification: On input (verify, i) from all (honest) parties, if comm[id] has been defined for all
identifiers id ofCi, construct vectors ~x and ~y such that xj ← comm[xidij], and yj ← comm[yidij].
Compute ~y′ ← Ci(~x).
If ~y′ − ~y = ~0, output 1 to each party and AS . Otherwise, output 0 to each party and AS .
• Cheater detection: On input (cheater, k) from AS for k ∈ C, output (cheater, k) to each party.
Do not accept any inputs from Pk anymore.

Figure 4.2: The ideal functionality Fverify for verifying circuit computation

4.3.1 Building Blocks

Ensuring Message Delivery. At any time during the protocol execution, a cor-
rupted sender may refuse to send the message. If the receiver complains about not
receiving it, the other parties do not know whether they should blame the sender
or the receiver. It would be especially sad to allow a corrupted party to abort the
verification phase in this way, so that the cheaters would not be pinpointed.

We want to achieve identifiable abort, i.e. if some party stops the protocol,
it is blamed by all (honest) parties. For this purpose, we use the transmission
functionality Ftransmit proposed in [29] that we repeat in Figure 4.3. It allows
to ensure message delivery, and to reveal previously received messages. The
adversary may still interrupt transmission, but in this case a message (cheater, k)
will be output to all honest parties, where k ∈ C has caused the interruption.

The protocol Πtransmit implementing Ftransmit , also taken from [29], is given
in Figure 4.4. All the messages have signatures so that they could be revealed later.

55

Ftransmit works with unique message identifiers id, encoding a sender s(id) ∈ [n] and a receiver
r(id) ∈ [n].
• Initialization: On input (init, s, r) from all (honest) parties, where s, r map a message identifier
id to its sender and receiver respectively, deliver (init, s, r) to AS .
• Secure transmit: On input (transmit, id,m) from Ps(id) and (transmit, id) from all (honest)
parties, output (id,m) to Pr(id), and (id, |m|) to AS . If r(id) ∈ C, output (id,m) to AS .
• Reveal received message: On input (reveal, id, i) from all (honest) parties, such that Pr(id) at
any point received (id,m), output (id,m) to Pi. If i ∈ C, output (id,m) also to AS . If both
s(id), r(id) ∈ C, then AS can ask Ftransmit to output (id,m′) for anym′.
• Cheater detection: If {s(id), r(id)} ∩ C 6= ∅, AS may interrupt the transmission and ask
Ftransmit to output (cheater, k) to all parties for k ∈ C ∩ {s(id), r(id)}. If (cheater, k) is output
for all k ∈ {s(id), r(id)}, then no (id,m) is output to the parties.

Figure 4.3: Ideal functionality Ftransmit

• Initialization: On input (init, s, r), the parties generate and exchange their public keys that will
be used to verify signatures later.
• Secure transmit: Cheap mode: use as far as Pr(id) does not complain.

1. On input (transmit, id,m) the party Ps(id) signs (id,m) to obtain signature σs. It sends
(id,m, σs) to Pr(id).

2. On input (transmit, id) the party Pr(id) expects a message (id,m, σs) from Ps(id), where
σs is a valid signature from Ps(id) on (id,m). If it receives it, it outputs (id,m) to Z . If
it does not receive it within one round, it sends to each other party a signature γr(id) on
message (bad, s(id)). Any party receiving γr(id) sends it to all other parties.

Expensive mode: an honest party goes to expensive mode if it receives a signature γr(id) on
(bad, s(id)) from at least t parties.

1. On input (transmit, id,m) the party Ps(id) signs (id,m) to obtain signature σs. It sends
(id,m, σs) to each other party.

2. Each party Pi sends (id,m, σs) to Pr(id). If Pi does not receive (id,m, σs) within one
round, it sends to Pr(id) a signature γi on (cheater, s(id)) instead.

3. On input (transmit, id), Pr(id) expects a message (id,m, σs) from each Pi, where σs is a
valid signature of Ps(id) on (id,m). If it arrives from some Pi, then Pr(id) outputs (id,m).
Otherwise, Pr(id) sends all γi that it has received to the other parties. The parties exchange
γi, and any party receiving γi from at least t parties outputs (cheater, s(id)) to Z .

• Reveal received message: On input (reveal, id, i), the party Pr(id) which at any point should
have received the message (id,m, σs), sends (reveal, id,m, σs) to Pi. This is done analogously
to secure transmission, and the message is treated as invalid if σm is not a valid signature ofm. If
Pr(id) is detected in cheating, then Ps(id) is allowed to reveal anym to Pi.

Figure 4.4: Real protocol Πtransmit

56

If some transmission aborts for unknown reasons, then the sender is required
to deliver the message to each other party, so that at least one other honest party
forwards it to the receiver. If no honest party receives the message, the sender will
be blamed by all of them. This approach does not break data confidentiality in a
single adversary model (like UC). The reason is that a message is published only
if a conflict takes place between the sender and the receiver. In this case, at least
one of them is corrupted, hence the adversary has seen that message anyway.

We use Ftransmit not only in the execution, but also in the preprocessing and
the verification phases, in order to ensure that all shares are delivered and the
verification terminates. For simplicity, in this section we write that a message has
been transmitted or revealed using Ftransmit , and avoid using its formal interface,
since handling message identifiers requires introducing technical details.

Broadcast and opening. Broadcast with identifiable abort can be built on top
of Ftransmit . If the party P wants to broadcast a message m, it uses Ftransmit to
deliverm to each other party. Upon receivingmi andmj respectively, the parties
Pi and Pj exchange hi = H(mi) and hj = H(mj), where H is a collision-
resistant hash function. If hi 6= hj , then bothmi andmj are revealed to each party
throughFtransmit , allowing to identify the cheater: note that if at least one ofP ,Pi,
Pj is honest, it is impossible to reveal different messages to different parties. Since
H is collision-resistant, hi = hj implies mi = mj with high probability, even if
the adversary chooses mi and mj . Since hashing is only used for compactness,
and hi can be computed directly frommi that is not private anyway, all hashes can
be easily simulated in the security proofs.

Using the same idea, a previously transmitted message can be revealed to all
parties by first using Ftransmit to reveal the message to each party separately,
and then exchange the hashes to ensure that each party has got the same value.
Exchange of hashes is not necessary in the 3-party case, since at most one party is
corrupted, and two different messages (id,m) and (id,m′) cannot be revealed.

Throughout this section, by broadcast and by openingwemean theseFtransmit -
based protocols. In order to avoid ambiguity, no other definitions of broadcast and
opening are used.

Sharing Based Commitments. All the inputs, the randomness, and the mes-
sages of the proverP are committed by additively sharing them among the verifiers
V1 and V2. To commit to x ∈ Zm, the prover P generates random x1 $← Zm and
computes x2 = x − x1 in Zm. Then P uses Ftransmit to deliver xi to Vi. Using
Ftransmit allows to argue about the authenticity of xi later, if there are conflicts
between P and Vi. We write JxK to denote the sharing of x, and x = x1 + x2 to
denote that x was shared to the particular shares x1 and x2.

57

One instance of Fpre is used to generate u preprocessed tuples in a ring Zm for one party Pi. It
works with unique indices id defining a multiplication triple triple[id] or a trusted bit bit[id].
• Initialization: On input (init, i,m, u) from all (honest) parties, where i ∈ [n] is a party index,
initialize triple and bit to empty arrays. Generate u unique indices id. Store m, u, i and all id for
further use. As shorthand notation, let P = Pi. Let V1 and V2 denote the other two parties.
• Trusted bit generation: On input (bit, id) from all (honest) parties, check if bit[id] exists. If it
does, take (~b1,~b2) ← bit[id]. Otherwise, generate a vector of random bits ~b $← Zu2 . If i ∈ C, then
~b ∈ Zu2 is chosen by AS . Share elementwise~b = ~b1 +~b2 over Zm. Assign bit[id]← (~b1,~b2).
Output~bj to Vj . Output (~b1,~b2) to P . For k ∈ C, send~bk to AS . If i ∈ C, send (~b1,~b2) to AS .
•Multiplication triple generation: On input (triple, id) from all (honest) parties, check if triple[id]

exists. If it does, take ((~a1,~b1,~c1), (~a2,~b2,~c2))← triple[id]. Otherwise, generate random vectors
~a

$← Zum, ~b $← Zum, and compute elementwise ~c ← ~a · ~b. If i ∈ C, then ~a,~b ∈ Zum are chosen
by AS . Share elementwise ~a = ~a1 + ~a2, ~b = ~b1 + ~b2, and ~c = ~c1 + ~c2 over Zm. Assign
triple[id]← ((~a1,~b1,~c1), (~a2,~b2,~c2)).
Output (~aj ,~bj ,~cj) to Vj . Output ((~a1,~b1,~c1), (~a2,~b2,~c2)) to P . For k ∈ C, send (~ak,~bk,~ck) also
to AS . If i ∈ C, send ((~a1,~b1,~c1), (~a2,~b2,~c2)) to AS .
• Stopping: At any time, on input (stop) fromAS , stop the functionality and output⊥ to all parties.

Figure 4.5: Ideal functionality Fpre

Throughout this section, by commitment we mean this sharing-based commit-
ment. In order to avoid ambiguity, no other definition of commitment is used.

Precomputed tuples. To reduce thework of the verifiers, we add a preprocessing
phase generating correlated randomness, i.e. precomputed tuples (see Section 2.5).
They are secret-shared among the verifiers, who have been convinced that the
correlation holds. The prover P gets all the shares. The verified multiplication
triples are triples (a, b, c) from some ring, such that a · b = c. The trusted bits
are values b from some ring Zm,m > 2, such that b ∈ {0, 1}. The preprocessing
phase may fail, and it is possible that the deviator cannot be identified. This is
not a problem since no private data is involved into this phase. We formalize this
phase as a functionality Fpre given in Figure 4.5. We give the implementation of
Fpre in Section 4.3.2.

4.3.2 Protocol Implementing Fpre

The protocolΠpre implementingFpre is given in Figure 4.6. The proverP , allowed
to know the sharings, generates and shares the bits and the triples itself. The shares
are delivered to the verifiers through Ftransmit , so that P gets committed to the
values it has generated. The prover is interested in generating the tuples randomly,
because his (and only his) privacy depends on it. Since the prover generates the
tuples itself, a corrupted verifier cannot provide invalid tuples for an honest prover.

58

• Initialization: The protocol starts with each party getting the input (init, i,m, u), where Pi is
the prover, m is the ring size, and u is the number of tuples to be generated. The protocol uses
parameters µ and κ that depend on the security parameter. As shorthand notation, let P = Pi. Let
V1 and V2 denote the other two parties.
• Trusted bits: On input (bit, id):

1. The party P generates (µ · u+ κ) random bits b $← Z2.
2. P shares b = b1 + b2 in Zm, and sends bi to Vi using Ftransmit .
3. The parties agree on a public random permutation π of generated bits ~b. For b ∈
{bπ(1), . . . , bπ(κ)}, V1 and V2 open b1 and b2 through Ftransmit , and each party computes
b = b1 + b2. If b /∈ {0, 1}, each party outputs ⊥.

4. The remaining bits are split into groups of µ, where the first µ− 1 bits are used to verify the
µ-th one. Let the bit Jb′K be used to verify that JbK is a bit. P broadcasts a bit c indicating
whether b = b′ or not. If c = 1 (indicating b = b′), the verifiers compute JzK = JbK− Jb′K.
If c = 1, the verifiers compute JzK = JbK + Jb′K− 1.

5. After V1 and V2 have computed JzK for all bit pairs, they are holding the vector shares ~z1

and ~z2 respectively. They compute and exchange hashes h1 = H(~z1) and h2 = H(−~z2),
checking if h1 = h2. If the check fails, V1 and V2 inform P about the failure, and each party
outputs ⊥. If it succeeds, V1 and V2 inform P about success. For each of the remaining u
bits b, P outputs b, and V1 and V2 output the shares b1 and b2 respectively.

•Multiplication triples: On input (triple, id):
1. The party P generates (µ · u+ κ) triples (a, b, c) such that a $← Zm, b $← Zm, c = a · b.
2. P shares a = a1 + a2, b = b1 + b2, c = c1 + c2 in Zm, and sends (ai, bi, ci) to Vi using
Ftransmit .

3. The parties agree on a public random permutation π of generated triples. For a ∈
{aπ(1), . . . , aπ(κ)}, b ∈ {bπ(1), . . . , bπ(κ)}, c ∈ {cπ(1), . . . , cπ(κ)}, V1 and V2 open a1,
b1, c1, a2, b2, c2 through Ftransmit . Each party computes a = a1 + a2, b = b1 + b2,
c = c1 + c2. If a · b 6= c, each party outputs ⊥.

4. The remaining triples are split into groups of µ, where the first µ − 1 triples are used to
verify the µ-th one. Let the triple (Ja′K, Jb′K, Jc′K) be used to verify the correctness of the
triple (JaK, JbK, JcK). The verifiers compute JâK = JaK − Ja′K and Jb̂K = JbK − Jb′K, and
declassify â, b̂ by exchanging the shares âi = ai−a′i and b̂i = bi− b′i. Then they compute
JzK = â · JbK + b̂ · Ja′K + Jc′K− JcK.

5. The checks z = 0 are done similarly to the step (5) of trusted bits. If the check fails, each
party outputs ⊥. If it succeeds, for each of the remaining u triples (a, b, c), P outputs
(a, b, c), and V1 and V2 output the shares (a1, b1, c1) and (a2, b2, c2) respectively.

• Stopping: If at any time (cheater, k) comes from Ftransmit , each party outputs ⊥.

Figure 4.6: Real protocol Πpre

59

The verifiers check whether P generated the tuples correctly. The check is
based on cut-and-choose and pairwise check, similarly to e.g. [33, 41]. The check
is probabilistic, and it depends on parameters µ and κ. In order to obtain u tuples
of certain kind, µ · u+ κ tuples have to be generated and shared by P .

First, the parties agree on a joint random seed, defining a random permutation
π of the tuples. In the cut-and-choose step, they take the first κ randomly permuted
tuples and open them. The check fails if any of the opened tuples is not correct.
If all of them are correct, then only a negligible fraction of remaining tuples is
wrong. This is not enough since we want all the tuples to be correct with high
probability.

The remaining tuples are partitioned into groups of size µ. In each group, the
first µ − 1 tuples are used to verify the µ-th one in µ − 1 pairwise checks. The
core of each check is using homomorphic properties of secret sharing to compute
a certain linear combination z of the tuple elements and verify that z = 0 (we call
such z an alleged zero). The check is certain to fail if only one of the tuples in the
pair is correct. Let JzK be computed as in Figure 4.6. We show that, if z = 0, and
one tuple is correct, then the other tuple is certainly also correct.

Trusted bits. Let the bit Jb′K in a ring Zm be used to verify that JbK is a bit. Let
b′ ∈ {0, 1}. The prover broadcasts a bit c indicating whether b = b′.

• If c = 1, then JzK = JbK − Jb′K is computed. If z = 0, then it should be
b = b′ ∈ {0, 1}.

• If c = 0, then JzK = JbK + Jb′K− 1 is computed. If z = 0, then it should be
b = 1− b′ ∈ {0, 1}.

• If c /∈ {0, 1}, the protocol aborts.

Multiplication triples. Let the triple (Ja′K, Jb′K, Jc′K) be used to verify the cor-
rectness of the triple (JaK, JbK, JcK). Let c′ = a′·b′. The values â = a−a′, b̂ = b−b′
are computed and declassified by the verifiers, so there is no way for P to cheat
with them. The verifiers compute and declassify JzK = â ·JbK+ b̂ ·Ja′K+Jc′K−JcK.
Since c′ = a′ · b′, we have z = â · b + b̂ · a′ + a′ · b′ − c = a · b − c. Therefore,
if z = 0, then a · b = c. Opening the shares of z leaks no information of a honest
prover, since one share zi that belongs to the corrupted verifier Vi is already known
to the adversary, and the other one could be computed as zj = −zi.

The bit c denoting whether b = b′ and the values â = a− a′, b̂ = b− b′ are all
distributed uniformly in the corresponding rings, since one of the tuples serves as
a mask for the other tuple.

In the protocol of Figure 4.6, the verifiers do not check ~z = ~0 directly. Instead,
they exchange h1 = H(~z1) and h2 = H(−~z2), where H is a collision-resistant

60

hash function, and ~zi is the share of ~z held by Vi. Similarly to the broadcast that we
defined in Section 4.3.1, if h1 = h2, it should with high probability be ~z1 = −~z2,
implying ~z = ~z1 + ~z2 = ~0.

A corrupted verifier may intentionally provide wrong hi, âi, or b̂i, causing the
correctness check to fail. It will not be clear whether P or Vi is guilty. Such failure
is allowed by Fpre since it does not handle private data. Alternatively, all shares
could be opened through Ftransmit to identify the cheater.

If all µ − 1 checks succeed, then the first µ − 1 tuples in each group are
discarded and only the last one is used. Since a pairwise check passes only if both
tuples are incorrect, the corrupted prover needs to make all µ tuples in a group
incorrect to make a single incorrect tuple accepted, and this probability is made
negligible by adjusting the parameters µ and κ.

A combinatorial analysis, given in details in Section 4.5.4, shows that values
µ and κ do not need to be large to bound the prover’s cheating probability by 2−80.
For example, if u = 220, then it is sufficient to take µ = 5 and κ = 1300. If
u = 230 then µ = 4 and κ = 14500 are sufficient. At the other extreme, if u = 10,
then µ = 26 and κ = 168 are sufficient for the same security level.

In a finite field, more efficient methods than cut-and-choose and pairwise check
are available. For example, we can replace them with an application of linear error
correcting codes [6]. This technique allows to construct u verified tuples from
only u+ κ initial ones, where κ is proportional to the security parameter η.

4.3.3 Protocol Implementing Fverify

The protocol Πverify implementing Fverify is given in Figure 4.7-4.8. All com-
munication between parties takes place using Ftransmit . In this way, if a party
refuses to send a properly formatted message, it will be publicly blamed. If the
prover is blamed, then its proof does not proceed further. If one of the verifiers
is blamed, then the proofs of other parties may be halted, since they should be
honest assuming at most one corrupted party. Hence, without loss of generality,
we assume that all the transmissions of Ftransmit succeed.

Initialization. The initialization fixes the circuitsC`ij that are going to be verified.
A sufficient number of precomputed tuples is generated by Fpre . The number of
these tuples and their types depends on the gates ofC`ij , describedmore precisely in
Figure 4.7. The verification phase clarifies why exactly these tuples are generated.

Randomness commitment. The prover P must fairly choose the (uniformly
distributed) randomness it is going to use as the input of the composition of its
circuits Ci, and commit to it. For this purpose, the verifiers jointly generate it.

61

• Initialization: The protocol starts with each party getting the input (init, (C`ij)
n,n,r
i,j,`), where the

composition of C`ij for each i is denoted Ci. The circuit defines the ring sizes m(xidik) of inputs
and m(yidik) of outputs of Ci. As a shorthand notation, let P = Pi, P ′ = Pj . Let V1, V2 be the
verifiers of P , and V ′1 , V ′2 the verifiers of P ′.
The subroutine Fpre is called to generate a sufficient number of precomputed tuples for each party.
The number of tuples and their types depend on the gates of the circuits Ci.

1. Linear combination, conversion to a smaller ring: no tuples needed;
2. Multiplication in Zm: one multiplication triple over Zm;
3. Bit decomposition in Z2m : m trusted bits over Z2m ;
4. Conversion from Z2n to a larger ring Z2m : n trusted bits over Z2m .

• Randomness Commitment: On input (commit_rnd, xidik), V1 generates r1
$← Zm, and V2

generates r2
$← Zm. They send r1 and r2 to P using Ftransmit . On input (commit_rnd, xidik), P

expects to receive r1 and r2 fromFtransmit . It takes r = r1 + r2. Now r is treated as the committed
k-th input of Ci.
• Input Commitment: On input (commit_input, x, xidik), P shares x = x1 + x2 in Zm and uses
Ftransmit to deliver x1 to V1 and x2 to V2. On input (commit_input, xidik), V1 and V2 expect to
receive x1 and x2 respectively from Ftransmit . Now x is treated as the committed k-th input of Ci.
•Message Commitment:

1. On input (send_msg, x, yidil, xid
j
k), P uses Ftransmit to deliver x to P ′. On input

(send_msg, yidil, xid
j
k), P ′ expects to receive x from Ftransmit .

2. On input (commit_msg, yidil, xid
j
k), the verifier V1 = P ′ takes the share m1 = m, and

the other verifier V2 6= P ′ takes the share m2 = 0. Analogously, treating P ′ as a prover,
the verifier V ′1 = P takes the sharem1 = m, and the other verifier V ′2 6= P takes the share
m2 = 0. Nowm is treated as the committed l-th output of Ci and the k-th input of Cj .

Figure 4.7: Real protocol Πverify (initialization and commitments)

62

• Verification (1st round): On input (verify, i), the prover P broadcasts some hints that will be
used by V1 and V2 to localize their computation. These values depend on the gates of the circuit Ci.

1. Linear combination, conversion to a smaller ring. No broadcasts needed.
2. Multiplication inZm. Let JyK = Jx1K·Jx2K be verified. Let (JaK, JbK, JcK) be a precomputed

multiplication triple over Zm. P broadcasts x̂1 = x1 − a and x̂2 = x2 − b.
3. Bit decomposition in Z2m . Let (Jy0K, . . . , Jym−1K) = bd(JxK) be verified. Let

Jb0K, . . . , Jbm−1K be precomputed trusted bits, shared over Zm. P broadcasts bits
c0, . . . , cm−1, where ck = 1 iff bk = yk.

4. Conversion from Z2n to a larger ring Z2m . Let y = zext(x) be verified. Let
Jb0K, . . . , Jbn−1K be precomputed trusted bits, shared over Z2m . P performs bit decompo-
sition of x over Z2m , getting m bits xk. It takes the first n of these bits, and broadcasts
c0, . . . , cn−1, where ck = 1 iff bk = xk.

• Verification (2nd round): After the broadcasts have been done, the verifiers start computing Ci
locally on shares, collecting the alleged zeroes. V1 and V2 compute the gates as follows.

1. Linear combination. Let y =
∑t
j=1 cj · xj be verified. Compute JyK =

∑t
j=1 cj · JxjK.

2. Multiplication in Zm. Using x̂1 and x̂2 that P has broadcast, compute JyK = x̂1 ·Jx2K+ x̂2 ·
JaK+ JcK. Compute the alleged zeroes Jz1K = Jx1K− JaK− x̂1 and Jz2K = Jx2K− JbK− x̂2.

3. Bit decomposition inZ2m . Using the bits ck thatP has broadcast, take JykK = JbkK if ck = 0,
and JykK = 1− JbkK if ck = 1. Compute the alleged zero JzK = JxK−

∑m−1
i=0 2k · JykK.

4. Conversion from Z2n to a smaller ring Z2m . Drop n−m highest bits from all shares of x.
5. Conversion from Z2n to a larger ring Z2m : Perform the bit decomposition of JxK, obtaining

the shared bits Jy0K, . . . , Jyn−1K; the bits are shared over the ring Z2m . Compute JyK =∑n−1
i=0 2k · JykK and the alleged zero JzK = JxK−

∑n−1
i=1 2k · trunc(JykK).

6. Circuit outputs: Let JyK be the output locally computed by the verifiers. Let Jy′K be the
output committed before. Compute the alleged zero JzK = JyK− Jy′K.

V1 computes h1 = H(z1
1 , z

1
2 , · · · , z1

s) and V2 computes h2 = H((−z2
1), (−z2

2), · · · , (−z2
s)),

where H is a collision-resistant hash function and z1
k, z

2
k are the shares of JzkK held by the first

and second verifier, respectively. They send h1 and h2 to each other and to the prover, checking if
h1 = h2. If h1 6= h2, then P may broadcast a complaint against one of the verifiers Vk. In this
case, all shares of Vk are opened through Ftransmit , and Vj repeats the computation of Vk.
• Cheater detection: At any time, when Ftransmit outputs a message (cheater, k), output
(cheater, k) and stop.

Figure 4.8: Real protocol Πverify (verification and cheater detection)

63

Each verifier Vj generates a uniformly distributed rj and uses Ftransmit to deliver
rj to P . After receiving r1 and r2, P takes the randomness r = r1 + r2 that is
additively shared among V1 and V2. Since at least one verifier Vj is honest, and
the other verifier does not know anything about the value rj , the randomness r
is distributed uniformly. In the security proof, the simulator is able to simulate
exactly the same r that has been chosen by Fverify , taking rj = r − ri after the
adversary has chosen ri for the corrupted verifier.

Input commitment. At the beginning of protocol execution, P commits to its
input x by sharing it as x = x1 + x2 and using Ftransmit to deliver xi to Vi.
The share issued to the corrupted verifier is distributed uniformly and is easy to
simulate. A corrupted prover may choose any x and share it in an arbitrary way.
This is allowed by Fverify .

Message commitment. During the protocol execution, the sender transmits each
messagem using Ftransmit . The sender can be the prover P as well as some other
party P ′. As the result, each message m that has been sent or received by P
is known at least to one verifier V1 or V2 that has been on the other side of the
communication. Since each such message m has been delivered using Ftransmit ,
it is possible to prove its authenticity later, and hence both the sender and the
receiver have been committed to the same m. For both of them, it can be viewed
as being additively shared among the verifiers asm = m+ 0.

Verifying local computations. The local computation of Pi is represented by
circuits C`ij turning already received messages to new messages of the next round
(see Section 4.2).

The circuits are verified gate-by-gate. For each gate, we have the following
setup. The gate operation op takes k inputs in some ring Zm and produces l
outputs in some ring Zm′ . The input values are shared as Jx1K, . . . , JxkK among
the verifiers. The prover knows all these shares. During the computation of the
circuit, the prover was expected to apply op to x1, . . . , xk and obtain the outputs
y1, . . . , yl. The verifiers are sure that the shares they have indeed correspond
to x1, . . . , xk (subject to some deferred checks). A verification step gives us
Jy1K, . . . , JylK shared among the verifiers, where the prover again knows the shares
of both verifiers, but no verifier has learned anything new. The verification step
also gives us a number of alleged zeroes Jz1K, . . . , JzsK, all known to the prover.
If z1 = · · · = zs = 0 then the verifiers are sure that the sharings Jy1K, . . . , JylK
indeed correspond to y1, . . . , yl. All these equality checks are deferred to be
succinctly verified one round later.

64

Repeating this process gate by gate, the verifiers finally obtain a sharing JyK
of some output of the circuit from the commitments to its inputs. The prover has
previously committed that output as Jy′K (the output is a message that the prover
has sent to another party). To verify the correctness of prover’s commitment, the
parties produce an alleged zero JzK = JyK− Jy′K.

For particular gate operations, the values JyiK and JziK are computed as shown
in Figure 4.7. First, the prover broadcasts to the verifiers some hints, which are
just differences between private values and components of the precomputed tuples.
Similarly to the pairwise check ofΠpre , since each tuple is used only once, all these
values come from uniform distribution and can be easily simulated in the security
proof. Using these hints and the precomputed tuples, all circuit operations can be
reduced to linear combinations of shared values, computed using the homomorphic
properties of the sharing scheme.

It is easy to check that, if z = 0 for all alleged zeroes z, then (y1, . . . , yl) =
op(x1, . . . , xk) for all gate operations op. The correctness of all broadcast hints
is verified using alleged zeroes. The multiplication check is analogous to the
pairwise check of Πpre , and for the bit operations, since yi ∈ {0, 1} (it follows
from bi ∈ {0, 1}), the equality JxK =

∑m−1
i=0 2i · JyiK implies that (y0, . . . , ym−1)

is anm-bit decomposition of x.
So far, all the communication between parties only originates from the prover.

Thus the verification of a circuit can be done by the prover first broadcasting a
single long message, followed by the verifiers performing local computations.

Checking of alleged zeroes. The verifiers check if ~z = (z1, . . . , zs) is equal to
~0 similarly to Πpre , exchanging the hashes h1 and h2 of shares ~z1 and (−~z2).

If h1 6= h2, it is possible that not P , but some Vk has cheated by publishing an
incorrect hk. In this case, h1 and h2 are also opened to P , who holds all the shares
and hence knows how h1 and h2 should look like. P is allowed to complain against
one of the verifiers Vk. All the shares of Vk are opened through Ftransmit . The
other verifier Vj can now repeat the computation of Vk and check whether P or Vk
was cheating. After this step, Vj knows exactly who the cheater was. Both honest
parties now agree on the cheater’s identity. Similarly to the conflict resolving of
Ftransmit , opening these shares can be easily simulated in the UC model since if
there is a conflict between P and Vk, then all these shares are already known to
the adversary.

All communication in this step originates from the verifiers, unless there are
complaints. All these messages can be transmitted in the same round. The whole
post-execution phase, in the case of no complaints, only requires two rounds
of communication. The broadcasts of hints take place in the first round while
exchanging the hashes of alleged zero shares takes place during the second round.

65

4.4 Generalization to Verifiable n-Party SMC with an
Honest Majority

Let the number of parties be n. We assume that the majority of parties is honest.
We show that this allows us to use linear threshold secret sharing to make P and
V1, . . . , Vn−1 (some of which may be corrupted) together act as an honest verifier.
The largest challenge coming from n > 3 is that the corrupted prover P is now
able to collaborate with some of the corrupted verifiers Vi.

In this section, we show how the building blocks of Section 4.3.1 can be
generalized to n-party case. We also review the definitions of Πpre and Πverify ,
generalizing them to n parties.

4.4.1 Building Blocks

Ensuring message delivery. Assuming an honest majority, the functionality
Ftransmit of [29] works for any number n of parties. If both the sender and the
receiver are corrupted, they are not bound to the transmitted messages, and may
reveal anything afterwards. This is sufficient for our settings.

Broadcast and opening. Broadcast and opening can still be build on top of
Ftransmit . Now each pair of parties Pi and Pj will use the hash-based consistency
check to verify that they received the same message. If hi 6= hj , thenmi andmj

are revealed to all parties, publicly identifying the cheater. The ability of corrupted
sender and a corrupted receiver to reveal any value just allows them to decide who
of them will be blamed. If the sender is accused, then the broadcast fails. If the
receiver is accused, then its hashes hi are ignored by all parties. In the end, either
the sender is accused by all honest parties, or each party has agreed onm with at
least t− 1 other honest parties.

Sharing based commitments. The commitments can be done using any linearly
homomorphic (n, t)-threshold sharing scheme. Formally, the prover P is treated
as one of the share holders, but in practice P needs to come into play only after all
t− 1 corrupted verifiers have been caught in cheating. All shares that P sends to
Vi are delivered by Ftransmit . It prevents corrupted parties from tampering with
the shares of honest provers, and prevents a corrupted prover from repudiating the
shares that it has given to the honest verifiers.

If the number of honest parties is at least t, then there is a subset of t verifiers
H that lists only honest parties. In this case, a set of shares can be reconstructed
to at most one value. Even if corrupted verifiers collaborate with a corrupted
prover and modify their shares later (Ftransmit does not commit corrupted parties

66

to each other), this may only lead to inconsistency of shares, and failure to open
the commitment. Availability of at least t honest parties allows to maintain the
commitment even if all the corrupted parties have left the protocol.

Some examples of suitable secret sharing schemes are given in Section 2.4.2.
Shamir’s sharing is an example of (n, t)-threshold sharing that works over any
finite field. For ring operations, replicated secret sharing can be used. We note
that the size of shares in the latter case grows exponentially with n.

Preprocessed tuples. Using linear (n, t)-threshold sharing instead of additive,
the ideal functionality Fpre can be directly generalized to n parties. Since the
sharing scheme is still linear, all the steps of Πpre , up to alleged zero check, can be
repeated similarly to the 3-party case, without additional interaction. By properties
of (n, t)-threshold sharing, either the shares of z (and also the opened â and b̂) are
inconsistent, or z is equal to the value that has been computed according to the
protocol rules from the shares of H. The only difference from the 3-party case
is that the verifiers cannot simply exchange the hashes h1 = H(z1

1 , . . . , z
1
s) and

h2 = H((−z2
1), . . . , (−z2

s)). Instead, they need to broadcast zij in plain. If the
opened shares are inconsistent, the protocol aborts.

4.4.2 Generalization of Πverify

In generalized protocol, all the commitments are done using linear (n, t)-threshold
sharing instead of additive.

Input commitment. The shares are generated by the prover itself, similarly to
the 3-party case. The consistency of shares is not being checked. The commitment
is determined by the shares ofH anyway, and it may be only more difficult for the
prover to make its proof hold for inconsistent shares.

Randomness commitment. Each verifier Vj first generates rj
$← Zm and com-

mits itself to it by sharing. After Vk has received the shares rkj of all the other
verifiers Vj , it uses Ftransmit to deliver rkj to P . After receiving all rkj , P recon-
structs rj , and takes r =

∑
j rj . If the shares of some rj are inconsistent, then

all the shares are revealed through Ftransmit . The cheater is discarded, and the
randomness commitment is restarted, this time without the cheater.

It is very important that Vk opens rkj to P only after it receives rkj from all Vj .
This prevents a corrupted P from getting rj of honest verifiers before all corrupted
Vi have been committed to ri that they generated, thus preventing corrupted Vi
from making ri dependent on rj of honest Vj , keeping r uniformly distributed.

67

Vk
∀j : declassify(rkj)k∈[n]

?

6= ⊥
(rkj , σ

k
j)j∈[n]

P

rj
$← R

Vj
rkj , σkj

(rkj)k∈[n] ← classify(rj)

∀j, k : Vrfypkj(r
k
j , σ

k
j)

?
= 1

∀k : σkj ← Signskj(r
k
j)

∀k : σk ← SignskP ((rkj)j∈[n])
σk

Figure 4.9: Committing to randomness in a ring R

Assuming that Ftransmit has been implemented using signatures as shown in
Figure 4.12, security proofs are easier if all commitments are confirmed with P ’s
signatures. For this, it is sufficient to add one more round in which P confirms the
shares by sending to Vk a signature on (rkj)j∈[n]. The pictorial representation of
resulting protocol, decomposed to the details of signature-based implementation
of Ftransmit , is given in Figure 4.9. In this example, Vk uses the signatures of Vj
instead of signing rkj itself to reduce the number of different signatures that have
to be opened in case of cheating, and Ftransmit is not used as a black box.

Message commitment. During the execution, all messages are transmitted using
Ftransmit , as in the 3-party case. However, allmessages nowneed to be additionally
committed by sharing after the execution phase. For this, the sender Ps secret-
shares the message m it had sent to some receiver Pr during the execution, and
sends each sharemk to Vk using Ftransmit . All these shares are revealed through
Ftransmit to Pr who checks thatm has been properly shared, and that it is the same
m that it received in the execution phase. If the shares are inconsistent, or m is
different, Pr is allowed to complain and open the message m that it has actually
received from Ps in the execution phase. In this case, either Ps or Pr is corrupted,
and the adversary already knowsm that was actually transmitted.

Assuming that Ftransmit has been implemented using signatures as shown in
Figure 4.12, security proofs are easier if all commitments are confirmed with Pr’s
signatures. A straightforward solution would be to let Pr confirm the shares that
it received by sending back to Vk the signatures on them. To avoid this additional
round, we may instead assume that Ps sends all shares and their signatures directly
to Pr who forwards them to Vk. The pictorial representation of this protocol is
given in Figure 4.10. In this example, Ftransmit is not used as a black box.

At this point, both Ps and Pr are committed to the shares of JmK that have
been issued to the honest parties. It may happen that the sharing JmK does not

68

Pr
(mk, σks)k∈[n]

Ps
∀k : Vrfypks(m

k, σks)
?
= 1

declassify(mk)k∈[n]
?
= m

(mk)k∈[n] ← classify(m)

Vk

∀k : σks ← Signsks(m
k)

(mk, σks , σ
k
r)k∈[n]

∀k : σkr ← Signskr(m
k)

Figure 4.10: Committing to messages

correspond to them transmitted in the execution phase only if Ps and Pr both are
corrupted. In this case, the value ofm that was actually transmitted is meaningless
anyway, as it can be viewed as an inner value of the joint circuit of Ps and Pr. It
is only important that Ps and Pr are committed to the same value. We recall that
it is allowed by Fverify .

Verification. The first round only involves some broadcasts by the prover, simi-
larly to the 3-party case. On the second round, all the local computations can be
done by the verifiers as in the 3-party case, since the linear (n, t)-threshold sharing
has the necessary homomorphic property, and the sharing over a ring still allows
to drop the highest bits of shares to get the same value shared in a smaller ring.

Similarly to Πpre , the verifiers cannot use hashing to verify if z = 0, and they
need to broadcast all shares of z instead. As in the 3-party case, the shares zk do
not leak any private information of an honest prover.

If z = 0, then it should be 0 also if we only take into account the shares
zk of k ∈ H that have honestly computed all the linear combinations w.r.t. the
commitments. If z 6= 0, then it is not clear whether P or some verifier Vi has
cheated (or both). In this case, P is allowed to complain about up to t−1 verifiers.
All the shares of these verifiers are revealed through Ftransmit , and all the other
verifiers repeat their proof steps to recompute their shares zi. Similarly to the
3-party case, if there is a conflict, then all these shares are known to the adversary
anyway, so they can be revealed.

Cheater detection. There are many steps in which a cheater can be detected due
to use ofFtransmit . If one of the corrupted verifiers gets detected during the proof,
then we still want the proof to finish, since it is not immediately clear whether P
itself is a cheater. In all such cases, the corrupted verifier is discarded from the
proof. Using (n, t)-threshold sharing allows the remaining parties to proceed with
the proof, even after all t− 1 corrupted parties have left the protocol.

69

4.5 Security Proofs for n-Party Verifiable SMC with an
Honest Majority

In this section, we formalize the protocols of Section 4.4 and give their security
proofs. We use them to construct the protocol Πvmpc UC-realizing Fvmpc . We do
not provide separate proofs for the 3-party protocols of Section 4.3, as they can
be seen as instances of the n-party protocols. No new ideas are introduced in this
section compared to Section 4.3-4.4, except Section 4.5.8 that presents a different
approach to the verification, based on probabilistically checkable proofs described
in Section 2.7. The proofs are done in the UC model described in Section 2.2.3.

Theorem 4.1. Letn be the number of parties. Let C be the set of covertly corrupted
parties, |C| < n/2. Assuming that there is a signature scheme with probability
of existential forgery δ, there exists a protocol Πvmpc UC-realizing an r-round
functionality Fvmpc with correctness error ε ≤ 6n2(n + r + 2) · δ + 2−η for a
security parameter η. If the initial protocol of Fvmpc has Mx, Mr, Mc, bits of
inputs, randomness, and communication respectively, its circuits have Nb gates
requiring bit decompositions, Nm multiplication gates, and its largest used ring
has cardinality 2m, then the resulting protocol Πvmpc has at most 13 + r rounds
(of which 10 come from the preprocessing, 1 from the input commitment, and 2
from the verification), and the communication of different phases has the following
upper bounds (let Ng := Nb + Nm, and shn the number of times the bit width of
the value shared among n parties is smaller than the bit width of its one share).

• Preprocessing: shn · (4n3ηm(Nbm+ 3Nm) + 3n2Mr) + o(n3ηmNb).

• Execution: shn · (n ·Mx +Mc) + o(rn2).

• Postprocessing: shn · (2n3Ngm+ n2Mc) + o(n2Ngm).

If some corrupted party starts deviating from the protocol, the number of rounds
may at most double, and the communication may increase at most 2n times.

The aim of this section is to prove Theorem 4.1. Throughout this section, we
use A to denote the adversary that attacks a real protocol, and AS the adversary
that attacks an ideal functionality. For all ideal functionalities F, we assume that
the inputs of corrupted parties are delivered directly toAS , so that we do not need
to write it out explicitly. For this reason, we often write that the simulator starts
doing something on input, meaning the inputs of corrupted parties.

We often use an informal expression x is chosen by AS in definitions of
ideal functionalities, where a message of the form (command, id, x) comes
from a corrupted party. Formally, in such cases the ideal functionality F sends

70

to AS a message (arrived(command), id, x), and waits until AS sends back
(change(command), id, x′), so that F will further use x′ instead of x. For short-
ness of presentation, we avoid writing out this sequence of messages.

Initially, the set of n parties executing a protocol is denoted by [n]. However,
during the execution, it may happen that some parties will be discarded from the
execution due to being detected in cheating. Therefore, we use the notation P to
denote the set of parties that are currently active in the protocol execution.

In general, for all ideal functionalities and protocols of this section, at any time
when a party Pk is detected in cheating, a message (cheater, k) is output to each
party. In this case, Pk is discarded from the execution, resulting in P ← P \ {k}
(in the ideal functionality, also C ← C \ {k}). If the execution of some task
ends up with outputting (cheater, k) to each party, it formally fails, but it can be
immediately restarted without the cheater. The adversary is able to interrupt the
execution at most t − 1 times, until only honest parties H remain in the set P .
Since all our protocols are based on (n, t)-threshold sharing, they able to proceed
with merely the setH of t honest parties.

4.5.1 Ensuring Message Delivery

In Figure 4.11, we give an extended version of message transmission functionality
Ftransmit that we first mentioned in Section 4.3.1. We include broadcast and public
opening into the definition of Ftransmit , and we also allow to forward previously
received messages. Each message is provided by a unique identifier id, encoding
the sender s(id) and the receiver r(id) of this message, so that all parties know
which messages need to be transmitted between which parties. It may also encode
onemore party f(id) to which themessage should be later forwarded by r(id). For
broadcasts, only s(id) is important, since all parties of P are treated as receivers,
and the values r(id) and f(id) may be undefined.

In contrast to the original definition of Ftransmit of [29], we remove the
requirement of synchronous delivery. This property ensures that the messages
are delivered to the receivers only after all the messages have been sent by all
senders of the given round. However, this property is hard to realize, since a
corrupted sender may wait for messages of the other parties before sending its
own messages. In our protocols, we only want to guarantee termination, making
it possible to distinguish delayed messages from dropped messages. In order to
achieve this kind of synchronicity, we may explicitly use e.g. Theorem 1 of [53]
that proves feasibility of achieving synchronous computation in the UC model.

The protocol Πtransmit implementing Ftransmit is given in Figures 4.12-4.13.
It works on top of signatures. Each message is signed by the sender, so that it can
be revealed or forwarded afterwards. If the transmission fails, then the receiver
broadcasts a complaint, and all other parties assist in the message delivery.

71

Ftransmit works with unique message identifiers id, encoding a sender s(id) ∈ [n], a receiver
r(id) ∈ [n], and a party f(id) ∈ [n] to whom the message should be forwarded by the receiver (if
no forwarding is foreseen then f(id) = r(id), and for broadcasts the values of r(id) and f(id) do
not matter).
• Initialization: On input (init, ŝ, r̂, f̂) from all (honest) parties, where ŝ,r̂,f̂ are mappings s.t
Dom(ŝ) = Dom(r̂) = Dom(f̂), assign s← ŝ, r ← r̂, f ← f̂ . Deliver (init, s, r, f) to AS .
• Secure transmit: On input (transmit, id,m) from Ps(id) and (transmit, id) from all (honest)
parties:

1. For s(id) ∈ C, letm be chosen by AS .
2. Output (id,m) to Pr(id), and (id, |m|) to AS . If r(id) ∈ C, output (id,m) to AS .
3. If s(id) ∈ C, AS may choose to output (cheater, s(id)) to all parties instead of (id,m).

•Broadcast: On input (broadcast, id,m) fromPs(id) and (broadcast, id) from all (honest) parties:
1. For s(id) ∈ C, letm be chosen by AS .
2. Output (id,m) to each party and to AS .
3. If s(id) ∈ C, AS may choose to output (cheater, s(id)) to all parties instead of (id,m).

• Forward received message: On input (forward, id) from Pr(id) and on input (forward, id) from
all (honest) parties, after (id,m) has been delivered to Pr(id):

1. For s(id), r(id) ∈ C,m is chosen by AS instead of the value that was actually delivered.
2. Output (id,m) to Pf(id), and (id, |m|) to AS . If f(id) ∈ C, output (id,m) to AS .
3. If r(id) ∈ C, AS may choose to output (cheater, s(id)) to all parties instead of (id,m).

• Reveal received message: On input (reveal, id) from all (honest) parties, such that Pf(id) at any
point received (id,m), output (id,m) to each party, and also to AS .
If s(id), r(id), f(id) ∈ C, thenm is chosen by AS .
AS may output (cheater, k) to all parties for any k ∈ C ∩ {s(id), r(id), f(id)}. If (cheater, k) is
output for all k ∈ {s(id), r(id), f(id)}, then no (id,m) is output to the parties.

Figure 4.11: Ideal functionality Ftransmit

72

In Πtransmit , each party works locally with unique message identifiers id, encoding a sender s(id) ∈
[n], a receiver r(id) ∈ [n], and a party f(id) ∈ [n] to whom the message should be forwarded by
the receiver.
• Initialization: On input (init, ŝ, r̂, f̂), where Dom(ŝ) = Dom(r̂) = Dom(f̂), each party assigns
s← ŝ, r ← r̂, f ← f̂ . The parties exchange their public keys that will be used to verify signatures
later.
• Secure transmit:

1. Cheap mode: use as far as Pr(id) does not complain.

(a) On input (transmit, id,m) the party Ps(id) signs (id,m) to obtain signature σs. It
sends (id,m, σs) to Pr(id).

(b) On input (transmit, id) the party Pr(id) expects a message (id,m, σs) from Ps(id),
where σs is a valid signature fromPs(id) on (id,m). If it receives it, it outputs (id,m)
to Z . If it does not receive it within one round, it broadcasts a signature γr(id) on
message (bad, s(id)) using broadcast, and upon receiving it, each party goes to the
expensive mode.

2. Expensive mode: an honest party goes to expensive mode if it receives a broadcast signature
γr(id) on (bad, s(id)).

(a) On input (transmit, id,m) the party Ps(id) signs (id,m) to obtain signature σs. It
sends (id,m, σs) to each other party.

(b) Each party Pi sends (id,m, σs) to Pr(id). If Pi does not receive (id,m, σs) within
one round, it sends to Pr(id) a signature γi on (cheater, s(id)) instead.

(c) On input (transmit, id), Pr(id) expects a message (id,m, σs) from each Pi, where
σs is a valid signature of Ps(id) on (id,m). If it arrives from some Pi, then Pr(id)
outputs (id,m). Otherwise, Pr(id) broadcasts all γi. Any party receiving γi from at
least t parties outputs (cheater, s(id)) to Z .

• Broadcast:
1. On input (broadcast, id,m) the party Ps(id) signs (id,m) to obtain signature σs and sends

(id,m, σs) to each other party.
2. On input (broadcast, id) each party Pi expects a message (id,m, σs) from Ps(id), where

σs is a valid signature from Ps(id) on (id,m). If no message arrives within one round,
or the signature is invalid, it sends a signature γi on (cheater, s(id)) to each other party.
Otherwise, it sends the message (m, id, σs) to each other party. Any party receiving γi from
at least t parties outputs (cheater, s(id)) to Z .

3. If any party receives (id,m, σs) and (id,m′, σ′s) form 6= m′, it sends (id,m,m′, σs, σ
′
s)

to each other party. If indeed m 6= m′ and the signatures are valid, the honest party Pi
receiving them outputs (cheater, s(id)) toPi. IfPi receives only messages (id,m, σs)with
valid σs and no message (id,m′, σ′s) withm 6= m′ and valid σ′s, then it outputs (id,m) to
Z .

Figure 4.12: Real Protocol Πtransmit (secure transmission and broadcast)

73

• Forward received message:
1. On input (forward, id) the party Pr(id) that at some point received (id,m, σs) signs

(id,m, σs) to obtain signature σr and sends (id,m, σs, σr) to Pf(id).
2. On input (forward, id) the party Pf(id) waits for one round and then expects a message

(id,m, σs, σr) from Pr(id), where σs [resp. σr] is a valid signature from Ps(id) [resp.
Pr(id)] on (id,m). If Pf(id) receives the message, it outputs (id,m) to Pf(id). If it does
not receive the message, it broadcasts a signature γf(id) on message (bad, r(id)) using
broadcast, and upon receiving it, each party goes to the expensive mode that is analogous to
the expensive mode of transmit.

• Reveal received message:
1. On input (reveal, id), the party Pf(id) which at any point should have received the message

(id,m, σs, σr), sends (reveal, id,m, σs, σr, σf) to each other party.
2. Each party in turn sends the message to each other party. Several different messages with

valid signatures are handled by an honest party in the same way as for the broadcast, and
there are now 3 signatures instead of one. The parties that already hold some signatures
on message under id may present them now. If only a single (reveal, id,m, σs, σr, σf) is
received, an honest party Pi outputs (id,m).

3. If (cheater, f(id)) is output, then it is the turn forPr(id) to send (reveal, id,m, σs, σr) to all
parties. If (cheater, r(id)) is output, then it is the turn forPs(id) to send (reveal, id,m, σs) to
all parties. If all attempts have failed, then all honest parties agree that s(id), r(id), f(id) ∈
C, and the revealing fails.

Figure 4.13: Real Protocol Πtransmit (forwarding and revealing messages)

The broadcast is based on sending the message to each other party, followed
by each pair of parties exchanging the messages they received, checking whether
they have received the same message. From the definition of Πtransmit , we can
count the number of rounds and the communicated bits of different operations.

Observation 4.1. Let λ be the number of bits in a signature. The round and
bit communication complexities of applying different functions of Πtransmit to
an N -bit message are given in Table 4.1. The costs of signatures γi on (bad, k)
and (cheater, k), and the additional rounds of broadcast and reveal that take
place after (cheater, k) has been output, are counted as one-time overhead, since
each such overhead may happen only once for Pk. We have counted the ad-
ditional third broadcast round only once for all broadcasts of reveal, since cor-
rect signatures on m 6= m′ immediately cause (cheater, k) to be output for all
k ∈ {s(id), r(id), f(id)}.

We note that there should formally be reserved an additional “empty” round
for the cheap mode. This would be a certain time span within which the parties are
waiting for possible complaints, and that would be silent in the optimistic setting,
when no one attempts to cheat. We claim that the accusations, if any, can be as
well handled in the next round. If any transmit or forward operation of Ftransmit

74

Table 4.1: Costs of different functionalities of Πtransmit applied toN -bit messages, using
λ-bit signatures

functionality rounds communicated bits
Cheap mode (as far as all parties follow the protocol)
transmit 1 N + λ

broadcast 2 n(n− 1) · (N + λ)
forward 1 N + 2λ
reveal 2 n(n− 1) · (N + 3λ)

Expensive mode (if some party deviates from the protocol)
transmit 2 2(n− 1) · (N + λ)
forward 2 2(n− 1) · (N + 2λ)

One-time malicious overhead (happens at most once per party)
transmit 1 n(n− 1) · λ

broadcast 1 2(n− 1)2 · (N + λ)
forward 1 n(n− 1) · λ
reveal 5 (2n(n− 1) + 2(n− 1)2) · (N + 2λ)

ends up in a complaint, it means that some party has not received the message that
it expected, or there are some missing or inconsistent signatures. However, it has
no effect on the next round outputs of the other parties that have not presented any
complaints on this round. If the complaint comes during broadcast or reveal, it
may happen that some party immediately starts using the value it received, while
some other party cannot proceed. In both cases, any satisfied party has been
convinced that the value indeed originates from the sender (broadcast) or was
indeed confirmed by the parties s(id), r(id), f(id) (reveal) due to the signatures,
so it would do the same computations anyway, even if there were no complaints
from the other parties.

For simplicity, the further proofs are done in the setting as if all accusations
had come already before the next round starts. Otherwise, there would be too
many case distinctions, and the proofs would become more complicated. Also,
introducing an empty round would not affect the bit communication.

Lemma 4.1. Let C be the set of corrupted parties. Assuming |C| < n/2 and
existence of signature scheme with probability of existential forgery δ, the protocol
Πtransmit UC-realizes Ftransmit with correctness error ε < N · δ and simulation
error 0, where N is the total number of sent messages.

Proof. We use the simulator S = Stransmit described in Figure 4.14-4.15. The
simulator runs a local copy of Πtransmit . It also generates signing and verification
keys for all n parties, using a preagreed signature scheme.

75

• Initialization: S receives (init, s, r, f) from Ftransmit . It generates public and secret keys for
honest the parties, and simulates them exchanging their public keys. The public and the secret keys
of k ∈ C are chosen by A.
• Secure transmit: On input (transmit, id,m) if s(id) ∈ C, and (transmit, id) if s(id) /∈ C:

1. Cheap mode:

(a) For s(id) ∈ C, S receives m∗ and σ∗s from A. In its local copy of Πtransmit , it
simulates sending (id,m∗, σ∗s) to Pr(id). For s(id), r(id) /∈ C, S gets the message
length |m| from Ftransmit . This is needed to model the view of A on messages
moving through secure point-to-point channels between the honest parties.

(b) For s(id) ∈ C and r(id) /∈ C, if A decides that s(id) sends an invalid message, then
S simulates broadcasting a signature on (bad, id) byPr(id), and goes to the expensive
mode. For s(id) /∈ C, r(id) ∈ C, S receives a message (id,m) from Ftransmit . It
creates a signature σm onm and simulates delivery of (id,m, σs) to Pr(id).

2. Expensive mode:

(a) S signs (id,m) to obtain signature σs. S knows m since if the expensive mode
is entered, then either the sender or the receiver is corrupt. S simulates sending
(id,m, σs) to each other party. If s(id) ∈ C, it acts as A tells.

(b) S simulates sending (id,m, σs) by Pi to Pr(id), where A decides what to send for
i ∈ C. It simulates sending a signature on (cheater, s(id)) if necessary.

(c) S simulates the honest behaviour of r(id) /∈ C. For r(id) ∈ C, it acts as A tells to
Pr(id), simulating the broadcast of (cheater, k) if necessary.

• Forward received message: On input (forward, id,m) if r(id) ∈ C, and (forward, id) if
r(id) /∈ C:

1. For r(id) /∈ C and f(id) ∈ C,S receives (id,m) fromFtransmit , generates the signaturesσs,
σr onm, and simulates sending (id,m, σs, σr) to Pf(id). For r(id) ∈ C and f(id), s(id) /∈
C, S should ensure delivery ofm that was sent by s(id) on some point. Amay choose some
m∗ 6= m to be forwarded, and the signatures σ∗s , σ∗r onm∗.

2. S simulates the behaviour of Pf(id) as it did on input (transmit, id), going to the expensive
mode if necessary.

• Broadcast: On input (broadcast, id,m) if s(id) ∈ C, and (broadcast, id) if s(id) /∈ C:
1. For s(id) /∈ C, S receives (id,m) from Ftransmit and generates a signature σm onm. For

s(id) ∈ C, S receives mi and σis for all i from A. It simulates sending (id,m, σs) (or
(id,mi, σis)) to Pi.

2-4 For the next broadcast rounds, S simulates the honest behaviour of all i /∈ C. For i ∈ C,
it acts as A tells to Pi, simulating the broadcast of (cheater, k) if necessary. All messages
that are needed in simulation are already known to S. If the broadcast eventually succeeds,
and some m∗ should be output by each party, then S outputs m∗ to Ftransmit , so that the
(id,m∗) is output to all parties by Ftransmit . If the broadcast fails, then S sends (id,⊥) to
Ftransmit , so that (cheater, s(id)) would be output to all parties by Ftransmit .

Figure 4.14: Simulator Stransmit (initialization, transmissions, broadcast)

76

• Reveal received message: On input (reveal, id), revealing is simulated similarly to the broadcast.
The only difference is that, if a message (cheater, k) should be output by all (honest) parties, then
the broadcast is repeated with r(id) and s(id) as senders. A decides which messages will be chosen
by k ∈ C ∩ {s(id), r(id), f(id)}. If {s(id), r(id), f(id)} are all corrupt, it may choose valid
signatures σ∗s , σ∗r , σ∗f for anym∗.

• If the message was transmitted (or forwarded) in the expensive mode, then at least one honest
party Pi already holds a signature σs (or σr) onm that was transmitted before with at least
one signature. If A choosesm 6= m∗, then Pi may present two valid signatures σs and σ∗s
(σr and σ∗r) on two different messages.

• If the message was transmitted in the cheap mode, then no other parties may present
contradictory signatures. In this case, the revealing of m∗ succeeds, and S delivers m∗
to Ftransmit , so that (id,m∗) is output to all (honest) parties.

Figure 4.15: Simulator Stransmit (revealing transmitted messages)

Simulatability. InΠtransmit , the real adversaryA needs to get all themessages
received by the corrupted parties. Any messagem that is sent to a corrupted party
is delivered by Ftransmit to S. It is sufficient to know the message length |m| to
simulate secure channels between honest parties.

For the additional rounds in the expensive mode, S needs the message m to
simulate resolving the conflict (i.e. simulating all the other parties assisting in
delivery ofm). In this case, the valuem is known to S since the expensive mode
is entered if either s(id) ∈ C or r(id) ∈ C. In the first case, m is chosen by A.
In the latter case, a message (id,m) comes from Ftransmit . In addition, S needs
to generate the signatures of honest parties on messages m that is receives from
Ftransmit , which is possible since S has instantiated the signature scheme itself.

Broadcasts and revealings are easy to simulate, since the message m is given
to S by Ftransmit in both cases. For messages moving between the honest parties,
S computes |m| directly fromm to simulate secure point-to-point channels.

Correctness. We discuss the correctness of different modes. Since S does
not have control over messages (cheater, k) that are output by Ftransmit , we need
to ensure that Ftransmit outputs (cheater, k) to all (honest) parties iff S simulates
the same in Πtransmit .

• Transmission (cheap): As far as all the parties provide valid messages and
signatures, the messages in simulated Πtransmit are delivered in the same
way as in Ftransmit .

• Broadcast: We need to ensure that, either each honest party gets the same
message m, or all of them output (cheater, s(id)). Suppose that s(id) has
sent a message (id,mi, σ

i
s(id)) to the party Pi, for all i ∈ [n]. If Pi does

not receive a valid message, it sends a signature γi on (cheater, s(id)) to
each other party. Otherwise, it delivers (id,mi, σ

i
s(id)) to each other party.

77

If at least one honest party received a proper (id,mi, σ
i
s(id)), then all honest

parties get it. If no honest party receives it, then each (honest) party gets at
least t complaints γi (including itself), so it outputs (cheater, s(id)).
If any party receives (id,m, σs) and (id,m′, σ′s) for m 6= m′, it sends
(id,m,m′, σs, σ

′
s) to each other party, proving that Ps(id) misbehaved. This

situation is possible only if Ps(id) has itself generated the contradictory
signatures σs and σ′s. Since the signature includes not only the message, but
also the current protocol session and themessage identifier id, there is noway
forA to take signatures of some previous rounds or sessions. By properties
of the signature scheme, if s(id) /∈ C, then A may succeed in generating
σs and σ′s for m′ 6= m with probability at most δ. Hence s(id) /∈ C will
be accused only with probability at most δ. If no (id,m,m′, σs, σ

′
s) has

been sent form 6= m′, then all honest parties should have obtained the same
message (id,m, id).

• Transmission (expensive): If something goes wrong, a signature on message
(bad, id) will be broadcast to each party. We have just proven that, either
all honest parties receive (bad, id), or they output (cheater, r(id)) if the
broadcast fails. In either case, each party Pi now expects (id,mi, σ

i
s)

from Ps(id), and it forwards the received (id,mi, σ
i
s) to Pr(id), sending

(cheater, s(id)) instead if the signature is invalid (similarly to the broadcast).
Differently from broadcast, if Pi gets two properly signed, but different
messages m 6= m′, it does not distribute (id,m,m′, σs, σ

′
s) to prove that

Ps(id) is malicious, but just proceeds with either m or m′. This is allowed
since in Ftransmit the message m for s(id) ∈ C is chosen by AS anyway,
and S may deliver to Ftransmit the m that Pr(id) would choose. If Pi gets
no proper (id,mi, σ

i
s), then it should have received at least t complaints of

the honest parties, so all of them can now be broadcast to all parties. Each
γi can be falsified with probability at most δ.

• Forwarding: A party Pr(id) that already holds a signature σs on m creates
one more signature σr on m. sending the message to Pf(id). If both
s(id), r(id) ∈ C, then they may choose a new message m∗ and create
arbitrary signatures on it. This is allowed by Ftransmit . If s(id) /∈ C,
then r(id) may generate a signature σ∗s on some other message m∗ with
probability at most δ. If r(id) /∈ C, then we would not reach forwarding
unless σs would be a valid message onm. HencePf(id) gets valid signatures
on m only if it is the same m that was transmitted by Ps(id) to Pr(id), or
otherwise the expensive mode is run for forwardingm.

• Revealing messages: We need to show that a correct m is output, unless
s(id), r(id), f(id) ∈ C. The party Pf(id) sends to each other party a

78

message (reveal, id,m, σs, σr, σf). Similarly to broadcast, the message m
is accepted by an honest party iff all three signatures σs, σr, σf correspond
tom, and there is nom′ 6= m that is also provided with valid signatures.
If s(id), r(id), f(id) ∈ C, then Ftransmit allows to reveal any value. If at
least one of them is honest, then its signature can be falsified with probability
at most δ. If the broadcast just fails, the correct message m with proper
signatures will be revealed either by f(id) /∈ C, or r(id) /∈ C.

As a summary, for each message identifier id, if A wants to force m′ 6= m to be
delivered for s(id) /∈ C [or r(id) /∈ C in the case of forwarding], it should falsify at
least the signature of Ps(id) [Pr(id)] onm, which happens with probability at most
δ. Alternatively, if A just wants to cause the honest parties to blame an innocent
Ps(id), then it should generate another messagem′ s.tm 6= m′, and σm′ is a valid
signature of Ps(id) on m′, which also happens with probability at most δ. If the
total number of transmitted messages is N , the probability of cheating in at least
one of them is at most N · δ.

Parallelization. If several messages need to be transmitted to the same party in
the same round, it is enough to provide just one signature for all of them. The
only problem is that, only some of these messages may need to be forwarded or
revealed afterwards, and it should be possible to verify if the signature corresponds
to that particular message. We note that the signature covering all the messages of
one round can be efficiently constructed by computing a Merkle hash tree of the
single signatures of all these messages [78]. If the signature should be verified for
only one message, it is necessary to reveal the authentication path of that message,
which is just taking one node from each level of the tree, and also the one-time
public/private key pair for that particular message. In this way, instead of sending
n signatures for n messages, it suffices to send just dlog ne+ 3 signatures.

4.5.2 Linearly Homomorphic Commitments

We define a functionality Fcommit that we use as a black box for storing com-
mitments, computing their linear combinations, and opening them. It is given in
Figure 4.16. Its implementation can be built it on top of any linearly homomorphic
commitment scheme, not necessarily on sharing. In addition to ordinary commit-
ments, it allows to perform mutual commitments, resulting in two parties being
committed to the same value. The parties may compute various linear combina-
tions of the commitments and open them. The private opening allows to open the
value to one party, making that party committed to it. Although in this thesis we
only need its weak version (that may fail), it can be extended to the strong version,
similarly to the public opening.

79

Each committed value, as well as every linear combination computed from
the commitments, is identified by a unique id. The committed values are stored
in an array comm as comm[id]. A new session of Fcommit is initialized when it
gets an input (init,m, p) from all (honest) parties, where the quantities m, p are
mappings such thatm(id) is the bit size of the ring in which the value comm[id] is
committed, and p(id) is the party committed to comm[id]. In order to simplify the
initialization of Fcommit when it will be called by outer protocols, these mappings
have to be initialized only for the commitments, and they will be extended later
to linear combinations and truncations computed from the commitments. In
order to make the extensions uniquely determined, we allow to compute linear
combinations only from the values for which p(id) is the same.

It is possible that execution of some task of Fcommit does not succeed. If
it happens, then (cheater, k) is output to each party, where k is the deviator
responsible for the failure. In this case, Pk is discarded from the execution,
resulting in Fcommit assigning P ← P \ {k} and C ← C \ {k}. All tasks of
Fcommit are still applicable to the commitments of the remaining parties, i.e. such
that p(id), p(id′) ∈ P .

The protocol Πcommit (Figure 4.17-4.18) implementing Fcommit works on top
of the message transmission functionality Ftransmit defined in Section 4.5.1. It
uses a linear (n, t)-threshold secret sharing scheme with t = dn/2e + 1. The
protocol description demonstrates why we need two different types of public
opening. The weak opening (weak_open) is cheap, but it may fail, resulting in a
set of suspects K whose guilt has not been proven yet. In the case of failure, the
parties may run strong opening (open), which is expensive, but allows all honest
parties to identify the parties of K that have actually cheated, and discard them
from the protocol. As the result, either the commitment of Pp(id) is finally opened,
or Pp(id) is publicly blamed by all honest parties, if it turns out that no party in K
has cheated. Another possibility to detect cheaters comes from Ftransmit that may
output messages (cheater, k) to the parties. All detected cheaters are discarded
from the active set of parties P . It does not interrupt the work of Πcommit , since
there still remain at least t honest parties able to reconstruct any sharing.

From the definition of Πcommit , we count the number of Ftransmit operations
being called for different functions. This allows us to estimate the round and the
communication complexity based on the implementation of Ftransmit .

Observation 4.2. The number ofFtransmit operations for applying different func-
tions of Πcommit to an N -bit input (in the optimistic mode) is given in Table 4.2,
where trM , bcM , fwdM , revM denote the costs (the number of rounds and the bit
communication, as defined in Section 2.3) of transmit, broadcast, forward, reveal
respectively on an M -bit message, and shn is the number of times the bit width
the value shared among n parties is smaller than the bit width of its one share.

80

Fcommit works with unique identifiers id, encoding the bit sizem(id) of the ring in which the value
is committed, and the party p(id) committed to the value. The commitments are stored in an array
comm , and their derivations in an array deriv . For each id, the term deriv [id] is a tree whose
leaves are the initial commitments, and the inner nodes are lc, trunc operations applied to them. For
the initially committed values, deriv [id] = id.
• Initialization: On input (init, m̂, p̂) from all (honest) parties, where Dom(m̂) = Dom(p̂), define
the mappingsm← m̂, p← p̂. Deliver (init,m, p) to AS .
• Extension: On input (ext, m̂, p̂) from all (honest) parties, where Dom(m̂) = Dom(p̂) and
Dom(m̂) ∩ Dom(m) = ∅, extend the mappings m ← m ∪ m̂, p ← p ∪ p̂ over the new domain
Dom(m̂) ∪ Dom(m). Deliver (ext, m̂, p̂) to AS .
• Public Commit: On input (pcommit, id, x) from all (honest) parties, write comm[id]← x, and
output (confirmed, id) to all parties. Output x to AS .
• Commit: On input (commit, id, x) from Pp(id) and (commit, id) from all (honest) parties, write
comm[id] ← x, and output (confirmed, id) to all parties. If p(id) ∈ C, then x is chosen by AS ,
who may alternatively tell Fcommit to output a message (cheater, p(id)) to all parties.
• Mutual Commit: On input (mcommit, id, id′, x) from Pp(id), (mcommit, id, id′, x′) from
Pp(id′), and (mcommit, id, id′) from all (honest) parties, compare x and x′. If x = x′, then
write comm[id], comm[id′] ← x, and output (confirmed, id, id′) to all parties. If x 6= x′, output
(id, id′,⊥) to all parties and to AS .
If p(id) ∈ C [resp. p(id′) ∈ C], then AS chooses x [resp. x′]. Alternatively, it may deliver to
Fcommit a message (cheater, p(id)) or (cheater, p(id′)) that is output by Fcommit to all parties.
• Compute Linear Combination: On input (lc,~c, ~id, id′) from all (honest) parties, where |~c| =

|~id| =: `, id′ /∈ Dom(p), and p′ = p(idi) are the same for all i ∈ {1, . . . , `}, let m′ ←
min ({m(idi) | i ∈ {1, . . . , `}}):

1. Compute y ← (
∑`
i=1 ci · comm[idi]) mod 2m

′
.

2. Write comm[id′]← y;
3. Assignm(id′)← m′, p(id′)← p′, deriv [id′]← lc(~c, ~id).

Syntactic sugar: we write (id′ =
∑`
i=1 ci · idi) instead of (lc,~c, ~id, id′).

• Compute Truncation: On input (trunc,m′, id, id′) from all (honest) parties, where m(id) ≥
m′ ∈ N, and id′ /∈ Dom(p):

1. Compute y ← comm[id] mod 2m
′
.

2. Write comm[id′]← y;
3. Assignm(id′)← m′, p(id′)← p(id), deriv [id′]← trunc(m′, id).

Syntactic sugar: we write (id′ = id mod 2m
′
) instead of (trunc,m′, id, id′).

•Weak Open: On input (weak_open, id) from all (honest) parties, if |C| > 0, output comm[id]
to AS , who decides whether (id, comm[id]) or (id,⊥) is output to each party.
• Open: On input (open, id) from all (honest) parties, output comm[id] to AS . If p(id) ∈ C, it
chooses whether (id, comm[id]) or (cheater, p(id)) is output to each party.
• Privately Open: On input (priv_open, id, id′) from all (honest) parties, if deriv [id] 6= id, do
nothing. Otherwise, write comm[id′] = comm[id], output (id, id′, comm[id]) to Pp(id′), and
output (confirmed, id, id′) to all parties. If p(id′) ∈ C, output (id, id′, comm[id]) to AS . If
p(id) ∈ C, AS may tell Fcommit to output (id, id′,⊥) to each party instead.
• Cheater detection: At any time when (cheater, k) is output to all parties, do not accept any
inputs including id s.t p(id) = k anymore. Let P ← P \ {k}, C ← C \ {k}.

Figure 4.16: Ideal functionality Fcommit

81

In Πcommit , each party works locally with unique identifiers id, encoding the bit sizem(id) of the
ring in which the value is shared, and the party p(id) committed to the value. The parties use a
linear (n, t)-threshold sharing scheme with t = dn/2e + 1. Each party stores its own local copy
of arrays commk for k ∈ [n], into which it writes the shares known to it. Each party stores a term
deriv [id] (represented by a tree whose leaves are the initial commitments, and the inner nodes are lc,
trunc operations applied to them) to remember in which way each commk[id] has been computed.
For the initially committed values, let deriv [id] = id.
• Initialization: On input (init, m̂, p̂) where Dom(m̂) = Dom(p̂), each party, assigns m ← m̂,
p← p̂. It definesmappings s, r, and f , such that s(idkk′)← p(id), r(idkk′)← k, and f(idkk′)← k′,
for all id ∈ Dom(p), k, k′ ∈ [n]. In addition, it defines the senders s(idbck) ← p(id) for the
broadcasts (used for share opening). It sends (init, s, r, f) to Ftransmit .
• Extension: On input (ext, m̂, p̂) from all parties, where Dom(m̂) = Dom(p̂) and Dom(m̂) ∩
Dom(m) = ∅, extend the mappingsm← m ∪ m̂, p← p ∪ p̂. For the new identifiers id, initialize
a new instance of Ftransmit , similarly to the initialization.
• Cheater detection: At any time when a party receives (cheater, k) from Ftransmit , it outputs
(cheater, k) to Z . After outputting (cheater, k) to Z , it does not accept any inputs including id s.t
p(id) = k anymore, and treats Pk as if it has left the protocol, i.e. P ← P \ {k}.
• Public Commit: On input (pcommit, id, x), each party writes commk[id]← xk for all k ∈ [n],
where (xk)k∈[n] = classify(x). It outputs (confirmed, id) to Z .
• Commit:

1. On input (commit, id, x), Pp(id) shares (xk)k∈[n] = classify(x). It sends
(transmit, idkk, x

k) to Ftransmit , for all k ∈ [n].
2. On input (commit, id), Pk waits until (idkk, x

k) comes from Ftransmit .
If all transmissions succeed, each party Pk writes commk[id]← xk, deriv [id]← id, and outputs
(confirmed, id) to Z . Otherwise, if (cheater, p(id)) comes from Ftransmit , each party outputs
(cheater, p(id)) to Z .
•Mutual Commit:

1. On input (mcommit, id, id′, x), Pp(id) shares (xk)k∈[n] = classify(x). It sends
(transmit, id

p(id′)
k , xk) to Ftransmit for all k ∈ [n].

2. On input (mcommit, id, id′, x′), Pp(id′) waits until (id
p(id′)
k , xk) comes from Ftransmit .

Upon receiving it for all k ∈ [n], Pp(id′) checks if xk are valid consistent shares, and if
x′ = declassify(xk)k∈[n]. If the check does not pass, or the messages do not come, Pp(id′)
broadcasts (bad, id, id′). Otherwise, Pp(id′) sends (forward, id

p(id′)
k) to Ftransmit for each

k ∈ [n].

3. On input (mcommit, id, id′), Pk waits until (id
p(id′)
k , xk) comes from Ftransmit .

If all transmissions and forwarding succeed, each partyPk writes commk[id] = commk[id′]← xk,
deriv [id] = deriv [id′] ← id, and outputs (confirmed, id, id′) to Z . If (cheater, p(id)) [resp.
(cheater, p(id′))] comes from Ftransmit , each party outputs it to Z . If (bad, id, id′) is broadcast
by Pp(id′), each party outputs (id, id′,⊥) to Z .

Figure 4.17: Real Protocol Πcommit (init, cheater detection, commitments)

82

• Compute Linear Combination: On input (lc,~c, ~id, id′), where |~c| = |~id| =: `, id′ /∈ Dom(p),
and p′ = p(idi) are the same for all i ∈ {1, . . . , `}, for m′ ← min ({m(idi) | i ∈ {1, . . . , `}}),
each party Pk

1. computes yk ← (
∑`
i=1 ci · commk[idi]) mod 2m

′
(Pp(id) computes all (yk)k∈[n]);

2. writes commk[id′]← yk (Pp(id) does it for all k ∈ [n]);
3. assignsm(id′)← m′, p(id′)← p′, deriv [id′]← lc(~c, ~id).

• Compute Truncation: On input (trunc,m′, id, id′), where m(id) ≥ m′ ∈ N, and id′ /∈
Dom(p), each party Pk

1. computes yk ← commk[id] mod 2m
′
(Pp(id) computes all (yk)k∈[n]);

2. writes commk[id′]← yk (Pp(id) does it for all k ∈ [n]);
3. assignsm(id′)← m′, p(id′)← p(id), deriv [id′]← trunc(m′, id).

•Weak Open: On input (weak_open, id):
1. Pp(id) takes xk ← commk[id] and sends (broadcast, idbck , x

k) to Ftransmit for all k ∈ [n].
2. Upon receiving all shares (idbck , x

k) from Ftransmit , each party Pj compares xj with the
share commj [id] that it holds. If xj 6= commj [id], it broadcasts (bad, id).

If the shares are inconsistent, or some of them do not arrive, each party outputs (cheater, p(id))
to Z . If at least one message (bad, id) has been broadcast, each party constructs a set K :=
{k | (bad, id) was broadcast by Pk}. If K ≥ t, then each party outputs (cheater, p(id)) to Z , and
otherwise it outputs (id,⊥) to Z . If there are no problems, then each honest party reconstructs
x← declassify(xk)k∈[n] and outputs x to Z .
• Open: On input (open, id), called after (weak_open, id) has failed:

1. Each party sends (reveal, idkj) to Ftransmit for all leaf identifiers idkj of the derivation term
deriv [id], for k ∈ K.

2. Upon receiving all (idkj , x
k
j) from Ftransmit for all k ∈ K, using them to locally recompute

the share xk of deriv [id], and taking xk broadcast during weak_open for k /∈ K, each party
reconstructs x ← declassify(xk)k∈[n], and outputs x to Z . If xk are inconsistent, output
(cheater, p(id)) to Z .

• Privately Open: On input (priv_open, id, id′), if deriv [id] = id:
1. Each party Pk sends (forward, idkp(id′)) to Ftransmit .

2. Upon receiving all (idkp(id′), x
k) from Ftransmit , Pp(id′) reconstructs x ←

declassify(xk)k∈[n] and sends (transmit, id′
k
k, x

k) to Ftransmit . If xk are inconsistent,
then Pp(id′) broadcasts a complaint (bad, id, id′).

3. Upon receiving (id′
k
k, x
∗k) from Ftransmit , Pk checks if xk = x∗k, where xk is the

message that Pk received before the opening. If xk 6= x∗k, then Pk broadcasts a complaint
(bad, id, id′).

If at least one (bad, id, id′) is broadcast, or (cheater, k) comes from Ftransmit , all parties out-
put (id, id′,⊥). Otherwise, each party Pk writes commk[id′] ← commk[id], and outputs
(confirmed, id, id′) to Z . Pp(id′) outputs (id, id′, x) to Z .

Figure 4.18: Real Protocol Πcommit (local operations and openings)

83

Table 4.2: Calls of Ftransmit for different functionalities of Πcommit with N -bit values

input called Ftransmit functionalities
commit tr⊗nshn·N

mcommit tr⊗nshn·N ⊕ fwd⊗nshn·N
weak_open bc⊗nshn·N

open rev⊗nshn·N
priv_open fwd⊗nshn·N ⊕ tr⊗nshn·N

pcommit, lc, trunc –

At least with the linear (n, t)-threshold schemes used in this thesis (see Sec-
tion 2.4.2), the overhead of share sizes is multiplicative w.r.t. the bit length of the
shared value, i.e. shn · (M1 +M2) = shn ·M1 + shn ·M2, which means that
several values can be shared in parallel without additional overheads to the share
size. If n = 3, or Shamir’s sharing is used, then shn = 1.

If we do not use Ftransmit as a black box, but look into details of Πtransmit , we
see that priv_open can be even cheaper, since the party p(id′) that receives all the
shares may send just their signatures back to Pk. In this way, private opening can
be seen as the second round of the randomness commitment given in Figure 4.9
(and that is how we are going to use priv_open). We have not included the cost
of broadcast messages (bad, id) in Table 4.2, since they are sent only in the case
when some party attempts to cheat, and their size is insignificant.

Lemma 4.2. Let C be the set of corrupted parties. Assuming |C| < n/2, the
protocol Πcommit UC-realizes Fcommit in Ftransmit -hybrid model.

Proof. We use the simulator S = Scommit described in Figure 4.19. The simulator
runs a local copy of Πcommit , together with a local copy ofFtransmit . Without loss
of generality, let the number of honest parties be |H| = t. If |H| > t, it suffices
to take an arbitrary subset of H of size t. Throughout the simulation, the shares
commk[id] of p(id) ∈ C held by k ∈ H should comprise the value comm[id] held
by Fcommit . This ensures that the parties are committed to the values.

Simulatability. All the messages of Πcommit are sent through Ftransmit .
Except the accusations (bad, id) and (bad, id, id′) that are easy to simulate since
S knows when A is cheating, all these messages are some shares.

In all commitments, the shares of a corrupted sender are chosen by A. The
shares for corrupted receivers (xk)k∈C of x belonging to some honest party need
to be generated by S itself. By assumption, Πcommit works with a linear (n, t)-
threshold sharing scheme with t = dn/2e + 1. Assuming |C| < n/2, there are
at most t − 1 shares that S needs to simulate. Since any set of less than t shares
looks uniformly distributed, it is sufficient to sample xk $← Z2m(id) .

84

Let comm be the local array of Fcommit , and commk, k ∈ [n] the local arrays of S that it stores for
each party. LetH be some fixed set of t honest parties.
• Initialization and extension: S gets (init,m, p) or (ext,m, p) from Fcommit . Based on these, it
initializes its local Ftransmit .
• Cheater detection: At any time when (cheater, k) should be output for each honest party in
Πcommit , then S discards Pk from its local run of Πcommit , and assigns C ← C\{k},P ← P \{k}.
In all such cases, it forwards (cheater, k) to Fcommit .
• Public commit: S gets (id, x) from Fcommit . It computes (xk)k∈[n] = classify(x) according to
the preagreed sharing and writes commk[id]← xk for all k ∈ [n].
• Commit: For p(id) ∈ C, S gets the shares (xk)k∈[n] from A. For p(id) /∈ C, S generates the
shares xk $← Z2m(id) for k ∈ C. S simulates distribution of the shares (xk)k∈[n] using Ftransmit .
If (cheater, k) should have come from Ftransmit , S delivers it to Fcommit . If no (cheater, k) has
come fromFtransmit , then all the shares xk have been successfully delivered. Fcommit is waiting for
x from S for p(id) ∈ C. It may happen that the shares (xk)k∈[n] coming fromA are inconsistent. S
defines x ← declassify(xk)k∈H, which is unique since |H| = t. It sends x to Fcommit that writes
comm[id]← x. S writes comm[id]← x, and commk[id]← xk for all k ∈ [n].
•Mutual Commit: If p(id) ∈ C [resp. p(id′) ∈ C], then S gets (xk)k∈[n] [resp. (x′k)k∈[n]] from
A. Otherwise, it generates xk $← Z2m(id) [resp. x′k $← Z

2m(id′)] for all k ∈ C.
S handles the obtained shares similarly to the (commit, id, x) case, taking x← declassify(xk)k∈H
for p(id) ∈ C, and x′ ← declassify(x′k)k∈H for p(id′) ∈ C. Messages (cheater, k) coming from
Ftransmit are delivered to Fcommit . If (id, id′,⊥) comes from Fcommit after the first transmission,
it should be x 6= x′, and S simulates broadcasting (bad, id, id′).
• Compute Linear Combination and Truncation: S locally performs the computations and
assignments for all k ∈ C. No outputs are produced.
• Weak Open: S gets (id, x) from Fcommit . For p(id) ∈ C, all broadcast shares (xk)k∈[n] are
chosen byA. For p(id) /∈ C, S needs to generate all shares (xk)k∈[n] by itself. Using commk[id],
and the derivation tree deriv [id], it computes the values xk for k ∈ C. It needs to generate the
remaining shares xk for k /∈ C in such a way that x = declassify(xk)k∈[n]. If S already has t− 1
shares of corrupted parties, all the remaining shares are uniquely determined by x and these t − 1
shares. If it has less than t − 1 shares, then it needs to generate the missing t′ shares by itself. It
takes an arbitrary subset T ⊆ P \ C of size t′. For all k ∈ T , it generates xkid′

$← Z
2m(id′) for all

leaves id′ of deriv [id], as it would generate them if it was k ∈ C, and uses them to compute xk.
S simulates (broadcast, idbck , x

k) using Ftransmit . If (bad, id) should be broadcast by any party,
then S delivers (id,⊥) to Fcommit . S remembers the set of partiesK that have broadcast (bad, id).
If K ≥ t, then S delivers (cheater, p(id)) to Fcommit .
• Open: S gets (id, x) from Fcommit . If p(id) /∈ C, it computes all shares xk such that
x = declassify(xk)k∈[n], similarly to weak_open. For k ∈ K, S simulates all the revealings
(reveal, idk

′
k , x

k) of the shares idk
′
k of leaves of deriv [id]; all of those are known to S.

• Privately Open: If p(id′) ∈ C, S gets x from Fcommit . If p(id) ∈ C, then S already knows all
shares xk that are stored in comm[id]. If p(id) /∈ C, S needs to simulate these shares. There are
up to t − 1 shares issued to Pk for k ∈ C, and S computes the remaining xk in such a way that
x = declassify(xk)k∈[n], similarly to weak_open and open. For each k ∈ C, A chooses the share
x∗k that should be forwarded by Pk to Pp(id′). S simulates all such forwardings using Ftransmit . If
x∗k 6= xk for some k, or p(id′) ∈ C andA decides to complain, then the broadcast of (bad, id, id′)
is simulated. S delivers (id, id′,⊥) to Fcommit .

Figure 4.19: The simulator Scommit

85

For the messages moving between honest parties, S only needs to simulate
Ftransmit , which should output the message length to A. The message length can
be derived from the bit sizem(id) of the ring in which the values are shared.

On inputs weak_open, open (and also priv_open for p(id′) ∈ C), S needs to
simulate to A all the n shares of some value x. In all these cases, x is given to S
by Fcommit . For p(id) /∈ C, not all shares have been generated yet. If S already
knows all t − 1 shares xk of k ∈ C, then all the other shares can be computed
directly from x and these shares. If it has less than t− 1 shares, then it generates
the missing t′ shares xk starting from the leaves id′ of deriv [id], as if all t − 1
corrupted parties were present, just without delivering these shares to A. It does
not matter for which honest parties T exactly such xk will be generated, all choices
are symmetric. Some of the leaf shares xkid′ may already be known to S, if they
are coming from public or mutual commitments. All the shares that it does not
know have been generated by some honest party, so xkid′

$← Z2m(id′) is a valid
distribution for up to t− 1 shares.

In the case of strong opening (open), S needs to additionally simulate the
shares of leaves of deriv [id] which it does not receive from Fcommit . Strong
opening takes place only if |K| ≤ t−1, since otherwise p(id)would be blamed and
discarded fromP . Hence, all these revealed shares look independent and uniformly
distributed to A, and S may sample xk $← Z

2
m(idk

′
k

)
for the corresponding leaf

identifiers idk′k .
Correctness. The delivery of transmitted and broadcast messages is ensured

by Ftransmit . At any time when (cheater, k) message comes from Ftransmit , then
Pk is discarded from the run of Πcommit by all honest parties unanimously. Since
|C| < n/2 and t = dn/2e + 1, there is still enough shares to continue running
Πcommit with the values shared by the other parties. S sends (cheater, k) to
Fcommit , so that both the real and the ideal worlds blame Pk and do not perform
any computations on its values anymore.

Since all other outputs (not related to cheating) are resulting from some open-
ing, it suffices to show that all opened values are the same in both worlds.

• Let p(id) /∈ C. During the opening, at least t shares belonging toH comprise
comm[id]. A may tamper with the shares xk for k ∈ C. Since comm[id] is
already fixed by the shares of honest parties,Amay atmostmake the opening
inconsistent. In theweak opening case,Amay argue against up to t−1 shares
of comm[id], but all these complaintswill be denied after the strong opening,
when the actually transmitted values will be revealed. For p(id′) /∈ C, if
the shares opened during priv_open are consistent (otherwise, (id, id′,⊥) is
output by both Fcommit and Πcommit), then the value x reconstructed from
these shares equals to the value reconstructed from the shares ofH.

86

• Let p(id) ∈ C. We need to show that declassify(commk[id])k∈H =
comm[id] for the initially fixed set of honest partiesH ismaintained through-
out the computation, where commk[id] are the shares of the local copy of
Πcommit of S, and comm[id] is the inner value of Fcommit . We prove it by
induction on the number of operations that have been applied to the shared
values.

– Base: The initial values for comm[id] are chosen during executing
pcommit, commit, mcommit. For pcommit, x was committed pub-
licly, and x← declassify(xk)k∈H holds by choice of xk. For commit
and mcommit, S sends to Fcommit the value x← declassify(xk)k∈H,
where xk = commk[id] for k ∈ H in the local copy of Πcommit of S.
Hence declassify(commk[id])k∈H = comm[id].

– Step: The new values comm[id′] are created by calling lc and trunc.
Since both lc and trunc are linear operations, and we are using linear
secret sharing, for f ∈ {lc, trunc} we have

declassify(commk[id′])k∈H = declassify(f(commk[id]))k∈H

= f(declassify(commk[id]))k∈H .

By induction hypothesis, declassify(commk[id]))k∈H = comm[id],
and hence this quantity equals f(comm[id]) = comm[id′], so we
have declassify(commk[id′])k∈H = comm[id′].

As the result, A may tamper with the shares xk for k ∈ C, but since
comm[id] is already fixed by the shares issued toH, they may at most make
the opening inconsistent. If it happens in the weak opening case, S delivers
(id,⊥) to Fcommit , and the opening fails in both worlds. In the strong
opening case, Ftransmit ensures that only the shares xk = commk[id] that
have been indeed received by Pk are opened for k /∈ C, and so for k ∈ H.
The case |K| ≥ t may never happen to an honest party, since |C| ≤ t − 1,
and so an honest party will not be blamed even if all of them will cheat.
Finally, comm[id] is output to each party in the real protocol.

4.5.3 Generating Uniformly Distributed Randomness

In our protocols, we need access to some common randomness known to all parties.
Moreover, we want this randomness to serve as a challenge for the prover, so that
the randomness should be generated in the online phase, after the prover makes
all its commitments. Hence we try to use the honest majority assumption to make
it as efficient as possible. The ideal functionality Fpubrnd for generating public
randomness is given in Figure 4.20.

87

The functionality Fpubrnd works with unique identifiers id, encoding the bit length m(id) of the
randomness.
• Initialization: On input (init, m̂), assign the mappingm← m̂. Deliverm to AS .
• Randomness commitment: On input (pubrnd, id) from all (honest) parties, generate a random
value r ∈ Z2m(id) . Output (id, r) to each party, and also to AS . Alternatively, if |C| > 0, AS may
choose to output (cheater, k) for k ∈ C to each party instead.
• Cheater detection: On input (cheater, k) from AS for k ∈ C, output (cheater, k) to all parties.
Let C ← C \ {k}, P ← P \ {k}.

Figure 4.20: Ideal functionality Fpubrnd

The protocol Πpubrnd works with unique identifiers id, encoding the bit length m(id) of the
randomness. It uses Fcommit as a subroutine.
• Initialization: On input (init, m̂), assign the mappingm← m̂. For all id ∈ Dom(m), j ∈ [n],
for idj = (id, j), assignm(idj)← m, p(idj)← j. Send (init,m, p) to Fcommit .
• Randomness commitment: On input (pubrnd, id), each party Pi (a set of t parties is sufficient):

1. Generates a random value ri ∈ Z2m(id) , and sends (commit, idi, ri) toFcommit . For j 6= i,
it sends (commit, idj) to Fcommit .

2. Sends (id =
∑n
j=1 idj), and then (weak_open, id) to Fcommit . If (id,⊥) comes back,

then it sends (open, id) to Fcommit .
3. Upon receiving (id, r) from Fcommit , outputs (id, r) to Z .

• Cheater detection: At any time when (cheater, k) comes from Fcommit , each party outputs
(cheater, k) to Z and discards Pk from the protocol, i.e. P ← P \ {k}.

Figure 4.21: The protocol Πpubrnd

The protocol implementing Fpubrnd , built on top of Fcommit , is given in
Figure 4.21. The idea behind the randomness generation is quite standard: each
party commits to its own random value as an element of Z2m , and the sum of
these values is opened (alternatively, the parties could generate random bitstrings
of certain length and open their bitwise xor).

Lemma 4.3. Let C be the set of corrupted parties. Assuming |C| < n/2, the
protocol Πpubrnd UC-realizes Fpubrnd in Fcommit -hybrid model.

Proof. We use the simulator S = Spubrnd described in Figure 4.22. The simulator
runs a local copy of Πpubrnd as well as a local copy of Fcommit .

Simulatability. S should be able to simulate the randomness rj of honest
parties. By definition, up to the last share, S samples rj

$← Z2m(id) , so these
are distributed uniformly, as A expects. The last rj is computed as rj = r −∑n

k=1,k 6=j rk, where r comes from Fpubrnd . Since r is distributed uniformly, so is
r−

∑n
k=1,k 6=j rk, since even if rk for k ∈ C are not uniform, the value r serves as

a mask that makes the final result uniform. At most t− 1 of values rj are provided
by A, so it is at least one rj left s.t j /∈ C.

88

• Initialization: On input (init,m), S locally simulates initialization of Fcommit .
• Randomness commitment: On input (pubrnd, id), S gets (id, r) from Fpubrnd . It needs to
simulate sending (commit, idj , rj) and (commit, idj) to Fcommit . The values rj for j ∈ C are
provided by A. The values rj for j /∈ C need to be simulated by S. Since A does not expect to see
the values rj generated by j /∈ C, S is free to wait with their generation untilA commits to rj for all
j ∈ C. After that, S generates rj for j /∈ C in such a way that

∑n
k=1 rk = r. More precisely, up to

the last share, it samples rj
$← Z2m(id) , and then computes the last share as rj = r−

∑n
k=1,k 6=j rk.

This is always possible if at least t parties contribute rj .
• Cheater detection: At any time when (cheater, k) should come from Fcommit , S delivers
(cheater, k) to Fpubrnd . It assigns C ← C \ {k}, P ← P \ {k}.

Figure 4.22: The simulator Spubrnd

Correctness. Fpubrnd outputs r to all parties. S generates rj of j /∈ C in such
a way that

∑n
k=1 rk = r, so this value is the same in the real and the ideal world.

At any time when (cheater, k) should come from Fcommit , S sends the message
(cheater, k) to Fpubrnd that causes honest parties to output (cheater, k).

In addition to public randomness, we need to generate randomness that is
known only to a certain party (the prover), and that has been stored into Fcommit .
The ideal functionality Frnd describing it is given in Figure 4.23. Since we want
to formally define the impact of Frnd on Fcommit , we use Fcommit as a global
resource of the GUC model (see Section 2.2.3), so we denote it Fcommit . GUC
allowsFcommit to be included in both the real and the ideal execution. The protocol
Πrnd implementing Frnd is given in Figure 4.24. It is similar to Πpubrnd , but the
shares are opened just to one party.

Differently from Frnd , the protocol Πrnd puts into Fcommit the intermediate
values rj from which r =

∑
j∈[n]\{p(id)} rj is computed. The security proof

would clearly fail since rj are not present in the ideal execution of Frnd at all.
Therefore, we need to constrain the environment Z to Z ′ that will not access the
identifiers ofFcommit that correspond to values generated internally by Πrnd . This
is a reasonable assumption, since rj are needed only for the protocol Πrnd , and
the (honest) parties may agree to not use these commitments anywhere else (as it
would be in ordinary UC model, if Fcommit was a subroutine of Πrnd). There are
no restrictions on the identifiers id that are provided by Z itself. More formally,
for all id on which Πrnd is initialized, Z ′ it is not allowed to access identifiers of
the form idj of Fcommit in any way, including computing linear combinations or
truncations of such identifiers. When using Frnd as a subroutine, we ensure that
the embedding protocol satisfies this property.

Lemma 4.4. Let C be the set of corrupted parties. Assuming |C| < n/2, the
protocol Πrnd Fcommit -EUC-realizesFrnd , under assumption thatZ does not use
any identifiers generated inside Πrnd when accessing Fcommit .

89

The functionality Frnd works with unique identifiers id, encoding the party p(id) committed to
the randomness, and the bit length m(id) of the randomness. It stores an array comm of already
generated and committed randomness.
• Initialization: On input (init, m̂, p̂), where Dom(p̂) = Dom(m̂) assign the mappings p ← p̂,
m← m̂. Deliver (init,m, p) to AS . Deliver (ext,m, p) to Fcommit .
• Randomness commitment: On input (rnd, id) from all (honest) parties, if comm[id] is not
defined yet, generate a random value r $← Z2m(id) . Assign comm[id] ← r. Output (id, r) to
Pp(id), and (confirmed, id) to every other party. If p(id) ∈ C, output (id, r) also to AS .
Output (commit, id, r) to Pp(id), and (commit, id) to each other (honest) party. These messages
will be delivered to Fcommit .
Alternatively, if |C| > 0,AS may choose to output (cheater, k) for k ∈ C or (id,⊥) to each party.
• Cheater detection: On input (cheater, k) from AS , output (cheater, k) to all parties, assign
C ← C \ {k}, P ← P \ {k}. On input (stop, id) [resp. (stop, id, id′)] from AS , output (id,⊥)
[resp. (id, id′,⊥)] to all parties.

Figure 4.23: Ideal functionality Frnd

The protocol Πrnd works with unique identifiers id, encoding the party p(id) committed to the
randomness, and the bit lengthm(id) of the randomness. It uses a shared instance of Fcommit .
• Initialization: On input (init, m̂, p̂), assign the mappings m ← m̂, p ← p̂. For all id ∈
Dom(m) = Dom(p), for all j ∈ [n], for idj = (id, j), assign m̃(idj)← m(id), p̃(idj)← j, and
for id

′
j = (id′, j), assign m̃(id

′
j)← m(id), p̃(id

′
j)← p(id). Deliver (ext, m̃, p̃) to Fcommit .

• Randomness commitment: On input (rnd, id), each party Pi, i 6= p(id) (actually, any fixed set
of t parties is sufficient):

1. Generates a random value ri
$← Z2m(id) and sends (commit, idi, ri) to Fcommit . For all

i 6= j, it sends (commit, idj) to Fcommit .
2. Upon receiving (confirmed, idk) from Fcommit for all k 6= p(id), it sends

(priv_open, idk, id
′
k) for all k 6= p(id) to Fcommit .

3. Upon receiving (confirmed, idk, idk′) for all k, k′, it sends (id =
∑n
k=1,k 6=p(id) id

′
k) to

Fcommit .
• Cheater detection: At any time when (cheater, k), (id,⊥), or (id, id′,⊥) comes from Fcommit ,
each party outputs it to Z , and discards Pk from the protocol run, i.e. assigns P ← P \ {k}.

Figure 4.24: The protocol Πrnd

• Initialization: On input (init,m, p), S simulates initialization of a new session of Fcommit .
• Randomness commitment: On input (rnd, id), S needs to simulate sending (commit, idj , rj)

and (priv_open, idj , id
′
j) to Fcommit . The values rj for j ∈ C are provided by A, and rj for j /∈ C

do not have to be opened to A yet. After A has provided rj for all j ∈ C, and (confirmed, idj) has
been output to all parties, A waits for (priv_open, idj , id

′
j) for all j ∈ [n] \ {p(id)}. Since S has

already received all rj for j ∈ C, it makes rj for j /∈ C dependent on rj for j ∈ C, exactly in the
same way as it was done by Spubrnd .
• Cheater detection: At any time when (cheater, k) should come from Fcommit , S delivers
(cheater, k) to Frnd , and discards Pk from Πrnd , i.e. C ← C \ {k}, P ← P \ {k}.

Figure 4.25: The simulator Srnd

90

Proof. We use the simulator S = Srnd described in Figure 4.25. The simulator
runs a local copy of Πrnd , and it has a limited access to the globalFcommit (via the
adversarial ports). It also runs its own local copy of Fcommit , trying to convince
A that all messages coming from it originate from Fcommit .

Simulatability. For p(id) ∈ C, S gets r from Frnd . S should be able to
simulate the randomness rj generated by honest parties in such a way that r will
be finally output to Pp(id) in the simulated Πrnd . In this case, the generation of
appropriate rj is done exactly in the same settings as for Spubrnd , so we refer to the
proof of Lemma 4.3 here. For p(id) /∈ C, the value r does not have to be simulated
to A anyway.

All the commitments of rj are simulated using the local copy of Fcommit .
Differently from Spubrnd , we now have a global Fcommit in the ideal world, and
the environment may send any inputs to it, including (open, id). Since we agreed
thatZ ′ is not allowed to access the internal identifiers of Πrnd in any way, it cannot
make any queries involving rj , and hence distinguish the outputs given to A by
the simulated Fcommit from the outputs thatA would get from Fcommit . It is only
allowed to open the final randomness r.

Correctness. Frnd outputs (id, r) to Pp(id). In addition, it outputs a message
(commit, id, r) to Pp(id), and (commit, id) to all other (honest) parties. These
messages are delivered to Fcommit that writes comm[id] = r. In the EUC model,
Z may send (open, id) to Fcommit and check whether r is the same as A has
reported. S generates rj of j /∈ C in such a way that

∑n
k=1,k 6=p(id) rk = r, so the

values output to Pp(id) are the same in the simulation, andA believes that it should
be comm[id] = r in the inner state of Fcommit in the real protocol.

At any time when (cheater, k) comes from Fcommit , S sends (cheater, k) to
Frnd that causes honest parties to output (cheater, k). If priv_open fails, then
outputting (id, id′,⊥) is simulated in Πrnd , and S sends (stop, id, id′) to Frnd , so
that (id, id′⊥) is output also in the ideal world. Hence all outputs are the same in
Frnd and Πrnd .

Observation 4.3. From the protocols Πpubrnd and Πrnd , one can read out the
numbers of Fcommit operations needed for generating N -bit randomness. We
can use the results of Table 4.2 to translate them directly to Ftransmit operations.
Let commM , wopenM openM , popenM denote the calls of commit, weak_open,
open, priv_open respectively on anM -bit value. The results are given in Table 4.3.

4.5.4 Generation of Precomputed Tuples

The 3-party version of the functionality Fpre used to generate and commit a
sufficient amount of verified precomputed multiplication triples and trusted bits
has been given in Figure 4.5. Figure 4.26 depicts its generalized n-party version.

91

Table 4.3: Calls of Fcommit and Ftransmit for different functionalities of Πpubrnd and
Πrnd for generating N -bit randomness

input Fcommit calls Ftransmit calls
rnd comm⊗tN ⊕ popen⊗tN tr⊗ntshn·N ⊕ fwd⊗ntshn·N ⊕ tr⊗ntshn·N

pubrnd (cheap) comm⊗tN ⊕ wopenN tr⊗ntshn·N ⊕ bc⊗nshn·N
pubrnd (expensive) comm⊗tN ⊕ openN tr⊗ntshn·N ⊕ rev⊗nshn·N

Table 4.4: Number of tuple bits involved in different steps (ring cardinality 2m)

x nbtpl(x,m) nbop1(x,m) nbop2(x,m)

bit m 1 m
triple 3m 2m m

Similarly to Frnd of Section 4.5.3, we use a shared functionality Fcommit as a
global resource, to make it possible to use the generated tuples later. The protocol
Πpre implementing Fpre is formalized in Figure 4.27-4.28. A single identifier id
corresponds to generating u(id) tuples in a ring Zm(id) for the prover Pp(id). The
party Pp(id) first generates µ ·u(id)+κ tuples itself, and only u(id) of these tuples
are left after the cut-and-choose and the pairwise verification.

Similarly to Πrnd of Section 4.5.3, if we do not put any constraints on Z , this
protocol is clearly insecure in Fcommit -EUC model since Πpre generates a lot of
intermediate tuples that are used for cut-and-choose and pairwise verification only.
If Z was allowed to open them, it would distinguish Πpre from Fpre . Intuitively,
these discarded tuples cannot be reused in any outer protocol anyway, since they
have already been used as masks, and reusing them would break privacy of the
accepted tuples. Hence, similarly toΠrnd , we again put a constraint onZ , allowing
it to access only the u(id) finally accepted tuples. When using Fpre as subroutine,
we ensure that the embedding protocol satisfies this property.

Observation 4.4. From the description of Πpre , we can extract the total number
nbtpl(T) of bits needed to encode a single tuple of type T , and the numbers
nbop1(T) and nbop2(T) of bits to be opened in the pairwise check, where nbop1(T)
bits are opened before the last nbop2(T) bits. These values are given in Table 4.4.

Lemma 4.5 (cost of precomputed tuple generation of Πpre). Let Fcommit be
realized by Πcommit . Let λ be the number of bits in the randomness seed. Given
the parameters µ and κ, the number of Ftransmit operations for generating N
tuples of type T using Πpre can be expressed as the quantity prcNT defined as

prcNT = tr⊗n(µN+κ)·shn·(nbtplT) ⊗ (tr⊗ntshn·λ ⊕ bc⊗nshn·λ)

⊕ (bc⊗nκ·shn·(nbtplT) ⊗ bc⊗n(µ−1)N ·shn·(nbop1T) ⊗ bc⊗n(µ−1)N ·shn·(nbop2T)) .

92

Fpre works with unique identifiers id, encoding a bit sizem(id) of the ring in which the tuples are
committed, the party p(id) that gets all the tuples, and the number u(id) of tuples to be generated.
It stores an array comm of already generated tuples.
• Initialization: On input (init, m̂, û, p̂) from all (honest) parties, where Dom(m̂) = Dom(û) =
Dom(p̂), assign the mappingsm← m̂, u← û, p← p̂. Deliver m̂, û, p̂ toAS . For each id, define
a couple of identifiers idki for k ∈ [u(id)], and i ∈ [v], where v = 1 for trusted bits, and v = 3 for
triples. Define m̃(idki)← m(id), p̃(idki)← p(id) for all i,k. Send (ext, m̃, p̃) to Fcommit .
• Trusted bits: On input (bit, id) from all (honest) parties, if comm[id] exists, then do nothing.
Otherwise:

1. Generate a vector of random bits~b $← Zu(id)
2 . If p(id) ∈ C, get~b ∈ Zu(id)

2 from AS .
2. Assign comm[id]← ~b.
3. Output~b to Pp(id). If p(id) ∈ C, output~b also to AS .
4. For all k ∈ [u(id)], output (commit, idk0 , bk) to Pp(id), and (commit, idk0) to each other

(honest) party. These messages will be delivered to Fcommit .
• Multiplication triples: On input (triple, id) from all (honest) parties, if comm[id] exists, then
do nothing. Otherwise:

1. Generate ~a $← Zu(id)

m(id), ~b
$← Zu(id)

m(id). If p(id) ∈ C, get ~a and ~b from AS . Compute
elementwise ~c = ~a ·~b.

2. Assign comm[id] = (~a,~b,~c).
3. Output (~a,~b,~c) to Pp(id). If p(id) ∈ C, output (~a,~b,~c) also to AS .
4. For all k ∈ [u(id)], output (commit, idk0 , ak), (commit, idk1 , bk), (commit, idk2 , ck) to

Pp(id), and (commit, idk0), (commit, idk1), (commit, idk2) to each other (honest) party.
These messages will be delivered to Fcommit .

• Stopping: On input (stop, id) from AS , stop the functionality and output (id,⊥) to all parties.

Figure 4.26: Ideal functionality Fpre

In Πpre , each party works with unique identifiers id, encoding the bit size m(id) of the ring in
which the tuples are committed, the party p(id) that gets all the tuples, and the number u(id) of
tuples to be generated. Πpre uses Fpubrnd as a subroutine, and Fcommit as a shared subroutine. The
parameters µ and κ depend on the security parameter. Let λ be the number of bits in the randomness
generator seed.
• Initialization: On input (init, m̂, û, p̂) from Z , where Dom(m̂) = Dom(û) = Dom(p̂), each
party assigns the functionsm ← m̂, u ← û, p ← p̂. For each id, it defines a couple of identifiers
idki for k ∈ [µ · u(id) + κ], and i ∈ [v], where v = 1 for trusted bits, and v = 3 for triples. It
defines m̃(idki)← m(id), p̃(idki)← p(id) for all i,k. It sends (ext, m̃, p̃) to Fcommit .
In addition, each party defines m̃(k) = 2λ for some constant identifier k, and sends (init, m̃) to
Fpubrnd .
• Stopping: If at any time (cheater, k) comes from Fcommit or Fpubrnd while executing (bit, id)
or (triple, id), output (id,⊥) to Z .

Figure 4.27: Real protocol Πpre (initialization and stopping)

93

• Trusted bits: On input (bit, id):

1. The party Pp(id) generates (µ · u(id) + κ) random bits bk
$← Z2. Pp(id) sends

(commit, idk0 , bk) to Fcommit . Each party sends (commit, idk0) to Fcommit . Pp(id) writes
comm[idk0]← bk.

2. The parties send (pubrnd, k) to Fpubrnd , getting back a randomness seed that they use to
agree on a random permutation π of tuple indices.

3. For k ∈ [κ], each party sends (weak_open, idπk0) to Fcommit , getting back a bit bk. If the
opening fails, or bk /∈ {0, 1}, then output (id,⊥).

4. Taking the next 2 · u(id) entries of π, the parties partition the corresponding bits into pairs.
Such pairwise verification is repeated µ−1 times with the same u(id) bits, each time taking
the next u(id) indices from π.
For each pair (k, k′), Pp(id) broadcasts a bit indicating whether bk = bk′ or not. If bk = bk′

was indicated, each party sends (idk,k
′

0 = idk0 − idk
′

0) to Fcommit . If bk 6= bk′ was
indicated, each party sends (idk,k

′

0 = 1 − idk0 − idk
′

0) to Fcommit . Each party then sends
(weak_open, idk,k

′

0) to Fcommit and checks if the value returned by Fcommit equals 0. If it
does not, then output (id,⊥).

5. Let ~id be the vector of the identifiers of the remaining u(id) bits in Fcommit . For id′ ∈ ~id,
Pp(id) outputs comm[id′].

•Multiplication triples: On input (triple, id):

1. The party Pp(id) generates (µ · u(id) + κ) random ring element pairs ak
$← Z2m(id) ,

bk
$← Z2m(id) . It computes ck = ak · bk for k ∈ |µ · u(id) + κ|. Pp(id) sends

(commit, idk0 , ak), (commit, idk1 , bk), (commit, idk2 , ck) to Fcommit . Each party sends
(commit, idk0), (commit, idk1), (commit, idk2) toFcommit . Pp(id) writes comm[idk0]← ak,
comm[idk1]← bk, comm[idk2]← ck.

2. The parties send (pubrnd, k) to Fpubrnd , getting back a randomness seed that they use to
agree on a random permutation π of tuple indices.

3. For k ∈ [κ], each party sends (weak_open, idπk0), (weak_open, idπk1), (weak_open, idπk2)
to Fcommit , getting back (ak, bk, ck). If the opening fails, or ck 6= ak · bk, then output
(id,⊥).

4. Taking the next 2 · u(id) entries of π, the parties partition the corresponding triples into
pairs. Such pairwise verification is repeated µ − 1 times with the same u(id) triples, each
time taking the next u(id) indices from π.
For each pair (k, k′), let us denote (ida, idb, idc) = (idk0 , id

k
1 , id

k
2), (ida

′
, idb

′
, idc

′
) =

(idk
′

0 , id
k′
1 , id

k′
2), (idâ, idb̂, idĉ) = (idk,k

′

0 , idk,k
′

1 , idk,k
′

2).

(a) Each party sends (idâ = ida−ida
′
), (idb̂ = idb−idb

′
), and then (weak_open, idâ),

(weak_open, idb̂) to Fcommit , getting back â and b̂ respectively.

(b) Each party then sends (idĉ = â · idb + b̂ · ida
′

+ idc
′
− idc) and (weak_open, idĉ)

to Fcommit . If Fcommit returns ĉ 6= 0, output (id,⊥).

5. Let ~id be the vector of the identifiers of the remaining u(id) triples inFcommit . For id′ ∈ ~id,
Pp(id) outputs comm[id′].

Figure 4.28: Real protocol Πpre (tuple generation)

94

Proof. From Table 4.2, we get the cost tr⊗nshn·M of sharing an M -bit value using
Fcommit , and the cost bc⊗nshn·M of weak opening an M -bit value using Fcommit .
The lc operations do not involve any communication. The sum prcNT covers all the
communication for generating all the N triples of type T .

• tr⊗n(µN+κ)·shn·(nbtplT) is the cost of sharing the initial unverified tuples among
the n parties in parallel.

• tr⊗ntshn·λ⊕bc⊗nshn·λ is the cost of agreeing on a λ-bit common randomness seed
using weak opening.

• bc⊗nκ·shn·(nbtplT) is the cost of cut-and-choose weak opening. All the κ tuples
are opened in parallel.

• bc⊗n(µ−1)N ·shn·(nbop1T) and bc
⊗n
(µ−1)N ·shn·(nbop2T) are the costs of the pairwise

verifications of all the (µ − 1) pairs, which counts the total cost of the two
weak openings of this step: the differences between the two tuples, and the
alleged zeroes. For trusted bits, the share cost multiplier shn can be removed
from nbop1T since the difference between two bits is broadcast in plain, not
as shares.

Since agreeing on public randomness using Πpubrnd takes more than one round,
and the randomness is not opened to any party in the first round, the steps (1)
and (2) of Πpre can be done in parallel. Since all communication of weak_open
in Πcommit originates from the prover, and computing linear combinations using
Fcommit does not introduce any communication, the steps (3) and (4) of Πpre can
also be done in parallel.

Lemma 4.6. Let C be the set of corrupted parties. Assuming |C| < n/2, if
µ > 1 + η/ logN and κ > max{(N1/µ + 1)η,N1/µ + µ − 1}, where N is the
total number of generated tuples, the protocol Πpre Fcommit -EUC-realizes Fpre

in Fpubrnd -hybrid model with correctness error ε < 2η, and simulation error 0.

Proof. We use the simulator S = Spre described in Figure 4.29. The simulator
runs a local copy of Πpre , together with local copies of Fpubrnd and Fcommit .

Simulatability. The simulator will need to generate some non-trivial values
during the openings of the cut-and-choose and the pairwise verification, so it
should be prepared. During the initial distribution of tuples, for p(id) /∈ C, it
generates (µ− 1)u(id) + κ additional valid tuples. S generates a random seed s,
computes the permutation π from s, and rearranges the tuples in such a way that
exactly those tuples that are chosen by Fpre will be finally left. For p(id) ∈ C,
all µ · u(id) + κ tuples are chosen by A. After S gets all these tuples from A, it

95

• Initialization: On input (init,m, u, p) from Fpre , S initializes a session of an internal Fcommit .
• Tuple generation: On input (bit, id) and (triple, id), S behaves according to the following
pattern:

1. For p(id) /∈ C, S generates (µ− 1)u(id) + κ additional tuples. It then generates a random
seed s $← Z2λ , and checks which permutation π is generated by s. It then permutes all
µ · u(id) + κ tuples (some u(id) of them are “imaginary” tuples that are not known to S)
in such a way that the u(id) tuples that will be finally left (based on π) are exactly those
generated by Fpre . It simulates committing them to Fcommit .
If p(id) ∈ C, then all the µu(id) + κ tuples are chosen by A.

2. The parties should jointly agree on a random permutation π of tuples.

• In order to agree on the same π, S simulatesFpubrnd in such a way that it provides the
same randomness seed s that S used to rearrange the tuples before the commitments.

• Now a vector ~s′ of certain κ tuples needs to be revealed. S needs to simulate the
weak opening of Fcommit , but that requires knowing the values ~s′ to be opened. If
p(id) ∈ C, then S takes the ~s′ chosen by A before. If p(id) /∈ C, then S simulates
opening the random valid tuples whose commitment it has simulated before. S either
accepts or rejects the opened tuples from the name of honest parties, exactly in the
same way as they would do in Πpre . If any tuple should be rejected, S sends (stop)
to Fpre .

3. The parties start verifying the tuples pairwise. For this, certain values should be computed
and opened using Fcommit , that depend on the tuple type. For p(id) ∈ C, S already knows
these values, and hence can simulate their opening. If there are any inconsistencies, S sends
(stop) to Fpre . For p(id) /∈ C, S needs to simulate two types of values:

• The first component are alleged zeroes. For these, S simulates opening 0.
• The second component are some additional values needed in verification. For these,
S simulates opening uniformly distributed random values in the corresponding rings.

4. There are now u(id) tuples left for each party that are treated as the final output. For
p(id) ∈ C, Fpre outputs to Pp(id) and S a vector ~s of valid tuples.

• Stopping: If at any time (cheater, k) comes from Fcommit or Fpubrnd , output (stop) to Fpre .

Figure 4.29: The simulator Spre

simulates the commitments using Fcommit . For this, it does not need to know the
values of the tuples of p(id) /∈ C produced byFpre . The work proceeds as follows.

1. S initializes Fpubrnd and simulates its run in such a way that the seed s will
be the same that was used by S in the beginning. Since S has generated s
uniformly, this is what A expects to get from Fpubrnd .

2. For cut-and-choose of honest provers,S generates the opened tuples from the
same distribution as an honest prover would. By choice of the randomness
seed s, these tuples are completely new and are not related to the u(id)
tuples generated by Fpre .

96

3. For the pairwise verification, S needs to simulate different values, depending
on the tuple type. For the first µ − 1 iterations, S generates all the tuples
for honest parties, since they are not included into Fpre anyway. The most
interesting is the last µ-th iteration. Let k be the tuple that will be finally
output and is not known to S , and let k′ be the tuple that S may still choose
itself.

(a) Trusted bits: First of all, S needs to broadcast a bit indicating whether
bk 6= bk′ . This value is distributed uniformly since bk′ has not been
used anywhere yet. After that, S simulates Fcommit outputting either
bk − bk′ , or 1− bk − bk′ . For an honest prover, that value is always 0
since it tells honestly if bk 6= bk′ .

(b) Multiplication triples: S broadcasts â = ak − ak′ and b̂ = bk − bk′
which are uniformly distributed due to the masks ak′ and bk′ . For an
honest prover, the value â · bk + b̂ · ak′ + ck′ − ck equals 0, since it
would generate ck = ak · bk and ck′ = ak′ · bk′ .

Similarly to Srnd , all these simulations would not work if Z had access to
the inner identifiers of Πpre and could open all the intermediate tuples that
were used as masks. Since we have allowed Z to access only the outer
identifiers, which correspond to the finally accepted tuples that Z would get
from the party outputs anyway, there is no additional information that it may
extract from Fcommit .

Correctness. One difference between Fpre and Πpre is that Fpre outputs
(commit, id, x) and (commit, id) only if (id,⊥) is not output to all parties. On
the contrary, Πpre commits all tuples already in the beginning, and the protocol
just checks whether these tuples are correct. Since we have already agreed that
Z does not access the temporary triples, we may treat all unconfirmed tuples as
temporary, and just copy them to the “external” identifier id after they have been
accepted. This is just a formality, and not a real problem.

If the protocol succeeds for p(id) /∈ C, the finally left u(id) tuples are exactly
those that are generated by Fpre , so the outputs are the same in both worlds. For
p(id) ∈ C, these u(id) tuples are all generated by A. If any of these tuples is
invalid, there will be immediate difference with Fpre that outputs (commit, id, x)
and (commit, id) to Fcommit only for those x that correspond to valid tuples. We
need to show that, if finally u(id) tuples are accepted for p(id) ∈ C, then they are
all valid, except with negligible probability.

First of all, we show that, if the tuple with the index k′ is valid, then the
pairwise check passes only if the tuple k is also valid. We prove it for different
kinds of tuples, one by one.

97

1. Trusted bits: Let bk′ ∈ {0, 1}. First, the prover decides whether to indicate
bk = bk′ , or bk 6= bk′ .

• Suppose the prover indicated bk = bk′ . In this case, bk − bk′ is output.
If indeed bk − bk′ = 0, then it should be bk = bk′ ∈ {0, 1}.

• Suppose the prover indicated bk 6= bk′ . In this case, 1 − bk − bk′ is
output. If indeed 1− bk − bk′ = 0, then bk = 1− bk′ ∈ {0, 1}.

• If the prover indicates something else, the protocol aborts. No tuples
are accepted.

2. Multiplication triples: Let ck′ = ak′ · bk′ . The values â = ak − ak′ and
b̂ = bk−bk′ are computed and opened by the parties usingFcommit , so there
is no way to cheat with them. Suppose that â · bk + b̂ · ak′ + ck′ − ck = 0.
Since ck′ = ak′ · bk′ , we have â · bk + b̂ · ak′ + ak′ · bk′ − ck = (ak − ak′) ·
bk + (bk − bk′) · ak′ + ak′ · bk′ − ck = ak · bk − ck. If this value is 0, then
ak · bk = ck.

We have shown that the only possibility for the prover to cheat is to put two
invalid tuples into the same pair during the pairwise verification. For the µ − 1
pairwise checks, the finally accepted invalid tuple should be paired with some
other invalid tuple on each iteration. Now we need to show that, for sufficiently
large µ and κ, this happens only with a negligible probability.

Let p(id) ∈ C. Let u := u(id). If Pp(id) wants to have ` bad tuples among the
final u ones, it has to do the following:

1. put µ · ` bad tuples into the initial set of (µ · u+ κ) tuples;

2. hope that no bad tuple is among the ones opened during the cut-and-choose
step;

3. hope that the µ · ` tuples are put together into ` groups during the pairwise
checking step.

We now give lower bounds for the values µ and κ, such that, from the point of
view of a malicious prover, the probability of steps (2) and (3) succeeding is less
than 2−η for a security parameter η.

Probability of passing cut-and-choose. The κ tuples to be opened can be
selected in

(
µu+κ
κ

)
different ways. Assuming that some ` of the u tuples are “bad”,

there are
(
µ(u−`)+κ

κ

)
ways of choosing a set that contains only “good” tuples.

98

The probability of selecting such a set is

Pc&c(µ, u, κ, `) =

(
µ(u−`)+κ

κ

)(
µu+κ
κ

) (4.1)

=
(µ(u− `) + κ)!

(µu+ κ)!
· (µu)!

(µ(u− `))!

=
µu · · · (µ(u− `) + 1)

(µu+ κ) · · · (µ(u− `) + κ+ 1)

≤
(

µu

µu+ κ

)µ·`
.

In particular, if ` ≥ cu for some c ∈ [0, 1], then, assuming κ ≤ µu
2 ,

Pc&c(µ, u, κ, `) ≤
(

µu

µu+ κ

)µuc
=

(
1

1 + κ
µu

)µuc
=

1(
1 + κ

µu

)µu
κ
·cκ ≤

1

2cκ
.

(4.2)
Probability of passing pairwise checking. For the pairwise checking, we

partition the µu tuples into u groups of size µ, so that only one tuple of each
group is left after checking. We have

(
µu
µ

)
ways to select the first group,

(
µu−µ
µ

)
ways to select the second group,

(
µu−2µ
µ

)
ways to select the third group, etc. If

we multiply all these values, we get the number of all possible groupings, where
the order of the groups matters. Since the order of the groups is not important, we
have to divide the final number by u!. The number of groupings of µu tuples into
u groups is

G(µ, u) =
1

u!

u−1∏
i=0

(
µ(u− i)

µ

)
(4.3)

=
1

u!

(
1

µ!

) u−1∏
i=0

(µ(u− i))!
(µ(u− i− 1))!

=
1

u!

(
1

µ!

)u (µ(u− 0))!

(µ(u− (u− 1)− 1))!

=
(µu)!

u!(µ!)u
.

In order to pass the pairwise checking, all the µ` bad tuples should form exactly
` groups of size µ, such that no “good” tuple is present in any of these groups.
The number of such groupings is G(µ, `) · G(µ, u− `), and thus the probability of

99

passing the pairwise check is

Ppwc(µ, u, `) =
G(µ, `) · G(µ, u− `)

G(µ, u)

=
(µ`)!

`!(µ!)`
· (µ(u− `))!

(u− `)!(µ!)(u−`) ·
u!(µ!)u

(µu)!

=
u!

`!(u− `)!
· (µ`)!(µu− µ`)!

(µu)!

=

(
u

`

)
/

(
µu

µ`

)
. (4.4)

Probability of passing both checks. This is the product of (4.1) and (4.4):

Ppp(µ, u, κ, `) =

(
µ(u−`)+κ

κ

)(
u
`

)(
µu+κ
κ

)(
µu
µ`

)
=

(
u

`

)
· (µu− µ`+ κ)!

(µu− µ`)!κ!
· (µu)!κ!

(µu+ κ)!
· (µ`)!(µu− µ`)!

(µu)!

=

(
u

`

)
/

(
µu+ κ

µ`

)
. (4.5)

Catching a single bad tuple. Suppose that the malicious prover aims to have
a single bad tuple among the final u ones, i.e. ` = 1. In this case

Ppp(µ, u, κ, 1) =

(
u

1

)
/

(
µu+ k

µ · 1

)
≤ u−1

(
u+

k

µ

)µ
≤ u1−µ .

In order to have Ppp(µ, u, κ, 1) ≤ 2−η, it is sufficient to have u1−µ ≤ 2−η or
µ ≥ 1 + η/ log u.

Making a single bad tuple the worst case. We aim to select the parameters
µ and κ in such a way, that aiming for a single bad tuple is the best strategy for the
malicious prover.

First, let ` < cu for some c ∈ [0, 1] (fixed below). We consider the ratio
Ppp(µ, u, κ, `)/Ppp(µ, u, κ, `+ 1) and search for sufficient conditions for it to be
larger than 1. Let an := a(a− 1) · · · (a− n+ 1). An upper bound for the ratio is

Ppp(µ, u, κ, `)

Ppp(µ, u, κ, `+ 1)
=

(
u
`

)(
µu+κ
µ`+µ

)(
u
`+1

)(
µu+κ
µ`

)
=

(`+ 1)!(u− `− 1)!

(u− `)!`!
· (µu− µ`+ κ)!(µ`)!

(µu+ k − µ`− µ)!(µ`+ µ)!

=
(`+ 1)

(u− `)
· (µ(u− `) + κ)µ

(µ(`+ 1))µ

≥ 1

u
·
(
µ(u− `− 1) + κ+ 1

µ`+ 1

)µ
. (4.6)

100

For (4.6) to be at least 1, it is sufficient to take

µ(u− `− 1) + κ+ 1 ≥ u1/µ(µ`+ 1),

meaning that it suffices for κ to be at least

u1/µ(µ`+ 1)− 1− µ(u− `− 1) = µ(u1/µ`− u+ `) + u1/µ + µ− 1

≤ µ(u1/µcu− u+ cn) + u1/µ + µ− 1

= µu(c(u1/µ + 1)− 1) + u1/µ + µ− 1 .

If we take c = 1/(u1/µ + 1), then this quantity is upper bounded by u1/µ +µ− 1,
which is a sufficient choice for κ.

Now let ` ≥ cu. In this case, by (4.2), already the probability of passing
cut-and-choose is less than 2−ck, on the condition k ≤ µu

2 . It is sufficient to take
k ≥ η/c = η(u1/µ + 1) for this probability to be smaller than 2−η.

Due to the condition k ≤ µu
2 , we need to show that η(u1/µ + 1) ≤ µu

2 , and
u1/µ + µ − 1 ≤ µu

2 . We have shown that, for catching a single tuple, we should
anyway choose µ ≥ 1 + η/ log u. We get

η(u1/µ+µ−1) ≤ u1/(1+η/ logn)+µ−1 ≤ ulogn/η+µ−1 = 2−η+µ−1 ≤ µ ≤ µu

2

for u ≥ 2, and

η(u1/µ + 1) ≤ η(u1/(1+η/ logn) + 1) ≤ η(ulogn/η + 1) = η(2−η + 1) ≤ 3

2
η .

In order to get µu2 ≥
3η
2 , we need µ ≥ 3η

u . Since µ ≥ 1 + η/ log u > η/ log u,
it suffices to have log u ≤ u

3 , which is true for u ≥ 12. Such a choice for u is
reasonable, since we may always generate more tuples than we actually need, and
the preprocessing phase is in general run in advance for several protocol executions.

Summary. In order to allow a bad tuple pass with the probability of at most 2−η,
while ending up with u tuples, it is sufficient to choose the parameters µ and κ as
follows:

µ ≥ 1 + η/ log u ,

κ ≥ max{(u1/µ + 1)η, u1/µ + µ− 1} .

This choice of µ and κ is given for each type of tuples separately. If the total
number of generated tuples isN , then it suffices in any case to takeµ ≥ 1+η/ logN
and κ ≥ max{(N1/µ + 1)η,N1/µ + µ− 1}.

101

4.5.5 Verification of Circuit Computation

The ideal functionalityFverify for verification of circuit computation has been given
in Figure 4.2. It allows to verify computations w.r.t. committed inputs, outputs,
randomness, and communicated messages. Figure 4.30 depicts essentially the
same functionality, but it uses a different notation. In particular, instead of taking
circuits directly as inputs, it takes a set functions that are going to be verified.
Functional representation makes handling of identifiers easier in the proofs.

The protocol Πverify implementing it is given in Figure 4.31-4.33. It works
on top of the commitment functionality Fcommit defined in Section 4.5.2, the
precomputed tuple generation functionality Fpre defined in Section 4.5.4, and the
randomness generation functionality Frnd defined in Section 4.5.3. Here Fcommit

is an inner subroutine of Πverify that is global w.r.t. Fpre and Frnd . In this
way, we may prove security of Πverify in the ordinary UC model. When using
Frnd andFpre as subroutines, we must remember that the protocolsΠrnd andΠpre

implementing themwork under certain assumptions about the interaction ofZ and
Fcommit . This interaction is now fully covered byΠverify , and wemay now leaveZ
unconstrained. The interaction of Πverify with Fcommit does satisfy the condition
that no inner identifiers of Πpubrnd and Πpre should be accessed. Namely, since
any invocation of Fcommit is possible only if all honest parties agree on it, and
Πverify even does not see the inner identifiers of Πrnd and Πpre implementing
Frnd and Fpre , the honest parties clearly do not use these identifiers. Without
approval of the honest parties, there is no way for corrupted parties to open any
inner commitments of Πpre and Πrnd .

Both Fverify and Πverify use unique identifiers id. Each such identifier corre-
sponds to some wire of the circuit that is being verified. It encodes the two parties
p(id) and p′(id) (possibly p(id) = p′(id)) committed to a particular valuation
comm[id] of the wire, and a function f(id) =: f ′ (a composition of basic circuit
operations given in Section 4.2) with its input identifiers ~xid(id), so that the parties
may verify whether comm[id] = f ′((comm[i])

i∈ ~xid(id)
). If the computation of

comm[id] is not needed to be verified (i.e. it is some input commitment), then
formally. f(id) = idR (identity over some ring R), and ~xid(id) = [].

Observation 4.5. From the definition of Πverify , we extract the number of dif-
ferent tuples required for each operation type directly from the description of the
initialization phase. They are given in Table 4.5.

Lemma 4.7 (cost of initializing Πverify). Let Πverify use the implementation Πpre

of Fpre with λ-bit randomness seed, and the parameters µ, κ. Let all the functions
f to be verified consist of basic operations fi, such that there are Nb operations
requiring bit decompositions (bit decomposition, ring extension), and Nm multi-
plications. Let 2m be the cardinality of the largest ring involved in the computation.

102

Fverify works with unique identifiers id, encoding the party indices p(id) and p′(id) committed to
comm[id], the function f(id) to verify, and the input identifiers ~xid(id) on which f(id) should be
verified w.r.t. the output identified by id. It also encodes the randomness r(id) that is generated
during the initialization, and will be used later for the randomness commitment. The messages are
first stored in an array sent before the sender and the receiver get finally committed to them.
• Initialization: On input (init, f̂ , ~̂xid, p̂, p̂′) from all (honest) parties, where f̂ , ~̂xid, p̂, p̂′ are
defined over the same domain, assign f ← f̂ , ~xid← ~̂xid, p← p̂, p′ ← p̂′. For all id ∈ Dom(f),
generate a fresh randomness r(id) in Z2m , where Z2m is the range of f(id). For p(id) ∈ C, deliver
r(id) toAS . Deliver (init, f, ~xid, p, p′) toAS . IfAS responds with (stop), output⊥ to all parties.
• Input Commitment: On input (commit_input, id, x) fromPp(id), and (commit_input, id) from
all (honest) parties, if comm[id] it not defined yet, assign comm[id] ← x. If p(id) ∈ C, then x is
chosen by AS .
• Message Commitment: On input (send_msg, id, x) from Pp(id) and (send_msg, id) from all
(honest) parties, output x to Pp′(id). If p(id) ∈ C, then x is chosen by AS . If p′(id) ∈ C, output x
to AS . Assign sent [id]← x.
On input (commit_msg, id) from all (honest) parties, check if sent [id] and comm[id] are defined.
If sent [id] is defined, and comm[id] is not defined, assign comm[id] ← sent [id]. If both
p(id), p′(id) ∈ C, assign comm[id]← x∗, where x∗ is chosen by AS .
• Randomness Commitment: On input (commit_rnd, id) from Pp(id), and (commit_rnd, id)
from all (honest) parties, if comm[id] is not defined yet, assign comm[id]← r(id).
• Verification: On input (verify, id) from all (honest) parties, if comm[id] and comm[i] have been
defined for all i ∈ ~xid(id), take ~x ← (comm[i])i∈ ~xid(id) and y ← comm[id]. For f ← f(id),
compute y′ ← f(~x). If y′ − y = 0, output (id, 1) to each party. Otherwise, output (id, 0) to each
party. Output the difference y′ − y, to AS .
• Cheater detection: On all inputs involving id, if p(id) ∈ C, AS may input (cheater, p(id)). In
this case, comm[id] and sent [id] are not assigned, (cheater, p(id)) is output to each party, and
Fverify assigns C ← C \ {k}, P ← P \ {k}. If AS does not input (cheater, p(id)), then each
commitment ends up outputting (confirmed, id) to each party.
If (cheater, p(id)) comes fromAS during the execution of (verify, id), then Fverify outputs (id, 0)
to all parties instead of (cheater, p(id)).

Figure 4.30: Ideal functionality Fverify

Table 4.5: Number of precomputed tuples needed for basic operations

operation tuple type # tuples bits per tuple
Linear combination – – –

Conversion to a smaller ring – – –
Bit decomposition in Z2m bit m m

Multiplication in Z2m triple 1 m

Extending Z2mx to Z2my bit mx my

103

In Πverify , each party works with unique identifiers id, encoding the party indices p(id) and p′(id)

committed to comm[id], the function f(id) to verify, and the identifiers ~xid(id) of the inputs on
which f(id) should be verified w.r.t. the output identified by id. It also encodes the randomness
r(id) that is be precomputed by the parties during the initialization. The prover stores the committed
values in a local array comm . The verifiers store the helpful values published by the verifier in an
array pubv . The messages are stored by the sender and the receiver in a local array sent before
they finally get committed to these messages. Πverify uses Ftransmit , Fcommit , Frnd , and Fpre as
subroutines.
• Initialization: On input (init, f̂ , ~̂xid, p̂, p̂′), where domains of the mappings f̂ , ~̂xid, p̂, p̂′ are the
same, initialize comm and sent to empty arrays. Assign f ← f̂ , ~xid← ~̂xid, p← p̂, p′ ← p̂′.
Initialize subroutine protocols:

• Initialize Ftransmit : For all id ∈ Dom(f) s.t p(id) 6= p′(id), define the mappings s, r, f ′
such that s(id) ← p(id), r(id) = f ′(id) ← p′(id). For all i ∈ [n], define an identifier
id′ ← (bc, i) that will be used for broadcast, and s(id) ← i, r(id) ← ⊥, f ′(id) ← ⊥.
Send (init, s, r, f ′) to Ftransmit .

• Initialize Fpre : A message (init, m̄, ū, p̄) is sent to Fpre , where m̄,ū,p̄ depend on the
functions f to be verified. Let f(id) be a composition of basic operations f1, . . . , fNid .
Each such fi, introduces to Fpre identifiers of the form id′ ← (idi, type,m, u) such that
type is the type of the tuple, m̄(id′) = m, ū(id′) = u. For all id′, take p̄(id′)← p(id).

1. Linear combination, conversion to a smaller ring: no tuples needed;
2. Bit decomposition in Z2m : (idi, bit,m,m);
3. Multiplication in Z2m : (idi, triple,m, 1);
4. Extending Z2mx to a larger ring Z2my : (idi, bit,my,mx).

Let pre be the array containing all such identifiers introduced by all basic operations of f(id).
Since Fpre generates all the tuples of the same type simultaneously, the tuple generation is
optimized by substituting all the identifiers (idi, type,m, uidi) for the same type and bit
size m with a single identifier id′ = (type,m, u) for u =

∑
uidi . After inducing m̄, ū, p̄

from these new identifiers, each party sends (init, m̄, ū, p̄) to Fpre .
• Initialize Fcommit : For commitments of non-random wires, take p̃(id) ← p(id), and
m̃(id)← m, where Z2m is the range of f(id). If p(id) 6= p′(id), generate a new identifier
id′ and define additionally m̃(id′) ← m(id), p̃(id′) ← p′(id). After doing it for all id,
send (init, m̃, p̃) to Fcommit .

• Initialize Frnd : For commitments of random wires, take p̃(id)← p(id), and m̃(id)← m,
where Z2m is the range of f(id). After doing it for all id, send (init, m̃, p̃) to Frnd .

Generating precomputed tuples and randomness: A message (type, id′) is sent to Fpre by each
party for each identifier id′ = (type,m, u) on which Fpre was initialized. Fpre generates the
required tuples and automatically copies them to Fcommit .
Similarly, (rnd, id′) is sent to Frnd by each party Pj for each id′ on which Frnd was initialized.
Frnd generates the randomness and automatically copies it to Fcommit .
Initialization failure: If (id,⊥) comes from Fpre of Frnd for some id, then output ⊥ to Z .
• Cheater detection: At any time, when Ftransmit or Fcommit outputs a message (cheater, k),
output (cheater, k) to Z . Treat Pk as if it has left the protocol, i.e. assign P ← P \ {k}. If
(cheater, p(id)) comes from Fcommit during executing (verify, id), then all parties output (id, 0)
instead of (cheater, p(id)), denoting that the proof of p(id) has failed.

Figure 4.31: Real protocol Πverify (initialization, cheater detection)

104

• Input Commitment: On input (commit_input, id, x), Pp(id) sends (commit, id, x) to
Fcommit . On input (commit_input, id), each party sends (commit, id) to Fcommit . After get-
ting (confirmed, id) from Fcommit , Pp(id) assigns comm[id] ← x, and each other party outputs
(confirmed, id) to Z .
•Message Commitment:

1. On input (send_msg, id, x), Pp(id) sends (transmit, id, x) to Ftransmit . On input
(send_msg, id), Pp′(id) waits for (id, x) from Ftransmit . If the transmission succeeds,
both parties assign sent [id]← x.

2. On input (commit_msg, id), Pp(id) and Pp′(id) send to Fcommit the message
(mcommit, id, id′, sent [id]). Each other party sends (mcommit, id, id′) to Fcommit . The
identifier id′ has been defined for this particular id in the initialization phase in such a way
that the party committed to comm[id′] of Fcommit is Pp′(id).

If (id, id′,⊥) is output by Fcommit , then each party sends (reveal, id) to Ftransmit , and after
getting back (id, x), it sends (pcommit, id, x) and (pcommit, id′, x) to Fcommit . After getting
(confirmed, id) from Fcommit , Pp(id) and Pp(id′) assign comm[id] ← sent [id], and each other
party outputs (confirmed, id) to Z .
• Randomness Commitment: On input (commit_rnd, id), Pp(id) takes comm[id] ← r(id) for
the previously generated randomness r(id). Each party outputs (confirmed, id) to Z .
• Verification: On input (verify, id), each party Pk checks whether comm[i] has been defined for
all i ∈ ~xid(id). It decomposes f(id) to basic operations f1, . . . , fN . For each fi, some additional
identifiers are defined: idxki for the k-th input, idyki for the k-th output, and idzki for the k-th alleged
zero of fi (some of these will actually overlap). The index k is omitted if there is only one such
identifier. The symbols other than x, y, z are used for intermediate values. Let idtypei,k be the index
of Fcommit storing the k-th component of the i-th tuple of type type generated by Fpre .

First, Pp(id) computes all the intermediate values comm[id
xk
i] using the function descriptions fi

and the commitments comm[i] for i ∈ ~xid(id). Let ~̂x = [~̂x1‖ · · · ‖~̂xN] denote all values that should
be broadcast by Pp(id), where ~̂xi is determined by the operation fi, its inputs comm[id

xk
i], and the

precomputed tuples comm[idtypei,k]:
1. Linear combination: no broadcasts.
2. Multiplication in Z2m : ~̂xi ← [(x1 − a) mod 2m, (x2 − b) mod 2m],

where a = comm[idtriplei,1], b = comm[idtriplei,2], x1 = comm[idx1i], x2 = comm[idx2i].

3. Bit decomposition in Z2m : ~̂xi ← [c1, . . . , cm], where ck ∈ {0, 1} denotes whether the
trusted bit comm[idbiti,k] is different from the k-th bit of comm[idxi].

4. Conversion to a smaller ring: no broadcasts.
5. Conversion from Z2mx to a larger ring Z2my : Perform bit decomposition of comm[idxi]

over Z2ny , getting ny bits bk. Take the first nx of these bits.
~̂xi ← [c1, . . . , cnx], where ck ∈ {0, 1} denotes whether the trusted bit comm[idbiti,k] is
different from bk.

Pp(id) sends (broadcast, (bc, p(id)), (idtypei , ~̂xi)i∈[N]) to Ftransmit . Upon receiving
(broadcast, (bc, p(id)), (idtypei , ~̂xi)i∈[N]), each party writes pubv [idtypei] ← ~̂xi. For simplic-
ity of further verifications, we assume that (idbiti,k = 1− idbiti,k) is immediately sent toFcommit for all
k such that ck = 1 was broadcast, so that we do not need to compute it for each operation separately.

Figure 4.32: Real protocol Πverify (commitments, 1st step of verification)

105

After the verifiers have assigned pubv [idtypei], they start computing fi, for all i ∈ [N]. The basic
operations fi are computed by sending lc and trunc to Fcommit . The outputs of fi are stored in
Fcommit under identifiers idyi (used also as idxi′ for computing the next basic operations fi′ for
i′ > i), and the alleged zeroes are stored in Fcommit under identifiers idzi.

1. Linear combination [c0, . . . , cl]: Send (idyi = c0 +
∑
k∈[l] ck · id

xk
i) to Fcommit .

2. Multiplication in Z2m : Let (ida, idb, idc) = (idtriplei,k)k∈[3], and [x̂1, x̂2] = pubv [idtriplei].
Send to Fcommit :

• idyi = x̂1 · x̂2 + x̂1 · idb + x̂2 · ida + idc;
• idz1i = x̂1 + ida − idx1i ;
• idz2i = x̂2 + idb − idx2i .

3. Bit decomposition in Z2m : Let [idb1 , . . . , idbm] = (idbiti,k)k∈[m].
Send (idzi = idxi −

∑m
k=1 2k−1 · idbk) to Fcommit .

4. Conversion to a smaller ring Z2m : Send (idyi = idxi mod 2m) to Fcommit .
5. Conversion from Z2mx to a larger ring Z2my : Let [idb1 , . . . , idbmx] = (idbiti,k)k∈[mx].

Send to Fcommit

• idyi =
∑mx
k=1 2k−1 · idbk ;

• idwi = idyi mod mx;
• idzi = idxi − idwi .

Send also (id
zk
N+1 = id

yk
N − id) to Fcommit , to verify the final output against comm[id].

After all fi have been processed, for each alleged zero idzki , each party first sends (weak_open, idzki)
to Fcommit . If Fcommit outputs (id,⊥), then each party sends (open, idzki) to Fcommit . Upon
receiving all (id

zk
i , zik) from Fcommit , if zik = 0 for all i, k, then an honest party outputs 1.

Otherwise, it outputs 0.

Figure 4.33: Real protocol Πverify (2nd step of verification)

106

The cost of initializing Πverify is upper bounded by

vcostNb,Nm,mpre = tr⊗nshn·m·((µ(Nb·m+3Nm)+κ(m+3)) ⊗ (tr⊗ntshn·λ ⊕ bc⊗nshn·λ)

⊕ (bc⊗nshn·m·κ(m+3) ⊗ bc⊗n(µ−1)m(Nb+shn·2Nm)

⊗ bc⊗nshn·(µ−1)m(Nbm+Nm)) .

Proof. The cost comes from the generation of precomputed tuples. The number
of different tuples used by each operation is given in Table 4.5. By Lemma 4.5,
the cost of generating N tuples of type x over a ring of size 2m is

prcNT = tr⊗n(µN+κ)·shn·(nbtplT) ⊗ (tr⊗ntshn·λ ⊕ bc⊗nshn·λ)

⊕ (bc⊗nκ·shn·(nbtplT) ⊗ bc⊗n(µ−1)N ·shn·(nbop1T) ⊗ bc⊗n(µ−1)N ·shn·(nbop2T)) .

where T = (x,m), and the definitions of subterms can be found in Table 4.4.
In this way, the total number of the transmitted and broadcast bits is linear

in the terms N · shn · nbtpl(x,m), N · nbop1(x,m), and N · shn · nbop2(x,m).
Hence it suffices to find the upper bounds for these three quantities. We use
the fact that the share overhead is linear w.r.t. the number of shared bits, i.e.
shn · (M1 +M2) = shn ·M1 + shn ·M2 (see Observation 4.2).

• The bit decomposition and the conversion to a larger ring both require
m trusted bits of m bits each. As shown in the proof of Lemma 4.5,
the multiplier shn can be removed from nbop1(bit,m) since the prover
broadcasts the difference bit in plain. Hence for the bit-related gates we
have

N · shn · nbtpl(x,m) ≤ (Nb ·m) · shn · nbtpl(bit,m)

= Nb · shn ·m2 ,

N · nbop1(x,m) ≤ (Nb · 1) · nbop1(bit,m)

= Nb ·m ,

N · shn · nbop2(x,m) ≤ (Nb ·m) · shn · nbop2(bit,m)

= Nb · shn ·m2 .

• Each multiplication gate requires one multiplication triple. Hence for the
multiplication gates we have

N · shn · nbtpl(x,m) ≤ Nm · shn · nbtpl(triple,m)

= Nm · shn · 3m ,

N · shn · nbop1(x,m) ≤ Nm · shn · nbop1(triple,m)

= Nm · shn · 2m ,

N · shn · nbop2(x,m) ≤ Nm · shn · nbop2(triple,m)

= Nm · shn ·m .

107

Table 4.6: Number ofFcommit andFtransmit operations needed for committingM values
of N bits each in Fverify

commitment call # calls total Ftransmit cost
commit_input commit 1 tr⊗nMshn·N

send_msg transmit 1 tr⊗Mshn·N
commit_msg (cheap) mcommit 1 tr⊗nMshn·N ⊕ fwd⊗nMshn·N

commit_msg (expensive) reveal 1 rev⊗Mshn·N
commit_rnd commit t tr⊗ntMshn·N

(during initialization) priv_open t fwd⊗ntMshn·N ⊕ tr⊗ntMshn·N

The randomness seed of λ bits may be generated once for all tuples. Different
types of tuples can be generated in parallel. For simplicity, let µ and κ be the same
for generating all types of tuples. Let x1 be the total number of bits transmitted
during the first round, when the initial unverified tuples are shared, and x2, x3, x4

the total number of bits broadcast in the three parallel weak openings. The total
cost is (tr⊗nx1

⊗ f(λ))⊕ (bc⊗nx2
⊗ bc⊗nx3

⊗ bc⊗nx4
), where f(λ) := tr⊗ntshn·λ ⊕ bc⊗nshn·λ

does not depend on the tuple types. Upper bounds for xi are

x1 ≤ (µNb + κ) · shn ·m2 + (µNm + κ) · shn · 3m
= shn ·m · ((µNb + κ) ·m+ (µNm + κ) · 3)

= shn ·m · ((µ(Nb ·m+ 3Nm) + κ(m+ 3)) ,

x2 ≤ κ · shn ·m2 + κ · shn · 3m
= shn ·m · κ(m+ 3) ,

x3 ≤ (µ− 1)(Nb ·m+Nm · shn · 2m)

= (µ− 1)m(Nb + shn · 2Nm) ,

x4 ≤ (µ− 1)(Nb · shn ·m2 +Nm · shn ·m)

= shn · (µ− 1)m(Nb ·m+Nm) .

Substituting x1, x2, x3, x4 into (tr⊗nx1
⊗ f(λ))⊕ (bc⊗nx2

⊗ bc⊗nx3
⊗ bc⊗nx4

), we
get the value stated in this lemma.

Observation 4.6. From the description of the commitment functions of Πverify ,
we count the number of Ftransmit and Fcommit calls that it makes. They are given
in Table 4.6. The cost of broadcasting the complaint (bad, k) is omitted.

Observation 4.7. By counting the number of the broadcast hint bits an the alleged
zero bits for each basic operation, we get the numbers given in Table 4.7. Note that
the hint bits ci broadcast for each bit decomposition do not have to be committed
in Z2m , and each such bit is broadcast as a 1-bit value.

108

Table 4.7: Number of bits for verifying each operation in Fverify

operation # hint bits # alleged zero bits
Linear comb., conversion to a smaller ring 0 0

Bit decomposition in Z2m m m
Multiplication in Z2m : 2m 2m

Extending Z2mx to Z2my mx mx

Lemma 4.8 (cost of the broadcasts of Fverify). Let f be a function that is going
to be verified. Let f consist of N basic operations fi /∈ {lc, trunc}. Let 2m be
the size of the largest used ring. The total cost of the broadcast phase of Πverify is
upper bounded by bcN ·2m.

Proof. All the bits are broadcast in parallel using Ftransmit . We use Table 4.7
to count the number of bits for each operation. We take the upper bound 2m on
broadcast bits per operation, which comes from multiplication. Differently from
the initialization phase of Πverify , the costs are similar for distinct types of basic
operations, as they are all O(m).

Lemma 4.9 (cost of the final verification of Πverify). Let all the functions f to
be verified consist of N basic operations fi /∈ {lc, trunc}. Let My be the total
number of bits output by f . Let Mx, Mr, Mc, Mpre be the total number of bits
in the committed input, randomness, communicated elements, and precomputed
tuples respectively. Let 2m be the size of the largest used ring. The cost of the
verification phase of Πverify is upper bounded by:

• bc⊗nshn·(N ·2m+My), if all (weak_open, id) succeed,

• rev
⊗(t−1)
shn·(Mx+Mr+Mc+Mpre+My), if some (weak_open, id) outputs (id,⊥).

Proof. Taking into account the costs of different operations of Πcommit given in
Observation 4.2, the functionalities lc and trunc do not take any communication.
Hence the only cost for verifying different basic operations comes in the end,
where the alleged zeroes are verified.

• Assume that (weak_open, id) succeeds for all alleged zeroes. It has cost
bc⊗nM for an M -bit value. From Table 4.7, we see that the largest number
of alleged zero checks per operation is 2m that comes from multiplication.
In addition, there is an alleged zero bit for each of theMy output bits of f .
The broadcast is parallelizable, so all the bits are broadcast simultaneously.

• Assume that (weak_open, id) returns (id,⊥) for some alleged zero identifier
id. In this case, open is used instead. For this, the parties should reveal

109

shares of all the initial inputs from which the alleged zeroes and the outputs
were computed, and also the shares of the final outputs. If there is a conflict
with each corrupted verifier, up to t − 1 shares may have to be revealed,
since there are at most t− 1 corrupted parties.

Lemma 4.10. Let C be the set of corrupted parties. Assuming |C| < n/2, the
protocol Πverify UC-realizes Fverify in Ftransmit -Fcommit -Fpre -hybrid model.

Proof. We use the simulator S = Sverify described in Figure 4.34. It runs a local
copy of Πverify , together with local copies of Ftransmit , Fcommit , Fpre , Frnd .

Simulatability. For the randomness commitments, S simulates Frnd . For
this, it only needs to know r(id) for p(id) ∈ C, and in this case it gets r(id) from
Fverify . For the commitment of precomputed tuples, S simulates Fpre , and it
does not need any additional information for this. If the initialization succeeds, A
assumes that the randomness generated by Frnd and the triples generated by Fpre

are all copied to Fcommit , as defined in the descriptions of Fpre and Frnd that are
using shared Fcommit .

For input and message commitments, S simulates Fcommit and Ftransmit ,
where the inputs of dishonest parties are provided by A, and the inputs of honest
parties that should be delivered to a corrupted party are given to S by Fverify .

For input commitments, if p(id) ∈ C, the commitments may fail. In this case
S delivers to Fverify the message (cheater, p(id)).

For message commitments, S simulates sending (mcommit, id, id′, x) and
(mcommit, id, id′, x′) to Fcommit by Pp(id) and Pp′(id) respectively. At this point,
it either p(id) ∈ C or p′(id) ∈ C, S knows both x and x′ that these parties commit
to. In this case, if x 6= x′, then S simulates Fcommit outputting (id, id′,⊥). If
either (id, id′,⊥), (cheater, p(id)), or (cheater, p′(id)) is output byFcommit , then
S simulates work of Ftransmit on input (reveal, id). The latter results in opening
(id, x) to A, where x is the value that was actually transmitted, and since either
p(id) ∈ C or p′(id) ∈ C, this value is known to S.

When the verification starts, S needs to simulate the broadcast, and it needs
to generate the broadcast values of the honest provers itself. All of these values
are some private values hidden by a random mask (each tuple is used only once),
and hence are distributed uniformly. We discuss it in details for different kinds of
tuples.

1. Bit decomposition of x in Z2m : Since each bk is distributed uniformly in Z2,
the difference bk − xk is also distributed uniformly in Z2.

2. Multiplication of x1 and x2 in Z2m : Since the entries a and b of the triple
(a, b, c) are distributed uniformly inZ2m , so are the values (x1−a) mod 2m

and (x2 − b) mod 2m.

110

• Initialization: On input (init, f, ~xid, p, p′), from Fverify , S initializes its local copies of Fpre ,
Frnd , Fcommit , Ftransmit as parties in Πverify do. Then S simulates runningFpre to generate tuples
and Frnd to generate the randomness. For p(id) ∈ C, it makes Frnd generate r(id) that S receives
from Fverify .
If the execution has not failed, then A expects that all (valid) tuples and the randomness r(id) for
p(id) ∈ C are copied to Fcommit . If the execution fails, S sends (stop) to Fverify .
• Input Commitment: On inputs (commit_input, id, x) and (commit_input, id), S simulates
sending (commit, id, x) and (commit, id) to Fcommit .
• Message Commitment: On inputs (send_msg, id, x) and (send_msg, id), S simulates
sending (transmit, id, x) to Ftransmit . On input (commit_msg, id), S simulates sending
(mcommit, id, id′, x), (mcommit, id, id′, x′) to Fcommit by Pp(id), Pp′(id) respectively.
If (id, id′,⊥), (cheater, p(id)), or (cheater, p′(id)) should be output byFcommit , then S simulates
sending (reveal, id) to Ftransmit . It then writes comm[id]← x in its local copy of Fcommit , where
x is the value that was initially transmitted.
• Randomness Commitment: On input (commit_rnd, id), if p(id) ∈ C, S assigns comm[id]←
r(id), where r(id) has been simulated to A during the initialization.
• Verification: On input (verify, id), S decomposes f(id) to basic operations f1, . . . , fN , and
defines the additional identifiers idxki , idyki , idzki as the honest parties do. For p(id) ∈ C it computes
all the intermediate values comm[id

xk
i] and comm[id

yk
i], and broadcasts the values ~̂x chosen byA.

For p(id) /∈ C, broadcasting ~̂x is to be simulated by S as follows (we use case distinction on types
of precomputed tuples causing the broadcast):

1. Bit decomposition of x in Z2m : Need to broadcast ~̂xi = [c1, . . . , cm], where ck ∈ {0, 1}
denotes whether the trusted bit bk is different from the k-th bit of x. Generate ck

$← {0, 1}.

2. Multiplication of x1 and x2 in Z2m : Need to broadcast ~̂xi = [(x1 − a) mod 2m, (x2 −
b) mod 2m] for the multiplication triple (a, b, c). Generate ~̂xi

$← Z2
2m .

S simulates (broadcast, (bc, p(id)), (idtypei , ~̂xi)i∈[N]) using Ftransmit . If the broadcast succeeds
and no (cheater, p(id)) should be output, S writes pubv [idtypei] ← ~̂xi for all honest parties. For
the trusted bits, it simulates sending the corresponding messages (idbiti,k = 1− idbiti,k) to Fcommit for
ck = 1, as the honest parties do.
The further computation depends on fi, and S just simulates sending toFcommit the same messages
that the honest parties send (linear combinations and truncations). These operations do not involve
any interaction between parties, so nothing needs to be simulated to A.
In the end, S needs to simulate opening to each party the alleged zero vector ~z. If p(id) ∈ C, then
S already knows all the values needed to compute ~z. If p(id) /∈ C, then S obtains the difference
z = f(~x)− y from Fverify . It takes ~zN+1 ← [z], and ~zi ← ~0 for all other i ∈ {1, . . . , N}.
•Cheater detection: At any time, whenFtransmit orFcommit should output amessage (cheater, k),
S outputs (cheater, k) to Fverify . S discards Pk from its local run of Πverify , i.e. assigns
C ← C \ {k}, P ← P \ {k}.

Figure 4.34: The simulator Sverify

111

After all the broadcasts and subsequent local operations onFcommit (which do
not require any interaction) are simulated, S simulates opening to each party the
alleged zero vector ~z. If p(id) ∈ C, then S already knows all the values needed
to compute ~z. If p(id) /∈ C, then S obtains only the difference f(~x) − y from
Fverify . However, it needs to simulate the alleged zeroes ~zi of each intermediate
basic function fi. Here we use the fact that, if p(id) /∈ C, then it has broadcast
~̂x that indeed corresponds to the computation of f(~x). The only non-zero entries
of ~z may come due to the mismatches between f(~x) and y, and these differences
f(~x)− y are provided by Fverify .

Correctness. The inputs [messages] of p(id) /∈ C, the randomness chosen
by Fverify , and the inputs [messages] of p(id) ∈ C chosen by A are all stored in
Fcommit . In addition, the precomputed tuples are also stored in the same Fcommit

by definition of Fpre . The functionality Fcommit may now be used as a black box,
doing computation on all these commitments. It remains to prove that, if all these
values are committed properly (that is ensured by Fcommit on the condition that
(cheater, p(id)) is not output for the prover Pp(id)), then Πverify does verify the
computation of f(id) on input (verify, id).

It easy to see that, if ~zi = ~0 for the alleged zeroes produced by the basic
function fi, then fi has been computed correctly with respect to the committed
inputs and outputs on which it was verified, and ~̂xi has been computed correctly for
fi. The details of verifying each basic function are analogous to the precomputed
tuple generation proof of Lemma 4.6, so we do not repeat the proof here. If all fi
have been computed correctly, then so is the composition of f .

Conversely, if~z 6= ~0 inΠverify , it does not immediately imply that f(~x)−y = 0,
since the problem might be in the values broadcast by the prover. The parties of
Πverify output (id, 0). Here we use the fact that Fverify also outputs (id, 0) to the
parties instead of (cheater, p(id)) during the execution of (verify, id).

4.5.6 The Main Protocol for Verifiable SMC

The protocol Πvmpc implementing Fvmpc is given in Figure 4.35. The protocol
is built on top if the functionality Fverify of Section 4.5.5, used to verify the
computation of each output of each round, with respect to the committed inputs,
messages, and randomness. A party Pk deviating from the protocol rules is
detected when Fverify outputs (id, 0) on input (verify, id), where id identifies
some output of Pk, as well as whenFverify outputs (cheater, k) on any other input.

Lemma 4.11. Let C be the set of corrupted parties. Assuming |C| < n/2, the
protocol Πvmpc UC-realizes Fvmpc in Fverify -hybrid model.

Proof. We use the simulator S = Svmpc described in Figure 4.36. The simulator
runs a local copy of Πvmpc , together with a local copy of Fverify .

112

In Πverify , each party Pi maintains a local array mlci of length n, into which it marks the parties
that have been detected in violating the protocol rules. Initially, mlci[k] = 0 for all k ∈ [n]. If Pk
has been detected in cheating, Pi writes mlci[k] = 1. Πvmpc uses Fverify as a subroutine.
• In the beginning, Each party Pi gets the message (circuits, (C`ij)

n,n,r
i,j,`=1,1,1) from Z .

1. Initializing Fverify : Let the n`ij output wires of the circuit C`ij be enumerated. For all
k ∈ [n`ij], the value id← (i, j, `, k) serves as an identifier for Fverify . In addition, for each
party Pi, there are identifiers (i, x, k) and (i, r, k) for the enumerated inputs and randomness
respectively.

• For each input wire id← (i, x, k) or id← (i, r, k), let Z2m be the ring in which the
wire is defined. Define f(id)← idZ2m

, ~xid(id)← [id], p(id) = p′(id) = i.
• For each output wire id ← (i, j, `, k), define f(id) as a function consisting
of basic operations of Section 4.2, computing the k-th coordinate of ~m`

ij ←
C`ij(~xi, ~ri, ~m

1
1i, . . . , ~m

`−1
ni) (this is always possible since every gate of C`ij is

by definition some basic operation), ~xid(id) the vector of all the identifiers of
~xi, ~ri, ~m

1
1i, . . . , ~m

`−1
ni that are actually used by C`ij , p(id) = i, p′(id) = j.

Each party sends (init, f, ~xid, p, p′) to Fverify .
2. Randomness generation: For each randomness input wire id ← (i, r, k), each party sends

(commit_rnd, id) to Fverify .
3. Input commitment: For each input wire id ← (i, x, k), Pi sends (commit_input, id, ~xi) to
Fverify , and each other party sends (commit_input, id) to Fverify .

• For each round ` ∈ [r], Pi computes ~m`
ij = C`ij(~xi, ~ri, ~m

1
1i, . . . , ~m

`−1
ni) for all j ∈ [n], and

sends (send_msg, (i, j, `, k),m`
ijk) to Fverify for all k ∈ [|~m`

ij |].
•After r rounds, each partyPi outputs (output, ~mr

1i, . . . , ~m
r
ni) toZ . Let r′ = r andmlci[k]← 0

for all k ∈ [n].
Alternatively, at any time before outputs are delivered to parties, if a message (cheater, k) comes
from Fverify , each party Pi writes mlci[k] ← 1. In this case the outputs are not sent to Z . Let
r′ ∈ {0, . . . , r − 1} be the last completed round.
• After r′ rounds:

1. Each party sends (commit_msg, (i, j, `, k)) toFverify for all i, j ∈ [n], ` ∈ [r′], k ∈ [n`ij]. If
(cheater, i) comes fromFverify , then each party Pj writesmlcj [i]← 1, and the verification
of Pi is treated as failed, without even running (verify, id).

2. For each output wire identifier id ← (i, j, `, k), each party sends (verify, id) to Fverify ,
getting an answer b from Fverify . If b = 1, each party Pj writesmlcj [i]← 0. Otherwise, it
writes mlcj [i]← 1.

• Finally, each party Pi outputs to Z the set of parties Bi such that mlci[k] = 1 iff k ∈ Bi.

Figure 4.35: The protocol Πvmpc for verifiable computations

113

The simulator S maintains the commitments comm[id] of the identifiers id denoting the circuit
wires whose values are known to the corrupted parties.
• In the beginning, S gets all the circuits (C`ij)

n,n,r
i,j,`=1,1,1 from Fvmpc . These are the same circuits

that the parties would have obtained from Z in Πvmpc .
1. Initializing Fverify : S simulates the initialization of Fverify . For i ∈ C, it adjusts the ran-

domness generator ofFverify in such a way that it outputs toA exactly the same randomness
~ri that Fvmpc chooses for Pi.

2. Randomness generation: S simulates work of Fverify on inputs (commit_rnd, id) for each
input wire id ← (i, r, k). For all i ∈ C, the committed randomness r(id) is the same that
has been output to A during the initialization of Fverify , chosen by Fvmpc , and S writes
comm[id]← r(id).

3. Input commitment: For each input wire id← (i, x, k), S simulates work ofFverify on inputs
(commit_input, id, xik) and (commit_input, id), where ~xi is the vector of inputs of the
party Pi. For i ∈ C, the vector ~x∗i is chosen by A. S delivers this ~x∗i to Fvmpc , and writes
comm[id]← x∗ik for all id← (i, x, k).

• For each round ` ∈ [r], S needs to simulate computing the messages ~m`
ij =

C`ij(~xi, ~ri, ~m
1
1i, . . . , ~m

`−1
ni) for all j ∈ C. If i ∈ C, then the message ~m∗`ij is generated by the

adversary, and S delivers it to Fvmpc . If j ∈ C, then the message ~m`
ij comes from Fvmpc , and S

delivers it to A. In all cases, S simulates sending (send_msg, (i, j, `, k),m`
ijk) to Fverify for each

entrym`
ijk of ~m`

ij .
• After r rounds, each (honest) party Pi should output (output, ~mr

1i, . . . , ~m
r
ni) to Z . This does

not need to be simulated. Let r′ = r and mlci[k]← 0 for all k ∈ [n].
Alternatively, at any time before outputs are delivered to parties, if a message (cheater, k) comes
from Fverify , S writes mlci[k] ← 1 for each honest party Pi. In this case the outputs are not sent
to Z . S defines B0 = {k |(cheater, k) has been output}, and sends (stop,B0) to Fvmpc to prevent
it from outputting the results to Z . Let r′ ∈ {0, . . . , r − 1} be the last completed round.
• After r′ rounds:

1. S simulates sending (commit_msg, (i, j, `, k)) to Fverify for all i, j ∈ [n], ` ∈ [r′], k ∈
[n`ij]. If either i ∈ C or j ∈ C, it writes comm[(i, j, `, k)] ← m`

ijk. If both i, j ∈ C, then
A choosesm∗`ijk, and S writes comm[(i, j, `, k)]← m∗`ijk

2. For each output wire identifier id← (i, j, `, k), S simulates sending (verify, id) to Fverify .
For each k ∈ [n], S simulates the output bit bk ofFverify . If k ∈ C, and f ′(comm[i]i∈ ~xid) 6=
comm[id] for f ′ := f(id), thenS simulatesFverify outputting (id, 0), andwritesmlci[k]←
1 for each honest partyPi. Otherwise, it simulatesFverify outputting 1, andwritesmlci[k]←
0. For all k /∈ C, it writes mlci[k]← 0.

• Finally, Fvmpc outputs to each party Pi the set of parties B for which ~m∗`ij 6= ~m`
ij has been

provided by S at some point before. It now waits for a set of parties Bi from S, containing the
parties that will be additionally blamed by Bi. Let B′i = {j |mlci[j] = 1}. S sends to Fvmpc the
sets Bi = B0 ∪ B′i, where B0 is the set defined in the execution phase.

Figure 4.36: The simulator Svmpc for verifiable computations

114

Simulatability. The preprocessing phase of Fvmpc and Πvmpc corresponds to
their initialization. Getting the randomness ~ri for i ∈ C from Fvmpc , S simulates
initialization of Fverify . If it outputs ⊥, then S delivers (stop) to Fvmpc .

For the private input commitments (commit_input), S only needs to simulate
the committed values of the corrupted parties. All of them all known to S, coming
either from Fvmpc orA. For the private randomness commitments (commit_rnd),
S uses the randomness that has been simulated in the preprocessing phase. During
the execution phase, S needs to simulate the messages ~m`

ij that are computed by
the honest partiesPi for corrupted partiesPj (send_msg). It gets all suchmessages
from Fvmpc .

At the beginning of the verification phase, S simulates commitments to the
messages (commit_msg) that have been transmitted before. It does not need to
know any messages for this. S simulates work of Fverify on inputs (verify, id),
for all circuit output identifiers id. It needs to simulate the side-effect of Fverify

that outputs the difference between the actual output of f(~x) and the output y
to which the prover was committed. All the verifiable functions f of Fverify

correspond to the computation of some output of a circuit C`ij with respect to the
committed inputs, randomness, and messages. By definition of Fverify , unless
at least one message (cheater, p(id)) has been output to each honest party (in
this case p(id) ∈ C), all these values are indeed committed as chosen by the
party committing to them. Since each honest party has followed the protocol and
computed C`ij properly, and all its commitments are valid, the difference f(~x)− y
should be 0 for honest parties, and so it is easy to simulate.

Correctness. We need to prove that Fvmpc outputs exactly the same values as
the parties in Πvmpc would. By definition ofFvmpc , there are two kinds of outputs:

1. The computation output (output, ~mr
1i, . . . , ~m

r
ni). Let ` be any round. We

prove by induction that eachmessage ~m`
ij , seen by the adversary, is consistent

with Fvmpc’s internal state.

• Base: Initially, there are the inputs ~xi and the randomness ~ri in the
internal state of Fvmpc . So far, for i /∈ C, A has no information about
~xi, ~ri, and for i ∈ C it expects ~xi = ~x∗i , ~ri = ~r∗i , where ~x∗i is chosen by
A itself, and ~r∗i is a uniformly distributed value that has been provided
by Fverify . Exactly these values are delivered by S to Fvmpc , so the
state of Fvmpc is consistent with A.

• Step: In the real world, for each i /∈ C, A chooses all the messages
m`
ji for j ∈ C that will be delivered to Pi. By induction hypothesis,

the rest of the messagesm`
ji for j /∈ C and the inputs/randomness ~xi,~ri

of the inner state of Fvmpc do not contradict with the view of A. In
Πvmpc , A expects that an honest Pi will now compute each message

115

~m`+1 = C`ij(~xi, ~ri, ~m
1
1i, . . . , ~m

`
ni). In the inner state of Fvmpc , the

value ~m`+1 is computed in exactly the same way.

2. The sets Bi of blamed parties. Fvmpc computes all the messages ~m`
ij and

constructs the setM of parties j for whom ~m`
ij 6= ~m∗`ij , where ~m∗`ij is the

value provided by S (that was actually chosen by A). After that, it receives
a couple of messages (blame, i,Bi) from S , where Bi = B0 ∪ B′i, and
B0 = {k | (cheater, k) has come from Fverify in the execution phase }.
The ideal functionality Fvmpc expectsM ⊆ Bi ⊆ C. First, we prove that
Bi ⊆ C, i.e. no honest party will be blamed.

(a) For each j ∈ B0, a message (cheater, j) has come from Fverify at
some moment. By definition ofFverify , no (cheater, j) can be sent for
j /∈ C. Hence j ∈ C.

(b) For each j ∈ B′i, the proof of Pj has not passed the final verifica-
tion. For j /∈ C, S has committed to Fverify exactly those messages
that correspond to the computation of f on the committed input, the
randomness ~ri, and the incoming messages ~m`

ij . Hence j ∈ C.

Secondly, we prove thatM⊆ Bi, i.e. all deviating parties will be blamed.

(a) The first component ofM is B0 for which S has sent (stop,B0) during
the execution phase. The same set B0 is a component of each Bi.

(b) The second componentM′ ofM are the parties Pi for whom incon-
sistency of ~m`

ij happens in Fvmpc .
We show that if i /∈ Bk for all k /∈ C, then i /∈M′. Suppose by contrary
that there is some i ∈ M′, i /∈ Bk. If i /∈ Bk for all k /∈ C, then the
proof of Pi had succeeded for every C`ij . For all i, j ∈ [n], ` ∈ [r′], i
should have come upwith the commitments~xi,~ri, ~m`

ij such thatFverify

outputs 1 on input (verify, id) for each output wire identifier id. By
definition of S, the committed ~xi are chosen byA before the execution,
in the input commitment phase, the randomness ~ri is coming from the
same distribution as the randomness generated byFvmpc , the incoming
messages ~m`

ji are those that are treated by Fvmpc as being sent to Pi
by Pj , and the outgoing messages ~m`

ij are the same that are computed
by Fvmpc (the messages moving between two corrupted parties have
been chosen by A). Hence ~m`

ij = C`ij(~xi, ~ri, ~m
1
1i, . . . , ~m

`−1
ni) for all

i, j ∈ [n], ` ∈ [r′], so i /∈M′.

Lemma 4.12. Let Πvmpc use the implementation of Πverify that is built on top of
Πpre , Πtransmit , and Πcommit . Let the initial protocol defined by the circuits C`ij
have the following parameters (for one prover):

116

Table 4.8: Costs of different phases of Πvmpc for one prover in Z2m

phase rounds Ftransmit op #ops # bits
pre 5 transmit n+ 3nt n · shn ·m(µ(Nbm+ 3Nm) + κ(m+ 3))

+nt · shn · λ
+2nt · shn ·Mr

forward nt nt · shn ·Mr

broadcast 1 n(µ− 1)m · (Nb + shn · 2Nm)
+n · shn · (µ− 1)m · (Nbm+Nm)

+n · shn ·m · κ(m+ 3)
+n · shn · λ

exec 1 + r transmit rn+ n shn · (n ·Mx +Mc)

post 2 transmit n2 shn · n ·Mc

forward n2 shn · n ·Mc

broadcast 1 Ng · 2m+ n · shn · (Ng · 2m+Mc)

• it has r rounds;

• its largest ring is Z2m;

• the number of transmitted bits of the protocol isMc;

• the number of input and randomness bits isMx andMr respectively;

• the number of bit related gates (bit decomposition, ring extension) is Nb;

• the number of multiplication gates is Nm;

• the number of input and output wires in the circuits (excluding the interme-
diate wires) is Nw.

Let λ be the number of bits used for randomness seeds. The resulting protocol may
be seen as split into preprocessing, execution, and postprocessing phases, whose
complexity upper bounds are given in Table 4.8 for the optimistic case, where the
adversary does not attempt to cheat.

In the pessimistic case, where the adversary does attempt to cheat, up to
the final verification the number of rounds at most doubles, and the number of
communicated bits increases at most 2n times. The cost of final verification
increases up to log(max(Nw, Nb ·m+Nm)) times.

Proof. Let Ng := Nb + Nm. We have taken the numbers of communicated bits
from the previously proven lemmata for Πverify . In the optimistic case, Ftransmit

works in the cheap mode. We show how Table 4.8 is filled.
Preprocessing cost. The total cost vcostNb,Nm,mpre of generating precomputed

tuples is taken from Lemma 4.7. The total cost tr⊗ntshn·Mr
⊕ tr⊗ntshn·Mr

⊕ fwd⊗ntshn·Mr

of generating the randomness is taken from Table 4.6. All the randomness for one

117

prover can be generated in parallel using the same transmissions and forwardings,
so Mr moves into the subindex of tr and fwd. Taking the costs of different
Ftransmit operations from Table 4.1, the number of rounds of vcostNb,Nm,mpre is
max(1, 1+2)+max(2, 2, 2) = 5, regardless of the parametersNb,Nm,m, and it is
1+1+1 = 3 for the randomness generation. Since the preprocessed tuples and the
randomness can be generated in parallel, we get the total number of max(5, 3) = 5
rounds in the cheap mode of Ftransmit . The total number of called operations is
counted by putting together vcostNb,Nm,mpre and tr⊗ntshn·Mr

⊕ tr⊗ntshn·Mr
⊕ fwd⊗ntshn·Mr

.
The number of different Ftransmit operations is counted as follows.

• Transmit: Each of the n parties receives its shares of initial precomputed
tuples as a single message, as it is sufficient for weak opening. The other
3nt transmissions come from generating λ andMr, where the randomness
is treated as a singleMr-bit value.

• Forward: The randomness is treated as a singleMr-bit value. There are nt
forwarding for its shares.

• Broadcast: All broadcasts come fromweak openings. The shares of initially
opened κ tuples are broadcast as a single message for all tuples. Both weak
openings of the pairwise verification can be also treated as a single broadcast
message for all tuples. Since all these broadcasts are done simultaneously
by the prover, all these values can be sent in a single broadcast.
There are also n weak openings coming from the λ-bit public randomness
used by Πpre . Since in Πpubrnd any party may be chosen for the weak
opening, we may let the prover do it, so this opening may included into the
same broadcast.

Execution cost. Before the execution starts, each input has to be committed.
The total cost of input commitment tr⊗nshn·Mx

is taken from Table 4.6, where all the
Mx bits of one prover are committed in parallel, soMx moves into subindex.

The Mc bits of the original communication are transmitted in r rounds. On
each round, up to n− 1 distinct transmissions may take place for each party, since
it may send something to n − 1 other parties. Treating the final outputs as a part
of these Mc bits, we also accept that a party may send values “to itself”, so the
upper bound is rn.

Postprocessing cost. The verification cost comes from the complexity of
executing Fverify on inputs (commit_msg, id) and (verify, id). It consists of the
following blocks:

• The total cost of mutually committing the messages tr⊗nshn·Mc
⊕ fwd⊗nshn·Mc

is
taken from Table 4.6, where all the messages can be committed in parallel,

118

similarly to inputs and randomness. Although Mc bits need to be deliv-
ered only to n parties, different messages should be approved by different
receivers. This results in n2 transmissions (delivering each of the n shares
to each of the n senders), and all these messages need to be forwarded.

• The total number of hint broadcast bitsNg · 2m of the postprocessing phase
is taken from Lemma 4.8. All these bits are broadcast as a single message.

• The total number of alleged zero bits n · shn · (Ng · 2m+Mc) is taken from
Lemma 4.9. Here we assume that all the outputs of the circuits are exactly
the communication messages output by the circuits, so we do not introduce
My. All n shares of the alleged zero vector are broadcast in parallel by the
prover, so it can be treated as a single broadcast.

Putting together the hint broadcast and the alleged zero broadcast, we get one
broadcast involving Ng · 2m+ n · shn · (Ng · 2m+Mc) bits.

Cheating overhead. In the pessimistic setting, if any party attempts to cheat,
Ftransmit works in its expensive mode. As can be seen from Table 4.1, the number
of rounds at most doubles, and the total communication increases up to 2n times.
In the final opening, the function reveal ofFtransmit is called instead of broadcast.
Since we do not want to reveal all the messages that have been transmitted in
parallel, the authentication paths of the Merkle tree for simultaneously sent values
may need to be sent to each verifier, so that the signature may be checked. This
gives a multiplicative overhead logM whereM is the number of distinct elements
sharing one signature. Since the total number of wires isNw, we may assume that
there cannot be more than Nw inputs, randomness, or communication elements
committed in the same round. The maximum amount of distinct precomputed
tuples isNb ·m+Nm. Hence the overhead can be at most log(max(Nw, Nb ·m+
Nm)).

4.5.7 Proof of the Main Theorem

We are now ready to prove Theorem 4.1. We take Πvmpc that is built on top of
Πverify (which is in turn using Πcommit , Πrnd , Πpre , and Πtransmit).

Correctness. For estimating the correctness error, we need to count the total
number of messages sent usingFtransmit , including all the transmitted, forwarded,
and broadcast messages. By message, we mean a bitstring that is signed with
one signature. For this, we look at the Table 4.8 and sum up the total number of
different Ftransmit calls. The total number of transmitted and broadcast messages
for one prover is

n+ 3nt+ nt+ 1 + rn+ n+ n2 + n2 + 1 = 2n2 + 4nt+ (r + 2)n+ 2

≤ 6n2 + (r + 2)n .

119

For n provers, the upper bound is 6n2(n+ r + 2).
By Lemma 4.1, the error of the underlying Πtransmit is bounded by 6n2(n +

r + 2) · δ. The other source of error is Πpre . In order to achieve error at most 2η,
by Lemma 4.6 it is sufficient to take µ = 1 + η

logNg
≤ η, and

κ = max({(n1/µ + 1)η, n1/µ + µ− 1})
≤ max({(2−η + 1)η, 2−η + η}) ≈ η .

We need this bound to estimate the complexity of preprocessing phase.
Security. We have proven that Πvmpc UC-realizes Fvmpc in Lemma 4.11.
Complexity. First, we estimate the complexity of the optimistic setting, where

the adversary does not attempt to stop the protocol. We combine the numbers of
Table 4.8 with the costs of particular Ftransmit operations of Table 4.1. Since the
variables Nb, Nm, Mx, Mc, Mr are estimated for the entire computation of all
the n parties, and the costs are linear w.r.t. these values, we do not multiply each
number by n to scale it to n provers. The only exception is the parameter κ of the
preprocessing phase that is upper bounded by η + 1 for each separate proof, and
which is not scaled to n parties, differently from µ. Hence we take everywhere
κ′ := nκ. Let λ′ be the number of bits used in a signature.

We still need to multiply the number of used Ftransmit operations by n in the
pre- and postprocessing phases.

Preprocessing cost. In order to achieve the reported correctness, we took
µ ≤ η and κ ≤ η + 1 (so κ′ ≤ n(η + 1)). We use these numbers for finding an
upper bound on communication complexity.

• Transmit: The total number of bits transmitted per prover is

n · shn ·m(µ(Nbm+ 3Nm) + κ′(m+ 3)) + nt · shn · λ+ 2nt · shn ·Mr .

SinceNb,Nm are already counted for all n provers, and the same seed λ can
be used with different randomness generators, this number is not multiplied
by n. The total number of independent transmissions that need a signature is
(n+3nt) for each prover. Cheap mode transmission only adds the signature
overhead.
Using the upper bounds for µ and κ′ presented above, we get an upper bound
of total bit communication for all n provers:

nbtrpre = shn · nηm(mNb + 3Nm)

+shn · n2ηm(m+ 3) + shn · (nt · λ+ 2nt ·Mr)

+n(n+ 3nt)λ′ .

120

• Forward: The total number of bits is nt · shn ·Mr, and the complexity of
forwarding is the same as of transmission. There are nt forwardings for
each prover, so the total number of bits is

nbfwdpre = shn · nt ·Mr + n2t · λ′ .

• Broadcast: The total number of bits is n(µ − 1)m · (Nb + shn · 2Nm) +
n · shn · (µ− 1)m · (Nbm+Nm) + n · shn ·m · κ′(m+ 3) + n · shn · λ.
The realization of broadcast that we use multiplies this number of bits by
n2. Using the same inequalities as for transmission case, and moving Nb

deeper into the brackets, we get

nbbcpre = shn · n3ηm(mNb + 3Nm) + n3ηmNb

+shn · n4ηm(m+ 3) + shn · n3λ

+n2 · λ′ .

Summing together nbtrpre+nbfwdpre +nbbcpre, putting all the non-leading terms into o,
treating λ, λ′ as constants, and assuming for simplicity n ≤ min(Nb, Nm) (each
party computes at least one bit decomposition and one multiplication gate), and
λ ≤ η, we get the total number of bits upper bounded by

nbpre = shn · (4n3ηm(Nbm+ 3Nm) + 3n2Mr) + o(n3ηmNb) .

Execution cost. There are rn+ n transmissions per party. SinceMx andMc

are already estimated for all n parties, the cost of this phase is shn · (n ·Mx +
Mc) + n2(r+ 1)λ′. Treating λ′ as constant, we may write the total cost simply as

nbexec = shn · (n ·Mx +Mc) + o(rn2) .

Postprocessing cost. Translating the values of Table 4.8 to actual communi-
cation gives us the following costs:

• Transmit: shn · n ·Mc + n2λ.

• Forward: shn · n ·Mc + 2n2λ.

• Broadcast: n2(Ng ·2m+λ)+n2 · (n · shn · (Ng ·2m+Mc)+λ′). Treating
λ, λ′ as constants, and assuming n ≤ Ng (each party computes at least one
non-linear gate), we may write it as

nbpost = shn · (2n3Ngm+ n2Mc) + o(n2Ngm) .

121

Cheating overhead. For estimating the numbers of the pessimistic setting,
we look at Table 4.1. The number of rounds for each expensive mode operation is
twice as large as the same operation in the cheap mode, and the bit communication
is up to 2n times larger. Another possibility for the adversary to increase the
communication is to fail the last weak opening of alleged zeroes and force all the
shares committed so far to be revealed. The weak opening may fail either if the
prover clearly broadcasts inconsistent messages, or if some verifier complains that
the broadcast values were not correct. In both cases, a strong opening pinpoints
the party that has caused the weak opening to fail. Hence a covert adversary will
not do it anyway. �

Discussion. Treating the number of parties as a constant, we get the following
complexities of different phases:

• Preprocessing: O(ηm(Nbm+Nr) +Mr).

• Execution: O(Mx +Mc + r).

• Postprocessing: O(Ngm+Mc).

For n = 5, the constant of O is already quite large due to the exponential nature
of share cost shn and the quadratic cost of broadcast. However, for n = 3, the
constant is very small. The gates involving bit decomposition provide additional
multiplicative overhead of m, where 2m is the size of the ring in which the
computation takes place. Otherwise, all the overheads are linear. Our verification
method becomes very fast for 3-party protocols, especially if we substitute the
alleged zero openings with hash exchange, as described in Section 4.3.3.

4.5.8 Another Protocol for Verification

We provide an alternative implementation of Fverify that can be used in the par-
ticular case of computation over finite fields. This time, we propose a solution
that does not require communication of parties in the preprocessing phase, and
where all necessary precomputation can be done by all parties locally, based on
the circuit that they compute. The verification is also based on commitments for
which we use the same functionality Fcommit of Section 4.5.2 (in a finite field,
the corresponding protocol Πcommit may use Shamir’s sharing). The difference
comes from the behaviour of Πverify on inputs (verify, id).

For verification, we use linear probabilistically checkable proofs byBen-Sasson
et al. [9] given in Section 2.7. We let the relationRC correspond to the circuit C
executed by the party whose observance of the protocol is being verified. In this
correspondence, ~v is the tuple of all inputs, outputs, and used random values of

122

that party. The vector ~w extends~v with the results of all intermediate computations
by that party.

Recall that in Section 2.7 the verifier generates 5 challenges ~q1, . . . , ~q5 and the
state information ~u with length |~v| + 2. Given the query results ai = 〈~π, ~qi〉 for
i ∈ {1, . . . , 5} and the state information ~u = [u0, u1, . . . , u|~v|+1], the following
two checks have to pass:

a1a2 − a3 − a4u|~v|+1 = 0, (∗)

a5 − 〈~v, [u0, u1, . . . , u|~v|]〉 = 0. (∗∗)

Here (∗) is used to show the existence of ~w, and (∗∗) shows that a certain
segment of ~π equals ~v. For simplicity, let us reorder the entries of ~π and write
~π = ~p‖~v, where ~p represents all the other entries of ~π. Let the entries of challenges
~q1, . . . , ~q5 be reordered in the same way.

In the original paper [9], it was shown how the verifier can be given access to
V~π(·) without actually getting any information about ~π. Unfortunately, it requires
homomorphic encryption, and the number of encryptions is linear in the size of
the circuit. We show that the availability of honest majority allows the proof to be
completed without public-key encryptions.

Themultiparty setting introduces a further difference from [9]: the vector~v can
no longer be considered public, as it contains the prover’s private values. We thus
have to strengthen the HVZK requirement in Definition 2.12, making ~v private to
the prover. The LPCP constructions of [9] do not satisfy this strengthened HVZK
requirement, but their authors show that this requirement would be satisfied if a5

were not present. In the following, we propose a construction where just the first
check (∗) is sufficient, so only a1, . . . , a4 have to be published. We prove that the
second check (∗∗) will be passed automatically.

The following algorithms are implicitly defined by Ben-Sasson et al.:

• witness(C,~v): if ~v corresponds to a valid computation of C, returns a
witness ~w such that (~v, ~w) ∈ RC .

• proof(C,~v, ~w): if (~v, ~w) ∈ RC , it constructs a corresponding proof ~p.

• challenge(C, τ): returns ~q1, . . . , ~q5, ~u that correspond to the randomness
τ , such that:

– for any valid proof ~π = ~p‖~v, where ~p = proof(C,~v, ~w) for (~v, ~w) ∈
RC , the checks (∗) and (∗∗) succeed with probability 1;

– for any proof ~π∗ generated without knowing τ , or such ~w that (~v, ~w) ∈
RC , either (∗) or (∗∗) fails, except with negligible probability ε.

123

These algorithms are used by the new implementation ΠF
verify of Fverify . The

protocol is given in Figure 4.37. The initialization of ΠF
verify is similar to the

initialization of Πverify , except that Fpre is no longer being used, and Fpubrnd is
initialized instead, so that a single public randomness τ could be generated for
each verification later.

Differently from Πverify that supports verification of different bit-related com-
putation, the new protocol ΠF

verify only allows addition and multiplication gates to
be verified in a straightforward way. It is sufficient to model any computation, but
the overheads may be larger for computations involving many bit decompositions.

It is important that ΠF
verify implements Fverify on the condition that, for all

functions f to be verified, the honest parties always commit ~x and y such that
f(~x) = y. Since the verification mechanism is not designed to protect the prover
if it is cheating, we can no longer guarantee that if f(~x) 6= y, then only the
difference ~z = f(~x)− y is leaked to the adversary. This assumption is reasonable
for verifiable computation, and this is satisfied by the protocol Πvmpc that uses
Fverify as a subroutine.

Proposition 4.1. Let C be the set of corrupted parties. Assuming |C| < n/2, the
protocol ΠF

verify UC-realizes Fverify in Ftransmit -Fcommit -Fpubrnd -hybrid model.

Proof. We use the simulator S = SFverify described in Figure 4.38. The simulator
runs a local copy of ΠF

verify , together with local copies of Ftransmit , Fcommit ,
Fpubrnd .

Simulatability. During the initialization and the commitments, the work of S
is analogous to Sverify , except that the run of Fpre does not need to be simulated.

On input (verify, id), S first needs to simulate the commitment of ~p. Its value is
chosen byA for p(id) ∈ C. The commitment can be simulated without knowing ~p
for p(id) /∈ C, by properties of Fcommit . Generation and opening of the challenge
τ is reduced to Fpubrnd . S generates a uniformly distributed τ , and simulates
Fpubrnd , opening τ to A. S uses Q to generate q1, . . . , q4 and ~u based on τ .

Now the values a1, . . . , a4 should be output. For p(id) ∈ C, S may compute
all these values itself, based on the commitments of Pp(id) and the challenge
τ . For p(id) /∈ C, we assume that f(~x) = y, and hence the check (∗) should
pass. We use the fact that the LPCP that we use is statistical HVZK, and the
values as =

∑
k πk · qsk can be simulated knowing the trapdoor τ . Knowing τ

gives enough information about how to generate a1, . . . , a4 in such a way that (∗)
succeeds with probability 1, and the distribution of as is the same as for the real
proof ~π. Namely, as shown in [9], S may generate a1, a2, a3

$← Zq due to the
randomness δA, δB , δC contained in ~p, and then compute a4 = (a1·a2−a3)·u−1

|~v|+1,
where knowing τ is sufficient for computing u|~v|+1 = ZS(τ) for a certain public
polynomial ZS defined in Section 2.7. S simulates opening of these values.

124

In ΠF
verify , each party works with unique identifiers id, encoding the party indices p(id) and p′(id)

committed to comm[id], the operation f(id) to verify, and the identifiers ~xid(id) of the inputs on
which f(id) should be verified w.r.t. the output identified by id. The prover stores the committed
values in a local array comm . The verifiers store the helpful values published by the verifier in an
array pubv . The messages that are not committed yet are stored by the sender and the receiver in a
local array sent . Πverify uses Ftransmit , Fpubrnd , and Fcommit as subroutines. Let the computation
take place in Zq for a prime q.

• Initialization: On input (init, f̂ , ~̂xid, p̂, p̂′), where the domains of the mappings f̂ , ~̂xid, p̂, p̂′ are
all the same, initialize comm and sent to empty arrays. Assign the mappings f ← f̂ , ~xid← ~̂xid,
p← p̂, p′ ← p̂′.

Initializing subroutine protocols:
• Initialize Ftransmit : For all id ∈ Dom(f) s.t p(id) 6= p′(id), define the mappings s, r, f ′
such that s(id) ← p(id), r(id) = f ′(id) ← p′(id). For all i ∈ [n], define an identifier
id′ ← (bc, i) that will be used for broadcast, and s(id) ← i, r(id) ← ⊥, f ′(id) ← ⊥.
Send (init, s, r, f ′) to Ftransmit .

• Initialize Fcommit : For commitments of non-random wires, take p̃(id) ← p(id), and
m̃(id)← m, where Z2m is the range of f(id). If p(id) 6= p′(id), generate a new identifier
id′ and define additionally m̃(id′) ← m(id), p̃(id′) ← p′(id). After doing it for all id,
send (init, m̃, p̃) to Fcommit .

• Initialize Frnd : For commitments of random wires, take p̃(id)← p(id), and m̃(id)← m,
where Z2m is the range of f(id). After doing it for all id, send (init, m̃, p̃) to Frnd .

• Initialize Fpubrnd : For a single identifier idτ , define m(idτ) = λ, where λ is the number
of bits in the challenge, that depends on the security parameter. Send (init,m) to Fpubrnd .

• Cheater detection: At any time, when Ftransmit , Fpubrnd or Fcommit outputs a message
(cheater, k), output (cheater, k) toZ . TreatPk as if it has left the protocol, i.e. assignP ← P\{k}.
If (cheater, p(id)) comes fromFcommit during executing (verify, id), then all parties output (id, 0)
instead of (cheater, p(id)), denoting that the proof of p(id) has failed.
• Input, Message, Randomness Commitment: The parties behave exactly in the same way as in
Πverify , usingFcommit for all commitments. Let~v be the vector of all committed inputs, randomness,
and communication, and let idvk be the identifier such that comm[idvk] = vk.
• Verification: On input (verify, id):

• Let ~v = ~x‖~r‖~m be the vector of all committed inputs ~x, randomness ~r, and messages ~m
for Pp(id). It computes ~w ← witness(f(id), ~v) and ~p = proof(f(id), ~v, ~w). It sends
(commit, idpk, pk) to Fcommit for each entry pk of ~p

• After all commitments are done, each party sends (pubrnd, idτ) to Fpubrnd , receiving back
the challenge τ .

• Each party generates (~q1, . . . , ~q5, ~u) = challenge(f(id), τ). Let idπ1 , . . . , idπ` :=
[idp1, . . . , id

p
|~p|, id

v
1 , . . . , id

v
|~v|]. Each party sends (ida1 =

∑`
k=1 id

π
k · q1

k), . . . , (ida4 =∑`
k=1 id

π
k · q4

k), and then (open, ida1),. . . ,(open, ida4) to Fcommit , getting back a1, . . . , a4.
• Each party checks a1a2− a3− a4u|~w|+1 = 0. If it holds, output 1 to Z . Otherwise, output

0 to Z .

Figure 4.37: Real protocol ΠF
verify

125

• Initialization: S gets (init, f, ~xid, p, p′) from Fverify . It initializes its local copies of Fpubrnd ,
Fcommit , Frnd , Ftransmit as parties in ΠF

verify do.
• Input, Message, Randomness Commitment: S simulates the corresponding inputs similarly to
Sverify .
• Verification: On input (verify, id), commitment of ~p needs to be simulated. For p(id) /∈ C,
it can be done without knowing ~p by properties of Fcommit . For p(id) ∈ C, S computes ~w ←
witness(f(id), ~v) and ~p = proof(f(id), ~v, ~w), where ~v = ~x‖~r‖~m is the vector of all committed
inputs ~x, randomness ~r, and messages ~m for Pp(id), all of which have already been simulated to A
during the commitment steps.
S simulates Fpubrnd , resulting in outputting a challenge τ toA. It then generates (~q1, . . . , ~q5, ~u) =
challenge(f(id), τ).
In the end, S needs to simulate opening the values a1, . . . , a4. For p(id) ∈ C, S computes these
values from the commitments of Pp(id) that are all known to S. For p(id) /∈ C, S generates
a1, a2, a3

$← Zq , and a4 = (a1 · a2 − a3) · (ZS(τ))−1, where ZS is a certain public polynomial
defined in Section 2.7.
Cheater detection: At any time, when Ftransmit , Fpubrnd , or Fcommit should output a message
(cheater, k), S outputs (cheater, k) toFverify . S discardsPk from its local run ofΠF

verify , assigning
P ← P \ {k} and C ← C \ {k}.

Figure 4.38: The simulator SFverify

Correctness. In the real protocol, the randomness chosen byFverify , and all the
inputs and messages of p(id) ∈ C (possibly chosen byA) are all stored inFcommit .
ThenFcommit is used as a black box, doing computations on all these commitments.
It remains to prove that, assuming that all the inputs ~x = comm[i]

i∈ ~xid(id)
and

the outputs y = comm[id] have been committed properly, Πverify does verify the
computation of f(id) on input (verify, id).

First, we need to show that, if f(~x) = y, then the proofs succeed for all parties
that followed the protocol. For p(id) /∈ C, S has chosen ai in such a way that the
verification always succeeds. If p(id) ∈ C does have followed the protocol, then
it would take ~π = proof(f(id), ~w,~v) where ~w = witness(f(id), ~v). Since all
honest verifiers have used challenge(f(id), τ) to generate ~q1, . . . , ~q5 and ~u on a
truly uniformly distributed τ , the checks (∗) and (∗∗) succeedwith probability 1. If
p(id) has followed the protocol, it would not be claimed a cheater during execution
of the subroutines Fcommit , Fpubrnd , Ftransmit , so passing (∗) is sufficient for the
proof to succeed.

Conversely, we need to show that if the proof succeeds, then f(~x) = y. For
this, we prove the following:

1. If the verification succeeds, the implicit check (∗∗) passes. By definition,
this check verifies that the part ~v of the proof ~π = ~p‖~v corresponds to all the
inputs and outputs of the circuit defined by f(id). All the commitments were
done on approval of all the honest parties inputting (commit_input, id′),

126

(commit_rnd, id′), (send_msg, id′), and (commit_msg, id′) for all iden-
tifiers id′ ∈ ~xid‖[id] that are used as a part of ~π later. Hence if the
commitments succeeded, then (∗∗) would also pass.

2. If the verification succeeds, the explicit check (∗) passes. Assuming that
all commitments and all openings have succeeded, the value that is finally
opened is a1a2 − a3 − a4u|~v|+1, where ai = 〈~π, ~qi〉 for the vectors ~qi and ~u
that have been generated using challenge(f(id), τ). Hence if this value is
0, then (∗) would pass.

By the knowledge property of LPCP, since τ has been opened after the prover
has been committed to ~π that it cannot modify anymore by properties of Fcommit ,
and τ indeed comes from random uniform distribution by properties of Fpubrnd ,
any ~π∗ that satisfies (∗) and (∗∗) is a valid proof of existence of a witness ~w such
that (~v, ~w) ∈ Rf(id).

Proposition 4.2. Let Nm be the total number of non-linear gates, and Nw the
total number of wires in the prover’s circuit. Compared to the protocol Πverify , the
protocol ΠF

verify has the following efficiency gains and losses:

• Offline: Nocommunication takes place in the preprocessing phase ofΠF
verify ,

while tuple generation is the bottleneck for Πverify .

• Online: ΠF
verify wins in ca. bc⊗nNm·log q and loses in ca. bcNw·log q.

Proof. It is only possible to directly compare the circuits whose only non-linear
gates are the multiplication gates. LetNm be the total number of non-linear gates,
and Nw the total number of wires in the circuit. Let m be the average bit size
of the ring in which the computation of Πverify takes place. Let My be the total
number of output bits. We see which values need to be communicated only in the
online phase of Πverify , and which only in the online phase of ΠF

verify .

• In Πverify , according to Table 4.7, Nm · 2m hint bits need to be broadcast,
and n · shn · (Nm ·2m+My) values need to be broadcast to open the alleged
zeroes. The total cost is bcNm·2m ⊕ bc⊗nshn·(Nm·2m+My).

• In ΠF
verify , the prover needs to commit to ~p, resulting in n transmissions of

|~p| · log q bits. As shown in Section 2.7, |~p| = 4 +Nm +Nw. The parties
need to generate the public randomness of complexity tr⊗ntshn·λ⊕ rev⊗ntshn·λ. In
order to open a1,a2,a3,a4, the parties do n broadcasts of 4 log q bits each.
The total additional cost is tr⊗nlog q·(4+Nm+Nw)⊕ tr⊗ntshn·λ⊕ rev⊗ntshn·λ⊕bc⊗n4 log q.

Assuming for simplicity that q ≈ 2m, shn = 1 (Shamir’s sharing is possible
in Zq) and that n transmissions are approximately as complex as one broadcast,

127

treating λ as a constant, we get that the main overhead of Πverify comes from
the alleged zero broadcasts bc⊗nshn·(Nm·2m+My), and the main overhead of ΠF

verify

comes from tr⊗nNw·log q, which is approximately bcNw·log q. We see thatΠF
verify is less

efficient if there are many linear gates, which are free for Πverify (the complexity
of Πverify does not depend on Nw). However, ΠF

verify does not have such a huge
alleged zero overhead. Without taking into accountMy, we get additive advantage
bc⊗nNm·log q and disadvantage bcNw·log q bits for ΠF

verify .

For n = 3, we have proposed a more efficient method for checking alleged
zeroes in Section 4.3.3, such that their number becomesmuch less important. Also,
while we are comparing only the operations that require communication, we should
also take into account that the generation of ~p by the verifier is done by computing
the Fast Fourier Transform [89], which immediately gives amultiplicative overhead
O(log (Nm +Nw)) to local computation . Finally, the most important advantage
of Πverify is that it naturally supports bit-related operations. Hence we do not
claim that one of our protocols has a clearer advantage before the other protocol,
and choosing between them depends on the context.

4.6 Extensions

In this section we describe possible optimizations and extensions of the transfor-
mation described in Section 4.3. In this undertaking, we are motivated by the
Sharemind protocol set [17, 68, 59, 56]. Almost all Sharemind protocols are
generated from a clear description of how messages are computed and exchanged
between parties [67]. The application itself is described in a high-level language
that is compiled into bytecode [15], instructing the Sharemind virtual machine
(VM) to call the compiled lower-level protocols in certain order with certain argu-
ments. These protocols call the networking methods in order to send a sequence
of values to one of the other two computation servers, or to receive messages from
them, thus representing the local computation of each party.

There are over 100 primitive protocols that may be called by the VM, compiled
from higher-level descriptions. During compilation, these protocols undergo an
intermediate format that is very close to circuits of Section 4.2.

In all Sharemind protocols currently in use, the commitment of randomness
can be simplified. Any random value is known by exactly two parties out of three
(each pair of parties has a common seed). Hence any random value r used by the
prover is already shared in the same manner as the messages, i.e r = r + 0. Even
the seed does not need to be generated jointly, since the protocols are constructed
in such a way that the randomness of Pi and Pj is only needed to hide data from
the third party Pk, and choosing it in a bad way does not give any benefits to Pi.

128

4.6.1 Additional Circuit Operations

The operations of circuits that represent local computation of parties in Sharemind
protocols are coming from a certain finite setOp. We have extended the basic set of
verifiable circuit operations to cover the set Op, and also added verification of the
shuffle protocol that has a different description. This is sufficient to represent all
Sharemind protocols that are presented in [17, 68, 59, 56]. We note that Sharemind
multiplication protocol (Section 3.1.5) only needs multiplications to be verified, so
these extensions are useful, but not essential for verifiability of basic Sharemind.

Comparison. The computation of a shared bit JyK from Jx1K, Jx2K ∈ Z2m ,
indicating whether x1 < x2, proceeds by the following composition. First, convert
the inputs to the ring Z2m+1 , let the results be Jx′1K and Jx′2K. Next, compute
JwK = Jx′1K − Jx′2K in the ring Z2m+1 . Finally, decompose JwK into bits and let
JyK be the highest bit.

Integer Division and Remainder. The verification is reduced to the equality
JxK = JzK · JyK + JwK and the inequality JwK ≤ JyK. This represents z = x/y
as well as w = x mod y. The equality needs to be verified in Z22m+1 to avoid
overflows, which needs conversion of x and y to a larger ring. The values JzK and
JwK are committed by the prover, each asm bits over Z22m+1 , using trusted bits.

Bit shifts. To compute JyK = JxK � Jx′K, where JyK and JxK are shared over
Z2n and Jx′K is shared over Zn, the parties need a precomputed characteristic
vector (CV) tuple (JrK, J~sK), where JrK is shared over Zn, JsiK are shared over
Z2n , the values si are bits, the length of ~s is n, and si = 1 iff i = r. The prover
broadcasts x̂ = r − x′ ∈ Zn. The verifiers compute J~s′K = rot(x̂, J~sK), defined
by Js′iK = Js(i+x̂) mod nK for all i < n. Note that s′i = 1 iff i = x′. The verifiers
compute J2x′K =

∑n−1
i=0 2iJs′iK and multiply it with JxK (using a multiplication

triple). They compute the alleged zero JzK = JrK−Jx′K− x̂, as well as two alleged
zeroes from the multiplication.

To compute JyK = JxK � Jx′K, the parties first reverse JxK, using bit decom-
position. They shift the reversed value left by Jx′K positions, and reverse the result
again.

During precomputation phase, the CV tuples have to be generated. Their
correctness control follows Section 4.3.2, with the following pairwise verification
operation. Given tuples (JrK, J~sK) and (Jr′K, J~s′K), the verifiers compute Jr̂K =
Jr′K− JrK, declassify it, compute J~̂sK = J~sK− rot(r̂, J~s′K), declassify it and check
that it is a vector of zeroes. Recall (Section 4.3.2) that we need the pairwise
verification to only point out whether one tuple is correct and the other one is not.

129

Rotation. The computation of J~yK = rot(Jx′K, J~xK) for J~xK, J~yK ∈ Zm2n and
Jx′K ∈ Zm could be built from bit shifts, but a direct computation is more efficient.
The parties need a rotation tuple (JrK, J~sK, J~aK, J~bK), where JrK and J~sK are a CV
tuple (with r ∈ Zm and ~s ∈ Zm2n), ~a ∈ Zm2n is random and the elements of~b satisfy
bi = a(i+r) mod m. The prover broadcasts r̂ = x′− r and ~̂x = ~x−~a. The verifiers
can now compute

JciK = 〈~̂x, rot(i, J~sK)〉 (i ∈ {0, . . . ,m− 1})

J~yK = rot(r̂, J~cK) + rot(r̂, J~bK) .

Here each ci is equal to some x̂i. The correctness of the computation follows from
~c = rot(r, ~̂x). The procedure gives the alleged zeroes Jz′K = Jx′K − JrK − r̂ and
J~zK = J~xK− J~aK− ~̂x.

The pairwise verification of rotation tuples T = (JrK, J~sK, J~aK, J~bK) and T′ =
(Jr′K, J~s′K, J~a′K, J~b′K) works similarly, using the tuple T′ to rotate J~aK by JrK posi-
tions and checking that the result is equal to J~bK (i.e. subtract one from another,
open and check that the outcome is a vector of zeroes). Additionally, pairwise
verification of CV tuples is performed on (JrK, J~sK) and (Jr′K, J~s′K).

Shuffle. The parties want to apply a permutation σ to a vector J~xK ∈ Zmn ,
obtaining J~yK satisfying yi = xσ(i). Here σ ∈ Sm is known to the prover and to
exactly one of the verifiers [68]. To protect prover’s privacy, it must not become
known to the other verifier. In the following, we write [σ] to denote that σ is known
to the prover and to one of the verifiers (w.l.o.g., to V1).

The parties need a precomputed permutation triple ([ρ], J~aK, J~bK), where ρ ∈
Sm, ~a,~b ∈ Zmn and ~b = ρ(~a). Both the prover and verifier V1 sign and send
τ = σ ◦ ρ−1 to V2 (one of them may sendH(τ); verifier V2 complains if received
τ -s are different). The prover broadcasts ~̂x = ~x − ~a. The verifiers compute their
shares (~y1, ~y2) of J~yK as ~y1 = τ(~b1 + ρ(~̂x)) and ~y2 = τ(~b2), where ~bi is the i-th
verifier’s share of J~bK. The alleged zeroes J~zK = J~xK− J~aK− ~̂x are produced.

The pairwise verification of triples ([ρ], J~aK, J~bK) and ([ρ′], J~a′K, J~b′K) again
works similarly, using the second tuple to apply [ρ] to J~a′K. The result is then
checked for its equality to J~b′K.

4.6.2 Reducing the Number of Bit Decompositions

If we implement our method in a straightforward way, verifying the circuit gate by
gate, we need a bit decomposition for every bd and zext gate. Obviously, if some
variable x participates in both decompositions, then its bits can be reused, and it
does not need to be decomposed twice. In some cases, it is not so obvious, and
the circuit should formally be restructured to avoid excessive bit decompositions.

130

For example, if we already have a bit decomposition for x, and y = x · 2 has
been computed, then y inherits the bit decomposition without additional need of
trusted bits, since x · 2 can be seen as a bit operation x � 1. Since a circuit
represents local computation of the prover, the circuit can be modified without
affecting the execution phase. We give a list of optimizations that we have used in
our benchmarks.

rem

sext

sub

shr lt

zext m

and

xor

shl

yx

Figure 4.39: Rotation subcircuit

Trivial optimizations Wemake use of standard
circuit optimization related to constant propaga-
tion and folding. This eliminates the need of
precomputed tuples for computing the values that
are public.

Inherited Bit Decompositions For each vari-
able x, we mark two flags, whether it needs the
binary representation (the bit tuple (x1, . . . , xm),
where xi shared in Z2), and whether it needs the
linear representation (x is shared in Z2m). It is
possible that only one of these representations is
needed. Starting from the inputs, we apply bit de-
compositions on demand, propagating the avail-
able bits from gate inputs to gate outputs when-
ever possible. For example, bitwise operations
propagate binary representations, linear opera-
tions propagate linear representations, transition
to a smaller ring propagates both.

After such propagations, we may still have excessive bit decompositions.
Given x ∈ Z2m or (x1, . . . , xm) ∈ Zm2 , we want to check if the decomposi-
tion (x′1, . . . , x

′
m) ∈ Zm2m is necessary. For this, we need look through all the

operations that use x or any of xi as arguments, and see which representation is
actually required by these operations. It may happen that these operations, or even
subsets of operations, need to be rewritten, so that the same value would be com-
puted using a different representation. In order to do it, we look for subcircuits
of certain structure and rewrite them if necessary. In particular, in Sharemind
protocols we had two main cases repeating throughout the protocols:

• Linearizable bitwise operations: Suppose that the input x ∈ Z2m is first
decomposed to the bits (x1, . . . , xm), then (y1, . . . , ym)← op(x1, . . . , xm)
is computed for a bitwise operation op (possibly represented as m distinct
gates for each bit), each bit yi is converted back to Z2m , and finally y =∑m

i=1 2i−1yi is output. Even if bit inheritance allows to compute yi ∈ Z2m

131

directly from (x1, . . . , xm) ∈ Zm2m for free, we would still need m trusted
bits for the bit decomposition of x. However, depending on op, unless the
bits xi and yi are not used anywhere else, it is often possible to compute y
directly from x without any bit decompositions. We are able to handle at
least the following cases (let c be a constant):

yi = ¬xi ⇐⇒ y = (2m − 1− x) ,

yi
$← Z2 ⇐⇒ y

$← Z2m ,

yi = xi+c (y = x� c) ⇐⇒ y = x · 2c .

• Choice: if b = 1 then x else y, where b ∈ Z2, x, y, z ∈ Z2m .
This can be computed either bitwise as zi = b ∧ xi + (1 − b) ∧ yi, or
z = b · x+ (1− b) · y (the latter case requires b ∈ Z2m). Depending on the
context, even if b needs a bit decomposition to get into Z2m , it may be more
efficient to use z = b·x+(1−b)·y if the variables x, y, z need only the linear
representation. In Sharemind protocols, only the binary representation of
choices was used.

• Rotation: z = rotate(x, r) is a basic operation of our circuit, which can be
verified using a single rotation tuple. In Sharemind protocols, this operation
is expressed as a subcircuit involving two bit shifts by private values and a
division remainder, which would induce a larger overhead. This subcircuit
is depicted in Figure 4.39, where shl and shr are the left and right bit shifts
respectively, sub is the subtraction, rem is the division remainder, lt is the
comparison (“less than”), zext is the transition to a larger ring, and sext is
another transition to a larger ring, turning the bit 0 to the bits (0, 0, . . . , 0)
and the bit 1 to (1, 1, . . . , 1). The gate m represents the constantm.

Distributivemultiplications We rewrite multiplications of the form x1 ·y1+x1 ·
y2 to x1 ·(y1 +y2), reducing the total number of multiplications. This optimization
is double-edged, as it may in turn harm some other optimizations. It is better to
apply it in the end, after all the other optimizations.

4.6.3 Input and Output Parties

In real applications of sharing based SMC, the parties that provide the inputs
and receive the outputs are in general different from the computing parties (see
Section 2.2.1). The input [resp. output] parties want to be sure that the verification
has been run on the provided inputs that they provided [resp. the received outputs].

Input commitments are handled similarly to messages. First, the input xj for
Pj is shared to xkj by the input party PI that provided xj , and each share is signed

132

SM virtual
machine

SM networking

Primitive
protocols

Protocol
descriptions

Application
bytecode

message
signing

message
signing

Verified tuple
generation

lo
gg

in
g

Post-processing
virtual machine

PP networking
Protocol
compiler

Preprocessing phase Execution phase Post-execution phase

Figure 4.40: Components of Sharemind with verification

by PI . All shares (xkj)k∈[n] and their signatures are sent to Pj that verifies if the
sharing is valid, and then forwards xkj to Pk. If PI does not provide valid input,
then the computing parties act as if they had not received anything from PI .

In general setting, Pj sends yj to the output party PO directly. We now let
also Pk send ykj to PO. In the case of three parties, it is sufficient that both ykj are
signed by Pj . In this way, PO should prefer to reconstruct yj from ykj , but if the
delivery of some ykj fails due to dishonesty of Pk, then it takes yj . We omit the
case of n > 3 parties here, since the behaviour of parties becomes less trivial.

4.6.4 Auditability

If a party P has deviated from the protocol, then all honest parties will learn its
identity during the post-execution phase. In this case, assuming that P does not
drop out from the verification process at all, the honest parties are going to have a
set of statements signed by P , pertaining to the values of various messages during
all phases, from which the contradiction can be derived. These statements may be
presented to a judge that is trusted to preserve the privacy of honest parties.

4.7 Evaluation

4.7.1 Implementation

We have implemented the verification of computations for the Sharemind protocol
set. The previously existing (gray) and newly implemented (white) components
are depicted in Figure 4.40. We now describe how each phase is implemented.

133

Preprocessing phase. The verified tuple generator has been implemented in C,
compiled with gcc ver. 4.8.4, using -O3 optimization level, and linking against
the cryptographic library of OpenSSL 1.0.1k. We have tried to simplify the com-
munication pattern of the tuple generator as much as possible, believing it to
maximize performance. On the other hand, we have not tried to parallelize the
generator, neither its computation, nor the interplay of computation and commu-
nication. Hence we believe that further optimizations are possible.

The generator works as follows. If the parties want to produce u verified
tuples, then (i) they select µ and κ appropriately for the desired security level
(some particular numbers are given in Section 4.3.2); (ii) the prover sends shares
of (µu + κ) tuples to verifiers; (iii) verifiers agree on a random seed (used to
determine, which tuples are opened and which are grouped together) and send
it back to the prover; (iv) prover sends to the verifiers κ tuples that were to be
opened, as well as the differences between components of tuples that are needed
for pairwise verification; (v) verifiers check the well-formedness of opened tuples
and check the alleged zeroes stating that they received from the prover the same
values, these values match the tuples, and the pairwise checks go through. Steps
(ii) and (iv) are communication intensive. In step (iii), each verifier generates a
short random vector and sends it to both the prover and the other verifier. The
concatenation of these vectors is used as the random seed for step (iv). Step (v)
involves the verifiers comparing that they’ve computed the same hash value. We
use SHA-256 as the hash function. After the tuples have been generated, the prover
sends to each verifier a signature on the shares that the verifier holds.

To reduce the communication in step (ii) above, we let the prover share a
common random seed with each of the verifiers. In this manner, the random
values do not have to be sent. E.g. for a multiplication triple (JaK, JbK, JcK), both
shares of JaK, both shares of JbK and one share of JcK are random. The prover only
has to send one of the shares of JcK to one of the verifiers.

Execution phase. This phase is entirely delegated to Sharemind computation
servers. During the execution, the virtual machine (VM) reads the description of
the privacy-preserving application and executes a certain set of compiled low-level
passively secure protocols (see Section 4.6). Sharing the initial inputs among the
two remaining parties can be treated as the first step of the privacy-preserving
application, so we do not need to implement it separately.

In order to support verification, each computation server of Sharemindmust log
the randomness it is using, aswell as themessages that it has sent or received. Using
these logs together with the descriptions of the privacy-preserving application and
the primitive protocols, it is possible to restore the execution of the server. As
discussed in Section 4.6, since all randomness is known to at least one verifier, no

134

special resharing of randomness is needed.
We havemodified the network layer of Sharemind, making it sign eachmessage

it sends, and verify the signature of each message it receives. We have not added
the logic to detect whether two outgoing messages belong to the same round or not
(in the former case, they could be signed together), but this would not have been
necessary, because our compiled protocols produce only a single message for each
round. We have used GNU Nettle for the cryptographic operations. For signing,
we use 2 Kbit RSA and SHA-256. Beside message signing and verification, we
have also added the logging of all outgoing and incoming messages.

Verification phase. The virtual machine of the post-execution phase reads the
application bytecode and the log of messages. This is enough to learn which
protocols were invoked in which order and with which data during the execution
phase. As discussed in Section 4.3.3, since each message is known to at least one
verifier, no special resharing of messages is needed.

The information about invoked protocols is present in both the prover’s log,
as well as in the verifiers’ logs. Indeed, the identity of invoked protocols depends
only on the application, and on the public data it operates on. This is identical
for all computation servers. The post-execution VM then reads the descriptions of
protocols and performs the steps described in Section 4.3.3. The post-execution
VM has been implemented in Java, translated with the OpenJDK 6 compiler and
run in the OpenJDK 7 runtime environment. The verification phase requires
parties to sign their messages, we have used 2 Kbit RSA with SHA-256 for that
purpose.

4.7.2 The Total Cost of Covertly Secure Protocols

For benchmarking, we have chosen the most general protocols of Sharemind
over the ring Z232 : multiplication (MULT32), 128-bit AES (AES128), bitwise
conjunction (AND32), conversion from additive sharing (i.e. over Z232) to xor-
sharing (i.e. additive over Z32

2) (A2X32) and vice versa (X2A32). We have
measured the total cost of covert security of these protocols, using the tools that
we have implemented. Our tests make use of three 2× Intel Xeon E5-2640 v3 2.6
GHz/8GT/20M servers, with 125GB RAM running on a 1Gbps LAN, similarly to
the benchmarks reported in Section 3.1 of Chapter 3. Depending on the execution
time of a single protocol, we run 105, 106, or 107 protocol instances in parallel,
and report the amortized execution time for a single protocol.

Preprocessing. In the described set-up, we are able to generate 100 million
verification triples for 32-bit multiplication in ca. 236 seconds (Table 4.9). To
verify a single multiplication protocol, we need 6 such triples: we use Sharemind

135

Table 4.9: Time to generate u = 108 verified tuples for η = 80 (µ = 4, κ = 15000)

tuple width prover time verifier time

Multiplication triples 32 bits 212 s 236 s
64 bits 309 s 352 s

Trusted bits 32 bits 65 s 72 s
64 bits 90 s 101 s

xor-shared AND triples 32 bits 212 s 236 s

protocol given in Section 3.1.5 that formally has 3 multiplications per party, but
all of them are of the form x1 · y1 + x1 · y2 + x2 · y1 and can be trivially rewritten
to x1 · (y1 + y2) + x2 · y1. Hence the amortized preprocessing effort to verify a
single 32-bit multiplication is ca. 14 µs. The cost is similar for a single 32-bit
AND.

Sharemind uses 6400 AND gates per AES128 block. Each AND gate is just
a multiplication, and it requires 6 one-bit triples. The time of generating 108

xor-shared 32-bit AND triples is 236 s, and one 32-bit AND triple is the same
as 32 ordinary one-bit AND triples (a, b, c) s.t a ∧ b = c. Hence the amortized
preprocessing effort to verify a single 128-bit AES block is ca. 2.8 ms.

The A2X protocol requires 96 xor-shared AND triples and 64 trusted bits, all
of bit width 32. The cost of generating 108 trusted bits is 72 s. The amortized
preprocessing effort of this protocols is ca. 273 µs. The X2A protocol requires 64
additively shared 32-bit multiplication triples, and 96 trusted bits, all of bit width
32. The amortized effort of this protocol is ca. 220 µs.

Execution. We have measured runtimes of passively secure Sharemind with and
without signing and logging. The execution times in milliseconds are given in
Table 4.10. If a large number (105,106,107) of these operations are computed in
parallel, the amortized time, including all necessary signing and logging, is ca
0.16 µs for AND32 and MULT32, 0.04 ms for one AES128 block, 2.3 µs for
A2X, and 5.1 µs for X2A. In general, for sufficiently large inputs, the signing
and logging appears to reduce the performance of the current implementation of
Sharemind up to three times. It is likely that a more careful parallelization of the
networking layer of Sharemind would eliminate most of that overhead.

Verification. Assuming that all the inputs and the communication have been
committed, and the preprocessed tuples generated, we run the verification phase
in parallel for all 3 provers, and measure the total execution time (for asymmetric
protocols, we report the times of all 3 provers). We consider the optimistic setting,
where the prover only signs the broadcast message, and the verifiers exchange the

136

Table 4.10: Times of the execution phase with / without signing and logging (ms)

runs AND32 MULT32 AES128 A2X32 X2A32
w/o w/ w/o w/ w/o w/ w/o w/ w/o w/

101 0.362 4.75 0.349 3.96 11.3 485 0.785 38.8 0.19 8.75
102 0.345 4.42 0.237 3.84 13.4 496 0.928 38.7 1.05 8.59
103 0.147 4.58 0.282 4.04 33.0 600 1.73 45.0 2.28 12.8
104 0.668 6.37 0.733 5.40 214 726 8.44 55.6 27.3 60.4
105 7.46 15.1 8.13 15.1 2090 3740 98.4 227 252 481
106 73.9 166 73.8 184 – – 909 2290 2690 5050
107 683 1550 717 1630 – – – – – –

Table 4.11: Running times of the verification phase

runs time (s)
AND32 MULT32 AES128 A2X32 X2A32

P1 P2 P3 P1 P2 P3
101 0.315 0.322 0.472 0.324 0.337 0.323 0.333 0.340 0.337
102 0.335 0.337 0.694 0.377 0.387 0.383 0.383 0.413 0.411
103 0.387 0.384 1.21 0.496 0.494 0.488 0.465 0.532 0.559
104 0.564 0.557 4.46 0.896 0.949 0.930 0.868 1.17 1.21
105 0.939 0.952 29.1 2.72 3.08 3.02 2.60 5.31 5.95
106 2.72 2.68 – 18.5 21.8 21.4 16.9 37.6 43.0
107 16.7 16.7 – – – – – – –

hash of the message to ensure that they got the same message. The results are
given in Table 4.11. When performing a large number (105,106,107) verifications
in parallel, the cost of verification is ca. 1.7 µs for MULT32 (or AND32), 290 µs
for a single AES128 block, 22 µs for A2X32, and 43 µs for X2A32.

Total Cost. When adding the costs of three phases, we find that the total amor-
tized cost of performing a 32-bit multiplication in our three-party SMC protocol
tolerating one covertly corrupted party is ca. 16 µs. For a single AND gate, we
get 0.5 µs. The total cost of evaluating a 128-bit AES block is ca 3.1 ms. The
total cost of conversions between additive and bitwise sharing is ca. 297 µs for
A2X32 and 268 µs for X2A32. The results given in Table 4.12.

Instead of Sharemind multiplication, we could apply our verification to the
protocol of [3] described in Section 3.1.4. This would reduce the execution phase
time, but complexities of the preprocessing and the verification phases remain the

Table 4.12: Total amortized cost of covertly secure protocols

AND MULT32 AES128 A2X32 X2A32
cost (µ s) 0.5 16 3100 297 268

137

same. It is not clear how well that protocol could be integrated with the other
Sharemind protocols, so it becomes more interesting when more various protocols
composable with [3] will be developed.

From covert to active security. A covert adversary deviates from the protocol
only if the chance of being caught is negligible (see Section 2.2.2). In our case,
the probability of not being caught is negligible, which is stronger that required
by the definition of covert adversary. Applying the verification after each round
would result in an actively secure protocol.

Although we do not verify each round of the benchmarked protocols, they turn
out to be nevertheless actively secure. Namely, the protocol set of Sharemind is
private against active adversaries, as long as no values are declassified [86]. This
means that an active adversary is able to break the correctness of the computation,
but it does not leak to him any private information unless the results are declassified.
In this setting, if declassification is applied only to computation results at the end
of the protocol, then prepending it with our verification step gives us an actively
secure protocol [66]. The benchmarks may be even better if several protocols are
applied sequentially, since only the final outputs need to be verified, while still
having active security. Hence we may compare ourselves with the state-of-the-art
actively secure protocols.

4.7.3 State-of-the-art Complexity of Actively Secure Integer
Multiplication and AES

Let us review the state of the art in performing integer multiplications and AES128
encryptions in actively secure computation protocol sets. All times reported below
are amortized over the parallel execution of many protocol instances. All reported
tests have used modern (at the time of the test) servers (one per party), connected
to each other over a local-area network.

Such protocol sets are based either on garbled circuits or secret sharing (over
various fields). Lindell and Riva [71] have recently measured the performance
of maliciously secure garbled circuits using state-of-the-art optimizations. Their
total execution time for a single AES circuit is around 80ms, when doing 1024
executions in parallel and using the security parameter η = 80 (bits). The size of
their AES circuit is 6800 non-XOR gates. According to [37], a 32-bit multiplier
can be built with ca. 1700 non-XOR gates. Hence we extrapolate that such
multiplication may take ca. 20ms under the same conditions. Our extrapolation
cannot be very precise due to the very different shape of the circuits computing
AES or multiplication, but it should be valid at least as an order-of-magnitude
approximation.

138

A protocol based on secret sharing over Z2 [83] would use the same circuit
to perform integer multiplication. In [40], a single non-XOR gate is estimated to
require ca. 70 µs during preprocessing (with two parties). Hence a whole 32-bit
multiplier would require ca. 120ms. As the preprocessing takes the lion’s share
of the total costs, there is no need for us to estimate the performance of the online
phase.

Recent estimations of the costs of somewhat homomorphic encryption based
preprocessing for maliciously secure multiparty computation protocols based on
additively secret sharing over Zp are hard to come by. In [30], the time to produce
a multiplication triple for p ≈ 264 is estimated as 2ms for covert security and 6ms
for fully malicious security (with two parties, with η = 40). We presume that the
cost is smaller for smaller p, but for p ≈ 232, it should not be more than twice
as fast. On the other hand, the increase of η to 80 would double the costs [30].
In [31], the time to produce a multiplication triple for p ≈ 232 is measured to be
1.4ms (two parties, η = 40, escape probability of a cheating adversary bounded
by 20%).

The running time for actively securemultiplication protocol for 32-bit numbers
shared using Shamir’s sharing has been reported as 9ms in [28] (with four parties,
tolerating a single malicious party). We are not aware of any more modern
investigations into Shamir’s secret sharing based SMC.

A more efficient N -bit multiplication circuit is proposed in [34], making use
computations in Z2 and in Zp for p ≈ N . Using this circuit instead of the one
reported in [37] might improve the running times of certain integer multiplication
protocols. Unfortunately, the cost of obtaining multiplication triples for Zp is
unclear.

In this thesis, we presented a set of protocols that is capable of performing a 32-
bit integer multiplication with covert security (on a 1Gbps LAN, with three parties,
tolerating a single actively corrupted party, η = 80, negligible escape probability
for a cheating adversary) in 16 µs. This is around two orders of magnitude faster
than the performance reported above.

In concurrent work [54], the oblivious transfer methods of [40] have been
extended to construct SPDZ multiplication triples over Zp. They report amortized
timings of ca. 200 µs for a single triple with two parties on a 1Gbps network,
where p ≈ 2128 and η = 64. Reducing the size of integers would probably also
reduce the timings, perhaps even bringing them to the same order of magnitude
with our results. However, their techniques (as well as most others described here)
only work for finite fields, not rings. For fields, there exist methods to reduce the
number of discarded triples during triple verification, which also apply for us.

Recently [32], amortized time 0.5µswas reported for computing a single AES
block. However, it takes into account only the online phase. The authors do

139

not provide benchmarks for preprocessing, but they estimate that using recent
mechanisms for doing preprocessing, up to 105 AND gates could be computed
per second. Assuming that one AES block contains ca 6400 AND gates (as in our
benchmarks), this would suffice for around 16AES blocks per second, or 63ms per
AES block. In this thesis, we compute a 128-bit AES block with covert security
in 3.1ms, including the preprocessing, which is an order of magnitude faster.

Section 3.1.4 describes the three-party protocol of [3] extended with the veri-
fication phase [41]. Their paper does not report the running times, but uses total
number of communicated bits per AND gate instead. Their reported number is 30
bits per AND gate for 3 parties. Using the same security parameter η = 40 (taking
m = 3), and making use of shared randomness, we get that the generation one
1-bit multiplication triple requires 1 bit of communication and each pairwise veri-
fication 4 bits (opening the 2 masked values by 2 verifiers to each other), adding up
to 1 + 4 · (m− 1) = 9 bits for a single verified triple. Since we require a triple for
each of the 6 local multiplications of Sharemind protocol, we already get 54 bits.
The execution phase requires 6 bits of communication, and the verification phase
24 bits (8 for each party). This is 84 bits in total, or almost three times more. Some
additional overhead may come from signatures (their cost becomes negligible as
the communication grows). However, our security property is stronger, allowing
to pinpoint the cheating party and make the protocol aborting identifiable. Our
method is also more generic and allows to easily generate precomputed tuples
other than multiplication triples, that are very useful in verifying protocols other
than multiplication.

Another work that reports the number of communicated bits is [80]. This is
essentially a garbled circuit computation for three parties tolerating one corrupted
party. Their reported number of bits is 1504 Kbytes, which is ca 12000 Kbits.
Using a similar AES block consisting of 7200 AND gates, and assuming the
multiplicative overhead of 84 as discussed above, our solution has 605 Kbits of
communication. For η = 80, which is in any case a sufficiently large security
parameter, we get 156 bits per AND gate (derived from Table 4.13), which is 907
Kbit of total communication.

In would be interesting to compare also X2A and A2X with existing solutions,
but we could not find similar benchmarks for these protocols.

4.7.4 Estimating the Cost of other Sharemind Protocols

Our implementations of the preprocessing and verification phases are still prelim-
inary, at least compared to the existing Sharemind platform and the engineering
effort that has been gone into it. We believe that significant improvements in their
running times are possible, even without changing the underlying algorithms or
invoking extra protocol-level optimizations. Hence we are looking for another

140

metric that may predict the running time of the new phases once they have been
optimized. Due to the very simple communication pattern of that phase, con-
sisting of the prover sending a large message to the verifiers, followed by the
verifiers exchanging very small messages, we believe that the number of needed
communication bits is a good proxy for future performance.

The existing descriptions of Sharemind’s protocols make straightforward the
computation of their execution and verification costs in terms of communicated
bits. We have performed the computation for the protocols working with integers,
and counted the number of bits that need to be delivered for executing and verifying
an instance of the protocol. We have not taken into account the signatures, the
broadcast overhead, and the final alleged zero hashes that the verifiers exchange,
because these can be amortized over a large number of protocols executing either
in parallel or sequentially.

Table 4.13 presents our findings. For each protocol, the results are presented
in the form x:y:z

1:a:b . The upper line lists the total communication cost (in bits): x
for the execution of the protocol, y for its verification in the post-execution phase,
and z for the generation of precomputed tuples in the preprocessing phase. The
suffixes k and M denote the multipliers 103 and 106, respectively. The lower
line is computed directly from the upper line, and it shows how many times more
expensive each phase is, compared to the execution phase (i.e. a = y/x, b = z/x).
The most interesting value is a that shows how much overhead our verification
gives in the online phase, compared to passively secure computation.

In estimating the costs of generating precomputed tuples, we have assumed
the tuples to be generated in batches of 220, with security parameter η = 80.
Section 4.3.2 describes the number of extra tuples that wemust send for correctness
checks. We consider the selected parameters rather conservative; we would need
less extra tuples and less communication during the preprocessing phase if we
increased the batch size or somewhat lowered the security parameter. Increasing
the batch size to ca. 100 million would drop the parameterm from 5 to 4, thereby
reducing the communication needs of preprocessing by 20%. If we take η = 40,
thenm = 3 would be sufficient.

The described integer protocols in Table 4.13 take inputs additively shared
between three computing parties and deliver similarly shared outputs. In the
“standard” protocol set, the available protocols include multiplication, division
(with private or with public divisor), bit shifts (with private or public shift),
comparisons and bit decomposition, for certain bitwidths. We left out the protocols
for operations that require no communication between parties during execution or
verification phase: addition, and multiplication with a constant.

We see that the verification overhead (normalized to communication during
the execution phase) of different protocols varies quite significantly. While most

141

Table 4.13: Communication overheads of integer operation verification

Operation bit width
16 32 64

multiplication 96 : 384 : 2017
1 : 4 : 21

192 : 768 : 4034
1 : 4 : 21

384 : 1536 : 8067
1 : 4 : 21

division 9752 : 106.5k : 5.0M
1 : 10 : 514

31.2k : 339.6k : 28.5M
1 : 10 : 914

87.6k : 941.4k : 181.2M
1 : 10 : 2069

div. with pub. 948 : 11.3k : 339.9k
1 : 11 : 359

2180 : 26.1k : 1.3M
1 : 11 : 581

4932 : 59.1k : 4.8M
1 : 11 : 982

priv. � priv. 400 : 5504 : 141.3k
1 : 13 : 353

1296 : 21.2k : 1.1M
1 : 16 : 811

4624 : 83.5k : 8.1M
1 : 18 : 1758

priv. � priv. 864 : 16.9k : 185.9k
1 : 19 : 215

2352 : 52.9k : 314.0k
1 : 22 : 134

7120 : 198.8k : 1.1M
1 : 27 : 161

priv. � pub. 468 : 4090 : 52.9k
1 : 8 : 113

1092 : 9690 : 182.8k
1 : 8 : 167

2564 : 22.4k : 658.2k
1 : 8 : 257

equality 106 : 424 : 4549
1 : 4 : 43

218 : 872 : 14.3k
1 : 4 : 66

442 : 1768 : 49.3k
1 : 4 : 112

less than 719 : 7440 : 46.0k
1 : 10 : 64

1750 : 18.7k : 127.3k
1 : 10 : 73

4109 : 44.7k : 354.7k
1 : 10 : 86

additive to xor 416 : 3008 : 18.1k
1 : 7 : 44

1024 : 7552 : 49.4k
1 : 7 : 48

2432 : 18.2k : 135.5k
1 : 7 : 56

xor to additive 288 : 2144 : 14.7k
1 : 7 : 51

1088 : 8384 : 58.7k
1 : 7 : 54

4224 : 33.2k : 234.2k
1 : 7 : 55

of the protocols require 7–20 times more communication during the verification
phase than in the execution phase, the important case of integer multiplication
has the overhead of only four times. Even more varied are the overheads for
preprocessing, with integer multiplication again having the smallest overhead of
21 and the protocols working on smaller data having generally smaller overheads.

It is important to note that our goal was to optimize time and communication
of the verification phase. If we wanted to optimize the total communication,
including the preprocessing, we would possibly use some alternative approach.
For example, instead of using trusted bits for bit decomposition, we could use
AND triples, so that the verifiers could compute the decompositions themselves.
Such optimizations are out of the scope of this thesis.

4.8 Summary

We have proposed a scheme transforming passively secure protocols with hon-
est majority to covertly secure ones. The protocol transformation is suitable to
be implemented on top of some existing, highly efficient, passively secure SMC
frameworks, especially those that use 3 parties and computation over rings of
size 2m. The framework will retain its efficiency, as the time from starting a

142

computation to obtaining the result at the end of the execution phase will in-
crease only slightly. We evaluated the verification on top of the Sharemind SMC
framework and found its overhead to be of acceptable size, roughly an order of
magnitude larger than the complexity of the SMC protocols themselves included
in the framework, which are already practicable.

In general, we believe that in most situations, where sufficiently strong legal
or contractual frameworks are in place, providing protection against covert adver-
saries is sufficient to cover possible active corruptions. The computing parties
should have a contract describing their duties in place anyway [36], this contract
can also specify appropriate punishments for being caught deviating from the pro-
tocol. By randomly deciding (with probability p) after a protocol run whether
it should be verified, our method still achieves covert security, but the average
overhead of verification is reduced by 1/p times. It is likely that overheads smaller
than the execution time of the original passively secure protocol may be achieved
in this manner, while keeping the consequences of misbehaving sufficiently severe.
Auditability helps in setting up the contractual environment that establishes the
consequences.

143

CHAPTER 5

PROTECTING DATA FROM HONEST
PARTIES

5.1 Chapter Overview

Data is a toxic asset [96]. If it has been collected, then it has to be protected from
breaches. Hence one should not collect data that is unnecessary or has little use.
To make sure that one is not collecting such data, one should try to never learn
that data in the first place.

In existing models of multiparty protocols, the security goals of a party are not
violated if it learns too much: an honest party may simply ignore the messages
not meant for it, or the data it has learned because of the misbehaviour of some
other party. In practice, data erasure may be a complex and expensive process,
involving thorough scrubbing or destruction of storage media.

An honest party’s attempt to not learn the data that it is not supposed to learn
brings about an adversarial goal that has not been considered so far. The adversary
may deliberately try to cause an honest party to learn some other honest party’s
private data, making the second honest party’s data derivable from the first honest
party’s view. The adversary’s inability to learn such data itself does not imply the
impossibility of such attacks. If some secret leaks from one honest user to another
honest user, this secret may just remain unnoticed by the adversary.

As a practical illustration of this problem, let us take one real-world SMC
project [12]. In the setup of this project, there have been three computing parties,
two of whom have been separate governmental institutions (who definitely follow
the protocol and do not collaborate), and the third one a private company that
could be less trusted. In these settings, even if the private company was com-
pletely distrusted, in theory it would be sufficient to use protocols that tolerate one
malicious party. However, in practice, the input parties would most probably not
agree to run a protocol where misbehaviour of the private company leaks some

144

of their private data to the governmental institutions, even if the private company
does not gain any information itself.

We give some examples of particular protocols suffering from such problems.
In Chapter 4 we have proposed some protocols and proven that they are secure in
the UC model. Regardless of being provably secure, there are still some problems
with them, that may possibly prevent users from participating in such protocols.

• Problems of Πtransmit (Figure 4.4): in this protocol, if communication
between sender and receiver fails, then the sender is required to deliver the
message to all parties, so that at least one of them would forward it to the
receiver. However, honest parties are not supposed to learn that message in
the ideal functionality Ftransmit (Figure 4.3).

• Problems of Πcommit (Figure 4.17): if weak opening of a commitment x
fails, strong opening requires to reveal up to t − 1 shares of some other
private values that have been used for computing x. These values are not
supposed to be opened in the ideal functionality Fcommit (Figure 4.16) and
indeed, the corrupted parties get no more than t − 1 shares. However, any
honest party that is not involved in the conflict possesses one additional
share, and so it may get t shares that are sufficient to reconstruct the secret.

These problems are not captured by the UC framework, since it assumes
that there is a single monolithic adversary that controls all the corrupted parties.
Construction of a simulator relies on the assumption that a value may indeed be
leaked since the adversary knows it anyway. In practice, it may be still unpleasant
to leak a secret value to some honest party even if some other corrupted party has
already seen it. For example, if an attacker has broken into a user’s mailbox, it still
does not imply that the user is now ready to publish his e-mails to everyone since
some attacker has seen them anyway.

If we care about the views of honest parties, we could treat each honest party
as an independent adversary. There do exist some alternative definitions of UC
that support multiple adversaries, such as CP (Collusion Preserving) computation
or LUC (Local UC) described in Section 3.2. However, these models are too
strong, and they are used to prove stronger properties that are not necessary for our
purposes. If we treat each honest party as an adversary, we get a setting in which
all parties are corrupted, and we immediately lose the advantage of assumptions
on the number of corrupted parties, e.g. the honest majority assumption.

In this chapter, we study this problem more generally. We propose a model
that is at least as strong as UC, and that additionally allows to detect if data are
leaked to honest parties. We propose modifications to the protocols of Chapter 4,
making them secure in this new model.

145

5.2 Attacks that We Want to Cover

The simplest way for the adversary to leak confidential data to an honest party
is to send it through some side channels that are not related to the protocol. If
we take such data into account, then we will be unable to securely implement
e.g. secure (n, t)-threshold sharing assuming at most t − 1 corrupted parties. In
particular, any coalition of t − 1 parties can always leak the secret to an honest
party by sending to it the t− 1 shares that this coalition already has. If we reduce
the number of corrupted parties by 1, then t − 2 parties will no longer be able to
leak the secret to anyone. However, reducing the number of corrupted parties may
lead to unrealistic assumptions. For example, in the 3-party case, (3, 2)-threshold
sharing becomes possible only assuming that all parties are honest.

One possibility would be to give up and not use (3, 2)-threshold sharing in
3-party protocols. The problem is that, even if (3, 2)-threshold sharing is not used
directly, many efficient 3-party protocols that assume one corrupted party [3, 16]
require that the secret is being (temporarily) shared among two parties. If one of
these parties is corrupted, it will immediately be able to leak its share to the other
party using side channels. Even a passively corrupted party is able to do it, since
protocol rules are not violated if side channels are used.

We think that, if confidential data leak to an honest party according to the
protocol rules, this leakage is more significant than if the same data was sent by
an untrusted corrupted party via side channels or even subliminal channels of the
same protocol (e.g. sending it in place of some other messages or encoding the
bits by message delays). First of all, an honest party is not supposed to be listening
to any side channels. The adversary can still try to deliver information through
subliminal channels of the same protocol that honest parties are obliged to execute
in any case. However, the honest party may have no idea about the way it should
interpret the information sent through subliminal channels, even if the secret is
indeed encoded there. For example, if the adversaryAactive succeeds in delivering
t− 1 shares to an honest party using a subliminal channel, that party will not even
know that Aactive is conducting such an attack. If later some other adversary
Apassive gets access to that honest party’s data, he will not know either how these
shares should be recovered from the bit strings received by the honest party, and
theoretically these bits can be reconstructed to an arbitrary value without knowing
the particular strategy of Aactive.

In the problem of Πcommit mentioned in Section 5.1, the adversary Aactive
may cause all t− 1 shares of corrupted parties to be officially opened to all other
parties. In that case, the honest party (and the adversary Apassive) will definitely
know that these particular t−1 opened values should be recombined with the share
that the honest party already owns. Hence we treat exploiting such vulnerabilities
as an attack.

146

As a summary, our model allows to detect threats where the computer of an
honest user gets captured by an adversaryApassive who is completely independent
from the adversaryAactive actively attacking the protocol, and who only observes
the honest user’s data without trying to interfere with the protocol execution. This
may represent the situation where the honest party itself is too curios, but it does
not collaborate with the adversary Aactive and tries to derive private information
purely from its own data. It may also be the case that the honest party failed to
clean its hard drive after running the protocol, and some intruder Apassive, who
has no relation with Aactive, has got access to its computer.

5.3 Weak Collusion Preservation

In this section we present a model that allows to formalize the attacks we described
in Section 5.2. Two possible models from which we could start are LUC and CP
(see Section 3.2). At first glance, the LUC approach seems more interesting since
it clearly distinguishes the cases where a honest party Pi has received a message
from another honest party Pj , or from a corrupted party Pk. However, many
interesting properties are lost after splitting the adversaries to distinct coalitions.
Hence we base our work on the collusion preserving (CP) computation. We call
our model WCP (Weak Collusion Preservation).

5.3.1 Intuition

Before formally defining the WCP model, we describe the intuition behind it. We
are looking for a model that would satisfy the following three properties.

Composability. We want to achieve composability like in the UC model. We
state and prove this property in Theorem 5.1.

Implying UC.We do not want to lose any security properties that are already
covered by the UC model. We want WCP-emulation to imply UC-emulation. We
state and prove this property in Theorem 5.2.

Capturing information leakage to an honest party. TheWCPmodel should
be able to detect whether a protocol π leaks more information to honest parties
than the ideal functionality F does. For simplicity, we define this property in the
stand-alone model. The definition is based on indistinguishability between two
games, depicted in Figure 5.1.

In the first game, the adversary attacks a real protocolπ. The adversary consists
of two isolated parts: Aactive that interacts with the protocol in both directions
(representing an active coalition) and Apassive that may only receive messages
from π (representing an honest party). Aactive chooses two inputsm0 andm1 for
π, and sends m0, m1 to both the passive adversary Apassive and the challenger.

147

Apassive
b

m1

m0

mb

Spassive

mb

m0
m1

b
π Fm0 m1

b
$← {0, 1} b

$← {0, 1}
Aactive Sactive

Figure 5.1: The games of leaking information to an honest party

The challenger generates b $← {0, 1} and chooses the inputmb for π. The goal of
Apassive is to guess b.

In the second game, simulator attacks an ideal functionality F. Similarly to
the first game, the simulator is split into two parts, Sactive representing the ac-
tive coalition, and Spassive representing an honest party. The guess is output by
Spassive. Since we do not treat existence of subliminal channels as a vulnerability,
we allow Sactive send to Spassive arbitrary messages, not only m0 and m1. Oth-
erwise, Spassive would not be able to simulate e.g. some corrupted party leaving
the protocol, which can be treated as one-bit subliminal channel.

In the stand-alone games, we do not need to constrain the attacks ofAactive in
any way. However, we might have problems when extending this definition to a
composable one. The reason is that interesting UC-like composability properties
rely on the fact that the dummy adversary (that does not do anything except
forwarding the messages between the protocol and the environment Z) is the
strongest type of adversaries, delegating the attack to Z . This property would not
hold if Aactive was able to use any information that Z does not possess, but at
the same time we do not want Z to mix the views of Aactive and Apassive. For
this reason, we put constraints on Aactive. It is still allowed to use the inputs of
corrupted parties as well as any randomness generated by them. It may also use
any messages that it receives from the party corrupted by Apassive. However, in
general, it will not use the messages that it receives from the other honest parties
that are not corrupted neither by Aactive nor Apassive. This constraint may omit
some attacks that correspond to our intuition. Nevertheless, the attacks described
in Section 5.1 will still be captured.

The previous discussion is summarized in Definition 5.1. In Proposition 5.1,
we state and prove that this definition is satisfied by our model.

Definition 5.1. Let π be a multiparty protocol, and F an ideal functionality.
Consider the following two security games.

• GAreal: The adversaryAactive chooses two inputsm0 andm1 for π, and sends

148

m0,m1 toApassive and the challenger. The challenger generates b
$← {0, 1}

and chooses the input mb for π. Apassive passively corrupts a single party
Pk and receives all information known to Pk. Aactive corrupts a subset of
parties C in π, and it may choose messages for them. It receives from π all
messages exchanged by the parties of C, and the messages sent to C by Pk.
After the protocol execution has been finished,Apassive makes a guess b′ of
b. GAreal outputs b′ = b.

• GSideal: The simulator Sactive chooses two inputs m0 and m1 for F, and
sends m0, m1 to Spassive and the challenger. The challenger generates
b

$← {0, 1} and chooses the input mb for F. Sactive corrupts a subset of
parties in F. It may receive messages from F and choose messages for the
corrupted parties in F. The simulator Spassive passively corrupts a single
party and receives all messages known to that party. After the protocol
execution has been finished, Spassive makes a guess b′ of b. GSideal outputs
b′ = b.

We say that the protocol π leaks to honest parties as much information as F if∣∣Pr
[
GAreal = 1

]
−Pr

[
GSideal = 1

]∣∣ ≤ ε for a negligible ε.
5.3.2 Definitions

We adjust the definitions of UC and CP to the new model WCP. We base our work
on the collusion preserving (CP) computation of [1] described in Section 3.2.1. In
the CP model, all the adversaries are connected with the environment Z . Hence if
we use CP in a straightforward way, then Z gets the values of corrupted parties as
well as the values of all the honest parties, and that is not what we would expect
from the attacks described in Section 5.2. We need to modify the construction
in such a way that it would take into account that the honest parties will never
use Z to share their view with the corrupted parties. Instead of assigning an
adversary to each party, we assign an adversary to each coalition. We put some
additional constraints on the adversary that ensure that the outputs of only one of
these coalitions reach the environment.

Definition 5.2 (t-coalition split adversary). Let n be the number of parties. A
t-coalition split adversary A is a set of PPT machines {AH1 , . . . ,AHn ,AH ,AL}
defined as follows.

1. The connections betweenA,Z , and the protocolφ, aswell as the connections
between different components of A, are depicted on the left hand side of
Figure 5.2. Any communication inside A goes either from AL to AHi ,
from AHi to AH , or from AH to AL. The machine AH mediates the

149

communication between Z and all the other machines AH1 , . . . ,AHn ,AL.
For all i ∈ [n], the machine AHi [resp. AL] do not receive inputs from AH
[resp. π] nor give outputs to π [resp. AH].

2. All party corruptions are arranged by AL. Its construction should ensure
that each party is corrupted by exactly one adversary AHi . The adversary
AH1 actively corrupts up to t parties, and each other adversary passively
corrupts at most one party. AL may send messages to all parties.

3. There is some j ∈ [n], such that for all i ∈ [n]\{j}, the internal state and
the behaviour ofAH do not depend on the inputs coming fromAHi . We call
AHj the true adversary and the other AHi -s the false adversaries.

Let k = true(A) be the adversary index k such that AHk is the true adversary.

The property (1) lets the information moving from Z to π to be controlled by
a single adversary AL, and it splits the information moving from π to Z among
different receiving adversaries. The property (2) constructs an actively corrupted
coalition of size at most t, and lets each honest party be controlled by a separate
passive adversary. The property (3) guarantees that the views of different coalitions
will not be merged.

Referring to the intuitive description of Section 5.3.1, AL corresponds to the
adversary Aactive that attacks the protocol. The adversary AH1 corresponds to the
same actively corrupted coalition; this is not covered by the game of Figure 5.1,
and it is needed to makeWCP as strong as UC, taking into account the information
that the active attacker has learned itself. Each other adversary AHi for i 6= 1
passively corrupts a single party and corresponds to Apassive of Section 5.3.1.

We could defineWCP emulation analogously to CP by replacing any adversary
with a t-coalition split adversary. However, we now need to be careful with the
simulator definition. If we allow S to be an arbitrary PPT machine, then it may
happen that (S‖A) is no longer a t-coalition split adversary. Hence we need to
constrain the class of simulators.

Definition 5.3 (split simulator). LetA = {AH1 , . . . ,AHn ,AH ,AL} be a t-coalition
split adversary. A split simulator Sk = {SH1 , . . . ,SHn , SH(k),SL} is a set of PPT
ITMs defined as follows.

1. The connections between Sk, A, and the protocol φ, as well as the connec-
tions between different components ofA, are depicted on the right hand side
of Figure 5.2. The communication inside Sk goes either from SL to SHi ,
from SHi to SH(k), or from SH(k) to SL. The machine SH(k) mediates
the communication betweenA and all the other machines SH1 , . . . ,SHn ,SL.
For all i ∈ [n], the machine SHi [resp. SL] does not receive inputs from
SH(k) [resp. φ] nor gives outputs to φ [resp. SH(k)].

150

2. SH(k) is an ITM with the following fixed behaviour:

• For all messagesm coming from AL, it sends (L,m) to SL.
• On inputm from SHi , it forwardsm to AHi .
• On input (L,m) from SHk , it sends (k,m) to SL.

In this way, we let SH(k) depend on the knowledge which adversaryAHk is
the true one. Here L is just a fixed symbol used to distinguish the messages.

The property (1) is analogous to the similar property of t-coalition split ad-
versary, letting the information moving from A to φ to be controlled by a single
simulator SL, and splitting the information moving from φ to A among different
receiving simulators SHi , so that each simulator has the view of its own coalition.
The property (2) guarantees that the simulators SHi do not share any information
with each other, and SHi does the simulation only for AHi .

We show that (Strue(A)‖A) is also a t-coalition split adversary. Otherwise
it may happen that we give more power to the adversary that attacks an ideal
functionality than to the adversary that attacks a real functionality, and that would
result in weaker security proofs.
Lemma 5.1. Let A = {AH1 , . . . ,AHn ,AH ,AL} be a t-coalition-split adversary,
and let Sk = {SH1 , . . . ,SHn ,SH(k),SL} be a split simulator. Then (Strue(A)‖A)
is also a t-coalition split adversary.
Proof. By Definition 5.2, there exist channels only fromAL toAHi for all i ∈ [n],
but not the other way around. By Definition 5.3, using SH as a mediator, SHi
delivers messages from the protocol π toAHi , and SL delivers messages fromAL
to π. Similarly, there exist channels only from SL to SHi for all i ∈ [n], and only
the messages of SHk s.t AHk is the true adversary may reach SL. We may define
A′Hi = (SHi ‖AHi), A′H = (SH‖AH), and A′L = (SL‖AL), where SHi and
AHi [resp. SL and AL] communicate directly instead of using SH as a mediator.
In order to forward messages from SHk to SL, we allow SHi to send messages
directly to the component SH of A′H that forwards the messages of SHk them to
the component SL of A′L.

As the result, direct communication takes place only fromA′L toA′Hi , but not
the other way around. A′L does not receive inputs from π, and none of the A′Hi
outputs to π. Only the messages of the true adversary A′Hk are forwarded by A′H
to A′L. The resulting adversary AS ′ = {A′H1 , . . . ,A′Hn ,A′H ,A′L} satisfies the
definition of a t-coalition split adversary.

Wemay nowdefineWCP emulation similarly toUC emulation (Definition 2.1).
Since the number of actively corrupted parties, t, is a part of the adversary defini-
tion, we need to parametrize the definition of emulation with t. We call it a t-WCP
emulation.

151

AHn

Z

AL

AH1π

AHn

AH
∃S ∀Z ∀A
≈

Z

SH

SHn

SH1

SL

AH1

AL

φ

AH

Figure 5.2: The protocol π t-WCP emulates the protocol φ

Definition 5.4 (t-WCP emulation). Let π and φ be n-party protocols. We say
that the protocol π t-WCP-emulates the protocol φ if there exists a PPT split
simulator Sk = {SH1 , . . . ,SHn ,SH(k),SL}, such that, for any PPT t-coalition
split adversary A = {AH1 , . . . ,AHn ,AH ,AL}, and for any PPT environment Z ,
for a t-coalition split adversary AS = (Strue(A)‖A), the probability ensembles
EXECπ,A,Z and EXECφ,AS ,Z are indistinguishable.

The definition is correct by Lemma 5.1. It is depicted in Figure 5.2. The
definitions of a protocol π WCP-realizing an ideal functionality F, as well as
protocol emulation in hybrid model, can be derived from this definition similarly
to UC model.

We could as well define blackbox simulatability, constructing the adversary
AS = {SH1 (AH1), . . . ,SHn (AHn),SH(AH),SL(AL)}. In this case, SH gets the
parameter k = true(A) directly from the description of AH .

5.3.3 Technical Details

Communication between corrupted parties and the adversary. In UC, the
easiest way to model the corrupted parties is to let all their messages be chosen
by A. When a corrupted party Pi is supposed to send a message m to another
party Pj , then A chooses m∗ that should be sent to Pj instead. It is possible that
m 6= m∗. We could do the same in WCP model, lettingAL to choose the message
for Pi. If AH1 is the true adversary, then A is as strong as a monolithic adversary
that corrupts the same parties as AH1 does (as we prove later in Section 5.3.7).
However, it may weaken the adversary in the cases where we treat some passive
AHk as the real one. In this case, the messages received by the active adversary
AH1 will not be accepted by AH .

The first problem is that AL might not know that Pi is waiting for an input,

152

since only AH1 has access to the current state of Pi. To solve it, we may assume
that Pi processes the messages of AL in the order of coming, and waits until the
next message comes from AL. Also, AL may synchronize itself with AHk and Z .

The second problem is thatAL does not get the messages received by actively
corrupted parties, and hence does not know how they should respond if they want
to follow the protocol. To solve this problem, we allow AL to send to an actively
corrupted Pi a dummy message >, denoting that Pi should computem according
to the protocol rules. To ensure that all simulations would succeed, we will need
to define ideal functionalities in such a way that they also admit >. If AL wants
Pi to remain silent, let the dummy message ⊥ be chosen for Pi.

The behaviour of corrupted Pi can be summarized as follows:

• The corruption of Pi by the coalition AHj is determined by AL, who sends
a message (corrupt, j) to the party Pi. After the machine Pi receives that
message, it forwards its internal state and all further received messages to
the adversary AHj .

• At any time when Pi should send a messagem to another party Pj , it reads
the next message (j,m∗) fromAL, and sendsm∗ to Pj instead. Ifm∗ = ⊥,
then Pj does not send anything to Pj . If m∗ = >, then Pj sends to Pj the
messagem computed according to the protocol rules. Namely, it computes
m correctly according to its inputs, randomness, and the messages received
from the other parties so far (these received messages may be erroneous if
Pj or some other party misbehaved on earlier steps of the protocol).

Similarly to Chapter 4, we will often use an informal expression “x is chosen
by ASL” in definitions of ideal functionalities, where a message of the form
(command, id, x) comes from a corrupted party. Formally, in such cases the ideal
functionality F sends a message (arrived(command), id, x) to ASHi , a message
(arrived(command), id) to allASHj for j 6= i (to solve the synchronicity problems
betweenAHi andAL), and waits untilASL sends (change(command), id, x′), so
that F will further use x′ instead of x. If x′ = >, then F just takes x.

Simplifications due to one true adversary. In an extreme case, there may
be n distinct adversaries AHi , one for each of the n parties. This requires n
different simulators SHi , and reasoning about their joint view makes the proofs
rather complicated. Since there is always exactly one true adversary AHk , and
the outputs of all other AHi are ignored by AH , regardless of the values they get
from SHi , it suffices to observe the joint views of the pairs (SL,SHk) for k ∈ [n]
separately. The behaviour of the machine SH(k) is fixed, so it does not need to
be defined. Moreover, since we are only interested in simulating correct view of

153

Pn

AL

P1

AH

G

AH1

AHnπ

Z

SHn

SH1

SL

SH AH

Z

G

F

∃S ∀Z ∀A
≈

AH1

AHn

AL

Figure 5.3: The protocol π G-WCP realizes the ideal functionality F

the true adversary, we may assume in the proofs that SL gets all messages of SHk
through SH(k). In this way, the entire simulation can be delegated to SHk alone,
who is able to exchange messages between φ andA in both directions, and SL and
SH do not need to be used explicitly in the proofs of WCP emulation. Depending
on which adversary is the true one, each proof in t-WCP model consists of the
following two types of proofs:

• AH1 is the true adversary, and the active attacker tries to get information
itself (this makes WCP it as strong as UC).

• AHk for k 6= 1 is the true adversary, and the attacker tries to leak information
to the honest party corrupted by AHk (this allows to discover additional
attacks not covered by UC).

If the protocol is symmetric w.r.t. all parties, then it is sufficient to describe
the behaviour just for two types of SHk , one for an active adversary, and one for a
passive adversary.

5.3.4 Relations with Generalized Universal Composability

The CP model is actually based not on UC, but GUC (see Section 2.2.3), which
allows a protocol π to use a shared functionality G whose party ports may be
accessed not only by π (like in UC), but also by Z . We may extend this notion to
WCP. The shared functionality G interacts with A in exactly the same way as an
ordinary functionality F does, receiving inputs from AL and sending outputs to
AHi . The pictorial representation of G-GWCP realization is given in Figure 5.3,
where for simplicity each adversary corrupts one party.

154

5.3.5 Capturing Information Leakage to an Honest Party

Compared to the Definition 5.1 that describes our intuition behind the security
model, Definitions 5.2 and 5.4 are more complicated. We need to show that, if
a protocol π WCP-realizes an ideal functionality F, then the protocol π leaks to
honest party as much information as F does according to Definition 5.1.

Proposition 5.1. Let π be a protocol that t-WCP-realizes an ideal functionalityF.
Assuming that Aactive corrupts at most t parties, the protocol π leaks to honest
party as much information as F does according to Definition 5.1.

Proof. Suppose by contrary that there is an adversary pair (Aactive,Apassive)
such that difference of the success probabilities in the games GAreal and GSideal of
Definition 5.1 is non-negligible for any choice of simulators Sactive and Spassive.
We use it to construct a t-coalition split adversary A = {AH1 , . . . ,AHn ,AH ,AL}
that breaksWCP-emulation. First, we takeAHk := Apassive for an arbitrary k 6= 1,
letting the final guess ofApassive be output toZ , and define true(A) := k. We then
take AL := D and AHi := D for all i 6= k, where D is just a message forwarding
box. We remove the implicit channel from AHk to AL (the one arranged by AH),
as there is no channel from Apassive to Aactive.

The environment Z absorbs Aactive. It chooses the same inputs m0 and m1

that guaranteed success in distinguishing the games GAreal and GSideal, and chooses
a random mb as the input for the protocol (π or F). In addition, it forwards to
AL all messages that it receives from AHk , marking them with a special symbol
to make them distinguishable from the other messages. The final output of Z is
b′ = b, where the guess b′ is generated by AHk . We get GAreal ≈ EXECπ,A,Z .

Assuming that π t-WCP-realizes F, there is a simulator Sk = {SH1 , . . . ,SHn ,
SH(k),SL} such that |EXECF,(Sk‖A),Z −EXECπ,A,Z | < ε for a negligible ε.
We would like to take Sactive := (SL‖AL) and Spassive := (SHk ‖AHk ,SH‖AH),
getting the same interaction with F as in the WCP model. However, the problem
is that, although we have removed the channel fromAHk toAL, there may still be a
channel from SHk to SL. Hence we adjust the definition of A and let AHk forward
to Z all messages that it receives from SHk . After getting these messages from Z ,
AL will forward them to SL. Again, special marking can be used to make these
messages distinguishable from the other messages. In this way, Sk is a suitable
simulator against this particular A even if we remove the communication channel
from SHk to SL. Now Sactive := (SL‖AL) and Spassive := (SHk ‖AHk ,SH‖AH)
satisfy Definition 5.1, and we have GSideal ≈ EXECF,(Sk‖A),Z .

Since we assumed by contrary that the difference of success probabilities in
the games GAreal and GSideal is non-negligible, it should be |EXECF,(Sk‖A),Z −
EXECπ,A,Z | > ε, contradicting |EXECF,(Sk‖A),Z − EXECπ,A,Z | < ε.

155

5.3.6 Composition Theorem

Dummy Lemma

The proof of UC composition theorem is simpler if, instead of an arbitrary ad-
versary A, we consider the dummy adversary D that only forwards the messages
between the protocol and the environment. This kind of adversary is in some
sense the strongest one since it delegates all the attacks to the environment Z , and
it just gives to Z the entire view of the corrupted parties. This property of D is
stated as the dummy lemma, that has been proven for UC in [21], and holds also
in the LUC and CP models. In our WCP model we could also substitute the true
adversary with a dummy adversary, similarly to UC. However, the false adversaries
are not allowed to forward the messages. If we replace a false adversary with D,
it will be too strong since the view of the false adversary will be forwarded to the
environment. We conclude that the dummy lemma of UC that works also for CP
and LUC is not directly applicable to WCP. Nevertheless, it holds if D satisfies
the t-coalition adversary definition.

Definition 5.5 (k-dummy t-coalition split adversary). Let n be the number of
parties, and let k ∈ [n] be any fixed adversary index. The k-dummy t-coalition
split adversaryDk = {DkH1 , . . . ,DkHn ,DkH ,DkL} is a t-coalition split adversary,
where:

• DkL is forwarding messages from DkH to the protocol;

• DkHi for all i ∈ [n] are forwarding messages from the protocol to DkH ;

• DkH is forwarding messages from DkHk to Z , and from Z to DkL.

The definition is correct since DkL and DkHi are clearly instances of AL and
AHi respectively, and althoughDkH does not forwardmessages fromDkHk toDkL,
it can be seen as an instance of a t-coalition split adversary where AL ignores the
inputs that it gets viaDkH fromDkHk . For n parties, there can be up to n different
k-dummy adversaries D1, . . . ,Dn, such that true(Dk) = k.

Lemma 5.2 (t-dummy lemma). Let π and φ be n-party protocols. Then π t-WCP-
emulates φ according to Definition 5.4 if and only if it t-WCP-emulates φ with
respect to all k-dummy t-coalition split adversaries for all k ∈ [n].

Proof. One proof direction is trivial since a t-dummy adversary is just an instance
of a t-coalition split adversary. The other direction is more interesting. Let Sk
be the split simulator for the k-dummy adversaryDk guaranteed by Definition 5.4
(that is, Sk satisfies EXECφ,(Sk‖Dk),Z′ ≈ EXECπ,Dk,Z′ for all Z ′.) We show
that π t-WCP emulates φ according to Definition 5.4. We claim that Strue(A) is a
suitable simulator for an arbitrary t-coalition split adversary A.

156

AHn

AHn

Z

AL

AH1π

AHn

AH

Z ′

Z

AH1

AL

DkH

DkH1

DkL ≈

SH

SHn

SH1

SL

φ

Z A Z ′

DkH

DkH1

DkL

π

≈≈

A

DkHn DkHn

k = true(A)

Z

SH

SHn

SH1

SL

AH1

AL

φ

AH

AH

∃ Sk = {SH1 , . . . ,SHn ,SH(k),SL}

Figure 5.4: t-dummy lemma

Assume by contrary that there is a t-coalition split adversary A and an envi-
ronment Z such that true(A) = k, and |EXECφ,(Sk‖A),Z − EXECπ,A,Z | ≥ ε.
We use it to construct Z ′ such that |EXECφ,(Sk‖Dk),Z′ − EXECπ,Dk,Z′ | ≥ ε.
First, we define Z ′ = (A‖Z). Since the inner state ofAH does not depend on the
inputs coming from AHi for i 6= k anyway, we could as well put Dk between the
protocol π [resp. the simulator S] and A, forwarding all messages from AL to π
[resp. SL], and delivering only the messages of parties corrupted byAHk [resp. of
SHk] to AHk . We get |EXECφ,(Sk‖Dk),Z′ − EXECπ,Dk,Z′ | ≥ ε.

The quantities used in the proof are depicted in Figure 5.4. Note that
(Sk‖Dk) ≈ Sk, since Dk just forwards messages from SHk to Z and from Z
to SL, which could be as well handled by SH alone.

157

WCP Composition Theorem

We want to show that protocols of the WCP model are composable. We state and
prove a theorem that is very similar to UC composition (Theorem 2.1).

Theorem 5.1 (WCP composition theorem). Let ρ, φ, π be protocols such that
ρ uses φ as subroutine, and π t-WCP-emulates φ. Then protocol ρ[φ → π]
t-WCP-emulates ρ.

Proof. As the basis for our proof, we take the simpler proof variant of UC compo-
sition theorem of [21] that proves the claim for one instance of φ and then extends
it to polynomially many calls of φ by induction (taking into account that simulation
quality is lost). Similarly to the proofs of analogous theorems for UC, CP, LUC,
we base our proof on t-dummy lemma.

Consider the protocol ρ that uses φ as subroutine. We need to prove that
there exists a split simulator Sk = {SH1 , . . . ,SHn ,SH(k),SL} such that, for any
t-coalition split adversary A = {AH1 , . . . ,AHn ,AH ,AL} and any environment Z
we haveEXECρ[φ→π],A,Z ≈ EXECρ,(Strue(A)‖A),Z . By Lemma 5.2, it suffices to
prove that EXECρ[φ→π],Dk,Z ≈ EXECρ,(Sk‖Dk),Z , i.e. EXECρ[φ→π],Dk,Z ≈
EXECρ,Sk,Z , for all k ∈ [n].

Let k ∈ [n] be arbitrary. By definition, the adversary Dk just forwards the
messages between ρ[φ → π] and Z . There could be as well two instances of
adversaries Dk, one mediating the communication between Z and ρ (let it be
denoted Dkρ), and the other between Z and π (let it be denoted Dkπ). We
may write Dk = (Dkφ‖Dkρ) Taking Z ′ = (Dkρ‖Z), we may view Dkπ as an
adversary attacking π with respect to the environment Z ′.

Since π t-WCP-emulates φ, there is S ′k = {S ′H1 , . . . ,S ′Hn ,S ′H(k),S ′L} s.t.
EXECπ,Dkπ ,Z′ ≈ EXECφ,(S′k‖Dkπ),Z′ , i.e. EXECπ,Dkπ ,Z′ ≈ EXECφ,S′k,Z′ .
We take the simulator Sk = (S ′k‖Dkρ), where S ′k and Dkρ are just running in
parallel without any interaction. This is a suitable simulator for the protocol
ρ[φ 7→ π], having all necessary ports. Since there is no interaction between S ′k
and Dkρ, the construction of Sk satisfies Definition 5.3.

We want to show that Sk is a suitable simulator for ρ[φ→ π]. Assume by con-
trary that Sk is not suitable. That is, |EXECρ[φ→π],Dk,Z − EXECρ,Sk,Z | ≥
ε. Since Sk = (S ′k‖Dkρ) and Z ′ = (Dkρ‖Z), we have EXECρ,Sk,Z ≈
EXECφ,S′k,Z′ . Since Dk = (Dkπ‖Dkρ), we also have EXECρ[φ→π],Dk,Z ≈
EXECπ,Dkπ ,Z′ .

Putting all together, we get |EXECπ,Dkπ ,Z′ − EXECφ,S′k,Z′ | ≥ ε, which
contradicts the assumption that π t-WCP-emulates φ.

The quantities used in the proof are depicted in Figure 5.5.

158

DkHn

DkL

DkH1π

DkH

ρ

Z

≈

≈

≈

S ′L

S ′H

Z

φρ

Z ′

S ′H1

S ′Hn

S ′L

Z

S ′H

S ′Hn

πρ

Z

SH

SL

S ′H1

∃S ′k = {S ′H1 , . . . ,S ′Hn ,S ′H(k),S ′L}

φρ

Figure 5.5: WCP composition theorem

159

5.3.7 Relations to the Existing Notions

We want to show that no attack that the UC model detects remains unnoticed by
the WCP model. Namely, we show that t-WCP-emulation implies UC-emulation,
and hence our security definition is stronger. Similarly to CP, failure in achieving
t-WCP-specific properties provides UC security fallback on the assumption that at
most t parties are corrupted in UC.

Transformations of Different Models

Since the ports betweenF andAS are different in UC andWCPmodels, we cannot
use the same functionality F in both UC and WCP models at once. We need to
define a transformation between UC and WCP functionalities. In this section we
describe how an ideal functionality FWCP defined in WCP model can be mapped
to/from the corresponding functionality FUC , FCP , FLUC . We use the notation
↓XY for the transformation from a functionality of the model X to the functionality
of the model Y.

Let c(i) be the index of the adversary corrupting Pi. Let Ck be the set of all
parties corrupted by AHk .

WCP and UC. Let A be the monolithic UC adversary corrupting at most t
parties, and {AH1 , . . . ,AHn ,AH ,AL} the t-coalition split adversary. Since in UC
the view of all corrupted parties goes to Z , the UC adversary A corresponds to
one WCP adversary AHk , taking into account its collaboration with AL.

Definition 5.6 (WCP to UC). Let FWCP be a functionality in the WCP model.
The functionality FUC =↓WCP

UC(k) (FWCP) behaves the same as FWCP with the
following differences in the interface:

1. Upon receiving an input (in) from A, FUC behaves as FWCP would upon
receiving input (in) from AL.

2. Whenever FWCP generates an output (out) to the adversary AHk , FUC
gives (out) to A. The outputs of FWCP generated for AHj , j 6= k are
ignored.

In this way, the transformation ↓WCP
UC is parametrized by k, and there are up

to n different transformations ↓WCP
UC(1) (FWCP), . . . , ↓WCP

UC(n) (FWCP), depending
on which coalition is treated as an adversary in UC model. We note that k = 1
provides the strongest security definition, since k > 1 assume only one passively
corrupted party. Nevertheless, the transformations for k > 1 can still be interesting
in the cases of asymmetric protocols, where it is known in advance that some

160

party is unconditionally honest. As we prove in Theorem 5.2, any protocol WCP-
emulating FWCP will also UC-emulate FUC =↓WCP

UC(k) (FWCP) for all k ∈ [n].
A more general solution would be to allow A to corrupt parties that are

controlled by different adversariesAHk . If the protocol assumes that any party may
be corrupted, and there are no unconditionally honest parties, then this case would
as well be covered by ↓WCP

UC(k), treating these parties as one coalition. If the initial
WCP protocol makes assumptions that some particular party is unconditionally
honest, then the resulting UC protocol would be insecure, allowing to merge
together the views of the corrupted parties and the unconditionally honest party.
In UC model, such an honest party would never be treated as corrupted anyway.
Hence, without loss of generality, we end up with the transformations ↓WCP

UC(k).

Definition 5.7 (UC to t-WCP). Let FUC be a functionality in the UC model.
The functionality FWCP =↓UCWCP (FUC) behaves the same as FUC with the
following differences in the interface:

1. Upon receiving an input (in) from AL, FWCP behaves as FUC upon
receiving input (in) from A.

2. Whenever FUC generates an output (out) to A, FWCP gives (out) to the
adversary AH1 .

The transformation works in a straightforward way, keeping the description of
interaction with the active adversarial coalition, and without specifying anything
about the information leaked to the honest parties. This additional specification
is in general non-trivial, and it should be done individually for each ideal func-
tionality. We will give some examples in Section 5.4, when we covert the UC
functionalities of Chapter 4 to WCP functionalities.

WCPandCP. Similarly to UC, since in CP the view of all corrupted parties goes
to Z , the CP adversary A = {A1, . . . ,An} may corrupt up to t parties to make it
comparable with t-WCP. Differently from UC, the parties of CP may be corrupted
by different adversaries. Let CP adversary corrupt t′ ≤ t parties actively, and the
remaining t − t′ parties passively. We assume that the same parties are actively
corrupted in both models.

As the result, our transformation will split the active adversaryAH1 intoAi for
i ∈ C1 when transforming WCP protocols to CP protocols, and it will merge the
actively corruptedAi toAH1 when transforming in the other direction. Otherwise,
there will be one-to one correspondence between AHi and Ai.

Definition 5.8 (CP to WCP). Let FCP be a functionality in the CP model. The
functionalityFWCP =↓CPWCP (FCP) behaves the same asFCP with the following
differences in the interface:

161

1. Upon receiving an input (in, i) from AL, FWCP behaves as FCP would
upon receiving input (in) from the adversary Ai.

2. WheneverFCP generates an output (out) to the adversaryAi,FWCP gives
(out) to AHc(i).

Definition 5.9 (WCP to CP). Let FWCP be a functionality in the WCP model.
The functionality FCP =↓WCP

CP (FWCP) behaves the same as FWCP with the
following differences in the interface:

1. Upon receiving an input (in) from some Ai, FCP behaves as FWCP upon
receiving input (in) from AL.

2. Whenever FWCP generates output (out) toAHk , FCP gives (out) to all the
adversaries Aj such that j ∈ Ck.

WCP and LUC. Similarly to the CP case, we assume that there are t′ parties
actively corrupted by the LUC adversary, and t− t′ passively corrupted. The idea
is to first merge all the adversaries Ai,j into one adversary Ai, since Ai,j models
the communication between Pi and Pj as seen by Pi. These adversaries are then
handled similarly to CP adversaries, merging the active adversaries into AH1 .
Definition 5.10 (LUC to WCP). Let FLUC be a functionality in the LUC model.
The functionality FWCP =↓LUCWCP (FLUC) behaves the same as FLUC with the
following differences in the interface:

1. Upon receiving an input (in, (i, j)) from AL, FWCP behaves as FLUC
would upon receiving input (in) from the adversary Ai,j .

2. Whenever FLUC generates an output (out) to the adversary Ai,j , FWCP

gives (out, (i, j)) to AHc(i).

Definition 5.11 (WCP to LUC). Let FWCP be a functionality in the WCP model.
The functionality FLUC =↓WCP

LUC (FWCP) behaves the same as FWCP with the
following differences in the interface:

1. Upon receiving an input (in) from some Ai,j , FLUC behaves as FWCP

upon receiving input (in) from AL.

2. Whenever FWCP generates output (out) toAHk , FLUC gives (out) toAi,j
for all i ∈ Ck, j ∈ [n], j 6= i.

These transformations can be easily extended to protocols using ideal func-
tionalities as subroutines, similarly to CP and LUC transformations. In particular,
if a protocol πX uses a subroutine FX defined in the model X , then replacing
FX with a new subroutine FY =↓XY (FX) gives us a protocol πY defined in the
model Y .

162

Relations of Different Models

In Section 5.3.7 we have defined transformations for different models. These
transformations modify the definitions of ideal functionalities F in a way similar
to how communication of the computing parties with the adversary is changed
between different models. In this section, we prove some strength relationships
between WCP and the other models.

We show that, assuming that the number of corrupted parties is the same, then
WCP emulation implies UC emulation. As we show in Section 5.3.8, the converse
does not hold.

Theorem 5.2. If the protocol π t-WCP-emulates the protocol φ, then ↓WCP
UC(k) (π)

UC-emulates ↓WCP
UC(k) (φ) for all k ∈ [n], assuming t corrupted parties.

Proof. Suppose that πWCP := π t-WCP emulates φWCP := φ. Let Sk =
{SH1 , . . . ,SHn ,SH(k),SL} be the simulator that exists due to t-WCP emulation
for any t-coalition split adversary.

Let S = {SHk ,SL,�}, where:

• SHk delivers all messages directly to A and to SL instead of SH(k);

• SL receivesmessages directly fromSHk andA instead ofSH(k), and outputs
all messages intended for SHi , i 6= k to � instead;

• � is an ITM that does not output any messages.

We show that it is a suitable simulator for the UC protocols πUC :=↓WCP
UC(k) (π)

and φUC :=↓WCP
UC(k) (φ). We prove the theorem for k = 1, assuming that there are

t parties actively corrupted by the UC adversary. The case k > 1 follows directly
from the k = 1 case, since it considers a weaker UC adversary, so the simulation
can be only easier for k > 1.

Assume by contradiction that there are A, Z such that |EXECπUC ,A,Z −
EXECφUC ,(S‖A),Z | ≥ ε. Define an adversary A′ = {A′H1 , . . . ,A′Hn ,A′H ,A′L}
attacking πWCP , where A′H1 is the true adversary, just forwarding all messages
from πWCP to AH , and AL = A, where the messages that A expects from πUC

are coming from AH . By construction, A′H1 forwards all messages of πWCP to
AL = A. By Definition 5.6, the protocol ↓WCP

UC (π) is defined similarly to π,
but all messages that were meant for A′H1 are now sent to A. Hence we have
EXECπUC ,A,Z = EXECπWCP ,A′,Z .

Let us look at the composition (Strue(A′)‖A′) = (S1‖A′). All messages of
SHj that SH delivers toA′Hj for j 6= 1 will be lost sinceA′Hj are false adversaries.
Hence the interaction of S1 withA′ would not change if we connected SH1 directly

163

Z

A

A′
πWCP

A

Z

Z

SL

A

≈ ≈

≈

S
A

Z

πUC φUC

true(A′) = 1

A′

∃Sk = {SH1 , . . . ,SHn ,SH(k),SL}

SL

φWCP
SH1

SHn

SH1

Figure 5.6: WCP emulation implies UC emulation

to A′H1 and discarded all SHj for j 6= 1. Since AH1 is the true adversary, SL

receives the same messages of SH1 as it does in Sk. By discussion similar to πUC
case, in φUC exactly those outputs that AH1 received from φWCP are transmitted
to (S‖A). We get EXECπUC ,(S‖A),Z = EXECπWCP ,(Strue(A′)‖A′),Z .

We get that, if |EXECπUC ,A,Z − EXECφUC ,(S‖A),Z | ≥ ε holds, then also
|EXECπWCP ,A′,Z − EXECφWCP ,(Strue(A′)‖A′),Z | ≥ ε holds, contradicting the
t-WCP emulation assumption.

The quantities used in the proof are depicted in Figure 5.6. Analogously, one
can prove that G-WCP emulation implies G-EUC emulation.

Wewould also like to compareWCP andCP. In general, CP security is stronger.
Firstly, it requires a separate simulator Si for each party, while WCP uses a single
simulator SH1 for all actively corrupted parties. Secondly, if the t parties that are

164

corrupted in CP model are corrupted by different adversaries AHj in the WCP
model, then the outputs of all adversaries A′i will reach Z , while only one AHj
delivers its outputs to Z in WCP.

We show that, assuming that the number of corrupted parties is the same, then
CP emulation implies WCP emulation. As we show in Section 5.3.8, the converse
does not hold.

Theorem 5.3. If the protocol π CP-emulates a protocol φ assuming t corrupted
parties, then ↓CPWCP (π) t-WCP emulates ↓CPWCP (φ).

Proof. Let πCP := π, φCP := φ, πWCP :=↓CPWCP (π), φWCP :=↓CPWCP (φ).
The CP emulation gives a simulator S ′ = {S ′1, . . . ,S ′n} such that, for any Z and
for any CP adversary A′, we have EXECπCP ,A′,Z ≈ EXECφCP ,(S′‖A′),Z .

Let C denote the set of actively corrupted parties. Take SH1 = {S ′i | i ∈ C},
and SHi = S ′i for i /∈ C. Let SL contain S ′j for all j ∈ [n], and let it forward
messages from SH(k) to φWCP and to SHj . Define SH(k) in a standard way. Let
Sk = {SH1 , . . . ,SHn ,SH(k),SL}.

Suppose that this choice ofSk is not good, andwe have found an adversaryA =
{AH1 , . . . ,AHn ,AH ,AL} and Z that can break t-WCP, i.e. |EXECπWCP ,A,Z −
EXECφWCP ,(Strue(A)‖A),Z | ≥ ε. Let a CP adversary A′ be defined as A′i =

(AH1 ‖AL) for all i ∈ C, and A′i = (AHj ‖AL) for some j 6= i for all i /∈ C. Let
Z ′ = (AH‖Z). In other words, we have taken A′ such that (A′‖Z ′) = (A‖Z),
and just partitioned it logically into A′i, giving each A′i its own copy of AL. Let
j = true(A). We show that, ifA′ corrupts the parties of Cj , thenA′ and Z ′ break
CP emulation.

• Since SL may deliver everything that it gets from AL to SHj , and SHj
contains the code of S ′i for all i ∈ Cj , it is able to simulate the messages
leaving SHj and entering AHj in such a way that they come from the same
distribution as the messages exiting S ′i and entering A′i in the CP model for
all i ∈ Cj .

• Conversely, SHj is able to deliver arbitrary messages to SL via SH(j).
Hence SL is able to simulate the messages leaving SL and entering φWCP

in such a way that they come from the same distribution as the messages
exiting S ′i and entering φCP for all i ∈ Cj .

As a summary, for j = true(A), we get the following. By construction of
A′, since (A′‖Z ′) = (A‖Z), and their interaction with the protocol is the same,
we have EXECπCP ,A′,Z′ ≈ EXECπWCP ,A,Z . Similarly, the simulators S ′i for
i ∈ Cj , taken altogether, interact with φCP and A′i exactly in the same way as SHj

165

Z

AL

AH

AH1

AHn

A

Z

AHi

AHk

AHi

AHk

AH

AL

A

AHi

AHk

Si

≈

∃S = {S1, . . . ,Sn}

πCP

πWCP

φCP

SiφWCP

Sk

Si

k = true(A)

Sk

≈

Z

≈

Z

Figure 5.7: CP emulation implies WCP emulation

and SL together interact with φWCP and AHj , AL, so EXECπCP ,(S′‖A′),Z′ ≈
EXECπWCP ,(S‖A),Z . Hence |EXECπCP ,A′,Z′ ≈ EXECφCP ,(S′‖A′),Z′ | ≥ ε,
which contradicts the assumption that πCP CP-emulates φCP

The quantities used in the proof are depicted in Figure 5.7. Since the LUC
model is a generalization of the CP model, and the adversaries Ai,1, . . . ,Ai,n
could be treated as a single adversary getting all the messages received by Ai, we
conclude that WCP is also weaker than LUC.

Corollary 5.1. If the protocol π LUC-emulates a protocol φ assuming t corrupted
parties, then ↓LUCWCP (π) t-WCP emulates ↓LUCWCP (φ).

166

5.3.8 Applicability of the WCP Model

In this section we show why WCP is a suitable model for pointing out the attacks
we mentioned in Section 5.2. We present some properties related to leaking
information to an honest party that can be captured by t-WCP, but not by UC, CP,
LUC. Since CP lets the adversaries to communicate through an arbitrary resource
R, the security in CP model depends on the particular choice of R, which allows
it to be stronger as well as weaker than the other models. In order to make the
definitions similar, we assume that R delivers to Ai the internal state of Pi, and
the adversary Ai may also replace any message m sent by Pi by a message m∗ of
Ai’s own choice.

The relations of our protocols and functionalities with the adversaries are
described as A(i), where i is some party identifier, and A(i) corresponds to all
i-related adversaries, which is just A for UC, Ai for CP, Ac(i) for WCP, and
Ai,1, . . . ,Ai,n for LUC. In fact, we define the initial functionality in CP model,
transforming it to UC,WCP, and LUC.More details about transformations of ideal
functionalities between different models can be found in Section 5.3.7.

Bad Key Attacks

First of all, we present an ideal functionalityF0 and two of its possible realizations
π1 and π2. We show that, while for UC, CP, LUC these realizations either both
realize or do not realize F0 , they are different in t-WCP model. LetEnc(k,m) be
a pseudorandom permutation [45, Definition 3.7.2], i.e. a function such that, if k is
sampled from a uniform distribution K, then the distribution of y = Enc(K,m)
is computationally indistinguishable from a uniform distribution, for any fixedm.

Ideal. The ideal functionalityF0 takes a secret s from a certain party Pi. If Pi
is actively corrupted, then F0 outputs s to each A(j) for j ∈ [n]. The adversary
is allowed to abort the protocol. If it does not, F0 outputs 0 to each party.

Protocol 1. Consider the protocol π1 where a (symmetric) key is generated as
k =

∑
`∈I k` where I is a set of arbitrarily chosen t parties that are supposed to

generate k` from uniform distribution. All k` are sent to the party Pi that encrypts
a secret s with this key and sendsEnc(k, s) to some party Pj . If any party refuses
to send its message, the protocol aborts.

Protocol 2. Consider an analogous protocol π2 which works in exactly the
same way, but where Pi itself generates one more share kt+1 of k, and sends it to
all other parties.

We now compare these protocols in various models.

• UC Assuming that the total number of corrupted parties is at most t, both
π1 and π2 UC-realize F0 . If Pi is corrupted, then S gets s from F0 and can
simulate everything. Otherwise, the adversary either gets only the key k (if

167

Pj is not corrupted), or it getsEnc(k, s) and up to all shares of k except one
(if Pj is corrupted). If the number of corrupted parties is at least t+ 1, then
both protocols are insecure since all the shares of the key and the Enc(k, s)
may leak to Z .

• CP, LUC If Pi is corrupted, then the key generating parties may use their
shares of k as side channels for collaborating with A(i), and hence neither
π1 nor π2 does not realize F0 . Let Pi be honest. Assuming that the total
number of corrupted parties is at most t, the functionalities π1 and π2 both
realize F0 . If at least one key generating party is honest, the simulator S(j)
only needs to simulate Enc(k, s) as if the key was uniform. If all the key
generating parties are corrupt, then k might not be uniform, but in this case
Pj is uncorrupted, and Sj does not have to simulate anything. If the total
number of corrupted parties is at least t+ 1, then both the k and Enc(k, s)
may leak to Z , and hence π1 and π2 are both insecure, similarly to UC.

• WCP The protocol π2 does t-WCP-realize F0 , but π1 does not. If Pi is
corrupted, then all SHj get s from F0 , and SL gets from AL all the shares
of k that SL delivers to all SHj , so these side-channels are not taken into
account by WCP. Let Pi be honest. In π1, if all the t key generating parties
are corrupted, then SHj has to simulate Enc(k, s) based on the bad key k
that no longer comes from uniform distribution and might be known by Z .
Although SL might have sent the bad key k to SHj , it still does not know
s, and hence cannot simulate Enc(k, s). In π2, the key k comes from a
uniform distribution in any case, since at least one share is generated by the
uncorrupted Pi itself. The question is whether k may leak to Z if all the
key generating parties are controlled by an adversarial coalition of size t,
as they also get the final share kt+1 at some moment. We care about the
simulation by SHj only if AHj is the true adversary. In this case, the entire
key generating coalition has been controlled by a false adversary that never
leaks the final share kt+1 to Z .

We analyze a particular multiparty computation protocol of [80] related to
bad key generation. This is a 3-party protocol with one malicious party, where
the parties P1, P2, P3 compute some function f on input bits x1, x2, x∗3. The
party P3 shares its input as x∗3 = x3 ⊕ x4, and sends x3 to P1 and x4 to P2. The
parties P1 and P2 agree on a common randomness r. They use r to construct
a garbled circuit (GC) F that computes f ′(x1, x2, x3, x4) = f(x1, x2, x

∗
3), and

use oblivious transfer (OT) to deliver the bits (x1, x3) and (x2, x4) to P3. For
our security analysis, the details of GC and OT are not important, and it is only
essential that the security of the inputs x1 and x2 depends on the randomness r.
Hence, without loss of generality, we assume that P1 computes the encryption

168

X1 = Enc(r, (x1, x3)), P3 computes the encryption X2 = Enc(r, (x2, x4)), and
they send X1, X2 to P3 who does some computation with these values, obtaining
f(x1, x2, x

∗
3). As far as P3 does not know r, it cannot infer x1 and x2 from X1

and X2.
The authors of [80] mention that the security would be indeed broken if a

malicious P1 sends r to P3, allowing it to extract x2 from X2. This attack is
not covered by UC. Indeed, it is reasonable to assume that an honest P3 will not
communicate with P1 using any side-channels. This attack would not be noticed
also by WCP, since it does not take into account side-channel attacks. However,
P1 may perform this attack quietly, without using side-channels, depending on
how r is generated.

Suppose that the initial randomness r is generated by P1 alone, and P1 just
delivers this r to P2. In UC model, P1 has no reason to choose a bad r since it
does not help P1 to gain any information anyway. Moreover, a bad r may result
in leaking P1’s own secret to P3. However, P1 may still sacrifice its own input
secrecy and intentionally choose r that has low entropy. If we look at the view of
P3 (that is not covered by UC if P1 is corrupted), we see that it contains x2. As
the result, the protocol provides a completely legitimate way of opening x2 to P3.

This attack is detected in 1-WCP model. Let P1 be corrupted by an active
AH1 , and P3 corrupted by a passive AH3 . Suppose that AH3 is the true adversary
that just forwards all its data to Z . At some moment, AL chooses a low-entropy
randomness r that will be delivered by P1 to P2. Let Z be the environment
expecting that, in the real protocol execution, the view of AH3 will contain the X2

which is related to x2 in a certain way defined by the choice of r; i.e. it is waiting
forX2 ∈ A(x2, x4) for a small set A(x2, x4) of possible encryptions that depends
on x2 and x4. This means that SH3 has to simulate X2 that indeed comes from
A(x2, x4), but it does not know x2 by default. The ideal functionality outputs only
x∗3 to AH3 , and SL may additionally open r to SHi . However, it does not help to
simulate an element of A(x2, x4) without knowing x2.

At the same time, if we assume that P1 and P2 mutually generate a good
randomness r running some secure protocol (e.g. using commitment-based coin
toss), then the distribution of r does not depend on the inputs chosen by AL. The
simulator SH3 should again simulate Enc(r, (x2, x4)). It generates X2 according
to the distribution of r (and not the particular r that was received by SH1 and
SH2). Although in generalX2 6= Enc(r, (x2, x4)) for the value r that was actually
received by SH1 and SH2 , the definition of WCP ensures that only one of the views
ofAH1 ,AH2 orAH3 reachesZ andAL. Hence this inconsistency will not be noticed
by Z , as X2 still comes from the distribution it expects.

169

Bad Sharing Attacks

This attack is somewhat similar to the bad key attack of Section 5.3.8. However,
now the shared value itself remains the same, but it will be shared in a bad way,
such that a subset of parties smaller than the official threshold will be able to
reconstruct the secret. This attack would be more interesting if there were several
larger adversarial coalitions. We present its particular case, where a secret gets
leaked entirely to some honest party.

Ideal. We take the same ideal functionality F0 of Section 5.3.8.
Protocol 1. In the protocol π1, a subset I of t parties and a subset J of (t+ 1)

parties (i /∈ I, I ∩ J = ∅) are fixed. First, each Pj for j ∈ I sends a share sj to
Pi. Pi just generates the last (t+ 1)-th share in such a way that the result would be
s, and distributes these shares among the (t+ 1) parties of J . If any party refuses
to send its message, the protocol aborts.

Protocol 2. The protocol π2 is analogous to π1 with the only difference that
this timePi generates all the shares {s`| ` ∈ I} by itself from uniform distribution.

• UC Assuming that the total number of corrupted parties is at most t, both
π1 and π2 UC-realize F0 . If Pi is corrupted, then S gets s from F0 and can
simulate everything. Otherwise, the adversary may get up to t shares of s.
If the number of corrupted parties is at least t + 1, then both protocols are
insecure since all the shares may leak.

• WCP The protocol π2 does t-WCP-realize F1 , but π1 does not. In π1, the
adversary may set up to t shares to a value 0, so that the remaining share
will be exactly the secret s that now leaks to some honest party that has not
known s yet. At the same time, in π2 an honest Pi generates all the shares
from uniform distribution, and each simulator needs to simulate at most t
shares that are distributed uniformly.

• CP, LUC Both π1 and π2 realize F1 with at most t parties. Similarly to
t-WCP, in π1 the adversary A(i) may use the bad sharing as a subliminal
channel to leak s to some other party, but if A(i) falsifies some k shares,
there are at most t− k corrupted parties left to receive the other shares, and
hence t corruptions are not sufficient for the attack. If the number of parties
is at least (t + 1), then both π1 and π2 are insecure since even if no shares
are falsified, in both protocols it may happen that the t+ 1 corrupted parties
hold all the (t+ 1) shares of s.

Our protocol transformations of Chapter 4 are vulnerable to attacks related to
bad sharing. In Section 5.4, we will discuss these problems in more details, and
we provide standard methods that provide protection against such attacks.

170

5.4 Protocol Transformations for Achieving the WCP
Security

Similarly to Chapter 4, we start from a protocol that is secure against t < n/2
passively corrupted parties. In this section, we show how such a protocol can be
made secure against t < n/2 actively corrupted parties, allowing up to all the
other parties to be passively corrupted (i.e. “semihonest majority” assumption).

For any ideal functionality F or a real protocol Π defined in UC model, we
could use the transformations ↓UCWCP (F) and ↓UCWCP (Π) to get the corresponding
functionalities and protocols in WCP model. However, the resulting functionality
is not necessarily secure in WCP model. The problem is that the transformation
only describes the relations between AH1 , since F just does not specify which
messages are allowed to be sent to the passive adversaries AHi , and SHi may fail
to simulate the views to passive adversaries AHi in the real protocol. In general,
this information cannot be extracted from F, and we need to additionally define
which messages can be leaked to honest parties.

In all ideal functionalities of Chapter 4, a message is delivered to A in the
cases when k ∈ C for a particular party index k. We turn any UC functionality F
of Chapter 4 to a corresponding WCP functionality F∗ in such a way that, each
time when a messagem is delivered toA due to condition k ∈ C, we deliverm to
AHc(k) for all k ∈ [n], where c(k) is the index of the adversary that corrupts Pk. For
the protocols, we could define Π∗ :=↓UCWCP (Π) in a straightforward way, since
the behaviour of parties depends on the adversaries corrupting them, and we do
not need to define it manually. However, since almost all protocols of Chapter 4
change, and we want to be more clear with the definitions, we will write out the
protocols Π∗ in details.

5.4.1 Passive Adversaries

First of all, we show that UC and WCP emulations are equivalent definitions if
the adversary is passive. This shows that there is no need to define a special
transformation for making a protocol passively secure in WCP model.

Theorem 5.4. Let π be a protocol that UC-emulates a protocol φ in presence of t
corrupted parties. Then ↓UCWCP (π) passively t-WCP emulates ↓UCWCP (φ).

Proof. Let πUC := π, φUC := φ, πWCP :=↓UCWCP (π), φWCP :=↓UCWCP (φ).
The proof is based on the fact that a passive adversary will not control the corrupted
parties, and hence the messages going from the adversary to the protocol do not
need to be simulated. This allows to use the UC simulator in place of SHi .

Let S′ be the simulator that translates the messages between A and φ to
simulate π. We show that a suitable choice for S = {SH1 , . . . ,SHn ,SH ,SL} for

171

t-WCP emulation is SHi = S ′ for all i, and SL just forwarding messages from SH
to SHi and to φWCP .

Suppose that S is a bad choice, and there exist A = {AH1 , . . . ,AHn ,AH ,AL}
and Z such that |EXECπWCP ,A,Z − EXECφWCP ,(S‖A),Z | ≥ ε. Let k =
true(A). We show that, A′ = A, which can be viewed as an UC adversary after
disconnecting AHi for i 6= k from the protocol, will break UC security.

We prove it first for k = 1, since ↓UCWCP does not specify the leakage to the
other adversaries. In this case, the triple (SL,SHk ,SH) is as powerful as S ′ is,
since they both interact with the same ports of the adversary A′ = A, the same
parties belonging to the set C, and get the same inputs from ideal functionalities
F and ↓UCWCP (F) respectively. We get EXECπUC ,A,Z ≈ EXECπWCP ,A′,Z′
and EXECφUC ,(S‖A),Z ≈ EXECφWCP ,(S′‖A′),Z′ , so |EXECπWCP ,A′,Z′ −
EXECφWCP ,(S′‖A′),Z′ | ≥ ε, contradicting the assumption thatπUC UC-emulates
φUC . This holds for any adversary, not only passive.

We now use the passive adversary assumption to extend the proof to k > 1. We
take the adversaryA such thatA breaks t-WCP and true(A) = k, and transform it
to an adversaryA′′ such thatA′′ also breaks t-WCP and true(A) = 1. In particular,
we just swap the ITMs AH1 and AHk of A. Since the adversary is passive, πWCP

and φWCP do not expect any inputs from it anyway, and so there is no difference
whether AL [and hence SL] outputs anything to the protocol or not. Hence it is
not a problem that S cannot send messages to the parties of Ck for k 6= 1, as S ′
is able to do, so S is still a suitable simulator against A′′. Since the adversary
with index 1 may corrupt more parties, the resulting adversary A′′ may be only
stronger.

The quantities used in the proof are depicted in Figure 5.8. Theorem 5.4 allows
us to transfer UC protocols directly to WCP protocols. In general, if FUC is an
ideal functionality of UC model, then the WCP functionalityFWCP =↓UCWCP (F)
does not specify the information that may be leaked to honest parties. Proving that
πWCP =↓UCWCP (π) WCP-realizes FWCP implies that πWCP also WCP-realizes
FWCP that is extended with additional specifications related to honest parties,
since the emulation is only easier with these additional specifications that give
more information to the simulator.

5.4.2 Fail-Stop Adversaries

A fail-stop adversary [42] follows the protocol as the honest parties do, but it also
may force the corrupted parties to abort the protocol. In this case, the protocol may
still be secure in t-WCP model, if no one attempts to stop it. However, an attempt
to abort the protocol may give the parties some knowledge about the potential set
of cheaters. The countermeasures may explicitly require to leak a secret to some
honest party.

172

AL

AH

S ′

Z

≈

Z

AL

AH

A′
φUCπUC

AHk

AHi

AHk
A′ AHi

∃S ′

AL

AH

Z

S ′

SH

Z

≈

φWCP
AHk

AHiS ′

AL

AH

AHi
πWCP

AHk

AL

AH

Z

πWCP
S ′

SH

Z

≈

φWCP

S ′

AL

AH

AH1

AHn

AH1

AHn

≈

≈

k = true(A)

Figure 5.8: UC ≈WCP for a passive adversary

173

In this section, we will do some t-WCP proofs for particular functionalities.
As discussed in Section 5.3.3, we need to describe only the work of one simulator
Si that receives messages from AL, sends messages to AHi , and communicates
with the protocol in both directions. The proof must hold for all i ∈ [n].

The functionalityFtransmit of Figure 4.11 allows communication that is secure
against a fail-stop adversary in the ordinary UC model. If we convert it to a WCP
functionality, letting each honest party Pi deliver its internal state to the passive
adversary AHc(i) controlling it, then we get the functionality Ftransmit

∗ depicted in
Figure 5.9. Compared to Ftransmit , there is a small modification in the definition
of all types of transmissions (including broadcasts): now themessages are revealed
to the corresponding adversaries even if the transmission fails and (cheater, s(id))
is output to all parties. It would make no difference for the UC model, since it
would just give AS the ability to send a message to itself. However, in the WCP
model, this does make a difference, since even if the transmission fails, ASL may
still use it to legally transmit some data to an honest receiver.

As we discussed in Section 5.1, if we directly take the protocol Πtransmit of
Figure 4.12, then ↓UCWCP (Πtransmit) will not WCP-realize Ftransmit

∗. The reason
is, that if there is a conflict between the sender and the receiver, then we cannot let
the other parties help in the delivery of the messagem, since the inner state of an
honest party Pi will be output to AHc(i), and Sc(i) will be unable to simulatem. In
this subsection, we define a new protocol Πtransmit

∗ realizing Ftransmit
∗ in WCP

model.

Cheap mode ofFtransmit . In order to distinguish better between different proto-
cols, let Fcheaptransmit

∗
denote the functionality that works similarly to Ftransmit

∗, but
only in its cheap mode, outputting (id,⊥) for the corresponding message identifier
id at any time when expensive mode should be entered. We claim that Πtransmit

∗

WCP-implements Fcheaptransmit

∗
.

• During transmissions and forwardings, as far as there are no conflicts be-
tween the sender and the receiver, all the messages are delivered, and no
additional information is required to be leaked to honest parties.

• The broadcast and the revealing do not involve any additional messages
exceptm that should be broadcast / revealed to all parties anyway, according
to the ideal functionality rules.

Proposition 5.2 states more formally that Πcheap
transmit

∗
WCP-realizes Fcheaptransmit

∗
.

Availability of Πcheap
transmit

∗
allows to use Fcheaptransmit

∗
as a part of preprocessing that

lets us build more complex protocols, including WCP-realization of expensive
mode of Ftransmit

∗.

174

Ftransmit
∗ works with unique message identifiers id, encoding a sender s(id) ∈ [n], a receiver

r(id) ∈ [n], and a party f(id) ∈ [n] to whom the message should be forwarded by the receiver (if
no forwarding is foreseen then f(id) = r(id); for broadcasts the values of r(id) and f(id) do not
matter).
• Initialization: On input (init, ŝ, r̂, f̂) from all (honest) parties, where ŝ,r̂,f̂ are mappings s.t
Dom(ŝ) = Dom(r̂) = Dom(f̂), assign s ← ŝ, r ← r̂, f ← f̂ . Deliver (init, ŝ, r̂, f̂) to all
adversaries ASHi .
• Secure transmit: On input (transmit, id,m) from Ps(id) and (transmit, id) from all (honest)
parties:

1. For s(id) ∈ C, letm be chosen by ASL.
2. Output (id,m) to ASHc(r(id)). Output (id, |m|) to all adversaries ASHi .

3. If s(id) /∈ C, output (id,m) to Pr(id). If s(id) ∈ C, ASL may choose to output
(cheater, s(id)) to all parties instead.

•Broadcast: On input (broadcast, id,m) fromPs(id) and (broadcast, id) from all (honest) parties:
1. For s(id) ∈ C, letm be chosen by ASL.
2. Output (id,m) to all adversaries ASHi .
3. If s(id) /∈ C, output (id,m) to all parties. If s(id) ∈ C, AS may choose to output

(cheater, s(id)) to all parties instead of (id,m).
• Forward received message: On input (forward, id) from Pr(id) and on input (forward, id) from
all (honest) parties, after (id,m) has been delivered to Pr(id):

1. For s(id), r(id) ∈ C, a new value form is chosen by ASL.
2. Output (id,m) to ASHc(f(id)). Output (id, |m|) to all adversaries ASHi .

3. If r(id) /∈ C, output (id,m) to Pf(id). If r(id) ∈ C, ASL may choose to output
(cheater, s(id)) to all parties instead of (id,m).

• Reveal received message: On input (reveal, id) from all (honest) parties, such that Pf(id) at any
point received (id,m), output (id,m) to each party, and also to all adversaries ASHi .
If s(id), r(id), f(id) ∈ C, thenm is chosen by ASL.
ASL may output (cheater, k) to all parties for any k ∈ C ∩ {s(id), r(id), f(id)}. If (cheater, k)
is output for all k ∈ {s(id), r(id), f(id)}, then no (id,m) is output to the parties.

Figure 5.9: Ideal functionality Ftransmit
∗

175

In Πcheap
transmit

∗, each party works with unique message identifiers id, encoding a sender s(id) ∈ [n],
a receiver r(id) ∈ [n], and a party f(id) ∈ [n] to whom the message should be forwarded by the
receiver. Each party reacts to the same inputs as the parties of Πtransmit given in Figure 4.12.
• Initialization: On input (init, ŝ, r̂, f̂), where Dom(ŝ) = Dom(r̂) = Dom(f̂) assign the map-
pings s ← ŝ, r ← r̂, f ← f̂ . The parties exchange their public keys that will be used to verify
signatures later.
•Transmit, forward: On inputs (transmit, id,m), (transmit, id), (forward, id,m), (forward, id):

• Cheap mode: all parties act in exactly the same way as in Πtransmit .
• Expensive mode: all parties output (id,⊥).

• Broadcast and revealing: On inputs (broadcast, id,m), (broadcast, id), (reveal, id), all parties
act in exactly the same way as in Πtransmit .

Figure 5.10: The protocol Πcheap
transmit

∗

Proposition 5.2. Let t be the upper bound on active coalition size. Assuming
t < n/2, the protocol Πcheap

transmit

∗
t-WCP-realizes Fcheaptransmit

∗
.

Proof. We use the simulator Si = Scheaptransmit

∗
(i) described in Figure 5.11-5.12.

The simulator runs a local copy of Πtransmit
∗.

Simulatability. The messages and signatures (m∗, σ∗m) coming from the
parties of C are obtained by Si from AL. Si deliversm∗ to Ftransmit

∗, so that the
samem∗ would be used in the ideal world. At any time whenm∗ = > is chosen,
then Si feeds > to Ftransmit

∗ to get back the m that ASHi was supposed to get.
It then uses m in the simulation. By definition, Ftransmit

∗ allows to decide later
whether (id,m) or (cheater, s(id)) should be output to the parties.

The simulator Si gets from Ftransmit
∗ all the messages received by Pk for

k ∈ Ci. For k /∈ Ci, only the message length is needed to simulate point-to-point
channels, and this value is also provided by Ftransmit

∗.
At any time when Si detects the misbehaviour of a corrupted party Pk, it

should send (cheater, k) to Ftransmit
∗. The misbehaviour is detected as follows:

• Transmission, forwarding: AL choosesm∗ = ⊥ or an invalid signature and
message pair. There are no other restrictions on m. If AL chooses >, then
there is definitely no misbehaviour.

• Broadcast: The same cases as for transmission. Additionally, AL may
choose a properly signed mk 6= mk′ for some k, k′ /∈ C. If AL chooses >
for some of these values, Si first sends them to Ftransmit

∗ to get back m.
Hence Si is able to make allmk 6= mk′ comparisons.

• Revealing: The same cases as for the broadcast, and additionally mk 6= m
for some k /∈ C, where m is the message that was actually transmitted. In
this case,m comes from Ftransmit

∗, so Si is able to make all comparisons.

176

• Initialization: Si gets (init, s, r, f) from Ftransmit
∗. It simulates the parties exchanging their

public keys. AL provides public and secret keys for the parties k ∈ C. AHi gets the secret keys of
all parties k ∈ Ci, and the public keys of all parties.
• Secure transmission:

1. Let s(id) /∈ C. If r(id) ∈ Ci, Si gets (id,m) from Ftransmit
∗. It computes a signature

σs onm and delivers (id,m, σs) to AHi . If r(id) /∈ Ci, Si gets (id, |m|) from Ftransmit
∗.

It uses |m| to model the view of AHi on messages moving through secure point-to-point
channels between parties not in Ci.

2. Let s(id) ∈ C. Si receives (m∗, σ∗s) from AL. If r(id) /∈ C and σ∗s is not a valid signature
of m∗, or r(id) ∈ C and AL decided that it should complain, then Si simulates Pr(id)
broadcasting (bad, id), and goes to expensive mode. Otherwise, Si delivers (id,m∗) to
Ftransmit

∗. If r(id) ∈ Ci, it delivers (id,m∗, σ∗s) to AHi . If r(id) /∈ Ci, it uses |m∗| to
model the view of AHi on messages moving through secure point-to-point channels.

At any time when AL decides to choose (m∗, σ∗m) = > for s(id) ∈ C, then Si delivers (id,>) to
Ftransmit

∗ as the input of Ps(id), and it acts as in the case s(id) /∈ C. For simplicity, we will not
mention modeling of point-to-point channels in the next points, although they are always present
there.
• Forwarding: Simulated analogously to secure transmission.
• Broadcast:

1. If s(id) /∈ C, Si gets (id,m) fromFtransmit
∗. It takesmk = m for all k ∈ [n], and generates

a signature σsk on mk. For k ∈ Ci, it outputs all these (id,mk, σsk) and (id,m∗k, σ
∗
sk) to

AHi .
2. Let s(id) ∈ C. Si receives (m∗k, σ

∗
sk) fromAL. If k /∈ C and σ∗sk is not a valid signature of

m′∗k , or k ∈ C and AL decided that it should complain, then Si simulates Pk broadcasting
(bad, id). If at least t such broadcasts take place, then SHL delivers (C, p(id)) to Ftransmit

∗.
If k ∈ Ci, Si delivers (id,m′∗k , σ

∗
sk) to AHi .

3. After that, in both cases, if (C, p(id)) has not been output so far, Si simulates all Pk for
k ∈ [n] sending to each other party the message (id,mk, σsk) that it just received. Again,
the pairs (m∗k, σ

∗
sk) for k ∈ C are chosen by AL. If any party Pk for k /∈ C should have

received (id,m, σs) and (id,m′, σ′s) form 6= m′, it simulates sending (id,m,m′, σs, σ
′
s)

to each other party, and outputs (cheater, s(id)) to Ftransmit
∗. For s(id) ∈ C, this happens

if mk 6= mk′ is provided by AL initially for some k, k′ /∈ C. For s(id) /∈ C, AL needs
to get valid signatures of Ps(id) on m′ to have such a situation, and it happens only with
negligible probability.

4. If no (cheater, s(id)) has been output to Ftransmit
∗, then all m∗k received by all honest

parties are equal to the same valuem′. For s(id) /∈ C, it should bem′ = m. For s(id) ∈ C,
Ftransmit

∗ is waiting form. Si outputs to Ftransmit
∗ the message (id,m′), wherem′ is the

value accepted by all honest parties in the real protocol.
AL may choose (m∗k, σ

∗
mk) = > for s(id) ∈ C for some k. In this case Si delivers> to Ftransmit

∗

and gets back m, substituting > with m in the simulation. If only some of the messages were
>, it may happen that m∗k 6= m. In this case, Si delivers (cheater, s(id)) to Ftransmit

∗, so that
(cheater, s(id)) is output to all parties instead of (id,m).

Figure 5.11: The simulator Scheaptransmit

∗
(i) (initialization, transmit, forward, broadcast)

177

• Reveal received message:
1. If at least one of s(id), r(id), f(id) /∈ C, then Si gets (id,m) from Ftransmit

∗, wherem is
the value that was actually transmitted. If all s(id), r(id), f(id) ∈ C, then Ftransmit

∗ waits
form∗ from the adversary.

2. The simulation proceeds similarly to the broadcast. In the real protocol, we now observe
the situation where (id,m, σs, σr, σf) and (id,m′, σ′s, σ

′
r, σ
′
f) are received by some honest

party, where all the signatures are valid, but m 6= m′. We want it to be detectable by Si.
Similarly to common broadcast, unless s(id), r(id), f(id) ∈ C,AL should be able to come
up with an alternative set of signatures σ′s, σ′r , σ′f , and it may happen only with negligible
probability. If all of them are corrupt, then message revealing is equivalent to broadcasting
by a corrupted sender.

If the revealing of m by f(id) fails, then it is repeated by r(id) and s(id). The simulations are
analogous to revealing by f(id).

Figure 5.12: The simulator Scheaptransmit

∗
(i) (revealing received messages)

Correctness. Similarly toΠtransmit of UCmodel, honest majority assumption
ensures that the broadcasts and revealings either succeed, or all honest parties
agree that the sender is corrupted. In the latter case, Si delivers (cheater, s(id))
to Ftransmit

∗. For transmissions and forwarding, the message delivery is not
guaranteed, but if it fails, then all honest parties output (id,⊥). In this case, Si
delivers (id,⊥) to Ftransmit

∗.

Committing randomness. First of all, we define a functionality Frnd
∗ that we

use to generate committed randomness. It will be used many times in our protocol,
and properly shared randomness seems to be very important against attacks specific
to WCP. Compared to Frnd of Figure 4.23, we allow Frnd

∗ internally compute
linear combinations and truncations of committed values, and also to open them,
which makes it more similar to Fcommit of Figure 4.16. The protocol steps
implementing these additional functions are analogous to Πcommit of Figure 4.17,
and the only difference is that they are based on Fcheaptransmit

∗
instead of Ftransmit .

However, the definition of opening in the ideal functionality is different, officially
allowing to reveal the leaves of derivation trees of commitments to honest parties.
The same has actually happened in Fcommit , but UC model did not capture this
leakage, and hence it was not defined in Fcommit . We will take this leakage into
account when using Frnd

∗ as a subroutine in our protocols.
The ideal functionality Frnd

∗ is depicted in Figure 5.13. Since Fcheaptransmit

∗

works only in cheap mode, we allow that randomness generation may fail, so we
are going to use it only during preprocessing.

The protocol Πrnd
∗ implementing Frnd

∗ is given in Figure 5.14. Differently
from Πrnd that was based on Fcommit , we have inlined the implementations of
commit and priv_open of Πcommit directly into Πrnd of Figure 4.24.

178

The functionality Frnd
∗ works with unique identifiers id, encoding the party p(id) to which the

committed randomness will be known, and the bit length m(id) of the randomness. It stores an
array comm of already generated and committed randomness, as well as their linear combinations
and truncations. For each id, it stores the derivation tree deriv [id] showing how comm[id] was
computed from the other committed values.

• Initialization: On input (init, m̂, p̂), where Dom(m̂) = Dom(p̂), assign the mappingsm← m̂,
p← p̂. Deliver (init, m̂, p̂) to all adversaries ASHi .

• Extension: On input (ext, m̂, p̂) from all (honest) parties, where Dom(m̂) = Dom(p̂) and
Dom(m̂) ∩ Dom(m) = ∅, extend the mappings m ← m ∪ m̂, p ← p ∪ p̂ over the new domain
Dom(m̂) ∪ Dom(m). Deliver (ext, m̂, p̂) to all adversaries ASHi .
• Randomness commitment: On input (rnd, id) from all (honest) parties, generate a random
bitstring r of lengthm(id). Output r to ASHc(p(id)). Wait whether AL inputs (id,>) or (stop, id).
On input (stop, id) from ASL, stop the functionality and output (id,⊥) to all parties. Otherwise,
assign comm[id]← r, and output r to Pp(id). Output (confirmed, id) to all parties.

•Compute Linear Combination and Truncation: On inputs (lc,~c, ~id, id) and (trunc,m′, id, id′)
from all (honest) parties, compute the linear combination and the truncation respectively, similarly
to Fcommit of Figure 4.16, updating the arrays comm[id′] and deriv [id′].

•Weak Open: On input (weak_open, id) from all (honest) parties, output comm[id] to all ASHi .
If ASL sends (stop, id), then output (id,⊥) to each party. Otherwise, output (id, comm[id]) to
each party.

•Open: On input (open, id) from all (honest) parties, output comm[id], to allASHi . Wait whether
AL inputs > or some messages (cheater, k) for k ∈ C. Unless it inputs (cheater, p(id)), output
(id, comm[id]) to all parties.
For each (cheater, k) input byAL, output (cheater, k) to all parties. If (cheater, k) is output for all
k ∈ C, taking into account the messages (cheater, k) output during the previous openings, output
all the leaves of deriv [id] to all ASHi for i 6= 1.

• Privately Open: On input (priv_open, id, id′) from all (honest) parties, if deriv [id] = id, out-
put (id, id′, comm[id]) to ASHc(p(id′)). Wait whether AL inputs > or (stop, id). If (stop, id)
comes, output (id, id′,⊥) to each party. Otherwise, write comm[id′] = comm[id], output
(id, id′, comm[id]) to Pp(id′), and output (confirmed, id) to all parties.

• Stopping: At any time whenASL delivers (stop, id) [resp. (stop, id, id′)], output (id,⊥) [resp.
(id, id′,⊥)] to each party.

Figure 5.13: Ideal functionality Frnd
∗

179

In Πrnd
∗, each party works locally with unique identifiers id, encoding the bit size m(id) of the

ring in which the value is shared, and the party p(id) committed to the value. The parties use a
linear (n, t)-threshold sharing scheme with t = dn/2e+ 1. Each party Pk stores its own local copy
of an array comm into which it writes its shares. Each party stores a term deriv [id] (represented
by a tree whose leaves are the initial commitments, and the inner nodes are the lc, trunc operations
applied to them) to remember in which way each comm[id] has been computed. For the initially
committed values, let deriv [id] = id.
• Initialization: On input (init, m̂, p̂), each party assigns the mappings m ← m̂, p ← p̂. For all
id ∈ Dom(m) = Dom(p), it defines mappings s, r, and f , such that s(idjk) ← j, r(idjk) ← k,
f(idjk) ← p(id), and s(idkj) ← p(id), r(idkj) ← k, f(idkj) ← j for all id ∈ Dom(m) =
Dom(p), j, k ∈ [n]. In addition, it defines the senders s(idbck) ← k for the broadcasts (used for
share opening). It sends (init, s, r, f) to Fcheaptransmit

∗.
• Extension: On input (ext, m̂, p̂), where Dom(m̂) = Dom(p̂) and Dom(m̂) ∩ Dom(m) = ∅,
extend the mappingsm← m ∪ m̂, p← p ∪ p̂. For the new identifiers id, initialize a new instance
of Fcheaptransmit

∗, similarly to the initialization.
Randomness commitment: On input (rnd, id), if comm[id] has not been defined yet:

1. Each party Pj , j 6= p(id) (actually, t + 1 parties are sufficient), generates a random value
rj ∈ Z2m(id) , shares it as (rkj)k∈[n] = classify(rj), writes comm[id] ← (rkj)k∈[n], and
sends (transmit, idjk, rkj) to Fcheaptransmit

∗ for all k ∈ [n].

2. Upon receiving (idjk, rkj) fromFcheaptransmit

∗ for all j ∈ [n]\{p(id)},Pk sends (forward, idjk)

to Fcheaptransmit

∗. It writes comm[idjk]← rkj .

3. Upon receiving (idjk, rkj) from Fcheaptransmit

∗ for all k ∈ [n], j ∈ [n] \ {p(id)}, Pp(id) checks
if the shares rkj are consistent. If they are, Pp(id) computes rk =

∑
j∈[n]\{p(id)} r

k
j , and

sends (transmit, idki , r
k) for all i ∈ [n]\{p(id)} toFtransmit (only one message is actually

transmitted for all i ∈ [n], it is just recorded under n different identifiers). If they are not,
Pp(id) broadcasts (bad, id).

4. Upon receiving (idki , r
′k) fromFtransmit ,Pk checks if rk = r′k for rk =

∑
j∈[n]\{p(id)} r

k
j .

If it is, it assigns comm[idk] ← rk. If rk 6= r′k, it broadcasts (bad, id). Upon receiving
(bad, id), each party outputs (id,⊥).

•ComputeLinearCombination andTruncation: On inputs (lc,~c, ~id, id) and (trunc,m′, id, id′),
the parties act in exactly the same way as in Πcommit of Figure 4.17, computing these two operations
locally on shares, without any interaction.
• Open, Weak Open, Privately Open: On inputs (open, id), (weak_open, id), and
(priv_open, id), the parties act in exactly the same way as in Πcommit of Figure 4.17, now us-
ing Fcheaptransmit

∗ instead of Ftransmit .
• Stopping: At any time when the transmission ofFcheaptransmit

∗ fails (due to missing expensive mode),
or (bad, id) is broadcast, each party outputs (id,⊥).

Figure 5.14: The protocol Πrnd
∗

180

• Initialization and extension: Si gets (init,m, p) or (ext,m, p) from Frnd
∗. It simulates

initialization of Fcheaptransmit

∗.
• Randomness Commitment: On input (rnd, id):

1. First of all, Si needs to simulate rkj for k ∈ Ci. For j /∈ C, Si samples rkj
$← Z2m(id) .

For j ∈ C, Si gets rkj from AL. If AL chooses > instead of some rkj , then Si generates
rkj

$← Z2m(id) itself. As the result,AHi receives all n shares for j ∈ Ci, but only up to t− 1
shares for j /∈ Ci.

2. In the real protocol, all the shares rkj should now be forwarded to Pp(id). If p(id) ∈ Ci then
Si needs to simulate the forwarding toAHi . It gets r from Frnd

∗. Si chooses the remaining
shares rkj for k /∈ Ci in such a way that

∑
j∈[n] declassify(rkj)k∈[n] = r. This is done

similarly to Frnd of Figure 4.23.
3. After Si gets all rkj for j ∈ C, it simulates the consistently check by Pp(id), sending (stop)

toFrnd
∗ if it does not pass. If the check passes, Si simulates transmitting rkj back to k ∈ Ci.

If p(id) ∈ C, then AL may decide to send (stop) to Frnd
∗.

4. After all the transmissions and forwardings have been simulated, Si checks if all the parties
Pk for k /∈ C should have received rkj = r′kj . If the check fails, Si sends stop to Frnd

∗ and
simulates broadcasting a complaint using Fcheaptransmit

∗.
• Compute Linear Combination and Truncation: Similarly to Scommit of Figure 4.19, Si
computes these operations locally on the shares of Ci.
• Stopping: At any time whenFcheaptransmit

∗ outputs (id,⊥) or (cheater, k), Si sends (stop) toFrnd
∗.

Figure 5.15: The simulator Srnd∗(i) (init, stop, commit, local operations)

Proposition 5.3. Let t be the upper bound on active coalition size. Assuming
t < n/2, the protocol Πrnd

∗ t-WCP-realizes Frnd
∗ in Fcheaptransmit

∗
-hybrid model.

Proof. We use the simulator Si = Srnd ∗(i) described in Figure 5.15. The simu-
lator runs a local copy of Πrnd

∗.
Simulatability. During the randomness generation, Si should be able to

simulate the shares rkj for k, j ∈ Ci. Since AHi gets at most t shares of each value
rj , only those rj for which j ∈ Ci may be seen byAHi in their entirety. In addition,
there are up to t − 1 values rj whose shares AL generates for j ∈ C, all of these
may be already known toZ (ifAL chooses> instead of some rkj , then Si generates
rkj from the appropriate distribution itself).

Since at least t+ 1 parties contribute rj , there is at least one j /∈ Ci ∪C. From
this rj , at most t− 1 shares can be known to Z . Hence as far as r is not opened,
Si may generate all the shares rkj from uniform distribution, and Z still does not
have enough shares rkj to infer anything about r. As soon as r is opened, there is
at least one share rkj not known to Z yet, that can now be adjusted in such a way
that declassify(rkj)k∈H = r −

∑
j∈[n]\{p(id)} rj . This can be done similarly to the

proof of Lemma 4.4, generating the missing shares from uniform distribution until
only one share remains, that is uniquely determined by r.

181

• Weak Open: Si gets (id, x) from Frnd
∗. Si needs to simulate broadcasting xk by Pk. If

p(id) ∈ Ci, then Si already knows x and all xk, so it may use them in the simulation. Otherwise,
Si should already have simulated at most t− 1 shares xk for k ∈ Ci. If it has less than t− 1 shares,
it generates shares yk of leaves of deriv [id] from uniform distribution, computes xk from them,
and then adjusts the remaining shares in such a way that declassify(xk)k∈[n] = x (they are now
uniquely determined). Si does it for all parties, including the corrupted ones. Now all shares xk
have been generated by Si.
AL chooses x∗k that should be broadcast for k ∈ C. Si simulates the broadcast of x∗k for k ∈ C,
and xk for k /∈ C. Si checks if x∗k = xk. If x∗k 6= xk, Si outputs (stop) to Frnd

∗, and simulates
the complaint of Pk.

Open: First of all, Si gets (id, x) from Frnd
∗.

• Si simulates sending (reveal, idkjk) for all j, k ∈ [n] to Fcheaptransmit

∗. For p(id) /∈ C, all the
shares of parties not in Ci should be generated by Si itself. These shares are simulated in
the same way as in the case of weak opening.
It is more complex with the leaves of deriv [id]. Since at most t− 1 leaf shares belonging to
C may be revealed, the simulation is easy for Ci = C, but for Ci 6= C, Si should have already
simulated one share of each leaf toAHi . Now it may need to output all t shares of the leaves
of deriv [id] to AHi . In this case, Si receives the leaves of deriv [id] from Frnd

∗.
• If the opening succeeds for all rkj , in the real protocol each party reconstructs r =∑

j declassify(rkj). For j ∈ C, the shares may be inconsistent. This event is immedi-
ately noticed by Si since the set of inconsistent shares has been entirely chosen by AL, so
Si outputs (cheater, p(id)) to Frnd .

• Privately Open:
• If p(id) ∈ C, thenSi gets (id, x) fromFrnd

∗. The sharesxk such that declassify(xk)k∈[n] =
x are constructed similarly to the previous two openings.

• If p(id) /∈ Ci, then Si does not get (id, x) from Frnd
∗. However, it still needs to simulate

the behaviour of k ∈ C. Since there are at most t− 1 such parties Pk, it is sufficient that Si
generates the first t− 1 shares similarly to the previous two openings.

After that, Si only needs to simulate transmissions and forwardings of these shares using Ftransmit .
After all the transmissions and forwardings have been simulated, Si checks if all the parties Pk for
k /∈ C should have received xkj = x′k. If the check fails, Si sends stop to Frnd

∗ and simulates
broadcasting a complaint using Fcheaptransmit

∗.

Figure 5.16: The simulator Srnd∗(i) (openings)

As far as r is not opened, since rk =
∑

j∈[n]\{p(id)} r
k
j , there is at least one rkj

generated by an honest party, serving as a mask for rk. As the result, the shares
rk that are given to k /∈ Ci come from the same distribution as if they were all
generated by an honest party (i.e. any set of t− 1 of them is distributed uniformly,
and all other shares are uniquely determined by these t − 1 uniform shares). If
p(id) /∈ Ci, then AHi does not know anything neither about the randomness r nor
its shares of k /∈ Ci, regardless of rkj chosen by AL, even if p(id) ∈ C. In the
simulation of weak opening, it will be very important that the shares of parties
k /∈ Ci look uniformly distributed to AHi , unless it gets at least t shares.

182

During the weak opening,Frnd
∗ first outputs (id, x) to Si. It needs to simulate

opening of xk by Pk. If p(id) ∈ Ci, then Si has already known x and all xk
before, and all of them have already been simulated to AHi , so Si may use them
again. Otherwise, Si should already have simulated at most t − 1 shares xk
for k ∈ Ci. If |Ci| = t − 1, then knowing x uniquely determines all the other
shares. If |Ci| < t − 1, then Si needs to generate some of the shares itself. We
show that generating yk $← Z2m(id′) for leaves id′ of deriv [id] and computing
xk = deriv [id](y1, . . . , yl) is what Z expects to see in the real protocol.

• Let x be the initially generated randomness. During the generation of x,AL
has no control over the shares xk. Hence unless p(id) ∈ Ci, all the shares
of k /∈ Ci are distributed uniformly in the initial ring.

• All leaves yk of deriv [id] correspond to some initially generated random-
ness, which is distributed uniformly. The linear combinations and trunca-
tions are uniquely determined by yk.

All the shares for private opening are generated similarly to the weak open-
ing. Their transmissions and forwardings using Fcheaptransmit

∗
are analogous to the

transmissions of rk during the randomness commitment.
In strong opening, the shares of xk can be simulated for x in a similar way.

Additionally, if i 6= 1, Si may need to reveal up to t shares yk of leaves y of
deriv [id] to AHj . The value y is provided by Frnd

∗ that outputs y to all SHj for
j 6= 1, so that the missing t-th share can be computed directly from y and the other
t− 1 shares yk.
Si should always be able to detect the misbehaviour ofAL without seeing any

information that the other simulators SHj received from Frnd
∗. It may happen in

the following cases:

• The message (cheater, k) comes from Ftransmit .

• During the randomness generation, the sender Pj has transmitted inconsis-
tent shares. For j /∈ C, this never happens. For j ∈ C, all shares rkj are
given to Si by AL, or are generated by Si itself (for r∗kj = >) so the check
is easy to do.

• During the weak opening, Si first generates xk itself from appropriate dis-
tribution, as discussed above. Hence xk = x∗k is a valid check with respect
to what Z awaits from the real protocol execution. It may seem a bit strange
that fresh xk may be generated already after AL has chosen x∗k. In this
case, since xk is generated inside the protocol Πrnd

∗, unless x∗k = >, AL
expects to get x∗k = xk with the same probability as if xk was generated
independently from x∗k.

183

Table 5.1: Calls of Fcheap
transmit

∗
for different functionalities of Πrnd

∗ with N -bit values

input called Fcheaptransmit

∗
functionalities

rnd tr
⊗n(t+1)
shn·N ⊕ fwd

⊗n(t+1)
shn·N ⊕ tr

⊗n(t+1)
shn·N

weak_open bc⊗nshn·N
open rev⊗nshn·N

priv_open fwd⊗nshn·N ⊕ tr⊗nshn·N
pcommit, lc, trunc –

Correctness. Frnd
∗ outputs r to Pp(id). Si generates rkj of j /∈ C in such a

way that r =
∑

j declassify(rkj)k∈H, so this value is the same in both worlds. If a
linear combination or a truncation is computed, then x = declassify(xkj)k∈H still
holds for the new values x, due to linearity of secret sharing scheme (the proof is
analogous to Lemma 4.2).

Since Si sends (cheater, k) and (id,⊥) to Fcheaptransmit

∗
in all cases where it

simulates outputting (cheater, k) and (id,⊥) in the real protocol, these outputs
are also consistent.

Observation 5.1. Compared to corresponding UC protocol Πrnd of Figure 4.24,
we have in fact not modified the randomness generation protocol, and we have
built its WCP version on top ofFcheaptransmit

∗
implemented by Πtransmit

∗ that we have
not modified at all. Therefore, the cost of randomness generation is the same as
in Table 4.3. The only difference is that at least t+ 1 values rj are now necessary
instead of t. The costs of computing linear combinations and the openings are
exactly the same as in Table 4.2, since we have not modified the corresponding
protocols at all. The cost summary is given in Table 5.1.

ExpensiveMode ofFtransmit
∗. We are now ready to define a protocolΠtransmit

∗

implementing Ftransmit
∗ in WCP model. It is given in Figure 5.17. The main idea

behind the protocol is that each pair Pi, Pj of parties holds mutual randomness
qij(id) for each message identifier id such that Pi is the sender and Pj is the
receiver. This randomness should not be known to any other party. It is generated
in the preprocessing phase, and it is committed using (n, t)-threshold sharing, so
that authenticity of qij can be proven later. For this purpose, the parties useFrnd

∗.
During the execution of Ftransmit

∗, if the transmission ofm fails, then the sender
is required to broadcast m′ = m + qij to all parties. No party Pk for k 6= j is
able to read this message since qij serves as a mask. If the message m that was
transmitted in this way needs to be revealed, then the parties open qij usingFrnd

∗,
and each party computesm = m′ − qij for the previously broadcastm′.

184

In Πtransmit
∗, each party works locally with unique message identifiers id, encoding a sender

s(id) ∈ [n], a receiver r(id) ∈ [n], and a party f(id) ∈ [n] to whom the message should be
forwarded by the receiver. It reacts to the same party inputs as Πtransmit of Figure 4.12, and we
only present here those calls for which the behaviour of Πtransmit

∗ is different from Πtransmit . The
protocol uses Frnd

∗ as a subroutine.
• Initialization: On input (init, ŝ, r̂, f̂), where Dom(ŝ) = Dom(r̂) = Dom(f̂) assign the map-
pings s← ŝ, r ← r̂, f ← f̂ . For each id ∈ Dom(ŝ), generate the identifiers idr , id′r and idf , id′f
(these will be used for message transmission and forwarding respectively). Assign p(idr)← s(id),
p(id′r) = p(idf) ← r(id), p(id′f) ← f(id), andm(idr) = m(id′r) = m(idf) = m(id′f) ← m,
where m is the expected message length. Send (rnd, idr, id

′
r) and (rnd, idf , id

′
f) to Frnd

∗. Now
for any message that Pi is going to transmit to Pj , there is committed randomness qij known only
to Pi and Pj .
• Secure transmit: On inputs (transmit, id,m), (transmit, id):

• Cheap mode: All parties act in exactly the same way as in Πtransmit given in Figure 4.12.
• Expensive mode: Used if Pr(id) complains about Ps(id) not following the protocol.

1. On input (transmit, id,m) the party Ps(id) takes the next value q = qs(id),r(id) that
it obtained from Frnd

∗, computesm′ = m+ q over Z2|m| , signs (id,m′) to obtain
signature σs. It sends (id,m′, σs) to each other party.

2. Each party Pi sends (id,m′, σs) to Pr(id). If Pi does not receive (id,m′, σs), it
sends a signature γi on (cheater, s(id)) to all parties. If an honest party receives at
least t such messages, it outputs (cheater, s(id)) to Z .

3. On input (transmit, id), Pr(id) expects a message (id,m′, σs) from each Pi, where
σs is a valid signature of Ps(id) on (id,m′). If it arrives from some Pi, then Pr(id)
reads the next q = qs(id),r(id) it obtained from Frnd

∗, and outputs (id,m′ − q).

• Forwarding: analogous to secure transmit.
• Broadcast: On inputs (broadcast, id,m), (broadcast, id), all parties act in exactly the same way
as in Πtransmit given in Figure 4.12.
• Reveal received message: On input (reveal, id):

• Ifm(id) was sent using cheap mode of Πtransmit
∗, act in the same way as in Πtransmit .

• Ifm(id) was sent using expensive mode of Πtransmit
∗, act in the same way as in Πtransmit

to open the value m′ = m + q. Send (open, (id, s(id), r(id))) to Frnd
∗, getting q =

qs(id),r(id). Output (id,m′ − q) to Z .

Figure 5.17: The protocol Πtransmit
∗

185

• Initialization: Si gets (init, s, r, f) from Ftransmit
∗. It simulates initialization and execution of

Frnd
∗ to share the values qkj among Pk and Pj . All the values qkj , where either k ∈ Ci or j ∈ Ci,

are chosen by Si. The other values qkj do not need to be simulated yet, and they will be used up
later as random masks.
• Secure transmit:

1. Cheap mode: Si behaves in the same way as Scheaptransmit

∗ of Figure 5.11.
2. Expensive mode:

(a) Let s(id) /∈ C. If r(id) ∈ Ci, Si gets (id,m) from Ftransmit
∗. It computes

m′ ← m + q(id). If r(id) /∈ Ci, Si gets (id, |m|) from Ftransmit
∗. It generates

m′
$← Z|m|. In both cases, it generates a signature σs onm′, and delivers (id,m′, σs)

to AHi .
(b) Let s(id) ∈ C. Si receives (m′∗k , σ

∗
sk) from AL. If k /∈ C and σ∗sk is not a valid

signature ofm′∗k , or k ∈ C andAL decided that it should complain, then Si simulates
Pk broadcasting (bad, id). If at least t such broadcasts take place, then Si delivers
(cheater, p(id)) to Ftransmit

∗. Otherwise, Si takes m′∗ = m′∗k of some k /∈ C that
has not complained (the one that Pr(id) would choose in the real protocol).
If r(id) ∈ Ci or s(id) ∈ Ci, then q(id) has already been generated by Si. If
r(id) /∈ Ci, then Si generates q(id)

$← Z|m′∗|. It computesm∗ = m′∗ − q(id), and
sendsm∗ to Ftransmit

∗. If k ∈ Ci, Si delivers (id,m′∗k , σ
∗
sk) to AHi .

At any time when AL decides to choose (m∗, σ∗m) = > for s(id) ∈ C, then Si delivers
(id,>) to Ftransmit

∗ as the input of Ps(id), and it acts as in the case s(id) /∈ C. In the
expensive mode, it is done only after a certain (m′∗, σ∗s) has been chosen for Pr(id) (it may
be that (m′∗k , σ

∗
sk) = > only for some k).

• Broadcast: Si behaves in the same way as Scheaptransmit

∗.
• Reveal received message: Si behaves in the same way as Scheaptransmit

∗, but now it should take into
account that a message might have been transmitted or forwarded in the expensive mode.
Ifmwas sent using expensive mode of Πtransmit

∗, opening of q should be simulated instead. In this
case, Si gets the revealed messagem from Ftransmit

∗ regardless of corruptions. At the same time,
m′ = m+ q should already have been simulated toAHi during the corresponding transmission. Si
simulates opening the value q using Frnd

∗, which is not under control of corrupted parties, so Si
may simulate the opening in such a way that q = m′ −m.

Figure 5.18: The simulator Stransmit
∗(i)

Proposition 5.4. Let t be the upper bound on active coalition size. If t < n/2,
then the protocol Πtransmit

∗ t-WCP-realizes Ftransmit
∗ in Frnd

∗-hybrid model.

Proof. We use the simulator Si = Stransmit
∗(i) described in Figure 5.18. The

simulator runs a local copy of Πtransmit
∗.

Simulatability. In the beginning, Si simulates Ftransmit
∗ generating mutual

randomness qkj for the parties Pk and Pj . For k ∈ Ci and j ∈ Ci, the values qkj
should be revealed toAHi . However, the other qkj do not need to be simulated yet.

The cheapmode is simulated in the sameway as byScheaptransmit

∗
. In the expensive

mode, Si needs to simulate m′ = m + q. If s(id) ∈ Ci or r(id) ∈ Ci, then Si

186

obtainsm from Ftransmit
∗ (for r(id) ∈ Ci), or uses the view of Ps(id) to compute

m itself (for s(id) ∈ Ci) so there are no problems with computing m′ = m + q,
where q has already been simulated to AHi before. If s(id), r(id) /∈ Ci, then Si
does not getm from Ftransmit

∗. For s(id) /∈ C there is no hope for Si to getm at
all. However, in this case, q has not been simulated to AHi yet, so Si may sample
m′ from uniform distribution. Since the mask q comes from uniform distribution
according to the properties of Frnd

∗, and each such q is used only once, the actual
value m + q would also come from the uniform distribution, since the addition
takes place in the finite ring Z2|m| .

In the expensive mode, choosing any m′ 6= ⊥ is acceptable. Hence it is easy
for Si to detect whether AL is cheating, just by checking ifm′∗ = ⊥.

Correctness. The delivery of messages in the cheap mode works correctly by
Proposition 5.2. In addition, we need to show that delivery ofm′ = m+ q instead
ofm keeps the correctness. Although the assisting parties cannot verify ifm that
is masked by q is properly formatted, we do not require this check since Ftransmit

by definition allows m to be chosen by AL for s(id) ∈ C (the format should be
defined separately for Ftransmit

∗ if needed). Hence m′ can be arbitrary without
violating correctness assumptions.

Since Si sends (cheater, k) and (id,⊥) to Fcheaptransmit

∗
in all cases where it

simulates outputting (cheater, k) and (id,⊥) in the real protocol, these outputs
are also consistent.

Observation 5.2. Compared to corresponding UC protocol Πtransmit , we have
modified the expensivemode in such away that the costs of expensive transmissions
are now the same as the costs of broadcasts. This results in expensive transmission
to be n times more costly than it was in UC model. Otherwise, we may still use
the results of Table 4.1 to estimate the costs of Πtransmit

∗.
The additional overhead is that Ftransmit now has a preprocessing phase, in

which mutual randomness should be generated. For each pair of parties that are
going to communicate M bits in the online phase, M bits of such randomness
should be generated. According to Table 5.1, its cost is tr⊗n(t+1)

shn·M ⊕ fwd
⊗2n(t+1)
shn·M ⊕

tr
⊗2n(t+1)
shn·M , where the multiplier 2 comes from two private openings to two parties.

5.4.3 Covert Adversaries

Wemodify the protocol Πverify of Figure 4.31, getting a new protocol Πverify
∗ that

t-WCP implements Fverify
∗. For this, we first construct t-WCP secure implemen-

tations for the building block functionalities Fweakcommit
∗ and Fpre

∗. For a covertly
secure protocol, it is sufficient that only the optimistic mode will not leak any data
to honest parties. This makes the protocols much simpler compared to the active
adversary case.

187

The Commitment Protocol Πcommit

WedefineFweakcommit
∗ similarly to theUC functionalityFcommit given in Figure 4.16,

but with the following changes:

1. We discard the functionality priv_open. In protocols of Chapter 4, the only
use of priv_open was inside Πrnd implementing Frnd . We have already
constructed Πrnd

∗ independently from Fweakcommit
∗, and there will be no other

use for priv_open in our protocols.

2. We add the randomness commitment functionality rnd to Fweakcommit
∗. Since

Πrnd
∗ is not built on top ofFweakcommit

∗, it will be easier for the WCP analogue
Πverify

∗ of Πverify to commit randomness using Fweakcommit
∗ directly, and not

use Frnd , as Πverify of Figure 4.31 did.

3. On input (open, id), the functionality explicitly leaks some data to the hon-
est parties. If we use the UC protocol Πcommit of Figure 4.17 without
modification, we cannot avoid this leakage, but as we show further, it will be
sufficient to implement the verification for a covert adversary. If the adver-
sary is active, we will need to modify Πcommit , so that it would implement
open as it is defined in Fcommit , without additional leakage to the honest
parties.

The ideal functionality Fweakcommit
∗ is given in Figure 5.19. On input (open, id),

Fweakcommit
∗ allows to leak some additional information to honest parties. However,

this leakage is accompanied by a public accusation of the party that caused the
leakage. Since a covert adversary never attempts to cheat if it will be caught, this
information will never be leaked in the real protocol.

Our new version of Πweak
commit

∗ implementing Fweakcommit
∗ ensures than the shares

issued to the parties (and whose authenticity can be proven later) are distributed
uniformly. For this, the parties use preshared randomness that is generated in the
preprocessing phase byFrnd

∗. If a partywants to commit to a valuex, it broadcasts
x′ = x + q, where q is properly shared randomness. For mutual commitments,
the randomness q should be known to both parties Pp(id) and Pp(id′) that get
committed to the same value. Using preshared randomness allows to avoid WCP-
specific attacks based on bad sharing that may eventually leak information to some
honest party. The protocol Πweak

commit
∗, built on top of Ftransmit

∗ and Frnd
∗, is

given in Figure 5.20-5.21.

Proposition 5.5. Let t be the upper bound on active coalition size. If t < n/2, the
protocol Πweak

commit
∗
t-WCP-realizes Fweakcommit

∗ in Ftransmit
∗-Frnd

∗-hybrid model.

Proof. We use the simulator Si = Sweakcommit
∗
(i) described in Figure 5.22. The

simulator runs a local copy of Πweak
commit

∗ and Ftransmit
∗.

188

Fweakcommit
∗ works with unique identifiers id, encoding the bit sizem(id) of the ring Z2m(id) in which

the value is committed, the party p(id) committed to the value, and the randomness r(id) that will
be generated already during the initialization, but will be actually committed on inputs (rnd, id)
later. The commitments are stored in an array comm , and their derivations in an array deriv . For
each id, the term deriv [id] is a tree whose leaves are the initial commitments, and the inner nodes
are the lc, trunc operations applied to them. For the initially committed values, deriv [id] = id.
• Initialization: On input (init, m̂, p̂) from all (honest) parties, where Dom(m̂) = Dom(p̂), define
themappingsm← m̂, p← p̂. For all identifiers id, generate r(id)

$← Z2m(id) . Deliver (init, m̂, p̂)
to all adversaries ASHi . For all id, deliver r(id) to AHc(p(id)).
• Extension: On input (ext, m̂, p̂) from all (honest) parties, where Dom(m̂) = Dom(p̂) and
Dom(m̂) ∩ Dom(m) = ∅, extend the mappings m ← m ∪ m̂, p ← p ∪ p̂ over the new domain
Dom(m̂) ∪ Dom(m). Deliver (ext, m̂, p̂) to all adversaries ASHi .
• Public Commit: On input (pcommit, id, x) from all (honest) parties, if x ∈ Z2m(id) , write
comm[id]← x, and output (confirmed, id) to all parties and all adversaries ASHi . Output x to all
ASHi .
• Commit: On input (commit, id, x) from Pp(id) and (commit, id) from all (honest) parties,
if x ∈ Z2m(id) , write comm[id] ← x, and output (confirmed, id) to all parties and all ASHi .
If p(id) ∈ C, then x is chosen by ASL, who may alternatively deliver to Fweakcommit

∗ a message
(cheater, p(id)) that is output by Fweakcommit

∗ to all parties.
• Mutual Commit: On input (mcommit, id, id′, x) from Pp(id), (mcommit, id, id′, x′) from
Pp(id′), and (mcommit, id, id′) from all (honest) parties, output (id, id′, x, x′) toASHc(p(id)). Com-
pare x and x′. If x = x′, then write comm[id], comm[id′] ← x, and output (confirmed, id, id′)
to all parties and all adversaries ASHi . If x 6= x′, output (id, id′,⊥) to all parties and to all ASHi .
If p(id) ∈ C [resp. p(id′) ∈ C], then ASL chooses x [resp. x′]. Alternatively, it may deliver to
Fcommit

∗ a message (cheater, p(id)) or (cheater, p(id′)) that is output by Fcommit
∗ to all parties.

• Random Commit: On input (rnd, id) from all (honest) parties, assign comm[id] ← r(id), and
output r(id) to Pp(id). Output (confirmed, id) to all parties and to all ASHi .
• Compute Linear Combination: and Truncation: Since no outputs for the adversary are
produced, the definitions are exactly the same as for Fcommit of Figure 4.16.
•Weak Open: On input (weak_open, id) from all (honest) parties, output comm[id] to all ASHi .
If ASL sends (stop), then output (id,⊥) to each party. Otherwise, output (id, comm[id]) to each
party.
• Open: On input (open, id) from all (honest) parties, after (weak_open, id) has failed, output
comm[id], to all ASHi . Wait until AL inputs either > or some messages (cheater, k) for k ∈ C.
Unless it inputs (cheater, p(id)), output (id, comm[id]) to all parties. For each (cheater, k) input
byAL, output (cheater, k) to all parties. If (cheater, k) is output for all k ∈ C, output all the leaves
of deriv [id] to all ASHi for i 6= 1.
• Cheater detection: At any time when (cheater, k) is output to all parties, do not accept any
inputs including id s.t. p(id) = k anymore. Let P ← P \ {k}, C ← C \ {k}.

Figure 5.19: Ideal functionality Fweak
commit

∗

189

In Πweak
commit

∗, each party works locally with unique identifiers id, encoding the bit size m(id) of
the ring in which the value is shared, and the party p(id) committed to the value. Each party Pk
stores an array pubv , into which it writes certain published values that will be later used for opening
the commitments. For the new identifiers id that will store the new values computed from the
committed values, store a term deriv [id] (represented by a tree whose leaves are commitments, and
the inner nodes are operations applied to them) to remember in which way they were computed. For
the committed values, let deriv [id] = id. Πweak

commit
∗ works on top of Ftransmit

∗ and Frnd
∗.

• Initialization: On input (init, m̂, p̂), define a mapping s, such that s(id) ← p(id), for all
id ∈ Dom(p) (all these identifiers will be used only for broadcasts). Send (init, s,⊥,⊥) to
Ftransmit

∗ (the mappings r and f are not defined at all).
Send (init, m̂, p̂) toFrnd

∗. For all id, send (rnd, id) toFrnd
∗, generating the committed randomness

that is known only to p(id). For all (id, id′) pairs, send (rnd, id) followed by (priv_open, id, id′) to
Frnd

∗. As the result, there is a committed randomness q(id, id′) known only to p(id) and p(id′).
• Extension: On input (ext, m̂, p̂), where Dom(m̂) = Dom(p̂) and Dom(m̂) ∩ Dom(m) = ∅,
extend the mappingsm← m∪m̂, p← p∪ p̂. Initialize a new instance ofFtransmit

∗ similarly to the
initialization. Send (ext, m̂, p̂) followed by (priv_open, id, id′) to Frnd

∗, resulting in committed
randomness q(id, id′) for all new identifier pairs id, id′.
• Public Commit: On input (pcommit, id, x), each party Pk writes comm[id]← xk, where xk is
computed directly from x according to any preagreed sharing.
• Commit:

1. On input (commit, id, x), Pp(id) computes x′ ← x+ q(id). It sends (broadcast, id, x′) to
Ftransmit .

2. On input (commit, id), Pk waits for (id, x′) from Ftransmit .
If the broadcast succeeds, each party writes pubv [id]← x′, deriv [id]← id.
• Random Commit: On input (rnd, id), each party writes pubv [id]← 0, deriv [id]← id.
•Mutual Commit:

1. On input (mcommit, id, id′, x), Pp(id) computes x̂ ← x + q(id, id′). It sends
(broadcast, (id, id′), x̂) to Ftransmit .

2. On input (mcommit, id, id′, x′), Pp(id′) waits for (id, x̂) from Ftransmit . If x̂ 6= x′ +
q(id, id′), it broadcasts (bad, id, id′).

3. On input (mcommit, id, id′), Pk waits for (id, x̂) from Ftransmit .
If the broadcast of x̂ succeeds, and (bad, id, id′) is not broadcast, then each party writes pubv [id]←
x′, deriv [id]← id. Otherwise, it outputs (id, id′,⊥).
• Compute Linear Combination: On input (lc,~c, ~id, id′), where ` := |~c| = |~id|, and p′ = p(idi)
are the same for all i ∈ {1, . . . , `}, form′ ← min ({m(idi) | i ∈ {1, . . . , `}}), each party Pk

1. sends (lc,~c, ~id, id′) to Frnd
∗;

2. writes pubv [id′]← (
∑`
i=1 ci · pubv [idi]) mod 2m;

3. assignsm(id′)← m′, p(id′)← p′, deriv [id′]← lc(~c, ~id).
• Compute Truncation: On input (trunc,m′, id, id′), wherem(id) ≥ m′ ∈ N, each party Pk

1. sends (trunc,m′, id, id′) to Frnd
∗;

2. writes pubv [id′]← pubv [id] mod 2m
′
;

3. assignsm(id′)← m′, p(id′)← p(id), deriv [id′]← trunc(m′, id).

Figure 5.20: Real Protocol Πweak
commit

∗ (init, commit, local operations)

190

•Weak Open: On input (weak_open, id):
1. Each party sends (weak_open, id) to Frnd

∗.
2. Upon receiving (id, q) from Frnd

∗, each party computes x = pubv [id]− q, and outputs x
to Z . If Frnd

∗ returns (id,⊥), each party outputs (id,⊥) to Z .
• Open: On input (open, id):

1. Each party sends (open, id) to Frnd
∗.

2. Upon receiving (id, q) from Frnd
∗, each party computes x← pubv [id]− q, and outputs x

to Z .
• Cheater detection: At any time when a party receives (cheater, k) from Ftransmit

∗, it outputs
(cheater, k) to Z . After outputting (cheater, k) to Z , it does not accept any inputs including id s.t.
p(id) = k anymore, and treats Pk as if it has left the protocol, i.e. P ← P \ {k}.

Figure 5.21: Real Protocol Πweak
commit

∗ (openings)

Simulatability. In the beginning, while generating the randomness using
Frnd

∗, Si only needs to simulate the randomness that is output to Pp(id) for
p(id) ∈ Ci (for mutual randomness, also p(id′) ∈ Ci). Similarly to Stransmit

∗(i),
Si does not have to simulate the randomness of the other parties yet. It will be
used as a mask for their future commitments.

During the commitments, Si gets from Fweakcommit
∗ only the values x for p(id) ∈

Ci, or p(id′) ∈ Ci. If both p(id), p(id′) /∈ Ci, then Si needs to simulate the
broadcast of x′ without knowing x. Since x′ = x + q(id), and q(id) is being
used first time as a mask which is not known to AHi , it is sufficient to sample x′
uniformly.

• For p(id) /∈ C, Si will need to decide on the precise value for q(id) later,
when opening will be required. Besides opening, q(id) is not used anywhere
else.

• For p(id) ∈ C, the value x∗k 6= > provided by AL immediately requires Si
to determine the value of q(id), so that x = x∗k−q(id) could be committed
to Fweakcommit

∗. We need to show that this x is the value that AL expects to
be committed. For i = 1, AL should already have known q(id) before, so
it expects that the committed value will be x = x′∗ − q(id). For i 6= 1,
since AL has no idea about the randomness q(id) for p(id) /∈ Ci, and x′∗
would have been generated independently from q(id) in the real protocol,
the distribution of x would be the same.

For all openings, revealing q(id) is fully reduced to Frnd
∗. It is now the right

time for Si to choose q(id) for p(id), p(id′) /∈ Ci. First of all, Si receives x from
Fweakcommit

∗. It has already computed pubv [id] as a linear combination on the leaves
of deriv [id], so it takes q(id) = pubv [id]− x. We show that this q(id) is what Z
expects to see.

191

Let comm[id], pubv , deriv the local arrays of Si.
• Initialization and extension: Si gets (init,m, p) and (ext,m, p) from Fweakcommit

∗. It initializes
Ftransmit

∗, and initializes/extends Frnd
∗, generating the randomness q = q(id, id′) for p(id) ∈ Ci

and p(id′) ∈ Ci. If p(id), p(id′) /∈ Ci, then q may be chosen later.
• Public commit: On input (pcommit, id, x), Si gets x from Fcommit . It computes (xk)k∈[n] =
classify(x) according to the preagreed sharing and writes comm[id]← x.
• Commit: Si gets x from Fweakcommit

∗ for p(id) ∈ Ci, and computes x′ ← x + q(id), where
q(id) comes from Frnd

∗. For p(id) /∈ Ci, it generates a random x′ and simulates use of Ftransmit

broadcasting x′. AL may provide x′∗ for p(id) ∈ C. If AL provides >, then Si uses x′ that it has
generated before.
Si now has to output something to Fweakcommit

∗ for p(id) ∈ C. If i = 1, then Si has already simulated
q(id) to AHi before, so the committed value should be x = x′∗ − q(id). If i 6= 1, then Si delivers
> to Fweakcommit

∗ if x′∗ = >, and if x′∗ 6= >, it generates a new randomness q(id) and computes
x← x′∗ − q(id).
• Random Commit: There is no interaction between the parties. Si assigns pubv [id] ← 0,
deriv [id]← id locally.
• Mutual Commit: The simulation is similar to (commit, id, x). The difference is that Si may
need to simulate the broadcast of (bad, id, id′) if x̂ 6= x′ + q(id, id′) is broadcast. Although Si
does not know x′, it gets (id, id′,⊥) from Fcommit if x 6= x′.
• Compute Linear Combination and Truncation: Si locally performs the computations for all
k ∈ Ci. No outputs are produced. New values are assigned to the local array comm[id], and the
derivation tree is stored in deriv [id].
• Weak Open: The value x to be opened is given to Si by Fweakcommit

∗. Si simulates sending
(weak_open, id) to Frnd

∗, making it open q = pubv [id] − x. If (stop) comes to Frnd
∗, then Si

outputs (stop) to Fweakcommit
∗.

• Open: The value x to be opened is given to Si by Fweakcommit
∗. Si simulates sending (open, id) to

Frnd
∗, making it open q = pubv [id]− x. By definition, AL is able to manipulate Frnd

∗ in such a
way that it opens the leaves of deriv [id] to AHi for i 6= 1. Si gets all these values from Fweakcommit

∗.
•Cheater Detection: At any time when Si notices that (cheater, k) should be output to each honest
party in Πweak

commit
∗, then it discards Pk from their local runs of Πweak

commit
∗, i.e. P ← P \ {k} and

C ← C \ {k}. Si delivers (cheater, k) to Fweakcommit
∗.

Figure 5.22: The simulator Sweak
commit

∗
(i)

• For the initial commitments x (i.e. deriv [id] = id), pubv [id] is the initial
value x′ whose broadcast was simulated at some point before, where Z was
expecting x′ = x+ q. Hence opening q = x′ − x is what it expects.

• For a more complex deriv [id], we have pubv [id] = deriv [id](x′1, . . . , x
′
l)

computed from values x′i whose broadcasts were simulated to Z at some
point before. In all cases, Z was expecting to see x′i = xi + qi, where
xi is some leaf of deriv [id] and qi is the randomness that corresponds to
it. By definition, Fweakcommit

∗ should have opened x = deriv [id](x1, . . . , xl).
By linearity of deriv [id], it should be pubv [id] − x = deriv [id](x′1 −
x1, . . . , x

′
l − x′l) = deriv [id](q1, . . . , ql). Hence Si has opened q =

192

deriv [id](q1, . . . , ql). This is what the output of Frnd
∗ is expected to be,

since the parties in the real protocol have applied the operations of deriv [id]
to q1, . . . , ql using Frnd

∗.

Strong opening may require the leaves of deriv [id] to be output to adversaries
AHi for i 6= 1. In this case, Si gets these leaves from Fweakcommit

∗. Otherwise, it is
similar to the weak opening.

Correctness. For each x that Fweakcommit
∗ outputs to Pk for k ∈ Ci as a commit-

ment, Si has simulated exactly the same x in its interaction with AHi .
The randomness commitment is a particular case of ordinary commitment,

where x′ = 0. This choice results in 0 = x′ = x + q, where x is treated
as the committed randomness. Since q is uniformly distributed randomness, so
is r = −q. Formally, to ensure that Fweakcommit

∗ would output exactly the same
randomness r, Si should let Frnd

∗ generate q = −r during the initialization.
Since generation of q pushed into the preprocessing, Si uses q = −r(id), where
r(id) is the value that it gets from Fweakcommit

∗. The same value r(id) will be used
by Fweakcommit

∗ as comm[id] for the randomness commitment.
For the openings, Si has caused Frnd

∗ to output q such that x+ q = pubv [id],
where pubv [id] has been computed by Si from deriv [id] in the same way as all
honest parties would compute it. In the real world, all (honest) parties would
output the value pubv [id]− q = x, which is the same as Fweakcommit

∗ outputs.

Observation 5.3. Differently from corresponding UC protocol, instead of trans-
mitting n shares, the committing party makes a broadcast. This modifies the costs
of commitments. From the definition of Πweak

commit
∗, we may read out the new

complexities of Fweakcommit
∗ operations. They are given in Table 5.2. Similarly to

Table 4.2, we use trM , bcM , fwdM , revM denote the calls of transmit, broadcast,
forward, reveal respectively on an M -bit message, and shn the number of times
the bit width the value shared among n parties is smaller than the bit width of its
one share.

In addition, Πweak
commit

∗ now requires precomputation of randomness in the
initialization phase. This is done by using cheap Ftransmit

∗ in the preprocessing
phase. UsingFtransmit in cheapmode does not in turn require more preprocessing.

Comparing these values with Table 4.2, we see that the multiplicative overhead
of the committing functionalities is n in the online phase, and it is 3n in the offline
phase. The opening and the computing of linear combinations incur no overheads.

Public Randomness Generation Protocol Fpubrnd
∗

Similarly to Chapter 4, we will also need a functionality for generating public
randomness. The ideal functionality Fpubrnd

∗ is given in Figure 5.23, and it does
not have any modifications except the new adversary ports of WCP model.

193

Table 5.2: Calls of Ftransmit
∗ for different functionalities of Πweak

commit
∗ withN -bit values

functionality Online calls Offline calls
commit bcshn·N tr

⊗n(t+1)
shn·N ⊕ fwd

⊗n(t+1)
shn·N ⊕ tr

⊗n(t+1)
shn·N

mcommit bcshn·N tr
⊗n(t+1)
shn·N ⊕ fwd

⊗2n(t+1)
shn·N ⊕ tr

⊗2n(t+1)
shn·N

weak_open bc⊗nshn·N –
open rev⊗nshn·N –

lc, trunc – –

The functionality Fpubrnd
∗ works with unique identifiers id, encoding the bit length m(id) of the

randomness.
• Initialization: On input (init, m̂), assign the mappingm← m̂. Deliver m̂ to all ASHi .
• Randomness commitment: On input (pubrnd, id) from all (honest) parties, generate a random
value r ∈ Z2m(id) . Output (id, r) to each party, and also to ASHi . Alternatively, if C 6= ∅, ASL
may choose to output (cheater, k) for k ∈ C to each party instead.
•Cheater detection: On input (cheater, k) fromASL for k ∈ C, output (cheater, k) to all parties.
Let C ← C \ {k}, P ← P \ {k}.

Figure 5.23: Ideal functionality Fpubrnd
∗

The protocol Πpubrnd
∗ is given in Figure 5.24. Similarly to Πrnd

∗, we will use
sharing directly, instead of building Πpubrnd

∗ on top of Fweakcommit
∗ or Frnd

∗, since
we want to exclude overheads.

Proposition 5.6. Let t be the upper bound on active coalition size. Assuming
t < n/2, the protocol Πpubrnd

∗ t-WCP-realizes Fpubrnd
∗ in Ftransmit

∗-hybrid
model.

Proof. We use the simulator Si = Spubrnd ∗(i) described in Figure 5.25. The
simulator runs a local copy of Πpubrnd

∗.
Simulatability Generation of random shares of honest parties is simulated

exactly in the same way as in Proposition 5.3, and the only difference is that the
resulting randomness r is broadcast to all parties, so we do not repeat here the
proof that Si simulates sharing the same r that was given byFpubrnd

∗. In addition,
it needs to simulate the checks rkj = r′kj .

• If j /∈ C, he would never choose such rkj 6= r′kj . Substituting the messages
with something else for j /∈ C cannot happen by definition of Ftransmit , .

• For j ∈ C, r∗kj are given to Si by AL (or generated by Si itself if AL chose
r∗kj = >), so the check is easy to simulate.

Correctness Fpubrnd
∗ outputs r to Pp(id). Si generates rkj of j /∈ C in such a

way that r =
∑

j declassify(rkj)k∈H, so this value is the same in both worlds.

194

The protocol Πpubrnd
∗ works with unique identifiers id, encoding the bit length m(id) of the

randomness.
• Initialization: On input (init, m̂), assign the mapping m ← m̂. For all id ∈ Dom(m), define
mappings s, r, and f , such that s(idjk)← j, r(idjk) = f(idjk)← k for all id ∈ Dom(p), j, k ∈ [n].
In addition, define s(idbcjk)← j, for broadcasts. Send (init, s, r, f) to Ftransmit

∗.
• Randomness commitment: On input (rnd, id):

1. Each party Pj , j 6= p(id), generates a random value rj ∈ Z2m(id) , shares it to (rkj)k∈[n],
writes comm[id]← (rkj)k∈[n], and sends (transmit, idjk, r

k
j) to Ftransmit

∗ for all k ∈ [n].

2. Pj sends (broadcast, idbcjk , rkj) to Ftransmit
∗ for all k ∈ [n].

3. Upon receiving (idbcjk , rkj) and (idjk, r
′k
j) from Ftransmit

∗, Pk checks if rkj = r′kj , and if the
shares are consistent. If the check fails, use Ftransmit

∗ to broadcast a complaint.
4. If a party Pi gets no complaints, it outputs r =

∑n
j=1 declassify(rkj)k∈[n] to Z .

• Cheater detection: At any time when (cheater, k) comes from Ftransmit
∗, each party outputs

(cheater, k) and assigns P ← P \ {k}.

Figure 5.24: The protocol Πpubrnd
∗

• Initialization Si gets (init, m̂) from Fpubrnd
∗. It simulates the initialization of Ftransmit

∗.
• Randomness generation and sharing: On input (rnd, id):

1. Similarly to Srnd∗, since the shares need to be distributed strictly before the broadcasts,
Si is able to adjust the shares of honest parties to the shares of corrupted parties given
by AL. In addition to simulating cheap transmissions of Ftransmit

∗, Si simulates the
broadcasts, where the broadcast shares rkj for j /∈ C are exactly those that Si has used in
r =

∑n
j=1 declassify(rkj)k∈[n]. For j ∈ C, AL may say to Si that some corrupted party

refuses to send a message, or that it presents a complaint. In this case, Si sends stop to
Fpubrnd .

2. After Si has simulated all the broadcasts, it checks if any party Pk for k /∈ C could have
received rkj 6= r′kj . If the check fails for at least one Pk, it sends stop to Fpubrnd and also to
each SHi that simulate sending a complaint using Ftransmit

∗.
• Cheater detection: At any time when the (cheater, k) should be output by Ftransmit

∗, Si sends
(cheater, k) to Fpubrnd

∗.

Figure 5.25: The simulator Spubrnd∗(i)

195

The Precomputed Tuple Generation Protocol Πpre
∗

An important change that we need to introduce into Fpre is, that we may no longer
trust the prover to generate its own randomness, since it may choose it in a bad
way, allowing to leak information to honest parties. For all types of tuples, we
let all the basic non-correlated randomness be generated by Fweakcommit

∗, and Pp(id)

only helps the parties to compute non-trivial values that are uniquely determined
by the basic randomness. The ideal functionality Fpre

∗ is given in Figure 5.26.
For the multiplication triples, the basic randomness is made up by the values a

and b, from which c = a ·b is computed. For the trusted bits, the basic randomness
are actually the bits themselves, but the parties are able to collaboratively generate
them only inZ2. First, the bits ak are generated uniformly overZ2 usingFweakcommit

∗.
The task of the verifier is to convert these bits into bk committed in Z2m(id) . In
addition to proving the binariness of bk, it should be proven that ak = bk (mod 2).
During the pairwise verification, the bit ck,k′ is no longer chosen by the prover,
but is computed by all parties as ck,k′ =: âk,k′ = ak − ak′ in Z2.

The protocolΠpre
∗ implementingFpre

∗ inWCPmodel is given in Figure 5.27-
5.28. Similarly to Πpre of Figure 4.27, we build it on top of a shared subroutine
Fweakcommit

∗, and we put on Z the same restriction, that the identifiers generated
inside Fpre

∗ cannot be accessed externally by Z .

Proposition 5.7. Let t be the upper bound on active coalition size. Assuming
t < n/2, if µ > 1 + η/ logN and κ > max{(N1/µ + 1)η,N1/µ + µ − 1},
where N is the total number of generated tuples, the protocol Πpre

∗ Fweakcommit
∗-t-

GWCP realizes Fpre
∗ in Fweakcommit

∗-hybrid model with correctness error ε < 2η,
and simulation error 0.

Proof. The outline of the simulatorSpre∗ is analogous toSpre given in Figure 4.29,
and only the ports between the simulator and the adversary are different. The details
of tuple generation have changed.

Simulatability. The simulator will need to generate some non-trivial values
during the openings of the cut-and-choose and the pairwise verification. First, it
simulates the generation of the basic components of all µ · u(id) + κ tuples using
Fweakcommit

∗. For p(id) /∈ C, it computes the remaining correlated components in
such a way that all these (µ − 1)u(id) + κ tuples are valid. For p(id) ∈ C, AL
may cheat with the remaining components of all µ · u(id) + κ tuples.

Up to verifying first µ − 1 tuples, the simulation is analogous to Spre , and it
is rather trivial, since all the additional tuples are generated by Si itself. The most
interesting is the last, µ-th iteration. Let k be the index of the tuple that will be
finally output and is not known to Si (in general), and let k′ be the index of the
tuple against which the k-th tuple is being verified.

196

Fpre
∗ works with unique identifiers id, encoding a bit sizem(id) of the ring in which the tuples are

committed, the party p(id) that gets all the shares, and the number u(id) of tuples to be generated.
It stores an array comm of already generated triple shares. It uses a shared subroutine Fweakcommit

∗.
• Initialization: On input (init, m̂, û, p̂) from all (honest) parties, where Dom(m̂) = Dom(û) =
Dom(p̂), assign the functionsm← m̂, u← û, p← p̂. Deliver m̂,û,p̂ to all ASHi .
• Trusted bits: On input (bit, id) from all (honest) parties, if comm[id] exists, then do nothing.
Otherwise:

1. Generate a vector of random bits~b $← Zu(id)
2 .

2. Output~b to ASHc(p(id)).

3. Wait until ASL inputs >. Assign comm[id]← ~b. Output~b to Pp(id).
4. For all k ∈ [u(id)], output (commit, idk0 , bk) to Pp(id), and (commit, idk0) to each other

(honest) party. These messages will be delivered to Fweakcommit
∗.

• Multiplication triples: On input (triple, id) from all (honest) parties, if comm[id] exists, then
do nothing. Otherwise:

1. Generate ~a $← Zu(id)

m(id),~b
$← Zu(id)

m(id). Compute elementwise ~c = ~a ·~b.

2. Output (~a,~b,~c) to ASHc(p(id)).

3. Wait until ASL inputs >. Assign comm[id] = (~a,~b,~c). Output (~a,~b,~c) to Pp(id).
4. For all k ∈ [u(id)], output (commit, idk0 , ak), (commit, idk1 , bk), (commit, idk2 , ck) to

Pp(id), and (commit, idk0), (commit, idk1), (commit, idk2) to each other (honest) party.
These messages will be delivered to Fweakcommit

∗.

• Stopping: At any time, on input (stop, id) from ASL, stop the functionality and output (id,⊥)
to all parties.

Figure 5.26: Ideal functionality Fpre
∗

In Πpre
∗, each party works with unique identifiers id, encoding the bit size m(id) of the ring in

which the tuples are committed, the party p(id) that gets the tuples, and the number u(id) of tuples
to be generated. Πpre

∗ uses Fpubrnd
∗ as a subroutine, and Fweakcommit

∗ as a shared subroutine. The
parameters µ and κ depend on the security parameter. Let λ be the number of bits in the randomness
generator seed.
• Initialization: On input (init, m̂, û, p̂) from Z , where Dom(m̂) = Dom(û) = Dom(p̂), each
party assigns the functions m ← m̂, u ← û, p ← p̂. For each id, it defines the identifiers idki for
k ∈ [µ · u(id) + κ], and i ∈ [v], where v = 2 for trusted bits, and v = 3 for triples. It defines
m̃(idki) ← m(id) (the exception is m̃(idk0) ← 2 for trusted bits), p̃(idki) ← p(id) for all i,k, and
m̄(k) = 2λ, where k is some fixed constant. It sends:

• (ext, m̃, p̃) to Fweakcommit
∗;

• (init, m̄) to Fpubrnd
∗.

• Stopping: If at any time (cheater, k) or (id,⊥) come fromFweakcommit
∗ orFpubrnd

∗, output (id,⊥)
to Z .

Figure 5.27: The protocol Πpre
∗ (initialization, stopping)

197

•Multiplication triples: On input (triple, id):
1. Each party delivers (rnd, idk0) and (rnd, idk1) to Fweakcommit

∗ for all k ∈ [µ · u(id) + κ].
2. Upon receiving (idk0 , ak) and (idk1 , bk) from Fweakcommit

∗, Pp(id) computes ck = ak · bk and
sends (commit, idk2 , ck) to Fweakcommit

∗. All other parties send (commit, idk2) to Fweakcommit
∗.

3. The parties send (pubrnd, k) to Fpubrnd , getting back a randomness seed that they use
to agree on a random permutation π of tuple indices. For k ∈ [κ], each party sends
(weak_open, idπk0), (weak_open, idπk1), (weak_open, idπk2) to Fweakcommit

∗, getting back
(ak, bk, ck). If the opening fails, or ck 6= ak · bk, then output (id,⊥).

4. Taking the next 2 · u(id) entries of π, the parties partition the corresponding triples into
pairs. Such pairwise verification is repeated µ − 1 times with the same u(id) triples, each
time taking the next u(id) indices from π.
For each pair (k, k′), let us denote (ida, idb, idc) = (idk0 , id

k
1 , id

k
2), (ida

′
, idb

′
, idc

′
) =

(idk
′

0 , id
k′
1 , id

k′
2), (idâ, idb̂, idĉ) = (idk,k

′

0 , idk,k
′

1 , idk,k
′

2).

(a) Each party sends (idâ = ida−ida
′
), (idb̂ = idb−idb

′
), and then (weak_open, idâ),

(weak_open, idb̂) to Fweakcommit
∗, getting back â and b̂ respectively.

(b) Each party then sends (idĉ = â · idb + b̂ · ida
′

+ idc
′
− idc) and (weak_open, idĉ)

to Fweakcommit
∗. If Fweakcommit

∗ returns ĉ 6= 0, output (id,⊥).

5. Let ~id be the vector of the identifiers of the remaining u(id) triples in Fweakcommit
∗. For

id′ ∈ ~id, Pp(id) outputs comm[id′].
• Trusted bits: On input (bit, id):

1. Each party delivers (rnd, idk0) to Fweakcommit
∗ for all k ∈ [µ · u(id) + κ].

2. Upon receiving (idk0 , ak) from Fweakcommit
∗, where ak ∈ Z2, the party Pp(id) takes bk = ak

in Z2m(id) , and sends (commit, idk1 , bk) to Fweakcommit
∗. All other parties send (commit, idk1)

to Fweakcommit
∗.

3. The parties send (pubrnd, k) to Fpubrnd , getting back a randomness seed that they use
to agree on a random permutation π of tuple indices. For k ∈ [κ], each party sends
(weak_open, idπk0) and (weak_open, idπk1) to Fweakcommit

∗, getting back ak and bk respec-
tively. If the opening fails, or ak 6= bk, then output (id,⊥).

4. Taking the next 2 · u(id) entries of π, the parties partition the corresponding bits into pairs.
For each pair (k, k′), let us denote (ida, idb) = (idk0 , id

k
1), (ida

′
, idb

′
) = (idk

′
0 , id

k′
1),

(idâ, idb̂) = (idk,k
′

0 , idk,k
′

1).

(a) Each party sends (idâ = ida − ida
′
) followed by (weak_open, idâ) to Fweakcommit

∗,
getting back â.

(b) If â = 0, each party sends (idb̂ = idb − idb
′
) to Fweakcommit

∗. If â = 1, each party
sends (idb̂ = 1− idb − idb

′
) to Fweakcommit

∗ to Fweakcommit
∗.

(c) Each party then sends (weak_open, idb̂) to Fweakcommit
∗. If Fweakcommit

∗ returns b̂ 6= 0,
output (id,⊥).

5. Let ~id be the vector of the identifiers of the remaining u(id) bits in Fweakcommit
∗. For id′ ∈ ~id,

Pp(id) outputs comm[id′].

Figure 5.28: The protocol Πpre
∗ (tuple generation)

198

• Multiplication Triples: The generation of initial random components is
reduced to Fweakcommit

∗, For p(id) ∈ Ci, Si simulates it in such a way that the
last u(id) tuples that will be finally accepted are those chosen by Fpre

∗. Let
x and x′ be two values whose differences are opened during the pairwise
check. Since both x and x′ are assumed to come from Fweakcommit

∗, and x′ has
not been opened yet, all published differences x̂ = x − x′ are distributed
uniformly, and hence can be generated by Si for p(id) /∈ Ci. If AL wants to
cheat and open x̂∗ 6= >, then opening x̂∗ is simulated by Si.

• Trusted bits: We have modified our protocol in such a way that the bits bk
need to be additionally verified against ak ∈ Z2. For this, a linear combi-
nation âk,k′ = ak − ak′ needs to be opened. Similarly to the multiplication
triple case, ak′ serves as a mask for ak.

In addition, Si should correctly simulate the cut-and-choose openings, and the
finally opened alleged zeroes. Since all basic components are either generated
by Si itself, or are given to it by Fpre

∗, it is able to check whether the additional
component c for the triple (a, b, c), and b for the trusted bit pair (a, b), are computed
properly by AL.

Correctness. For p(id) /∈ C, the finally remaining u(id) tuples are exactly
those that are generated by Fpre

∗. For p(id) ∈ C, these u(id) tuples are all
generated by AL. We need to show that, if the final u(id) tuples are accepted for
p(id) ∈ C, then they are all valid, except with negligible probability.

First of all, we show that, if the tuple with the index k′ is valid, then the
pairwise check passes only if the tuple k is also valid.

• Multiplication Triples: The only difference of Πpre
∗ from Πpre is that

the generation of initial random components is reduced to Fweakcommit
∗, so

that the initial tuple components are indeed random, as Fpre
∗ requires. The

correctness of the other components that are computed from them is ensured
in the same way as in Πverify .

• Trusted bits: The additional requirement of Fpre
∗ is that the bits bi should

be truly random. Since 1 − bk′ − bk = 0 should hold for ak′ 6= ak, and
bk − bk′ should hold for ak′ = ak, these checks ensure that the bits ak differ
from ak′ in the same way as bk differ from bk′ . Assuming that (ak′ , bk′) is a
valid tuple, i.e. ak′ = bk′ , we get ak = bk.

We have shown that the only possibility for the prover to cheat is to put two
invalid tuples into the same pair. For the µ−1 pairwise checks, the finally accepted
invalid tuple should be paired with some other invalid tuple on each iteration. As
we have shown in Lemma 4.6, for sufficiently large µ and κ, this happens only
with a negligible probability.

199

Table 5.3: Number of tuple bits involved in different steps (ring cardinality 2m)

op(x,m)

x nbtpl1 nbtpl1 nbtpl2 nbop1 nbop2

bit 1 +m 1 m 1 m
triple 3m 2m m 2m m

Observation 5.4. From the description of Πpre
∗, we can extract the total number

of bits broadcast in different steps of the tuple generation:

• the number of bits nbtpl(T) in a single tuple of type T ;

• the number of bits nbtpl1(T) generated using Fweakcommit
∗;

• the number of bits nbtpl2(T) = nbtpl(T)− nbtpl1(T) that are computed by
the prover;

• the numbers nbop1(T) and nbop2(T) of tuple bits opened in the pairwise
check, where nbop1(T) bits are opened before the last nbop2(T) bits.

For Πpre , we have nbtpl1(T) = 0 and nbtpl2(T) = nbtpl(T). Compared to
Table 4.4, the costs have changed for trusted bits, and there are now also some new
tuples. The new costs are given in Table 5.3.

The cost of preprocessing can be computed similarly to the value proven in
Lemma 4.5, and the difference is that now not all nbtpl(T) bits are transmitted to
each party, but nbtpl1(T) need to be generated byFweakcommit

∗, and only nbtpl2(T) are
transmitted. Taking into account the cost of randomness generation of Table 5.1,
and denotingM := µN + κ the cost can be rewritten as

prcNT = (tr⊗ntshn·λ ⊕ bc⊗nshn·λ)

⊗ (tr
⊗n(t+1)
M ·shn·(nbtpl1T) ⊕ fwd

⊗n(t+1)
M ·shn·(nbtpl1T) ⊕ tr

⊗n(t+1)
M ·shn·(nbtpl1T))

⊕ (bc⊗nκ·shn·(nbtplT) ⊗ bc⊗n(µ−1)N ·shn·(nbop1T) ⊗ bc⊗n(µ−1)N ·shn·(nbop2T)) .

Since t+1 < n, and instead of n transmissions of (µN+κ) ·shn ·(nbtplT) bits
there are now 2n2 transmissions and n2 forwardings of (µN +κ) · shn · (nbtpl1T)
bits each, which are as expensive as 3n2 transmissions, the rough multiplicative
overhead of Πpre

∗ compared to Πpre is upper bounded by 3n. We do not take
into account preprocessing phase of Ftransmit

∗, since Fpre
∗ is allowed to fail, and

the steps involving tuple generation do not need to support the expensive mode of
Ftransmit

∗ on which Πweak
commit

∗ is built. The number of rounds remains the same.

200

Fverify
∗ works with unique identifiers id, encoding the party indices p(id) and p′(id) committed

to comm[id], the function f(id) to verify, and the input identifiers ~xid(id) on which f(id) should
be verified w.r.t. the output identified by id. It also encodes the randomness r(id) that is generated
during the initialization, and will be used later for the randomness commitment. The messages are
first stored in an array sent before the sender and the receiver get finally committed to them.
• Initialization: On input (init, f̂ , ~̂xid, p̂, p̂′) from all (honest) parties, where f̂ , ~̂xid, p̂, p̂′ are
defined over the same domain, assign f ← f̂ , ~xid← ~̂xid, p← p̂, p′ ← p̂′. For all id ∈ Dom(f),
generate a fresh randomness r(id) in Z2m , where Z2m is the range of f(id). For p(id) ∈ C, deliver
r(id) to ASHc(p(id)). Deliver (init, f, ~xid, p, p′) to all ASHi . If ASL responds with (stop), output
⊥ to all parties.
• Input Commitment: On input (commit_input, id, x) fromPp(id), and (commit_input, id) from
all (honest) parties, if comm[id] is not defined yet, assign comm[id]← x. If p(id) ∈ C, then x is
chosen by ASL.
• Message Commitment: On input (send_msg, id, x) from Pp(id) and (send_msg, id) from all
(honest) parties, output x to ASHp′(id). If p(id) ∈ C, then x is chosen by ASL. Output x to Pp′(id).
Assign sent [id]← x.
On input (commit_msg, id) from all (honest) parties, check if sent [id] and comm[id] are defined.
If sent [id] is defined, and comm[id] is not defined, assign comm[id] ← sent [id]. If both
p(id), p′(id) ∈ C, assign comm[id]← x∗, where x∗ is chosen by ASL.
• Randomness Commitment: On input (commit_rnd, id) from Pp(id), and (commit_rnd, id)
from all (honest) parties, check if comm[id] exists. If it does, then do nothing. Otherwise, assign
comm[id]← r(id).
• Verification: On input (verify, id) from all (honest) parties, if comm[id] and comm[i] have been
defined for all i ∈ ~xid(id), take ~x ← (comm[i])i∈ ~xid(id) and y ← comm[id]. For f ← f(id),
compute y′ ← f(~x). If y′ − y = 0, output (id, 1) to each party. Otherwise, output (id, 0) to each
party. Output the difference y′ − y, to all adversaries ASHi .
• Cheater detection: On all inputs involving id, if p(id) ∈ C, AS may input (cheater, p(id)).
In this case, comm[id] is not assigned. On input (send_msg, id), sent [id] is not assigned. If no
(cheater, p(id)) comes, then each commitment ends up outputting (confirmed, id) to each party.
On each input (cheater, k) from AS for k ∈ C, output (cheater, k) to each party. Assign C ←
C \ {k}, P ← P \ {k}.

Figure 5.29: Ideal functionality Fverify
∗

The Verification Protocol Πverify

Figure 5.29 depicts the functionality Fverify
∗, defined similarly to the UC func-

tionality Fverify given in Figure 4.30. As in Fweakcommit
∗, all the randomness that

needs to be committed will be generated already during the initialization. On input
(commit_rnd, id), the parties will just write that randomness into comm[id].

If we use the UC protocol Πverify of Figure 4.31 without special modifications,
just building it on top of Ftransmit

∗ and Fweakcommit
∗, we will be able to WCP-realize

Fverify
∗. It will be sufficient to implement the verification for a covert adversary,

since if no party attempts to cheat due to being detected, it will always commit y
such that f(~x)− y = 0.

201

In Πverify
∗, each party works with unique identifiers id, encoding the party indices p(id) and p′(id)

committed to comm[id], the function f(id) to verify, and the identifiers ~xid(id) of the inputs on
which f(id) should be verified w.r.t. the output identified by id. It also encodes the randomness
r(id) that will be precomputed by the parties during the initialization, and will later be used for
randomness commitment. The prover stores the committed values in a local array comm . The
verifiers store the helpful values published by the verifier in an array pubv . The messages are
stored by the sender and the receiver in a local array sent before they finally get committed to these
messages. Πverify

∗ uses Ftransmit
∗, Fweakcommit

∗, Fpre
∗ as subroutines.

• Initialization: On input (init, f̂ , ~̂xid, p̂, p̂′), where domains of the mappings f̂ , ~̂xid, p̂, p̂′ are the
same, initialize comm and sent to empty arrays. Assign f ← f̂ , ~xid← ~̂xid, p← p̂, p′ ← p̂′.
Initialize Ftransmit

∗, Fweakcommit
∗, and Fpre

∗ in the same way as it is done in Πverify of Figure 4.31.
•Randomness Commitment: On input (commit_rnd, id), each party sends (rnd, id) toFweakcommit

∗.
• Other inputs: On all other inputs, the parties behave in the same way as defined in Πverify .

Figure 5.30: The protocol Πverify
∗ (modifications compared to Πverify)

If the adversary is active, then Fverify
∗ will not provide reasonable security

guarantees in WCP model. We will discuss this problem in Section 5.4.4, when
we construct verifiable computation for active adversaries.

Since the randomness generation is now done by Fweakcommit
∗, and not Frnd as it

was in Πverify , we formally need to modify the definition of Πverify . The resulting
protocol Πverify

∗ is given in Figure 5.30. We only need to re-define the actions
of parties on input (commit_rnd, id). The behaviour of parties on all other inputs
remains the same.

Proposition 5.8. Let t be the upper bound on covert coalition size. Assuming
t < n/2, and a covert adversary, the protocol Πverify

∗ t-WCP-realizes Fverify
∗ in

Ftransmit
∗-Fweakcommit

∗-Fpre
∗-hybrid model.

Proof. We use the simulator Si = Sverify∗(i) described in Figure 5.31. The
simulator runs a local copy of Πverify

∗, and local copies of Ftransmit
∗, Fweakcommit

∗,
Fpre

∗.
Simulatability. During the initialization, Si only needs to simulate the ini-

tialization of the subroutines. For k ∈ Ci, it should deliver to AHi the randomness
that Fweakcommit

∗ would output to AHi . Si gets this randomness from Fverify
∗.

During the commitments, Si simulates Fweakcommit
∗; the inputs of dishonest

parties for this functionality are provided by AL.
When the verification starts, Si needs to simulate the broadcast, and it needs

to generate the broadcast values of p(id) /∈ Ci itself. Similarly to Sverify of
Figure 4.34, all of these values are some private values hidden by a random mask.

After all the broadcasts and subsequent local operations on Fweakcommit
∗ (which

do not require any interaction) are simulated, Si simulates opening to each party

202

• Initialization: Si gets (init, f, ~xid, p, p′), fromFverify
∗. First of all, Si simulates initialization of

Fweakcommit
∗. It gets randomness r(id) fromFverify

∗, that is expected to be committed usingFweakcommit
∗

for p(id) ∈ Ci. During the simulation of initialization of Fweakcommit
∗, Si outputs to AHi the same

values r(id) that were given by Fverify
∗.

Si simulates initializing and running Fpre
∗. It receives from Fpre

∗ the tuples for p(id) ∈ Ci and
outputs them to AHi . If its execution has not failed, then AHi expects that all (valid) tuples for all
p(id) ∈ [n] are copied to Fweakcommit

∗. If the execution fails, Si sends (stop) to Fverify
∗.

• Input Commitment: Si simulates sending (commit, id, x) and (commit, id) to Fweakcommit
∗. For

p(id) ∈ Ci, x is computed from the local view of Si. For p(id) ∈ C, Si obtains x∗ from AL. It
delivers x∗ to Fverify

∗.
•Message Commitment: First of all, Si simulates sending (transmit, id,m) to Ftransmit

∗. Then
Si simulates sending (mcommit, id, id′,m), (mcommit, id, id′,m′), and (mcommit, id, id′) to
Fweakcommit

∗, where m′ is the message that p′(id) has actually received, and id′ is the identifier that
corresponds to p′(id) in Fweakcommit

∗. To do this simulation, Si needs to know the bit b denoting
m = m′. It takes b = 1 iff eitherm∗ 6= > orm′∗ 6= > was chosen by AL (if bothm∗,m′∗ 6= >,
then take b = (m∗ = m′∗)). Ifm∗ = m′∗, thenm∗ is delivered to Fverify

∗.
• Randomness Commitment: On input (commit_rnd, id), Si sends (rnd, id) to Fweakcommit

∗.
• Stoppings: At any time, when Ftransmit

∗, Fpre
∗, or Fweakcommit

∗ should output a message
(cheater, k), Si outputs (cheater, k) to Fverify

∗ and discards Pk from their local run of Πverify
∗,

assigning P ← P \ {k} and C ← C \ {k}.
• Verification: On input (verify, id), Si decomposes f(id) to basic operations f1, . . . , fN , and
defines the additional identifiers idxki , idyki , idzki as the honest parties do.

1. For p(id) ∈ Ci, Si computes all the intermediate values comm[id
xk
i] and comm[id

yk
i], uses

them to compute ~̂x, and simulates broadcasting it. For p(id) /∈ Ci, Si samples ~̂x from
appropriate uniform distribution, similarly to Sverify of Figure 4.34. For p(id) ∈ C, Si uses
~̂x∗ given by AL. If ~̂x∗ = >, it takes the ~̂x that it computed itself.
Si simulates broadcasting ~̂x∗ and ~̂x through Ftransmit . It writes pubv [idtypei] ← ~̂x for all
honest parties receiving ~̂x. As Sverify does, for the trusted bits it additionally simulates
sending the messages (idbiti,k = 1− idbiti,k) to Fweakcommit

∗ (requiring no interaction) for which
ck = 1 was broadcast, as the honest parties do.

2. The local computation of the verifiers depends on fi, and Si just simulates using Fweakcommit
∗

to compute certain local operations. In the end, Si needs to simulate opening to each
party the alleged zero vector ~z. For p(id) ∈ Ci, Si already knows all the values needed to
compute ~z. For p(id) /∈ Ci, Si obtains the difference f(~x) − y from Fverify

∗. It assigns
~zN+1 ← [f(~x) − y]. For all other alleged zeroes z, it takes z ← 0 for p(id) /∈ C. For
p(id) ∈ C, the choice of z depends on the actions of AL. For basic operations, we have the
following types of alleged zeroes:

• z = x′ − x− rx for some value x′ that is broadcast by the prover. In the first round,
Si has already generated a uniformly distributed x′, and AL has chosen to broadcast
x′∗ instead of x′. Si takes z = x′∗ − x′.

• z = x−
∑m
k=1 2k−1yk, where for k ∈ [m] a bit ck was broadcast, denoting whether

yk = bk or yk = 1 − bk. AL has chosen to broadcast c∗k instead of ck. Si takes
z =

∑m
k=1(2k−1(c∗k − ck) mod 2).

In the end, Si simulates opening ~z, and the final decisions of parties based on the opened ~z.

Figure 5.31: The simulator Sverify∗(i)

203

the alleged zero vector ~z. If p(id) ∈ Ci, then Si already knows all the values
needed to compute ~z.

If p(id) /∈ Ci, then Si obtains only the difference f(~x) − y from Fverify
∗.

However, it needs to simulate the alleged zeroes ~zi of each intermediate basic
function fi. If p(id) /∈ C, it would have broadcast ~̂x such that z = 0 for the
remaining entries z of ~z. It is more complex with p(id) ∈ C \ Ci. It may happen
that some entries of ~x and ~y have not been chosen by AL, so Si does not have
enough information to simulate ~z. Putting aside the alleged zeroes corresponding
to the final answers f(~x)−y (that Si obtains fromFverify

∗), we have the following
types of alleged zeroes:

• z = x′ − x − rx for some value x′ that has been broadcast by the prover.
Si has already generated a random x′ and broadcast x′∗. Sampling x′ by
the simulator was not in contradiction with the view of AHi so far, as the
randomness rx was used the first time to mask x. Since x′ = x + rx was
assumed, andx′∗was actually broadcast,AHi nowexpects z = x′∗−x−rx =
x′∗ − x′.

• z = x−
∑m

k=1 2k−1yk, where for k ∈ [m] a bit ck was broadcast, denoting
whether yk = bk or yk = 1 − bk. The reasoning here is similar to z =
x′−x− rx, just allm bits are verified simultaneously, and all Z2 arithmetic
has to be performed in Z2m . Sampling ck by the simulator was not in
contradictionwith the view ofAHi so far, since the bit bk comes fromuniform
distribution over {0, 1}. Since the verification would stop if ck /∈ {0, 1}
was broadcast, AL could at most change the bit value ck. If it happens that
ck = c∗k, then the bit zk = 0 is expected byAHi . If ck = c∗k, then c∗k = 1, so
AHi assumes that yk is a flipped xk, so it should be zk = 1.

Since the adversary is covert, we may assume thatweak_open always succeeds
(otherwise, open would be called, causing the cheater to be blamed), and so there
will be no need to call open.

Correctness. The inputs / messages of p(id) /∈ [n] (modified by AL for
p(id) ∈ C), and the randomness chosen by Fverify

∗ are all stored in Fweakcommit
∗. In

addition, the precomputed tuples are also stored in the sameFweakcommit
∗ by definition

of Fpre
∗. Fweakcommit

∗ may now be used as a black box, doing computation on all
these commitments. It remains to prove that, if all these values are committed
properly, then Πverify

∗ does verify the computation of f(id) on input (verify, id).
It is easy to see that, if ~zi = ~0 for the alleged zeroes produced by the basic

function fi, then fi has been computed correctly with respect to the committed
inputs and outputs on which it was verified, and ~̂xi has been computed correctly for
fi. The details of verifying each basic function are analogous to the Lemma 4.10,

204

so we do not repeat the proof here. If all fi have been computed correctly, then so
is their composition f .

Proposition 5.9. LetMc be the total number of bits sent in the execution phase of
the original passively secure protocol. Compared to the UC protocol Πverify built
on top of Πcommit , Πrnd and Πpre , the protocol Πverify

∗ built on top of Πtransmit
∗,

Πweak
commit

∗ and Πpre
∗ has the following costs:

• Preprocessing: X⊗3n
pre ⊗ (tr

⊗2n(t+1)
shn·Mc

⊕ fwd
⊗3n(t+1)
shn·Mc

⊕ tr
⊗3n(t+1)
shn·Mc

), where
Xpre is the cost of the preprocessing of Πverify .

• Execution: No overheads in the cheap mode. X⊗nexec in the expensive mode,
where Xexec is the cost of the expensive mode of the execution of Πverify .

• Postprocessing: X⊗npost, where Xpost is the cost of either the cheap or the
expensive mode of the postprocessing of Πverify .

Proof. We justify the estimations given to complexities of different phases.

• Preprocessing: In this phase, by definition of Πverify , the functionalities
Ftransmit ,Fcommit , andFpre are initialized, andFpre is executed to generate
a certain number of tuples. The same holds forΠverify

∗ regardingFtransmit
∗,

Fweakcommit
∗ and Fpre

∗. The protocols of WCP model incur the following
overheads:

– Initialization and execution of Πpre
∗ gives 3n multiplicative overhead

compared to Πpre by Observation 5.4.
– Initialization of Ftransmit

∗ supporting expensive mode requires addi-
tional randomness to be generated during preprocessing. Πverify

∗ uses
Ftransmit

∗ to transfer theMc bits of the initial protocol. By Observa-
tion 5.2, the cost of this initialization is (tr

⊗n(t+1)
shn·Mc

⊕ fwd
⊗2n(t+1)
shn·Mc

⊕
tr
⊗2n(t+1)
shn·Mc

).

– Initialization of Fweakcommit
∗ requires additional shared randomness to be

generated, and by Observation 5.3 its additional cost is (tr
⊗n(t+1)
shn·Mc

⊕
fwd
⊗n(t+1)
shn·Mc

⊕ tr
⊗n(t+1)
shn·Mc

)⊗ (tr
⊗n(t+1)
shn·Mc

⊕ fwd
⊗2n(t+1)
shn·Mc

⊕ tr
⊗2n(t+1)
shn·Mc

) =

(tr
⊗2n(t+1)
shn·Mc

⊕ fwd
⊗3n(t+1)
shn·Mc

⊕ tr
⊗3n(t+1)
shn·Mc

), assuming that the inputsMx

are not longer than the communicationMc.

• Execution: No overheads in the cheap mode. X⊗n in the expensive mode
by Observation 5.2, whereX is the cost of the expensive mode of execution
phase of Πverify .

205

• Postprocessing: For commitments, the multiplicative overhead of the online
phase is n by Observation 5.3, as the broadcast is n times more costly than
n transmissions. In the expensive mode, the broadcast is ca. 1.5n times
more costly than n transmissions, which is asymptotically the same (we
used Table 4.1 for these estimations).

5.4.4 Active Adversaries

In order to achieve active security, we could apply the verification after each
protocol round. However, we cannot use Πverify

∗ anymore. Differently from the
case of covert adversary, Si is no longer able to simulate resolving the conflicts
regarding alleged zero vector for a corrupted party, since an active adversary is not
afraid of being caught. We discuss these problems in detail.

Non-zero alleged zero. One problem comes from opening the alleged zero
vector ~z itself, before any conflict resolving takes place. In UC model, it could
not leak information of an honest party since an honest prover does not allow to
open anything except ~z = ~0. In the WCP model, the adversary may use ~z to
leak sensitive information to some honest party. For example, if the parties are
checking if Pk has correctly computed 3x = y, then Pk may substitute y with 0
in the check 3x − y = 0, so that z = 3x becomes published. If x has been sent
to Pk by some honest Pi, it may be unhappy about leaking 3x to everyone. Hence
it is now questionable whether we should allow Fverify

∗ to open the differences
f(~x)− y to honest parties.

In a finite field Zq, the problem of of checking z = 0 could be solved by
multiplicative hiding, checking z · r = 0 for a uniformly distributed r. If z 6= 0,
then product z · r is also distributed uniformly over the field, so only a single bit
of information is leaked, whether z = 0 or not. This multiplication could be done
again using precomputed multiplication triples over the corresponding field.

In a ring Z2m , the simplest solution is to decompose each entry zj of the
alleged zero vector ~z of length ` to bits (zj1, . . . , zjm) using trusted bits. The
product

∏`,m
j,i=1(1 − zji) in Z2 returns a single bit, denoting whether ~z = ~0. All

the multiplications can be done using precomputed triples over Z2. As the result,
we still get a situation where the parties locally compute and open ~z = g(~x, y),
where g is a composition of linear combinations and truncations (it would be
g(~x, y) = f(~x) − y in the protocols Πverify and Πverify

∗), but now ~z = [z] is a
one-element vector, where z ∈ {0, 1} is just a single bit.

Both solutions in turn introduce more alleged zeroes coming either from the
multiplication triples (in Zq) or the trusted bits (in Z2m). As we have shown in
Proposition 5.8, it is safe to open alleged zeroes coming from the tuples.

206

Complaining about alleged zero. Another problem comes in the case where
weak_open of ~z fails. If there is a conflict between the prover P and some verifier
Vi, and P is forced in this way to open up to t − 1 shares issued to corrupted
verifiers, then each honest party is able to reconstruct all the commitments from
the t shares that they now hold.

We modify Πverify
∗ as follows. Instead of committing the value x over Z2m

directly to Fcommit , a party first generates a random value x1
$← Z2m , computes

x2
$← x − x1, and then commits x1 and x2 separately. This is done to all the

inputs, randomness, communication, outputs, and also the precomputed tuples for
all parties.

Let now g be a linear combination s.t g(~x) = ~0 is the expected alleged zero
vector, and ~x is the vector of committed values, each x = x1 + x2 committed as
x1 and x2. The vector g(~x) takes into account all the additional checks related to
the bit decompositions that turn the initial alleged zeroes to a single bit z ∈ {0, 1}.
Instead of opening ~z = g(~x) = g(~x1 + ~x2), the parties do the following:

1. Open ~z1 = g(~x1). If weak opening succeeds, there is no additional leakage.
If weak opening fails, then the parties attempting to tamper with the shares
will be discarded fromP . Up to t−1 shares of ~x1 will be revealed. Hence it
may happen that ~x1 leaks to honest parties, but it is uniformly distributed so
far. And if the adversary succeeds in leaking ~x1, then all corrupted parties
will be discarded from P .

2. Open ~z2 = g(~x2). If weak opening fails, again, up to t − 1 shares of ~x2

will be revealed. However, even knowing ~x2, the honest parties are unable
to reconstruct ~x = ~x1 + ~x2 unless they know ~x1. As described above, they
would be able to get ~x1 only if all t− 1 parties were discarded from P , and
in this case ~x2 would not be leaked to honest parties.

After ~z1 and ~z2 are opened, each party reconstructs ~z = ~z1 + ~z2.
In the next sections, we define the protocols including these modifications in

more details, and prove their security.

The Commitment Protocol Πcommit
∗

We define Fcommit
∗ similarly to Fweakcommit

∗, with the difference that no information
is leaked to honest parties about the initial commitments from which the opened
value has been computed. We build Πcommit

∗ on top of Fweakcommit
∗. This protocol

is given in Figure 5.32.

Proposition 5.10. Let t be the upper bound on active coalition size. Assuming
t < n/2, the protocol Πcommit

∗ t-WCP-realizes Fcommit
∗ in Fweakcommit

∗-hybrid
model.

207

In Πcommit
∗, each party works locally with unique identifiers id, encoding the bit size m(id) of

the ring in which the value is shared, and the parties p(id) and p′(id) that know the shared value.
Πcommit

∗ works on top of Fweakcommit
∗.

• Initialization: On input (init, m̂, p̂, p̂′), for each identifier id ∈ Dom(m̂) = Dom(p̂) =
Dom(p̂′), define two identifiers id1 and id2. Assign m(id1) = m(id2) ← m̂(id), p(id1) =
p(id2)← p̂(id), p′(id1) = p′(id2)← p̂′(id). Send (init,m, p, p′) to Fweakcommit

∗.

• Commit: On input (commit, id, x), Pp(id) generates random x1
$← Z2m(id) , computes x2 ←

x− x1 in Z2m(id) , and sends (commit, id1, x1) and (commit, id2, x2) to Fweakcommit
∗.

•Mutual Commit: On input (mcommit, id, id′, x), Pp(id) generates random x1
$← Z2m(id) , com-

putes x2 ← x− x1 in Z2m(id) , and sends (mcommit, id1, id
′
1, x1) and (mcommit, id2, id

′
2, x2)

to Fweakcommit
∗. On input (mcommit, id, id′, x′), after obtaining x1 and x2 from Fweakcommit

∗, Pp′(id)
computes x← x1 + x2 in Z2m(id) , and checks x = x′, broadcasting (bad, id, id′) if x 6= x′.
• Weak Open: On input (weak_open, id), each party sends (weak_open, id1) and
(weak_open, id2) to Fweakcommit

∗. Each party receives x1 and x2 from Fweakcommit
∗. If at least one

of them is (idk,⊥), output (id,⊥) to Z . Otherwise, output x1 + x2 to Z .
• Open: On input (open, id):

1. Send (open, id1) to Fweakcommit
∗, receiving back x1. For all messages (cheater, k) coming

from Fweakcommit
∗, assign P ← P \ {k}, and output (cheater, k) to Z .

2. Send (open, id2) to Fweakcommit
∗, receiving back x2. For all messages (cheater, k) coming

from Fweakcommit
∗, assign P ← P \ {k}, and output (cheater, k) to Z .

3. Output x = x1 + x2 in Z2m(id) .
• Other operations: For any other input (task, id), all parties send (task, id1) and (task, id2) to
Fweakcommit

∗.

Figure 5.32: Real Protocol Πcommit
∗

Let comm , pubv , deriv be the local arrays of Si. On all inputs, except (open, id), the behaviour of
Si is defined similarly to Sweakcommit

∗.
• Open: Si needs to simulate sending (open, id1) and (open, id2) to Fweakcommit

∗. As a side effect,
Fweakcommit

∗ needs to open all the leaves of deriv [id] to AHi for C 6= Ci. The particular simulation
proceeds as follows:

1. Simulate sending (open, id1) to Fweakcommit
∗. By definition, all the leaves of deriv [id] are

of the form x = x1 + x2, where x1 and x2 are distributed uniformly, if only one of them
has been seen. Si samples all revealed shares from uniform distribution. Any party Pk for
which (cheater, k) comes fromFweakcommit

∗ is discarded from the protocol, i.e. P ← P \{k},
C ← C \ {k}.

2. Send (open, id2) to Fweakcommit
∗, receiving back x2. Si samples all revealed shares from

uniformdistribution. Any partyPk forwhich (cheater, k) comes fromFweakcommit
∗ is discarded

from the protocol, i.e. P ← P \ {k}, C ← C \ {k}.

• Other operations: For any input involving x, Si generates x1
$← Z2m(id) , and computes

x2 ← x− x1 in Z2m(id) . Si simulates the analogous operations of Fweakcommit
∗ applied to x1 and x2,

similarly to Sweakcommit
∗.

Figure 5.33: The simulator Scommit
∗(i)

208

Proof. We use the simulator Si = Scommit
∗(i) described in Figure 5.33. All the

operations besides strong opening are simulated analogously to Sweakcommit
∗, so we

do not give here a proof of their correct simulation. We only discuss the strong
opening.

Simulatability. Si needs to simulate sending (open, id1) and (open, id2)

to Fcheapcommit

∗
. By definition of Fcheapcommit

∗
, if all t − 1 corrupted parties reveal

themselves during the opening, the commitments fromwhich the value comm[id1]
(or comm[id2]) were computed will be output to AHi such that i 6= 1. Hence for
i 6= 1, the simulator Si should generate these values itself.

1. When simulating sending (open, id1) to Fweakcommit
∗, up to t − 1 messages

(cheater, k) may come from AL. If t − 1 such messages have come, the
leaves x of deriv [id] are output toAHi . For each commitment x = x1 +x2,
there are two possibilities for the value x1.

• If x2 has already been delivered toAHi when opening some other value
comm[id′] before (such that deriv [id′] also contained the value x in
one of its leaves), then the messages (cheater, k) should have already
been simulated for at least t − 1 parties Pk, k ∈ C, since x2 would
not be delivered to AHi otherwise. Since |C| ≤ t − 1, it would be
impossible for AL to force opening x1 now.

• If x2 has not been delivered to AHi yet, then x1 can be sampled by Si
from a uniform distribution.

2. When sending (open, id2) to Fweakcommit
∗, again, up to t − 1 shares of C may

need to be opened to AHi . This case is symmetric to (open, id1), and x1 is
now treated as the value that might have already been opened before.

To summarize, either x1 or x2 may be opened to AHi , but not both. The value
x remains unknown to AHi .

Correctness. For each x that Fcommit
∗ outputs to Pk for k ∈ Ci, Si has

simulated exactly the same x in its interaction with AHi . For k /∈ Ci, Si has not
leaked to AHi any information about x, even for p(id) ∈ C.

Observation 5.5. Πcommit
∗ usesFweakcommit

∗ as a subroutine to perform the same op-
erations thatFweakcommit

∗ does. In all cases, the corresponding operation ofFweakcommit
∗

is called twice. Therefore, compared to covertly secure Πweak
commit

∗, the multiplica-
tive overhead of actively secure Πcommit

∗ is 2.

The Verification Protocol Πstrong
verify

∗

We define Fstrongverify

∗ similarly to Fverify
∗, and the only difference is that, instead

of outputting f(~x) − y to all the adversaries, it outputs just a single bit denoting

209

• Initializing subroutine protocols: The subroutines Ftransmit
∗, Fpre

∗, and Fcommit
∗ are initial-

ized as in the case of Πverify
∗. In addition, for each expected alleged zero z ∈ Z2m , the following

precomputed tuples need to be generated by Fpre
∗:

1. m trusted bits shared over Z2m .
2. m one-bit multiplication triples in Z2.

• Verification: On input (verify, id), the parties act in the same way as for Πverify
∗ of Figure 4.31,

up to the opening of the final alleged zeroes. Let idz1, . . . , idz` be the identifiers of obtained
alleged zeroes corresponding to the difference f(~x) − y, as used by Fcommit

∗ (i.e. excluding the
alleged zeroes that check the correctness of broadcasts). For i ∈ [`], let (zi1, . . . , zim) be the bit
decomposition of the alleged zero zi = comm[idzi] over Z2m .

1. In the first round, the prover additionally broadcasts ~̂zi = [ci1, . . . , cim] for all i ∈ [`],
where cik ∈ {0, 1} denotes whether bik = zik for the trusted bit bik. It also broadcasts
the differences âik =

∏i,k
l,j=1(1 − zlj) − aik and b̂ik = (1 − zi(k+1)) − bik (take z(i+1)1

if k = m) in Z2 for the precomputed multiplication triples (aik, bik, cik) for all i ∈ [`],
k ∈ [m].

2. In the second round, instead of directly sending (open, idzi) to Fcommit
∗ for all i ∈ [`], the

parties use the broadcast bits cik to do the bit decomposition of zi, as it is done in Πverify

and Πverify
∗. Let idzik be the identifier such that zik = comm[idzik] in Fcommit

∗. Then
the parties send (idz̄ik = (1 − idzik) mod 2 to Fcommit

∗. The parties use the precomputed
multiplication triples over Z2 to find the product of all values comm[idz̄ik]. Let idz be
the identifier such that comm[idz] the final answer. Finally, the parties send (open, idzi) to
Fcommit for all alleged zeroes that not related to f(~x)−y. If all values returned byFcommit

∗

are 0, send (open, idz) to Fcommit
∗ (otherwise, output 0 to Z). The final value returned by

Fcommit
∗ is output to Z .

• Other operations: The parties act in the same way as in Πverify
∗.

Figure 5.34: The protocol Πstrong
verify

∗
(i)

whether f(~x) − y = 0. We provide an updated version Πstrong
verify

∗ of Πverify
∗ and

prove that it WCP-implements Fstrongverify

∗. The protocol is depicted in Figure 5.34.
The protocol Πstrong

verify

∗ uses Fcommit
∗ instead of Fweakcommit

∗, and its subroutine
Fpre

∗ will also commit the generated precomputed tuples to Fcommit
∗. The only

significant change that we need to do is the final alleged zero check.

Proposition 5.11. Let t be the upper bound on active coalition size. Assuming
t < n/2, the protocol Πstrong

verify

∗
t-WCP-realizes Fverify

∗ in Ftransmit
∗-Fcommit

∗-
Fpre

∗-hybrid model.

Proof. We use the simulator Si = Sstrongverify

∗
(i) described in Figure 5.35. It runs a

local copy of Πstrong
verify

∗, and local copies of Ftransmit
∗, Fcommit

∗, Fpre
∗.

Simulatability. The simulation of additional alleged zeroes, related to the bit
decompositions and multiplications that replace ~z with a single bit z ∈ {0, 1}, is
done in exactly the same way as for Sverify∗, so we do not repeat the proof here.
The only additional alleged zero that is opened besides them is the one bit z that

210

• Initialization: On input (init, f, ~xid, p, p′) from Fstrongverify

∗, Si simulates Fpre
∗ to generate all

the necessary tuples, including the additional trusted bit and multiplication triples. If execution of
Fpre

∗ has not failed, then AHi expects that all (valid) precomputed tuples for p(id) ∈ C are copied
to Fcommit

∗. If the tuple generation fails, Si sends (stop) to Fstrongverify

∗.
• Verification: Si decomposes f(id) to basic operations f1, . . . , fN , and defines the additional
identifiers idxki , idyki , idzki as the honest parties do.

1. For p(id) ∈ Ci, Si computes all the intermediate values comm[id
xk
i] and comm[id

yk
i].

It uses them to compute ~̂x, including the additional values of Πstrong
commit

∗. The broadcast
of p(id) /∈ Ci is simulated by Si exactly in the same way as it was done by Sverify∗,
sampling each entry of ~̂x from uniform distribution over corresponding ring, including the
additional values of Πstrong

commit

∗. For p(id) ∈ C, the values ~̂ ∗x are chosen byAL. Si simulates
broadcasting obtained ~̂x∗ and ~̂x through Ftransmit similarly to Sverify .

2. The local computation of the verifiers depends on fi, and Si just simulates using Fcommit
∗

to compute certain local operations. After the computation of ~z has finished, instead
of simulating its opening, Si continues with the simulation of local computation that is
extended by Πverify

∗. The simulation of these additional steps is analogous to the simulation
of locally computing fi, since they do not require interaction with AHi and AL. In the
end, Si simulates toAHi the opening of all the additional alleged zeroes that come from the
broadcasts. They are chosen similarly to Fverify

∗, i.e. z = 0 if p(id) /∈ C, and z = x̂∗ − x̂
or z =

∑m
k=1((c∗k − ck) mod 2) for the broadcast x̂ and ck corresponding to these new

tuples if p(id) ∈ C. If all opened values are 0, it simulates to AHi the opening of the bit b
that was obtained from Fstrongverify

∗.

• Other operations: Si acts in the same way as Sverify∗ does.

Figure 5.35: The simulator Sstrongverify

∗

is supposed to verify whether f(~x)− y = 0. It suffices to prove that f(~x)− y = 0
iff z = 0 and all the broadcast values have passed the first verification.

1. Assuming that the broadcasts related to trusted bits were correct, after the
parties have computed the bit decomposition of zi using these trusted bits,
the bits zik of each alleged zero are stored in Fcommit

∗ as comm[idzik].

2. Assuming that the broadcasts corresponding to multiplication triples were
correct, the product

∏`,m
i,k (1 − zik) is stored in Fcommit

∗ as comm[idz].
Hence it should be z =

∏`,m
i,k (1 − zik). This product equals 0 iff zik = 0

for all i, k, and this is in turn equivalent to the statement ~z = ~0, where ~z has
been computed in the sameway as inΠverify andΠverify

∗, so ~z = [f(~x)−y].

Correctness. Similarly to Fverify of Figure 4.30, the inputs / messages of
p(id) /∈ C, the randomness chosen by Fverify , and the inputs / messages of
p(id) ∈ C chosen by A are all stored in Fcommit

∗. In addition, the precomputed
tuples are also stored in the same Fcommit

∗ by definition of Fpre
∗. Fcommit

∗ may

211

now be used as a black box, doing computation on all these commitments. It
remains to prove that, if all these values are committed properly, then Πstrong

verify

∗

does verify the computation of f(id) on input (verify, id).
For all parties following the protocol, including non-cheating corrupted parties,

Si takes z = 0 for all alleged zeroes, so the verification definitely passes for these
parties. We show that the converse also holds. Suppose that the final check passes,
i.e. ~z = ~0.

• For all broadcast-related alleged zeroes, z = 0 implies that the broadcast of
the first round was correct. If p(id) ∈ C, Si has chosen z = x′∗ − x′ and
z =

∑m
k=1 2k−1((c∗k − ck) mod 2). In this way, z = 0 implies x∗ = x′ and

c∗k = ck for all k, meaning that AL has not cheated with the broadcasts of
Pp(id).

• We have shown before, that if all broadcast-related alleged zeroes are 0, and
z = 0 for the last alleged zero z, then f(~x)− y = 0.

These two arguments reduce the proof to the correctness of Proposition 5.8.

Proposition 5.12. Let ` be the length of the alleged zero vector, and 2m the size
of the largest ring from which the alleged zeroes come. Compared to the covertly
secure protocol Πverify

∗, the actively secure Πstrong
verify

∗ has the following overheads:

• Offline: additive prc`mbit,m ⊗ prc`mtriple,m, followed by multiplicative 2;

• Online: multiplicative overhead 5.

Proof. We count the total number of additional operations of Πstrong
verify

∗:

• Offline: The total number of additional tuples is taken directly from Fig-
ure 5.34. There are `m trusted bits and `m one-bit multiplication triples, so
the cost of their generation is prc`mbit,m⊗ prc`mtriple,m. This cost is doubled due
to the double expense of commitments using Fcommit

∗.

• Online: During the broadcasting of hints, `m bits need to be broadcast by
the prover for the additional trusted bits, and 2`m bits for the multiplication
triples. The additional complexity of these broadcasts is bc3`m.
During the final check, the old alleged zero vector ~z is substituted by a
single bit, but there are now two alleged zero bits coming from the additional
multiplication, and one bit coming from the bit decomposition, for each of
the `m bits of ~z. The total cost is bc⊗n3`·shn·m. Since the old alleged zero
vector of `m bits no longer needs to be opened, the additive overhead is
bc⊗n2`·shn·m, and the multiplicative overhead is 3. Due to the double expense
of opening using Fcommit

∗, the total multiplicative overhead is 6.

212

Since the number of bits in the alleged zero vector is at least the number of
bits in the hint vector (see Table 4.7), the multiplicative overhead of the hint
broadcasts is upper bounded by 4, and the total verification overhead by 5.
The multiplicative overhead of all commitments is 2 < 5.

Proposition 5.13. LetMc be the total number of bits sent in the execution phase
of the original passively secure protocol. Compared to the UC protocol Πverify

built on top of Πcommit , Πrnd and Πpre , the protocol Πstrong
verify

∗ built on top of
Πtransmit

∗, Πcommit
∗ and Πpre

∗ has the following costs:

• Preprocessing: (X⊗6n
pre ⊗prc2`m

bit,m⊗prc2`m
triple,m)⊗(tr

⊗2n(t+1)
shn·Mc

⊕fwd⊗3n(t+1)
shn·Mc

⊕
tr
⊗3n(t+1)
shn·Mc

), where Xpre is the cost of the preprocessing of Πverify .

• Execution: No overheads in the cheap mode. X⊗nexec in the expensive mode,
where Xexec is the cost of the expensive mode of the execution of Πverify .

• Postprocessing: X⊗5n
post , where Xpost is the cost of either the cheap or the

expensive mode of the postprocessing of Πverify .

Proof. The costs of covertly secure Πverify
∗ are taken from Proposition 5.9. They

are extended with the overheads of actively secure protocols, taken from Propo-
sition 5.12. The preprocessing overhead is taken from its offline part, and the
postprocessing overhead is taken from its online part. The execution phase has no
overhead compared to covert security since the same Ftransmit

∗ is used.

The Verification Protocol Πactive
∗

We define an ideal functionality for actively secure computation. We have the
same settings as in Fvmpc of Figure 4.1. The circuit C`ij computes the `-th
round messages ~m`

ij to the party j ∈ [n] from the input ~xi, randomness ~ri and the
messages ~mk

j′i (k < `) thatPi has received before. All values~xi, ~ri, ~m`
ij are vectors

over ringsZN . Themessages received during the r-th round comprise the output of
the protocol. Let C be the set of corrupted parties, and letH := [n] \ C. The ideal
functionality Factive

∗, running in parallel with the environment Z (specifying
the computations of all parties in the form of circuits and the inputs of honest
parties), as well as the adversaryAS = (ASH1 , . . . ,ASHn ,ASH ,ASL), is given in
Figure 5.36. Note that we allow leaking to honest parties the values ~m`

ij that they
would have received anyway if the adversary was passive.

The protocol Πactive
∗ implementing actively secure computation is given in

Figure 5.37. The only difference from Πvmpc of Figure 4.35 is that the outgoing
messages of the parties are verified on each round, and that Fstrongverify

∗ is used as a
subroutine instead of Fverify .

213

• In the beginning, Factive
∗ gets from Z for each party Pi the message (circuits, (C`ij)

n,n,r
i,j,`=1,1,1)

and forwards it to all adversaries ASHj .
For each i ∈ [n], Factive

∗ randomly generates ~ri. For all i ∈ [n], it sends (randomness, i, ~ri) to
ASHc(i). At this point, ASL may stop the functionality. If it continues, then for each i ∈ H [resp
i ∈ C], Factive

∗ gets (input, ~xi) from Z [resp. ASL]. The messages (input, ~xi) are delivered to
the adversary AHc(i).

• For each round ` ∈ [r], i, j ∈ [n],Factive
∗ usesC`ij to compute the message ~m`

ij . For all i ∈ [n],
j ∈ [n], it sends ~m`

ij toAHc(j). For each j ∈ C and i ∈ H, it receives ~m∗`ji fromASL. If ~m∗`ji = >,
it takes ~m∗`ji = ~m`

ji.
If ~m`

ij 6= ~m∗`ij for at least one message, Factive
∗ definesM′ = {i ∈ C | ∃j ∈ [n] : ~m`

ij 6= ~m∗`ij }.
In this case the outputs are not sent to Z . Factive

∗ outputs (cheaters,M′) to each adversary AHk .
• After r rounds, Factive

∗ sends (output, ~mr
1i, . . . , ~m

r
ni) to each party Pi with i ∈ H. In this case

Factive
∗ takes B0 = ∅.

Alternatively, at any time before outputs are delivered to parties, ASL may send (stop,B0) to
Factive

∗, with B0 ⊆ C. In this case the outputs are not sent.
• Finally, for each i ∈ H, ASL sends (blame, i,Bi) to Factive

∗, with M ⊆ Bi ⊆ C, where
M = B0 ∪M′. Factive

∗ forwards this message to Pi.

Figure 5.36: The ideal functionality Factive
∗ for verifiable computations

Proposition 5.14. Let t be the upper bound on active coalition size. Assuming
t < n/2, the protocol Πactive

∗ t-WCP-realizesFactive
∗ inFstrongverify

∗-hybrid model.

Proof. We use the simulator Si = Sactive∗(i) described in Figure 5.38. The
simulator runs a local copy of Πactive

∗, together with a local copy of Fstrongverify

∗.
Simulatability. The commitment of inputs, messages, and randomness is

reduced to Fstrongverify

∗. For Sk, it is only important to know the committed values
for i ∈ Ck (and also ~m`

ij for j ∈ Ck). All these messages are delivered to Sk by
Factive

∗. If i ∈ C, then Sk additionally gets ~m∗`ij from AL, and outputs to AHk the
value ~m∗`ij instead of ~m`

ij . Since we allowed F
strong
verify

∗ to output the message ~m`
ij

toASHc(j) beforeAS
L has made its choice of ~m∗`ij , the simulator is able to simulate

~m∗`ij to AHc(j) in the case ~m
∗`
ij = > by taking ~m∗`ij = ~m`

ij .
On each round, after all necessary commitments are made, Sk simulates the

side-effect of Fstrongverify

∗ that outputs the bit denoting f(~x) = y for the committed
inputs ~x and the committed output y. For i /∈ C, these values are 0. For i ∈ C, if
(cheaters,M′) comes from Factive

∗, Si takes b = 0 iff i ∈ M′. In this way, the
party Pi cheats in the ideal world iff Fstrongverify

∗ outputs 0 in the real world. If any
party Pk causes Fstrongverify

∗ or Ftransmit
∗ to output (cheater, k), then Si does not

need to simulate the verification of computation of Pk.
All verifiable functions f of Fstrongverify

∗ correspond to the computation of some
output of a circuit C`ij w.r.t. the committed inputs, randomness, and messages.

214

In Πactive
∗, each party Pi maintains a local array mlci of length n, into which it marks the parties

that have been detected in violating the protocol rules. Initially, mlci[k] = 0 for all k ∈ [n]. If Pk
has been detected in cheating, Pi writes mlci[k] = 1. Πactive

∗ uses Fstrongverify

∗ as a subroutine.

• In the beginning, Each party Pi gets the message (circuits, (C`ij)
n,n,r
i,j,`=1,1,1) from Z .

1. Initializing Fstrongverify

∗: Let the n`ij output wires of the circuit C`ij be enumerated. For all
k ∈ [n`ij], the value id ← (i, j, `, k) serves as an identifier for Fstrongverify

∗. In addition,
for each party Pi, there are identifiers (i, x, k) and (i, r, k) for the enumerated inputs and
randomness respectively.

• For each input wire id ← (i, x, k) or id ← (i, r, k), let 2m be the size of the ring
in which the wire is defined. Define f(id) ← idZ2m

, ~xid(id) ← [id], p(id) =
p′(id) = i.

• For each output wire id ← (i, j, `, k), define f(id) as a function consisting of
basic circuit operations (Section 4.2), computing the k-th coordinate of ~m`

ij ←
C`ij(~xi, ~ri, ~m

1
1i, . . . , ~m

`−1
ni) (this is always possible since every gate of C`ij is

by definition some basic operation), ~xid(id) the vector of all the identifiers of
~xi, ~ri, ~m

1
1i, . . . , ~m

`−1
ni that are actually used by C`ij , p(id) = i, p′(id) = j.

Each party sends (init, f, ~xid, p, p′) to Fstrongverify

∗.
2. Randomness generation: For each randomness input wire id ← (i, r, k), each party sends

(commit_rnd, id) to Fstrongverify

∗.
3. Input commitment: For each input wire id ← (i, x, k), Pi sends (commit_input, id, ~xi) to
Fstrongverify

∗, and each other party sends (commit_input, id) to Fstrongverify

∗.

• For each round ` ∈ [r], Pi computes ~m`
ij = C`ij(~xi, ~ri, ~m

1
1i, . . . , ~m

`−1
ni) for all j ∈ [n],

and sends (send_msg, (i, j, `, k),m`
ijk) to Fstrongverify

∗ for all k ∈ [|~m`
ij |]. Each other party sends

(send_msg, (i, j, `, k)) to Fstrongverify

∗. Immediately after that, each party sends (commit_msg, id)

to Fstrongverify

∗.

Alternatively, if a message (cheater, k) comes from Fstrongverify

∗, each party Pi writesmlci[k]← 1.
In this case the verification is not run for Pk. The protocol stops after this round (unless the protocol
allows to proceed even after some parties are discarded from the execution), and the protocol outputs
are not sent to Z . Let r′ ∈ {0, . . . , r − 1} be the last completed round.
• After all parties have been committed to their outputs, the verification starts. For each output
wire identifier id← (i, j, `, k), each party sends (verify, id) toFstrongverify

∗, getting a single bit b from
Fstrongverify

∗. If b = 1, each party writes mlci[k] ← 0. Otherwise, it writes mlci[k] ← 1, and the
protocol does not proceed further (unless the protocol allows to proceed even after some parties are
discarded from the execution), and the protocol outputs are not sent to Z . Let r′ ∈ {0, . . . , r − 1}
be the last completed round.
• Finally, each party Pi outputs to Z the set of parties Bi such that mlci[k] = 1 iff k ∈ Bi. If
r = r′, it also outputs (output, ~mr

1i, . . . , ~m
r
ni) to Z .

Figure 5.37: The protocol Πactive
∗ for actively secure computations

215

• In the beginning, Sk gets all the circuits (C`ij)
n,n,r
i,j,`=1,1,1 from Factive

∗. These are the same
circuits that the parties would have obtained from Z in Πactive .

1. Initializing Fstrongverify

∗: Sk simulates the initialization of Fstrongverify

∗.

2. Randomness generation: Sk simulates sending the messages (commit_rnd, id) toFstrongverify

∗

for each input wire id← (i, r, k). For all i ∈ [n], the randomness ~ri provided by Fstrongverify

∗

is the same as the randomness ~ri generated by Factive
∗.

3. Input commitment: For each input wire id ← (i, x, k), Sk simulates sending
(commit_input, id, ~xi) and (commit_input, id) to Fstrongverify

∗, which is possible without
knowing ~xi. For i ∈ C, the value ~x∗i is chosen by AL. Sk delivers this ~x∗i to Factive

∗.
• For each round ` ∈ [r], Sk needs to simulate parties committing to the messages ~m`

ij =
C`ij(~xi, ~ri, ~m

1
1i, . . . , ~m

`−1
ni), which should be output to AHk for j ∈ Ck. For j ∈ Ck, the message

~m`
ij comes from Factive

∗. If i ∈ C, then Sk gets ~m∗`ij from AL (it takes ~m∗`ij = ~m`
ij if ~m∗`ij = >),

and outputs ~m∗`ij toAHk . For j /∈ Ck, the commitments are easy to simulate without knowing ~m`
ij .

Alternatively, if a message (cheater, k) comes from Fstrongverify

∗, Sk writes mlci[k] ← 1 for
each honest party Pi. In this case the outputs do not have to be sent to Z . Sk defines
B = {k |(cheater, k) has been output}, and sends (stop,B) to Factive

∗ to prevent it from con-
tinuing the execution. Factive

∗ outputs B to each party Pi.
• After all parties have been committed to their outputs, for each output wire id ← (i, j, `, k),
Sk simulates sending (verify, id) to Fstrongverify

∗. Sk needs to simulate the output bit b of Fstrongverify

∗.
Sk takes b = 0 iff a message (cheaters,M′) has come from Factive

∗, such that i ∈M′ .
If k ∈ C, and bk = 0 was simulated as the output of Fstrongverify

∗, then Sk writes mlci[k] ← 1 for
each honest party Pi, and the simulation stops. Otherwise, it writes mlci[k]← 0. For all k /∈ C, it
writes mlci[k]← 0.
• Finally, if r = r′, then each (honest) party Pi should output (output, ~mr

1i, . . . , ~m
r
ni) to Z . This

does not need to be simulated, and we only need to prove the correctness of such outputs.

Figure 5.38: The simulator Sactive∗(i) for actively secure computations

By definition of Fstrongverify

∗, unless at least one message (cheater, p(id)) has been
output to each honest party (in this case p(id) ∈ C), all these values are indeed
committed as chosen by the party committing to them.

Since each honest party has followed the protocol and computed C`ij properly,
and all its commitments are valid, the differences f(~x)− y should be 0 for honest
parties, and so are easy to simulate.

Correctness. We prove that Factive
∗ outputs exactly the same values as the

parties inΠactive
∗ would. By definition ofFstrongverify

∗, there are two kinds of outputs:

1. The computation output (output, ~mr
1i, . . . , ~m

r
ni). Let ` be any round. We

prove by induction that each message ~m`
ij seen by the adversary is consistent

with the internal state of Factive
∗.

• Base: Initially, there are the inputs ~xi and the randomness ~ri in the
internal state ofFactive

∗. The same values are committed intoFstrongverify

∗

216

in the real protocol. The state ofFactive
∗ is consistent withAHk ’s view

of Πactive .
• Step: By induction hypothesis, the messages ~m`

ji and the inputs/ran-
domness ~xi,~ri of the inner state of Factive

∗ are consistent with the
view of AHk of Πactive

∗. In Πactive
∗, AHk expects that an honest Pi

will now compute each message ~m`+1 = C`ij(~xi, ~ri, ~m
1
1i, . . . , ~m

`
ni).

In the inner state of Fstrongverify

∗, the value ~m`+1 is computed in exactly
the same way. If the verification fails, then both Factive

∗ and Πactive
∗

do not output to Z anything except the set of blamed parties.

2. The sets Bi of blamed parties. Factive
∗ constructs the setM′ of parties j

for whom ~m∗`ij 6= ~m`
ij were provided by Sk on the last round. After that, it

receives a couple of messages (blame, i,Bi) from Sk, where Bi = B0 ∪ B′i,
and B0 = {k | (cheater, k) has come from Fstrongverify

∗ during execution }.
Factive

∗ expectsM ⊆ Bi ⊆ C forM = B0 ∪M′. After this point, the
proof becomes analogous to the proof of Lemma 4.11.

5.5 Summary

We have defined a general framework for representing cryptographic protocols
and analyzing their security, that can be viewed as an alternative version of the
UC framework. Our model, called WCP, allows to analyze whether the protocol
is protected against leaking information of one honest party to another honest
party. It helps to avoid some attacks that are not covered neither by the standard
UC framework, nor the similar multiple adversary frameworks CP and LUC.
The WCP model assumes not the unconditional honesty of uncorrupted parties,
but rather their non-collusion with corrupted parties, which is a more realistic
assumption. The security definitions are stronger than the standard UC security
definitions.

We have proposed some schemes transforming passively secure protocols with
one monolithic adversary into actively secure protocols with semihonest majority
and multiple adversaries. While the CP and the LUC models require to eliminate
any additional subliminal channels that enable the protocol to amplify existing side-
channels more than the ideal functionality is able to amplify, in the WCP model it
is sufficient to eliminate the situations where protocol specification requires data
to be leaked to some honest party.

Although our proposed protocols are insecure in the CP and LUCmodels since
the WCP model is strictly weaker, we think that also CP and LUC would benefit
from making some assumptions about the behaviour of (semi)honest parties.

217

CHAPTER 6

OPTIMIZATION OF SMC PROGRAMS
WITH PRIVATE CONDITIONALS

6.1 Chapter Overview

Secure computation platforms are often provided with a programming language
that allows a developer to write privacy-preserving applications without having to
think on the underlying cryptographic protocols (see Section 2.2.4). The control
flow of such programs is expensive to hide, and the attacker in particular knows
which choice is being made in conditional statements. Therefore, branching on
private values is not straightforward. Instead of choosing only a single branch,
all the branches need to be executed in order to conceal the choice. The resulting
values of all program variables are chosen from the outcomes of all branches
obliviously [106, 88] (i.e without leaking information about which choice has
been made). Execution of all branches introduces excessive computation, the
results of which are actually never used.

If different branches contain identical private operations, then it is reasonable
to compute such operations only once. A simple optimization idea, which has
not received much attention so far except for [55] in different settings, is to locate
identical operations in different branches and try to fuse them into one. Namely,
instead of computing the same operation several times and choosing the result
obliviously, we can first choose the inputs of that operation obliviously, and com-
pute the operation itself only once. The optimization seems very simple, but it is
not trivial, since putting some gates together makes it impossible to put some other
gates together. Finding the optimal solution is a combinatorial optimization task.
In this thesis, we base our optimization on mixed integer linear programming, but
some greedy heuristics are proposed as well for better performance.

In contrast to the protocol level optimizations that we described in Chapter 4,
the methods of this chapter target the program level of secure computation. On this

218

higher level, cryptographic protocols are used as black boxes, and the precise work
of the parties behind the protocol is invisible. Our optimization is very generic and
can be applied on the program level without decomposing blackbox operations to
arithmetic or boolean circuits.

In this chapter, we consider a simple imperative language with variables typed
public and private. It is allowed to use expressions typed private in the conditional
statements. We translate a program written in this language into a computational
circuit and optimize it, trying to fuse together operations, where the outcome of
at most one of them is used in any concrete execution. We apply the optimization
to some simple programs that use branching on private variables, and evaluate
them on top of the Sharemind SMC platform [17], showing that the optimization
is indeed useful in practice.

The protocol that we described in Chapter 4 consists of the preprocessing,
the execution, and the verification phases. In the first place, our optimization
is intended to improve the execution phase. In particular, it minimizes the to-
tal number of bits communicated between the parties. However, this particular
optimization reduces not only the communication complexity, but also the local
computation, and hence the overheads of the preprocessing and the verification
phases. In Section 6.7, we discuss how the same techniques can be applied on the
protocol level to reduce the number of verifiable operations directly. Since there
are no cases that could be optimized in Sharemind protocols, the discussion part
has just a theoretical contribution, and we have not used it for benchmarking.

6.2 Programming Language for SMC

We start from a simple imperative language, given in Figure 6.1, which is just a
list of assignments and conditional statements. The variables x in the language
are typed either as public or private, these types also flow to expressions. Namely,
the expression f(e1, . . . , en) is private iff at least one of ei is private. The declas-
sification operation turns a private expression to a public one. An assignment of
a private expression to a public variable is not allowed. Only private variables
may be assigned inside the branches of private conditions [106, 88]. The syntax c
denotes compile-time constants.

During the execution of a program on top of a secret sharing based SMC plat-
form, public values are known to all computation parties, while private values are
secret-shared among them [15]. An arithmetic blackbox function is an arithmetic,
relational, boolean or some other other operation, for which we have implemen-
tations for all partitionings of its arguments into public and private values. For
example, for integer multiplication, we have the multiplication of public values,
and also protocols to multiply two private values, as well as a public and a private

219

prog ::= stmt

f ::= arithmetic blackbox function

exp ::= xpub | xpriv | c | f (exp∗) | declassify(exp)

stmt ::= x := exp

| skip

| stmt ; stmt

| if exp then stmt else stmt

Figure 6.1: Syntax of the imperative language

value [17]. Different kinds of multiplication are represented by different protocols.
The programs in the language of Figure 6.1 cannot all be executed due to the

existence of private conditionals. They can be executed after translating them into
computational circuits. These circuits are not convenient for expressing looping
constructs. Also, our optimization so far does not handle loops. For this reason, we
have excluded them from the language. We note that loops with public conditions
could in principle be handled inside private conditionals [106].

Let Var be the set of program variables, and Val the set of values that the
variables may take. Let State : Var → Val be a program state, which assigns
a value to each program variable. The semantics [[·]] defines how executing a
program statement modifies the state (while the same notation J·K has been used
to denote sharing so far, in this chapter we will only use it to denote semantics).
Let P be a program written in a language whose syntax is given in Figure 6.1. We
define [[P]] : State → State as follows:

• [[skip]] s = s;

• [[y := e]] s = s[y ← [[e]] s];

• [[S1 ; S2]] s = [[S2]] [[S1]] s;

• [[if b then S1 else S2]] s =

{
[[S1]] s if [[b]] s 6= 0

[[S2]] s if [[b]] s = 0
.

For an expression e, we define [[e]] : State → Val as follows:

• [[x]] s = s(x) if x ∈ Dom(s);

• [[f(e1, . . . , ek)]] s = [[f]]([[e1]] s, . . . , [[en]] s), where [[f]] is defined by the
underlying SMC platform of the programming language, describing the
computation of arithmetic blackbox functions.

220

6.3 Computational Circuits

Secure computation programs are transformed into computational circuits. These
circuits are more general than the arithmetic and boolean circuits defined in Sec-
tion 2.1. In particular, the gates can be arbitrary arithmetic blackbox operations.
Instead of representing the local computation of parties, as it was done in Chap-
ters 4 and 5, the circuits in this chapter represent the functionality that the parties
mutually compute.

6.3.1 Circuit Definition

Given a setVar of program variables, we define a circuit that modifies the values of
(some of) these variables. It consists of the set of gates G doing the computation,
the mapping X that maps the input wires of G to the program variables Var ,
so that we can feed their valuations to the circuit, and the mapping Y that maps
the variables of Var to the output wires of G, so that we may assign the new
valuations, obtained from the circuit execution, to the program variables.

Definition 6.1. Let Vname be the global set of wire names. Let Var be the set
of program variables. A computational circuit is a triple G = (G,X, Y) where:

1. G = {g1, . . . , gm} for some m ∈ N, where each g ∈ G is of the form
g = (v, op, [v1, . . . , vn]) and the following holds:

• v ∈ Vname is a unique gate identifier;
• op is the operation that the gate computes, i.e. an arithmetic blackbox
function of the SMC platform;

• [v1, . . . , vn] for vi ∈ Vname is the list of the arguments to which the
operation op is applied when the gate is evaluated.

Let V := {v ∈ Vname | ∃op,~v : (v, op,~v) ∈ G}.
LetW := {v ∈ Vname | ∃u, op,~v : (u, op,~v) ∈ G, v ∈ ~v}.
The set of input wires of G is defined as I(G) := W \ V . The set of all
wires of G is defined as V (G) := V ∪W .

2. X : I(G)→ Var assigns to a wire v ∈ I(G) the variable X(v).

3. Y is a mapping whose range defines the set of output wires O(G) ⊆ V .
Y : Var → O(G) assigns to a variable y ∈ Var the wire Y (y).

As a part of the definition, the directed graph induced by the input/output rela-
tions between the gates should be acyclic. The gates of G are unique, i.e. if
(u1, op, [v1, . . . , vn]) ∈ G, and (u2, op, [v1, . . . , vn]) ∈ G, then u1 = u2.

221

u1 u2 u3

w2

z

v2 vb3 v3w1v1

b1 x1 y1 b2 x2 y2 b3 x3

vb1 vb2

v

ran(X)y3

= O(G)

dom(X)
= I(G)

ran(Y)

G

dom(Y)

w3

V (G)

Figure 6.2: Example of a program circuit

We use G to denote the set of all circuits defined in this way.
In order to easily switch between the sets ofG and V (G), we define a function

gateG : V (G)→ G such that

gateG(v) =

{
(v, op,~v) if ∃op,~v : (v, op,~v) ∈ G ,

⊥ otherwise.

Since gate names are unique, the inverse function gateG
−1 is well-defined.

The circuits that wework onmay contain gates whose operation is the oblivious
choice. Such gates are introduced while transforming out private conditionals. An
oblivious choice gate is defined as (v, oc, [b1, v1, . . . , bn, vn]), and it returns the
output of gateG(vi) iff the output of gateG(bi) is 1. If there is no such bi, it
outputs 0. It works on the assumption that at most one gateG(bi) outputs 1. This
assumption needs to be ensured by the transformation that constructs a circuit from
a program.

Example 6.1. Let z, (xi, yi, bi)i∈[3] ∈ Var . Let the value of z be chosen oblivi-
ously from x1 ∗ y1, x2 ∗ y2, x3 ∗ y3 according to the choice bits b1, b2, b3. The
circuit corresponding to this program, depicted in Figure 6.2, would be defined as

• G = {(u1, ∗, [v1, w1]), (u2, ∗, [v2, w2]), (u3, ∗, [v3, w3]),
(v, oc, [vb1, u1, v

b
2, u2, v

b
3, u3])};

• X = {v1 ← x1, v2 ← x2, v3 ← x3,
w1 ← y1, w2 ← y2, w3 ← y3,
vb1 ← b1, v

b
2 ← b2, v

b
3 ← b3};

• Y = {z ← v}.

222

6.3.2 Circuit Evaluation

First of all, we define the circuit evaluation on its inputs, without treating it as a
part of a program.

Definition 6.2. LetW : I(G)→ Val be an arbitrary valuation of the input wires
of G. Let u ∈ V (G), and let [[G]] : (I(G)→ Val)→ V (G)→ Val evaluate gates
w.r.t. certain input valuation. We define [[G]]W inductively on |G|.

• [[∅]]W u = W (u), which is correct since u ∈ V (G) = I(G) ∪ ∅ = I(G).

• [[G ∪ (v, f, [v1, . . . , vn])]]W u
= (u 6= v) ? [[G]]W u : [[f]]([[G]]W v1, . . . , [[G]]W vn).

In the beginning of Section 6.3, we have defined a special oblivious choice
gate. We now define its evaluation.

Definition 6.3. Let b1, . . . , bn ∈ V (G) be such that, for any input wire valuation
W : I(G) → Val ,

∑n
i=1[[G]]W bi ∈ {0, 1}, and ∀i : [[G]]W bi ∈ {0, 1}. The

output of an oblivious choice gate (v, oc, [b1, v1, . . . , bn, vn]) is defined as

[[G]]W v =
n∑
i=1

([[G]]W bi) · ([[G]]W vi) .

In this definition, the sum
∑n

i=1[[G]]W bi should belong to the set {0, 1}.
Alternatively, we could more strictly define

∑n
i=1[[G]]W bi = 1. This would

allow us to treat one of the choices as the default choice that is the negation of
all the other choices. The reason why we allow

∑n
i=1[[G]]W bi = 0 is that, since

we use the weakest precondition of gates for making the choice (we will define it
formally in Section 6.4.1), it may happen that all the preconditions of the fused
gates are false. In this case, the output of the oblivious choice gate does not matter
anymore, because later there will be some other oblivious choice gate that drops
it. Hence it does not matter whether it outputs 0 or some particular vi. Therefore,
one of the choices is allowed to be set to a default choice anyway, and there is no
difference whether we allow

∑n
i=1[[G]]W bi ∈ {0, 1} or just

∑n
i=1[[G]]W bi = 1.

The first option just makes the presentation simpler.
Since we use the circuit evaluation as a part of the program execution, we must

translate it to a program statement. Let v be a name of a circuit wire. We extend
the syntax of the program with new types of statements.

exp ::= eval (gate∗ , (x, v)∗ ,(x, v)∗)

gate ::= (v , f ,[v∗])

223

The statement eval(G,X, Y) evaluates the gates G, where X assigns the
input values to the input wires I(G) of G, and Y defines the set of output wires
O(G) from which the values have to be eventually taken. The gates of G are
evaluated according to the definition of [[G]].

The semantics of the evaluation statement is defined as

[[eval(G,X, Y)]] s = upd(Y ◦ [[G]](s ◦X), s) ,

where
upd(s′, s) = x ∈ Dom(s′) ? s′(x) : s(x)

is the result of updating the state s with the variable valuations of some other state
s′. In this way, [[eval(G,X, Y)]] modifies the state s in such a way that each
variable y ∈ Dom(Y) is evaluated with the output of the gate Y (y), where the
valuations of the input gates are taken from s. As a shorthand notation, we write
eval(G) = eval(G,X, Y) for G = (G,X, Y).

The circuits can be composed by attaching the output wires of one circuit to
the input wires of another circuit. The composition of circuits as syntactic objects
and the semantics preservation proof of this operation are given in Section 6.5.1.

6.3.3 Transforming a Program to a Circuit

We need to transform the private conditional statements of the initial imperative
language to a circuit. Intuitively, each assignment y := f(x1, . . . , xn) of the
initial program can be viewed as a single circuit computing a set of gates G
defined by the description of f on inputs x1, . . . , xn, where X maps the input
wires of the circuit to the variables x1, . . . , xn, and Y maps y to the output wire of
the circuit. A sequence of assignments is put together into a single circuit using
circuit composition.

If the program statement is not an assignment but a private conditional
statement, then all its branches are first transformed to independent circuits
(Gi, Xi, Yi). The value of each variable y is then selected obliviously among
Yi(y) as y :=

∑
i biYi(y), where bi is the condition of executing the i-th branch.

So far, the transformation is similar to the related work [106, 88], and the only
difference is that we construct a computational circuit at this point.

Formally, we need to define a transformation TP : prog → prog that
substitutes all private conditionals of the initial program with circuit evaluations.
The transformation is correct if for any program P , s ∈ State , it holds that
[[P]] s = [[TP (P)]] s. The formal definition of TP and the proof of its correctness
are given in Section 6.5.2.

Example 6.2. An example of transforming a conditional statement P to the circuit
TP (P) is given in Figure 6.3. This circuit is defined as

224

if b:
x := 2;

else:
x := x + y;
y := y * 5;

⇒

2 x b y 5

ococ

y

+ ¬ ∗

x
Figure 6.3: Example of program transformation

• G = {(uadd,+, [vx, vy]), (v̄b,¬, [vb]),
(umul, ∗, [vy, vconst5]), (wx, oc, [vb, vconst2, v̄b, uadd]),
(wy, oc, [vb, vy, v̄b, umul])};

• X = {vx ← x, vy ← y, vb ← b, vconst5 ← 5, vconst2 ← 2};
• Y = {x← wx, y ← wy}.

6.4 Optimization of the Circuit

The circuit G obtained from the transformation described in Section 6.3.3 may be
non-optimal. Namely, it contains executions of all the branches of private con-
ditional statements, although only one of the branches will be eventually needed.
In this section, we present an optimization that eliminates excessive computations
caused by the unused branches.

6.4.1 The Weakest Precondition of a Gate

Let G = (G,X, Y) be a computational circuit. The weakest precondition φGv of
evaluation of a gate g = gateG(v) ∈ G is a boolean expression over the conditional
variables, such that φGv = 1 iff the result of evaluating gate g is needed for the
given valuations of conditional variables.

Definition 6.4 (used gate). Let G = (G,X, Y) be a circuit. Let s ∈ State . For a
wire v ∈ V (G), we define a predicate used(v, s) as follows.

1. used(v, s) = 1 for v ∈ O(G) for any s ∈ State , i.e. all outputs are used.

2. If used(v, s) = 1, (v, op,~a) ∈ G for op 6= oc, then used(w, s) = 1 for all
w ∈ ~a, i.e. all inputs of a used non-oc gate are also used.

3. If used(v, s) = 1, and (v, oc, [b1, v1, . . . , bn, vn]) ∈ G, then used(bi, s) = 1
for all i ∈ {1, . . . , n} (the choice conditions bi), and used(vj , s) = 1 for
[[G]] (s ◦X) bj = 1 (the choice that the oc gate makes).

225

Definition 6.5 (the weakest precondition (WP)). In the circuit G = (G,X, Y),
the weakest precondition φGv of the wire v ∈ V (G) is a boolean expression over
V (G) such that [[φGv]] s = 1 iff used(v, s) = 1, where the semantics of a boolean
expression is defined as [[φGv]] s := [[u := φGv]] s u.

We propose an algorithm for computing the weakest preconditions of all the
gates of a circuit. Let BF (V) denote the set of all boolean formulae over a set of
variables V . The algorithm constructs a mapping φ : V (G) → BF (V (G)), such
that φ(v) = φGv . The construction of φ is given in Algorithm 1.

The function process(v, φin) takes a wire v ∈ V (G) and some initially known
overestimation of φin ∈ BF (V (G)) of v, which is in general the weakest precon-
dition of some of the v’s successors. This function returns a boolean formula that
a wire v ∈ V outputs, decomposed to boolean operations as far as possible. If
the decomposition is impossible (for example, the gate operation is not a boolean
operation, or it is an input wire), it just returns v. As a side effect, it updates the
definition of function φ, and also the auxiliary function ψ that is used to remember
the outcome of process(v, φin) in order to avoid processing the same wire multiple
times.

We start from running process on each final output gate of G (lines 2-3). The
first precondition that we propagate is 1. This means that there are no conditional
constraints on v yet. Since the graph G is actually a statement of a larger program,
it may happen that, instead of 1, there is a more precise condition that is coming
from some public variable.

If v has already been visited (φ(v) 6= ⊥), it means that we have found another
computational path that uses v. The condition of executing that path is φin, and
we have already found another path with condition φv = φ(v) before. Since
both conditions are sufficient for forcing the computation of v, we update φ(v)←
φv ∨ φin, and return ψ(v) that we have already computed before (lines 7-8).

If v has not been visited yet (φ(v) = ⊥), then, since φin is the weakest
precondition of one of the computational paths that use v, we initializeφ(v)← φin
on line 10. If opG(v) = ∧, we compute the outputs ψ1

out and ψ2
out of its arguments,

and return ψ1
out ∧ ψ2

out (lines 13-16). We do it analogously for ∨.
The precondition φin will be propagated to both arguments as φ(v). It is

important that here φ(v) is passed not by value, but by reference, and in the case
φ(v) gets updated after v will be reached via some other branch on further steps,
this update will be propagated to all its predecessors.

In the case of oc, we process the arguments in pairs (b, a), where b is the
condition and a is the choice. The conditions are just processed recursively as
b′ ← process(b, φ(v)). However for choices we have to extend φ(v) with the
output of the corresponding condition as a′ ← process(a, φ(v)∧ b′), since b′ adds
an additional restriction on the precondition of a (lines 19-23).

226

Algorithm 1: WP finds the weakest preconditions of all wires of G
Data: A circuit G = (G,X, Y)
Result: A mapping φ : V (G)→ BF (V (G)) that maps a wire to its

weakest precondition
begin WP(G,X, Y)

1 φ ← {}; ψ ← {};
2 foreach v ∈ O(G) do
3 process(v, 1)

4 return φ
begin process(v, φin)

5 φv ← φ(v);
6 if φv 6= ⊥ then
7 φ(v)← (φin ∨ φv)
8 return ψv
9 else

10 φ(v)← φin
11 switch opG(v) do
12 case bop do // bop ∈ {∧,∨}
13 [a1, a2]← argsG(v)
14 ψ1

out ← process(a1, φ(v))
15 ψ2

out ← process(a2, φ(v))
16 return ψ1

out bop ψ
2
out

17 case oc do
18 ~a← [];~b← [];
19 foreach (b, a) ∈ argsG(v) do
20 b′ ← process(b, φ(v))
21 a′ ← process(a, b′ ∧ φ(v))
22 ~a← ~a‖(a′)
23 ~b← ~b‖(b′)

24 return
∑|~a|=|~b|

i=1 bi · ai
25 otherwise do
26 foreach a ∈ argsG(v) do
27 process(v, φ(v))

28 return v

227

The output of the oc gate is defined by the line 24. The output condition of
an oc gate is

∑|~a|=|~b|
i=1 bi · ai, where bi is a condition that has to be satisfied for

the choice ai to be output. For any other gate, we just process the arguments
recursively (line 27), and return v on line 28.

As the result, each wire v ∈ V (G) will be assigned a boolean formula φGv =
φ(v) over V (G). For a wire that should be computed in any case, we have
φG(v) = 1. We will never fuse gates having such output wires.

The cost of the weakest precondition (denoted cost(φGi)) is just the total cost
of all the ∨ and ∧ operations used in it, without taking into account the complexity
of computing its variables (their cost is estimated separately). To improve the
optimization, we could try to rearrange ∨ and ∧ operations in each φGi to make the
cost optimal. This is not in scope of this thesis.

The correctness of Algorithm 1 is proven in Section 6.5.3.

6.4.2 Informal Description of the Optimization

Let g1 = (v1, op, [x
1
1, . . . , x

1
n]), . . . , gk = (vk, op, [x

k
1, . . . , x

k
n]) ∈ G be some

gates. Let φGv1
, . . . , φGvk be mutually exclusive. This happens for example if each

gi belongs to a distinct branch of a set of nested conditional statements. In this
case, we can fuse the gates g1, . . . , gk into a single gate g that computes the same
operation op, choosing each of its inputs xj obliviously among x1

j , . . . , x
k
j . This

introduces n new oblivious choice gates, but leaves just one gate g computing op.

Example 6.3. Let a comparison operation (==) be located in both the if-
branch, and the corresponding else-branch. Let the gates be (z1,==, [x1, y1])
and (z2,==, [x2, y2]). Let b ∈ V (G) be the wire whose value is the condition
of the if-branch, and let b̄ ∈ V (G) be the wire whose value is b’s negation
(which is the condition of the else-branch). Since the branches can never be
executed simultaneously, we may replace these gates with (x, oc, [b, x1, b̄, x2]),
(y, oc, [b, y1, b̄, y2]), and (z,==, [x, y]). All the references to z1 and z2 in the rest
of the circuit are now substituted with the reference to z. The transformation is
depicted in Figure 6.4.

We now describe different steps of this optimization. Let n = |V (G)|,m = |G|.

Preprocessing First, we find the set U of all pairs of gates that can never be
evaluated simultaneously. For each gate gi, find the weakest precondition φGi that
be must true for gi to be evaluated. Define

U = {(gi, gj) | gi, gj ∈ G,φGi ∧ φGj is unsatisfiable} .

228

if b:
...
z1 := x1==y1;
...

else:
...
z2 := x2==y2;
...

⇒
==

z1

x1 y1
b

==

z2

x2 y2
¬b

⇒

y1 y2

oc oc

x1 x2

==

z1 z2

¬bb

Figure 6.4: An example of gate fusing

Although there is no efficient algorithm for solving the unsatisfiability problem,
in practice, it suffices to find only a subset U ′ ⊆ U . It makes the optimization less
efficient (we do not fuse as many gates as we could), but nevertheless correct.

For each formula φGi , we need to construct the circuit that computes the value
of φGi . Depending on how exactly φGi is computed, evaluating this circuit may
in turn have some cost. Each φGi is represented by a boolean formula over the
conditions of the if-statements of the initial program, which can be read out from
G by observing its oblivious choice gates. The additional∨ and∧ gates are needed
in the cases where a gate is located inside several nested if-statements (needs ∧),
or it is used in several different branches (needs ∨).

Plan We partition the gates into sets Ck, planning to leave only one gate from
Ck after the optimization. The following conditions should hold:

• ∀gi, gj ∈ Ck : gi 6= gj =⇒ (gi, gj) ∈ U : we put together only mutually
exclusive gates, so that indeed at most one gate of Ck will actually be
executed.

• ∀gi, gj ∈ Ck : opi = opj : only the gates that compute the same operation
are put together.

• Let E := {(i, j) | ∃k, ` : gk ∈ Ci, g` ∈ Cj , and gk is an immediate
predecessor of g` in G}. In this way, if (i, j) ∈ E, then Ci should be
evaluated strictly before Cj . We require that the graph ({k}k∈[m], E) is
acyclic. Otherwise, we might get the situation where some gates of Cj have
to be computed necessarily before Ci, and at the same time some gates of
Ci should be computed necessarily before Cj , so evaluating all the gates of
Ci at once would be impossible.

If we consider U as edges, we get that Ck form a set of disjoint cliques in the
graph. A possible fusing of gates into a clique is shown in Figure 6.5, where the
gray lines connect the pairs (gi, gj) ∈ U , and the dark gates are treated as a single
clique.

229

b1 b2 b3
∗

==

∗

==

==
==

==

Figure 6.5: Fusing gates into cliques

Transformation The plan gives us a collec-
tion of sets of gates Cj , each having gates
of certain operation opj . Consider any set
Cj = {g1, . . . , gmj}. Let the inputs of
the gate gi be xi1, . . . , x

i
n. Let bi be the

wire that outputs the value of φGi . For all
` ∈ [n], introduce n new oblivious choice
gates (v`, oc, [b1, x

1
` , . . . , bmj , x

mj
`]). Add the

new gate (g, opj , [v1, . . . , vn]). Discard all the
gates gi. If any gate in the rest of the circuit
has used any gi as an input, substitute it with g
instead. We may additionally omit any obliv-
ious choice in the graph if there is just one
option to select from.

For each oc gate that has been already present in the circuit, check how many
distinct inputs it has. It is possible that some inputs have been fused into one due
to belonging to the same clique. In this case, it may happen that the oc gate is left
with a single choice, and since (v`, oc, [bi, x

i
`]) just returns xi`, its cost is 0.

The Cost Our goal is to partition the cliques in such a way that the cost of
the resulting circuit is minimal. Each gate operation corresponds to some SMC
protocol that requires some amount of bits to be communicated between the parties.
We choose the total number of communicated bits as the cost. Since this metric
is additive, we may easily estimate the total cost of the circuit by summing up the
communicated bits of the gates. The particular costs of the gates depend on the
chosen SMC platform. We note that introducing intermediate oblivious choices
may increase the number of rounds. We need to be careful, since increasing the
number of rounds may make executing the circuit with a lower communication
cost actually take more time.

6.4.3 Notation

Shorthand Notation Let G = (G,X, Y), (g, op, [v1, . . . , vn]) ∈ G. We intro-
duce the following shorthand notation:

• opG(g) = op;

• argsG(g) = [v1, . . . , vn];

• arityG(g) = n;

For shortness of notation, we write g ∈ G in place of gateG(g) ∈ G.

230

Gate and Clique Enumeration Without loss of generality, V (G) = {1, . . . , n}.
This ordering allows to easily define the constraints for linear program variables.

The number of cliques varies between 1 (if all the gates are fused together
into one) and |G| (if each gate is a singleton clique). For simplicity, we assume
that we always have exactly |G| cliques, and some of them may just be left
empty. We denote the clique {i1, . . . , ik} by Cj , where j = min(i1, . . . , ik) is the
representative of the clique Cj . Without loss of generality, let the representative
be the only gate that is left of Cj after the fusing.

Direct and Conditional Predecessors In order to ensure that the optimized cir-
cuit contains no cycles, we need to remember which gates have been predecessors
of each other. We define the following auxiliary predicates that can be easily
computed from the initial circuit.

• predG(i, k) = 1 iff k ∈ argsG(i);

• cpredG(i, k) = 1 iff k ∈ φG(i).

The predicate predG(i, k) is true if k is an immediate predecessor of i in G. The
predicate cpredG(i, k) is true if k is used to compute the weakest precondition of
i. This means that k does not have to be computed strictly before i in general.
However, if i is fused with some other gate, we will need the value of k for
computing the oblivious choice of the arguments of i, and in this case k has to be
computed strictly before i. In this way, k is a predecessor of i on the condition
that i is fused with at least one other gate.

Gates that can be fused We define an auxiliary predicate that denotes which
gates are allowed to be fused:

fusableG(i, j) = 1 iff (i = j) ∨ (φG(i) ∧ φG(j) is unsatisfiable) .

Although there exists no efficient algorithm for computing unsatisfiability in gen-
eral, we may allow some algorithm that provides false negatives. This results in
having fusableG(i, j) = 0 for gates that could have actually been fused, and hence
the final solution may be non-optimal, but nevertheless correct.

Since fusing forces all the gate arguments to become chosen obliviously, all the
inputs of a fused gate in general become private (unless therewas just one choice for
some public input). Depending on the SMC platform and the particular operation,
this may formally change the gate operation. Some operations still retain the same
cost, while some gates may increase their cost significantly if some of their public
inputs become private. Moreover, it may happen that the new operation is not
supported by the SMC platform at all. We define fusableG(i, j) = 0 for the gates
that have any public inputs, and whose cost depends on their privacy.

231

6.4.4 Subcircuits as Gates

Let G = (G,X, Y) ∈ G. In some cases, there are obvious repeating patterns of
gates in G which could be treated as a single gate. Uniting them into one gate
would reduce the total number of gates involved in the optimization, increasing its
efficiency. Unlike the process of fusing gates, where a set of gates is replaced with
a single gate, the process of uniting keeps all the gates and just treats their set as a
single entity.

We propose a particular algorithm for partitioning G into a set of disjoint
subcircuits. The algorithm constructs the set of subcircuits iteratively, starting
from the initial set of gatesA0, and on each iteration constructingAn+1 by putting
together certain subcircuits of An. Let S ∈ An denote a subcircuit of An, and
let S′ v S denote that S′ ∈ An has become a part of S ∈ An+1. Treating S
as a set of gates, we write g ∈ S for a gate g ∈ G that has been united into
S. We may extend the notion of an argument from single gates to subcircuits as
S′ ∈ argsAn(S) ⇐⇒ ∃g ∈ S, g′ ∈ S′ : g′ ∈ argsG(g).

Let the subcircuits S and S′ be called isomorphic if there exists a bijection
between V (S) and V (S′) preserving the circuit structure and the gate operations.
Such isomorphisms are simple to find due to the inputs of all gates being ordered.
Let count(S,An) be the number of elements in An that are isomorphic to S. The
sets An are defined inductively as follows.

A0 := {{g} | g ∈ G} ;

A′n+1 := {S ∪
⋃
{Si ∈ argsAn(S) | ¬∃T ∈ A′n+1 : Si ⊆ T,

¬∃S′ 6= S ∈ An : Si ∈ argsAn(S′)}
| S ∈ An} ;

An+1 = {S | count(S,A′n+1) ≥ 2}
∪ {S′ | S ∈ A′n+1, count(S,A

′
n+1) = 1, S′ v S} .

Let us explain the intuition behind this definition. We start from the initial set
of gatesG, treating each gate as a singleton subcircuit. On each iteration, we extend
each subcircuit with its argument subcircuits that are not used as arguments by any
other subcircuits; this is the interpretation of ¬∃S′ 6= S ∈ An : Si ∈ argsAn(S′).
We want the subcircuits to be disjoint, and hence if some Si ∈ An has already been
extended on this iteration, then we are not trying to use Si to extend some other
S ∈ An; that is how the condition ¬∃T ∈ A′n+1 : Si ⊆ T should be interpreted.

If any subcircuit S occurs only once in A′n+1, then S is no longer interesting
for our optimization, since it cannot be fused with any other gate. Therefore, after
each iteration we may leave only those subcircuits of A′n+1 that occur at least
twice. Each S ∈ A′n+1 that occurs only once is decomposed back to its subcircuits
S′ v S, S′ ∈ An. After doing all these decompositions, we get An+1.

232

Such definition of An allows us to define argsAn inductively as follows.

argsA0({g}) := {{a} | a ∈ argsG(g)} ;

argsAn+1(S) := {Si| S′ v S, Si ∈ argsAn(S′), Si 6v S} .

In other words, the arguments of a subcircuit S is any subcircuit Si that has been
an argument of some S′ v S on the previous iteration, and that has not become
the part of S on the current iteration.

Let Subcircuit(G,n) be a function computing the set of subcircuitsAn for the
givenG and n. After composing the subcircuits in this way, we are only allowed to
use the final outputs of the subcircuits. The outputs of the gates that are swallowed
by a subcircuit can only be used inside that subcircuit. Hence we need to prove
that the set of new gates An still does exactly the same computation as G. This is
formally stated and proven in Section 6.5.4. In this way, the optimization proposed
in further subsections can be applied to single gates as well as to the partitions
formed by the function Subcircuit.

6.4.5 Simple Greedy Heuristics

We investigate some simple greedy heuristics for our task. Let predG and cpred
G

be the transitive closures of the predicates predG and cpredG respectively.

• pred
G

(i, j) = 1 for all i, j s.t predG(i, j) = 1;

• pred
G

(i, j) = 1 if ∃k : predG(i, k) ∧ predG(k, j).

The predicate cpredG will be extended a bit more, taking into account predG(k, j).

• cpred
G

(i, j) = 1 for all i, j s.t cpredG(i, j) = 1

• cpred
G

(i, j) = 1 if ∃k : cpredG(i, k) ∧ cpredG(k, j);

• cpred
G

(i, j) = 1 if ∃k : cpredG(i, k) ∧ predG(k, j).

We need the last item since all the predecessors j of a conditional predecessor
k of i will also become predecessors of i, if i gets fused into some clique. We note
that cpredG gives an overestimation, since if i is fused, then j is not necessarily a
predecessor of i if k is not fused. This reduces the number of allowed fusings in
the circuit, but nevertheless does not introduce any incorrect solutions.

The greedy algorithms work according to the following outline. First of all,
the gates G are grouped by their operation into subsets

Gs = {GF | F is a gate operation, GF = {g ∈ G | opG(g) = F}} .

233

The subsets GF are sorted according to the cost of F , so that more expensive
gates come first. The subsets are turned into cliques one by one, starting from the
most expensive operation. A clique Ck is formed only if it is valid and is not in
contradiction with already formed cliques, i.e:

• any two gates gi, gj ∈ Ck satisfy fusableG(gi, gj) = 1;
• no gate gi ∈ Ck has already been included into some other clique;
• Ck does not introduce cycles.

This process is described by the functionGreed given inAlgorithm2. The set of
gatesG is partitioned into a collection of subsetsGs on line 1. The obtained subsets
GF are sorted according to cost(F) on line 2, where the function sort(~x, i, j) can
be any algorithm that sorts a list of tuples ~x according to their i-th components,
leaving behind the j-th component of each tuple. After that, the algorithm starts
fusing the gates into cliques, starting from the most expensive gates, adding a
clique only if it is not in contradiction with already formed cliques. The function
call FuseX(G,Cs) on line 5 returns a partitioning of gates G to cliques, choosing
a particular strategy X, which can be any of the Algorithms 4, 5, 6.

The function goodClique(C,Cs) (Algorithm 3) checks whether a clique C is
not in contradiction with already formed cliques Cs, and it also assigns a level
to each good clique – the round on which the gate should be evaluated. In this
way, if some predecessor of a gate is not computed on a strictly earlier round than
the gate itself, then we have a cycle in the circuit, so something must be wrong
with the formed cliques. For this, the maximal level of all the predecessors of C
and the minimal level of all the successors of C are computed (the sets Lpred and
Lsucc on lines 3-4). It is checked whether each gate of C can be assigned a level
strictly between these two (lines 5-7). For conditional predecessors cpredG, we
additionally check whether the size of the successor clique is larger than 1, i.e.
whether the conditional predecessor actually becomes a predecessor after fusing.
The number N on line 6 is just an upper bound on the number of levels, and it
could be as well assigned to 1 since we may treat levels as rational numbers. The
function level is global, and it is used to memorize the levels of the gates that have
already been put into cliques. Initially, level(k) = ⊥ for all k ∈ G, and we assume
that min(⊥, n) = max(⊥, n) = n for all n ∈ N.

The particular strategies of extracting a clique are given in theAlgorithms 4, 5, 6.
These algorithms are not optimized, and rather explain the used strategies.

Largest Cliques First. In Algorithm 4, we are trying to fuse into one clique
as many gates as possible before proceeding with the other cliques. The task of
finding one maximum clique is NP-hard, and so we just generate some bounded
amount of maximal cliques, taking the largest of them. Extracting one clique
is done by the function largestClique. Fixing some gate as a starting point, we

234

Algorithm 2: Greed fuses mutually exclusive gates of G into cliques
Data: A set of gates G
Result: A set of cliques Cs of gates G

1 Gs← {(cost(F), GF) | F is gate op, GF = {g| g ∈ G, opG(g) = F}};
2 Gs← sort(Gs, 0, 1);
3 Cs← ∅;
4 foreach GF ∈ Gs do
5 Cs← Cs ∪ {FuseX(GF , Cs)};
6 return Cs;

sequentially try to add each other gate, checking whether we still have a clique, and
whether it valid w.r.t. already existing cliques (line 6). Having done it for each gate
as a starting point, the largest clique is returned (line 7), where max(~x, i, j) can
be any algorithm that returns the j-th component of the element of ~x whose i-th
component is the largest. If suchC does not exist, thenwe have some inconsistency
in cliques, and ⊥ is returned on line 7. After extracting a clique C on line 3 of
function Fuse1, add C to the set of already formed cliques Cs′ of G, and proceed
with extracting largest cliques from the remaining gates G \ C.

Pairwise Merging. In Algorithm 5, we first try to fuse the gates pairwise,
and only after the pairs are formed, we proceed fusing the obtained cliques in turn
pairwise, until the total number of cliques cannot be decreased anymore. The
function matching just takes the first valid matching that it succeeds to construct,
that is not in contradiction with Cs. The choice of G1 and G2 on line 7 is
non-deterministic, and it is only important that G1 6= G2 will be iterated before
G1 = G2 to avoid trivial solutions. If such G1 and G2 do not exist, then we have
some inconsistency in cliques, and ⊥ is returned on line 10.

Pairwise Merging with Maximum Matching. Algorithm 6 is very similar
to Algorithm 6, and the only difference is that it finds the maximum matching on
each step. We assume that the function someMatching(Gs) generates all possible
matchings ofGs (in contrast,matching of Algorithm 5 takes the first valid solution
it finds). For better efficiency, it is sufficient to generate only maximal matchings,
but to guarantee termination, at least the partitioning to singleton gates should
be included. On line 7, the largest valid matching is taken. If there is no valid
matching, then we have some inconsistency in cliques, and⊥ is returned on line 7.

It is easy to see that, unless ⊥ is returned, all the formed cliques have passed
goodClique check w.r.t. each other, and level(k) has been assigned to each gate
k ∈ G. We prove in Section 6.5.5 that if the initial circuit is properly constructed,
then ⊥ will never be returned. In particular, after a clique has been fixed, it is
always possible to assign the remaining gates to cliques without backtracking.

235

Algorithm 3: goodClique checks if the clique is valid
Data: A clique C, and the set of already existing cliques Cs. There is a

global map level, and an upper bound N on the number of levels.
Result: A bit denoting whether C is valid w.r.t. Cs
begin goodClique(C,Cs)

1 foreach i, j ∈ C do
2 if not fusableG(i, j) then

return false

3 Lpred ← {level(k) | i ∈ C, predG(i, k) ∨ cpred
G

(i, k) ∧ |C| > 1};
4 Lsucc ← {level(k) | i ∈ C, predG(k, i) ∨ cpred

G
(k, i) ∧

k ∈ C ′, C ′ ∈ Cs, |C ′| > 1};
5 n1 ← max({0} ∪ Lpred);
6 n2 ← min({N} ∪ Lsucc);
7 if n2 < n1 then

return false;
8 foreach i ∈ C do

level(i)← (n1 + n2)/2;
9 return true;

Algorithm 4: Fuse1 partitions the gates into cliques
Data: A set of gates G of the same operation type
Data: The set of already existing cliques Cs
Result: Partitioning of G to cliques
begin Fuse1(G,Cs)

1 Cs′ ← ∅;
2 repeat
3 C ← largestClique(G,Cs ∪ Cs′);
4 G← G \ C; Cs′ ← Cs′ ∪ {C};

until |G| ≤ 0;
5 return Cs′;
begin largestClique(G,Cs)

6 Cs′ ← {(|C|, C) | i ∈ G,
(C ← {i}) ∨ (C ← {i} ∪ {j | j ∈ G, ∀k ∈ C : fusableG(k, j)}),

goodClique(C,Cs)};
7 if Cs′ = ∅ then

return ⊥;
89 return max(Cs′, 0, 1);

236

Algorithm 5: Fuse2 partitions the gates into cliques
Data: A set of gates G of the same operation type
Data: A set of already existing cliques Cs
Result: Partitioning of G to cliques
begin Fuse2(G,Cs)

1 Cs′ ← {{g} | g ∈ G};
2 repeat
3 n← |Cs′|;
4 Cs′ ← matching(Cs′, ∅, Cs);

until |Cs′| ≥ n;
5 return Cs′;
begin matching(Gs,Cs′, Cs)

6 if Gs = ∅ then
return Cs′

7 if ∃G1, G2 ∈ Gs : goodClique(G1 ∪G2, Cs ∪ Cs′) then
8 return matching(Gs \ {G1, G2}, Cs′ ∪ {G1 ∪G2}, Cs);
9 else

10 return ⊥;

Algorithm 6: Fuse3 partitions the gates into cliques
Data: A set of gates G of the same operation type
Data: A set of already existing cliques Cs
Result: Partitioning of G to cliques
begin Fuse3(G,Cs)

1 Cs′ ← {{g} | g ∈ G};
2 repeat
3 n← |Cs′|;
4 Cs′ ← maxMatching(Cs′, Cs);

until |Cs′| ≥ n;
5 return Cs′;
begin maxMatching(Gs,Cs)

6 Css← {(|Cs′|, Cs′) | Cs′ ← someMatching(Gs),
∀C ∈ Cs′ : goodClique(C,Cs ∪ Cs′)};

7 if Css = ∅ then
return ⊥;

8 else
return max(Css, 0, 1);

237

6.4.6 Reduction to an Integer Linear Programming Task

As an alternative to greedy algorithms, we may reduce the gate fusing task to a
mixed integer linear programming (ILP) task defined in Section 2.3.6, and solve it
using an external integer linear program solver such as [44].

We consider mixed integer programs of the form (2.1). Let ILP be the set
of all mixed integer programs defined as tuples (A,~b,~c, I). For our particular
task, we define a transformation T→ILP : G → ILP , such that T→ILP (G,X, Y) =

(A,~b,~c, I). In this subsection, we describe how these quantities are constructed.
In order to make integer programming solutions better comparable to greedy

algorithms, we consider two levels of optimization:

• Basic: try to optimize only the total cost of the gates, without taking into
account the oc gates.

• Extended: take into account the new oc gates, the weakest preconditions,
and also the number of inputs of the old oc gates.

Throughout this section, we use G to refer to the initial circuit, and G′ to refer
to the circuit obtained after the transformation. For a clique Cj , let us denote the
set of all possible choices for the `-th input of the clique Cj as argsG(Cj)[`] :=
{k | i ∈ Cj , k = argsG(i)[`]}.

Variables

The core of our optimization are the variables that affect the cost of the transformed
circuit. All these variables describe not the initial circuit G, but the transformed
circuit G′, although the set of variables itself is defined by G.

• gji =

{
1, if i ∈ Cj
0, otherwise

for i, j ∈ G.

The gate j will be the representative of Cj . Namely, gjj = 1 iff Cj is non-
empty. Fixing the representative reduces the number of symmetric solutions
significantly. This also allows us to compute the cost of all the cliques.

• scj` = |argsG′(j)[`]| − 1 for j ∈ G, ` ∈ arityG(j),
is the number of decisions to make for choosing the `-th argument of Cj .

• ucj = |argsG′(j)| − 1 for j ∈ G, opG(j) = oc,
is the number of decisions to make for the gate j whose operation is oc, after
some of its choices have potentially been fused together.

238

• sj` =

{
1, if the `-th input of j should be a new oc gate
0, otherwise

for j ∈ G, ` ∈ arityG(j).
The variables scj` and s

j
` allow to count for the total cost of the new oc gates

introduced by the optimization.

• uj =

{
1, if |argsG′(j)| > 1

0, otherwise
for j ∈ G, opG(j) = oc.

If uj = 0, then the oc gate j can be removed since there is only one choice
left. The variables ucj and uj estimate the new cost of the old oc gates.

• bi =

{
1, if the weakest precondition of i is needed
0, otherwise

for i ∈ G.

Fusing the gates requires their inputs to be chosen obliviously. For that, we
may need to compute the weakest preconditions of the participating gates.

We also need some variables that help to avoid cycles after fusing the gates.
Similarly to greedy algorithms of Section 6.4.5, we assign to each gate the round
on which it has to be evaluated.

• `j ∈ R for j ∈ G is the circuit topological level on which the j-th gate is
evaluated, where all the gates with the same level are evaluated simultane-
ously. Each gate must have a strictly larger level than all its predecessors.

• cj =

{
1, if the gate gj is fused with some other gate
0, otherwise

for j ∈ G.

Each gate should have a strictly larger level than all its conditional predeces-
sors iff it participates in a clique of size at least 2. After the gates are fused
into a clique, their inputs are going to be chosen obliviously, and hence the
condition will have to be known strictly before the fused gates are evaluated.

There will actually be some more auxiliary variables that help to establish
relations between the main variables, but do not have special meaning otherwise.
We will see these variables when we define constraints.

Cost Function

The cost of the resulting circuit depends on the following quantities.

• Cg =
∑|G|

j=1,opG(j)6=oc cost(op
G(j)) · gjj is the total cost of the cliques after

fusing (except the oc gates).

239

• Coc1 =
∑|G|

j=1,opG(j)=oc
cost(ocbase) ·uj + cost(ocstep) ·ucj is the total cost

of all the old oc gates, where cost(ocbase) is the base cost of using an oc
gate, and cost(ocstep) is the cost of a single choice of the oc gate.

• Coc2 =
∑|G|,arityG(j)

j,`=1,1 cost(ocbase) · sj` + cost(ocstep) · scj` is the total cost of
all the new oc gates.

• Cb =
∑|G|

j=1 cost(φ
G(j)) · bj is the cost of all the boolean conditions needed

for the new oc gates.

We may now take one of the following quantities as the cost:

• Basic cost: Cg, which is just the total cost of the obtained cliques (in this
case, the costs of the old oc gates are included into Cg).

• Extended cost: Cg + Coc1 + Coc2 + Cb, which takes into account also the
cost of the new oc gates.

This describes the full cost of the gates involved in the sum, since the bit
communication metric of the gates is additive. This sum would not work if we had
chosen the number of rounds as the cost.

Inequality Constraints

The constraints A~x ≤ ~b state the relations between the variables defined in Sec-
tion 6.4.6. Since A~x ≥ ~b is equivalent to −A~x ≤ −~b, we may as well use ≤, ≥,
and = relations in the constraints.

Building blocks for constraints. There are some logical statements that are
used several times in the constraints. We will now describe how such statements
are encoded as sets of constraints (possibly with some auxiliary variables). We
also define special notations for these sets of constraints.

• Multiplication by a bit: z = x · y, where x ∈ {0, 1}, y, z ∈ R, and C ∈ R
is a known upper bound on y. This can be expressed by the following set of
constraints:

– C · x+ y − z ≤ C;
– C · x− y + z ≤ C;
– C · x− z ≥ 0.

We denote this set of constraints by P(C, x, y, z).

240

• Threshold:

y =

{
1 if

∑
x∈X x ≥ A

0 otherwise
,

where ∀x ∈ X : x ∈ {0, 1}, y ∈ R, andA ∈ R is some constant. Note that,
while there are no constraints on y ∈ R, the property y ∈ {0, 1} should be
ensured by the threshold itself. This can be expressed by the following set
of constraints:

– P(1, y, x, zx) for all x ∈ X , where zx are fresh variable names;
– A · y −

∑
x∈X zx ≤ 0;

–
∑

x∈X x−
∑

x∈X zx + (A− 1)y ≤ (A− 1).

We denote this set of constraints by F(A,X , y).

• Implying inequality: (z = 1) =⇒ (x − y ≥ A), where z ∈ {0, 1},
x, y ∈ R, A ∈ R is some constant, and C ∈ R is a known upper bound on
x, y. This can be expressed by the following constraint:

– (C +A) · z + y − x ≤ C.

We denote this constraint by L(C,A, x, y, z).

The correctness of these sets of constraints is proven in Section 6.5.6.

Basic constraints. The particular constraints defining the integer linear pro-
gramming task are the following.

1. gji + gjk ≤ 1 for i, k ∈ G, ¬fusableG(i, k).
If the gates are not mutually exclusive, then they cannot belong to the same
clique.

2.
∑|G|

j=1 g
j
i = 1 for all i ∈ G.

Each gate belongs to exactly one clique.

3. gji = 0 if opG(i) 6= opG(j).
The clique and gate operations should match. In order to avoid putting gates
of different operations into one clique, we assign operations to the cliques,
such that the operation of the j-th clique equals the operation of the j-th
gate. The gates are allowed to belong only to the cliques Cj of the same
operation as the gate i is.

4. gjj − g
j
i ≥ 0 for all i ∈ G, j ∈ G.

If the clique Cj is non-empty, then it contains the gate indexed by j. This
makes the gate j the representative of Cj .

241

5. gjj = 1 for all j such that cost(opG(j)) = 0.
We are more interested in fusing the gates with positive cost. Actually,
in some cases, even fusing gates of cost 0 can be useful, since it may in
turn eliminate some oc gates. This constraint makes the optimization faster,
although we may lose some valuable solution in this way.

6. (a) `i − `k ≥ 1 for all i, k ∈ G, predG(i, k);
(b) L(|G|, 0, `i, `j , gji) for all i, j ∈ G;

(c) L(|G|, 0, `j , `i, gji) for all i, j ∈ G;
(d) `i ≥ 0, `i ≤ |G|.

After the gates are fused into cliques, their dependencies on each other are
not allowed to form cycles. We assign a level `i to each gate i. If i is a
predecessor of k, then `i < `k, but to avoid degenerate solutions to the ILP,
we introduce some difference between the levels. If a gate i belongs to the
clique Cj , then `i = `j . We may split the implication gji = 1 =⇒ `i = `j
into two parts gji = 1 =⇒ (`i − `j) ≥ 0, gji = 1 =⇒ (`j − `i) ≥ 0,
reducing them to the constraint L. We take the maximal value for `i as |G|,
since we need at most |G| distinct levels, even if each gate is assigned a
unique level.
We would also like to take into account the conditional predecessors.

(e) dj = (1− gjj) for all j ∈ G;

(f) F(1, {dj} ∪ {gji | i ∈ G, i 6= j}, cj) for all j ∈ G.

These constraints fix the variable cj so, that cj = 1 iff the gate j is fused
with some other gate. That is, either dj = 1, implying gjj = 0 or that j
belongs to some other clique, or

∑
i∈G,i6=j g

j
i ≥ 1, implying that there is

some other gate belonging to gjj .

(g) L(|G|, 1, `i, `k, ci) for all i, k ∈ G, cpredG(i, k).

The last constraint states that, if ci = 1, i.e. the gate i is fused with some
other gate, then lk− li ≥ 1, i.e. the gate i should be computed strictly before
its conditional predecessor k.

Extended constraints. The basic constraints are sufficient to optimize the
total cost of the gates, at the same time avoiding cycles. Since computing
the boolean conditions may also produce some additional costs, we define
somemore variables with associated constraints that take them into account.

242

7. The `-th argument of Cj requires a new oc gate iff the number of distinct
`-th inputs used by the gates i ∈ Cj is at least 2. We want to define the
variables scj` = |argsG′(j)[`]| − 1, and sj` = 1 iff argsG

′
(j)[`] is an oc gate,

allowing to estimate whether a new oc should be introduced.

(a) F(1, {gji | i ∈ G, k = argsG(i)[`]}, fxjk`).
These constraints define fxjk` = 1 iff k ∈ argsG(Cj)[`];

(b) P(1, fxjk` , g
i
k, e

jk
i`) for all k ∈ V (G).

These constraints define ejki` = 1 iff k ∈ argsG(Cj)[`], and k ∈ Ci.

(c) F(1, {ejki` | k ∈ V (G)}, fgji`) for all i ∈ G.
These constraints define fgji` = 1 iff ∃k ∈ Ci : k ∈ argsG(Cj)[`].

(d) fgjk` = fxjk` for k ∈ I(G).
Together with (7c), it defines fgjk` = 1 iff Ck ∈ argsG(Cj)[`] for
k ∈ V (G), where for k ∈ I(G) we denote Ck = k.

(e) F(2, {fgjk` | k ∈ V (G)}, sj`).
These constraints define sj` = 1 iff the total number of `-th inputs after
fusing the gates of Cj is at least 2.

(f) scj` =
∑

k∈V (G) fg
jk
` − g

j
j .

These constraints define scj` = |argsG(Cj)[`]| − 1 for a non-empty
clique. If gjj = 0, then also

∑
k∈V (G) fg

jk
` = 0, so it is not counted

for empty cliques. We discuss it in more details when we prove the
feasibility of the task in Section 6.5.6.

8. Similarly, for the old oc gates, we are going to define ucj = |argsG′(j)|−gjj ,
and uj = 1 iff |argsG′(j)| > 1. The oc gate gj will remain in G′ iff the
number of remaining distinct choices made by gj is at least 2.

(a) F(1, {fgjk` | ` ∈ [arityG(j)] ∩ 2N}, fgjk) for all j ∈ G, k ∈ V (G),
opG(j) = oc.
These constraints define fgjk = 1 iff Ck is a choice of the oc gate j.

(b) F(2, {fgjk | k ∈ V (G)}, uj) for all j ∈ G, opG(j) = oc.
These constraints define uj = 1 iff there are at least 2 choices left for
the oc gate j.

(c) ucj` =
∑

k∈V (G) fg
jk − gjj for all j ∈ G, opG(j) = oc.

These constraints define ucj` = |argsG′(j)| − gjj for opG(j) = oc.

243

9. We would like to check whether the weakest precondition φG(j) of the gate
gj must be computed. We want to define bj = 1 iff φG(j) is needed.

(a) F(1, {sj` | ` ∈ [arityG(j)]}, tj) for j ∈ G.
This checks if there will be an oblivious choice of at least one input
of the clique Cj . If it is so, then we will need to compute φG(i) for
i ∈ Cj .

(b) P(1, gji , t
j , tji) for j 6= i ∈ G.

(c) tjj = 0 for j ∈ G.
The variable tji now denotes if the weakest precondition of gi is needed
for the cliqueCj . Since wemay set one of the choices to negation of all
the other choices, we may eliminate one of the weakest preconditions
participating in the choice. We choose it to be the choice of gate j,
and hence we set tjj = 0.

(d) bi =
∑

j∈G t
j
i for i ∈ G.

Since we know that each gate belongs to exactly one clique, we know
that, for a fixed i, we have tji = 1 for exactly one j, and so it suffices
to sum them up.

Binary Constraints

Since we are dealing with a mixed integer program, we need to state explicitly that
some variables are binary:

gji ∈ {0, 1} for all i, j ∈ G .

The statement scj` , uc
j
` ∈ Z, and the binariness of all the other variables (except

`j ∈ R) follow from the binariness of gji . We prove it in Section 6.5.6. We will
need this property in the proofs of transformation correctness.

Feasibility

We want to be sure that the obtained integer linear program indeed has at least one
solution.

Theorem 6.1. For any (G,X, Y) ∈ G, if (A,~b,~c, I) = T→ILP (G,X, Y), then the
integer linear programming task

minimize 〈~c, ~x〉, s.t A~x ≤ ~b, ~x ≥ ~0, xi ∈ {0, 1} for i ∈ I

has at least one feasible solution.

The proof on this theorem can be found in Section 6.5.6. It just shows that it
is always possible to take the solution where no gates are fused at all.

244

6.4.7 Circuit Transformation

Let (G,X, Y) ∈ G be the initial circuit. Let Sol(G,X, Y) be the set of all
feasible solutions to (A,~b,~c, I) = T→ILP (G,X, Y). Now we define a backwards
transformation T←ILP : Sol(G) × G → G, which takes any feasible solution to
(A,~b,~c, I) and applies it to (G,X, Y), forming a new circuit G′ = (G′, X ′, Y ′).
Let cost : G → Z be function computing the total communication cost of a circuit.

The work of T←ILP is pretty straightforward. If fuses the gates according to the
variables gji of the ILP solution that denote which gate belongs to which clique. It
introduces all the necessary oblivious choices, and also removes the old oblivious
choices that are left with only one choice. The work of the transformation function
T←ILP is given in Algorithm 7. Let sol be a mapping from ILP variables to their
valuations. After evaluating sol by solving the ILP problem on line 1, the circuit is
constructed sequentially, starting from an empty set of gates initialized on line 2.

The loop of line 3 iterates through all the cliques Cj . We assume that the
cliques are sorted topologically, according to their level `j , so that the arguments
of the clique are processed before the clique itself. The clique Cj is defined on
line 4 as the set of all gates belonging to it. The arguments of Cj are processed
one by one by the loop on line 5. On line 6 all the `-th arguments of Cj and
their weakest preconditions are collected into the set Bj` . Since we have computed
the weakest preconditions φGi in the initial graph G, some variables of φGi may be
unavailable in G′ due to gate fusing. Hence each gate of φGi is substituted with the
corresponding clique representative that is left in G′ after the fusing.

A fresh name vj` is created for the new oc gate on line 7, where fresh()
just creates a new variable name that has not been used anywhere else. Then,
Algorithm 8 is called on line 8, and it actually decides if an oc gate is needed. On
line 1 of Algorithm 8, all the values from which to choose are collected into the set
K. If |K| > 1, then there are at least 2 choice candidates, and hence an oblivious
choice needs to be introduced. The new node vbk is needed to construct the choice
of the argument k, which may be chosen by several different mutually exclusive
choices. Hence the condition of choosing k is the sum of all the conditions b such
that (b, k) ∈ B (here we are allowed to use addition instead of ∨ since the gates
are mutually exclusive). The restriction TC of TP on private conditionals (defined
formally in Section 6.5.2) transforms the boolean expression to a set of gates.
The oc gate itself is formally constructed on line 6 of Algorithm 8. If |K| ≤ 1,
then the new oc gate is not needed, and the the only element of |K| can be used
straightforwardly. In the latter case, we substitute oc with an identity gate id to
make the presentation simpler.

After the inputs of Cj are handled, if opG(j) 6= oc, the representative of Cj is
included intoG on line 15. If opG(j) = oc, the algorithm collects the choices and
their conditions directly from the arguments of j, and calls Algorithm 8 to check

245

if it remains an oc gate, or becomes an id gate. This happens on lines 10-13 of
Algorithm 7.

Some variables of Y may point to improper output wires if the corresponding
gates have been fused into cliques. These references are rearranged on line 16.

Theorem 6.2. Let (G,X, Y) ∈ G. Let solve be an arbitrary integer linear
programming solving algorithm. Let (A,~b,~c, I) = T→ILP (G,X, Y). Then for any
s ∈ State , [[eval(G,X, Y)]] s = [[eval(T←ILP (solve(A,~b,~c, I), (G,X, Y)))]] s.

Theorem 6.2 states the correctness of T→ILP and T←ILP , i.e. that the semantics
of the transformed circuit does not change. The proof of Theorem 6.2 is given in
Section 6.5.7.

We may use Algorithm 7 to construct a circuit from a set of cliques obtained
from some greedy algorithm of Section 6.4.5, as it can be easily reduced to a linear
programming solution of T→ILP (G,X, Y).

Theorem 6.3. Let (G,X, Y) ∈ G. Let greed be the function of Algorithm 2 that
returns a set of cliques of G. There exists a transformation TCG such that, for any
s ∈ State , [[eval(G,X, Y)]] s = [[eval(T←ILP (TCG (greed(G), X, Y)))]] s.

The proof of Theorem 6.3 is given in Section 6.5.7.
We want to estimate the communication cost of the obtained transformed

graph (G′, X ′, Y ′). We show that its cost is the value estimated by the ILP, so its
minimization is reasonable.

Theorem 6.4. Let (G,X, Y) ∈ G. Let solve be an arbitrary integer linear
programming solving algorithm. Let (A,~b,~c, I) = T→ILP (G,X, Y). Then
cost(T←ILP (solve(A,~b,~c, I), (G,X, Y))) = 〈~c, solve(A,~b,~c)〉.

The proof of Theorem 6.3 is given in Section 6.5.7.
Ifwe use the greedy algorithms of Section 6.4.5, or use only the basic constrains

of the integer program for better convergence, then it may happen that the found
solution is worse than the initial one. Indeed, although the total cost of the
gates may only decrease, the additional oblivious choices provide computational
overhead that is not taken into account by these algorithms. If the oblivious choice
is relatively expensive compared to the cost of fused gates, then the new oc gates
may provide even larger overhead that the cost of the eliminated gates was.

From our benchmarks reported in Section 6.6, we see that the greedy algo-
rithms nevertheless provide reasonable execution times, and their optimization
times are significantly better in practice. The reason is that the oblivious choice
is relatively cheap for the particular SMC platform that we use, and the gates that
are involved into the optimization are significantly more expensive. Therefore, it
is safe to omit the oblivious choices from the cost estimation.

246

Algorithm 7: T←ILP reconstructs the circuit G according to the variables gji
Data: A circuit G = (G,X, Y) ∈ G
Data: An ILP (A,~b,~c)
Result: A transformed circuit G′ = (G′, X ′, Y ′)

1 sol← solve(A,~b,~c);
2 G′ ← ∅, X ′ ← X , Y ′ ← Y ;
3 foreach j ∈ G, sol(gjj) = 1 do
4 Cj ← {i | sol(gji) = 1};
5 foreach ` ∈ [arityG(j)] do
6 Bj` ← {(φ

G
i [i′ ← j′ | i′ ∈ Cj′], k) | k ∈ I(G), i ∈ Cj ,

k = argsG(i)[`]}
∪ {(φGi [i′ ← j′ | i′ ∈ Cj′], k) | k /∈ I(G), i ∈ Cj ,

∃u : u = argsG(i)[`], u ∈ Ck};
7 vj` ← fresh();
8 Gj` ← ocSubgraph(vj` ,B

j
`);

9 G′ ← G′ ∪Gj` ;
10 if opG(j) = oc then
11 Bj ← {(argsG(j)[`− 1][i′ ← j′ | i′ ∈ Cj′], vj`) | ` ∈ arityG(j),

` ∈ 2N};
12 Gj ← ocSubgraph(j,Bj);
13 G′ ← G′ ∪Gj ;
14 else
15 G′ ← G′ ∪ {(j, opG(j), [vj1, . . . , v

j

arityG(j)
])};

16 Y ′ ← Y ′[i← j | i ∈ Cj];
17 return (G′, X ′, Y ′);

247

Algorithm 8: ocSubgraph constructs either an oc gate, or an id gate
Data: B – a set of condition and choice pairs (b, k)
Data: v – the name of the wire that outputs the choice result
Result: A set of gates computing the oc and its conditions

1 K ← {k | ∃b : (b, k) ∈ B};
2 if |K| > 1 then
3 foreach k ∈ K do
4 vbk ← fresh();
5 (Gk, Xk, Yk)← TC(vbk :=

∑
(b,k)∈B b);

6 return{Gk}k∈K ∪ {(v, oc, [vbk, k]k∈K)};
7 else
8 {w} ← K;
9 return {(v, id, w)};

6.5 Formal Constructions and Proofs

In this section we give some formal definitions and proofs that we have omitted
before for better readability.

6.5.1 Circuit Composition

Let the circuit G = (G,X, Y) be defined as in Section 6.3.1. We define the
composition of circuits as syntactic objects, and prove that the resulting circuit
indeed computes the composition.

Lemma 6.1. Let G1 = (G1, X1, Y1) and G2 = (G2, X2, Y2) where

1. V (G1) ∩ V (G2) = ∅;

2. Dom(Y1) ∩ Dom(Y2) = ∅;

3. Dom(Y1) ∩ Ran(X2) = ∅.

Defining a new circuit G = (G,X, Y) where G := G1 ∪ G2, X := X1 ∪ X2,
Y := Y1 ∪ Y2, we get

∀s ∈ State : [[eval(G,X, Y)]] s = [[eval(G2)]] [[eval(G1)]] s .

Proof. Let us write out the definitions of expressions.

• [[eval(G1, X1, Y1)]] s = upd(Y1 ◦ [[G1]](s ◦X1), s);

248

• [[eval(G2, X2, Y2)]] s = upd(Y2 ◦ [[G2]](s ◦X2), s);

• [[eval(G,X, Y)]] s = upd((Y1 ∪ Y2) ◦ [[G1 ∪G2]](s ◦ (X1 ∪X2)), s).

Let y ∈ Var be any program variable. Let s′ = upd(Y ◦ [[G]](s ◦X), s), and let
s′′ := upd(Y1 ◦ [[G1]](s ◦X1), s). We do the proof by case distinction on y.

• If y /∈ Dom(Y1) ∪ Dom(Y2), then

s′(y) = upd((Y1 ∪ Y2) ◦ [[G1 ∪G2]](s ◦ (X1 ∪X2)), s) y

= s(y) .

On the other hand, we have

([[eval(G2)]] [[eval(G1)]] s) y = upd(Y2 ◦ [[G2]](s′′ ◦X2), s′′) y

= s′′(y)

= upd(Y1 ◦ [[G1]](s ◦X1), s) y

= s(y) .

• If y ∈ Dom(Yi), then there exists u ∈ V (Gi) such that Yi(y) = u. For any
input wire valuations W1 : I(G1) → Val , W2 : I(G2) → Val , and since
V (G1) ∩ V (G2) = ∅, we can define W1 ∪W2 = W : I(G) → Val . We
have

[[G1 ∪G2]]W u =

{
[[G1]]W1 u if u ∈ V (G1)

[[G2]]W2 u if u ∈ V (G2)
.

1. Let y ∈ Dom(Y1) \ Dom(Y2). Then

s′(y) = upd(Y ◦ [[G]](s ◦X), s) y

= upd((Y1 ∪ Y2) ◦ [[G1 ∪G2]](s ◦ (X1 ∪X2)), s) y

= upd(Y1 ◦ [[G1]](s ◦X1), s) y

= s′′(y) .

Since updating the variables of Dom(Y2) does not affect the value of
y /∈ Dom(Y2), we have

s′′(y) = upd(Y2 ◦ [[G2]](s′′ ◦X2), s′′) y

= ([[eval(G2)]] [[eval(G1)]] s) y .

2. Let y ∈ Dom(Y2). Then

s′(y) = upd(Y ◦ [[G]](s ◦X), s) y

= upd(Y2 ◦ [[G2]](s ◦X2), s) y .

249

Note that, for all x ∈ Ran(X2), we have s(x) = s′′(x) due to the
condition Dom(Y1) ∩ Ran(X2) = ∅. We get

s′(y) = upd(Y2 ◦ [[G2]](s′′ ◦X2), s) y .

Also, if y ∈ Dom(Y2), then s(y) = s′′(y) due to the condition
Dom(Y1) ∩ Dom(Y2) = ∅. We get

s′(y) = upd(Y2 ◦ [[G2]](s′′ ◦X2), s′′) y

= ([[eval(G2)]] [[eval(G1)]] s) y .

Hence, the claim is proven for all y ∈ Var .

6.5.2 Transformations of Programs to Circuits

We define a transformation TP : prog → prog that substitutes all private condi-
tionals of the initial program with circuit evaluations. The transformation TP does
notmodify statements outside of the private conditionals. If it is applied to a private
conditional, it uses an auxiliary transformation TC : statement → G to con-
struct a circuit, and substitutes the private conditional block with eval(G,X, Y),
where the circuit (G,X, Y) is generated by TC . We give the recursive definitions
of TP and TC .

• TP (S1 ; S2) = TP (S1) ; TP (S2).

• TP (a := b) = (a := b).

• TP (if b then S1 else S2) = if b then TP (S1) else TP (S2) for a
public b.

• TP (if b then S1 else S2) = eval(G,X, Y) where (G,X, Y) =
TC(if b then S1 else S2) for a private b.

The transformation TC creates the circuits corresponding to the computation
inside the private conditionals, and arranges the mappingsX and Y that establish
relations between the circuit wires and the program variables.

• TC(skip) = (∅, ∅, ∅).

• TC(y := x) = (∅, {v ← x}, {y ← v}), where x is a variable name or a
constant. There are no gates, and the value for y is taken directly from the
wire to which the value of x is assigned.

• TC(y := f(x1, . . . , xn)) = (G,X, Y), where

250

– x1, . . . , xn are program variables and constants;
– f is some arithmetic blackbox function defined in the programming
language;

– G = (w, [[f]], [v1, . . . , vn]) is a gate that computes f ;
– X = {v1 ← x1, . . . , vn ← xn};
– Y = {y ← w}.

• TC(y := f(e1, . . . , en))
= TC(yi1 := ei1 ; . . . ; yin := ein ; y := f(y1, . . . , yn)), where

– {ei1 , . . . , ein} ⊆ {e1, . . . , en} are compound expressions (not vari-
ables/constants);

– yi = ei for i /∈ {i1, . . . , in}.

• TC(S1 ; S2) = (G,X, Y) where

– (Gi, Xi, Yi) = TC(Si) for i ∈ {1, 2};
– X = X1 ∪ X ′2 where X ′2 = (X2 \ {v ← x | x ∈ Dom(Y1)}): the
inputs of both X1 and X2 will be needed during the computation, but
the variables of X2 that are modified by S1 should be taken from the
output of S1’s circuit instead.

– Y = Y2 ∪ Y ′1 where Y ′1 = (Y1 \ {y ← w | y ∈ Dom(Y2)}): all the
variables that are modified throughout the execution of S1 ; S2 are in
Y . If a variable is modified in both S1 and S2, its value is taken from
the output of S2.

– Now G1 and G2 should be combined. Take G = G1 ∪ G′2 where
G′2 = G2[{v ← w | (v ← x) ∈ X2, (x ← w) ∈ Y1}]. This connects
the inputs of G2 to the outputs of G1.

• TC(if b then S1 else S2) = TC(S) where

– (Gi, Xi, Yi) = TC(Si) for i ∈ {1, 2},
– Y ′i = {ziy ← w | (y ← w) ∈ Yi} for i ∈ {1, 2}: this renames the
variables y of Yi by introducing new variable names ziy,

– S =



b1 := b;

b2 := (1− b);
S′1 = S1[(y ← z1y) ∈ Y ′1 | ∃w (y ← w) ∈ Y1];

S′2 = S2[(y ← z2y) ∈ Y ′2 | ∃w (y ← w) ∈ Y2];

y := oc(b1, r(1, y), b2, r(2, y)) ∀y ∈ Y ;

,

251

– r(i, y) =

{
Y ′i (w) if (y ← w) ∈ Yi
y otherwise

.

This computes S1 and S2 sequentially (renaming all the assigned variables
in order to ensure that there are no conflicts), and then applies a new binary
oblivious choice (b or ¬b) to the outputs of G1 and G2. All the outputs
of all the branches should be available in an oblivious selection. If any
variables are modified in only one of the branches, they should be output
also by the circuit that corresponds to the other branch, in order to make
them indistinguishable. Such variables y are just copied from the input
directly.

As the result, if P is the initial program with private conditions, TP (P) is
a program without private conditions, but with some instances of the function
call eval(G,X, Y) in its code. We need to prove that TP (P) does the same
computation as P .

Theorem 6.5. For any program P , s ∈ State , [[TP (P)]] s = [[P]] s.

Proof. It is sufficient to prove the correctness of TP , which in turn will require
us to prove the correctness of TC . Since the transformations TP and TC are
defined inductively, we prove their correctness inductively on the size of P . Let
[[TP (S1)]] = [[S1]], [[TP (S2)]] = [[S2]].

• Using the definition TP (S1 ; S2) = TP (S1) ; TP (S2), we get

[[TP (S1 ; S2)]] s = [[TP (S1) ; TP (S2)]] s

= [[TP (S2)]] [[TP (S1)]] s

= [[S2]] [[S1]] s = [[(S1 ; S2)]] s .

• Using the definition TP (a := b) = (a := b), we get

[[TP (a := b)]] s = [[(a := b)]] s .

• Using TP (if b then S1 else S2) = if b then TP (S1) else TP (S2)
for a public b, we get

S = [[if b then TP (S1) else TP (S2)]] s

=

{
[[TP (S1)]] s if [[b]] s 6= 0

[[TP (S2)]] s if [[b]] s = 0

=

{
[[S1]] s if [[b]] s 6= 0

[[S2]] s if [[b]] s = 0

= [[if b then S1 else S2]] s .

252

• Using the definition TP (if b then S1 else S2) = eval(G,X, Y) for a
private b, where (G,X, Y) = TC(if b then S1 else S2), assuming the
correctness of TC , we get

[[eval(G,X, Y)]] s = [[if b then S1 else S2]] s .

We now prove the correctness of TC . By definition of TC , we need to prove
[[eval(G,X, Y)]] = [[P]] for (G,X, Y) = TC(P).

• Using the definition TC(skip) = (∅, ∅, ∅), we get

[[eval(∅, ∅, ∅)]] s = upd(∅, s) = s = [[skip]] s .

• Using the definition TC(y := x) = (∅, {v ← x}, {y ← v}), where x is a
variable name or a constant, we get
[[eval(∅, {v ← x}, {y ← v})]] s

= upd((y ← v) ◦ [[∅]](s ◦ (v ← x)), s)

= upd((y ← v) ◦ s ◦ (v ← x), s)

= s[y ← s(x)]

= [[y := x]] s .

• Using the definition TC(y := f(x1, . . . , xn)) = (G,X, Y), where

– x1, . . . , xn are program variables and constants;
– f is some arithmetic blackbox function defined in the programming
language;

– G = (w, [[f]], [v1, . . . , vn]) is a gate that computes f ;
– X = {v1 ← x1, . . . , vn ← xn};
– Y = {y ← w};

we get
[[eval(G, {v1 ← x1, . . . , vn ← xn}, {y ← w})]] s

= upd((y ← w) ◦ [[G]](s ◦ {v1 ← x1, . . . , vn ← xn})), s)
= upd((y ← w) ◦ s′[w ← f(x1, . . . , xn)], s)

= upd((y ← f(x1, . . . , xn)), s)

= s[y ← f(x1, . . . , xn)]

= [[(y := f(x1, . . . , xn)]] s .

253

• Let us use the definition TC(S1 ; S2) = (G,X, Y) where

– (Gi, Xi, Yi) = TC(Si) for i ∈ {1, 2};
– X = X1 ∪X ′2 for X ′2 = (X2 \ {v ← x | x ∈ Dom(Y1)});
– Y = Y2 ∪ Y ′1 for Y ′1 = (Y1 \ {y ← w | y ∈ Dom(Y2)});
– G = G1∪G′2 forG′2 = G2[{v ← w | (v ← x) ∈ X2, (x← w) ∈ Y1}].

Define the following auxiliary subsets:

X2
Y1 = {(v ← x) ∈ X2 | x ∈ Dom(Y1)} ,

Y2
Y1 = {(y ← w) ∈ Y2 | y ∈ Dom(Y1)} .

Since the wires that are not evaluated by X ′2 are defined inside G2 as
G2[X2

Y1], we may write

[[eval(G2, X2, Y2)]] s = [[eval(G2[X2
Y1], X2 \X2

Y1 , Y2)]] s

= [[eval(G2[X2
Y1], X ′2, Y2)]] s .

Note that

X2
Y1 ◦ Y1 = {(v ← x) ∈ X2 | x ∈ Dom(Y1)} ◦ {(y ← w) ∈ Y1}

= {v ← w | (v ← x) ∈ X2, (x← w) ∈ Y1} .

Hence we have G′2 = G2[X2
Y1 ◦ Y1].

We may now write out the composition:
[[eval(G2, X2, Y2)]] [[eval(G1, X1, Y1)]] s

= [[eval(G2[X2
Y1], X2 \X2

Y1 , Y2)]] [[eval(G1, X1, Y1)]] s

= [[eval(G2[X2
Y1 ◦ Y1], X2 \X2

Y1 , Y2)]] [[eval(G1, X1, Y1 \ Y2
Y1)]] s

= [[eval(G′2, X
′
2, Y2)]] [[eval(G1, X1, Y

′
1)]] s .

By definition of Y ′1 and X ′2, we have Dom(Y ′1) ∩ Dom(Y2) = ∅ and
Dom(Y1) ∩ Ran(X ′2) = ∅. Applying Lemma 6.1, we get

[[eval(G′2, X
′
2, Y2)]] [[eval(G1, X1, Y

′
1)]] s

= [[eval(G1 ∪G′2, X1 ∪X ′2, Y ′1 ∪ Y2)]] s.

Putting together these equations, by definition of G, X , Y , we get
[[eval(G2, X2, Y2)]] [[eval(G1, X1, Y1)]] s

= [[eval(G1 ∪G′2, X1 ∪X ′2, Y ′1 ∪ Y2)]]

= [[eval(G,X, Y)]] .

By the induction hypothesis, [[eval(Gi, Xi, Yi)]] s = [[Si]] s for i ∈ {1, 2}.
Hence we have [[eval(G,X, Y)]] = [[S2]] [[S1]] s = [[S1;S2]] s.

254

• Use the definition TC(y := f(e1, . . . , en)) = TC(yi1 := ei1 ; . . . ; yin :=
ein ; y := f(y1, . . . , yn)), where ei1 , . . . , ein are compound expressions (i.e
neither variables nor constants), and yi = ei for i /∈ {i1, . . . , in}.
Since we have already defined TC on a sequential composition, by the in-
duction hypothesis, TC(yi1 := ei1 ; . . . ; yin := ein) = (G1, X1, Y1)
such that, for each i ∈ [n], we have Y1(yi) = [[ei]]. We also have
TC(y := f(y1, . . . , yn)) = (G2, X2, Y2) where Y2(y) = [[f(y1, . . . , yn)]],
as y1, . . . , yn are now all either program variables or constants, so it has
also been treated on the previous induction steps. Composing them to-
gether, we get TC(y := f(e1, . . . , en)) = (G,X, Y) such that Y (y) =
[[f]]([[e1]]s, . . . , [[en]] s)y = [[f(e1, . . . , en)]].

• Let us use the definition TC(if b then S1 else S2) = TC(S) where

– (Gi, Xi, Yi) = TC(Si) for i ∈ {1, 2},
– Y ′i = {ziy ← w | (y ← w) ∈ Yi} for i ∈ {1, 2}: this renames the

variables y of Yi by introducing new variable names ziy,

– S =



b1 := b;

b2 := (1− b);
S′1 = S1[(y ← z1y) ∈ Y ′1 | ∃w (y ← w) ∈ Y1];

S′2 = S2[(y ← z2y) ∈ Y ′2 | ∃w (y ← w) ∈ Y2];

y := oc(b1, r(1, y), b2, r(2, y)) ∀y ∈ Y ;

,

– r(i, y) =

{
Y ′i (w) if (y ← w) ∈ Yi
y otherwise

.

First, we claim that [[if b then S1 else S2]] s = [[S]] s. Let y ∈ Var .

– If y /∈ Y , then ([[S]] s) y = s(y) since S reassigns only b1 and b2,
which are not the part of s, and y ∈ Y . At the same time, if y /∈ Y ,
then y /∈ (Y1 ∪ Y2), and since Si reassigns only variables of Yi,
([[if b then S1 else S2]] s) y = s(y).

– Let y ∈ Y . Let [[b]] s = 1, Then b1 = 1, and b2 = 0, so y =
oc((b1, r(1, y)), (b2, r(2, y)) = r(1, y).

∗ If (y ← w) ∈ Y1, then r(1, y) = Y ′1(w) = z1y. The only
place where z1y can be assigned is statement S′1, and we have
([[S1[(y ← z1y) ∈ Y ′1 | (y ← w) ∈ Y1]]] s) z1y = ([[S1]] s) y.
Hence if b = 1, then ([[S]] s) y = ([[S1]] s) y.

∗ Otherwise, r(1, y) = y, so the final statement is y := y. Since
it is the first assignment of y in S, we have ([[S]] s) y = s(y). At

255

the same time, ([[S1]] s) y = s(y) since if z1y /∈ Dom(Y ′1), then
y /∈ Dom(Y1), and hence it is not reassigned in S1.

The proof is analogous for [[b]] s = 0. We have got that:

([[S]] s) y =

{
([[S1]] s) y if [[b]] s = 0

([[S2]] s) y otherwise
= ([[if b then S1 else S2]] s) y .

By the induction hypothesis, [[eval(Gi, Xi, Yi)]] s = [[Si]] s for i ∈ {1, 2}.
Hence we have

[[S′i]] = [[Si[(y ← ziy) ∈ Y ′i | (y ← w) ∈ Yi]]]
= [[eval(Gi, Xi, Yi)[(y ← ziy) ∈ Y ′i | (y ← w) ∈ Yi]]]
= [[eval(Gi, Xi, Y

′
i)]] .

Let us denote SC = (y := oc(b1, r(1, y), b2, r(2, y)))∀y∈Y , and Sb =
(b1 := b ; b2 := (1− b)). We take (G′, X ′, Y ′) = TC(Sb ; S′1 ;S′2 ; SC).
Assuming by the induction that TC is defined correctly on sequential com-
position, we get

[[eval(G′, X ′, Y ′)]] s = [[Sb ; S′1 ;S′2 ; SC]] s .

6.5.3 Correctness of the WP Generating Algorithm

Proposition 6.1. On input G ∈ G, Algorithm 1 returns a mapping φ such that, for
all v ∈ V (G), φG(v) is the weakest precondition of v according to Definition 6.5.

The proof of Algorithm 1 is split into two steps: the correctness of ψ definition
and the correctness of φG definition. We prove it as two separate lemmata.

Lemma 6.2. For each v ∈ V (G) and for any φin, process(v, φin) returns a
boolean expression ψout over V (G) such that [[ψout]] [[G]](s ◦X) = [[G]](s ◦X) v
(i.e. ψout is an expression over V (G) that computes the same value as v).

Proof. The proof is based on induction on the number of vertices v for which
ψout(v) has already been computed, starting from the inputs I(G).

• Base: for v ∈ I(G), the algorithm returns ψout = v (there is no gate
operation), so [[ψout]] [[G]](s◦X) = [[u := v]] [[G]](s◦X)u = [[G]](s◦X)[v].

• Step: If φ(v) 6= ⊥, then v has already been processed, and the algorithm
returns ψout(v), which is correct by the induction hypothesis. Let us now
assume that φ(v) = ⊥. Let [[ψiout]] [[G]](s ◦ X) = [[G]](s ◦ X)[vi] for all
vi ∈ argsG(v). There are now several cases for opG(v).

256

– If opG(v) = ∧, then

[[G]](s ◦X)[v] = [[∧]]([[G]](s ◦X)[v1], [[G]](s ◦X)[v2])

= [[∧]]([[ψ1
out]] [[G]](s ◦X), [[ψ2

out]] [[G]](s ◦X))

= [[ψout]] [[G]](s ◦X)

The proof is analogous for ∨.
– If opG(v) = oc, arityG(v) = n, then

[[ψout]] [[G]](s ◦X) =
n∑
i=1

([[G]](s ◦X)[bi]) · ([[G]](s ◦X)[ai]) ,

where (ai, bi) ∈ argsG(v). By Definition 6.3, we have

[[G]](s ◦X)[v] =
n∑
i=1

([[G]](s ◦X)[bi]) · ([[G]](s ◦X)[ai]).

– Otherwise, the algorithm returns ψout = v. This is similar to the base
case.

Lemma 6.3. Algorithm 1 outputs φ such that for all v ∈ G and s ∈ State we
have φ(v) = 1 iff used(v, s) = 1 (according to Definition 6.4).

Proof. The proof is based on induction, starting from the subset of outputs
Of (G) ⊆ O(G) that are not used by any other gate as an argument. Since
our circuits are finite acyclic graphs, at least one such output does exist.

• Base: for v ∈ Of (G), the function process takes the argument φin = 1.
Since each v ∈ Of (G) is not an input of any other gate, it is visited only once.
In this case, φ(v) = ⊥, and the algorithm assigns φ(v) = φin = 1. We have
[[φ(v)]] s = 1 for all s ∈ State , and by the condition (1) of Definition 6.4,
for all v ∈ O(G) we have used(v, s) = 1.

• Step: The definition ofφ(v)maybe constructed in several steps if v is visited
several times. Only the final result needs to satisfy the lemma statement.
Let [[φvi]] s = 1 iff used(vi, s) = 1 for all vi such that v ∈ argsG(vi). By
Lines 7 and 10, we finally have φ(v) = φ1

in ∨ · · · ∨φnin, where φiin has been
passed as the second argument of process(v, φiin) by its successor vi. The
exact value of φiin depends on opG(vi).

– If opG(vi) 6= oc, then process(v, φiin) may be called on the Lines 14,
15, or 27. In all cases, φiin = φ(vi), since φiin was passed as not

257

a value, but as a reference, so it updates dynamically and is finally
equal to φ(vi). We get φ(v) = φ(v1) ∨ · · · ∨ φ(vn). This is sufficient
for the proof since [[φ(vi)]] s = 1 iff used(vi, s) = 1, and having
φ(v) = φ(v1) ∨ · · · ∨ φ(vn) assigns [[φ(v)]] s = 1 if for at least one i
we have s(vi) = 1. This satisfies the condition (2) of Definition 6.4,
since if used(vi, s) = 1, then used(v, s) = 1.

– If opG(v) = oc, then process(v, φiin) for an odd i is called at the
Line 20 with φiin = φ(vi). For an even i, this happens on the Line 21
with φiin = b′i ∧ φ(vi) where [[b′i]] [[G]](s ◦ X) = [[G]](s ◦ X)[bi] by
Lemma 6.2. Let s be now fixed. Let j be such that [[G]](s◦X)[bj] = 1.
For all even arguments, we have [[φjin]] s = [[φ(vj)]] s and [[φiin]]s = 0
for all i 6= j. This satisfies the condition (3) of Definition 6.4: if
used(vi, s) = 1, then used(v, s) = 1 if v is an odd argument bi, or an
even argument aj such that [[G]](s ◦X)[bj] = 1.

So far we have proven that [[φGv]] s = 1 implies used(v, s). Now we prove
the other direction. Let v ∈ argsG(vi). We have [[φGv]] s = 1 if there exists
vi such that [[φGvi]] s = 1 and at least one of the following conditions holds:

– opG(vi) 6= oc;
– opG(vi) = oc, and v is an odd input of vi;
– opG(vi) = oc, [[G]](s ◦X)[bi] = 1, and v is an even input of vi.

Hence if conditions (1-3) ofDefinition 6.4 are satisfied, then [[φGv]] s = 1.

Lemma 6.2 and Lemma 6.3 together immediately prove Proposition 6.1.

6.5.4 Correctness of the Subcircuit Partitioning Algorithm

Let the sets An be defined as in Section 6.4.4. We need to show that, after the
gates are merged into subcircuits, the resulting circuit still has the same impact on
the state as the initial circuit.

First, we need to formally define the operation that a subcircuit S computes, as
we did for the gates. By construction, eachAk has only one output wirew ∈ O(S),
since except the root gate, we do not include any subgraphs whose outputs are used
by some other subgraphs. Hence, for vi ∈ I(S), n = |argsAk(S)|, we may define
the operation computed by S as

opAk(S)(x1, . . . , xn) = [[S]] (v1 ← x1, . . . , vn ← xn)w .

Theorem 6.6. Let G ∈ G, n ∈ N. Then the following statements hold:

• I(G) = I(An);

258

• for allW : I(G)→ Val we have [[G]](W) = [[An]](W).

Proof. For shortness of notation, let us define the predicate correct(S) forS ∈ An,
s.t correct(S) = 1 iff for allW : I(S)→ Val , w ∈ O(S) we have

[[S]] ([[An]](W)argsAn(S))w = [[S]] ([[G]](W)argsG(S))w .

In other words, correct = 1 iff the output of S is the same, regardless of whether
its inputs are evaluated in An or G. This property is a bit weaker than the one we
are proving.

• Base: If n = 0, then each gate g is treated as a separate subcircuit, so
opA0({g}) = opG(g), argsA0({g}) = argsG(g), arityA0({g}) = arityG(g).
The circuit has not changed, so G = A0, and hence I(G) = I(A0), and
∀W : I(G) → Val , [[G]](W) = [[A0]](W). Moreover, correct(S) holds for
any subcircuit S of A0.

• Step: Assume that we have I(G) = I(An), and ∀W : I(G) → Val ,
[[G]](W) = [[An]](W) for a circuit An obtained for depth n. Now we are
trying to unite each subcircuit S ofAn with argsAn(S). Only those elements
of argsG(S) that are used as arguments only byS are added, and each element
is used on the current iteration only once. Hence, if the subcircuits of An
are mutually exclusive, then so are the subcircuits of A′n+1.
The subcircuits S that occur at most one time are decomposed back to
the subcircuits S′ of An, and by the induction hypothesis I(S′) = I(T ′),
∀W : I(S′) → Val , [[S′]](W) = [[T ′]](W), where T ′ is a set of circuits of
the gates of S′ in G.
The subcircuit S that occurred at least 2 times is left in An+1, and the
mapping argsAn+1(S) is updated. Each such subcircuit is of the form
S = {S0, S1, . . . , Sn}, where {S1, . . . , Sn} ⊆ argsAn(S0), and ∀i ∈
{0, . . . , n}, correct(Si) hold by the induction hypothesis. For all W :
I(Si)→ Val , we have

[[Si]]([[An+1]](W)argsAn(Si))wi = [[Si]]([[G]](W)argsAn(Si))wi

for wi ∈ O(Si), and hence the subcircuits {S1, . . . , Sn} provide to S0 the
same inputs it would get in G. Therefore S0 also outputs the same value it
would output in G, so for allW : I(S)→ Val we have

[[S]]([[An+1]](W)argsAn+1(S)) = [[S]]([[G]](W)argsG(S)) ,

and correct(S) holds.

259

All the subcircuits ofAn have been included intoAn+1, either in their initial
form, or united together with some other circuits. We have

⋃
S∈An+1

= An,
and hence I(An) = I(An+1). Since for allS ∈ Anwe have correct(S) = 1,
it should be ∀W : I(An)→ Val , [[An]](W) = [[An+1]](W). By transitivity,
I(G) = I(An+1), and ∀W : I(G)→ Val , [[G]](W) = [[An+1]](W).

6.5.5 Correctness of the Greedy Algorithms

We need to show that the algorithms of Section 6.4.5 are terminating, i.e. if we
already have fixed a clique greedily, it will not prevent the other gates from being
taken at all. Intuitively, whatever cliques we have fixed, as far as they do not
contradict each other, all the other gates may be at least added as singleton cliques
without causing any problems. We state it in the following lemma.

Lemma 6.4. The function Greed terminates for any set of gates G with properly
defined predicates fusableG, predG, and cpredG, producing a partitioning Cs of
gates G that satisfy goodClique(C,Cs) = true for any C ∈ Cs.

Proof. The loops of Algorithm 5 and Algorithm 6 that wait until the set of gates
Gs does not decrease anymore (both on lines 2-4) will definitely terminate since
the size of a finite set cannot decrease infinitely. The loop of Algorithm 4 on lines
2-4) terminates unless C = ∅, which is not the case since the set Cs′ constructed
by largestClique does not contain empty sets, since at least i ∈ G is contained in
each clique.

Another source of possible non-terminations are the searches for a solution that
satisfies goodClique in the functions largestClique, matching and maxMatching.
In particular, if a suitable clique is not found, then these algorithms may return
undefined values instead of valid sets of cliques. Sincematching may always take
G1 = G2, and the partitioning to singleton gates is also included into Css of
maxMatching and Cs′ of largestClique, it suffices to show that at least singleton
gates are accepted as valid cliques. This should be always possible, regardless of
the cliques that have already been fixed before.

LetCs be the set of cliques collected so far. Each strategy fixes a clique only if it
has passed the goodClique test at some point. Assume that goodClique(C,Cs) =
true for all C ∈ Cs. Now we want to add a clique {g} to Cs, where g ∈ G is
an arbitrary gate. We need to show that goodClique(C,Cs ∪ {g}) = true for all
C ∈ Cs ∪ {g}.

1. First, we show that goodClique({g}, Cs ∪ {g}) = true holds. Suppose by
contrary that it is impossible. This may happen in the following cases:

(a) For some g ∈ {g}, fusableG(g, g) = false. By definition of fusable,
we always have fusableG(g, g) = true.

260

(b) It happens that n1 ≥ n2 for the values n1 ← max({0}∪PredLevels),
n2 ← min({N} ∪ SuccLevels), where we have PredLevels ←
{level(k) | g ∈ C, predG(g, k)∨ cpredG(g, k) ∧ |C| > 1}, and also
SuccLevels ← {level(k) | g ∈ C, predG(k, g)∨ cpredG(k, g) ∧ k ∈
C ′, C ′ ∈ Cs, |C ′| > 1}. This means that there are some gates k,
j belonging to cliques Ck and Cj such that, level(j) ≤ level(k),
predG(g, k) = 1, and either predG(j, g) = 1 or cpredG(j, g) =
1, |Cj | > 1. For cpredG(g, k) = 1 case, |C| > 1 never holds since
C = {g}. However, by transitivity of predG and cpredG, the state-
ments predG(j, k) = 1 and cpredG(j, k) = 1, |Cj | > 1) are also
true, which contradicts the fact that goodClique(Cj , Cs) = true and
goodClique(Ck, Cs) = true.

Since goodClique({g}, Cs∪{g}) = true, we assign level(g) = ng for some
ng as a side-effect.

2. After having assigned level(g) = ng, we need to prove that it has not
broken the correctness of any old cliques, i.e. goodClique(C,Cs ∪ {g}) =
true holds for all C ∈ Cs, where Cs is the set of old cliques. Since
goodClique(C,Cs) = true holds due to induction hypothesis (adding a
gate does not modify any predicates concerning the cliques that are already
fixed), it remains to prove that we have goodClique(C, {g}) = true.
Let C ∈ Cs. Let n1 and n2 be the sizes of old sets Predlevels and
SuccLevels before adding {g}. After adding {g}, there may be now more
values that may get into these sets. Without loss of generality, let g be some
successor of C. The minimal successor level is now n′2 = min(ng, n2).
Since we have already shown that goodClique({g}, Cs∪{g}) = true holds,
we have assigned level(g) = ng > level(k) for all k ∈ Cs, so ng >
(n1 + n2)/2, and we have level(k) = n1 < (n1 + min(ng, n2))/2 <
min(ng, n2) = n′2, so n′1 < n2, and goodClique(C,Cs∪ {g}) = true.

6.5.6 Correctness of the Reduction to ILP

We prove the correctness of the building block constraints of Section 6.4.6. We
show which variables are implicitly binary. Finally, we prove the feasibility of ILP
task.

Lemma 6.5. If x ∈ {0, 1}, y ≤ C ∈ R, then
P(C, x, y, z) = true ⇐⇒ z = x · y.

Proof. The correctness and completeness of these constraints can be easily verified
by case distinction on x for any y ≤ C.

261

1. Substitute x = 0 into the constraints:

• y − z ≤ C,
• −y + z ≤ C,
• −z ≥ 0.

The last constraint uniquely defines z = 0. The first two constraints are true
since y ≤ C.

2. Substitute x = 1 into the constraints:

• y − z ≤ 0,
• −y + z ≤ 0,
• C − z ≥ 0.

The first two constraints uniquely define z = y. The last constraint is true
since z = y ≤ C.

Lemma 6.6. If x ∈ {0, 1} for all x ∈ X , 0 ≤ y ≤ C ∈ R, then
F(A,C,X , y) = true iff y = 1 ⇐⇒

∑
x∈X x ≥ A.

Proof. =⇒ Let the constraints be satisfied. By Lemma 6.5, we have zx = x · y
for all x ∈ X . Substituting zx into the last two constraints, we get:

• A · y − y ·
∑

x∈X x ≤ 0,

•
∑

x∈X x− y ·
∑

x∈X x+ (A− 1)y ≤ (A− 1).

We can rewrite these constraints as

• y(A−
∑

x∈X x) ≤ 0,

•
∑

x∈X x(1− y) ≤ (A− 1)(1− y).

We get that
∑

x∈X x ≥ A unless y = 0, and
∑

x∈X x ≤ (A − 1) unless y = 1.
Hence the constraints are satisfiable only if y ∈ {0, 1}. If y = 1, then

∑
x∈X x ≥

A, and if y = 0, then
∑

x∈X x ≤ (A− 1).
⇐= Let y = 1 ⇐⇒

∑
x∈X x ≥ A. In order to satisfy the constraints

P(C, y, x, zx), by Lemma 6.5 we take zx = x · y. We show by case distinction
that the remaining two constraints are satisfied for both y = 0 and y = 1.

1. Let y = 0.

• A · 0− 0 ·
∑

x∈X x ≤ 0,
•
∑

x∈X x− 0 ·
∑

x∈X x+ (A− 1) · 0 ≤ (A− 1).

262

The first constraint is always true. The second one is satisfied if
∑

x∈X x ≤
(A− 1), which is equivalent to

∑
x∈X x < A since x ∈ {0, 1}.

2. Let y = 1.

• A−
∑

x∈X x ≤ 0,
•
∑

x∈X x−
∑

x∈X x+ (A− 1) ≤ (A− 1).

The second constraint is true. The first one is satisfied if
∑

x∈X x ≥ A.

Lemma 6.7. If z ∈ {0, 1}, 0 ≤ x, y ≤ C ∈ R, then
L(C,A, y, x, z) = true iff z = 1 =⇒ (x− y) ≥ A.

Proof. The correctness and completeness of the constraint (C+A)·z+(y−x) ≤ C
can be easily verified by case distinction on z for any 0 ≤ x, y ≤ C.

1. Substitute z = 0: get y−x ≤ C, which is always true for any 0 ≤ x, y ≤ C.

2. Substitute z = 1: get (C + A) + y − x ≤ C, which is equivalent to
A+ y − x ≤ 0, or x− y ≥ A.

Lemma 6.8. For (A,~b,~c, I) = T→ILP (G,X, Y), the following variables of any
feasible solution of (A,~b,~c, I) are binary:
gji for j, i ∈ G;
bj cj , uj , for j ∈ G;
fxjk` for j ∈ G, k ∈ V (G), ` ∈ [arityG(j)];
ejki` for j, i ∈ G, k ∈ V (G), ` ∈ [arityG(j)];
fgji, fgji` for j, i ∈ G, ` ∈ [arityG(j)];
sj` for j ∈ G ` ∈ [arityG(j)].

Proof. By Lemma 6.5, if x ∈ {0, 1} and y ≤ C, then P(C, x, y, z) ensures
z ∈ {0, 1}. By Lemma 6.6, if ∀x ∈ X : x ∈ {0, 1}, then F(A,X , y) ensures
y ∈ {0, 1}. We use these properties to propagate binariness.

We will make the proof for all types of variables one by one.

• The condition gji ∈ {0, 1} is explicit in the ILP description (the set I).

• By constraints (6f), ci ∈ {0, 1} since gji ∈ {0, 1}, dj = (1− gjj) ∈ {0, 1}.

• By constraints (7a), fxjk` ∈ {0, 1} since g
j
i ∈ {0, 1}.

• By constraints (7b), ejki` ∈ {0, 1} since g
j
i ∈ {0, 1} and fx

jk
` ∈ {0, 1}.

• By constraints (7c), for k ∈ I(G), fgji` ∈ {0, 1} since e
jk
i` ∈ {0, 1}.

263

• By constraints (7d), for k /∈ I(G), fgji` = fxjk` and hence ∈ {0, 1}

• By constraints (7e), sj` ∈ {0, 1} since fg
jk
` ∈ {0, 1}.

• By constraint (8a), fgjk ∈ {0, 1} since fgjk` ∈ {0, 1}.

• By constraints (8b), uj ∈ {0, 1} since fgjk ∈ {0, 1}.

• By constraints (9a), tj ∈ {0, 1} since sj` ∈ {0, 1}. Hence, by constraints
(9b-9c), tji ∈ {0, 1}. Note that, for a fixed i, exactly one gji = 1 due to
constraints (2). By definition of P , we have tji = gji · tj , and hence at most
one tji = 1. By constraints (9d), bi =

∑
j∈G t

j
i , and so bi ∈ {0, 1}.

Proof of feasibility of the integer programming task (Theorem 6.1) Let
(A,~b,~c, I) be the mixed integer linear programming task. It has a solution iff
the system A~x ≤ ~b has at least one solution, assuming that ∀i ∈ I : xi ∈ {0, 1}.
We show that any solution in which gjj = 1 for all j ∈ G and gji = 0 for all
j, i ∈ G, i 6= j, is feasible. Intuitively, this means that it is always possible not to
fuse any gates, leaving the circuit as it is.

By Lemma 6.5 and Lemma 6.6 the constraints P(C, x, y, z) and F(A,X , z)
are always satisfied if z is a new variable that has not been present in any other
constraints before at this point.

Let ∀j ∈ G : gjj = 1, and ∀j, i ∈ G, i 6= j : gji = 0. We show one by one,
that all the constraints are satisfied.

1. gji + gjk ≤ 1 for i, k ∈ G, ¬fusableG(i, k).
Since fusableG(i, i) holds for all i, here we have i 6= k, and never get the
case gjj + gjj ≤ 1. For all the other gji + gjk at least one term is 0.

2.
∑|G|

j=1 g
j
i = 1 for all i ∈ G.

For any i ∈ G, the only j such that gji = 1 is j = i.

3. gji = 0 if opG(i) 6= opG(j).
We have gji = 1 only if i = j, but then opG(i) = opG(j).

4. gjj − g
j
i ≥ 0 for all i ∈ G, j ∈ G.

This is true since gjj = 1 and all gji are binary by Lemma 6.8.

5. gjj = 1 for all j such that cost(opG(j)) = 0.
All gjj = 1 anyway.

6. We show that a possible evaluation of `i is the topological ordering of gates
in the initial circuit.

264

(a) `i − `k ≥ 1 for all i, k ∈ G, predG(i, k);
the constraint is satisfied by definition of predG(i, k) and the fact that
we use topological ordering which assigns a strictly smaller level to
the gate predecessors.

(b) The constraints L(|G|, 0, `i, `j , gji) and L(|G|, 0, `j , `i, gji) are satis-
fied since we only have gjj = 1, and `j = `j is trivially satisfied.

(c) `i ≥ 0, `i ≤ |G|.
This holds by definition of topological order: it assigns a unique
number to each gate.

(d) dj = (1− gjj);
Satisfied since dj is a newly introduced variable.

(e) F(1, {dj} ∪ {gji | i ∈ G, i 6= j}, cj);
Satisfied since cj is a newly introduced variable. Namely, since gjj = 1,
and gji = 0 for i 6= j, we have cj = 0 for all j.

(f) L(|G|, 1, `i, `k, ci) for cpredG(i, k).
By Lemma 6.7, ci = 1 implies `i − `j ≥ 0. Since we have ci = 0, the
implication is trivially true.

7. The constraints (7) are satisfied due to introducing the new variables fxjk` ,
ejki` , fg

ji
` , s

j
` , and sc

j
` .

8. The constraints (8) are satisfied due to the new variables fgjk, uj , ucj .

9. The constraints (9) are satisfied due to the new variables tj , tji , bi. �

6.5.7 Correctness of the Circuit Transformation

We prove the correctness of T←ILP (defined in Section 6.4.7) transforming the ILP
solution to a circuit. We estimate the cost of the resulting circuit, and show that
T←ILP can be as well applied to a circuit after using any of the greedy algorithms
of Section 6.5.5 instead of an ILP task.

Proof of Correctness of T←ILP (Theorem 6.2)

Let G = (G,X, Y) be the initial circuit. Let G′ = (G′, X ′, Y ′) be the transformed
circuit. We show that [[eval(G,X, Y)]] s = [[eval(G′, X ′, Y ′)]] s. In order to
make the proof easier, let us rewrite the expressions according to their definitions:

• [[eval(G,X, Y)]] s = upd(Y ◦ [[G]](s ◦X), s);

• [[eval(G′, X ′, Y ′)]] s = upd(Y ′ ◦ [[G]](s ◦X ′), s).

265

Since Algorithm 7 defines Y ′ ← Y on line 2, and only the range of Y ′ is modified
on line 16, we have Dom(Y) = Dom(Y ′) =: Y . It suffices to prove that

∀y ∈ Y : [[G]](s ◦X)(Y (y)) = [[G′]](s ◦X ′)(Y ′(y)) .

For all j, we have defined Y ′ = Y [i ← j | gji = 1] on line 16. Since there is
exactly one j such that gji = 1 (by constraints (2) of Section 6.4.6), we should
actually prove

∀i, j ∈ G, i, j ∈ Y : (gji = 1) =⇒
[[G]](s ◦X)(i) = [[G′]](s ◦X ′)(j) . (6.1)

Since all the output wires of (G,X, Y) are evaluated in any case (by circuit
definition), for each i such that i ∈ Y we may add an additional assumption
[[φGi]] [[G]](s ◦X) = 1, where φGi is the weakest precondition of evaluating i. This
will be useful during the proof by induction. We may now replace the assumption
i, j ∈ Y with [[φGi]] [[G]](s ◦X) = 1 in (6.1), proving a less general result

∀i, j ∈ G : ([[φGi]] [[G]](s ◦X) = 1 ∧ gji = 1) =⇒
[[G]](s ◦X)(i) = [[G′]](s ◦X ′)(j) . (6.2)

We prove this statement by induction on the number of the first j topologically
ordered cliques that have already been processed. More precisely, for the clique
ordering we use the variables `i from the constraints (6).

First, we prove that the gate ordering defined by `i creates no cycles. Namely,
we prove that if a gate gj is computed on the level `j , then each its argument has
been computed on the level `k for `k < `j .

Lemma 6.9. The following claims hold.

• For all j ∈ G, k ∈ argsG(j): `k < `j .

• For all j, i ∈ G: if gji = 1, then `i = `j .

• For all i ∈ G, k ∈ argsG(φGi): if gji = 1 for some j 6= i, then `k < `i.

Proof. Recall the constraints 6:

(a) `i − `k ≥ 1 for all i, k ∈ G, predG(i, k);
since we define predG(i, k) for all k ∈ argsG(i), this constraint ensures that
∀j ∈ G, k ∈ argsG(j) : `k < `j .

(b-d) L(|G|, 0, `i, `j , gji), L(|G|, 0, `j , `i, gji), and 0 ≤ `i ≤ |G| for all i, j ∈ G;
since gji are binary variables, by Lemma 6.7 this ensures that, if gji = 1,
then `i ≤ `j and `j ≤ `i, so `i = `j .

266

(e-f) dj = (1− gjj) and F(1, {dj} ∪ {gji | i ∈ G, i 6= j}, cj) for all j ∈ G;
By Lemma 6.6, the constraints ensure that cj ∈ {0, 1}, and that cj = 1 iff
either gji = 1 for some j 6= i, or there is k s.t gkj = 1.

(g) L(|G|, 1, `i, `k, ci) for all i, k ∈ G, cpredG(i, k);
By definition, cpredG(i, k) = 1 iff k ∈ argsG(φGi). By Lemma 6.7, since ci
is a binary variable, ci = 1 implies `i−`k ≥ 1, which is `k < `i, and ci = 1
is implied by gji = 1, i 6= j according to the previous constraints.

Let Gj be the subcircuit of G consisting just of the gates belonging to the first
j cliques ordered by `k (i.e. Gj = {Ck | `k ≤ `j} where Ck = {i | gki = 1}).
Let G′j be the subcircuit of G′ obtained after processing the first j cliques by
Algorithm 7. In this way, if there are m cliques in total, then G′ = G′m, and
G = Gm.

Base: G0 = ∅, and the statement (6.2) is trivially true.
Step: Suppose that we are adding the clique Cj to the subcircuit Gj−1. By

the induction hypothesis, the statement (6.2) already holds for all i, j ∈ G \Cj , so
it suffices to prove that

∀i ∈ Cj : ([[φGi]] [[G]](s ◦X) = 1 ∧ gji = 1) =⇒
[[Gj]](s ◦X)(i) = [[G′j]](s ◦X ′)(j) . (6.3)

Since by definition of Cj we have ∀i ∈ Cj : gji = 1, we may simplify (6.3) and
prove

∀i ∈ Cj : [[φGi]] [[G]](s ◦X) = 1 =⇒
[[Gj]](s ◦X)(i) = [[G′j]](s ◦X ′)(j) . (6.4)

Let i ∈ Cj . Let t = arityG(j). Before the transformation, for all i s.t gji = 1,
due to the constraint (2), which states that a gate belongs to exactly one clique,
there should have been exactly one gate (i, opG(i), [k1, . . . , kt]) in Cj , and, due
to constraints (3), which state that a gate has the same operation as the clique
representative, opG(i) = opG(j).

First, let opG(j) 6= oc. In this case, new the input wires of j are exactly the
new variables vj` . By definition,

[[G′j]](s ◦X ′)(j) = [[opG
′
(j)]]([[G′j]](s ◦X ′)(v

j
1), . . . , [[G′j]](s ◦X ′)(v

j
t)) ,

and

[[Gj]](s ◦X)(i) = [[opG(j)]]([[Gj]](s ◦X)(k1), . . . , [[Gj]](s ◦X)(kt)) .

267

Since opG(j) 6= oc, we have opG(j) = opG
′
(j), and it suffices to show that

the arguments of [[opG(j)]] in both cases are the same, i.e

∀` ∈ [t] : ([[φGi]] s = 1) =⇒
[[Gj]](s ◦X)(k`) = [[G′j]](s ◦X ′)(v

j
`) . (6.5)

Let Kj` denote the set K formed by Algorithm 8 when called by Algorithm 7
with the input Bj` . We will prove statement (6.5) for different cases of |Kj` |.

1. If |Kj` | ≤ 1, then Algorithm 8 creates a gate (vj` , id, w
j
`) for {w

j
`} ← K

j
` .

Since a non-empty clique Cj has at least one `-th input (the one belonging
to the gate j), we have |Kj` | = 1, and so such wj` exists, and the definition of
vj` is correct. Since w

j
` is the only `-th input of Cj , and k` is the `-th input

of some gate of Cj by definition, we have wj` = k`, and since id does not
modify the value, we have [[G′j]](s ◦X ′)(v

j
`) = [[G′j]](s ◦X ′)(w

j
`).

(a) If wj` ∈ I(G), then trivially wj` ∈ G
′
i since Algorithm 7 keeps all the

input gates of the initial circuit on line 2.
(b) If wj` /∈ I(G), then there exists u ∈ Ci such that u = argsG(j)[`]. We

have predG(j, u), and by Lemma 6.9, `u < `j . Hence wj` ∈ G
′
u ⊆ G′j .

We get that the values wj` chosen by Algorithm 7 satisfy wj` ∈ G
′
j . Since

wj` = k`, we have [[Gj]](s◦X)(k`) = [[G′j]](s◦X ′)(w
j
`) = [[G′j]](s◦X ′)(v

j
`).

2. If |Kj` | > 1, Algorithm 8 defines a subcircuit (Gjk` , X
jk
` , Y

jk
`) computing

bjk` :=
∑

i∈Ijk`
φGi [i′ ← j′ | gj

′

i′ = 1], where, by definition of Bj` ,

Ijk` = {i | k ∈ I(G), k = argsG(i)[`]}
∪{i | k /∈ I(G), k ∈ Cu, u = argsG(i)[`]} .

The gate names of (Gjk` , X
jk
` , Y

jk
`) are fresh, so there are no name conflicts

with the gate names of G′j−1. Since all the gates are new and do not belong
to G, we do not need to prove statement (6.4) for them.
The following lemma proves the correctness of computing the conditions of
the newly introduced oc gates. By definition, we collect all the gates that use
the k as the `-th argument into Ijk` , and hence the condition for choosing
i ∈ Ijk` should be

∑
i∈Ijk`

φGi .

268

Lemma 6.10. Let |Kj` | > 1. If [[φGk]] [[G]](s ◦X) = 1, then

[[G′j]](s ◦X ′)b
jk
` = [[

∑
i∈Ijk`

φGi]] [[Gj]](s ◦X) .

Proof. Since bjk` =
∑

i∈Ijk`
φGi [i′ ← j′ | gj

′

i′ = 1], it suffices to show that

[[φGi [i′ ← j′ | gj
′

i′ = 1]]] [[G′j]](s ◦X ′) = [[φGi]] [[Gj]](s ◦X) .

We can rewrite it as

[[φGi]] [[G′j]](s ◦X ′)[i′ ← j′ | gj
′

i′ = 1] = [[φGi]] [[Gj]](s ◦X) .

For all variables i′ of φGi , we have cpred
G(i, i′). By Lemma 6.9, `i′ < `i, and

by the induction hypothesis, [[φGi′]] [[G]](s ◦X) = 1 =⇒ [[Gj]](s ◦X)(i′) =
[[G′j]](s ◦X ′)(j′).

In order to apply the hypothesis, we need [[φGi′]] [[G]](s ◦X) = 1 to hold, but
we have [[φGi]] [[G]](s ◦X) = 1. Since each i′ is involved in the computation
of i and is its predecessor, we have

[[φG
φGi

]] [[G]](s ◦X) = 1 =⇒ [[φGi′]] [[G]](s ◦X) = 1 .

By assumption, [[φGi]] [[G]](s◦X) = 1. Assuming that φGi has to be evaluated
in order to get [[φGi]] [[G]](s◦X), this implies that [[φG

φGi
]] [[G]](s◦X) = 1 also

holds. We get an implication

[[φGi]] [[G]](s ◦X) = 1 =⇒ [[φGi′]] [[G]](s ◦X) = 1 .

We get [[Gj]](s ◦X)(i′) = [[G′j]](s ◦X ′)(j′) for all i′ that define the value
of φGi . Hence

[[φGi [i′ ← j′ | gj
′

i′ = 1]]] [[G′j]](s ◦X ′) = [[φGi]] [[Gj]](s ◦X) .

Algorithm 7 defines a new gate (vj` , oc, [b
jk
` , k]

k∈Kj`
) for a new variable vj`

that has not been used anywhere else before. We have

[[Gj]](s ◦X)(vj`) = [[oc]]([bjk` , k]
k∈Kj`

) .

By constraints (1) and the definition of fusableG, the weakest preconditions
of the gates inside one clique are mutually exclusive, and hence for any s, at
most one of [[G′j]](s ◦X ′)(b

jk
`) is 1, so this is a valid instance of oc.

269

We need to prove the equality [[G′j]](s ◦X ′)(v
j
`) = [[Gj]](s ◦X)(k`), where

k` is the `-th input of i, on the assumption [[φGi]] [[Gj]](s ◦ X) = 1. Since
k` ∈ Kj` , there is a pair (bjk`` , k`) in the oblivious choice.
By Lemma 6.10 we have

[[G′j]](s ◦X ′)(b
jk`
`) = [[

∑
i′∈Ijk``

φGi′]] [[Gj]](s ◦X) .

By definition of Ijk`` , k` is a predecessor of all i′ ∈ Ijk`` , so we have
([[φGi′]] [[Gj]](s ◦ X) = 1) =⇒ ([[φGk`]] [[Gj]](s ◦ X) = 1) for all i′ ∈ Ijk``

and since ([[φGk`]] [[Gj]](s ◦ X) = 1) =⇒ ([[bjk``]] s = 1), we also have
([[φGi′]] [[Gj]](s ◦X) = 1) =⇒ ([[bjk``]] s = 1), in particular ([[φGi]] [[Gj]](s ◦
X) = 1) =⇒ ([[bjk``]] s = 1).

Hence it suffices to prove ∀` : ([[bji``]] s = 1) =⇒ [[G′j]](s ◦ X ′)(v
j
`) =

[[Gj]](s ◦ X)(k`). If [[bjk``]] s = 1, then [[G′j]](s ◦ X ′)(v
j
`) = [[G′j]](s ◦

X ′)(k`) by definition of oc. Since k` ∈ Ci′ for some i′ < j, we have
[[G′j]](s ◦ X ′)(k`) = [[G′j−1]](s ◦ X ′)(k`), and due to ([[φGi]] s = 1) =⇒
([[φGk`]] s = 1), by the induction hypothesis equal to [[Gj−1]](s ◦ X)(k`) =
[[Gj]](s ◦X)(k`).

If opG(j) 6= oc, then a gate (j, opG(j), [vj1, . . . , v
j
t]) is added to the clique

Cj . By the constraints (4) that define the clique representative, if the clique Cj is
non-empty (there exists at least one gji = 1), then definitely j ∈ Cj (gjj = 1), and
∀i ∈ G : gij = 0 due to constraints (2). Hence it is the only gate with the name j,
so there are no name conflicts.

If opG(j) = oc, then it may happen that opG′(j) changes, and moreover,
the inputs vj` may be rearranged by the call to Algorithm 8. We need to prove
[[Gj]](s◦X)(i) = [[G′j]](s◦X ′)(j) straightforwardly. The proof is analogous to the
proof that [[Gj]](s ◦X)(k`) = [[G′j]](s ◦X ′)(v

j
`), as we call the same Algorithm 8

here, and even a bit simpler since the conditions for the choices are the inputs of
j, and not the weakest preconditions. �

Proof of the Cost of Transformed Circuit (Theorem 6.4)

First, we will prove some relations between different variables that are defined by
the constraints. Let Kj` and K

j denote the sets K formed by Algorithm 8 when
called by Algorithm 7 with inputs Bj` and B

j respectively.

Lemma 6.11. For all j ∈ G, ` ∈ arityG(j), k ∈ V (G), we have:

270

• Kj` = {k |fgjk` = 1};

• Kj = {k |fgjk = 1}.

Proof. The proof is based on the fact that all the variables are binary (proven in
Lemma 6.8), and on the definition of constraintsP andF for binary inputs (proven
in Lemma 6.5 and Lemma 6.6).

1. By definition of F , since gji ∈ {0, 1}, fx
jk
` ∈ {0, 1}, and fx

jk
` = 1 iff at

least one gji = 1 s.t k = argsG(i)[`]. Since gji = 1 denotes i ∈ Cj , we get
fxjk` = 1 iff ∃i ∈ Cj : k = argsG(i)[`].

2. By definition of P , since fxjk` and gik are binary, e
jk
i` ∈ {0, 1}, and e

jk
i` = 1

iff fxjk` · g
i
k. Since gik = 1 denotes k ∈ Ci, we get ejki` = 1 iff k ∈ Ci and

k ∈ argsG(Cj)[`].

3. By definition of F , for i ∈ G, since ejki` are binary, fgjk` ∈ {0, 1}, and
fgji` = 1 iff there exists k ∈ I(G) s.t ejki` = 1, so there is some k that causes
k ∈ Ci and k ∈ argsG(j)[`]. We get fgjk` = 1 iff ∃i ∈ Cj , u ∈ Ck : u =
argsG(i)[`].

4. For k ∈ I(G), define fgjk` = fxjk` . We get fgjk` = 1 iff ∃i ∈ Cj :

k = argsG(i)[`] for k ∈ I(G), and fgjk` = 1 iff ∃i ∈ Cj , u ∈ Ck : u =

argsG(i)[`] for k /∈ I(G). By definition of Bj` and K, we have fg
jk
` = 1 iff

k ∈ Kj` , so K
j
` = {k |fgjk` = 1}.

5. By definition of F , since fgjk` ∈ {0, 1}, also fg
jk ∈ {0, 1}, and fgjk = 1

iff at least one fgjk` = 1 for ` ∈ 2N. We get fgjk = 1 iff ∃i ∈ Cj : k ∈
argsG(i)[`] for some ` ∈ 2N. By definition of Bj and K, we have fgjk = 1
iff k ∈ Kj , so Kj = {k |fgjk = 1}.

The following lemma intuitively proves that sj` denotes if there are at least 2
choices for the `-th input of Cj , and that these choices are captured by the set
Kj` . Similarly, uj denotes if there are at least 2 choices left for Cj in the case
opG(j) = oc, and that these choices are captured by Kj .

Lemma 6.12. If gjj = 1, then:

1. scj` = |Kj` | − 1;

2. sj` = 0 iff |Kj` | = 1;

3. ucj` = |Kj | − 1;

4. uj = 0 iff |Kj | = 1.

271

Proof. The proof is based on the fact that all the variables are binary (proven in
Lemma 6.8), and on the definition of constraintsP andF for binary inputs (proven
in Lemma 6.5 and Lemma 6.6).

By constraints (7d), scj` =
∑

k∈V (G) fg
jk
` − g

j
j , and s

j
` = 1 iff at least two of

fgjk` are 1. By Lemma 6.11 we haveKj` = {k |fgjk` = 1}. It immediately follows
that scj` = |Kj` | − 1. If sj` = 1, we get 1 6= |Kj` | > 2.

If sj` = 0, there is at most one k such that fgjk` = 1, and it remains to prove
that there is at least one such k. Suppose by contrary that there is no such k, and
|Kj` | = ∅. Then it should be argsG(Cj)[`] = ∅. By definition, argsG(Cj)[`] =

{k | i ∈ Cj , gji = 1, k = argsG(i)[`]}. By assumption, we have gjj = 1, and since
j ∈ Cj and we have taken ` ∈ [arityG(j)], at least k = argsG(j)[`] is a suitable
candidate.

The proof is analogous for uj .

The following lemma shows the relations of sj` and bi.

Lemma 6.13. For all i ∈ G, if there exist j ∈ G, ` ∈ arityG(j) s.t sj` = 1 and
gji = 1 for j 6= i, then bi = 1.

Proof. The proof is based on the fact that all the variables are binary (proven in
Lemma 6.8), and on the definition of constraintsP andF for binary inputs (proven
in Lemma 6.5 and Lemma 6.6).

• By constraints (9a), if sj` = 1, then tj = 1.

• By constraints (9b), if tj = 1 and gji = 1, for j 6= i, then tji = 1.

• By constraints (9d), if tji = 1 for j ∈ G, then bi = 1.

Proof of Theorem 6.4 We prove the cost for different kinds of gates, one by one.

• Old non-oc gates: Algorithm 7 adds to G′ the gates j such that gjj =

1. While defining fusableG, we agreed not to fuse the the gates whose
complexity changes if their public inputs become private. Hence their total
cost is Cg =

∑|G|
j=1,opG(j)6=oc cost(op

G(j)) · gjj .

• Old oc gates: An old oc gate is replaced with an id by Algorithm 7 if
|Kj | = 1.

– Let for uj = 1. By Lemma 6.12, uj = 1 implies |Kj | > 1, causing
Algorithm 7 to leave the oc gate into G′.

272

– Let for uj = 0. By Lemma 6.12, uj = 0 implies |Kj | = 1, and
Algorithm 7 replaces the oc gate with an id gate.

By Lemma 6.12, we have ucj = |Kj | − gjj , which is the number of choices
that the old oc gate makes in the transformed graph. We have defined the
cost of an oc gate as cost(ocbase) + cost(ocstep) · n, where n is the number
of choices that the oc gate makes. Hence the total cost of the new oc gates
is Coc =

∑|G|,arityG(j)
j,`=1,1 cost(ocbase) · uj` + cost(ocstep) · ucj` .

• New oc gates: An oc gate is created by Algorithm 7 if |Kj` | > 1.

– Let for sj` = 1. By Lemma 6.12, sj` = 1 implies |Kj` | > 1, causing
Algorithm 7 to construct a new oc gate vj` that is included into G′.

– Let for sj` = 0. By Lemma 6.12, sj` = 0 implies |Kj` | = 1, and
Algorithm 7 does not construct an oc gate.

By Lemma 6.12, we have scj` = |Kj` | − 1, which is the number of choices
that the new oc gate makes. The total cost of the new oc gates is Coc =∑|G|,arityG(j)

j,`=1,1 cost(ocbase) · sj` + cost(ocstep) · scj` .

• New Gk gates: These gates are computing the conditions vbk. For the
old oc gates, vbk are just some wire names, and the only other introduced
operation is addition. Assuming that the addition operation is free (as it is
in most practical SMC platforms), these gates may have some cost only if
they are composed for a new oc gate. Let us assume that Algorithm 8 has
been called by Algorithm 7 on some Bj` .
For simplicity, we defined Algorithm 8 in such a way that it does not assign
special default choices and uses only the weakest preconditions straightfor-
wardly. However, since oc gates are correctly defined (by Theorem 6.2), all
the vbk arguments sum up either to 0 or 1. If they sum up to 0, then the
weakest preconditions of all the choices are 0, and hence the output of oc
does not matter anyway, so we may as well make one of the choices 1. If
they do sum up to 1, then one of the vbk arguments of the oc is actually a
linear combination of the other its vbk arguments. We may let Algorithm 7
to choose any k to be the default one. Without loss of generality, let it be
k = argsG(j)[`]. For gjj = 1, we have bj = 0 due to constraints (9a-9d).
For k 6= argsG(j)[`], Algorithm 7 does include the gates Gk into G′.
We need to show that including Gk for k 6= argsG(j)[`] into G′ indeed
implies including all φGi for i 6= j. Suppose by contrary that there is some
i 6= j that only occurs in Gk for k′ = argsG(j)[`], regardless of choice of `.

273

In other words, for all `, the `-th input of i is the `-th input of j, and hence
argsG(i) = argsG(j). Since opG(i) = opG(i), and the gates are unique, we
have i = j. This contradicts the assumption i 6= j, so φGi should have been
used in at least one vbk for k 6= argsG(j)[`].
We get that the gates of φGi are included into G′ iff bj = 1. For all k ∈ Cj ,
Algorithm 7 takes

vbk =
∑

(φGi [i′←j′ | gj
′
i′ =1],k)∈B

φGi [i′ ← j′ | gj
′

i′ = 1] .

Substituting i′ with j′ does not affect the cost of φGi , since by definition,
cost(φGi) only counts the ∨ and ∧ operations of φGi . The costs of j′ are
already included in Cg, so they do not have to be computed again. Without
merging the repeating subexpressions that may occur in different φGi , the
cost of Gk is Cb =

∑|G|
j=1 cost(φ

G
j) · bj .

In total, we get the cost Cg + Coc1 + Coc2 + Cb. �

Correctness of Applying T←ILP to a Greedy Algorithm Solution
(Theorem 6.3)

We show that we can use Algorithm 2 for constructing the optimized circuit from
the set of cliques returned by a greedy algorithm.

By Lemma 6.4, Algorithm 2 terminates. Let Cs be the set of cliques returned
by the greedy algorithm. We now may reduce the cliques to an ILP solution as
follows. First, sort each C ∈ Cs by the gate indices, so that the first index is the
smallest one. For all C ∈ Cs, fix j = C[0] (the first element of C, i.e. its gate
index is minimal), and assign gji = 1 for all i ∈ C. We show that this assignment
satisfies basic ILP constraints.

• In Algorithm 2, the gates are first of all sorted by types, and only the gates
of the same type are fused. This satisfies the constraint (3) of ILP.

• As soon as a gate has been taken into a clique, this is not added to any other
clique. If any gate is left, it is treated as a singleton clique. This satisfies the
constraint (2).

• We have taken gji = 1 for j = C[0], so j is the unique clique representative,
and (4) is satisfied.

• Algorithm 2 stops when it reaches gates of cost 0 and puts all of them into
separate cliques, so that (5) is satisfied.

274

• Whatever greedy strategy we take, each of them accepts a clique iff the
function goodClique returns true. For any gates i, j that belong to the
same clique C, fusableG(i, j) holds. This satisfies the constraint (1) of
ILP. In addition, goodClique assigns levels to the gates, which can be put
into one-to-one correspondence with the variables `i of the constraint (6).
For predG(i, k), we have level(i) > level(k), and for cpredG(i, k) we have
level(i) > level(k) iff the size of the clique to which i belongs is at least
2. The function goodClique checks it on the fly, and since if a clique has
already been accepted, it will never be updated anymore, the condition will
not be broken.

As has been shown in the feasibility proof of Section 6.5.6, the extended ILP
constraints introduce new variables that make them satisfiable in any case. Hence
we do not need to prove separately that all of them hold. �

6.6 Implementation and Evaluation

We have implemented the transformation of the program to a circuit, the optimiza-
tion algorithms, and the transformation of the circuit according to the obtained
set of cliques in SWI-Prolog [103]. The ILP is solved externally by the GLPK
solver [44]. The optimized circuit is translated to a Sharemind program for evalu-
ation.

The optimization algorithms have been tested on small programs. Since we
are dealing with a relatively new problem, there are no good test sets, and we
had to invent some sample programs ourselves. In general, the programs with
private conditionals are related to evaluation of decision diagrams with private
decisions. We provide five different programs, each with its own specificity. Their
pseudocodes are given in Appendix A.

• loan (31 gates): A simple binary decision tree, which decides whether a
person should be given a loan, based on its background data. Such simple
applications are often used as an introduction to the decision tree topic.
Only the leaves contain assignments, and the optimization is only trying to
fuse the comparison operations that make the decisions. Uses only integer
operations.

• sqrt (123 gates): Uses binary search to compute the square root of an integer.
Since the input is private, it makes a fixed number of iterations. The division
by 2 is on purpose inserted into both branches, modified in such a way that
it cannot be trivially outlined without arithmetic theory. The optimizer does
this outlining by fusing the divisions. Uses only integer operations.

275

• driver (53 gates): We took the decision tree that is applied to certain param-
eters of a piece of music in order to check how well it wakes up a sleepy car
driver [74], assuming that the parameters used in this task are private. In this
tree, some decisions require more complex operations, such as logarithms
and inverses (computing Shannon entropy), so it was interesting to try to
fuse them. Works with floating point arithmetic [51].

• stats (68 gates): The motivation for the problem is that choosing a particular
statistical test for the analysis may depend on the type of data (ordinal, bi-
nary) [76]. Here we assume that the decision bits (which analysis to choose)
are already given, but are private. The complex computation starts in leaves,
where a particular statistical test is chosen. It chooses among the Student
t-test, the Wilcoxon test, the Welch test, and the χ2 test, whose privacy-
preserving implementations are taken from [13]. Works with floating point
arithmetic.

• erf (335 gates): The program evaluates the error function of a floating point
number, which is represented as a triple (sign, significand, exponent) of
integers [51]. The implementation is taken from [60]. In this program, the
method chosen to compute the answer depends on the range in which the
private input is located, and this choice cannot be leaked.

All our programs are vectorized. We treat vector operations as single gates,
so that optimizing 106 operations per gate would be feasible. For simplicity, we
assumed that all vectors in the program have the same length. Fusing together
vector operations of different length can be treated as a future work.

We ran the optimizer on a Lenovo X201i laptop with a 4-core Intel Core i3
2.4GHz processor and 4GB of RAM running Ubuntu 12.04. The execution times
are given in the Tables 6.1- 6.5. The rows correspond to different subcircuit depths
d, which are constructed as described in Section 6.4.4. We tried all possible
depths, until it was not possible to increase the depth anymore since all the
subgraphs would have become unique. The columns correspond to the different
optimization techniques. The columns grd1, grd2, and grd3 are the three different
greedy strategies that are described in Section 6.4.5. The columns lpbasic and lpext
correspond to the mixed integer programming approach of Section 6.4.6, using the
basic and the extended constraints respectively. We write lp for lpbasic and lpext
taken together.

We compiled the optimized graphs into programs, executed themonSharemind
(three servers on a local 1Gbps network; the speed of the network is the bottleneck
in these tests) and measured their running time. The runtime benchmarks can
be found in Appendix B. For driver, sqrt, and loan, we see that the optimized
programs are clearly grouped by their running times. The differences inside a

276

Table 6.1: Optimization times (s), loan

d grd1 grd2 grd3 lpbasic lpext

0 0.046 0.047 0.053 0.097 0.12
1 0.049 0.041 0.042 0.095 0.11
2 0.042 0.043 0.050 0.083 0.12

Table 6.2: Optimization times (s), sqrt

d grd1 grd2 grd3 lpbasic lpext

0 0.52 0.55 0.54 0.78 1.3
1 0.55 0.53 0.54 0.64 0.76
2 0.56 0.53 0.52 0.61 0.65
3 0.54 0.50 0.57 0.58 0.60
4 0.55 0.51 0.51 0.62 0.59

Table 6.3: Optimization times (s), driver

d grd1 grd2 grd3 lpbasic lpext

0 0.12 0.11 0.13 0.18 0.38
1 0.084 0.082 0.081 0.16 0.16
2 0.075 0.083 0.076 0.14 0.16
3 0.082 0.077 0.078 0.12 0.17

Table 6.4: Optimization times (s), stats

d grd1 grd2 grd3 lpbasic lpext

0 0.19 0.18 0.19 0.29 16
1 0.12 0.12 0.12 0.17 0.26
2 0.10 0.10 0.11 0.15 0.23
3 0.10 0.11 0.10 0.14 0.22
4 0.10 0.11 0.11 0.14 0.21
5 0.11 0.10 0.11 0.16 0.22

Table 6.5: Optimization times (s), erf

d grd1 grd2 grd3 lpbasic lpext

0 43 43 – 47 48
1 5.5 5.5 – – –
2 3.6 3.6 8.5 8.1 –
3 3.2 3.3 6.1 6.3 –
4 2.7 2.8 2.7 3.5 –
5 2.6 2.6 2.6 3.1 530
6 2.6 2.6 2.6 3.0 15
7 2.6 2.6 2.8 3.0 15

single group are insignificant, so we may treat the entire group as having the same
cost. For stats and erf, we do not see such a partitioning. The results are too
varying, and hence we cannot claim if the optimization was harmful or useful.
Running stats on 10 inputs shows advantage of lpbasicand lpext, but it gets lost on
100 inputs. This most probably indicates that the advantage has come from fusing
together non-vector operations which are less significant for larger inputs.

The summary of the results is given in Table 6.6. For each program, we give
the runtime range of its optimized versions, the runtime of the non-optimized
version, and which strategies have been the best and the worst. Here grd1 is the
strategy that chooses the largest clique first, and grd2 fuses the gates pairwise (grd3
is quite similar to grd2, so we do not differentiate them).

Since the runtime depends also on the number of rounds that we did not
optimize, our results are not good for small inputs. However, as the total amount of
communication and computation increases, our optimized programs are becoming
more advantageous. While greedy approaches may outperform ILP approaches
for smaller inputs, ILP is more stable for large inputs.

In general, it is preferable not to merge the initial gates into subcircuits (take
depth 0). The greedy strategies work quite well for the given programs, but their
results are too unpredictable and can be very good as well as very bad. The
results of ILP are in general better. In practice, it would be good to estimate

277

Table 6.6: Execution times

n = 10 driver sqrt loan erf stats
time (s) 0.156-0.193 0.071-0.077 0.012-0.015 0.085-0.121 1.70-1.75
w/o opt. 0.156 0.073 0.016 0.091 1.76

best strat. grd1 depth 0 depth 0 depth 1,5+ lpbasic, lpext

worst strat. grd1 dpt. 0 depth 1 grd2 dpt. 0 depth 2-4 grd1,grd2

n = 103 driver sqrt loan erf
time (s) 0.588-0.809 0.249-0.291 0.032-0.041 0.275-0.334
w/o opt. 0.705 0.283 0.051 0.316

best strat. lp, grd1 depth 0 depth 0 depth 1,4+
worst strat. grd1 dpt. 0 grd1 depth 3 grd2 dpt. 0 depth 2,3
n = 106 driver sqrt loan erf stats, n = 100

time (s) 200-336 97-120 10-14 95-111 136-146
w/o opt. 256 121 19.5 108 148

best strat. lp, grd1 depth 0 depth 0 depth 1,4+ no preference
worst strat. grd1 dpt. 0 depth 2+ grd2 dpt. 0 depth 2,3 no preference

the approximate runtime of the program before it is actually executed, so that
we could take the best variant. Our optimization seems to be most useful for
library functions, where several different optimized versions can be compiled and
benchmarked before choosing the final one.

6.7 Discussion

We could as well apply the costs of the verification phase (see Chapter 4) for the
circuit optimization. However, this may result in having different optimal solutions
for different phases. Since there is a positive correlation between the costs of the
execution and the verification phases, we propose that it is sufficient to optimize
the cost of the execution phase only, since it is more important.

Alternatively, to optimize the verification phase, we could apply our optimiza-
tion to the local circuits computed by the parties. For example, if the computation
of some party depends on some of its private values, then the prover may compute
only one branch in the execution phase, while the verifiers should compute all of
them and perform the oblivious choice. There are some choices in Sharemind
protocols, but all of them are related to choosing between x and some linear com-
bination involving x, so there are no gates that could be fused. We will see if the
further development of Sharemind (e.g. floating point protocols) brings us more
interesting cases.

278

6.8 Summary

We have presented an optimization for programs written in an imperative language
with private conditions, aimed to reduce the computational overhead caused by
branching on private variables. The reduction and the optimization algorithms are
not restricted to any specific secure computation platforms. We have optimized
and benchmarked some programs on Sharemind.

Currently, we are using arithmetic blackbox operations as the gates of the
circuit. We have chosen arithmetic black boxes as subcircuits, since then it should
be relatively easy to transform programs without knowing how exactly the black-
box operations are constructed (inside, they may actually be some asymmetric
protocols that are not decomposable further). As a future work, we could try to
decompose the operations as much as possible, getting an arithmetic (or a boolean)
circuit, possibly allowing to fuse together some parts of different blackbox func-
tions. Taking into account vectors of different lengths would be another useful
improvement.

279

CONCLUSION

In this thesis, we have developed new methods for building efficient protocols that
are secure against covert and active adversaries. Seeing that our provably secure
constructions obviously leak information to honest parties, we have looked at the
honest parties from another point of view, modifying the standard security model.

We have presented a verification phase that can be run after the execution of
a secure multiparty computation protocol, allowing to detect every party that has
cheated. This gives a generic method for turning passively secure protocols to
covertly and actively secure, depending on the way in which the verification is
applied. Our method does not introduce significant overheads, and it is optimized
for three party computation over rings. We also have provided an alternative
verification mechanism that works better for computation over finite fields.

We have studied the problem of leaking the private data of one honest party
to another honest party. We have shown that it is possible to define a relatively
simple adversarial model for this purpose, and proposed some generic methods of
achieving security in this new model. We have checked the security of our own
verification protocols in this model, found some related vulnerabilities, and fixed
them.

Finally, we studied optimizations that could be applied in both the protocol
execution phase and the verification phase. Our optimization is related to circuit
gates whose outputs will not be needed in the particular execution, but where the
necessity depends on a private condition, which is not allowed to affect the control
flow. We have proposed an automatic program optimization that reduces such
repeating computation without leaking the condition bit. The resulting circuit is as
secure as the initial circuit. The optimization is quite general, and can be applied
to various privacy-preserving platforms.

280

APPENDIX A

OPTIMIZED SAMPLE PROGRAMS

driver

def mean(x):
return floatMult(floatSum(x), inv(length(x)));

def entropy (x):
return floatNeg(floatSum(floatMult(x, ln(x))));

def divide (x1, x2):
return floatMult (x1, inv(x2));

def AP (v):
return mean (v);

def AD (d):
return mean (d);

def PE (n, t):
return entropy (divide (n, t));

def PIE (i, ti):
return entropy (divide (i, ti));

def main:
private v, d, n, i, t, ti;
input v, d, n, i, t, ti;

private ap := AP(v);
private ad := AD(d);
private pe := PE(n,t);
private pie := PIE(i,ti);

if ap <= 900:
if ad <= 13:

281

if pe <= -5:
y := 6

else:
y := 7;

else:
if pie <= -6:

y := 5
else

y := 9;
else:

if ad <= 21:
if pe <= -3:

y := 8
else:

y := 7;
else:

if pie <= -4:
y := 4

else:
y := 3;

return y;

sqrt

def main:
private a, x, y, mid;
private answer := -1;
input a;
x := 0;
y := a;
mid := a >> 1;
for i in range(10):

if (mid * mid > a):
y := mid;
mid := (x + mid) >> 1;

else if (mid * mid < a):
x := mid;
mid := (mid + y) >> 1;

answer := mid;
return answer;

loan
def main:

private age, num_of_parents, num_of_children,
income, answer;

input age, num_of_parents, num_of_children,
income;

if age < 18:

282

answer := 0
else if age < 65:

if num_of_children == 0:
if income > 20:

answer := 1
else:

answer := 0
else if num_of_parents == 1:

if income > 25:
answer := 1

else:
answer := 0

else:
if income > 30:

answer := 1
else:

answer := 0
else if income > 40:

answer := 1
else:

answer := 0;
return answer;

stats

def mean (x):
return floatMult (floatSum(x), inv(length(x)));

def variance (x):
private w := floatMult (floatSquare (floatSum(x));
private z1 := floatNeg (w, inv(n)));
private z2 := floatSum (floatSquare(x));
return floatMult (floatAdd (z1,z2), inv(n - 1));

def sdev (x):
return sqrt (variance (x));

def sdev (x, y):
public nxy := length(x) + length(y) - 2;
public nx := length(x) - 1;
public ny := length(y) - 1;
private vx := floatMult (variance (x), nx);
private vy := floatMult (variance (y), ny);
return sqrt (floatMult (floatAdd (vx,vy), inv(nxy)));

def studenttest (x, y):
private mx := mean (x);
private my := mean (y);
private z1 := floatAdd (mx, floatNeg(my));

283

public nx := inv(length(x));
public ny := inv(length(y));
private sxy := sdev (x, y);
public w := sqrt (floatAdd (n1, n2));
private z2 := floatMult (sxy, w);

return floatMult (z1,inv (z2));

def welchtest (x, y):
private mx := mean (x);
private my := mean (y);
private z1 := floatAdd (mx, floatNeg(my));

public nx := inv(length(x));
public ny := inv(length(y));
private vx := floatMult (variance (x), nx);
private vy := floatMult (variance (y), ny);
private z2 := sqrt (floatAdd (vx,vy));

return floatMult (z1, inv(z2));

def wilcoxontest (x, y):
private d := floatAdd (x, floatNeg(y));
private s := floatSign (d);
private dpr := floatAbs (d);

s := sort (dpr, s);
private r := rank0 (s);
return floatSum (floatMult (s, r));

def contingencytable (x, y, c):
private ct_x := floatOuterEqualitySums (x,c);
private ct_y := floatOuterEqualitySums (y,c);
return (ct_x, ct_y);

def chisquaretest (x, y, c);
private ninv := inv (length(x));

private (ct_x,ct_y) := contingencytable (x, y, c);
private rx := floatSum (ct_x);
private ry := floatSum (ct_y);
private p := floatAdd (ct_x,ct_y);

private ex := floatMult (floatMult(p,rx), ninv);
private ey := floatMult (floatMult(p,ry), ninv);

private nex := floatNeg(ex);
private ney := floatNeg(ey);
private z1 := floatSquare (floatAdd (ct_x, nex));
private z2 := floatSquare (floatAdd (ct_y, ney));

284

private w1 := floatSum (floatMult (z1,inv(ex)));
private w2 := floatSum (floatMult (z2,inv(ey)));
return floatAdd (w1,w2);

def main:
private result;
private b1; #is the distribution normal
private b2; #are the stdev and the mean known
private b3; #is it ordinal data

input b1, b2, b3;

The first dataset
private x;
input x;

The second dataset
private y;
input y;

The set of possible classes for chi-squared test
private c;
input c;

if b1 == 1:
if b2 == 1:

result := studenttest (x, y);
else:

result := welchtest (x, y);
else:

if b3 == 1:
result := wilcoxontest (x, y);

else:
result := chisquaretest (x, y, c);

return result;

erf

#fixpoint to floating point
def fix_to_float (y,t,n,q):

private u := getbit (y, t);
private s := 1;
private e;
private f;
if u == 1:

e := t + q + 1;
f := y * (1 << (n-t-1));

else

285

e := t + q;
f := y * (1 << (n-t));

return (s,e,f);

#Multiply two floating point numbers
def float_mult (s1,e1,f1,s2,e2,f2,n):

private lambda;
s := (s1 == s2);
e := e1 + e2;
f := f1 * f2;
#here --> and <-- are ring conversion operations
f := ((f1 --> (2*n))*(f2 --> (2*n))) <-- n;
lambda := f >> (n-1);
if lambda == 0:

f := f << 1;
e := e - 1;

return (s,e,f);

#Evaluate a polynomial of degree <= 12
def eval (x0,s,c):

private x[13];
x[0] := 1;
x[1] := x0;
x[2] := x0 * x0;
x[3] := x[2] * x[1];
x[4] := x[2] * x[2];
x[5] := x[4] * x[1];
x[6] := x[4] * x[2];
x[7] := x[4] * x[3];
x[8] := x[4] * x[4];
x[9] := x[8] * x[1];
x[10] := x[9] * x[2];
x[11] := x[8] * x[3];
x[12] := x[8] * x[4];

private z1[13] := 0;
private z2[13] := 0;

for i in range(13):
if s[i] == 1:

z1[i] := z1[i] + c[i] * x[i];
else if s[i] == -1:

z2[i] := z2[i] + c[i] * x[i];

return z1 - z2;

def gaussian_poly_0 (x):

286

return eval (x,[0,1,-1,-1,-1,1,-1,-1,-1,1,-1,-1,1],
[0, 37862129, 89, 12620065, 3115, 3797002, 27323,

850652, 68415, 238867, 35736, 22843, 6588]);

def gaussian_poly_1 (x):
return eval (x,[1,1,1,-1,1,-1,-1,1,1,1,1,1,1],
[945472, 31405311, 18236798, 40079935, 23153761,

5984925, 599861, 0, 0, 0, 0, 0, 0]);

def gaussian_poly_2 (x):
return eval (x,[-1,1,-1,1,1,1,-1,1,1,1,1,1,1],
[31613609, 134982639, 119986495, 59088711, 17266836,

2930966, 247133, 3236, 636, 0, 0, 0, 0]);

def gaussian_poly_3 (x):
return eval (x,[1,1,-1,1,-1,1,-1,1,1,1,1,1,1],
[28778930, 7535740, 4967310, 1750656, 347929,

36972, 1641, 0, 0, 0, 0, 0, 0]);

def main:
#the input
private s, e, f;
input s, e, f;

public q := (1 << 14) - 1;
public n := 32;
public m := 25;

public shift0 := n - m + 0 - 2;
public shift1 := n - m + 1 - 2;
public shift2 := n - m + 2 - 2;
public shift3 := n - m + 3 - 2;
public shift4 := n - m + 4 - 2;

private f0 := f >> shift0;
private f1 := f >> shift1;
private f2 := f >> shift2;
private f3 := f >> shift3;
private f4 := f >> shift4;

private g0, g_1, g_1_0, g_1_1;

g0 := gaussian_poly_1 (f0);
g_1_0 := gaussian_poly_2 (f0);
g_1_1 := gaussian_poly_3 (f0);

private u := f <- m;
if u == 1:

g_1 := g_1_1
else

287

g_1 := g_1_0;

public t_1 := 0;
public t0 := 0;
public t1 := 2 - 1;
public t2 := 2 - 2;
public t3 := 2 - 3;
public t4 := 2 - 4;

if e <= q - 4:
e := q - 4;

if q + 3 <= e:
e := q + 3;

private s_pr, e_pr, f_pr;
private index := e - q;

if index == -2:
(s_pr,e_pr,f_pr) := float_mult(1,25,21361415,s,e,f,n);

else if index == -1:
(s_pr,e_pr,f_pr) := fix_to_float (g_1,t_1,n,q);

else if index == 0:
(s_pr,e_pr,f_pr) := fix_to_float (g0,t0,n,q);

else if index == 1:
private g1 := gaussian_poly_0 (f1);
(s_pr,e_pr,f_pr) := fix_to_float (g1,t1,n,q);

else if index == 2:
private g2 := gaussian_poly_0 (f2);
(s_pr,e_pr,f_pr) := fix_to_float (g2,t2,n,q);

else if index == 3:
private g3 := gaussian_poly_0 (f3);
(s_pr,e_pr,f_pr) := fix_to_float (g3,t3,n,q);

else if index == 4:
private g4 := gaussian_poly_0 (f4);
(s_pr,e_pr,f_pr) := fix_to_float (g4,t4,n,q);

else
(s_pr,e_pr,f_pr) := (1, 0, 1);

return (s_pr, e_pr, f_pr);

288

APPENDIX B

RUNNING TIMES OF PROGRAMS
AFTER OPTIMIZATION

The runtime benchmarks are given in Figures B.2-B.5. The X-axis (vertical)
corresponds to different optimizations, including all the combinations of the 5
strategies with all used subcircuit depths. The Y -axis (horizontal) represents the
running times. The parameter n is the vector length — the number of executions
run in parallel.

n = 10 n = 103 n = 106

Figure B.1: Running times in seconds for driver

289

n = 10 n = 103 n = 106

Figure B.2: Running times in seconds for loan

n = 10 n = 103 n = 106

Figure B.3: Running times in seconds for sqrt

290

n = 10 n = 102

Figure B.4: Running times in seconds for stats

291

n = 10 n = 103 n = 106

Figure B.5: Running times in seconds for erf

292

Bibliography

[1] Alwen, J., Katz, J., Maurer, U., Zikas, V.: Collusion-preserving computa-
tion. In: Safavi-Naini and Canetti [94], pp. 124–143, http://dx.doi.
org/10.1007/978-3-642-32009-5_9

[2] Anati, I., Gueron, S., Johnson, S., Scarlata, V.: Innovative technology for
CPU based attestation and sealing. In: Proceedings of the 2nd international
workshop on hardware and architectural support for security and privacy.
vol. 13 (2013)

[3] Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput
semi-honest secure three-party computation with an honest majority. In:
Proceedings of the 2016 ACMSIGSACConference on Computer and Com-
munications Security. pp. 805–817. CCS ’16, ACM, New York, NY, USA
(2016), http://doi.acm.org/10.1145/2976749.2978331

[4] Aumann, Y., Lindell, Y.: Security against covert adversaries: Efficient
protocols for realistic adversaries. J. Cryptology 23(2), 281–343 (2010)

[5] Baum, C., Damgård, I., Orlandi, C.: Publicly auditable secure multi-party
computation. In: Abdalla, M., Prisco, R.D. (eds.) Security and Cryptogra-
phy for Networks - 9th International Conference, SCN 2014, Amalfi, Italy,
September 3-5, 2014. Proceedings. LNCS, vol. 8642, pp. 175–196. Springer
(2014), http://dx.doi.org/10.1007/978-3-319-10879-7_
11

[6] Baum, C., Damgård, I., Toft, T., Zakarias, R.: Better preprocessing for
secure multiparty computation. In: Manulis, M., Sadeghi, A.R., Schneider,
S. (eds.) Applied Cryptography and Network Security: 14th International
Conference, ACNS 2016, Guildford, UK, June 19-22, 2016. Proceedings.
pp. 327–345. Springer International Publishing (2016)

[7] Baum, C., Orsini, E., Scholl, P.: Efficient secure multiparty computa-
tion with identifiable abort. In: Hirt, M., Smith, A.D. (eds.) Theory

293

http://dx.doi.org/10.1007/978-3-642-32009-5_9
http://dx.doi.org/10.1007/978-3-642-32009-5_9
http://doi.acm.org/10.1145/2976749.2978331
http://dx.doi.org/10.1007/978-3-319-10879-7_11
http://dx.doi.org/10.1007/978-3-319-10879-7_11

of Cryptography - 14th International Conference, TCC 2016-B, Beijing,
China, October 31 - November 3, 2016, Proceedings, Part I. LNCS,
vol. 9985, pp. 461–490 (2016), http://dx.doi.org/10.1007/
978-3-662-53641-4_18

[8] Beaver, D.: Efficient multiparty protocols using circuit randomization. In:
Feigenbaum, J. (ed.) CRYPTO. LNCS, vol. 576, pp. 420–432. Springer
(1991)

[9] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza,M.: Snarks forC:
verifying program executions succinctly and in zero knowledge. In: Canetti,
R., Garay, J.A. (eds.) Advances in Cryptology - CRYPTO 2013 - 33rd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2013. Proceedings, Part II. LNCS, vol. 8043, pp. 90–108. Springer (2013),
http://dx.doi.org/10.1007/978-3-642-40084-1_6

[10] Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai [95], pp. 315–
333, http://dx.doi.org/10.1007/978-3-642-36594-2_18

[11] Bogdanov, D., Jõemets, M., Siim, S., Vaht, M.: How the estonian tax and
customs board evaluated a tax fraud detection system based on secure multi-
party computation. In: Böhme, R., Okamoto, T. (eds.) Financial Cryptogra-
phy and Data Security - 19th International Conference, FC 2015, San Juan,
Puerto Rico, January 26-30, 2015. LNCS, vol. 8975, pp. 227–234. Springer
(2015), http://dx.doi.org/10.1007/978-3-662-47854-7_
14

[12] Bogdanov, D., Kamm, L., Kubo, B., Rebane, R., Sokk, V.,
Talviste, R.: Students and taxes: a privacy-preserving study
using secure computation. PoPETs 2016(3), 117–135 (2016),
http://www.degruyter.com/view/j/popets.2016.2016.
issue-3/popets-2016-0019/popets-2016-0019.xml

[13] Bogdanov, D., Kamm, L., Laur, S., Sokk, V.: Rmind: a tool for crypto-
graphically secure statistical analysis. Cryptology ePrint Archive, Report
2014/512 (2014), http://eprint.iacr.org/2014/512

[14] Bogdanov, D., Laud, P., Laur, S., Pullonen, P.: From Input Private to
Universally Composable Secure Multi-party Computation Primitives. In:
Datta, A., Fournet, C. (eds.) IEEE 27th Computer Security Foundations
Symposium, CSF 2014, Vienna, Austria, 19-22 July, 2014. pp. 184–198.
IEEE (2014), http://dx.doi.org/10.1109/CSF.2014.21

294

http://dx.doi.org/10.1007/978-3-662-53641-4_18
http://dx.doi.org/10.1007/978-3-662-53641-4_18
http://dx.doi.org/10.1007/978-3-642-40084-1_6
http://dx.doi.org/10.1007/978-3-642-36594-2_18
http://dx.doi.org/10.1007/978-3-662-47854-7_14
http://dx.doi.org/10.1007/978-3-662-47854-7_14
http://www.degruyter.com/view/j/popets.2016.2016.issue-3/popets-2016-0019/popets-2016-0019.xml
http://www.degruyter.com/view/j/popets.2016.2016.issue-3/popets-2016-0019/popets-2016-0019.xml
http://eprint.iacr.org/2014/512
http://dx.doi.org/10.1109/CSF.2014.21

[15] Bogdanov, D., Laud, P., Randmets, J.: Domain-polymorphic program-
ming of privacy-preserving applications. In: Russo, A., Tripp, O. (eds.)
Proceedings of the Ninth Workshop on Programming Languages and Anal-
ysis for Security, PLAS@ECOOP 2014, Uppsala, Sweden, July 29, 2014.
p. 53. ACM (2014), http://doi.acm.org/10.1145/2637113.
2637119

[16] Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for
fast privacy-preserving computations. In: Jajodia, S., López, J. (eds.) ES-
ORICS. LNCS, vol. 5283, pp. 192–206. Springer (2008)

[17] Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance
secure multi-party computation for data mining applications. Int. J. Inf.
Sec. 11(6), 403–418 (2012)

[18] Bogdanov, D., Talviste, R., Willemson, J.: Deploying secure multi-party
computation for financial data analysis - (short paper). In: Keromytis, A.D.
(ed.) Financial Cryptography. LNCS, vol. 7397, pp. 57–64. Springer (2012)

[19] Bogetoft, P., Christensen, D.L., Damgård, I., Geisler, M., Jakob-
sen, T.P., Krøigaard, M., Nielsen, J.D., Nielsen, J.B., Nielsen, K.,
Pagter, J., Schwartzbach, M.I., Toft, T.: Secure multiparty computa-
tion goes live. In: Dingledine, R., Golle, P. (eds.) Financial Cryptogra-
phy and Data Security, 13th International Conference, FC 2009, Accra
Beach, Barbados, February 23-26, 2009. Revised Selected Papers. LNCS,
vol. 5628, pp. 325–343. Springer (2009), http://dx.doi.org/10.
1007/978-3-642-03549-4_20

[20] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic
encryption without bootstrapping. In: Goldwasser, S. (ed.) Innovations in
Theoretical Computer Science 2012, Cambridge, MA, USA, January 8-10,
2012. pp. 309–325. ACM (2012), http://doi.acm.org/10.1145/
2090236.2090262

[21] Canetti, R.: Universally composable security: A new paradigm for crypto-
graphic protocols. In: FOCS. pp. 136–145. IEEE Computer Society (2001)

[22] Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable
security with global setup. In: Vadhan, S.P. (ed.) Theory of Cryptog-
raphy, 4th Theory of Cryptography Conference, TCC 2007, Amster-
dam, The Netherlands, February 21-24, 2007, Proceedings. LNCS, vol.
4392, pp. 61–85. Springer (2007), http://dx.doi.org/10.1007/
978-3-540-70936-7_4

295

http://doi.acm.org/10.1145/2637113.2637119
http://doi.acm.org/10.1145/2637113.2637119
http://dx.doi.org/10.1007/978-3-642-03549-4_20
http://dx.doi.org/10.1007/978-3-642-03549-4_20
http://doi.acm.org/10.1145/2090236.2090262
http://doi.acm.org/10.1145/2090236.2090262
http://dx.doi.org/10.1007/978-3-540-70936-7_4
http://dx.doi.org/10.1007/978-3-540-70936-7_4

[23] Canetti, R., Vald, M.: Universally composable security with local adver-
saries. In: Visconti and Prisco [102], pp. 281–301, http://dx.doi.
org/10.1007/978-3-642-32928-9_16

[24] Catrina, O., de Hoogh, S.: Improved primitives for secure multi-
party integer computation. In: Garay, J.A., Prisco, R.D. (eds.) Se-
curity and Cryptography for Networks, 7th International Conference,
SCN 2010, Amalfi, Italy, September 13-15, 2010. Proceedings. LNCS,
vol. 6280, pp. 182–199. Springer (2010), http://dx.doi.org/10.
1007/978-3-642-15317-4_13

[25] Cramer, R., Damgård, I., Ishai, Y.: Share conversion, pseudorandom secret-
sharing and applications to secure computation. In: Kilian, J. (ed.) The-
ory of Cryptography, Second Theory of Cryptography Conference, TCC
2005, Cambridge, MA, USA, February 10-12, 2005, Proceedings. LNCS,
vol. 3378, pp. 342–362. Springer (2005), http://dx.doi.org/10.
1007/978-3-540-30576-7_19

[26] Cramer, R., Damgård, I., Maurer, U.M.: General secure multi-party com-
putation from any linear secret-sharing scheme. In: Preneel, B. (ed.) EU-
ROCRYPT. LNCS, vol. 1807, pp. 316–334. Springer (2000)

[27] Cunningham, R., Fuller, B., Yakoubov, S.: Catching MPC cheaters: Iden-
tification and openability. Cryptology ePrint Archive, Report 2016/611
(2016), http://eprint.iacr.org/2016/611

[28] Damgård, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous
multiparty computation: Theory and implementation. In: Jarecki
and Tsudik [50], pp. 160–179, http://dx.doi.org/10.1007/
978-3-642-00468-1_10

[29] Damgård, I., Geisler, M., Nielsen, J.B.: From passive to covert security at
low cost. In: Micciancio, D. (ed.) TCC. LNCS, vol. 5978, pp. 128–145.
Springer (2010)

[30] Damgård, I., Keller, M., Larraia, E., Miles, C., Smart, N.P.: Implementing
AES via an actively/covertly secure dishonest-majority MPC protocol. In:
Visconti and Prisco [102], pp. 241–263, http://dx.doi.org/10.
1007/978-3-642-32928-9_14

[31] Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.:
Practical Covertly Secure MPC for Dishonest Majority - Or: Breaking the
SPDZ Limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS.
LNCS, vol. 8134, pp. 1–18. Springer (2013)

296

http://dx.doi.org/10.1007/978-3-642-32928-9_16
http://dx.doi.org/10.1007/978-3-642-32928-9_16
http://dx.doi.org/10.1007/978-3-642-15317-4_13
http://dx.doi.org/10.1007/978-3-642-15317-4_13
http://dx.doi.org/10.1007/978-3-540-30576-7_19
http://dx.doi.org/10.1007/978-3-540-30576-7_19
http://eprint.iacr.org/2016/611
http://dx.doi.org/10.1007/978-3-642-00468-1_10
http://dx.doi.org/10.1007/978-3-642-00468-1_10
http://dx.doi.org/10.1007/978-3-642-32928-9_14
http://dx.doi.org/10.1007/978-3-642-32928-9_14

[32] Damgård, I., Nielsen, J.B., Nielsen, M., Ranellucci, S.: Gate-scrambling re-
visited - or: The tinytable protocol for 2-party secure computation. Cryptol-
ogy ePrint Archive, Report 2016/695 (2016), http://eprint.iacr.
org/2016/695

[33] Damgård, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini and Canetti
[94], pp. 643–662

[34] Damgård, I., Toft, T., Zakarias, R.W.: Fast multiparty multiplications from
shared bits. Cryptology ePrint Archive, Report 2016/109 (2016), http:
//eprint.iacr.org/

[35] Damgård, I., Zakarias, S.: Constant-overhead secure computation of
boolean circuits using preprocessing. In: Sahai [95], pp. 621–641, http:
//dx.doi.org/10.1007/978-3-642-36594-2_35

[36] Damiani, E., Bellandi, V., Cimato, S., Gianini, G., Spindler, G., Gren-
zer, M., Heitmüller, N., Schmechel, P.: PRACTICE Deliverable D31.2:
risk-aware deployment and intermediate report on status of legislative
developments in data protection (October 2015), available from http:
//www.practice-project.eu

[37] Demmler, D., Dessouky, G., Koushanfar, F., Sadeghi, A., Schneider, T.,
Zeitouni, S.: Automated synthesis of optimized circuits for secure compu-
tation. In: Ray et al. [93], pp. 1504–1517, http://doi.acm.org/10.
1145/2810103.2813678

[38] Demmler, D., Schneider, T., Zohner, M.: ABY - A framework for
efficient mixed-protocol secure two-party computation. In: 22nd An-
nual Network and Distributed System Security Symposium, NDSS
2015, San Diego, California, USA, February 8-11, 2014. The Internet
Society (2015), http://www.internetsociety.org/events/
ndss-symposium-2015

[39] Franz, M., Holzer, A., Katzenbeisser, S., Schallhart, C., Veith, H.: CBMC-
GC: an ANSI C compiler for secure two-party computations. In: Cohen,
A. (ed.) Compiler Construction - 23rd International Conference, CC 2014,
Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2014, Grenoble, France, April 5-13, 2014. Proceedings.
LNCS, vol. 8409, pp. 244–249. Springer (2014),http://dx.doi.org/
10.1007/978-3-642-54807-9_15

297

http://eprint.iacr.org/2016/695
http://eprint.iacr.org/2016/695
http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-36594-2_35
http://dx.doi.org/10.1007/978-3-642-36594-2_35
http://www.practice-project.eu
http://www.practice-project.eu
http://doi.acm.org/10.1145/2810103.2813678
http://doi.acm.org/10.1145/2810103.2813678
http://www.internetsociety.org/events/ndss-symposium-2015
http://www.internetsociety.org/events/ndss-symposium-2015
http://dx.doi.org/10.1007/978-3-642-54807-9_15
http://dx.doi.org/10.1007/978-3-642-54807-9_15

[40] Frederiksen, T.K., Keller, M., Orsini, E., Scholl, P.: A Unified Approach
to MPC with Preprocessing Using OT. In: Iwata, T., Cheon, J.H. (eds.)
Advances in Cryptology - ASIACRYPT 2015 - 21st International Con-
ference on the Theory and Application of Cryptology and Information
Security, Auckland, New Zealand, November 29 - December 3, 2015,
Proceedings, Part I. LNCS, vol. 9452, pp. 711–735. Springer (2015),
http://dx.doi.org/10.1007/978-3-662-48797-6_29

[41] Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure
three-party computation for malicious adversaries and an honest majority.
Cryptology ePrint Archive, Report 2016/944 (2016), http://eprint.
iacr.org/2016/944

[42] Galil, Z., Haber, S., Yung, M.: Cryptographic computation: Secure fault-
tolerant protocols and the public-key model (extended abstract). In: Pomer-
ance, C. (ed.) Advances in Cryptology - CRYPTO 87, LNCS, vol. 293, pp.
135–155. Springer Berlin Heidelberg (1988), http://dx.doi.org/
10.1007/3-540-48184-2_10

[43] Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable comput-
ing: Outsourcing computation to untrusted workers. In: Rabin, T. (ed.)
CRYPTO. LNCS, vol. 6223, pp. 465–482. Springer (2010)

[44] GLPK: GNU Linear Programming Kit.
http://www.gnu.org/software/glpk

[45] Goldreich, O.: Foundations of Cryptography: Basic Tools, vol. 1. Cam-
bridge University Press, New York, NY, USA (2000)

[46] Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2.
Cambridge University Press, New York, NY, USA (2004)

[47] Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game
or A Completeness Theorem for Protocols with Honest Majority. In: Aho,
A.V. (ed.) STOC. pp. 218–229. ACM (1987)

[48] Hoekstra, M., Lal, R., Pappachan, P., Phegade, V., del Cuvillo, J.: Using
innovative instructions to create trustworthy software solutions. In: Lee
and Shi [69], p. 11, http://doi.acm.org/10.1145/2487726.
2488370

[49] Ishai, Y., Ostrovsky, R., Zikas, V.: Secure multi-party computation with
identifiable abort. In: Garay, J.A., Gennaro, R. (eds.) Advances in Cryp-
tology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa

298

http://dx.doi.org/10.1007/978-3-662-48797-6_29
http://eprint.iacr.org/2016/944
http://eprint.iacr.org/2016/944
http://dx.doi.org/10.1007/3-540-48184-2_10
http://dx.doi.org/10.1007/3-540-48184-2_10
http://doi.acm.org/10.1145/2487726.2488370
http://doi.acm.org/10.1145/2487726.2488370

Barbara, CA, USA, August 17-21, 2014, Proceedings, Part II. LNCS,
vol. 8617, pp. 369–386. Springer (2014), http://dx.doi.org/10.
1007/978-3-662-44381-1_21

[50] Jarecki, S., Tsudik, G. (eds.): Public Key Cryptography - PKC 2009,
12th International Conference on Practice and Theory in Public Key
Cryptography, Irvine, CA, USA, March 18-20, 2009. Proceedings, Lec-
ture Notes in Computer Science, vol. 5443. Springer (2009), http:
//dx.doi.org/10.1007/978-3-642-00468-1

[51] Kamm, L., Willemson, J.: Secure floating point arithmetic and private
satellite collision analysis. Int. J. Inf. Secur. 14(6), 531–548 (Nov 2015),
http://dx.doi.org/10.1007/s10207-014-0271-8

[52] Katz, J., Lindell, Y.: Introduction to Modern Cryptography (Chapman &
Hall/Crc Cryptography and Network Security Series). Chapman & Hal-
l/CRC (2007)

[53] Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable
synchronous computation. In: Sahai [95], pp. 477–498, http://dx.
doi.org/10.1007/978-3-642-36594-2_27

[54] Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic
secure computationwith oblivious transfer. In: Weippl, E.R., Katzenbeisser,
S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016. pp. 830–842. ACM (2016), http:
//doi.acm.org/10.1145/2976749.2978357

[55] Kennedy, W.S., Kolesnikov, V., Wilfong, G.: Overlaying circuit clauses for
secure computation. Cryptology ePrint Archive, Report 2016/685 (2016),
http://eprint.iacr.org/2016/685

[56] Kerik, L., Laud, P., Randmets, J.: Optimizing MPC for robust and scalable
integer and floating-point arithmetic. In: Clark, J., Meiklejohn, S., Ryan,
P.Y.A., Wallach, D.S., Brenner, M., Rohloff, K. (eds.) Financial Cryptog-
raphy and Data Security - FC 2016 International Workshops, BITCOIN,
VOTING, and WAHC, Christ Church, Barbados, February 26, 2016, Re-
vised Selected Papers. LNCS, vol. 9604, pp. 271–287. Springer (2016),
http://dx.doi.org/10.1007/978-3-662-53357-4_18

[57] Kolesnikov, V., Malozemoff, A.J.: Public verifiability in the covert model
(almost) for free. In: Iwata, T., Cheon, J.H. (eds.) Advances in Cryptol-
ogy - ASIACRYPT 2015 - 21st International Conference on the Theory

299

http://dx.doi.org/10.1007/978-3-662-44381-1_21
http://dx.doi.org/10.1007/978-3-662-44381-1_21
http://dx.doi.org/10.1007/978-3-642-00468-1
http://dx.doi.org/10.1007/978-3-642-00468-1
http://dx.doi.org/10.1007/s10207-014-0271-8
http://dx.doi.org/10.1007/978-3-642-36594-2_27
http://dx.doi.org/10.1007/978-3-642-36594-2_27
http://doi.acm.org/10.1145/2976749.2978357
http://doi.acm.org/10.1145/2976749.2978357
http://eprint.iacr.org/2016/685
http://dx.doi.org/10.1007/978-3-662-53357-4_18

and Application of Cryptology and Information Security, Auckland, New
Zealand, November 29 - December 3, 2015, Proceedings, Part II. LNCS,
vol. 9453, pp. 210–235. Springer (2015), http://dx.doi.org/10.
1007/978-3-662-48800-3_9

[58] Kreuter, B., Shelat, A., Shen, C.: Billion-gate secure computation
with malicious adversaries. In: Kohno, T. (ed.) Proceedings of the
21th USENIX Security Symposium, Bellevue, WA, USA, August
8-10, 2012. pp. 285–300. USENIX Association (2012), https:
//www.usenix.org/conference/usenixsecurity12/
technical-sessions/presentation/kreuter

[59] Krips, T., Willemson, J.: Hybrid model of fixed and floating point numbers
in secure multiparty computations. In: Chow, S.S.M., Camenisch, J., Hui,
L.C.K., Yiu, S. (eds.) Information Security - 17th International Conference,
ISC 2014, Hong Kong, China, October 12-14, 2014. Proceedings. LNCS,
vol. 8783, pp. 179–197. Springer (2014), http://dx.doi.org/10.
1007/978-3-319-13257-0_11

[60] Krips, T., Willemson, J.: Hybrid model of fixed and floating point num-
bers in secure multiparty computations. In: International Conference on
Information Security. pp. 179–197. Springer (2014)

[61] Lapets, A., Volgushev, N., Bestavros, A., Jansen, F., Varia, M.: Secure
Multi-Party Computation for Analytics Deployed as a Lightweight Web
Application (July 2016), http://www.cs.bu.edu/techreports/
pdf/2016-008-mpc-lightweight-web-app.pdf, cS Dept.,
Boston University, Tech.Rep.BUCS-TR-2016-008

[62] Laud, P., Pankova, A.: Verifiable Computation in Multiparty Protocols
with Honest Majority. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu,
S. (eds.) Provable Security - 8th International Conference, ProvSec 2014,
Hong Kong, China, October 9-10, 2014. Proceedings. LNCS, vol. 8782, pp.
146–161. Springer (2014),
http://dx.doi.org/10.1007/978-3-319-12475-9_11

[63] Laud, P., Pankova, A.: Preprocessing-based verification of multiparty pro-
tocols with honest majority. Cryptology ePrint Archive, Report 2015/674
(2015), http://eprint.iacr.org/

[64] Laud, P., Pankova, A.: Optimizing secure computation programs with
private conditionals. In: Lam, K., Chi, C., Qing, S. (eds.) Information
and Communications Security - 18th International Conference, ICICS

300

http://dx.doi.org/10.1007/978-3-662-48800-3_9
http://dx.doi.org/10.1007/978-3-662-48800-3_9
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/kreuter
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/kreuter
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/kreuter
http://dx.doi.org/10.1007/978-3-319-13257-0_11
http://dx.doi.org/10.1007/978-3-319-13257-0_11
http://www.cs.bu.edu/techreports/pdf/2016-008-mpc-lightweight-web-app.pdf
http://www.cs.bu.edu/techreports/pdf/2016-008-mpc-lightweight-web-app.pdf
http://dx.doi.org/10.1007/978-3-319-12475-9_11
http://eprint.iacr.org/

2016, Singapore, November 29 - December 2, 2016, Proceedings. LNCS,
vol. 9977, pp. 418–430. Springer (2016), http://dx.doi.org/10.
1007/978-3-319-50011-9_32

[65] Laud, P., Pankova, A.: Securing multiparty protocols against the expo-
sure of data to honest parties. In: Livraga, G., Torra, V., Aldini, A.,
Martinelli, F., Suri, N. (eds.) Data Privacy Management and Security
Assurance - 11th International Workshop, DPM 2016 and 5th Interna-
tional Workshop, QASA 2016, Heraklion, Crete, Greece, September 26-
27, 2016, Proceedings. LNCS, vol. 9963, pp. 165–180. Springer (2016),
http://dx.doi.org/10.1007/978-3-319-47072-6_11

[66] Laud, P., Pettai, M.: Secure multiparty sorting protocols with covert pri-
vacy. In: Brumley, B.B., Röning, J. (eds.) Secure IT Systems - 21st Nordic
Conference, NordSec 2016, Oulu, Finland, November 2-4, 2016, Proceed-
ings. LNCS, vol. 10014, pp. 216–231 (2016), http://dx.doi.org/
10.1007/978-3-319-47560-8_14

[67] Laud, P., Randmets, J.: A domain-specific language for low-level se-
cure multiparty computation protocols. In: Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security,
Denver, CO, USA, October 12-6, 2015. pp. 1492–1503. ACM (2015),
http://doi.acm.org/10.1145/2810103.2813664

[68] Laur, S., Willemson, J., Zhang, B.: Round-Efficient Oblivious Database
Manipulation. In: Proceedings of the 14th International Conference on
Information Security. ISC’11. pp. 262–277 (2011)

[69] Lee, R.B., Shi, W. (eds.): HASP 2013, The SecondWorkshop on Hardware
and Architectural Support for Security and Privacy, Tel-Aviv, Israel, June
23-24, 2013. ACM (2013), http://dl.acm.org/citation.cfm?
id=2487726

[70] Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert
adversaries. Cryptology ePrint Archive, Report 2013/079 (2013), http:
//eprint.iacr.org/2013/079

[71] Lindell, Y., Riva, B.: Blazing Fast 2PC in the Offline/Online Setting with
Security forMaliciousAdversaries. In: Ray et al. [93], pp. 579–590, http:
//doi.acm.org/10.1145/2810103.2813666

[72] Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span
programs and linear error-correcting codes. In: Sako, K., Sarkar, P. (eds.)

301

http://dx.doi.org/10.1007/978-3-319-50011-9_32
http://dx.doi.org/10.1007/978-3-319-50011-9_32
http://dx.doi.org/10.1007/978-3-319-47072-6_11
http://dx.doi.org/10.1007/978-3-319-47560-8_14
http://dx.doi.org/10.1007/978-3-319-47560-8_14
http://doi.acm.org/10.1145/2810103.2813664
http://dl.acm.org/citation.cfm?id=2487726
http://dl.acm.org/citation.cfm?id=2487726
http://eprint.iacr.org/2013/079
http://eprint.iacr.org/2013/079
http://doi.acm.org/10.1145/2810103.2813666
http://doi.acm.org/10.1145/2810103.2813666

Advances in Cryptology - ASIACRYPT 2013 - 19th International Confer-
ence on the Theory and Application of Cryptology and Information Secu-
rity, Bengaluru, India, December 1-5, 2013, Proceedings, Part I. LNCS, vol.
8269, pp. 41–60. Springer (2013), http://dx.doi.org/10.1007/
978-3-642-42033-7_3

[73] Liu, C., Huang, Y., Shi, E., Katz, J., Hicks, M.W.: Automating efficient
ram-model secure computation. In: 2014 IEEE Symposium on Security
and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014. pp. 623–638
(2014), http://dx.doi.org/10.1109/SP.2014.46

[74] Liu, N.H., Chiang, C.Y., Hsu, H.M.: Improving driver alertness through
music selection using a mobile eeg to detect brainwaves. Sensors 13(7),
8199–8221 (2013)

[75] Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - a secure two-party
computation system. In: Proceedings of the 13th USENIX Security Sym-
posium. pp. 287–302. USENIX Association, Berkeley, CA, USA (2004)

[76] McCrum-Gardner, E.: Which is the correct statistical test to use? British
Journal of Oral and Maxillofacial Surgery 46(1), 38–41 (2008)

[77] McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C.V., Shafi, H.,
Shanbhogue, V., Savagaonkar, U.R.: Innovative instructions and soft-
ware model for isolated execution. In: Lee and Shi [69], p. 10, http:
//doi.acm.org/10.1145/2487726.2488368

[78] Merkle, R.C.: Secrecy, authentication, and public key systems. Ph.D. thesis,
Stanford University (1979)

[79] Mitchell, J.C., Sharma, R., Stefan, D., Zimmerman, J.: Information-flow
control for programming on encrypted data. In: Chong, S. (ed.) 25th IEEE
Computer Security Foundations Symposium, CSF 2012, Cambridge, MA,
USA, June 25-27, 2012. pp. 45–60. IEEEComputer Society (2012), http:
//dx.doi.org/10.1109/CSF.2012.30

[80] Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party com-
putation: The garbled circuit approach. In: Proceedings of the 22Nd
ACM SIGSAC Conference on Computer and Communications Security.
pp. 591–602. CCS ’15, ACM, New York, NY, USA (2015), http:
//doi.acm.org/10.1145/2810103.2813705

[81] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge Univer-
sity Press, New York, NY, USA (1995)

302

http://dx.doi.org/10.1007/978-3-642-42033-7_3
http://dx.doi.org/10.1007/978-3-642-42033-7_3
http://dx.doi.org/10.1109/SP.2014.46
http://doi.acm.org/10.1145/2487726.2488368
http://doi.acm.org/10.1145/2487726.2488368
http://dx.doi.org/10.1109/CSF.2012.30
http://dx.doi.org/10.1109/CSF.2012.30
http://doi.acm.org/10.1145/2810103.2813705
http://doi.acm.org/10.1145/2810103.2813705

[82] Nielsen, J.D., Schwartzbach, M.I.: A domain-specific programming lan-
guage for secure multiparty computation. In: Hicks, M.W. (ed.) Proceed-
ings of the 2007 Workshop on Programming Languages and Analysis for
Security, PLAS 2007, San Diego, California, USA, June 14, 2007. pp.
21–30. ACM (2007), http://doi.acm.org/10.1145/1255329.
1255333

[83] Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new ap-
proach to practical active-secure two-party computation. In: Safavi-Naini
and Canetti [94], pp. 681–700, http://dx.doi.org/10.1007/
978-3-642-32009-5_40

[84] Paillier, P.: Public-key cryptosystems based on composite degree residuos-
ity classes. In: EUROCRYPT. pp. 223–238 (1999)

[85] Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical
verifiable computation. In: IEEE Symposium on Security and Privacy.
pp. 238–252. IEEE Computer Society (2013), http://ieeexplore.
ieee.org/xpl/mostRecentIssue.jsp?punumber=6547086

[86] Pettai, M., Laud, P.: Automatic proofs of privacy of secure multi-party
computation protocols against active adversaries. In: Fournet, C., Hicks,
M.W., Viganò, L. (eds.) IEEE 28th Computer Security Foundations Sympo-
sium, CSF 2015, Verona, Italy, 13-17 July, 2015. pp. 75–89. IEEE (2015),
http://dx.doi.org/10.1109/CSF.2015.13

[87] Pikma, T.: Auditing of Secure Multiparty Computations. Master’s thesis,
Institute of Computer Science, University of Tartu (2014)

[88] Planul, J., Mitchell, J.C.: Oblivious program execution and path-sensitive
non-interference. In: 2013 IEEE 26thComputer Security Foundations Sym-
posium, NewOrleans, LA,USA, June 26-28, 2013. pp. 66–80. IEEE (2013),
http://dx.doi.org/10.1109/CSF.2013.12

[89] Pollard, J.M.: The fast fourier transform in a finite field. Mathematics of
computation 25(114), 365–374 (1971)

[90] Pruulmann-Vengerfeldt, P., Kamm, L., Talviste, R., Laud, P., Bogdanov,
D.: Capability Model, UaESMC deliverable 1.1 (March 2012), http://
www.usable-security.eu/workpackages-and-reports/
wp1-requirements-gathering/d11.html

[91] Pullonen, P.: Actively Secure Two-Party Computation: Efficient Beaver
Triple Generation. Master’s thesis, University of Tartu, Aalto University
(2013)

303

http://doi.acm.org/10.1145/1255329.1255333
http://doi.acm.org/10.1145/1255329.1255333
http://dx.doi.org/10.1007/978-3-642-32009-5_40
http://dx.doi.org/10.1007/978-3-642-32009-5_40
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6547086
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6547086
http://dx.doi.org/10.1109/CSF.2015.13
http://dx.doi.org/10.1109/CSF.2013.12
http://www.usable-security.eu/workpackages-and-reports/wp1-requirements-gathering/d11.html
http://www.usable-security.eu/workpackages-and-reports/wp1-requirements-gathering/d11.html
http://www.usable-security.eu/workpackages-and-reports/wp1-requirements-gathering/d11.html

[92] Rastogi, A., Hammer, M.A., Hicks, M.: Wysteria: A programming lan-
guage for generic, mixed-mode multiparty computations. In: 2014 IEEE
Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA, May
18-21, 2014. pp. 655–670 (2014), http://dx.doi.org/10.1109/
SP.2014.48

[93] Ray, I., Li, N., Kruegel, C. (eds.): Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, Denver, CO, USA,
October 12-6, 2015. ACM (2015), http://dl.acm.org/citation.
cfm?id=2810103

[94] Safavi-Naini, R., Canetti, R. (eds.): Advances in Cryptology - CRYPTO
2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2012. Proceedings, LNCS, vol. 7417. Springer (2012)

[95] Sahai, A. (ed.): Theory of Cryptography - 10th Theory of Cryptogra-
phy Conference, TCC 2013, Tokyo, Japan, March 3-6, 2013. Proceedings,
LNCS, vol. 7785. Springer (2013), http://dx.doi.org/10.1007/
978-3-642-36594-2

[96] Schneier, B.: Data is a toxic asset (March 2016), https:
//www.schneier.com/blog/archives/2016/03/data_
is_a_toxic.html

[97] Schröpfer, A., Kerschbaum, F., Müller, G.: L1 - an intermediate lan-
guage for mixed-protocol secure computation. In: Proceedings of the 35th
Annual IEEE International Computer Software and Applications Confer-
ence, COMPSAC 2011, Munich, Germany, 18-22 July 2011. pp. 298–307.
IEEE Computer Society (2011), http://dx.doi.org/10.1109/
COMPSAC.2011.46

[98] Setty, S.T.V., Vu, V., Panpalia, N., Braun, B., Blumberg, A.J., Walfish, M.:
Taking proof-based verified computation a few steps closer to practicality.
In: USENIX Security Symposium (2012)

[99] Shamir, A.: How to share a secret. Commun. ACM22(11), 612–613 (1979),
http://doi.acm.org/10.1145/359168.359176

[100] Spini, G., Fehr, S.: Cheater detection in SPDZ multiparty computation. In:
Nascimento, A.C.A., Barreto, P. (eds.) Information Theoretic Security - 9th
International Conference, ICITS 2016, Tacoma, WA, USA, August 9-12,
2016, Revised Selected Papers. LNCS, vol. 10015, pp. 151–176 (2016),
http://dx.doi.org/10.1007/978-3-319-49175-2_8

304

http://dx.doi.org/10.1109/SP.2014.48
http://dx.doi.org/10.1109/SP.2014.48
http://dl.acm.org/citation.cfm?id=2810103
http://dl.acm.org/citation.cfm?id=2810103
http://dx.doi.org/10.1007/978-3-642-36594-2
http://dx.doi.org/10.1007/978-3-642-36594-2
https://www.schneier.com/blog/archives/2016/03/data_is_a_toxic.html
https://www.schneier.com/blog/archives/2016/03/data_is_a_toxic.html
https://www.schneier.com/blog/archives/2016/03/data_is_a_toxic.html
http://dx.doi.org/10.1109/COMPSAC.2011.46
http://dx.doi.org/10.1109/COMPSAC.2011.46
http://doi.acm.org/10.1145/359168.359176
http://dx.doi.org/10.1007/978-3-319-49175-2_8

[101] Vaht, M.: The Analysis and Design of a Privacy-Preserving Survey System.
Master’s thesis, Institute of Computer Science, University of Tartu (2015)

[102] Visconti, I., Prisco, R.D. (eds.): Security and Cryptography for Networks
- 8th International Conference, SCN 2012, Amalfi, Italy, September 5-
7, 2012. Proceedings, LNCS, vol. 7485. Springer (2012), http://dx.
doi.org/10.1007/978-3-642-32928-9

[103] Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory
and Practice of Logic Programming 12(1-2), 67–96 (2012)

[104] Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd
Annual SymposiumonFoundations ofComputer Science, Chicago, Illinois,
USA, 3-5 November 1982. pp. 160–164. IEEE Computer Society (1982),
http://dx.doi.org/10.1109/SFCS.1982.38

[105] Zahur, S., Evans, D.: Obliv-c: A language for extensible data-oblivious
computation. Cryptology ePrint Archive, Report 2015/1153 (2015), http:
//eprint.iacr.org/2015/1153

[106] Zhang, Y., Steele, A., Blanton, M.: PICCO: a general-purpose compiler
for private distributed computation. In: Sadeghi, A., Gligor, V.D., Yung,
M. (eds.) 2013 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS’13, Berlin, Germany, November 4-8, 2013. pp. 813–
826. ACM (2013), http://doi.acm.org/10.1145/2508859.
2516752

305

http://dx.doi.org/10.1007/978-3-642-32928-9
http://dx.doi.org/10.1007/978-3-642-32928-9
http://dx.doi.org/10.1109/SFCS.1982.38
http://eprint.iacr.org/2015/1153
http://eprint.iacr.org/2015/1153
http://doi.acm.org/10.1145/2508859.2516752
http://doi.acm.org/10.1145/2508859.2516752

ACKNOWLEDGMENTS

The main support of author’s PhD studies was coming from the Software Tech-
nologies and Applications Competence Centre (STACC), the Estonian Research
Council through project IUT27-1, and the European Union Seventh Framework
Programme (FP7/2007-2013) under grant agreement no. 284731 (UaESMC). For
the international movements, the author has also received support from Informa-
tion Technology Foundation for Education (HITSA) 7-3.2/78-14, and European
Cooperation in Science and Technology Short-Term Scientific Mission COST-
STSM-IC1306-30409. The author also recognizes the support from the European
Regional Development Fund through the Estonian Center of Excellence in Com-
puter Science (EXCS), and by the European Social Fund through the Estonian
Doctoral School in Information and Communication Technology (IKTDK).

The author would like to to thank Roman Jagomägis who has implemented
Sharemind auditability mechanism especially for this work, finishing the missing
link between the execution and the verification phases, allowing to fully benchmark
the obtained solution. Author’s job would be much more difficult without handy
protocol DSL of Jaak Randmets. In addition, the author thanks all the other
Cybernetica AS workers who have provided the author with Sharemind, which
was an excellent basis on which the experiments could be performed, verifying
author’s theoretical results.

The most significant support was coming from the supervisors, whom the
author especially thanks. The main supervisor Peeter Laud was tortured by the
author starting from the BSc time. The co-supervisor Sven Laur joined the process
already after the PhD studies had been executed, but nevertheless provided some
insightful thoughts and helped with the organisatorial part. The ex-supervisor
Margus Niitsoo did not withstand until the end, but his support was essential
during the author’s transition between MSc and PhD studies.

The author also thanks Rasmus Erlemann, Prastudy Fauzi, Liina Kamm, Mar-
gus Niitsoo, Pille Pullonen, Yauhen Yakimenka, Bingsheng Zhang for assistance
with proofreading of this thesis.

Finally, the author would like to thank Jan Willemson who shared with the
author his wisdom of life, andwho demonstrated the dailywork of a real researcher.

306

KOKKUVÕTE
(SUMMARY IN ESTONIAN)

TÕHUS PEIT- JA AKTIIVSE RÜNDAJA
VASTU KAITSTUD TURVALINE

ÜHISARVUTUS

Turvaline ühisarvutus on tänapäevase krüptograafia üks tähtsamaid kasutusvii-
se, mis kasutab elegantseid matemaatilisi lahendusi praktiliste rakenduste ehita-
miseks. See tehnoloogia võimaldab mitmel erineval andmeomanikul teha oma
andmetega suvalisi ühiseid arvutusi, ilma et nad neid andmeid üksteisele avaldaks.

Ühisarvutuse turvalisuse aluseks on sageli teatud eeldused osapoolte käitumise
kohta. Passiivselt turvaline protokoll ei lekita andmeid seni, kuni kõik osapooled
käituvad ausalt. Peitründaja vastu turvaline protokoll töötab eeldusel, et ükski
osapool ei hakka käituma reeglitevastaselt juhul, kui teised osapooled võivad seda
märgata. Aktiivselt turvaline protokoll talub osapoolte käitumist ükskõik millisel
viisil.

Käesolevas töös pakutakse välja üldine meetod, mis teisendab passiivse ründa-
ja vastu turvalised ühisarvutusprotokollid turvaliseks kas peit- või aktiivse ründaja
vastu. Meetod on optimeeritud kolme osapoolega arvutusteks üle algebraliste rin-
gideZ2n ; praktikas on see väga efektiivne mudel, milles realiseerida pärismaailma
rakendusi.

Lisaks uurib käesolev töö rünnete uut eesmärki, mis seisneb mingi ausa osa-
poole vaate manipuleerimises sellisel viisil, et ta saaks midagi teada teise ausa
osapoole privaatsete andmete kohta. Ründaja ise ei tarvitse seda infot üldse teada
saada. Sellised ründed on olulised, sest need tekitavad ausale osapoolele kohustuse
puhastada oma süsteem teiste osapoolte andmetest. See ülesanne võib olla vägagi
mittetriviaalne.

Lõpuks uurib käesolev töö üleliigsete arvutuste probleemi tuvalise ühisarvu-

307

tuse rakendustes. Mõnedel juhtudel peavad osapooled otsustama, mis suunas peab
nende arvutus edasi minema. Kui see otsus sõltub privaatsetest andmetest, ei tohi
ükski osapool haru valikust midagi teada, nii et üldjuhul peavad osapooled läbi
viima arvutused kõigis harudes. Harude suure arvu korral võib arvutuslik lisakulu
olla ülisuur, sest enamik vahetulemustest visatakse ära. Käesolevas töös esitatakse
optimeerimisviis, mis selliseid lisakulusid vähendab.

308

LIST OF ORIGINAL PUBLICATIONS

• Laud, P., Pankova, A.: Verifiable Computation in Multiparty Protocols with
Honest Majority. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu, S. (eds.)
Provable Security - 8th InternationalConference, ProvSec 2014,HongKong,
China, October 9-10, 2014. Proceedings. LNCS, vol. 8782, pp. 146–161.
Springer (2014),
http://dx.doi.org/10.1007/978-3-319-12475-9_11.

• Laud, P., Pankova, A.: Securing multiparty protocols against the exposure
of data to honest parties. In: Livraga, G., Torra, V., Aldini, A., Mar-
tinelli, F., Suri, N. (eds.) Data Privacy Management and Security As-
surance - 11th International Workshop, DPM 2016 and 5th International
Workshop, QASA 2016, Heraklion, Crete, Greece, September 26-27, 2016,
Proceedings. LNCS, vol. 9963, pp. 165–180. Springer (2016), http:
//dx.doi.org/10.1007/978-3-319-47072-6_11.

• Laud, P., Pankova, A.: Optimizing secure computation programs with pri-
vate conditionals. In: Lam, K., Chi, C., Qing, S. (eds.) Information and
Communications Security - 18th International Conference, ICICS 2016,
Singapore, November 29 - December 2, 2016, Proceedings. LNCS, vol.
9977, pp. 418–430. Springer (2016),http://dx.doi.org/10.1007/
978-3-319-50011-9_32.

UNPUBLISHED RESULTS USED IN THIS THESIS

• Laud, P., Pankova, A.: Preprocessing-based verification of multiparty pro-
tocols with honest majority. Cryptology ePrint Archive, Report 2015/674
(2015), http://eprint.iacr.org/.

309

http://dx.doi.org/10.1007/978-3-319-12475-9_11
http://dx.doi.org/10.1007/978-3-319-47072-6_11
http://dx.doi.org/10.1007/978-3-319-47072-6_11
http://dx.doi.org/10.1007/978-3-319-50011-9_32
http://dx.doi.org/10.1007/978-3-319-50011-9_32
http://eprint.iacr.org/

CURRICULUM VITAE

Personal data
Name Alisa Pankova

Birth October 20th, 1989, Tartu, Estonia

Citizenship Estonian

Languages English, Estonian, German, Japanese, Russian

E-mail alisa.pankova@cyber.ee

Education
2013– University of Tartu, Ph.D. candidate in Comp. Science

2011–2013 University of Tartu, M.Sc. in Computer Science

2008–2011 University of Tartu, B.Sc. in Computer Science

Employment
01.01.2016– STACC, Junior Researcher (0,50)

01.01.2016– Cybernetica AS, Junior Researcher (0,50)

01.09.2015–31.12.2015 STACC, Junior Researcher (0,20)

01.12.2013–31.12.2015 Cybernetica AS, Junior Researcher (0,20)

01.12.2013–31.08.2015 STACC, Junior Researcher (0,80)

01.02.2013–30.11.2013 STACC, Junior Researcher (1,00)

01.08.2012–31.01.2013 University of Tartu, Programming specialist (0,50)

01.07.2012–31.08.2012 Cybernetica AS, intern (1,00)

01.08.2011–31.07.2012 University of Tartu, Programming specialist (0,50)

01.07.2011–31.08.2011 Cybernetica AS, intern (1,00)

310

ELULOOKIRJELDUS

Isikuandmed
Nimi Alisa Pankova

Sünniaeg ja -koht 20. oktoober 1989, Tartu, Eesti

Kodakondsus eestlane

Keelteoskus eesti, inglise, jaapani, saksa, vene

E-post alisa.pankova@cyber.ee

Haridustee
2013– Tartu Ülikool, informaatika doktorant

2011–2013 Tartu Ülikool, MSc informaatikas

2008–2011 Tartu Ülikool, BSc informaatikas

Teenistuskäik
01.01.2016– STACC OÜ, Nooremteadur (0,50)

01.01.2016– Cybernetica AS, Nooremteadur (0,50)

01.09.2015–31.12.2015 STACC OÜ, Nooremteadur (0,20)

01.12.2013–31.12.2015 Cybernetica AS, Nooremteadur (0,20)

01.12.2013–31.08.2015 STACC OÜ, Nooremteadur (0,80)

01.02.2013–30.11.2013 STACC OÜ, Nooremteadur (1,00)

01.08.2012–31.01.2013 Tartu Ülikool, Programmeerimise spetsialist (0,50)

01.07.2012–31.08.2012 Cybernetica AS, praktikant (1,00)

01.08.2011–31.07.2012 Tartu Ülikool, Programmeerimise spetsialist (0,50)

01.07.2011–31.08.2011 Cybernetica AS, praktikant (1,00)

311

DISSERTATIONES MATHEMATICAE
UNIVERSITATIS TARTUENSIS

 1. Mati Heinloo. The design of nonhomogeneous spherical vessels, cylindrical
tubes and circular discs. Tartu, 1991, 23 p.

 2. Boris Komrakov. Primitive actions and the Sophus Lie problem. Tartu,
1991, 14 p.

 3. Jaak Heinloo. Phenomenological (continuum) theory of turbulence. Tartu,
1992, 47 p.

 4. Ants Tauts. Infinite formulae in intuitionistic logic of higher order. Tartu,
1992, 15 p.

 5. Tarmo Soomere. Kinetic theory of Rossby waves. Tartu, 1992, 32 p.
 6. Jüri Majak. Optimization of plastic axisymmetric plates and shells in the

case of Von Mises yield condition. Tartu, 1992, 32 p.
 7. Ants Aasma. Matrix transformations of summability and absolute summa-

bility fields of matrix methods. Tartu, 1993, 32 p.
 8. Helle Hein. Optimization of plastic axisymmetric plates and shells with

piece-wise constant thickness. Tartu, 1993, 28 p.
 9. Toomas Kiho. Study of optimality of iterated Lavrentiev method and

its generalizations. Tartu, 1994, 23 p.
10. Arne Kokk. Joint spectral theory and extension of non-trivial multiplica-

tive linear functionals. Tartu, 1995, 165 p.
11. Toomas Lepikult. Automated calculation of dynamically loaded rigid-

plastic structures. Tartu, 1995, 93 p, (in Russian).
12. Sander Hannus. Parametrical optimization of the plastic cylindrical shells

by taking into account geometrical and physical nonlinearities. Tartu, 1995,
74 p, (in Russian).

13. Sergei Tupailo. Hilbert’s epsilon-symbol in predicative subsystems of
analysis. Tartu, 1996, 134 p.

14. Enno Saks. Analysis and optimization of elastic-plastic shafts in torsion.
Tartu, 1996, 96 p.

15. Valdis Laan. Pullbacks and flatness properties of acts. Tartu, 1999, 90 p.
16. Märt Põldvere. Subspaces of Banach spaces having Phelps’ uniqueness

property. Tartu, 1999, 74 p.
17. Jelena Ausekle. Compactness of operators in Lorentz and Orlicz sequence

spaces. Tartu, 1999, 72 p.
18. Krista Fischer. Structural mean models for analyzing the effect of

compliance in clinical trials. Tartu, 1999, 124 p.
19. Helger Lipmaa. Secure and efficient time-stamping systems. Tartu, 1999,

56 p.
20. Jüri Lember. Consistency of empirical k-centres. Tartu, 1999, 148 p.
21. Ella Puman. Optimization of plastic conical shells. Tartu, 2000, 102 p.
22. Kaili Müürisep. Eesti keele arvutigrammatika: süntaks. Tartu, 2000, 107 lk.

312

23. Varmo Vene. Categorical programming with inductive and coinductive
types. Tartu, 2000, 116 p.

24. Olga Sokratova. Ω-rings, their flat and projective acts with some appli-
cations. Tartu, 2000, 120 p.

25. Maria Zeltser. Investigation of double sequence spaces by soft and hard
analitical methods. Tartu, 2001, 154 p.

26. Ernst Tungel. Optimization of plastic spherical shells. Tartu, 2001, 90 p.
27. Tiina Puolakainen. Eesti keele arvutigrammatika: morfoloogiline ühesta-

mine. Tartu, 2001, 138 p.
28. Rainis Haller. M(r,s)-inequalities. Tartu, 2002, 78 p.
29. Jan Villemson. Size-efficient interval time stamps. Tartu, 2002, 82 p.
30. Töö kaitsmata.
31. Mart Abel. Structure of Gelfand-Mazur algebras. Tartu, 2003. 94 p.
32. Vladimir Kuchmei. Affine completeness of some ockham algebras. Tartu,

2003. 100 p.
33. Olga Dunajeva. Asymptotic matrix methods in statistical inference

problems. Tartu 2003. 78 p.
34. Mare Tarang. Stability of the spline collocation method for volterra

integro-differential equations. Tartu 2004. 90 p.
35. Tatjana Nahtman. Permutation invariance and reparameterizations in

linear models. Tartu 2004. 91 p.
36. Märt Möls. Linear mixed models with equivalent predictors. Tartu 2004.

70 p.
37. Kristiina Hakk. Approximation methods for weakly singular integral

equations with discontinuous coefficients. Tartu 2004, 137 p.
38. Meelis Käärik. Fitting sets to probability distributions. Tartu 2005, 90 p.
39. Inga Parts. Piecewise polynomial collocation methods for solving weakly

singular integro-differential equations. Tartu 2005, 140 p.
40. Natalia Saealle. Convergence and summability with speed of functional

series. Tartu 2005, 91 p.
41. Tanel Kaart. The reliability of linear mixed models in genetic studies.

Tartu 2006, 124 p.
42. Kadre Torn. Shear and bending response of inelastic structures to dynamic

load. Tartu 2006, 142 p.
43. Kristel Mikkor. Uniform factorisation for compact subsets of Banach

spaces of operators. Tartu 2006, 72 p.
44. Darja Saveljeva. Quadratic and cubic spline collocation for Volterra

integral equations. Tartu 2006, 117 p.
45. Kristo Heero. Path planning and learning strategies for mobile robots in

dynamic partially unknown environments. Tartu 2006, 123 p.
46. Annely Mürk. Optimization of inelastic plates with cracks. Tartu 2006.

137 p.
47. Annemai Raidjõe. Sequence spaces defined by modulus functions and

superposition operators. Tartu 2006, 97 p.
48. Olga Panova. Real Gelfand-Mazur algebras. Tartu 2006, 82 p.

313

49. Härmel Nestra. Iteratively defined transfinite trace semantics and program
slicing with respect to them. Tartu 2006, 116 p.

50. Margus Pihlak. Approximation of multivariate distribution functions.
Tartu 2007, 82 p.

51. Ene Käärik. Handling dropouts in repeated measurements using copulas.
Tartu 2007, 99 p.

52. Artur Sepp. Affine models in mathematical finance: an analytical approach.
Tartu 2007, 147 p.

53. Marina Issakova. Solving of linear equations, linear inequalities and
systems of linear equations in interactive learning environment. Tartu
2007, 170 p.

54. Kaja Sõstra. Restriction estimator for domains. Tartu 2007, 104 p.
55. Kaarel Kaljurand. Attempto controlled English as a Semantic Web language.

Tartu 2007, 162 p.
56. Mart Anton. Mechanical modeling of IPMC actuators at large deforma-

tions. Tartu 2008, 123 p.
57. Evely Leetma. Solution of smoothing problems with obstacles. Tartu

2009, 81 p.
58. Ants Kaasik. Estimating ruin probabilities in the Cramér-Lundberg model

with heavy-tailed claims. Tartu 2009, 139 p.
59. Reimo Palm. Numerical Comparison of Regularization Algorithms for

Solving Ill-Posed Problems. Tartu 2010, 105 p.
60. Indrek Zolk. The commuting bounded approximation property of Banach

spaces. Tartu 2010, 107 p.
61. Jüri Reimand. Functional analysis of gene lists, networks and regulatory

systems. Tartu 2010, 153 p.
62. Ahti Peder. Superpositional Graphs and Finding the Description of Struc-

ture by Counting Method. Tartu 2010, 87 p.
63. Marek Kolk. Piecewise Polynomial Collocation for Volterra Integral

Equations with Singularities. Tartu 2010, 134 p.
64. Vesal Vojdani. Static Data Race Analysis of Heap-Manipulating C Programs.

Tartu 2010, 137 p.
65. Larissa Roots. Free vibrations of stepped cylindrical shells containing

cracks. Tartu 2010, 94 p.
66. Mark Fišel. Optimizing Statistical Machine Translation via Input Modifi-

cation. Tartu 2011, 104 p.
67. Margus Niitsoo. Black-box Oracle Separation Techniques with Appli-

cations in Time-stamping. Tartu 2011, 174 p.
68. Olga Liivapuu. Graded q-differential algebras and algebraic models in

noncommutative geometry. Tartu 2011, 112 p.
69. Aleksei Lissitsin. Convex approximation properties of Banach spaces.

Tartu 2011, 107 p.
70. Lauri Tart. Morita equivalence of partially ordered semigroups. Tartu

2011, 101 p.
71. Siim Karus. Maintainability of XML Transformations. Tartu 2011, 142 p.

314

72. Margus Treumuth. A Framework for Asynchronous Dialogue Systems:
Concepts, Issues and Design Aspects. Tartu 2011, 95 p.

73. Dmitri Lepp. Solving simplification problems in the domain of exponents,
monomials and polynomials in interactive learning environment T-algebra.
Tartu 2011, 202 p.

74. Meelis Kull. Statistical enrichment analysis in algorithms for studying
gene regulation. Tartu 2011, 151 p.

75. Nadežda Bazunova. Differential calculus d3
 = 0 on binary and ternary

associative algebras. Tartu 2011, 99 p.
76. Natalja Lepik. Estimation of domains under restrictions built upon gene-

ralized regression and synthetic estimators. Tartu 2011, 133 p.
77. Bingsheng Zhang. Efficient cryptographic protocols for secure and private

remote databases. Tartu 2011, 206 p.
78. Reina Uba. Merging business process models. Tartu 2011, 166 p.
79. Uuno Puus. Structural performance as a success factor in software

development projects – Estonian experience. Tartu 2012, 106 p.
80. Marje Johanson. M(r, s)-ideals of compact operators. Tartu 2012, 103 p.
81. Georg Singer. Web search engines and complex information needs. Tartu

2012, 218 p.
82. Vitali Retšnoi. Vector fields and Lie group representations. Tartu 2012,

108 p.
83. Dan Bogdanov. Sharemind: programmable secure computations with

practical applications. Tartu 2013, 191 p.
84. Jevgeni Kabanov. Towards a more productive Java EE ecosystem. Tartu

2013, 151 p.
85. Erge Ideon. Rational spline collocation for boundary value problems.

Tartu, 2013, 111 p.
86. Esta Kägo. Natural vibrations of elastic stepped plates with cracks. Tartu,

2013, 114 p.
87. Margus Freudenthal. Simpl: A toolkit for Domain-Specific Language

development in enterprise information systems. Tartu, 2013, 151 p.
88. Boriss Vlassov. Optimization of stepped plates in the case of smooth yield

surfaces. Tartu, 2013, 104 p.
89. Elina Safiulina. Parallel and semiparallel space-like submanifolds of low

dimension in pseudo-Euclidean space. Tartu, 2013, 85 p.
90. Raivo Kolde. Methods for re-using public gene expression data. Tartu,

2014, 121 p.
91. Vladimir Šor. Statistical Approach for Memory Leak Detection in Java

Applications. Tartu, 2014, 155 p.
92. Naved Ahmed. Deriving Security Requirements from Business Process

Models. Tartu, 2014, 171 p.
93. Kerli Orav-Puurand. Central Part Interpolation Schemes for Weakly

Singular Integral Equations. Tartu, 2014, 109 p.
94. Liina Kamm. Privacy-preserving statistical analysis using secure multi-

party computation. Tartu, 2015, 201 p.

315

95. Kaido Lätt. Singular fractional differential equations and cordial Volterra
integral operators. Tartu, 2015, 93 p.

96. Oleg Košik. Categorical equivalence in algebra. Tartu, 2015, 84 p.
97. Kati Ain. Compactness and null sequences defined by spaces. Tartu,

2015, 90 p.
98. Helle Hallik. Rational spline histopolation. Tartu, 2015, 100 p.
99. Johann Langemets. Geometrical structure in diameter 2 Banach spaces.

Tartu, 2015, 132 p.
100. Abel Armas Cervantes. Diagnosing Behavioral Differences between

Business Process Models. Tartu, 2015, 193 p.
101. Fredrik Milani. On Sub-Processes, Process Variation and their Interplay:

An Integrated Divide-and-Conquer Method for Modeling Business Pro-
cesses with Variation. Tartu, 2015, 164 p.

102. Huber Raul Flores Macario. Service-Oriented and Evidence-aware
Mobile Cloud Computing. Tartu, 2015, 163 p.

103. Tauno Metsalu. Statistical analysis of multivariate data in bioinformatics.
Tartu, 2016, 197 p.

104. Riivo Talviste. Applying Secure Multi-party Computation in Practice.
Tartu, 2016, 144 p.

105. Md Raknuzzaman. Noncommutative Galois Extension Approach to
Ternary Grassmann Algebra and Graded q-Differential Algebra. Tartu,
2016, 110 p.

106. Alexander Liyvapuu. Natural vibrations of elastic stepped arches with
cracks. Tartu, 2016, 110 p.

107. Julia Polikarpus. Elastic plastic analysis and optimization of axisym-
metric plates. Tartu, 2016, 114 p.

108. Siim Orasmaa. Explorations of the Problem of Broad-coverage and
General Domain Event Analysis: The Estonian Experience. Tartu, 2016,
186 p.

109. Prastudy Mungkas Fauzi. Efficient Non-interactive Zero-knowledge
Protocols in the CRS Model. Tartu, 2017, 193 p.

110. Pelle Jakovits. Adapting Scientific Computing Algorithms to Distributed
Computing Frameworks. Tartu, 2017, 168 p.

111. Anna Leontjeva. Using Generative Models to Combine Static and Se-
quential Features for Classification. Tartu, 2017, 167 p.

112. Mozhgan Pourmoradnasseri. Some Problems Related to Extensions of
Polytopes. Tartu, 2017, 168 p.

113. Jaak Randmets. Programming Languages for Secure Multi-party Com-
putation Application Development. Tartu, 2017, 172 p.

	Abstract
	Introduction
	Secure Multiparty Computation
	Assumptions of Secure Multiparty Computation
	Claims of This Thesis
	Outline and Author's Contributions

	Preliminaries
	Multiparty Computation
	Security of Multiparty Computation
	Secrets
	Adversary
	Basics of Universal Composability
	Languages for Secure Computation

	Basics and Notation
	Types of Indistinguishability
	Digital Signatures
	Message Authentication Codes
	Hash Functions and Merkle Tree
	Finite Fields and the Schwarz-Zippel Lemma
	Linear Programming

	Linear Secret Sharing Schemes
	Additive Sharing
	Linear Threshold Sharing
	Permutation Sharing

	Correlated Randomness
	Commitments
	Verifiable Computation
	Linear Probabilistically Checkable Proofs
	Verification as Quadratic Arithmetic Program
	LPCP for Quadratic Arithmetic Programs

	Related Work
	Actively and Covertly Secure Multiparty Computation
	A Note on Covert Adversaries
	Compilers from Passive to Active Security
	Active Security for any Number of Corrupted Parties
	Active Security with an Honest Majority
	Passive Security with an Honest Majority

	Multiple Adversary Models
	Collusion Preserving Computation
	Local Universal Composability

	Private Conditionals in SMC Programs

	Verifiable SMC with an Honest Majority
	Chapter Overview
	The Ideal Functionality for Verifiable Honest Majority SMC
	The Protocol for Verifiable 3-Party SMC with one Corrupted Party
	Building Blocks
	Protocol Implementing Fpre
	Protocol Implementing Fverify

	Generalization to Verifiable n-Party SMC with an Honest Majority
	Building Blocks
	Generalization of verify

	Security Proofs for n-Party Verifiable SMC with an Honest Majority
	Ensuring Message Delivery
	Linearly Homomorphic Commitments
	Generating Uniformly Distributed Randomness
	Generation of Precomputed Tuples
	Verification of Circuit Computation
	The Main Protocol for Verifiable SMC
	Proof of the Main Theorem
	Another Protocol for Verification

	Extensions
	Additional Circuit Operations
	Reducing the Number of Bit Decompositions
	Input and Output Parties
	Auditability

	Evaluation
	Implementation
	The Total Cost of Covertly Secure Protocols
	State-of-the-art Complexity of Actively Secure Integer Multiplication and AES
	Estimating the Cost of other Sharemind Protocols

	Summary

	Protecting Data from Honest Parties
	Chapter Overview
	Attacks that We Want to Cover
	Weak Collusion Preservation
	Intuition
	Definitions
	Technical Details
	Relations with Generalized Universal Composability
	Capturing Information Leakage to an Honest Party
	Composition Theorem
	Relations to the Existing Notions
	Applicability of the WCP Model

	Protocol Transformations for Achieving the WCP Security
	Passive Adversaries
	Fail-Stop Adversaries
	Covert Adversaries
	Active Adversaries

	Summary

	Optimization of SMC Programs with Private Conditionals
	Chapter Overview
	Programming Language for SMC
	Computational Circuits
	Circuit Definition
	Circuit Evaluation
	Transforming a Program to a Circuit

	Optimization of the Circuit
	The Weakest Precondition of a Gate
	Informal Description of the Optimization
	Notation
	Subcircuits as Gates
	Simple Greedy Heuristics
	Reduction to an Integer Linear Programming Task
	Circuit Transformation

	Formal Constructions and Proofs
	Circuit Composition
	Transformations of Programs to Circuits
	Correctness of the WP Generating Algorithm
	Correctness of the Subcircuit Partitioning Algorithm
	Correctness of the Greedy Algorithms
	Correctness of the Reduction to ILP
	Correctness of the Circuit Transformation

	Implementation and Evaluation
	Discussion
	Summary

	Conclusion
	Appendix Optimized Sample Programs
	Appendix Running Times of Programs after Optimization
	Index
	Bibliography
	Acknowledgments
	Kokkuvõte (Summary in Estonian)
	List of Original Publications
	Curriculum Vitae
	Elulookirjeldus
	1.pdf
	Abstract
	Introduction
	Secure Multiparty Computation
	Assumptions of Secure Multiparty Computation
	Claims of This Thesis
	Outline and Author's Contributions

	Preliminaries
	Multiparty Computation
	Security of Multiparty Computation
	Secrets
	Adversary
	Basics of Universal Composability
	Languages for Secure Computation

	Basics and Notation
	Types of Indistinguishability
	Digital Signatures
	Message Authentication Codes
	Hash Functions and Merkle Tree
	Finite Fields and the Schwarz-Zippel Lemma
	Linear Programming

	Linear Secret Sharing Schemes
	Additive Sharing
	Linear Threshold Sharing
	Permutation Sharing

	Correlated Randomness
	Commitments
	Verifiable Computation
	Linear Probabilistically Checkable Proofs
	Verification as Quadratic Arithmetic Program
	LPCP for Quadratic Arithmetic Programs

	Related Work
	Actively and Covertly Secure Multiparty Computation
	A Note on Covert Adversaries
	Compilers from Passive to Active Security
	Active Security for any Number of Corrupted Parties
	Active Security with an Honest Majority
	Passive Security with an Honest Majority

	Multiple Adversary Models
	Collusion Preserving Computation
	Local Universal Composability

	Private Conditionals in SMC Programs

	Verifiable SMC with an Honest Majority
	Chapter Overview
	The Ideal Functionality for Verifiable Honest Majority SMC
	The Protocol for Verifiable 3-Party SMC with one Corrupted Party
	Building Blocks
	Protocol Implementing Fpre
	Protocol Implementing Fverify

	Generalization to Verifiable n-Party SMC with an Honest Majority
	Building Blocks
	Generalization of verify

	Security Proofs for n-Party Verifiable SMC with an Honest Majority
	Ensuring Message Delivery
	Linearly Homomorphic Commitments
	Generating Uniformly Distributed Randomness
	Generation of Precomputed Tuples
	Verification of Circuit Computation
	The Main Protocol for Verifiable SMC
	Proof of the Main Theorem
	Another Protocol for Verification

	Extensions
	Additional Circuit Operations
	Reducing the Number of Bit Decompositions
	Input and Output Parties
	Auditability

	Evaluation
	Implementation
	The Total Cost of Covertly Secure Protocols
	State-of-the-art Complexity of Actively Secure Integer Multiplication and AES
	Estimating the Cost of other Sharemind Protocols

	Summary

	Protecting Data from Honest Parties
	Chapter Overview
	Attacks that We Want to Cover
	Weak Collusion Preservation
	Intuition
	Definitions
	Technical Details
	Relations with Generalized Universal Composability
	Capturing Information Leakage to an Honest Party
	Composition Theorem
	Relations to the Existing Notions
	Applicability of the WCP Model

	Protocol Transformations for Achieving the WCP Security
	Passive Adversaries
	Fail-Stop Adversaries
	Covert Adversaries
	Active Adversaries

	Summary

	Optimization of SMC Programs with Private Conditionals
	Chapter Overview
	Programming Language for SMC
	Computational Circuits
	Circuit Definition
	Circuit Evaluation
	Transforming a Program to a Circuit

	Optimization of the Circuit
	The Weakest Precondition of a Gate
	Informal Description of the Optimization
	Notation
	Subcircuits as Gates
	Simple Greedy Heuristics
	Reduction to an Integer Linear Programming Task
	Circuit Transformation

	Formal Constructions and Proofs
	Circuit Composition
	Transformations of Programs to Circuits
	Correctness of the WP Generating Algorithm
	Correctness of the Subcircuit Partitioning Algorithm
	Correctness of the Greedy Algorithms
	Correctness of the Reduction to ILP
	Correctness of the Circuit Transformation

	Implementation and Evaluation
	Discussion
	Summary

	Conclusion
	Appendix Optimized Sample Programs
	Appendix Running Times of Programs after Optimization
	Index
	Bibliography
	Acknowledgments
	Kokkuvõte (Summary in Estonian)
	List of Original Publications
	Curriculum Vitae
	Elulookirjeldus

	1.pdf
	Abstract
	Introduction
	Secure Multiparty Computation
	Assumptions of Secure Multiparty Computation
	Claims of This Thesis
	Outline and Author's Contributions

	Preliminaries
	Multiparty Computation
	Security of Multiparty Computation
	Secrets
	Adversary
	Basics of Universal Composability
	Languages for Secure Computation

	Basics and Notation
	Types of Indistinguishability
	Digital Signatures
	Message Authentication Codes
	Hash Functions and Merkle Tree
	Finite Fields and the Schwarz-Zippel Lemma
	Linear Programming

	Linear Secret Sharing Schemes
	Additive Sharing
	Linear Threshold Sharing
	Permutation Sharing

	Correlated Randomness
	Commitments
	Verifiable Computation
	Linear Probabilistically Checkable Proofs
	Verification as Quadratic Arithmetic Program
	LPCP for Quadratic Arithmetic Programs

	Related Work
	Actively and Covertly Secure Multiparty Computation
	A Note on Covert Adversaries
	Compilers from Passive to Active Security
	Active Security for any Number of Corrupted Parties
	Active Security with an Honest Majority
	Passive Security with an Honest Majority

	Multiple Adversary Models
	Collusion Preserving Computation
	Local Universal Composability

	Private Conditionals in SMC Programs

	Verifiable SMC with an Honest Majority
	Chapter Overview
	The Ideal Functionality for Verifiable Honest Majority SMC
	The Protocol for Verifiable 3-Party SMC with one Corrupted Party
	Building Blocks
	Protocol Implementing Fpre
	Protocol Implementing Fverify

	Generalization to Verifiable n-Party SMC with an Honest Majority
	Building Blocks
	Generalization of verify

	Security Proofs for n-Party Verifiable SMC with an Honest Majority
	Ensuring Message Delivery
	Linearly Homomorphic Commitments
	Generating Uniformly Distributed Randomness
	Generation of Precomputed Tuples
	Verification of Circuit Computation
	The Main Protocol for Verifiable SMC
	Proof of the Main Theorem
	Another Protocol for Verification

	Extensions
	Additional Circuit Operations
	Reducing the Number of Bit Decompositions
	Input and Output Parties
	Auditability

	Evaluation
	Implementation
	The Total Cost of Covertly Secure Protocols
	State-of-the-art Complexity of Actively Secure Integer Multiplication and AES
	Estimating the Cost of other Sharemind Protocols

	Summary

	Protecting Data from Honest Parties
	Chapter Overview
	Attacks that We Want to Cover
	Weak Collusion Preservation
	Intuition
	Definitions
	Technical Details
	Relations with Generalized Universal Composability
	Capturing Information Leakage to an Honest Party
	Composition Theorem
	Relations to the Existing Notions
	Applicability of the WCP Model

	Protocol Transformations for Achieving the WCP Security
	Passive Adversaries
	Fail-Stop Adversaries
	Covert Adversaries
	Active Adversaries

	Summary

	Optimization of SMC Programs with Private Conditionals
	Chapter Overview
	Programming Language for SMC
	Computational Circuits
	Circuit Definition
	Circuit Evaluation
	Transforming a Program to a Circuit

	Optimization of the Circuit
	The Weakest Precondition of a Gate
	Informal Description of the Optimization
	Notation
	Subcircuits as Gates
	Simple Greedy Heuristics
	Reduction to an Integer Linear Programming Task
	Circuit Transformation

	Formal Constructions and Proofs
	Circuit Composition
	Transformations of Programs to Circuits
	Correctness of the WP Generating Algorithm
	Correctness of the Subcircuit Partitioning Algorithm
	Correctness of the Greedy Algorithms
	Correctness of the Reduction to ILP
	Correctness of the Circuit Transformation

	Implementation and Evaluation
	Discussion
	Summary

	Conclusion
	Appendix Optimized Sample Programs
	Appendix Running Times of Programs after Optimization
	Index
	Bibliography
	Acknowledgments
	Kokkuvõte (Summary in Estonian)
	List of Original Publications
	Curriculum Vitae
	Elulookirjeldus

